WO2017042914A1 - Bone drill reamer - Google Patents

Bone drill reamer Download PDF

Info

Publication number
WO2017042914A1
WO2017042914A1 PCT/JP2015/075621 JP2015075621W WO2017042914A1 WO 2017042914 A1 WO2017042914 A1 WO 2017042914A1 JP 2015075621 W JP2015075621 W JP 2015075621W WO 2017042914 A1 WO2017042914 A1 WO 2017042914A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
hole
reamer
bone
spiral groove
Prior art date
Application number
PCT/JP2015/075621
Other languages
French (fr)
Japanese (ja)
Inventor
雅規 水上
信夫 松崎
竜太 福豊
康文 椙本
Original Assignee
プロスパー株式会社
ケイ・エヌ・メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プロスパー株式会社, ケイ・エヌ・メディカル株式会社 filed Critical プロスパー株式会社
Priority to JP2017538778A priority Critical patent/JP6474906B2/en
Priority to PCT/JP2015/075621 priority patent/WO2017042914A1/en
Publication of WO2017042914A1 publication Critical patent/WO2017042914A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans

Definitions

  • the present invention relates to a bone drilling reamer. More specifically, the present invention relates to a bone drilling reamer having excellent handling properties and sufficient strength.
  • the intramedullary nail is inserted along the longitudinal direction of the bone to be treated, and is used particularly for the treatment of femoral and tibial fractures.
  • a hole for inserting the intramedullary nail into the longitudinal direction of the bone tissue is formed as a pretreatment.
  • This hole is opened by a reamer having a drill-like cutting edge provided at the tip and an electric tool (or airway tool) (hereinafter referred to as “rotary tool”) for applying a rotational force to the reamer.
  • a flexible reamer having an elastic shaft is generally used.
  • Non-Patent Document 1 As the structure of the flexible reamer, for example, the structure described in Non-Patent Document 1 exists.
  • the flexible reamer described in Non-Patent Document 1 has a drill-like cutting edge at the tip and is connected to a rotary tool.
  • a plurality of cuts are formed on the outer peripheral surface of the shaft to impart elasticity to the shaft.
  • FIG. 6 The structure of the conventional flexible reamer is shown in more detail in FIG.
  • the cut 102 is continuously formed in the shaft 101. Due to the cut 102, the shaft 101 receives an external force and bends flexibly.
  • a convex portion 103 is formed at the end portion of the shaft 101
  • a concave portion 105 is formed at the end portion of the blade edge 104.
  • the shaft 101 and the blade edge 104 are connected by fitting the convex portion 103 and the concave portion 105 in a fixed direction and sliding and fitting them.
  • the size of the cutting edge 104 can be changed according to the hole to be drilled.
  • a through-hole is formed in the shaft 101 and the blade edge 104 in the longitudinal direction, and a rod-shaped rod that guides the reamer when in use can be inserted.
  • the edge part 106 on the opposite side to the convex part 103 of the flexible reamer 100 is a part fixed by fitting with a rotary tool (not shown).
  • Non-Patent Document 1 and FIG. 6 the cutting edge is fixed to the shaft only by fitting the concavo-convex portion, and the fixing force is insufficient. There is a possibility that the cutting edge may fall during use, and in that case, it becomes necessary to prepare a new sterilized cutting edge.
  • the shaft and the cutting edge are made of a material such as surgical stainless steel and each member is expensive, it is not realistic to prepare a plurality of spare members.
  • the shaft is bent more flexibly than necessary due to the continuous cut of the shaft. Since the shaft bends greatly with respect to external force, the position of the cutting edge may not be stable during use, and the excavation location may shift. If the bone perforation site is shifted, the insertion position of the intramedullary nail is shifted as a result, and the fixation with the bone connector becomes insufficient.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a bone excavation reamer having excellent handleability and sufficient strength.
  • a bone excavation reamer is a first cylindrical body in which a first through hole is formed, and has a shaft having elasticity and one end side of the shaft. And a second connecting body formed with a second through-hole communicating with the first through-hole, a first connecting portion that can be fixed to a predetermined rotary tool, and the other end of the shaft A second tubular portion having a third cylindrical hole formed on the outer peripheral surface and having a third through hole formed on the side and in communication with the first through hole; and A fourth cylindrical body formed with a fourth through-hole capable of being installed while the second connecting portion is screwed together, and an end of the fourth cylindrical body opposite to the second connecting portion; And a fifth cylindrical body in which a fifth through-hole that can communicate with the third through-hole is formed and having a protruding piece on the outer peripheral surface. And a part.
  • the shaft is the first cylindrical body in which the first through hole is formed
  • a member having a diameter smaller than the diameter of the first through hole can be inserted into the shaft. That is, for example, a rod-like reamer guide rod for guiding the bone reamer movement can be inserted.
  • the elastic shaft makes it possible to use the bone digging reamer while bending it against an external force.
  • the first connecting portion is a second cylindrical body in which a second through hole communicating with the first through hole is formed
  • the second through hole is formed inside the first connecting portion. It becomes possible to insert a member having a smaller diameter. Further, the member inserted into the first through hole can be inserted into the second through hole side. That is, for example, a rod-shaped reamer guide rod for guiding the movement of the bone digging reamer can be inserted.
  • the shaft can be connected to the rotary tool by the first connecting portion which is located on one end side of the shaft and can be fixed to the predetermined rotary tool.
  • the predetermined rotary tool here means an instrument capable of rotating the shaft in the forward and reverse directions by the driving force of the motor.
  • the second connecting portion is a third cylindrical body in which a third through hole communicating with the first through hole is formed, the third through hole is formed inside the second connecting portion. It becomes possible to insert a member having a smaller diameter. Moreover, the member inserted through the third through hole can be inserted into the second through hole. That is, for example, a rod-shaped reamer guide rod for guiding the movement of the bone digging reamer can be inserted.
  • a second connection portion that is located on the other end side of the shaft and has a spiral groove formed on the outer peripheral surface, and a fourth through-hole that can be installed while the second connection portion is screwed are formed.
  • the fourth tubular body can connect the fourth tubular body to the shaft. Moreover, since it fits in the part of a spiral groove, a connection state can fully be hold
  • the fifth cylindrical body in which the fifth through-hole capable of communicating with the third through-hole is formed, and the drill portion having the protruding piece on the outer peripheral surface enables excavation of bone tissue. That is, the drill portion is rotated by the rotational force applied from the rotary tool, and the protruding piece excavates the bone tissue.
  • the fourth cylindrical body can be detached from the shaft with a small number of rotations. it can. That is, it becomes easier to attach or remove the blade to or from the shaft, and the handleability is improved.
  • the fourth cylindrical body has two protrusions that can be fitted into the spiral groove on the inner peripheral surface of the fourth through-hole, and the spiral groove is located at the end of the second connection portion.
  • the fourth cylindrical body can be connected to the shaft by fitting the two protruding portions into the spiral groove from the two notches. Further, the connection state between the fourth cylindrical body and the shaft can be further stabilized.
  • the shaft has a large diameter portion formed with a diameter larger than the diameter of the fourth through hole at a position adjacent to the end point of the spiral groove of the second connection portion, and the drill portion side of the fourth through hole
  • the fourth cylindrical body can be more easily attached to the shaft. That is, when the attachment is performed through the spiral groove, the tip of the fourth cylindrical body comes into contact with the large diameter portion of the second connection portion and stops. Further, the tip of the second connection portion comes into contact with a part of the fourth through hole on the drill portion side and stops. Since the movement of fitting the fourth cylindrical body into the spiral groove stops at a predetermined position, the connection state can be easily confirmed and a stable structure can be obtained.
  • the maintainability of the bone drilling reamer can be improved. That is, for example, the excavated bone tissue can be made difficult to adhere to the outer peripheral surface of the shaft during use.
  • the shaft is formed of a super elastic body, sufficient strength and bending with respect to external force can be imparted to the bone drilling reamer.
  • the superelastic body here means, for example, one containing an alloy of titanium and nickel (Nitinol), an iron-manganese-silicon alloy, or the like.
  • the fourth cylinder It becomes easier to attach the shaped body to the shaft. Further, the connection state between the fourth cylindrical body and the shaft can be further stabilized.
  • the bone digging reamer according to the present invention has excellent handleability and has sufficient strength.
  • FIG. 1 is a schematic view of a bone excavation reamer according to an embodiment of the present invention.
  • the structure of this invention is not limited to the content shown below, It can change suitably.
  • a reamer 1 as an example of a bone drilling reamer to which the present invention is applied includes a drill portion 2 and a shaft 3.
  • the drill part 2 is a part that is pierced through the bone tissue of the bone to be treated by a rotational force applied by a rotary tool (not shown) to which the reamer 1 is attached.
  • the drill portion 2 has a plurality of sizes having different blade diameters, for example, in increments of 1 mm in accordance with the size of the bone, and can be exchanged for one shaft. Further, the diameter of the blade may be different in steps of 0.5 mm.
  • the drill part 2 is formed of stainless steel that can pierce bone tissue and can be used for surgery.
  • the shaft 3 is an elastic cylindrical body in which a shaft through hole 9 is formed at the center in the longitudinal direction. Further, the shaft 3 is bent and deformed with respect to an external force during use, and returns to its original shape when the external force is no longer applied. More specifically, the shaft 3 is formed of a titanium-nickel alloy commonly called Nitinol, and exhibits properties of superelasticity and a shape memory effect.
  • the outer peripheral surface of the main body portion 19 of the shaft 3 is not formed with a cut, and is bent with respect to the external force by the elasticity of the material.
  • a tool connecting portion 24 is provided at the end of the shaft 3 opposite to the drill portion 2.
  • the tool connection part 24 is a part which connects the rotary tool which drives a motor and produces rotational motion, and the shaft 3, and a rotary tool fixes.
  • a tool connection part through hole 25 communicating with the shaft through hole 9 is formed inside the tool connection part 24.
  • a known rotary tool can be used, and a tool that fits into a notch provided in the tool connecting portion 24 of the shaft 3 and can fix or separate the tool connecting portion 24 with a lock mechanism is used. It is preferable.
  • the rotary tool is a member that rotates the fixed shaft 3 with high torque clockwise or counterclockwise. Normally, when using a bone digging reamer, excavation is performed by rotation in only one direction, and rotation in the opposite direction is not used.
  • the size and shape of the drill part 2 are not particularly limited, and can be appropriately changed according to the size of the bone to be drilled and the bone joint to be used.
  • the drill part 2 does not necessarily need to be formed of stainless steel, and any material that has a strength capable of drilling a hole in bone tissue and can be used for surgery is sufficient.
  • the shaft 3 is not necessarily formed of nitinol, and a material exhibiting properties of superelasticity and a shape memory effect can be adopted.
  • the drill part 2 includes a cutting edge part 4 and a cylindrical cutting edge side connecting part 5 joined integrally with the cutting edge part 4.
  • the blade edge portion 4 has a plurality of blades positioned at regular intervals on the outer peripheral surface of the cylindrical body, and each blade is formed to be slightly curved along the longitudinal direction of the drill portion 2.
  • a blade edge portion through hole 6 is formed in the blade edge portion 4 along the longitudinal direction.
  • the blade edge portion through hole 6 communicates with a through hole formed inside the blade edge side connection portion 5 and can communicate with the shaft through hole 9 of the shaft 3.
