Skip to main content
Log in

Microsatellite analysis supports the existence of three cryptic species within the bumble bee Bombus lucorum sensu lato

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Mitochondrial cytochrome oxidase I (COI) partial sequences are widely used in taxonomy for species identification. Increasingly, these sequence identities are combined with modelling approaches to delineate species. Yet the validity of species delineation based on such DNA ‘barcodes’ is rarely tested and may be called into question by phenomena such as ancestral polymorphisms in DNA sequences, phylogeographic divergence, mitochondrial introgression and hybridization, or distortion of mitochondrial inheritance through such factors as Wolbachia infection. The common and widespread European bumble bee Bombus lucorum s. lato contains three distinct mitochondrial DNA lineages that are assumed to represent three cryptic species, namely Bombus cryptarum, B. lucorum s. str. and B. magnus. To test whether nuclear gene pools of the three putative species were differentiated, we genotyped 304 sympatric members of the lucorum complex (54 B. cryptarum females, 168 B. lucorum s. str. females and 82 B. magnus females, as defined using mtDNA COI haplotypes) from 11 localities spread across the island of Ireland at seven nuclear microsatellite loci. Multilocus genotypes clustered into three discrete groups that largely corresponded to the three mtDNA lineages: B. cryptarum, B. lucorum s. str. and B. magnus. The good fit of mitochondrial haplotype to nuclear (microsatellite) genotypic data supports the view that these three bumble bee taxa are reproductively isolated species, as well as providing a vindication of species identity using so-called DNA barcodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

photo credit: Bertsch et al. (2004)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayasse M, Paxton RJ, Tengö J (2001) Mating behavior and chemical communication in the order Hymenoptera. Ann Rev Entomol 46:31–78

    Article  CAS  Google Scholar 

  • Bergström G, Svensson BG, Appelgren M, Groth I (1981) Complexity of bumble bee marking pheromones: biochemical, ecological and systematic interpretations. In: Hows PE, Clemet J-L (eds) Biosystematics of social insects, vol 19. Academic Press, London, pp 175–183

    Google Scholar 

  • Berkov A (2002) The impact of redefined species limits in Palame (Coleoptera: Cerambycidae: Lamiinae: Acanthocinini) on assessments of host, seasonal, and stratum specificity. Biol J Linn Soc 76:195–209

    Article  Google Scholar 

  • Bertsch A (1997a) Abgrenzung der Hummel-Arten Bombus cryptarum und B. lucorum mittels mänlicher Labialdrüsen-Sekrete und morphologischer Merkmale (Hymenoptera, Apidae). Entomologia Generalis 22:129–145.

  • Bertsch A (1997b) Wieviele Arten der Untergattung Terrestribombus (Hymenoptera, Apidae) gibt es in Nordhessen; die Abgrenzung von Bombus cryptarum und B. lucorum mittels männlicher Labial-Drüsen-Sekrete und morphologischer Merkmale. Marburger Entomologische Publikationen 2:1–28.

  • Bertsch A, Schweer H, Titze A (2004) Discrimination of the bumblebee species Bombus lucorum, B. cryptarum and B. magnus by morphological characters and male labial gland secretions. Beiträge zur Entomol 54:365–386.

    Google Scholar 

  • Bertsch A, Schweer H, Titze A, Tanaka H (2005) Male labial gland secretions and mitochondrial DNA markers support species status of Bombus cryptarum and B. magnus (Hymenoptera, Apidae). Insectes Soc 52:45–54.

    Article  Google Scholar 

  • Bossert S (2015) Recognition and identification of bumblebee species in the Bombus lucorum-complex (Hymenoptera, Apidae). A review and outlook. Dtsch Entomol Z 62:19–28

    Article  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carolan JC, Murray TE, Fitzpatrick Ú, Crossley J, Schmidt H, Cederberg B, McNally L, Paxton RJ, Williams PH, Brown MJF (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS ONE 7:e29251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22:4369–4383

    Article  PubMed  Google Scholar 

  • Coissac E, Hollingsworth PM, Lavergne S, Taberlet P (2016) From barcodes to genomes: extending the concept of DNA barcoding. Mol Ecol 25:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Crandall KA, Binindaemonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  CAS  PubMed  Google Scholar 

  • Dieringer D, Schlötterer C (2003) MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Eltz T, Fritzsch F, Pech JR, Zimmermann Y, Ramírez SR, Quezada-Euan JJG, Bembé B (2011) Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a novel cryptic sibling species, by morphological, chemical, and genetic characters. Zool J Linn Soc 163:1064–1076.

