WO2011022610A1 - System and method for a phosphor coated lens - Google Patents

System and method for a phosphor coated lens Download PDF

Info

Publication number
WO2011022610A1
WO2011022610A1 PCT/US2010/046108 US2010046108W WO2011022610A1 WO 2011022610 A1 WO2011022610 A1 WO 2011022610A1 US 2010046108 W US2010046108 W US 2010046108W WO 2011022610 A1 WO2011022610 A1 WO 2011022610A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
led
light
phosphor
optical system
Prior art date
Application number
PCT/US2010/046108
Other languages
French (fr)
Inventor
Hyunchul Ko
Randall E. Johnson
Paul N. Winberg
Dung T. Duong
Original Assignee
Illumitex, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/646,570 external-priority patent/US8449128B2/en
Application filed by Illumitex, Inc. filed Critical Illumitex, Inc.
Priority to JP2012525714A priority Critical patent/JP2013502695A/en
Priority to EP10810640A priority patent/EP2467638A1/en
Priority to CN2010800428809A priority patent/CN102686936A/en
Publication of WO2011022610A1 publication Critical patent/WO2011022610A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/048Refractors for light sources of lens shape the lens being a simple lens adapted to cooperate with a point-like source for emitting mainly in one direction and having an axis coincident with the main light transmission direction, e.g. convergent or divergent lenses, plano-concave or plano-convex lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/10Refractors for light sources comprising photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • F21Y2105/16Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present disclosure relates generally to optical systems. More particularly, the present disclosure relates to systems and methods for using lenses. The present disclosure also relates to using arrays of LEDs/lenses to create highly uniform light distributions with selected color and/or color temperature.
  • Phosphors are isotropic emitters, emitting light in all directions.
  • phosphor is applied on the LED chip, in a silicone matrix in proximity to the LED or to the outside of an LED dome or other LED packaging.
  • a dome or lens may be applied to an LED chip coated with phosphor to control the light beam angle (shape) from lambertian to a very narrow spot.
  • Such devices range from hemispherical lenses to T-5mm (T 1 3 ⁇ 4) aspheres.
  • One conventional system for producing white light LEDs for example, is constructed with pump blue/UV LED chips and a proximate mixture of phosphor in a binding matrix such as silicone.
  • the term "goop in a cup” is used to describe LEDs with flat or very nearly flat phosphor and silicone mixture over a blue pump within a reflective cup.
  • phosphor is applied away from the chip on the outside of a dome or inside of a hemispherical shell to increase converting efficiency.
  • an additional lens may be needed to control light beam shape.
  • the GE VIO employs the remote phosphor solution.
  • U.S. Patent No. 6,614,179 discloses a light emitting device with blue light emitting diode and phosphor components.
  • U.S. Patent Nos. 5,998,925, 6,069,440, and 6,608,332 disclose white light emitting devices, each having a nitride compound semiconductor and a phosphor containing yttrium-aluminum-garnet (YAG) elements.
  • the nitride compound semiconductor is used as a light emitting layer.
  • the phosphor absorbs a part of light emitted by the light emitting layer and emits light of a wavelength different from that of the absorbed light.
  • U.S. Patent No. 6,737,681 discloses chip placement designs for white light packages.
  • One example includes a fluorescent member having a curved surface of concave arc that extends from the height of the bottom of a case obliquely upward in a shape that continues along substantially the entire circumference of an oval or elongated round shape. It reflects the light emitted from the side faces of a semiconductor light emitting element to more efficiently utilize part of the light emitted from the semiconductor light emitting element and most of the light emitted from the side faces.
  • 6,924,596 discloses a color conversion type light emitting apparatus having a light emitting device and a color converting member formed from an epoxy resin containing a photoluminescence fluorescent substance and directly coating the light emitting device.
  • U.S. Patent Nos. 7,091 ,656 and 7,247,257 disclose light emitting devices that use a mixture of at least two phosphors for more complete color rendering.
  • U.S. Patent No. 7,071 ,616 discloses a light source having a blue LED, an optical guide plate having a planar main surface and an edge face receiving injection of the light from the blue LED and a coating material of transparent resin or glass containing fluorescent materials positioned between the blue LED and the optical guide plate. The optical guide plate is used for the final light mixing.
  • Patent Nos. 7,026,756, 7,126,274, 7,329,988, 7,362,048 disclose light emitting devices with blue light LED and phosphor components, including the emission spectra and package designs for display backlight.
  • U.S. Patent No. 6,960,878 discloses an LED chip having a blue die and a phosphor and including an epoxy resin for better reliability and optical stability.
  • U.S. Patent No. 7,256,468 discloses a light emitting device having a light emitting element and a metal package with a heat radiating characteristic and mechanical strength for housing the light emitting element.
  • Embodiments described herein provide optical systems in which phosphor can down convert light prior to the light entering a lens body.
  • One embodiment can include a system comprising an LED, a lens and phosphor disposed on the lens.
  • the LED is positioned in a cavity defined by a base and one or more sidewalls.
  • the phosphors are disposed on the lens between the entrance face to the lens body and the LED so that light emitted from the LED will be incident on the phosphor and at least partially down converted before entering the lens body through the entrance face.
  • the lens is positioned so that the phosphors are separated from the LED by a gap.
  • the phosphor can be disposed as a coating on the entrance face of the lens body, on a buffer layer between the phosphor and the entrance face or otherwise disposed on the lens.
  • the lens body can be shaped to emit light with a uniform distribution in a desired half-angle. Additionally, the lens body can be shaped to conserve brightness or come within a desired percentage of conserving brightness.
  • the cavity can have sidewalls that are shaped to direct light in the cavity to the entrance face of the LED.
  • the material forming the cavity sidewalls can be selected to reflect light to the entrance face.
  • a reflector can surround the LED.
  • the reflector can be a separate component or, according to one embodiment, can be formed by surface tension at the edges of the cavity if the cavity is filled with encapsulant.
  • Another embodiment of an optical system can comprise a submount, an array of
  • the housing can at least partially define a set of LED cavities in cooperation with the submount.
  • the housing can also define a set of lens cavities to accommodate the lenses.