  • the blade edge part through hole 6 and the small diameter through hole 7 are formed to be slightly smaller than the diameter of the head of the reamer guide rod described later.
  • the cutting edge side connecting portion 5 is provided with a protruding portion 10 on the inner peripheral surface in the vicinity of the opening portion of the cutting edge portion through hole 6.
  • the protrusion 10 is a portion that fits into a spiral groove provided on the shaft 3 side described later.
  • the small-diameter through hole 7 and the large-diameter through hole 8 having different diameters do not necessarily have to be formed inside the cutting edge side connecting portion 5, and any through hole into which the reamer guide rod can be inserted is sufficient. It is. However, as will be described later, when the shaft 3 and the drill portion 2 are connected, the tip of the shaft side connecting portion stops at the position of the boundary where the diameters are different, and the connection structure and the point that makes it easy to understand that the connection is completed From the viewpoint of stability, it is preferable that the small-diameter through hole 7 and the large-diameter through hole 8 having different diameters are formed inside the cutting edge side connecting portion 5.
  • the blade tip portion through-hole 6 does not necessarily have to have the same diameter as the small-diameter through-hole 7 inside the blade tip portion 4, and any through-hole into which the reamer guide rod can be inserted is sufficient. is there.
  • the blade tip through hole 6 and the small diameter through hole 7 do not necessarily need to be formed slightly smaller than the diameter of the head of the reamer guide rod. However, as will be described later, since the head of the reamer guide rod inserted into the reamer 1 is stopped at the position of the cutting edge part through hole 6 of the drill part 2, the cutting edge part penetration is prevented. It is preferable that the hole 6 and the small-diameter through-hole 7 are formed to be slightly smaller than the diameter of the head of the reamer guide rod.
  • FIG. 2B is a view of the drill 2 as viewed from the cutting edge side connecting portion 5 side, but the protruding portion 10 is provided at a position facing the circumference of the large diameter through hole 8. That is, the two protrusions 10 are provided at 180 degrees on the circumference when viewed from one side.
  • the protrusions 10 do not necessarily have to be provided at positions facing each other on the circumference of the large-diameter through-hole 8, and any one that can be fitted into the spiral groove of the shaft 3 is sufficient. However, it is preferable that the protruding portion 10 is provided at a position facing the circumference of the large-diameter through-hole 8 from the viewpoint of easy connection and removal.
  • the end of the shaft 3 opposite to the tool connecting portion 24 is a shaft-side connecting portion 11.
  • the shaft side connection portion 11 is a portion that fits with the blade edge side connection portion 5. That is, it becomes a part for attaching the drill part 2 to the shaft 3.
  • the shaft side connecting portion 11 has a spiral groove 12 formed on the outer peripheral surface on the tip side.
  • the spiral groove 12 is fitted to the protruding portion 10 of the above-described cutting edge side connection portion 5 and guides the cutting edge side connection portion 5 toward the shaft 3 along the groove. Further, in the region where the spiral groove 12 is formed, the cutting edge side connecting portion 5 and the shaft side connecting portion 11 are overlapped and connected.
  • the spiral groove 12 is formed with a groove width of about 2 mm. Further, the spiral groove 12 is formed with a groove depth of about 0.5 mm with respect to the thickness of the outer peripheral surface of the shaft-side connecting portion 11 of about 1.0 mm. Further, the region sandwiched between the spiral grooves 12 of the shaft side connecting portion 11, that is, the region where the groove processing between the grooves is not performed is about 2.5 mm in width, which is slightly larger than the width of the spiral groove 12. It has become.
  • the groove width of the spiral groove 12, the depth of the groove, and the thickness of the outer peripheral surface of the shaft side connection portion 11 are not limited, and the blade edge side connection portion 5 and the shaft side connection portion 11 can be overlapped and connected. If it is, it is enough.
  • the region sandwiched between the spiral grooves 12 of the shaft side connecting portion 11 does not necessarily have to have a width slightly larger than the groove width of the spiral grooves 12.
  • the contact area between the inner peripheral surface of the blade-side connecting portion 5 and the outer peripheral surface of the shaft-side connecting portion 11 is widened, and the connected state is stabilized, so that the spiral groove 12 of the shaft-side connecting portion 11 is stabilized.
  • the sandwiched region has a width slightly larger than the width of the spiral groove 12.
  • the shaft 3 has a stopper portion 13 having a diameter larger than that of the region adjacent to the region where the spiral groove 12 is formed.
  • the stopper portion 13 is provided from the vicinity of the end point 14 of the spiral groove.
  • the spiral groove 12 is a spiral groove formed on the outer peripheral surface of the shaft-side connecting portion 11 from the end of the shaft-side connecting portion 11 to the end point 14 until the end point 14. Further, as shown in FIG. 3A, when the spiral groove 12 is viewed from the side surface, the length is formed from the start point 15 to the end point 14 so that the number of grooves is three or less.
  • the term “three or less” means the approximate number of appearances, and there are positions where the number of grooves is two depending on the part to be seen.
  • the spiral groove 12 when the spiral groove 12 is viewed from the side of the shaft 3, the spiral groove 12 is necessarily formed with such a length that the number of grooves is three or less from the start point 15 to the end point 14. There may be a shape in which the number of grooves increases. However, since it becomes easy to attach or remove the drill portion 2 to the shaft 3 and the handleability is improved, when the spiral groove 12 is viewed from the side of the shaft 3, the start point 15 to the end point 14. By the time, it is preferable that the number of grooves be 3 or less.
  • FIG. 3B is a view of the shaft 3 as viewed from the shaft-side connecting portion 11 side.
  • the starting point 15 of the spiral groove 12 is formed as two notches 16 on the outer peripheral surface of the shaft-side connecting portion 11. It is visible. Further, the two notches 16 are provided at positions facing each other on the circumference of the shaft through hole 9 of the shaft side connecting portion 11. That is, the two notches 16 are provided at 180 degrees on the circumference when viewed from one side.
  • the length of the region where the spiral groove 12 of the shaft side connecting portion 11 is provided is about 1.0 cm, and the length of the cutting edge side connecting portion 5 is about 1.3 to 80%. ing.
  • the notch 16 does not necessarily have to be provided at a position facing the circumference of the shaft through hole 9 of the shaft side connecting portion 11, as long as it can be fitted to the protruding portion 10 of the drill portion 2. It is enough. However, it is preferable that the notch 16 is provided at a position facing the circumference of the shaft through hole 9 of the shaft side connecting portion 11 from the viewpoint of easy connection and removal.
  • the length of the region where the spiral groove 12 of the shaft side connection portion 11 is provided is not necessarily about 70 to 80% of the length of the cutting edge side connection portion 5.
  • the area where the inner peripheral surface of the cutting edge side connecting portion 5 and the outer peripheral surface of the shaft side connecting portion 11 come into contact with each other becomes longer, and the spiral groove 12 of the shaft side connecting portion 11 becomes stable because the connected state is stabilized.
  • the length of the provided region is preferably about 80% of the length of the cutting edge side connecting portion 5.
  • the two protruding parts 10 are respectively fitted with the two notches 16 to be connected. .
  • a state where the cutting edge side connecting portion 5 is completely fitted to the shaft side connecting portion 11, that is, a state where the protruding portion 10 reaches the position of the end point 14 of the spiral groove 12 is a state where the connection is completed. As shown in FIGS. 4A and 4B, at this time, the end portion 17 of the cutting edge side connection portion 5 is in contact with the stopper portion 13 of the shaft side connection portion 11.
  • the end portion 18 of the shaft side connection portion 11 is a boundary portion between the small diameter through hole 7 and the large diameter through hole 8 inside the cutting edge side connection portion 5. It has a structure that touches.
  • the reamer guide rod 20 is a rod-shaped member for guiding the movement of the reamer 1 in the advancing / retreating direction when the reamer 1 excavates bone tissue. As shown to Fig.5 (a), it is comprised from the rod main body 21 which can be inserted in the through-hole inside each member which comprises the reamer 1, and the spherical rod head 22 provided in the end of the rod main body 21. Yes.
  • the total length of the reamer guide rod 20 in the longitudinal direction is formed to be longer than the total length of the reamer 1 in the longitudinal direction. Moreover, the end 23 opposite to the rod head 22 of the reamer guide rod 20 is inserted into the blade tip through-hole 6, and the small-diameter through-hole 7, the large-diameter through-hole 8, the shaft through-hole 9, and the tool connection portion. It progresses to the through-hole 25 and comes out of the shaft 3.
  • the rod head 22 has a structure that is caught in the middle part of the blade tip through hole 6. More specifically, the diameter of the rod head 22 is formed to be slightly larger than the diameter of the blade tip through hole 6.
  • the drill portion 2 rotates in a direction away from the shaft side connection portion 11, and the drill portion 2 and the shaft 3 are rotated. Even when separated, the drill portion 2 is caught by the rod head 22 and supported by the reamer guide rod 20.
  • the drill part 2 is not dropped off, and the trouble that the drill part 2 is placed in the bone can be avoided. Further, for example, when the shaft and the blade edge are anastomosed, the blade edge is less likely to fall when handed directly from the assistant (nurse) to the operator.
  • the separated drill part 2 and shaft 3 are connected.
  • the two protrusions 10 of the cutting edge side connection portion 5 of the drill portion 2 are aligned with the positions of the two notches 16 of the spiral groove 12 of the shaft side connection portion 11.
  • the drill portion 2 is rotated until the protruding portion 10 reaches the end point 14 of the spiral groove 12. At this time, the protrusion 10 rotates about one turn along the spiral groove 12 and reaches from the start point 15 to the end point 14.
  • the drill part 2 can be separated from the shaft 3 by rotating the drill part 2 in the reverse direction.
  • connection between the drill part 2 and the shaft 3 is a simple operation that only rotates the drill part 2 about one rotation, the user during the operation can easily prepare the reamer 1.
  • the reamer guide rod 20 is inserted into each through hole inside the reamer 1.
  • the reamer guide rod 20 is inserted into the blade tip through hole 6 of the drill portion 2 at the end 23 side of the rod.
  • the reamer guide rod 20 is sequentially inserted into the small diameter through hole 7, the large diameter through hole 8, the shaft through hole 9, and the tool connection portion through hole 25.
  • the drill portion 2 is caught in the head 22 of the reamer guide rod 20 in the middle of the cutting edge through hole 6 so that the reamer 1 cannot enter further beyond the head 22.
  • the tool connection portion 24 of the reamer 1 is combined with the fitting portion of the rotary tool, and the tool connection portion 24 is fixed to the rotary tool by the lock mechanism of the rotary tool. At this point, the preparation of the bone drilling reamer is completed.
  • the rotation direction of the rotary tool is a rotation direction opposite to the rotation direction for separating the drill portion 2 from the shaft 3.
  • the main body portion 19 of the shaft 3 of the reamer 1 is formed of a titanium-nickel alloy having super elasticity, it can bend appropriately between the bone excavation site and the rotary tool and perform stable excavation. it can. That is, unlike the conventional flexible reamer, the shaft is not greatly bent, and the blade of the drill portion 2 can be firmly applied to the target position of the target bone.
  • a hole for inserting a bone connector such as an intramedullary nail can be drilled. Since the main body portion of the shaft 3 after excavation is not cut, the excavated bone tissue hardly adheres to the shaft, and the cleaning operation after use can be facilitated.
  • the bone excavation reamer of the present invention is excellent in handleability and has sufficient strength.