    Article  Google Scholar 

  • Fitzpatrick Ú, Murray TE, Byrne A, Paxton RJ, Brown MJF (2006) Regional red list of Irish bees. National Parks and Wildlife Service (Republic of Ireland) and Environment and Heritage Service (Northern Ireland), Dublin, pp 1–38

    Google Scholar 

  • Fitzpatrick Ú, Murray TE, Paxton RJ, Breen J, Cotton D, Santorum V, Brown MJF (2007) Rarity and decline in bumblebees-a test of causes and correlates in the Irish fauna. Biol Conserv 136:185–194

    Article  Google Scholar 

  • Gerth M, Geißler A, Bleidorn C (2011) Wolbachia infections in bees (Anthophila) and possible implications for DNA barcoding. Syst Biodiv 9:319–327

    Article  Google Scholar 

  • Gerth M, Röthe J, Bleidorn C (2013a) Tracing horizontal Wolbachia movements among bees (Anthophila): a combined approach using multilocus sequence typing data and host phylogeny. Mol Ecol 22:6149–6162

    Article  PubMed  Google Scholar 

  • Gerth M, Bleidorn C (2013b) A multilocus sequence typing (MLST) approach to diminish the problems that are associated with DNA barcoding: A reply to Stahlhut et al. (2012). Syst Biodiv 11:1–3

    Article  Google Scholar 

  • Gerth M, Gansauge M-T, Weigert A, Bleidorn C (2014) Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat Commun 5:5117

    Article  CAS  PubMed  Google Scholar 

  • Goulson D (2003) Effects of introduced bees on native ecosystems. Ann Rev Ecol Evol Syst 34:1–26

    Article  Google Scholar 

  • Goulson D (2009) Bumblebees. Behaviour, ecology and conservation. 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Goulson D, Hanley ME, Darvill B, Ellis JS, Knight ME (2005) Causes of rarity in bumblebees. Biol Conserv 122:1–8

    Article  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines HM (2008) Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst Biol 57:58–75

    Article  PubMed  Google Scholar 

  • Inoue MN, Yokoyama J, Washitani I (2008) Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J Insect Cons 12:135–146

    Article  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanbe Y, Okada I, Yoneda M, Goka K, Tsuchida K (2008) Interspecific mating of the introduced bumblebee Bombus terrestris and the native Japanese bumblebee Bombus hypocrita sapporoensis results in inviable hybrids. Naturwiss 95:1003–1008

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann M, Else GR, Dawson A, Quicke DLJ (2007) Molecular, biogeographical and phenological evidence for the existence of three western European sibling species in the Colletes succinctus group (Hymenoptera: Apidae). Organisms Divers Evol 7:155–165

    Article  Google Scholar 

  • Lozier JD, Zayed A (2016) Bee conservation in the age of genomics. Conserv Genet. doi: 10.1007/s10592-016-0893-7

    Google Scholar 

  • Magnacca KN, Brown MJF (2010a) Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evol Biol 10:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Magnacca KN, Brown MJF (2010b) Tissue segregation of mitochondrial haplotypes in heteroplasmic Hawaiian bees: implications for DNA barcoding. Mol Ecol Res 10:60–68

    Article  CAS  Google Scholar 

  • Magnacca KN, Brown MJF (2012) DNA barcoding a regional fauna: Irish solitary bees. Mol. Ecol Res 12:990–998

    Article  CAS  Google Scholar 

  • Mallet J (1995) A species definition for the Modern Synthesis. Trends Ecol Evol 10:294–299

