Skip to main content
Log in

Genesis of the Shams-Abad carbonate-replacement sideritic-ankeritic iron deposit, South Arak, Malayer-Esfahan metallogenic belt (MEMB), Iran: constraints from geology, fluid inclusions, and C–O isotope geochemistry

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Early Cretaceous Shams-Abad deposit, with proven reserves of 48 Mt grading 35 wt% Fe, is the largest Fe-(Mn) deposit in the Malayer-Esfahan metallogenic belt (MEMB), Iran. The mineralization is stratabound and restricted to Early Cretaceous dolomitic limestone (Kld) and felsic tuffs. The primary ore consists mainly of siderite-ankerite, and minor pyrite, galena, and chalcopyrite. Secondary Fe-oxide-hydroxides (hematite, goethite) are also present. Iron mineralization in the Shams-Abad deposit was emplaced in two paragenetic stages: stage 1, a large volume of host rocks (Kld) was replaced by fine-grained siderite (Sid1) and ankerite (Ank1); stage 2, coarse-grained siderite (Sid2) and ankerite (Ank2) show vein-veinlets and massive textures and were formed by replacement of stage 1 mineralization. Fluid inclusions in hydrothermal dolomite (stage 2) have homogenization temperatures of 170 to 283 °C, with salinities ranging from 2.50 to 11.70 eq. wt. % NaCl. These temperatures and salinities are similar to the ranges reported for some sideritic Fe exhalative deposits elsewhere. The δ13CPDB and δ18OSMOW values of stages 1 and 2 hydrothermal ankerite and siderite suggest that CO2 (or H2CO3) in the hydrothermal fluid mainly originated from marine carbonate rocks. The textural, mineral, chemical, and isotopic evidence suggests that main-stage (stage 2) ore (primarily siderite) was precipitated by mixing between hydrothermal fluid and seawater below the seafloor in the dolomitic limestone host rocks. Subsequently, siderite and ankerite were converted to secondary iron oxides such as goethite and hematite during meteoric water flow through the inverted normal fault and thrust faults and uplift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All authors discussed the results and contributed to the final manuscript.

References

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros, Iran: constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419

    Article  Google Scholar 

  • Aghamollaie K, Rastad E, Nozaki T (2018) Darreh-Rasoul iron-lead mineralization in lower cretaceous Clastic- Carbonate sequence in southeast of Malayer and its relation with Sedimentary-Exhalative resources. The 36th Symposium on Geosciences. Tehran, Geological Survey of Iran, pp 15

  • Aghamollaie K (2019) Geology, geochemistry and genesis of Sarchal and Golparabad Fe (Pb,Cu, Ba) deposit, NW Arak. [Unpublished Ph.D. thesis]: Tarbiat Modares University, pp 250

  • Aghanabati A (2004) Geology of Iran. Geological Survey and Mineral Exploration of Iran, Tehran

    Google Scholar 

  • Akbari Z (2017) Model for the genesis of Ahangaran Fe-Pb deposit (SE of Malayer), based on ore types, geochemistry and stable isotopic studies. [Unpublished Ph.D. thesis]: Tehran, Shahid Beheshti University, pp 260

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238

    Article  Google Scholar 

  • Ansdell KM, Nesbitt BE, Longstaffe FJ (1989) A fluid inclusion and stable isotope study of the Tom Ba-Pb-Zn deposit, Yukon Territory, Canada. Econ Geol 84:841–856

    Article  Google Scholar 

  • Axen GJ, Lam PS, Grove M, Stockli DF, Hassanzadeh J (2001) Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics. Geology 29:559–562

    Article  Google Scholar 

  • Babaei A, Babaie HA, Arvin M (2005) Tectonic evolution of the Neyriz ophiolite, Iran: an accretionary prism model. Ofioliti 30:65–74

    Google Scholar 

  • Beaudoin G, Therrien P (2004) The web stable isotope fractionation calculator. In: De Groot PA (ed) Handbook of stable isotope analytical techniques, vol-I, pp 1045–1047