Abstract

One example of this bone drill reamer is a reamer 1 which is provided with a drill section 2 and a shaft 3. A main body 19 of the shaft 3 has no slit formed on the outer circumferential surface thereof and bends in response to an external force due to the elasticity of a material thereof. The drill section 2 comprises a cutting edge section 4 and a tubular cutting edge-side connection section 5 integrally joined to the cutting edge section 4. The cutting edge-side connection section 5 is provided with projections 10 on the inner circumferential surface in the vicinity of an opening of a cutting edge section through hole 6. The projections 10 mate with a spiral groove formed on the shaft 3.

Description

骨掘削用リーマーBone drilling reamer
 本発明は、骨掘削用リーマーに関する。詳しくは、取扱い性に優れ、充分な強度を有する骨掘削用リーマーに係るものである。 The present invention relates to a bone drilling reamer. More specifically, the present invention relates to a bone drilling reamer having excellent handling properties and sufficient strength.
 従来から、骨折治療の現場において、髄内釘と、ラグスクリューや固定ピンを組み合わせた骨接合具が使用されている。髄内釘は、施術対象骨の長手方向に沿って挿入されるものであり、特に大腿部や脛骨の骨折などの治療のために用いられる。 Traditionally, bone joints that combine intramedullary nails with lag screws and fixing pins have been used in the field of fracture treatment. The intramedullary nail is inserted along the longitudinal direction of the bone to be treated, and is used particularly for the treatment of femoral and tibial fractures.
 髄内釘の施術対象骨への使用時には、前処理として、骨組織の内側かつ長手方向に髄内釘を挿入するための孔が形成される。この孔は、先端にドリル状の刃先が設けられたリーマーと、リーマーに回転力を付与する電動工具(または、気道工具)(以下、「回転工具」という)によって開けられる。 When the intramedullary nail is used on the bone to be treated, a hole for inserting the intramedullary nail into the longitudinal direction of the bone tissue is formed as a pretreatment. This hole is opened by a reamer having a drill-like cutting edge provided at the tip and an electric tool (or airway tool) (hereinafter referred to as “rotary tool”) for applying a rotational force to the reamer.
 大腿骨や脛骨に使用されるリーマーは、穿孔対象となる骨が湾曲した形状を有しているため、シャフトが弾性を有するフレキシブルリーマーが一般的に使用されている。 Since the reamer used for the femur and tibia has a curved shape of the bone to be perforated, a flexible reamer having an elastic shaft is generally used.
 このフレキシブルリーマーは、回転工具の使用者が穿孔対象となる骨に正対できない場合でも、シャフトが曲がることで、骨の斜め方向や横方向に使用者が立っても、刃先を骨に当てて穿孔することが可能となる。即ち、施術時の姿勢や立ち位置に自由度を与えるものとなる。 Even if the user of the rotary tool cannot directly face the bone to be drilled, this flexible reamer is able to place the blade tip against the bone even if the user stands diagonally or laterally. Drilling is possible. That is, a degree of freedom is given to the posture and standing position during the treatment.
 フレキシブルリーマーの構造としては、例えば、非特許文献1に記載された構造が存在している。 As the structure of the flexible reamer, for example, the structure described in Non-Patent Document 1 exists.
 非特許文献1に記載されたフレキシブルリーマーは、先端にドリル状の刃先を有し、回転工具に接続されている。また、シャフトの外周面に複数の切れ目が形成され、シャフトに弾性を付与するものとなっている。 The flexible reamer described in Non-Patent Document 1 has a drill-like cutting edge at the tip and is connected to a rotary tool. In addition, a plurality of cuts are formed on the outer peripheral surface of the shaft to impart elasticity to the shaft.
 従来のフレキシブルリーマーの構造を図6でより詳細に示す。図6に示すフレキシブルリーマー100は、シャフト101に切れ目102が連続的に形成されている。この切れ目102により、シャフト101が外力を受けて柔軟に曲がるものとなる。 The structure of the conventional flexible reamer is shown in more detail in FIG. In the flexible reamer 100 shown in FIG. 6, the cut 102 is continuously formed in the shaft 101. Due to the cut 102, the shaft 101 receives an external force and bends flexibly.
 また、シャフト101の端部には凸部103が形成され、刃先104の端部には凹部105が形成されている。この凸部103及び凹部105を一定の向きに併せ、スライドさせて嵌合することでシャフト101と刃先104が連結される。刃先104は穿孔したい孔に応じてサイズが変更可能である。 Further, a convex portion 103 is formed at the end portion of the shaft 101, and a concave portion 105 is formed at the end portion of the blade edge 104. The shaft 101 and the blade edge 104 are connected by fitting the convex portion 103 and the concave portion 105 in a fixed direction and sliding and fitting them. The size of the cutting edge 104 can be changed according to the hole to be drilled.
 また、シャフト101及び刃先104の内部には長手方向に貫通孔が形成され、使用時にリーマーを誘導する棒状のロッドが挿通可能となっている。また、フレキシブルリーマー100の凸部103と反対側の端部106は、図示しない回転工具と嵌合し、固定される部分となっている。 In addition, a through-hole is formed in the shaft 101 and the blade edge 104 in the longitudinal direction, and a rod-shaped rod that guides the reamer when in use can be inserted. Moreover, the edge part 106 on the opposite side to the convex part 103 of the flexible reamer 100 is a part fixed by fitting with a rotary tool (not shown).
 しかしながら、非特許文献1や図6に記載されたフレキシブルリーマーは、シャフトに対する刃先の固定が凹凸部の嵌合のみでなされ、固定力が不充分である。使用時に刃先が落下するおそれがあり、その際には、滅菌済みの新たな刃先を準備する必要が生じる。 However, in the flexible reamer described in Non-Patent Document 1 and FIG. 6, the cutting edge is fixed to the shaft only by fitting the concavo-convex portion, and the fixing force is insufficient. There is a possibility that the cutting edge may fall during use, and in that case, it becomes necessary to prepare a new sterilized cutting edge.
 また、シャフトや刃先は、外科手術用のステンレス等の素材で形成され、各部材が高価であるため、予備の部材を複数準備する対応は現実的なものではない。 Also, since the shaft and the cutting edge are made of a material such as surgical stainless steel and each member is expensive, it is not realistic to prepare a plurality of spare members.
 また、刃先の強固な固定を考慮すると、ねじ構造の採用が考えられるが、ねじ構造では強固な噛み込みが生じ、逆に刃先の取り外しが困難となる場合がある。また、ある程度、容易に着脱が可能な構造でなければ、迅速な作業の障害となってしまうものとなる。 Also, considering the firm fixation of the blade edge, it is conceivable to adopt a screw structure. However, the screw structure may cause a strong bite, and it may be difficult to remove the blade edge. In addition, unless the structure can be easily detached to some extent, it becomes an obstacle to quick work.
 また、図6に示したフレキシブルリーマーは、シャフトの連続的な切れ目により、シャフトが必要以上に柔軟に曲がるものとなっている。シャフトが外力に対して大きく曲がるため、使用時に刃先の位置が安定せず、掘削箇所がずれることがある。骨の穿孔部位がずれると、結果として髄内釘の挿入位置がずれ、骨接合具による固定が不充分となる。 In the flexible reamer shown in FIG. 6, the shaft is bent more flexibly than necessary due to the continuous cut of the shaft. Since the shaft bends greatly with respect to external force, the position of the cutting edge may not be stable during use, and the excavation location may shift. If the bone perforation site is shifted, the insertion position of the intramedullary nail is shifted as a result, and the fixation with the bone connector becomes insufficient.
 また、シャフトが大きく曲がった際に、回転工具とシャフトの端部の接続部分に外力が集中するものとなり、同部分でシャフトが破損する不具合も生じる。 Also, when the shaft bends greatly, external force concentrates on the connecting part between the rotating tool and the end of the shaft, and the shaft may break at the same part.
 更に、使用に際して、シャフトの切れ目の部分に掘削した骨組織等が詰まり、使用後の洗浄作業が大きな負担となっている現状が存在する。 Furthermore, in use, there is a present situation in which a bone tissue or the like excavated is clogged in the cut portion of the shaft, and the cleaning work after use becomes a heavy burden.
 本発明は、以上の点に鑑みて創案されたものであり、取扱い性に優れ、充分な強度を有する骨掘削用リーマーを提供することを目的とするものである。 The present invention has been made in view of the above points, and an object of the present invention is to provide a bone excavation reamer having excellent handleability and sufficient strength.
 上記の目的を達成するために、本発明の骨掘削用リーマーは、第1の貫通孔が形成された第1の筒状体であると共に、弾性を有するシャフトと、該シャフトの一端側に位置し、前記第1の貫通孔と連通した第2の貫通孔が形成された第2の筒状体であると共に、所定の回転工具に固定可能な第1の接続部と、前記シャフトの他端側に位置し、前記第1の貫通孔と連通した第3の貫通孔が形成された第3の筒状体であると共に、外周面に螺旋溝が形成された第2の接続部と、該第2の接続部が螺合しながら内装可能な第4の貫通孔が形成された第4の筒状体と、該第4の筒状体の前記第2の接続部とは反対側の端部に位置し、前記第3の貫通孔と連通可能な第5の貫通孔が形成された第5の筒状体であると共に、外周面に突状片を有するドリル部とを備える。 In order to achieve the above object, a bone excavation reamer according to the present invention is a first cylindrical body in which a first through hole is formed, and has a shaft having elasticity and one end side of the shaft. And a second connecting body formed with a second through-hole communicating with the first through-hole, a first connecting portion that can be fixed to a predetermined rotary tool, and the other end of the shaft A second tubular portion having a third cylindrical hole formed on the outer peripheral surface and having a third through hole formed on the side and in communication with the first through hole; and A fourth cylindrical body formed with a fourth through-hole capable of being installed while the second connecting portion is screwed together, and an end of the fourth cylindrical body opposite to the second connecting portion; And a fifth cylindrical body in which a fifth through-hole that can communicate with the third through-hole is formed and having a protruding piece on the outer peripheral surface. And a part.
 ここで、シャフトが第1の貫通孔が形成された第1の筒状体であることによって、シャフトの内部に、第1の貫通孔の直径より小さい直径を有する部材を挿入可能となる。即ち、例えば、骨掘削用リーマー動きをガイドするための棒状のリーマー誘導ロッドを挿入可能となる。 Here, since the shaft is the first cylindrical body in which the first through hole is formed, a member having a diameter smaller than the diameter of the first through hole can be inserted into the shaft. That is, for example, a rod-like reamer guide rod for guiding the bone reamer movement can be inserted.
 また、弾性を有するシャフトによって、外力に対して骨掘削用リーマーを曲げながら使用することが可能となる。 Also, the elastic shaft makes it possible to use the bone digging reamer while bending it against an external force.
 また、第1の接続部が第1の貫通孔と連通した第2の貫通孔が形成された第2の筒状体であることによって、第1の接続部の内部に、第2の貫通孔の直径より小さい直径を有する部材を挿入可能となる。また、第1の貫通孔に挿入した部材を第2の貫通孔の側に挿入することができる。即ち、例えば、骨掘削用リーマーの動きをガイドするための棒状のリーマー誘導ロッドを挿入可能となる。 Further, since the first connecting portion is a second cylindrical body in which a second through hole communicating with the first through hole is formed, the second through hole is formed inside the first connecting portion. It becomes possible to insert a member having a smaller diameter. Further, the member inserted into the first through hole can be inserted into the second through hole side. That is, for example, a rod-shaped reamer guide rod for guiding the movement of the bone digging reamer can be inserted.
 また、シャフトの一端側に位置し、所定の回転工具に固定可能な第1の接続部によって、シャフトを回転工具に接続可能となる。なお、ここでいう所定の回転工具とは、モータの駆動力でシャフトを正逆方向に回転可能な器具を意味するものである。 Also, the shaft can be connected to the rotary tool by the first connecting portion which is located on one end side of the shaft and can be fixed to the predetermined rotary tool. The predetermined rotary tool here means an instrument capable of rotating the shaft in the forward and reverse directions by the driving force of the motor.
 また、第2の接続部が第1の貫通孔と連通した第3の貫通孔が形成された第3の筒状体であることによって、第2の接続部の内部に、第3の貫通孔の直径より小さい直径を有する部材を挿入可能となる。また、第3の貫通孔を介して挿通された部材を第2の貫通孔に挿入することができる。即ち、例えば、骨掘削用リーマーの動きをガイドするための棒状のリーマー誘導ロッドを挿入可能となる。 Further, since the second connecting portion is a third cylindrical body in which a third through hole communicating with the first through hole is formed, the third through hole is formed inside the second connecting portion. It becomes possible to insert a member having a smaller diameter. Moreover, the member inserted through the third through hole can be inserted into the second through hole. That is, for example, a rod-shaped reamer guide rod for guiding the movement of the bone digging reamer can be inserted.