  • Each lens cavity can be open to a corresponding LED cavity.
  • the lenses can be disposed in the lens cavities with each lens comprising an entrance face proximate to the opening to the corresponding LED cavity.
  • a layer of phosphors can disposed on each lens between the entrance face and the corresponding LED so that light is down converted before entering the lens body.
  • the entrance face of each lens is positioned a distance from the corresponding LED so that there is a gap between the LED and the phosphors. Multiple phosphors can be deposited sequentially to reduce cross-excitation.
  • Each lens cavity can be defined by a set of sidewalls.
  • the set of sidewalls can be shaped so that the lens cavity is smaller proximate to the opening to the
  • Each lens in the set of lenses can be configured to emit light with a uniform
  • the set of lenses can be closely packed so that the optical system emits light in a uniform distribution pattern in the selected half-angle over a larger area than the individual lenses in the set of lenses. Additionally, each lens in the set of lenses can be shaped to conserve brightness.
  • the system can include a cover that supports one or more lenses in corresponding lens cavities.
  • the cover and one or more lenses can be formed of a single piece of material.
  • the phosphor layer disposed on each lens can be selected so that different lenses in the set of lenses emit different colors of light.
  • the phosphor layer disposed on each lens is selected so that the optical system forms one or more white light units.
  • One advantage provided by embodiments described herein is that phosphor is removed from the LED chip. Heating of the LED chip is therefore reduced or prevented.
  • phosphor conversion efficiency can be increased due to the separation of phosphor from the LED active layer. Self-heating of phosphor due to the Stoke's shift can be suppressed by heat dissipation through lens materials and through the system submount/heatsink.
  • Embodiments described herein also provide for flexible optical system architectures. Because the phosphor coated lens can be separate from the LED chip, it can be used in conjunction with various types of optical devices, including conventional light emitting devices.
  • Embodiments can provide another advantage by providing a uniform spatial
  • Embodiments of a brightness conserving phosphor lens provide another advantage by allowing for near and/or far field color and spatial uniformity or for near and/or far field tailored color distribution and spatial distribution.
  • Embodiments disclosed herein can further allow for close packing phosphor coated lenses.
  • Embodiments described herein also provide systems for using arrays of LEDS (or other light source) and lenses to create highly uniform light in a selected beam angle.
  • Figures 1 -4 are diagrammatic representations of embodiments of optical systems
  • Figures 5-6 are diagrammatic representations of embodiments of phosphor coated lenses
  • Figure 7 is a diagrammatic representation of one embodiment of a packaged array
  • Figure 8 is a diagrammatic representation of a cross-section of an embodiment of a packaged array
  • Figure 9 is a diagrammatic representation of an LED in a cavity
  • Figure 10 is a diagrammatic representation of a portion of an embodiment of a packaged array
  • Figure 1 1 is a diagrammatic representation of another portion of an embodiment of a packaged array
  • Figure 12 is a diagrammatic representation of an array of LEDs mounted on a
  • Figure 13 is a diagrammatic representation of an embodiment of a portion of a housing of a packaged array
  • Figure 14 is a diagrammatic representation of a portion of another embodiment of a packaged array
  • Figure 15 is a diagrammatic representation of another portion of the embodiment of the packaged array.
  • Figure 16 is a diagrammatic representation of an embodiment of a lens assembly
  • Figure 17A is a diagrammatic representation of a cross-section of a model of a lens for determining sidewall shapes
  • Figure 17B is a diagrammatic representation of an embodiment of a portion of a sidewall of a lens
  • Figure 17C is a diagrammatic representation illustrating that the facets for a
  • sidewall can be defined using a computer program
  • Figure 17D is a diagrammatic representation of one embodiment of a lens with sidewalls shaped to cause TIR so that rays are reflected from the sidewalls to the exit surface;
  • Figure 18 is a diagrammatic representation illustrating one embodiment of an exit plane
  • Figure 19 is a diagrammatic representation of one embodiment for estimating
  • Figures 20A-20E are diagrammatic representations describing another embodiment for estimating effective solid angle
  • Figure 21 is a diagrammatic representation of an embodiment of an optical system
  • Figure 22 is a diagrammatic representation of another embodiment of an optical system
  • Figures 23a and 23b are diagrammatic representations showing a lens/LED
  • Figure 24 is a diagrammatic representation of an array of lenses and a resulting light pattern
  • Figures 25a-25c are diagrammatic representations of arrangements of color light sources
  • Figure 26 is a diagrammatic representation of an embodiment of an array of optical units and a controller;
  • Figure 27 is a diagrammatic representation of another embodiment of a lens with phosphor;
  • Figure 28 is a diagrammatic representation of yet another embodiment of a lens with phosphor
  • Figure 29 is a diagrammatic representation of one embodiment of a lens with phosphor.
  • Figure 30 is a diagrammatic representation of another lens with phosphor.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, product, article, or apparatus that comprises a list of elements is not necessarily limited only those elements but may include other elements not expressly listed or inherent to such process, process, article, or apparatus.
  • "or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • any examples or illustrations given herein are not to be regarded in any way as restrictions on, limits to, or express definitions of, any term or terms with which they are utilized. Instead these examples or illustrations are to be regarded as being described with respect to one particular embodiment and as illustrative only. Those of ordinary skill in the art will appreciate that any term or terms with which these examples or illustrations are utilized encompass other embodiments as well as implementations and adaptations thereof which may or may not be given therewith or elsewhere in the specification and all such embodiments are intended to be included within the scope of that term or terms. Language designating such non-limiting examples and illustrations includes, but is not limited to: “for example,” “for instance,” “e.g.,” “in one embodiment,” and the like. [0056] Reference is now made in detail to the exemplary embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, like numerals will be used throughout the drawings to refer to like and corresponding parts (elements) of the various drawings.
  • Embodiments described herein provide an optical system that maintains a photon conversion material away from a light source and between the light source and the entrance face of a lens.
  • a light source can be disposed in a cavity having a base and sidewalls. In one embodiment, the cavity can be formed by a housing in cooperation with a submount.
  • a lens can be positioned so that the entrance face of the lens is a selected distance from the light source.