  • Beaudoin G, Therrien P (2009) The updated web stable isotope fractionation calculator. In: De Groot PA (ed) Handbook of stable isotope analytical techniques, vol-II, pp 1120–1122

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Bischoff JI, Pitzer KS (1985) Phase relations and adiabats in boiling seafloor geothermal systems. Earth Planet Sci Lett 68:327–338

    Article  Google Scholar 

  • Bodnar RJ, Vityk MO (1994) Interpretation of micro-thermometric data for H2O-NaCl fluid inclusion. In: de Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals-methods and applications. Virginia Tech, Blacksburg, pp 117–130

  • Bouzenoune A, Lecolle P (1997) Petrographic and geochemical arguments for hydrothermal formation of the Quenza siderite deposit (NE Algeria). Miner Deposita 32:189–196

    Article  Google Scholar 

  • Boveiri M, Rastad E, Peter MJ (2017) A sub-seafloor hydrothermal syn-sedimentary to early diagenetic origin for the Gushfil Zn-Pb-(Ag-Ba) deposit, south Esfahan, Iran. N Jb Miner Abh (J Min Geochem) 194(1):61–90

  • Brown AC (1992) Sediment-hosted stratiform copper deposits. Geosci Can 19:125–141

    Google Scholar 

  • Cortecci G, Frizzo P (1993) Origin of siderite deposits from the Lombardy Valleys, northern Italy: a carbon, oxygen and strontium isotope study. Chem Geol 105:293–303

    Article  Google Scholar 

  • Ehya F, Lotfi M, Rasa I (2010) Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: a geological, mineralogical and isotopic (S, Pb) study. J Asian Earth Sci 37:186–194

    Article  Google Scholar 

  • Emami SN, Khalili M (2014) Volcanic and subvolcanic rocks dating in the north of Shahrekord by 40Ar/39Ar method, a new approach regarding the occurrence and duration of the Jurassic volcanism in the Sanandaj-Sirjan zone. Petrology 18:1–14 (in Persian)

    Google Scholar 

  • Fadaei MJ, Rastad E, Ghaderi M (2017) The horizons and ore facies of Lower Cretaceous volcano-sedimentary hosted Darrehnoghreh Pb-Zn deposit in the northwest of Golpaygan, Sanandaj-Sirjan Zone. The 8th Symposium on Economic Geology, Zanjan, Iran

  • Farhadi R (1995) Geology, geochemistry, facies analysis and genesis of the Shamsabad Fe-Mn deposit, Arak [Unpublished M.Sc. thesis]: Tehran, Tarbiat Modares University, p 220

  • Fossen H (2010) Structural geology. Cambridge University Press, p 481

  • Geological Survey of Iran (2007) Geological quadrangle map of Iran, Varcheh, Scale 1: 100,000. Vaezi MJ, Kholghi MH (eds) GSI, Tehran

  • Ghasemi A, Talbot CJ (2005) A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Glennie KW (2000) Cretaceous tectonic evolution of Arabia’s eastern plate margin: a tale of two oceans, in Middle East models of Jurassic/Cretaceous carbonate systems. – SEPM (Society for Sedimentary Geology). Spec Publ 69:9–20

    Google Scholar 

  • Golyshev SI, Padalko NL, Pechenkin SA (1981) Fractionation of stable oxygen and carbon isotopes in carbonate systems. Geochem Int 18:85–99

    Google Scholar 

  • Guest B, Axen GJ, Lam PS, Hassanzadeh J (2006) Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere 2:35–52

    Article  Google Scholar 

  • Hanor JS (1979) The sedimentary genesis of hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley Interscience, New York, pp 137–142

    Google Scholar 

  • Hashempour ShS, Maghfouri S, Rastad E, Gonz´alez JF (2023a) Mohammadabad Manganese deposit, southwest Sabzevar basin, Iran: evidence of sea-floor exhalation and geochemical studies in the late Cretaceous volcano-sedimentary sequence. J Geochem Explor 245:107127