    Article  CAS  PubMed  Google Scholar 

  • Mallet J (2007) Species, concepts of. In: Levin SA et al, (eds) Encyclopedia of biodiversity, 2nd edn. Academic Press, San Diego, pp 427–440

    Google Scholar 

  • Meeus I, Brown MJF, De Graaf DC, Smagghe G (2011) Effects of invasive parasites on bumble bee declines. Conserv Biol 25:662–671

    Article  PubMed  Google Scholar 

  • Murray TE, Fitzpatrick Ú, Brown MJF, Paxton RJ (2008) Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conserv Genet 9:653–666

    Article  CAS  Google Scholar 

  • Nieto A, Roberts SPM, Kemp J, Rasmont P, Kuhlmann M, García Criado M, Biesmeijer JC, Bogusch, Dathe HH, De la Rúa P, De Meulemeester T, Dehon M, Dewulf A, Ortiz-Sánchez FJ, Lhomme P, Pauly A, Potts SG, Praz C, Quaranta M, Radchenko VG, Scheuchl E, Smit J, Straka J, Terzo M, Tomozii B, Window J, Michez D (2014) European red list of bees. Publication Office of the European Commission, Luxembourg

    Google Scholar 

  • Packer L, Gibbs J, Sheffield CS, Hanner R (2009) DNA barcoding and the mediocrity of morphology. Mol. Ecol Res 9:42–50

    Article  Google Scholar 

  • Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Pamilo P, Tengö J, Rasmont P, Pirhonen K, Pekkarinen A, Kaarnama E (1997) Pheromonal and enzyme genetic characteristics of the Bombus lucorum species complex in northern Europe. Entomol Fennici 14:187–194.

    Google Scholar 

  • Paterson HE (1985) The recognition concept of species. In: Vrba ES (ed.) Species and speciation. Transvaal museum Monographs, 4 The Museum, Pretoria, pp 21–29

    Google Scholar 

  • Paxton RJ, Thoren PA, Tengo J, Estoup A, Pamilo P (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Mol Ecol 5:511–519

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/

  • Rasmont P (1984) Les bourdons du genre Bombus Latreille sensu stricto en Europe occidentale et centrale. Spixiana 7:135–160.

    Google Scholar 

  • Rasmont P, Scholl A, de Jonghe R, Obrecht E, Adamski A (1986) Identité et variabilité des mâles de bourdons du genre Bombus Latreille sensu stricto en Europe occidentale et centrale (Hymenoptera, Apidae, Bombinae). Rev Suisse Zool 93:661–682

    Article  Google Scholar 

  • Rasmont P, Franzén M, Lecocq T, Harpke A, Roberts S, Biesmeijer JC, Castro L, Cederberg B, Dvorak L, Fitzpatrick Ú, Gonseth Y, Haubruge E, Mahé G, Manino A, Michez D, Neumayer J, Ødegaard F, Paukkunen J, Pawlikowski T, Potts S, Reemer M, Settele J, Straka J, Schweiger O (2015) Climatic risk and distribution atlas of European bumblebees. BioRisk 10:1–236

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GenePop (v. 1.2): Population genetic software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Riddle BR, Hafner DJ, Alexander LF, Jaeger JR (2000) Cryptic vicariance in the historical assembly of a Baja California Peninsular Desert biota. Proc Natl Acad Sci USA 97:14438–14443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Schlötterer C (1998) Microsatellites. In: Hoelzel AR (ed) Molecular Genetic analysis of populations. A practical approach. Oxford University Press, Oxford, pp 237–261

    Google Scholar 

  • Schmid-Hempel R, Eckhardt M, Goulson D, Heinzmann D, Lange C, Plischuk S, Escudero LR, Salathé R, Scriven JJ, Schmid-Hempel P (2014) The invasion of southern South America by imported bumblebees and associated parasites. J Anim Ecol 83:823–837

    Article  PubMed  Google Scholar 

  • Schmidt S, Schmid-Egger C, Morinière J, Haszprunar G, Hebert PDN (2015) DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoidea partim). Mol Ecol Res 15:985–1000