  • a layer of photon converting material can be disposed on the lens between the entrance face of the lens and the light source so that the material converts light emitted from the light source to a different wavelength before the light enters the lens.
  • the photon converting material can be disposed directly on the entrance face to the lens, on a buffer layer or another layer of the lens.
  • the light source is an LED and the photon converting material includes phosphors and/or quantum dots.
  • Figures 1 -4 are diagrammatic representations of optical systems comprising a lens
  • LED 1 10 can include a substrate 1 15 of any suitable LED substrate material including sapphire, silicon carbide, diamond, molded glass or other substrate material.
  • LED 1 10 can have non-substrate layers 120 that can include one or more layers or regions of doping, buffer layers or other layers.
  • Non-substrate layers 120 can include a light emitting region (or active region), typically a compound semiconductor such as InGaN or AllnGaP or AIGaN.
  • LED 1 10 can be rectangular (including square), hexagonal, circular or have another geometric or irregular shape.
  • LED 1 10 is mounted to a submount 125.
  • submount 125 is mounted to a submount 125.
  • LED 1 10 is disposed in an LED cavity 130 defined by housing 135.
  • Housing 135 can be a portion of a larger housing, a layer(s) of material mounted on submount 125 or other material positioned around LED 1 10 that forms a cavity in cooperation with submount 125 or other layer.
  • material 135 can be a layer of molded plastic mounted to submount 125.
  • LED cavity 130 can have straight sidewalls that are parallel to the sides of the LED (i.e., vertical from the perspective of Figure 1 ).
  • the walls of LED cavity 130 can be curved (e.g., parabolic, multi-parabolic or other curved shape), tapered or otherwise shaped to better direct light upwards.
  • LED cavity 130 can be filled with air, molded silicone, silicone mixed with phosphor particles, molded plastic, or other encapsulant. Using a material having a higher index of refraction than LED 1 10 can prevent light from being trapped in LED 1 10 due to total internal reflection ("TIR”) in LED 1 10, thereby allowing more light to escape into LED cavity 130.
  • TIR total internal reflection
  • a reflector 140 (see Figure 2) disposed around LED 1 10 can reflect light toward lens 105.
  • reflector 140 can be a discrete component.
  • the reflector can be Teflon, Teflon paper, diffuse reflective plastic, silver coated plastic, white paper, Ti02 coated material or other reflective material.
  • reflector 140 can be formed through selection of material 135 or the encapsulant.
  • material 135 can be a white plastic material such that the walls inherently form a diffuse white reflector.
  • reflector 140 can be formed by the surface tension of an encapsulant disposed in LED cavity 130.
  • an LED may only leak light out the sides of some portions of the
  • the substrate 1 15 may include non-transparent sides such that LED 1 10 does not emit light from the sides of its substrate 1 15. Consequently, optical system 1 10 can be constructed so reflector 140 only surrounds the side portions of LED 1 10 through which light is emitted.
  • Lens 105 can include an entrance face 150 to receive light into the lens body 107 of lens 105.
  • Lens body 105 is the primary portion of lens 105 that is responsible for guiding or distributing light from an entrance face to an exit face.
  • lens 105 can include additional layers, such as buffer or protective layers, that light may traverse prior to entering entrance face 150.
  • entrance face 150 can be parallel to the primary emitting plane of LED 1 10 (e.g., a plane parallel to face 1 17 in Figure 2). In other embodiments, the entrance face can have another orientation (e.g. perpendicular) relative to the primary emitting plane of the LED.
  • a phosphor layer 145 can be disposed on lens 105 between the entrance face of lens body 107 and LED 1 10.
  • the phosphor layer can be disposed directly on the entrance face 150 or on a buffer layer between phosphor layer 145 and entrance face 150.
  • the phosphor in phosphor layer 145 absorbs the higher energy, short wavelength light waves, and re-emits lower energy, longer wavelength light. Light emitted by phosphor layer 145 can enter the lens body 107 through entrance face 150.
  • phosphor layer 145 can include a layer of phosphor particles in a binding material, such as silicone, coated on the entrance face 150 of lens body 107.
  • the phosphor particles can include any suitably sized phosphor particles including, but not limited to, nano-phosphor particles, quantum dots, or smaller or larger particles and can include a single color or multiple colors of phosphor particles.
  • the phosphor layer 145 can be separated from the entrance face 150 of lens body 107 by one or more buffer layers. There may also be additional layers of material coupled to lens body 107 between phosphor layer 145 such that, for example, phosphor layer 145 is sandwiched between entrance face 150 and one or more additional layers of material.
  • Materials and adhesives can be selected with indexes of refraction such that losses do not occur or are minimized at layer boundaries.
  • the phosphor can be disposed using any technique known or developed in the art including, but not limited to, silk screening, stencil printing pad printing, syringe dispense or jetting.
  • the color of light emitted by system 100 can be selected based on LED 1 10 and the phosphor particles in phosphor layer 145.
  • LED 1 10 can be a UV LED and phosphor layer 145 can include phosphors that down convert UV light to red, green, blue, yellow or other color light.
  • LED 1 10 can be a blue LED and phosphor layer 145 can down convert the blue light into a desired color.
  • Reflector 140 can be selected to reflect both the color light emitted by the LED 1 10 and the down converted light from phosphor layer 145.
  • Lens 105 is positioned so that phosphor layer 145 is maintained a distance from
  • lens 105 The position of lens 105 can be maintained by a housing, coupling lens 105 to encapsulant in LED cavity 130 or otherwise positioning lens 105 relative LED 1 10. If lens 105 is adhered to an encapsulant, an adhesive with an index of refraction equal to or greater than that of the encapsulant can be used to prevent TIR at the encapsulant/adhesive boundary.
  • Lens 105 can act as a light guide to guide light from entrance face 150 to exit face
  • lens 105 that can utilize TIR at shaped sidewalls 157 to guide light to exit face 155 are described below and in United Sates, Provisional Patent Application No. 60/756,845, entitled “Optical Device", to Duong et al., filed January 5, 2006 and United States Patent Application No. 1 1 /649,018 entitled “Separate Optical Device for Directing Light from an LED,” filed January 3, 2007, each of which is hereby fully incorporated by reference herein.