 また、シャフトの他端側に位置し、外周面に螺旋溝が形成された第2の接続部と、第2の接続部が螺合しながら内装可能な第4の貫通孔が形成された第4の筒状体によって、第4の筒状体をシャフトに接続可能となる。また、螺旋溝の部分で嵌合するため、一定方向への回転に対しては接続状態を充分に保持できるものとなる。また、回転させて容易に脱着可能な構造となる。 In addition, a second connection portion that is located on the other end side of the shaft and has a spiral groove formed on the outer peripheral surface, and a fourth through-hole that can be installed while the second connection portion is screwed are formed. The fourth tubular body can connect the fourth tubular body to the shaft. Moreover, since it fits in the part of a spiral groove, a connection state can fully be hold | maintained with respect to the rotation to a fixed direction. Moreover, it becomes a structure which can be rotated and removed easily.
 また、第3の貫通孔と連通可能な第5の貫通孔が形成された第5の筒状体であると共に、外周面に突状片を有するドリル部によって、骨組織の掘削が可能となる。即ち、回転工具から付与される回転力によりドリル部が回転し、突状片が骨組織を掘削するものとなる。 In addition, the fifth cylindrical body in which the fifth through-hole capable of communicating with the third through-hole is formed, and the drill portion having the protruding piece on the outer peripheral surface enables excavation of bone tissue. . That is, the drill portion is rotated by the rotational force applied from the rotary tool, and the protruding piece excavates the bone tissue.
 また、螺旋溝が第2の接続部の短手方向側からの側面視で溝の数が3個以下である場合には、少ない回転数でシャフトから第4の筒状体を脱着させることができる。即ち、より一層、シャフトに対して、刃を取り付けまたは取り外しやすくなり、取扱い性が向上するものとなる。 Moreover, when the number of grooves is 3 or less in a side view from the short direction side of the second connecting portion, the fourth cylindrical body can be detached from the shaft with a small number of rotations. it can. That is, it becomes easier to attach or remove the blade to or from the shaft, and the handleability is improved.
 また、第4の筒状体が第4の貫通孔の内周面に螺旋溝に嵌合可能な2つの突出部を有し、螺旋溝が第2の接続部の端部に位置する2つの切欠きを始点とする場合には、2つの突出部を2つの切欠きから螺旋溝に嵌合させて、第4の筒状体をシャフトに接続可能となる。また、第4の筒状体とシャフトの接続状態をより一層安定させることができる。 The fourth cylindrical body has two protrusions that can be fitted into the spiral groove on the inner peripheral surface of the fourth through-hole, and the spiral groove is located at the end of the second connection portion. In the case where the notch is used as the start point, the fourth cylindrical body can be connected to the shaft by fitting the two protruding portions into the spiral groove from the two notches. Further, the connection state between the fourth cylindrical body and the shaft can be further stabilized.
 また、シャフトが第2の接続部の螺旋溝の終点に隣接する位置に第4の貫通孔の直径よりも大きな直径で形成された径大部を有し、第4の貫通孔のドリル部側の一部が第2の接続部の直径よりも小さな直径で形成された場合には、第4の筒状体をより一層シャフトに取り付けやすいものとなる。即ち、螺旋溝を介して取り付けを行った際に、第4の筒状体の先端が第2の接続部の径大部に接触して止まるものとなる。また、第2の接続部の先端が第4の貫通孔のドリル部側の一部の箇所に接触して止まるものとなる。螺旋溝に第4の筒状体を嵌める動きが所定の位置で止まるため、接続状態を確認しやすく、かつ、安定した構造にすることができる。 Further, the shaft has a large diameter portion formed with a diameter larger than the diameter of the fourth through hole at a position adjacent to the end point of the spiral groove of the second connection portion, and the drill portion side of the fourth through hole When a part of is formed with a diameter smaller than the diameter of the second connecting portion, the fourth cylindrical body can be more easily attached to the shaft. That is, when the attachment is performed through the spiral groove, the tip of the fourth cylindrical body comes into contact with the large diameter portion of the second connection portion and stops. Further, the tip of the second connection portion comes into contact with a part of the fourth through hole on the drill portion side and stops. Since the movement of fitting the fourth cylindrical body into the spiral groove stops at a predetermined position, the connection state can be easily confirmed and a stable structure can be obtained.
 また、シャフトの外周面が切れ目なく形成された場合には、骨掘削用リーマーの保守性を高めることができる。即ち、例えば、使用時にシャフトの外周面に掘削した骨組織が付着しにくくすることができる。 Also, when the outer peripheral surface of the shaft is formed without breaks, the maintainability of the bone drilling reamer can be improved. That is, for example, the excavated bone tissue can be made difficult to adhere to the outer peripheral surface of the shaft during use.
 また、シャフトが超弾性体で形成された場合には、骨掘削用リーマーに充分な強度と、外力に対する曲がりを付与することができる。なお、ここでいう超弾性体とは、例えば、チタンとニッケルの合金(ニチノール)や、鉄-マンガン‐ケイ素合金等を含むものを意味する。 Further, when the shaft is formed of a super elastic body, sufficient strength and bending with respect to external force can be imparted to the bone drilling reamer. The superelastic body here means, for example, one containing an alloy of titanium and nickel (Nitinol), an iron-manganese-silicon alloy, or the like.
 また、突出部が第4の貫通孔の内周面で互いに対向して位置し、切欠きが第2の接続部の外周面で互いに対向する位置に形成された場合には、第4の筒状体をより一層シャフトに取り付けやすいものとなる。また、第4の筒状体とシャフトの接続状態をより一層安定させることができる。 In the case where the protruding portions are positioned to face each other on the inner peripheral surface of the fourth through hole and the notches are formed at positions facing each other on the outer peripheral surface of the second connecting portion, the fourth cylinder It becomes easier to attach the shaped body to the shaft. Further, the connection state between the fourth cylindrical body and the shaft can be further stabilized.
 本発明に係る骨掘削用リーマーは、取扱い性に優れ、充分な強度を有するものとなっている。 The bone digging reamer according to the present invention has excellent handleability and has sufficient strength.
本発明の実施の形態に係る骨掘削用リーマーの概略図である。It is the schematic of the reamer for bone excavation which concerns on embodiment of this invention. ドリル部の概略断面図(a)及びドリル部を刃先側接続部側から見た概略図(b)である。It is the schematic sectional drawing (a) which looked at the schematic sectional drawing (a) of a drill part, and the drill part from the blade edge | side side connection part side. シャフト側接続部の概略図(a)及びシャフトをシャフト側接続部側から見た概略図(b)である。It is the schematic (b) which looked at the schematic (a) of the shaft side connection part, and the shaft from the shaft side connection part side. 刃先側接続部とシャフト側接続部の接続前の概略図(a)及び接続後の概略図(b)である。It is the schematic (a) before the connection of a blade edge side connection part and a shaft side connection part, and the schematic diagram (b) after connection. シャフトにリーマー誘導ロッドを挿入した状態を示す概略断面図(a)及びロッド頭部が刃先部貫通孔の途中で止まった状態を示す概略断面図(b)である。It is the schematic sectional drawing (a) which shows the state which inserted the reamer guide rod in the shaft, and the schematic sectional drawing (b) which shows the state which the rod head stopped in the middle of the blade edge part through-hole. 従来のフレキシブルリーマーを示す概略図(a)及びシャフトと刃先の接続部分を示す概略図(b)である。It is the schematic (a) which shows the conventional flexible reamer, and the schematic (b) which shows the connection part of a shaft and a blade edge | tip.
 以下、本発明の実施の形態について図面を参照しながら説明し、本発明の理解に供する。
 図1は、本発明の実施の形態に係る骨掘削用リーマーの概略図である。なお、本発明の構成は以下に示す内容に限定されるものではなく、適宜変更することができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to facilitate understanding of the present invention.
FIG. 1 is a schematic view of a bone excavation reamer according to an embodiment of the present invention. In addition, the structure of this invention is not limited to the content shown below, It can change suitably.
 図1に示すように、本発明を適用した骨掘削用リーマーの一例であるリーマー1は、ドリル部2と、シャフト3を備えている。 As shown in FIG. 1, a reamer 1 as an example of a bone drilling reamer to which the present invention is applied includes a drill portion 2 and a shaft 3.
 ドリル部2は、リーマー1が取り付けられる回転工具(図示せず)により回転力が付与され、施術対象骨の骨組織を穿孔する部分である。ドリル部2は、骨の大きさに合わせて刃の直径が、例えば、1mm刻みで異なる複数のサイズが存在し、1本のシャフトに対して交換可能となっている。また、刃の直径は0.5mm刻みで異なる場合もある。 The drill part 2 is a part that is pierced through the bone tissue of the bone to be treated by a rotational force applied by a rotary tool (not shown) to which the reamer 1 is attached. The drill portion 2 has a plurality of sizes having different blade diameters, for example, in increments of 1 mm in accordance with the size of the bone, and can be exchanged for one shaft. Further, the diameter of the blade may be different in steps of 0.5 mm.
 また、ドリル部2は、骨組織を穿孔可能かつ外科手術に使用可能なステンレスで形成されている。 Also, the drill part 2 is formed of stainless steel that can pierce bone tissue and can be used for surgery.
 シャフト3は、長手方向の中心にシャフト貫通孔9が形成された弾性を有する筒状体である。また、シャフト3は、使用時の外力に対して曲がって変形し、外力がかからなくなると元の形状に戻るものとなっている。より詳細には、シャフト3は、通称ニチノールと呼ばれるチタン‐ニッケル合金で形成され、超弾性や形状記憶効果の性質を示すものとなっている。 The shaft 3 is an elastic cylindrical body in which a shaft through hole 9 is formed at the center in the longitudinal direction. Further, the shaft 3 is bent and deformed with respect to an external force during use, and returns to its original shape when the external force is no longer applied. More specifically, the shaft 3 is formed of a titanium-nickel alloy commonly called Nitinol, and exhibits properties of superelasticity and a shape memory effect.
 また、シャフト3の本体部分19の外周面は切れ目が形成されておらず、素材の有する弾性によって外力に対して曲がるものとなっている。 Further, the outer peripheral surface of the main body portion 19 of the shaft 3 is not formed with a cut, and is bent with respect to the external force by the elasticity of the material.
 シャフト3のドリル部2と反対側の端部には、工具接続部24が設けられている。工具接続部24は、モータを駆動させ回転運動を生じる回転工具とシャフト3を接続し、回転工具が固定する部分である。また、工具接続部24の内部には、シャフト貫通孔9と連通した工具接続部貫通孔25が形成されている。 A tool connecting portion 24 is provided at the end of the shaft 3 opposite to the drill portion 2. The tool connection part 24 is a part which connects the rotary tool which drives a motor and produces rotational motion, and the shaft 3, and a rotary tool fixes. A tool connection part through hole 25 communicating with the shaft through hole 9 is formed inside the tool connection part 24.
 ここで、回転工具は既知のものが使用でき、シャフト3の工具接続部24に設けられた切欠きに嵌合し、工具接続部24の部分をロック機構で固定または分離可能なものが使用されることが好ましい。 Here, a known rotary tool can be used, and a tool that fits into a notch provided in the tool connecting portion 24 of the shaft 3 and can fix or separate the tool connecting portion 24 with a lock mechanism is used. It is preferable.
 また、回転工具は、固定したシャフト3を時計周りまたは反時計周りに高トルクで回転させる部材である。なお、通常、骨掘削用リーマーの使用時には一方向のみの回転で掘削がなされ、反対方向への回転は使用されないものとなっている。 Also, the rotary tool is a member that rotates the fixed shaft 3 with high torque clockwise or counterclockwise. Normally, when using a bone digging reamer, excavation is performed by rotation in only one direction, and rotation in the opposite direction is not used.
 ここで、ドリル部2の大きさや形状は特に限定されるものではなく、穿孔対象となる骨の大きさや、使用したい骨接合具に合わせて適宜変更することができる。 Here, the size and shape of the drill part 2 are not particularly limited, and can be appropriately changed according to the size of the bone to be drilled and the bone joint to be used.
 また、ドリル部2は必ずしもステンレスで形成される必要はなく、骨組織に孔が穿孔可能な強度を有し、外科手術に使用可能な材質であれば充分である。 Further, the drill part 2 does not necessarily need to be formed of stainless steel, and any material that has a strength capable of drilling a hole in bone tissue and can be used for surgery is sufficient.
 また、シャフト3は必ずしもニチノールで形成される必要はなく、超弾性や形状記憶効果の性質を示す素材を採用しうるものである。 Further, the shaft 3 is not necessarily formed of nitinol, and a material exhibiting properties of superelasticity and a shape memory effect can be adopted.
 ドリル部2は、刃先部4と、刃先部4と一体的に接合された筒状の刃先側接続部5から構成される。刃先部4は筒状体の外周面に複数の刃が一定間隔で位置し、各刃はドリル部2の長手方向に沿って、やや湾曲して形成されている。 The drill part 2 includes a cutting edge part 4 and a cylindrical cutting edge side connecting part 5 joined integrally with the cutting edge part 4. The blade edge portion 4 has a plurality of blades positioned at regular intervals on the outer peripheral surface of the cylindrical body, and each blade is formed to be slightly curved along the longitudinal direction of the drill portion 2.