    Article  Google Scholar 

  • Hashempour ShS, Maghfouri S, Rastad E, Gonz´alez JF (2023b) The Late Cretaceous Goft manganese deposit, southwest Sabzevar basin, Iran: geological, geochemical, and modelling evidence for a low-temperature exhalative origin into an oxic seafloor basin. Arab J Geosci 16:93. https://doi.org/10.1007/s12517-023-11186-7

    Article  Google Scholar 

  • Haynes DW (1986) Stratiform copper deposits hosted by low-energy sediments. I. Timing of sulfide precipitation- a hypothesis. Econ Geol 81:250–265

    Article  Google Scholar 

  • Heydari EA, Mehrabi B, Masoudi F, Ramezani A (2014) Geochemistry and mineralogy of Shamsabad Fe-Mn deposit, Arak. 32nd National and the 1st International Geosciences Congress, Geological Survey of Iran

  • Hoefs J (2009) Stable Isotope Geochemistry. Sixth Edition. Springer Verlag

  • Huang XW, Qi L, Meng YM, Chen D, Ling HD (2015) Origin of siderite mineralization inwestern Guizhou, SWChina: constraints fromREEs, C, O, Sr and S isotopes. Ore Geol Rev 66:252–265

    Article  Google Scholar 

  • Izanloo J, Maghfouri S, Rastad E, Ghaderi M (2022) Geological, fluid inclusion microthermometry and geochemical constraints on the ankeritic-sideritic iron deposits in the Delijan mining district, Malayer-Esfahan metallogenic belt. Iran Ore Geology Reviews 145:104910

    Article  Google Scholar 

  • Izanloo J, Rastad E, Ghaderi M (2017) Stratigraphic position and ore facies of the Kahak Fe- Ba deposit, Northwest of the Delijan, Malayer- Esfahan metalogenic belt. The 8th Symposium on Economic Geology, Zanjan, Iran

  • Kholghi MHC (2004) Varcheh Quadrangle Map 1:100,000. Unpublished, Geological Survey of Iran

    Google Scholar 

  • Kholodov VN, Butuzova GYu (2008) Siderite formation and evolution of sedimentary iron ore deposition in the earth’s history. Geol Ore Deposits 50:299–319

    Article  Google Scholar 

  • Large RR, McGoldrick P, Bull S and Cooke D (2004) Proterozoic stratiform sediment-hosted zinc-lead-silver deposits of northern Australia. In: Deb M, Goodfellow WD (eds) Sediment-hosted lead-zinc sulphide deposits: attributes and models of some major deposits of India, Australia and Canada. Narosa Publishing House. Dehli, India

  • Laube N, Frimmel HE, Hoernes S (1995) Oxygen and carbon isotopic study on the genesis of the Steirischer Erzberg siderite deposit (Austria). Mineral Deposita 30:285–293

    Article  Google Scholar 

  • Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sedimenthosted lead-zinc deposits: a global perspective. Economic Geology. 100th anniversary volume, pp 561–607

  • Maghfouri S, Hosseinzadeh MR (2018) The early Cretaceous Mansourabad shale carbonate-hosted Zn–Pb (-Ag) deposit, central Iran: an example of vent-proximal sub-seafloor replacement SEDEX mineralization. Ore Geol Rev 95:20–39

    Article  Google Scholar 

  • Maghfouri S, Hosseinzadeh MR, Rajabi A, Choulet F (2018) A review of major nonsulfide zinc deposits in Iran. Geosci Front 9(1):249–272