  • Lens 105 can be a separate optical device designed so that all the light can be extracted out exit face 155 (not accounting for Fresnel losses) in the smallest package design possible through selection of exit face area 155, distance between the exit face 155 and entrance face 150 and the design of sidewalls 157.
  • Other embodiments can be shaped to have different sizes or achieve different extraction efficiencies.
  • lens 105 can be configured such that at least 70% of the light entering lens body 107 at entrance 150 exits exit face 155. Lenses 105 with lower extraction efficiencies can also be used. Additionally, the lens 105 can be selected to provide a uniform light distribution and to emit light in a desired half- angle.
  • lens 105 can be selected as described below in conjunction with Figures 19A-19D.
  • Other embodiments of lenses can also be used, including, but not limited to, dome, Fresnel, conical, tapered or other lenses.
  • the lens body 107 can be a solid piece of material having a single index of refraction.
  • LED 1 10 produces light that can exit LED 1 10 from surface 1 17 (see
  • Reflector 140 acts as a redirecting lens to redirect light escaping sides 1 19 to entrance surface 150 of lens body 107.
  • phosphor layer 145 down converts the light and emits light into lens body 107 and back into LED cavity 130.
  • Reflector 140 can again direct the light in LED cavity 130 to entrance face 150.
  • Lens body 107 guides light entering entrance face 150 from phosphor layer 145 to exit face 155. If lens body 107 provides light in a uniform distribution in a desired half-angle, the need for additional lens is not required to shape the beam. Consequently, color conversion and beam shaping can be achieved with a single lens.
  • lens body 107 can be constructed of a material that can withstand continuous use at this temperature.
  • a buffer layer of silicon or other material capable of withstanding high temperatures can be introduced between the phosphor layer 145 and entrance face 150 of lens 105. While thicker or thinner buffers can be used, one embodiment can include a layer of silicon that is 100 to 200 microns thick. This can allow, for example, polycarbonates to be used for lens body 107.
  • Figures 5 and 6 are diagrammatic representations of embodiments of lens 105 having body 107, a buffer 160 layer and phosphor layer 145.
  • the buffer layer can be a suitable, high temperature material such as silicon or other material that can withstand the operating temperatures of the selected phosphor layer 145.
  • buffer 160 can be adhered to or otherwise coupled to the bottom of lens body 107 or, as shown in Figure 7, all or a portion of buffer 160 can rest in a pocket formed at the entrance face of lens 105.
  • the phosphor layer can be disposed on lens 105 as a coating on buffer layer 160.
  • Figures 5 and 6 also illustrate an adhesive layer to adhere lens 105 to an encapsulant in LED cavity 130 ( Figures 1 -4).
  • Embodiments described herein provide an advantage over traditional systems of using phosphors with LEDs because the phosphor is removed a distance from the LED. Because the phosphor is located at the entrance of the lens, there is high coupling efficiency. Additionally, self-heating of the phosphor due to Stoke's shift can be reduced because heat can be dissipated through the material of lens 140, housing135 and/or submount 125. Higher phosphor conversion efficiency can also be achieved due to low flux density at the entrance face 150 of lens 105.
  • the distance between phosphor 145 and LED 1 10 can be optimized to provide an optimal balance between thermal considerations and effective phosphor package efficiencies. While any gap suitable gap size can be used as needed or desired, one embodiment of an optical system has a gap of 100-200 microns between surface 1 17 (see Figure 2) and phosphor layer 145.
  • the phosphor coated lens can be separate from the LED chip, it can be used in conjunction with various types of optical devices, including conventional light emitting devices. Furthermore, LEDs 1 10 can be used with a variety of different lens types depending on need.
  • lenses 105 can be tightly packed in an array.
  • an array of lenses 105 can be formed where each lens 105 is selected to emit light in a desired half-angle having a uniform distribution in near and far fields.
  • the lenses 105 can be spaced so that there are no perceivable gaps between emitted light for adjacent lenses 105. Because the emitted light from each lens 105 is uniform and in a desired half-angle, the light output of the array will be in the desired half-angle with uniform near and far field distributions, but covering a larger area than the light emitted by a single lens. This provides a very practical benefit for display or lighting manufacturers because additional optics are no longer required to get light from an LED array using phosphors into a desired angle.
  • FIG. 7 is a diagrammatic representation of one embodiment of a packaged array 200.
  • packaged array 200 comprises submount 125, main housing 205 and cover 210.
  • Submount 125 provides mechanical support and electrical connections for LEDs.
  • Embodiments of submount materials include, but are not limited to: Low Temperature Cofire Ceramic (LTCC) with thermal vias, High Temperature Cofire Ceramic (HTCC) with thermal vias, Beryllium Oxide (BeO) ceramic, Alumina ceramic, Silicon, Aluminum Nitride (AIN), Metal (Cu, Al, etc.), and Flex circuit.
  • LTCC Low Temperature Cofire Ceramic
  • HTCC High Temperature Cofire Ceramic
  • BeO Beryllium Oxide
  • Main housing 205 can be formed of suitable materials including, but are not limited to, plastic, thermoplastic, and other types of polymeric materials. Composite materials or other engineered materials may also be used. In some embodiments, main housing 205 may be made by a plastic injection molding manufacturing process. Various molding processes and other types of manufacturing processes may also be used. In some embodiments, main housing 205 may be opaque. In some embodiments, main housing 205 may be transparent or semi-transparent. Main housing 205 can be bonded or otherwise coupled to a layer of material 215 to complete the housing about the LEDs and lenses.
  • the housing can be formed of any number of layers or pieces of suitable material that will not unacceptably deform during operation due to heating and can protect the LEDs and lens for expected contact or shock during use, transportation or manufacture.
  • packaged array 200 is a 4X4 array and each group of 4 lenses shares a cover 210.
  • a single cover 210 can be used for all lenses or each lens can have its own cover 210.
  • Cover 210 can have a sufficient thickness to prevent the lenses from becoming damaged during handling of packaged array 200.
  • Figure 8 is a diagrammatic representation of a cross-sectional view of one
  • cover 210 is integrated with lens 105 such that they form a single lens assembly.