 図2(a)に示すように、刃先部4の内部には刃先部貫通孔6が長手方向に沿って形成されている。刃先部貫通孔6は、刃先側接続部5の内部に形成された貫通孔と連通し、かつ、シャフト3のシャフト貫通孔9に連通可能なものとなっている。 As shown in FIG. 2 (a), a blade edge portion through hole 6 is formed in the blade edge portion 4 along the longitudinal direction. The blade edge portion through hole 6 communicates with a through hole formed inside the blade edge side connection portion 5 and can communicate with the shaft through hole 9 of the shaft 3.
 また、刃先側接続部5の内部には、刃先部貫通孔6の直径と同程度の直径を有する径小貫通孔7と、径小貫通孔7より大きな直径を有する径大貫通孔8が連通して形成されている。なお、径大貫通孔8とシャフト3のシャフト貫通孔9は同一の直径を有している。また、刃先部貫通孔6及び径小貫通孔7は後述するリーマー誘導ロッドの頭部の直径よりもわずかに小さく形成されている。 Further, inside the blade edge side connection portion 5, a small diameter through hole 7 having a diameter similar to the diameter of the blade edge portion through hole 6 and a large diameter through hole 8 having a diameter larger than the small diameter through hole 7 communicate with each other. Is formed. The large diameter through hole 8 and the shaft through hole 9 of the shaft 3 have the same diameter. Moreover, the blade edge part through hole 6 and the small diameter through hole 7 are formed to be slightly smaller than the diameter of the head of the reamer guide rod described later.
 また、刃先側接続部5は、刃先部貫通孔6の開口部分近傍の内周面に突出部10が設けられている。突出部10は後述するシャフト3側に設けられた螺旋溝に嵌合する箇所である。 Further, the cutting edge side connecting portion 5 is provided with a protruding portion 10 on the inner peripheral surface in the vicinity of the opening portion of the cutting edge portion through hole 6. The protrusion 10 is a portion that fits into a spiral groove provided on the shaft 3 side described later.
 ここで、必ずしも、刃先側接続部5の内部に直径の異なる径小貫通孔7及び径大貫通孔8が形成される必要はなく、内部にリーマー誘導ロッドが挿入可能な貫通孔であれば充分である。但し、後述するように、シャフト3とドリル部2を接続させた際に、直径が異なる境界の位置でシャフト側接続部の先端が止まり、接続が完了したことが分かりやすくなる点及び接続構造が安定する点から、刃先側接続部5の内部に直径の異なる径小貫通孔7及び径大貫通孔8が形成されることが好ましい。 Here, the small-diameter through hole 7 and the large-diameter through hole 8 having different diameters do not necessarily have to be formed inside the cutting edge side connecting portion 5, and any through hole into which the reamer guide rod can be inserted is sufficient. It is. However, as will be described later, when the shaft 3 and the drill portion 2 are connected, the tip of the shaft side connecting portion stops at the position of the boundary where the diameters are different, and the connection structure and the point that makes it easy to understand that the connection is completed From the viewpoint of stability, it is preferable that the small-diameter through hole 7 and the large-diameter through hole 8 having different diameters are formed inside the cutting edge side connecting portion 5.
 また、必ずしも、刃先部4の内部には刃先部貫通孔6が径小貫通孔7と同一の直径に形成される必要はなく、内部にリーマー誘導ロッドが挿入可能な貫通孔であれば充分である。 In addition, the blade tip portion through-hole 6 does not necessarily have to have the same diameter as the small-diameter through-hole 7 inside the blade tip portion 4, and any through-hole into which the reamer guide rod can be inserted is sufficient. is there.
 また、必ずしも、刃先部貫通孔6及び径小貫通孔7がリーマー誘導ロッドの頭部の直径よりもわずかに小さく形成される必要はない。但し、後述するように、リーマー1の内部に挿通させるリーマー誘導ロッドの頭部をドリル部2の刃先部貫通孔6の位置で止め、ドリル部2の脱落を生じにくくできる点から、刃先部貫通孔6及び径小貫通孔7がリーマー誘導ロッドの頭部の直径よりもわずかに小さく形成されることが好ましい。 Also, the blade tip through hole 6 and the small diameter through hole 7 do not necessarily need to be formed slightly smaller than the diameter of the head of the reamer guide rod. However, as will be described later, since the head of the reamer guide rod inserted into the reamer 1 is stopped at the position of the cutting edge part through hole 6 of the drill part 2, the cutting edge part penetration is prevented. It is preferable that the hole 6 and the small-diameter through-hole 7 are formed to be slightly smaller than the diameter of the head of the reamer guide rod.
 また、図2(b)は、ドリル2を刃先側接続部5側から見た図であるが、突出部10は、径大貫通孔8の円周上で対向する位置に設けられている。即ち、2つの突出部10は、円周上で一方から見て他方が180度の位置に設けられている。 Further, FIG. 2B is a view of the drill 2 as viewed from the cutting edge side connecting portion 5 side, but the protruding portion 10 is provided at a position facing the circumference of the large diameter through hole 8. That is, the two protrusions 10 are provided at 180 degrees on the circumference when viewed from one side.
 ここで、必ずしも、突出部10が径大貫通孔8の円周上で対向する位置に設けられる必要はなく、シャフト3の螺旋溝に嵌合可能なものであれば充分である。但し、接続や取り外しが容易になる点から、突出部10が径大貫通孔8の円周上で対向する位置に設けられることが好ましい。 Here, the protrusions 10 do not necessarily have to be provided at positions facing each other on the circumference of the large-diameter through-hole 8, and any one that can be fitted into the spiral groove of the shaft 3 is sufficient. However, it is preferable that the protruding portion 10 is provided at a position facing the circumference of the large-diameter through-hole 8 from the viewpoint of easy connection and removal.
 図3(a)に示すように、シャフト3の工具接続部24と反対側の端部はシャフト側接続部11となっている。シャフト側接続部11は、刃先側接続部5と嵌合する部分である。即ち、ドリル部2をシャフト3に取り付けるための箇所となる。 As shown in FIG. 3A, the end of the shaft 3 opposite to the tool connecting portion 24 is a shaft-side connecting portion 11. The shaft side connection portion 11 is a portion that fits with the blade edge side connection portion 5. That is, it becomes a part for attaching the drill part 2 to the shaft 3.
 シャフト側接続部11は、先端側の外周面に螺旋溝12が形成されている。螺旋溝12は、上述した刃先側接続部5の突出部10と嵌合し、その溝に沿って刃先側接続部5をシャフト3側に誘導する。また、螺旋溝12が形成された領域で、刃先側接続部5とシャフト側接続部11が重なり、接続された状態となる。 The shaft side connecting portion 11 has a spiral groove 12 formed on the outer peripheral surface on the tip side. The spiral groove 12 is fitted to the protruding portion 10 of the above-described cutting edge side connection portion 5 and guides the cutting edge side connection portion 5 toward the shaft 3 along the groove. Further, in the region where the spiral groove 12 is formed, the cutting edge side connecting portion 5 and the shaft side connecting portion 11 are overlapped and connected.
 螺旋溝12は、溝幅が2mm程度で形成されている。また、シャフト側接続部11の外周面の厚みの約1.0mmに対して、螺旋溝12は溝の深さが0.5mm程度で形成されている。また、シャフト側接続部11の螺旋溝12に挟まれた領域、即ち、溝同士の間の溝加工が施されていない領域は幅2.5mm程度と、螺旋溝12の幅よりやや大きめの幅を有するものとなっている。 The spiral groove 12 is formed with a groove width of about 2 mm. Further, the spiral groove 12 is formed with a groove depth of about 0.5 mm with respect to the thickness of the outer peripheral surface of the shaft-side connecting portion 11 of about 1.0 mm. Further, the region sandwiched between the spiral grooves 12 of the shaft side connecting portion 11, that is, the region where the groove processing between the grooves is not performed is about 2.5 mm in width, which is slightly larger than the width of the spiral groove 12. It has become.
 ここで、螺旋溝12の溝幅、溝の深さ及びシャフト側接続部11の外周面の厚みは限定されるものではなく、刃先側接続部5とシャフト側接続部11が重なり、接続できるものとなっていれば充分である。 Here, the groove width of the spiral groove 12, the depth of the groove, and the thickness of the outer peripheral surface of the shaft side connection portion 11 are not limited, and the blade edge side connection portion 5 and the shaft side connection portion 11 can be overlapped and connected. If it is, it is enough.
 また、必ずしも、シャフト側接続部11の螺旋溝12に挟まれた領域が螺旋溝12の溝幅よりやや大きめの幅を有するものとなる必要はない。但し、刃先側接続部5の内周面と、シャフト側接続部11の外周面とで接触する領域が広くなり、接続した状態が安定化する点から、シャフト側接続部11の螺旋溝12に挟まれた領域が螺旋溝12の幅よりやや大きめの幅を有するものとなることが好ましい。 Also, the region sandwiched between the spiral grooves 12 of the shaft side connecting portion 11 does not necessarily have to have a width slightly larger than the groove width of the spiral grooves 12. However, the contact area between the inner peripheral surface of the blade-side connecting portion 5 and the outer peripheral surface of the shaft-side connecting portion 11 is widened, and the connected state is stabilized, so that the spiral groove 12 of the shaft-side connecting portion 11 is stabilized. It is preferable that the sandwiched region has a width slightly larger than the width of the spiral groove 12.
 また、シャフト3は、螺旋溝12が形成された領域に隣接して、同領域よりも直径の大きなストッパー部13を有している。ストッパー部13は、螺旋溝の終点14の近傍から設けられている。 The shaft 3 has a stopper portion 13 having a diameter larger than that of the region adjacent to the region where the spiral groove 12 is formed. The stopper portion 13 is provided from the vicinity of the end point 14 of the spiral groove.
 螺旋溝12は、シャフト側接続部11の端部を始点15として終点14まで、シャフト側接続部11の外周面に螺旋状に溝が刻まれたものとなっている。また、図3(a)に示すように、側面から螺旋溝12を見た場合に、始点15から終点14までに、溝の数が3個以下になるような長さで形成されている。なお、ここでいう3個以下とは、おおよその見え方の数であり、見る部位によっては溝の数が2個になる位置も存在する。 The spiral groove 12 is a spiral groove formed on the outer peripheral surface of the shaft-side connecting portion 11 from the end of the shaft-side connecting portion 11 to the end point 14 until the end point 14. Further, as shown in FIG. 3A, when the spiral groove 12 is viewed from the side surface, the length is formed from the start point 15 to the end point 14 so that the number of grooves is three or less. Here, the term “three or less” means the approximate number of appearances, and there are positions where the number of grooves is two depending on the part to be seen.
 ここで、必ずしも、螺旋溝12が、シャフト3を側面から螺旋溝12を見た場合に、始点15から終点14までに、溝の数が3個以下になるような長さで形成される必要はなく、溝の数が増える形状であってもよい。但し、シャフト3に対して、ドリル部2を取り付けまたは取り外しやすくなり、取扱い性が向上する点から、螺旋溝12が、シャフト3を側面から螺旋溝12を見た場合に、始点15から終点14までに、溝の数が3個以下になるような長さで形成されることが好ましい。 Here, when the spiral groove 12 is viewed from the side of the shaft 3, the spiral groove 12 is necessarily formed with such a length that the number of grooves is three or less from the start point 15 to the end point 14. There may be a shape in which the number of grooves increases. However, since it becomes easy to attach or remove the drill portion 2 to the shaft 3 and the handleability is improved, when the spiral groove 12 is viewed from the side of the shaft 3, the start point 15 to the end point 14. By the time, it is preferable that the number of grooves be 3 or less.
 また、図3(b)は、シャフト3をシャフト側接続部11側から見た図であるが、螺旋溝12の始点15は、シャフト側接続部11の外周面上に2つの切欠き16として見えるものとなっている。また、2つの切欠き16は、シャフト側接続部11のシャフト貫通孔9の円周上で対向する位置に設けられている。即ち、2つの切欠き16は、円周上で一方から見て他方が180度の位置に設けられている。 FIG. 3B is a view of the shaft 3 as viewed from the shaft-side connecting portion 11 side. The starting point 15 of the spiral groove 12 is formed as two notches 16 on the outer peripheral surface of the shaft-side connecting portion 11. It is visible. Further, the two notches 16 are provided at positions facing each other on the circumference of the shaft through hole 9 of the shaft side connecting portion 11. That is, the two notches 16 are provided at 180 degrees on the circumference when viewed from one side.
 また、シャフト側接続部11の螺旋溝12が設けられた領域の長さは約1.0cmであり、刃先側接続部5の長さ約1.3cmの約7~8割程度の長さとなっている。 Further, the length of the region where the spiral groove 12 of the shaft side connecting portion 11 is provided is about 1.0 cm, and the length of the cutting edge side connecting portion 5 is about 1.3 to 80%. ing.