    Article  Google Scholar 

  • Maghfouri S, Hosseinzadeh MR, Choulet F, Alfonso P, Zadeh AMA, Rajabi A (2019) Vent-proximal sub-seafloor replacement clastic-carbonate hosted SEDEX-type mineralization in the Mehdiabad world-class Zn-Pb-Ba-(Cu-Ag) deposit, southern Yazd Basin. Iran. Ore Geol. Rev. 113:103047. https://doi.org/10.1016/j.oregeorev.2019.103047

    Article  Google Scholar 

  • Maghfouri S, Hosseinzadeh MR, Lentz DR, Choulet F (2020) Geological and geochemical constraints on the Farahabad vent-proximal sub-seafloor replacement SEDEX-type deposit, Southern Yazd basin. Iran. J. Geochem. Explor. 209:106436. https://doi.org/10.1016/j.gexplo.2019.106436

    Article  Google Scholar 

  • Maghfouri S, Hosseinzadeh MR, Choulet F (2020) Supergene nonsulfide Zn–Pb mineralization in the Mehdiabad world-class sub-seafloor replacement SEDEX-type deposit. Iran Int J Earth Sci. https://doi.org/10.1007/s00531-020-01916-7

    Article  Google Scholar 

  • Maghfouri S, Hosseinzadeh MR, Lentz DR, Tajeddin HA, Movahednia M, Shariefi A (2021) Nature of ore-forming fluids in the Mehdiabad world-class subseafloor replacement SEDEX-type Zn-Pb-Ba-(Cu-Ag) deposit, Iran: Constraints from geochemistry, fluid inclusions, and O-C-Sr isotopes. J. Asian Earth Sci. 207:104654. https://doi.org/10.1016/j.jseaes.2020.104654

    Article  Google Scholar 

  • Maghfouri S, Hosseinzadeh MR, Rajabi A, Azimzadeh AM, Choulet F (2015) Geology and origin of mineralization in the Mehdiabad Zn-Pb-Ba (Cu) deposit, Yazd Block, Central Iran: 13th SGA biennial meeting, Nancy-France

  • Maghfouri S, Hosseinzadeh MR, Rajabi A, Azimzadeh AM, (2016) Darreh-Zanjir deposit, a typical carbonate-hosted Zn-Pb deposit (MVT) in Early Cretaceous sedimentary sequence, Southern Yazd Basin. Quart J Geosci 26(103)

  • Maghfouri S (2017) Geology, Geochemistry, Ore-controlling parameters and genesis of early cretaceous carbonate-clastic hosted Zn-Pb deposits in Southern Yazd Basin, with emphasis on Mehdiabad deposit. Unpublished Ph.D. thesis, University of Tabriz, Tabriz, Iran, p 475

  • Mahmoodi P, Rastad E, Rajabi A, Peter J (2018) Ore facies, mineral chemical and fluid inclusion characteristics of the Hossein-Abad and Western Haft-Savaran sediment-hosted Zn Pb deposits, Arak Mining District. Iran. Ore Geology Reviews. 95:342–365

    Article  Google Scholar 

  • Mahmoodi P, Rastad E, Rajabi A (2015) Clastic-hosted Ore facies of the Haft Savaran Zn-Pb ore deposit, in South of Arak basin. The 33th Symposium on Geosciences, February, Tehran, Geological Survey of Iran

  • Mahmoudi S, Corfu F, Masoudi F, Mehrabi B, Mohajjel M (2011) U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone. Iran Journal of Asian Earth Sciences 41:238–249

    Article  Google Scholar 

  • Martin S, Toffolo L, Moroni M, Montorfano C, Secco L, Agnini C, Nimis P, Tumiati S (2017) Siderite deposits in northern Italy: Early Permian to Early Triassic hydrothermalism in the Southern Alps. Lithos 284–285:276–295. https://doi.org/10.1016/j.lithos.2017.04.002

    Article  Google Scholar 

  • McQuarrie N, Stock JM, Verdel C, Wernicke BP (2003) Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys Res Lett 30:1–6