  • Cover 210 can be integrated with other lenses 105 so that a single lens assembly will have a cover portion and multiple lens portions.
  • the body 107 of lens 105 and cover 210 can be made of a single piece of molded plastic, polycarbonate or other material.
  • cover 210 can be coupled to lens 105 using an adhesive. Cover 210 also may simply be in contact with lens 105 or may be separated from lens 105 by a gap.
  • any layers or covers coupled to the exit face can be selected so that TIR does not occur when the layers or covers are added.
  • cover 210 and any adhesive or other layers between lens 105 and cover 210 can have indexes of refraction selected so that they do not cause TIR at the exit face of lens 105 if TIR would not have occurred in absence of the layers/cover.
  • shape of lens body 107 can be selected to account for the transition into cover 210.
  • Cover 210 can be an optically transparent material, such as a plastic, glass,
  • composite material or other material and may include one or more layers.
  • cover 210 may include layers of material to perform photon conversion (e.g., an additional phosphor layers), filtering or other functions with respect to light exiting lens 105.
  • Main housing 205 forms a lens cavity 220 sized to fit lens 105.
  • the sidewalls 225 of lens cavity 220 can be curved to match or approximate the sidewall shapes of lens 105 so that the size of lens cavity 220 is smaller proximate to the
  • the sidewalls 225 can be vertically straight (from the perspective of Figure 8) or can be tapered. Sidewalls 225 can include reflective coatings or other coatings to reflect any light leaking from the sides of lens 105 to the exit of cover 205. In another embodiment, main housing 205 can be formed of white plastic or other color material so that sidewalls 225 form reflectors.
  • lens cavity 220 can be sized so that there is a gap between the sidewalls of lens body 107 and sidewalls 225 of lens cavity 220 to preserve TIR in lens body 107.
  • the size of the gap can be constant or can increase or decrease further from the base of lens cavity 220.
  • the gap can be filled with air or other material.
  • the material has the same or lower index of refraction than body 107 of lens 105.
  • sidewalls 225 can contact that sidewalls of lens body 107 and act as a reflector for light in lens body 107.
  • Main housing 205 can include a shoulder 230 on which ledge 235 of cover 210 rests.
  • An adhesive, mechanical fasteners or other suitable fastening mechanism can be used to couple cover 210 to main housing 205.
  • a secondary structure such as a clamping structure, can maintain cover 210 against main housing 205.
  • lens 210 by coupling cover 210 to main housing 205, lens
  • lens 105 is held in a desired position in lens cavity 220.
  • lens 105 may not require additional attachment to cover 205.
  • a portion of lens 105 can be adhered to or otherwise coupled to a shoulder 240 at the base of lens cavity 220 or other portion(s) of lens 105 can be coupled to main housing 205.
  • Main housing 205 defines a portion or all of LED cavity 130 in cooperation with submount 125 and housing layer 215.
  • LED cavity 130 is shown with vertical sidewalls, LED cavity 130 can have tapered, curved or otherwise shaped sidewalls to act as a redirector lens.
  • the opening to LED cavity 130 can have the same shape as and be rotationally aligned with LED 1 10 or can have another shape or alignment.
  • a phosphor layer can be disposed proximate to entrance face 150 such that light exiting LED cavity 130 will be incident on the phosphor layer.
  • the phosphor layer down converts light before the light enters lens body 107.
  • the down converted light is guided through lens 105 and exits cover 210.
  • Entrance face 150 of lens body 107 can be the same shape as and be rotationally aligned with the opening to LED cavity 130 or have another shape or alignment.
  • FIG. 9 is a diagrammatic representation of a cutaway view of one embodiment of an LED cavity 130.
  • Submount 125 forms the base of the cavity, while the sidewalls are formed by main housing 205 and layer 215.
  • a portion of LED 1 10 can extend into the portion of LED cavity 130 defined by main housing 205.
  • the non-substrate layers 120 including the active region of the LED may extend into this opening or, in a flip chip design, the substrate 1 15 may extend into this portion.
  • LED cavity 130 can become larger closer to submount 125 to accommodate electrical connections or otherwise provide space around LED 1 10. While portions of submount 125, layer 215 and main housing 205 are shown, the packaged array 200 can include additional layers that define cavity 130.
  • Figure 10 is a diagrammatic representation of packaged array 200 with main
  • Figure 1 1 is a diagrammatic representation of one embodiment of a portion of
  • LED cavity 130 has straight vertical sidewalls
  • LED cavity 130 can have curved, tapered or otherwise shaped sidewalls and can act as a reflector.
  • the area of LED cavity 130 defined by layer 215 can be larger than that defined by main housing 205 to accommodate electrical connections or to otherwise provide space around LED 1 10. In other embodiments, the cavity can have a uniform size or become wider as it approaches lens 105.
  • Cavity 130 can be entirely or partially filled with an encapsulant, air, silicone "goop", or other filler material.
  • Layer 215 can be adhered or otherwise coupled to submount 125.
  • Figure 12 is a diagrammatic representation of one embodiment of LEDs 1 10
  • Submount 125 can provide support for LEDs 1 10 and provide electrical connections 250. Electrical
  • connections can be provided using suitable metals or other conductors. While a particular pattern and type of electrical connection are illustrated, any suitable electrical connections to LED 1 10 and submount 125 can be provided.
  • Figure 13 is a diagrammatic representation of one embodiment of main housing
  • Lens cavity 220 extends from an opening 260 to LED cavity 130 to a second opening 265.
  • the sizes of the openings can have, according to one embodiment, a ratio that is the same as the size ratio of the exit face to entrance face of the lens.
  • opening 260 may be approximately the same size as the entrance face to the lens 105 while opening 165 is larger than the exit face.
  • Sidewalls 225 can be curved, tapered, vertical or have another selected shape.
  • a shoulder 230 provides a surface to which cover 210 can be coupled.
  • main housing 205 forms a 4X4 array.
  • main housing 205 can accommodate larger or smaller arrays or a single optical system.
  • main housing 205 can be shaped to accommodate circular, hexagonal or other shaped lenses 105 in a tightly packed array.