 ここで、必ずしも、切欠き16がシャフト側接続部11のシャフト貫通孔9の円周上で対向する位置に設けられる必要はなく、ドリル部2の突出部10に嵌合可能なものであれば充分である。但し、接続や取り外しが容易になる点から、切欠き16がシャフト側接続部11のシャフト貫通孔9の円周上で対向する位置に設けられることが好ましい。 Here, the notch 16 does not necessarily have to be provided at a position facing the circumference of the shaft through hole 9 of the shaft side connecting portion 11, as long as it can be fitted to the protruding portion 10 of the drill portion 2. It is enough. However, it is preferable that the notch 16 is provided at a position facing the circumference of the shaft through hole 9 of the shaft side connecting portion 11 from the viewpoint of easy connection and removal.
 また、必ずしも、シャフト側接続部11の螺旋溝12が設けられた領域の長さが刃先側接続部5の長さの約7~8割程度の長さとされる必要はない。但し、刃先側接続部5の内周面と、シャフト側接続部11の外周面とで接触する領域が長くなり、接続した状態が安定化する点から、シャフト側接続部11の螺旋溝12が設けられた領域の長さが刃先側接続部5の長さの約8割程度の長さとされることが好ましい。 Further, the length of the region where the spiral groove 12 of the shaft side connection portion 11 is provided is not necessarily about 70 to 80% of the length of the cutting edge side connection portion 5. However, the area where the inner peripheral surface of the cutting edge side connecting portion 5 and the outer peripheral surface of the shaft side connecting portion 11 come into contact with each other becomes longer, and the spiral groove 12 of the shaft side connecting portion 11 becomes stable because the connected state is stabilized. The length of the provided region is preferably about 80% of the length of the cutting edge side connecting portion 5.
 ドリル部2の刃先側接続部5をシャフト3のシャフト側接続部11に取り付ける際には、2つの突出部10が2つの切欠き16とそれぞれ嵌合し、接続がなされる構造となっている。 When attaching the cutting edge side connection part 5 of the drill part 2 to the shaft side connection part 11 of the shaft 3, the two protruding parts 10 are respectively fitted with the two notches 16 to be connected. .
 また、刃先側接続部5がシャフト側接続部11に完全に嵌合した状態、即ち、突出部10が螺旋溝12の終点14の位置まで到達した状態が、接続が完了した状態となる。図4(a)及び図4(b)に示すように、この際、刃先側接続部5の端部17は、シャフト側接続部11のストッパー部13に接触する構造となっている。 Further, a state where the cutting edge side connecting portion 5 is completely fitted to the shaft side connecting portion 11, that is, a state where the protruding portion 10 reaches the position of the end point 14 of the spiral groove 12 is a state where the connection is completed. As shown in FIGS. 4A and 4B, at this time, the end portion 17 of the cutting edge side connection portion 5 is in contact with the stopper portion 13 of the shaft side connection portion 11.
 また、ドリル部2のシャフト3への接続が完了した状態では、シャフト側接続部11の端部18は、刃先側接続部5の内部の径小貫通孔7と径大貫通孔8の境界部分に接触する構造となっている。 Further, in the state where the connection of the drill portion 2 to the shaft 3 is completed, the end portion 18 of the shaft side connection portion 11 is a boundary portion between the small diameter through hole 7 and the large diameter through hole 8 inside the cutting edge side connection portion 5. It has a structure that touches.
 図5を用いて、リーマー誘導ロッド20をリーマー1の各貫通孔に挿入した際の構造を説明する。 The structure when the reamer guide rod 20 is inserted into each through hole of the reamer 1 will be described with reference to FIG.
 リーマー誘導ロッド20は、リーマー1による骨組織の掘削時にリーマー1の進退方向の動きをガイドするための棒状の部材である。図5(a)に示すように、リーマー1を構成する各部材の内部の貫通孔に挿通可能なロッド本体21と、ロッド本体21の一端に設けられた球状のロッド頭部22から構成されている。 The reamer guide rod 20 is a rod-shaped member for guiding the movement of the reamer 1 in the advancing / retreating direction when the reamer 1 excavates bone tissue. As shown to Fig.5 (a), it is comprised from the rod main body 21 which can be inserted in the through-hole inside each member which comprises the reamer 1, and the spherical rod head 22 provided in the end of the rod main body 21. Yes.
 リーマー誘導ロッド20の長手方向の全長は、リーマー1の長手方向の全長よりも長くなるように形成されている。また、リーマー誘導ロッド20のロッド頭部22と反対側の端部23が刃先部貫通孔6に挿入され、順次、径小貫通孔7、径大貫通孔8、シャフト貫通孔9及び工具接続部貫通孔25へと進み、シャフト3の外部に出るものとなる。 The total length of the reamer guide rod 20 in the longitudinal direction is formed to be longer than the total length of the reamer 1 in the longitudinal direction. Moreover, the end 23 opposite to the rod head 22 of the reamer guide rod 20 is inserted into the blade tip through-hole 6, and the small-diameter through-hole 7, the large-diameter through-hole 8, the shaft through-hole 9, and the tool connection portion. It progresses to the through-hole 25 and comes out of the shaft 3.
 図5(b)に示すように、ロッド頭部22は、刃先部貫通孔6の途中の部分で引っ掛かる構造となっている。より詳細には、ロッド頭部22の直径が、刃先部貫通孔6の直径よりやや大きめに形成されている。 As shown in FIG. 5 (b), the rod head 22 has a structure that is caught in the middle part of the blade tip through hole 6. More specifically, the diameter of the rod head 22 is formed to be slightly larger than the diameter of the blade tip through hole 6.
 ロット頭部22の直径と刃先側貫通孔6の直径が上記のような構造となっていることで、ドリル部2がシャフト側接続部11から外れる方向に回転して、ドリル部2とシャフト3が分離した際にも、ドリル部2はロッド頭部22に引っ掛かり、リーマー誘導ロッド20に支持されるものとなる。 Since the diameter of the lot head 22 and the diameter of the cutting edge side through hole 6 have the above-described structure, the drill portion 2 rotates in a direction away from the shaft side connection portion 11, and the drill portion 2 and the shaft 3 are rotated. Even when separated, the drill portion 2 is caught by the rod head 22 and supported by the reamer guide rod 20.
 即ち、ドリル部2とシャフト3の接続状態が解除されても、ドリル部2が脱落することがなくなり、骨内にドリル部2が留置されるトラブルを回避することができる。また、例えば、シャフトと刃先が吻合されることにより、直接介助(看護師)から術者に手渡しする際に刃先が落ちにくいものとなる。 That is, even if the connection state of the drill part 2 and the shaft 3 is released, the drill part 2 is not dropped off, and the trouble that the drill part 2 is placed in the bone can be avoided. Further, for example, when the shaft and the blade edge are anastomosed, the blade edge is less likely to fall when handed directly from the assistant (nurse) to the operator.
 以上までで説明したリーマーの使用手順を以下説明する。 The following explains the procedure for using the reamer described above.
 まず、分離した状態のドリル部2とシャフト3の接続を行う。ドリル部2の刃先側接続部5の2つの突出部10を、シャフト側接続部11の螺旋溝12の2つの切欠き16の位置に併せる。 First, the separated drill part 2 and shaft 3 are connected. The two protrusions 10 of the cutting edge side connection portion 5 of the drill portion 2 are aligned with the positions of the two notches 16 of the spiral groove 12 of the shaft side connection portion 11.
 そして、突出部10が螺旋溝12の終点14に到達するまでドリル部2を回転させる。この際、螺旋溝12に沿って突出部10は約1回転し、始点15から終点14まで到達する。ドリル部2を逆回転させることで、シャフト3からドリル部2を分離させることができる。 Then, the drill portion 2 is rotated until the protruding portion 10 reaches the end point 14 of the spiral groove 12. At this time, the protrusion 10 rotates about one turn along the spiral groove 12 and reaches from the start point 15 to the end point 14. The drill part 2 can be separated from the shaft 3 by rotating the drill part 2 in the reverse direction.
 ドリル部2とシャフト3の接続は、ドリル部2を約1回転させるだけの単純な動作であるため、手術中の使用者は容易にリーマー1の準備をすることができる。 Since the connection between the drill part 2 and the shaft 3 is a simple operation that only rotates the drill part 2 about one rotation, the user during the operation can easily prepare the reamer 1.
 続いて、リーマー1の内部の各貫通孔にリーマー誘導ロッド20を挿入する。リーマー誘導ロッド20は、ロッドの端部23側をドリル部2の刃先部貫通孔6に挿入していく。リーマー誘導ロッド20を順次、径小貫通孔7、径大貫通孔8、シャフト貫通孔9及び工具接続部貫通孔25へと挿入する。 Subsequently, the reamer guide rod 20 is inserted into each through hole inside the reamer 1. The reamer guide rod 20 is inserted into the blade tip through hole 6 of the drill portion 2 at the end 23 side of the rod. The reamer guide rod 20 is sequentially inserted into the small diameter through hole 7, the large diameter through hole 8, the shaft through hole 9, and the tool connection portion through hole 25.
 また、この際、ドリル部2は刃先貫通孔6の途中でリーマー誘導ロッド20の頭部22に引っ掛かり、リーマー1が頭部22を超えてそれ以上先には進入できないものとなっている。 Further, at this time, the drill portion 2 is caught in the head 22 of the reamer guide rod 20 in the middle of the cutting edge through hole 6 so that the reamer 1 cannot enter further beyond the head 22.
 そして、リーマー1の工具接続部24を回転工具の嵌合部と併せて、回転工具のロック機構によって、工具接続部24を回転工具に固定する。ここまでで、骨掘削用リーマーの準備が完了する。 Then, the tool connection portion 24 of the reamer 1 is combined with the fitting portion of the rotary tool, and the tool connection portion 24 is fixed to the rotary tool by the lock mechanism of the rotary tool. At this point, the preparation of the bone drilling reamer is completed.
 施術対象骨の骨組織を掘削する際には、回転工具を一方方向に回転させる。回転工具は高トルクで回転し、その回転力は、シャフト3を介してドリル部2に伝達され、ドリル部2の刃先部4の複数の刃が骨組織を掘削される。なお、回転工具の回転方向は、ドリル部2がシャフト3から分離するための回転方向とは逆向きの回転方向となっている。 When excavating the bone tissue of the target bone, rotate the rotary tool in one direction. The rotary tool rotates at a high torque, and the rotational force is transmitted to the drill part 2 via the shaft 3, and the plurality of blades of the blade edge part 4 of the drill part 2 excavate the bone tissue. In addition, the rotation direction of the rotary tool is a rotation direction opposite to the rotation direction for separating the drill portion 2 from the shaft 3.
 また、仮に使用者が誤って回転工具をドリル部2がシャフト3から分離するための回転方向に回転させ、ドリル部2がシャフト3から分離した場合にも、リーマー誘導ロッド20のロッド頭部22が刃先部貫通孔6の途中の直径が小さくなった箇所で引っ掛かり、ドリル部2の脱落を防ぐことが可能となる。 Also, if the user accidentally rotates the rotary tool in the rotational direction for separating the drill portion 2 from the shaft 3 and the drill portion 2 is separated from the shaft 3, the rod head 22 of the reamer guide rod 20. However, it is possible to prevent the drill portion 2 from falling off by being caught at a position where the diameter of the blade tip portion through-hole 6 becomes small.
 リーマー1のシャフト3の本体部分19は、超弾性を有するチタン‐ニッケル合金で形成されているため、骨の掘削部位と回転工具との間で適度に曲がり、かつ、安定した掘削を行うことができる。即ち、従来のフレキシブルリーマーにように、シャフトは大きく曲がらず、対象骨の目的の位置にドリル部2の刃をしっかりとあてることができる。 Since the main body portion 19 of the shaft 3 of the reamer 1 is formed of a titanium-nickel alloy having super elasticity, it can bend appropriately between the bone excavation site and the rotary tool and perform stable excavation. it can. That is, unlike the conventional flexible reamer, the shaft is not greatly bent, and the blade of the drill portion 2 can be firmly applied to the target position of the target bone.
 ドリル部2の刃で骨組織を掘削していくことで、髄内釘等の骨接合具を挿入するための孔を穿孔することができる。掘削後のシャフト3の本体部分には切れ目がないため、掘削された骨組織はシャフトに付着しにくく、使用後の洗浄作業を容易なものとすることができる。 By drilling the bone tissue with the blade of the drill part 2, a hole for inserting a bone connector such as an intramedullary nail can be drilled. Since the main body portion of the shaft 3 after excavation is not cut, the excavated bone tissue hardly adheres to the shaft, and the cleaning operation after use can be facilitated.
 以上のように、本発明の骨掘削用リーマーは、取扱い性に優れ、充分な強度を有するものとなっている。 As described above, the bone excavation reamer of the present invention is excellent in handleability and has sufficient strength.
   1   リーマー
   2   ドリル部
   3   シャフト
   4   刃先部
   5   刃先側接続部
   6   刃先部貫通孔
   7   径小貫通孔
   8   径大貫通孔
   9   シャフト貫通孔
  10   突出部
  11   シャフト側接続部
  12   螺旋溝
  13   ストッパー部
  14   終点
  15   始点
  16   切欠き
  17   端部
  18   端部
  19   本体部分
  20   リーマー誘導ロッド
  21   ロッド本体
  22   ロッド頭部
  23   端部
  24   工具接続部
  25   工具接続部貫通孔
DESCRIPTION OF SYMBOLS 1 Reamer 2 Drill part 3 Shaft 4 Cutting edge part 5 Cutting edge side connection part 6 Cutting edge part through hole 7 Small diameter through hole 8 Large diameter through hole 9 Shaft through hole 10 Projection part 11 Shaft side connection part 12 Spiral groove 13 Stopper part 14 End point DESCRIPTION OF SYMBOLS 15 Start point 16 Notch 17 End part 18 End part 19 Main body part 20 Reamer guide rod 21 Rod main body 22 Rod head 23 End part 24 Tool connection part 25 Tool connection part through-hole