    Article  CAS  Google Scholar 

  • Scriven JJ, Woodall LC, Tinsley MC, Knight ME, Williams PH, Carolan JC, Brown MJF, Goulson D (2015) Revealing the hidden niches of cryptic bumblebees in Great Britain: implications for conservation. Biol Conserv 182:126–133

    Article  Google Scholar 

  • Sheffield CS, Hebert PDN, Kevan PG, Packer L (2009) DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Mol. Ecol Res 9:196–207

    Article  CAS  Google Scholar 

  • Stahlhut JK, Gibbs J, Sheffield CS, Alex Smith M, Packer L (2012) Wolbachia (Rickettsiales) infections and bee (Apoidea) barcoding: a response to Gerth et al. Syst Biodiv 10: 395–401

    Article  Google Scholar 

  • Stolle E, Wilfert L, Schmid-Hempel L, Schmid-Hempel P, Kube M, Reinhardt R, Moritz RFA (2011) A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758) reveals slow genome and chromosome evolution in the Apidae. BMC Genom 12:48

    Article  CAS  Google Scholar 

  • Tsuchida K, Ito Kondo N, Inoue MN, Goka K (2010) Reproductive disturbance risks to indigenous Japanese bumblebees from introduced Bombus terrestris. Appl Entomol Zool 45:49–58

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vesterlund SR, Sorvari J, Vasemägi A (2014) Molecular identification of cryptic bumblebee species from degraded samples using PCR–RFLP approach. Mol Ecol Res 14:122–126

    Article  CAS  Google Scholar 

  • von Hagen E (2003) Hummeln: Bestimmen, Ansiedeln, Vermehren, Schützen. Fauna-Verlag, Nottuln

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Waters J, Darvill B, Lye GC, Goulson D (2011) Niche differentiation of a cryptic bumblebee complex in the Western Isles of Scotland. Insect Conserv Div 4:46–52.

    Article  Google Scholar 

  • Williams PH (1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bull Nat Hist Mus Lond (Entomol) 67:79–152

    Google Scholar 

  • Williams PH, Cameron SA, Hines HM, Cederberg B, Rasmont P (2008) A simplified subgeneric classification of the bumblebees (genus Bombus). Apidol 39:46–74.

    Article  Google Scholar 

  • Williams PH, Brown MJF, Carolan JC, An J, Goulson D, Aytekin AM, Best LR, Byvaltsev AM, Cederberg B, Dawson R, Huang J, Ito M, Monfared A, Raina RH, Schmid-Hempel P, Sheffield CS, Šima P, Xie Z (2012a) Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syst Biodiv 10:21–56.

    Article  Google Scholar 

  • Williams PH, An J, Brown MJF, Carolan JC, Goulson D, Huang J, Ito M (2012b) Cryptic bumblebee species: consequences for conservation and the trade in greenhouse pollinators. PLoS ONE 7:e32992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams PH, Cannings SG, Sheffield CS (2016) Cryptic subarctic diversity: a new bumblebee species from the Yukon and Alaska (Hymenoptera: Apidae). J Nat Hist:1–13. doi:10.1080/00222933.2016.1214294

Download references

Acknowledgements

We thank friends and colleagues who helped to collect bumble bees across Ireland: D. Cookson, D. Dominoni, M. Kelly and S. Roos; Andreas Bertsch for use of his photographs, comments on this manuscript and encouragement to engage with the lucorum complex; and Robin Moritz for laboratory and intellectual support. We also thank two anonymous reviewers and editor-in-chief as well as Shalene Jha and Christophe Praz for many insightful comments that helped improve the manuscript.

Funding

This work was supported by a grant from the Higher Education Authority of Ireland as part of its North–South Research Programme for Peace and Reconciliation. L McKendrick thanks DARD for their financial support (a PhD stipend) and patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Paxton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 949 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKendrick, L., Provan, J., Fitzpatrick, Ú. et al. Microsatellite analysis supports the existence of three cryptic species within the bumble bee Bombus lucorum sensu lato . Conserv Genet 18, 573–584 (2017). https://doi.org/10.1007/s10592-017-0965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0965-3

Keywords

Navigation