  • Figures 8-13 provide an example embodiment of a packaged LED. As discussed above, however, there may be additional portions of housing or other components in the packaged array.
  • the embodiment of Figure 14 is similar to that of Figure 8, but also illustrates layer 255.
  • a portion of the cavity that houses LED 1 10 can be formed by layer 255 rather than the main housing 205.
  • main housing 205 can define lens cavities 220 with sidewalls that extend to layer 255.
  • Layers 215 and 255 can include any suitable materials including plastics or other materials.
  • Layer 255 can be inset from layer 215 to form a ledge to which main housing 205 can be bonded. The use of layers 215 and 255 can ease
  • Figure 15 is a diagrammatic representation of one embodiment of a portion of a packaged array 200 with lenses 105 and cover 210 removed illustrating that layer 255 can define a portion of and provide an opening to LED cavity 130.
  • FIG 16 is a diagrammatic representation of a lens assembly 275 comprising portions with shape sidewalls that form lens bodies 107 of lenses 105 and a portion without shaped sidewalls that acts as cover 210.
  • the shaped and unshaped portions can be a single piece of material.
  • Each lens 105 can be a phosphor coated lens selected to emit a desired color light. If more than one phosphor lens is used in a system, multiple types of phosphors may be used to achieve the desired color temperature and CRI. For instance, three yellow phosphor lenses and one red phosphor lens may be used in conjunction with a blue pump to attain warm white light.
  • each of the four phosphor lens can emit to the same far field distribution, the colors will undergo superposition and will not bleed or create ringlike effects.
  • each lens in the 2X2 array of lenses shown, each lens can be selected to emit red, green or blue light. The light from lenses 105 can be combined to form white light.
  • each assembly 275 can emit a single color light.
  • four lens assemblies 275 can be used. One lens assembly 275 can emit blue light, one assembly 275 can emit red light and two assemblies 275 can emit green light such that the array as whole acts as a white light source.
  • a lens assembly 275 can include any number of lenses 1 05.
  • lenses 1 05 can be configured with lens bodies 1 07 shaped to conserve radiance (or come within an acceptable percentage of conserving radiance), control the emission angle of light and emit light with a uniform or other desired distribution.
  • lenses 1 05 can be closely packed so that there is no or minimal space between adjacent exit faces. As long as lenses 105 are tightly enough packed, there will be no gaps between the light emitted by lenses 105. Consequently, the light emitted by array 200 as a whole will be within the desired half-angle and appear uniform with no dark spots or ghosting.
  • Figure 1 illustrates an embodiment of a lens 105 having a lens body 1 07 with an entrance face 1 50, an exit face 1 55 and sidewalls 1 57.
  • lens 1 05 can be constructed with the assumption that phosphor layer 145 will emit uniformly into entrance face 1 50.
  • the area of exit face 1 55 is selected according to the etendue equation such that:
  • Ai is the size of the phosphor layer and that the phosphor layer acts as a uniform emitter over that area.
  • the area of exit face 155 is within 30% (plus or minus) of the minimum area necessary to conserve radiance.
  • the distance between exit face 155 and entrance face 150 can be selected so that all rays having a straight transmission path from entrance face 1 50 to exit face 155 are incident on exit face 155 at less than or equal to the critical angle at exit face 155 to prevent TIR at exit face 1 55.
  • the minimum distance can be selected based on a limiting ray.
  • the limiting ray is a ray that travels the longest straight line distance from entrance face 150 to exit face 1 55.
  • the limiting ray will be a ray that travels from a corner of entrance face 150 to the opposite corner of exit face 1 55.
  • the distance between the entrance face 155 and exit face 155 is within 30% of this minimum distance, though smaller distances can be used.
  • the sidewalls 1 57 can be shaped. Broadly speaking, the sidewall
  • Figure 17A is a diagrammatic representation of a cross-section of a model of lens 305 for determining sidewall shapes.
  • Sidewall shapes can be determined using computer-aided design. A model of the sidewall can be created in a computer- aided design package and simulations run to determine an appropriate sidewall shape.
  • each sidewall can be divided into n facets with each facet being a planar section.
  • model sidewall 370 is made of fifteen planar facets 372a-372o rather than a continuous curve.
  • the variables of each facet can be iteratively adjusted and the resulting distribution profiles analyzed until a satisfactory profile is achieved as described below. While the example of fifteen facets is used, each sidewall can be divided into any number of facets, including twenty or more facets.
  • Each facet can be analyzed with respect to reflecting a certain subset of rays within a lens.
  • This area of interest can be defined as an "angular subtense.”
  • the angular subtense for a facet may be defined in terms of the angles of rays emanating from a predefined point.
  • the point selected is one that will give rays with the highest angles of incidence on the facet because such rays are the least likely to experience TIR at the facet. In a lens with a square shaped entrance area, for example, this will be a point on the opposite edge of the entrance.
  • the maximum of angle 374 of any ray that will be incident on a given sidewall (e.g., sidewall 370) without being previously reflected by another sidewall can be determined.
  • ray 376 emanating from point 378 establishes the maximum angle 374 for sidewall 370.
  • each facet (assuming an even distribution of angular subtenses) will correspond to a 3.2 degree band of angle 374 (e.g., a first facet will be the area on which rays emanating from point 378 with an angle 1 7 of 0-3.2 degrees are incident, the second facet will be the area on which rays emanating 374 from point 378 with an angle 95 of 3.2-6.4 degrees are incident, and so on).
  • the exit angle, facet size, tilt angle, or other parameter of the facet can be set so that all rays incident on the facet experience TIR and are reflected to exit surface 355 such that they are incident on exit surface 355 with an angle of incidence of less than or equal to the critical angle.
  • the sidewalls are also shaped so that a ray viewed in a cross-sectional view only hits a side wall once. However, there may be additional reflection from a sidewall out of plane of the section. For a full 3D analysis, a ray that strikes a first sidewall near a corner, may then bounce over to a second side wall, adjacent to the first, and from there to the exit face.
  • a curve fit or other numerical analysis may be performed to create a curved sidewall shape that best fits the desired facets.