Claims (7)

  1.  第1の貫通孔が形成された第1の筒状体であると共に、弾性を有するシャフトと、
     該シャフトの一端側に位置し、前記第1の貫通孔と連通した第2の貫通孔が形成された第2の筒状体であると共に、所定の回転工具に固定可能な第1の接続部と、
     前記シャフトの他端側に位置し、前記第1の貫通孔と連通した第3の貫通孔が形成された第3の筒状体であると共に、外周面に螺旋溝が形成された第2の接続部と、
     該第2の接続部が螺合しながら内装可能な第4の貫通孔が形成された第4の筒状体と、
     該第4の筒状体の前記第2の接続部とは反対側の端部に位置し、前記第3の貫通孔と連通可能な第5の貫通孔が形成された第5の筒状体であると共に、外周面に突状片を有するドリル部とを備える
     骨掘削用リーマー。
    A first cylindrical body having a first through hole and a shaft having elasticity;
    A first connecting portion that is located on one end side of the shaft and is a second cylindrical body in which a second through hole communicating with the first through hole is formed and can be fixed to a predetermined rotary tool When,
    A second cylindrical body located on the other end side of the shaft and having a third through hole communicating with the first through hole and having a spiral groove formed on the outer peripheral surface; A connection,
    A fourth cylindrical body formed with a fourth through-hole capable of being installed while the second connection portion is screwed;
    A fifth cylindrical body in which a fifth through hole is formed which is located at an end of the fourth cylindrical body opposite to the second connection portion and which can communicate with the third through hole. And a drill part having a projecting piece on the outer peripheral surface.
  2.  前記螺旋溝は前記第2の接続部の短手方向側からの側面視で溝の数が3個以下である
     請求項1に記載の骨掘削用リーマー。
    2. The bone digging reamer according to claim 1, wherein the spiral groove has three or less grooves in a side view from the lateral direction side of the second connection portion.
  3.  前記第4の筒状体は前記第4の貫通孔の内周面に前記螺旋溝に嵌合可能な2つの突出部を有し、
     前記螺旋溝は前記第2の接続部の端部に位置する2つの切欠きを始点とする
     請求項1または請求項2に記載の骨掘削用リーマー。
    The fourth cylindrical body has two protrusions that can be fitted into the spiral groove on the inner peripheral surface of the fourth through-hole,
    3. The bone excavation reamer according to claim 1, wherein the spiral groove starts from two notches located at an end of the second connection portion.
  4.  前記シャフトは前記第2の接続部の前記螺旋溝の終点に隣接する位置に前記第4の貫通孔の直径よりも大きな直径で形成された径大部を有し、
     前記第4の貫通孔の前記ドリル部側の一部は前記第2の接続部の直径よりも小さな直径で形成された
     請求項1、請求項2または請求項3に記載の骨掘削用リーマー。
    The shaft has a large-diameter portion formed with a diameter larger than the diameter of the fourth through hole at a position adjacent to the end point of the spiral groove of the second connection portion.
    4. The bone drilling reamer according to claim 1, wherein a part of the fourth through hole on the drill part side is formed with a diameter smaller than a diameter of the second connection part.
  5.  前記シャフトの外周面は切れ目なく形成された
     請求項1、請求項2、請求項3または請求項4に記載の骨掘削用リーマー。
    The bone digging reamer according to claim 1, 2, 3, or 4, wherein the outer peripheral surface of the shaft is formed without a break.
  6.  前記シャフトは超弾性体で形成された
     請求項1、請求項2、請求項3、請求項4または請求項5に記載の骨掘削用リーマー。
    The bone excavation reamer according to claim 1, 2, 3, 4, or 5, wherein the shaft is formed of a superelastic body.
  7.  前記突出部は前記第4の貫通孔の内周面で互いに対向して位置し、
     前記切欠きは前記第2の接続部の外周面で互いに対向する位置に形成された
     請求項3に記載の骨掘削用リーマー。
    The protrusions are located opposite to each other on the inner peripheral surface of the fourth through hole;
    The bone digging reamer according to claim 3, wherein the notches are formed at positions facing each other on an outer peripheral surface of the second connecting portion.
PCT/JP2015/075621 2015-09-09 2015-09-09 Bone drill reamer WO2017042914A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017538778A JP6474906B2 (en) 2015-09-09 2015-09-09 Bone drilling reamer
PCT/JP2015/075621 WO2017042914A1 (en) 2015-09-09 2015-09-09 Bone drill reamer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075621 WO2017042914A1 (en) 2015-09-09 2015-09-09 Bone drill reamer