    Article  Google Scholar 

  • Modaberi S (1994) Geology, facies analysis, mineralogy, geochemistry and genesis of the Ravanj-Delijan Pb-Ag deposit. [Unpublished M.Sc. thesis]: Tehran, Tarbiat Modares University

  • Mohajjel M, Fergusson CL (2014) Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. Int Geol Rev 56:263–287

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous- Tertiary convergence and continental collision, Sanandaj- Sirjan Zone, western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Momenzadeh M (1976) Stratabound lead–zinc ores in the lower cretaceous and jurassic sediments in the Malayer-Esfahan district (west central Iran), lithology, metal content, zonation and genesis. [Unpublished Ph.D. thesis], Heidelberg, University of Heidelberg

  • Morley CK, Kongwung B, Julapour A, Abdolghafourian M, Hajian M, Waples D, Warren J, Otterdoom H, Srisuriyon K, Kazemi H (2009) Structural development of a major late Cenozoic basin and transpressional belt in central Iran: the Central Basin in The Qom- saveh area. Geosphere 5:325–362

    Article  Google Scholar 

  • Mouthereau F (2011) Timing of uplift in the Zagros belt/Iranian Plateau and accommodation of late Cenozoic Arabia/Eurasia convergence. Geol Mag 148:726–738

    Article  Google Scholar 

  • Mouthereau F, Lacombe O, Vergés J (2012) Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532–535:27–60

    Article  Google Scholar 

  • Nogol Sadat MA (1985) Les zones de decrochement et les virgations structurales en Iran. Geol Sum Iran, Rep 55:259

    Google Scholar 

  • Palinkaš SS, Spangenberg JE, Palinkaš LA (2009) Organic and inorganic geochemistry of Ljubija siderite deposits. NW Bosnia and Herzegovina Mineralium Deposita 44:893–913

    Article  Google Scholar 

  • Paul D, Skrzypek G, Fórizs I (2007) Normalization of measured stable isotopic compositions to isotope reference scales – a review. Rapid Commun Mass Spectrom 21:3006–3014

    Article  Google Scholar 

  • Peernajmodin H (2018) Ore facies, geochemistry and genises of carbonate-hosted Zn-Pb-Ba-Fe mineralization in the Khan-Abad, Kuh-Kolangheh, Robat and Shams-Abad deposits, southern Arak basin [Unpublished Ph.D. thesis], Tarbiat Modares University of Tehran

  • Philip H, Cistrans A, Gvishiani A, Gorshkov B (1989) The Cacausus: an actual example of continental collision. Tectonophysics 161:1–21

    Article  Google Scholar 

  • Rajabi A, Rastad E, Canet C (2012) Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. Int Geol Rev 54:1649–1672

    Article  Google Scholar 

  • Rastad E (1981) Geological, mineralogical, and facies investigations on the Lower Cretaceous stratabound Zn–Pb– (Ba– Cu) deposits of the Iran Kouh Mountain Range, Esfahan, West Central Iran [Unpublished Ph.D. thesis]: Heidelberg, University of Heidelberg

  • Reichert J, Borg G (2008) Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geol Rev 33:134–151

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Min Soc Am Rev Miner

  • Sahandi M, Radfar J, HosseiniDoust H, Mohajjel M (2006) Geological Map of Shazand. Geological Survey of Iran

  • Sangster DF (2002) The role of dense brines in the formation of vent-distal sedimentary exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence. Miner Deposita 37:149–157

    Article  Google Scholar 

  • Sangster DF (1996) Carbonate-hosted lead-zinc deposits. Society of Economic Geologists, Special Publication 4, p 664

  • Sasmaz A, Zagnitko VM, Sasmaz B (2020) Major, trace and rare earth element (REE) geochemistry of the Oligocene stratiform manganese oxide-hydroxide deposits in the Nikopol. Ukraine Ore Geology Reviews 126:103772

    Article  Google Scholar 

  • Sasmaz A, Sasmaz B, Hein JR (2021) Geochemical approach to the genesis of the Oligocene-stratiform manganese-oxide deposit, Chiatura (Georgia). Ore Geol Rev 128:103910