  • Detector plane 380 can include x number of detectors to
  • a simulation of light passing through the lens 305 may be performed and the intensity and irradiance distributions as received by detector plane 380 analyzed. If the intensity and irradiance distributions are not satisfactory for a particular application, the angles and angular subtenses of the facets can be adjusted, a new curved surface generated and the simulation re- performed until a satisfactory intensity profile, exitance profile or other light output profile is reached. Additional detector planes can be analyzed to ensure that both near field and far field patterns are satisfactory. Alternatively, the simulation(s) can be performed using the facets rather than curved surfaces and the surface curves determined after a desired light output profile is reached. In yet another
  • the sidewalls can remain faceted and no curve be generated.
  • the sidewall shape can be selected based on multiple parabolas with each planer facet representing a linear approximation of a portion of a parabola.
  • Figure 17B is a diagrammatic representation of a portion of a modeled lens 305.
  • a hypothetical ray 384 is depicted that emanates from the focus 386 of a parabola 388 and intersects sidewall 370 such that it is reflected off sidewall 370 due to TIR and traverses the lens 305 to intersect exit plane 355 at an exit angle 390 that is less than the critical angle and exits lens 305 into air or other medium.
  • ray 384 bends as described by Snell's law. Since the tangent point of the sidewall is determined from a parabola and because the ray incident and reflected off the sidewall is in the same medium, the ray will be parallel to the optical axis of the parabola. Thus, light is projected with a half-angle 392.
  • Angular subtenses 396 defining the shape of sidewall 370 may be adjusted so that hypothetical ray 384 reflects off sidewall 370 such that ray 384 traverses exit face 355 with a desired exit angle 390 or projects light with a desired half angle 392.
  • finer subtenses may be used towards the base of the sidewall (i.e. nearer the phosphor layer) because the effects of the subtense are greater or more acute upon reflection near the base, and thus finer subtenses allow for a sidewall with better TIR properties, whereas further from the base, where the effects of the subtenses are less, the subtenses may be coarser.
  • facets of a sidewall may be numerically greater towards the base of a lens body 107.
  • a sidewall may have 20 or more facets, with finer facets at the base of the sidewall, wherein the facets approximate one or more subtenses.
  • a facet can be a linear approximation of a portion of a parabola 388.
  • parameters of parabola 388 can be adjusted until the portion achieves the desired goal of all rays incident on the portion reflecting to exit face 355 such that the rays have an exit angle 390 of less than the critical angle.
  • Each facet can be formed from a parabola having different parameters.
  • a facet for one angular subtense may be based on a parabola while another facet is based on another parabola.
  • a 20-facet sidewall for example, may be based on 20 different parabolas.
  • Figure 17C depicts a spreadsheet 500 that can be utilized to design a sidewall shape as shown in graph 510 through the specification of angular subtenses.
  • Projected half angle column 550 contains a plurality of angles that correspond to projected half angle 450 of Figure 4B.
  • Exit angle columns 540a (in radians) and 540b (in degrees) contain a plurality of exit angles corresponding to exit angle 392 of Figure 17B. More particularly, all or a subset of the angles in column 540a may be angles that are less than the critical angle such that light rays intersecting the exit face at those angles traverse the exit face, exiting the shaped device.
  • Columns 540a and 540b may be utilized to develop parabola focus column 560, containing a plurality of foci defining different parabolas.
  • Angular subtense column 565 contains a plurality of angles (in radians) that define the limits of an angular subtense that can be used in conjunction with parabola focus column 560 to define the shape of a sidewall such that a ray reflects off the sidewall to exit the exit face at less than the critical angle.
  • theta column 570 and radius column 575 can be developed wherein corresponding values in columns 570 and 575 correspond to points on a desired parabola for the angular subtense.
  • theta column 570 and radius column 575 can be utilized to develop Cartesian coordinates for points on a sidewall (e.g. coordinate transformation columns 577) that approximate the parabola for the angular subtense.
  • a user can specify the size of the entrance face of the shaped device (in this case marked LED size) and material index.
  • the size can correspond to the size of the entrance face or emitting size of the phosphor layer.
  • a row in screen 500 can be completed as follows.
  • the user can specify an exit angle in air (assuming air is the medium in which the lens will operate) in column 550.
  • the exit angle in the lens can be calculated as sin(55.3792/180*7t)/1 .77 or .4649323 radians, column 540a.
  • the radius of the parabola (column 575) for the first facet can be calculated as
  • the X, Y coordinates can then be used as data point inputs for a shape fitting chart in Excel.
  • graph 510 is based on the data points in the X and Y columns (with the Y column values used as x-axis coordinates and the X column values used as y-axis coordinates in graph 510).
  • a starting value can be set (e.g., .5 and 0).
  • the shape from graph 510 can be entered into an optical design package and simulations run. If a simulation is unsatisfactory, the user can adjust the values in spreadsheet 500 until a satisfactory profile is achieved.
  • FIG. 17D provides a diagrammatic representation of one embodiment of lens body 107 with sidewalls shaped to cause TIR so that rays are reflected from the sidewalls to the exit surface.
  • the shape of each sidewall in this embodiment, is a superposition of multiple contoured surfaces as defined by the various facets. While a curve fit is performed for ease of manufacturability, other embodiments can retain faceted sidewalls.
  • the exit plane of the shaped lens 105 may be the transition from shaped portion into another portion such as cover 210. If cover 210 is the same material as or has the same index of refraction as the shaped portion, the exit plane can be the transition between the shaped portion of lens body 107 and cover 210.
  • Figure 18, for example, illustrates a lens 105 having a shaped lens body 107 and cover 210 as an integrated lens 105. While light will exit the lens assembly through the cover 210, the transition 400 between shaped lens body 107 and cover 210 can serve as the "exit face" for determining the shape of lens 105 as described above.
  • cover 210 has the same index of refraction as lens body 107, then the critical angle at the used in shaping lens 105 will be the same as if transition 400 were exposed to the outside medium because if light traverses transition 400 at less than or equal to the critical angle, it will also be incident on surface 404 at less than or equal to the critical angle. If the index of refraction of cover 210 is lower (or any adhesives or other layers between cover 210 and lens body 107), the critical angle at the exit face will be the critical angle based on the lower index of refraction.