Publications (1)

Publication Number Publication Date
WO2017042914A1 true WO2017042914A1 (en) 2017-03-16

Family

ID=58240641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075621 WO2017042914A1 (en) 2015-09-09 2015-09-09 Bone drill reamer

Country Status (2)

Country Link
JP (1) JP6474906B2 (en)
WO (1) WO2017042914A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035034A1 (en) * 2016-08-14 2018-02-22 Greatbatch Ltd. Cutting head for an intramedullary reamer
CN109381242A (en) * 2017-08-14 2019-02-26 苏州微创骨科医疗工具有限公司 Medical tool
CN113305364A (en) * 2021-06-29 2021-08-27 镇江市人杰医疗器械有限公司 Direct-insertion type flexible rod reamer capable of rotating forwards and reversely and using method thereof
WO2024006523A1 (en) * 2022-06-30 2024-01-04 Forma Medical Llc Systems, apparatuses, and methods orthopedic surgery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185307A (en) * 1991-07-15 1993-07-27 Hanita Metal Works Ltd Holding chuck
CA2173935A1 (en) * 1996-04-11 1997-10-12 Anton J. Steiner Integral reamer apparatus
US6258093B1 (en) * 1999-02-01 2001-07-10 Garland U. Edwards Surgical reamer cutter
JP2009533234A (en) * 2006-04-10 2009-09-17 フランツ・ハイマー・マシーネンバウ・カーゲー Means for preventing a tool from escaping from a tool holder having a fixture for holding the tool
WO2014075990A1 (en) * 2012-11-13 2014-05-22 Trokamed Gmbh Medullary cavity drill

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632273B2 (en) * 2004-06-29 2009-12-15 Depuy Products, Inc. Minimally invasive bone broach
US8540716B2 (en) * 2007-02-09 2013-09-24 Christopher G. Sidebotham Disposable reamer shaft or modular spherical or tapered hollow reamer assembly for medical applications
US20150119893A1 (en) * 2013-10-29 2015-04-30 Biomet Manufacturing, Llc Method And Apparatus For Preparing An Implantation Site

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185307A (en) * 1991-07-15 1993-07-27 Hanita Metal Works Ltd Holding chuck
CA2173935A1 (en) * 1996-04-11 1997-10-12 Anton J. Steiner Integral reamer apparatus
US6258093B1 (en) * 1999-02-01 2001-07-10 Garland U. Edwards Surgical reamer cutter
JP2009533234A (en) * 2006-04-10 2009-09-17 フランツ・ハイマー・マシーネンバウ・カーゲー Means for preventing a tool from escaping from a tool holder having a fixture for holding the tool
WO2014075990A1 (en) * 2012-11-13 2014-05-22 Trokamed Gmbh Medullary cavity drill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035034A1 (en) * 2016-08-14 2018-02-22 Greatbatch Ltd. Cutting head for an intramedullary reamer
US10405872B2 (en) 2016-08-14 2019-09-10 Viant As&O Holdings, Llc Cutting head for an intramedullary reamer
CN109381242A (en) * 2017-08-14 2019-02-26 苏州微创骨科医疗工具有限公司 Medical tool
CN113305364A (en) * 2021-06-29 2021-08-27 镇江市人杰医疗器械有限公司 Direct-insertion type flexible rod reamer capable of rotating forwards and reversely and using method thereof
WO2024006523A1 (en) * 2022-06-30 2024-01-04 Forma Medical Llc Systems, apparatuses, and methods orthopedic surgery

Also Published As

Publication number Publication date
JPWO2017042914A1 (en) 2017-10-12
JP6474906B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP5815522B2 (en) Bone microfracture generator
US20200330108A1 (en) Arthroscopic drill blade and arthroscopic drill access system made therefrom
JP5883786B2 (en) Surgical instrument for cutting a cavity in an intramedullary canal
JP5291719B2 (en) Bone fixation member and femoral fixation system
EP2624769B1 (en) A system for use in tissue repair
JP5161885B2 (en) Surgical cutting device and method
JP6474906B2 (en) Bone drilling reamer
US10582935B2 (en) Flexible drill bit
JP2015512277A (en) Sacroiliac fusion system
US20160199072A1 (en) Bone removal under direct visualization
US9770278B2 (en) Dual tip guide wire
JP2020525069A (en) Anchor delivery system
JP2019063582A (en) Microfracture pick
JP2007061154A (en) Bone drilling
EP3510948A1 (en) Reamer with variable sharpness
JPH09149907A (en) Bone fixing tool, and bone fixing system
JP2555277B2 (en) Anti-rotation device for distal lower leg fracture
JP5433211B2 (en) Elbow head fracture treatment device and sighting device attached to the elbow head fracture treatment device
JP2016152861A (en) Treatment tool for femur fracture
JP2012130724A (en) Intramedullary nail and orthopedic surgery instrument set
US20230086330A1 (en) Systems and methods for bone fixation
JP2018023608A (en) Surgical jig and surgical bone fixation unit
EP4104780A1 (en) Targeting guide
JP3145528U (en) Bone drilling instrument
KR20210097060A (en) Medical Blade Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538778

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903577

Country of ref document: EP

Kind code of ref document: A1