    Article  Google Scholar 

  • Sato T (1972) Behaviours of ore-forming solutions in seawater. Mining Geol 22:31–42

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, New York, p 239

    Google Scholar 

  • St. Marie J, Kesler SE, Cameron RA (2001) Origin of iron-rich Mississippi Valley–type deposits. Geology. 29:59–62

    Article  Google Scholar 

  • Torres-Ruiz J (2006) Geochemical constraints on the genesis of the Marquesado iron ore deposits, Betic Cordillera, Spain: REE, C, O, and Sr isotope data. Econ Geol 101:667–677

    Article  Google Scholar 

  • Veizer J, Hoefs J (1976) The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Villar Águeda JA, González Salvador CI (2005) Lead-zinc and iron mineralizations in the urgonian of the basque-cantabrian basin, Chapter 7 from the metallogenic point of view, the Basque- Cantabrian basin, pp 91–98. https://www.igme.es/patrimonio/GEOSITES/Chapter_07_SGFG.pdf

  • Walker TR (1989) Application of diagenetic alterations in redbeds to the origin of copper in stratiform copper deposits. Geol Assoc Can Spec Pap 36:85–96

    Google Scholar 

  • Wilkinson JJ (2010) A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn-Pb deposits. Econ Geol 105:417–442

    Article  Google Scholar 

  • Wilkinson JJ (2014) Sediment-hosted zinc-lead mineralization: processes and perspectives. In: Treatise on Geochemistry, 2nd ed., pp 219 – 249

  • Yarmohammadi A, Rastad E, Rajabi A (2016) Geochemistry, fluid inclusion study and genesis of the sediment-hosted Zn-Pb (±Ag±Cu) deposits of the Tiran basin, NW of Esfahan, Iran. N Jb Miner Abh 193(2):183–203

    Article  Google Scholar 

  • Zhan HY, Li ZK, Wu WH, Li JW (2019) Geological characteristics and origin of Daxigou SEDEX siderite deposit in Shaanxi Province. Mineral Deposits 38:1–20 (in Chinese with English abstract)

    Google Scholar 

  • Zheng Y-F (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem Journal 33:109–126

    Article  Google Scholar 

  • Zheng Y-F, Hoefs J (1993) Carbon and oxygen isotopic covariations in hydrothermal calcites. Theoretical modeling on mixing processes and application to Pb-Zn deposits in the Harz Mountains. Germany Mineral Deposita 28:79–89

    Google Scholar 

  • Zielinski RA, Bloch S, Walker TR (1983) The mobility and distribution of heavy metals during the formation of first cycle red beds. Econ Geol 78:1574–1589

    Article  Google Scholar 

Download references

Acknowledgements

This paper is part of the senior author’s PhD research study at Tarbiat Modares University (TMU), Tehran, Iran. We thank Tarbiat Modares University (TMU) of Tehran. Marilena Moroni acknowledges Dr. Elena Ferrari, for precious help during the isotope analyses of carbonates in the IRMS laboratory Earth Science Dept, University of Milano. Peter thanks the Targeted Geoscience Initiative Program of the Geological Survey of Canada (GSC) for logistical support. We thank the reviewers for the kind and helpful comments and suggestions, which greatly improved the manuscript. This is Natural Resources of Canada contribution number 20220016.

Funding

The Tarbiat Modares University of Tehran provided financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Rastad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peernajmodin, H., Rastad, E., Maghfouri, S. et al. Genesis of the Shams-Abad carbonate-replacement sideritic-ankeritic iron deposit, South Arak, Malayer-Esfahan metallogenic belt (MEMB), Iran: constraints from geology, fluid inclusions, and C–O isotope geochemistry. Arab J Geosci 16, 315 (2023). https://doi.org/10.1007/s12517-023-11408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11408-y

Keywords

Navigation