  • the various boundary conditions, particularly the area of exit surface 155, can be determined for the separate optical device so that brightness can be conserved.
  • the minimum area of exit surface 155 can be determined from EQN. 1 above, which relies on various effective solid angles.
  • the effective solid angle of light is determined based on equations derived from sources that radiate as Lambertian emitters, but that are treated as points because the distances of interest are much greater than the size of the source.
  • the observed Radiant Intensity (flux/steradian) of a Lambertian source varies with the angle to the normal of the source by the cosine of that angle.
  • a sphere 630 of given radius (R) surrounds point source 632 (in this example, point source 632 approximates a Lambertian source at a significant distance).
  • the projected area of a hemisphere of the sphere is TZR 2 and the projected area of the full sphere is 2%R 2 .
  • This model can be used to design lens because the phosphors can be modeled as a Lambertian emitter such that from any point on a hypothetical hemisphere centered over the interface, a given point on the interface will have the same radiance.
  • the area A 3 can be calculated as the flat, circular surface (e.g., surface 636) that is subtended by the beam solid angle of interest using a radius of the circle 634 (R c ) that is the distance from the normal ray to the intersection of the spherical surface.
  • R c is the product of R (the radius of the sphere) and the sine of the angle ⁇ , such that
  • the area A 3 is the projected area of the solid angle as it intersects the sphere.
  • ⁇ ⁇ projected area of desired solid angle ⁇ /(projected area of hemisphere)
  • ( 71) * [ ⁇ ⁇ (R*Sin(0)) 2 ⁇ /( ⁇ R 2 )] [EQN. 3C] ⁇ *Sin 2 (0) [EQN. 4]
  • is 90 degrees, leading to a projected solid angle of 7t*sin 2 (90 ) , and for the desired half angle of 30 degrees, the projected solid angle is ⁇ * Sin 2 (30).
  • a 2 can be determined for any half angle.
  • Lambertian source modeled as a point source. These equations do not consider the fact that light may enter a lens body 107 through an interface that may be square, rectangular, circular, oval or otherwise shaped. While the above-described method can give a good estimate of the solid angle, which can be later adjusted if necessary based on empirical or computer simulation testing, other methods of determining the effective solid angle can be used.
  • Figures 20A-20E describe another method for determining the effective solid angle for a lens.
  • Figure 20A is a diagrammatic representation of one embodiment of an entrance face 750 and an exit face 755 of a lens 760 and a hypothetical target plane 756 onto which light is projected.
  • Figure 20A illustrates examples for a position of an effective source origin 752, central normal 753 and effective output origin 754.
  • the center of interface 750 is at 0,0,0 in a Cartesian coordinate system.
  • Target plane 756 represents the parameters of the resulting pattern (e.g., size and half angle used by other optics).
  • the half angle at the diagonal is the starting point.
  • CH for a square- or rectangular- faced separate optical device is 30 degrees.
  • Qi is the half angle at the exit face in the medium external to the lens 760; ⁇ is the desired half angle of lens 760.
  • Z eps is the distance the effective point source is displaced from the emitting surface of the LED.
  • is the angle of the diagonal ray in the X-Y plane (45 degrees for a square)
  • ⁇ 2 90 degrees for a ray projecting from the middle of a side parallel to the X axis as shown in Figure 20C.
  • a similar methodology based on the geometries previously calculated can be used to determine other points (e.g., for example, the location of points ⁇ and T 2 can be determined based on the location of points Fi and F 2 and the desired half angle of light at target plane 756.)
  • Figure 20D illustrates the diagonal rays and one ray from the short side projected onto a sphere 759 for exit face 755 and sphere 761 for target plane 756.
  • exit face 755 the projection of the intersection of the edge rays at the sphere 759 onto the plane of the exit face 755, forms elliptical segments.
  • the projection of the diffracted exit rays at the edge of the target face intersect the sphere 761 .
  • Figure 20E for example, points out the circular intersection of the rays lying in the plane formed by the edge 763 of target face 756 intersecting sphere 761 , and the projection of that intersection onto the target plane 756.
  • the effective solid angle can be determined for the target plane using EQN. 3B.
  • the effective solid angle for the optical device can be determined. For example, the total projected area is determined as described above and inserted as "projected area of desired solid angle" in equation 3B.
  • the minimum surface area to conserve brightness can be determined empirically.
  • the minimum surface area calculations above assume 100% of the emitting entrance face of the separate optical device is receiving light, the phosphor layer may be disposed over only a part of the entrance surface such that a smaller entrance surface area is used.
  • the calculations of the minimum area of the exit plane can be adjusted to account of the actual area receiving light. That is, the actual area of the phosphor layer can used as Ai .
  • the lens body 107 can be optimized for use with a phosphor layer 145 as a uniform emitter at the entrance face using modeling as described above.
  • Lenses according to embodiments described herein can project light into a desired cone angle of 1 0- 60 degrees with a theoretical efficiency of up to 96% in the lens body (meaning that 96% of the light received from the phosphors is emitted in the desired half-angles with 4% Fresnel loss).
  • the efficiency can be 1 00% without Fresnel losses.
  • Embodiments of lenses can be shaped to achieve optimal efficiency in a small package size. In other embodiments, lenses can be shaped to achieve lower efficiencies, while still offering advantages over traditional systems.
  • a lens can be shaped with an exit face that is at least 70% of the size necessary to conserve radiance for light entering the entrance face for a selected half angle of light emitted from the exit plane.
  • the sidewalls can have a shape so that at least a majority of the light having a straight transmission path from the entrance face to the exit plane are incident on the exit plane at less than or equal to the critical angle. Even at only 60% or 70% efficiency, such an
  • embodiment provides greater efficiency than many other technologies, while also producing uniform or near uniform intensity distributions (or other controlled distribution) at both near and far fields.
  • Lenses 105 can be constructed to emit light in a uniform distribution pattern with either a sharp or soft cut off (i.e., transition).
  • a lens emitting light with a 30 degree half angle in one embodiment the lens can be shaped so that the uniform light profile extends through the entire 30 degrees and cuts off sharply.
  • lens can be shaped to produce a profile that is uniform in the 25 degree half angle but tapers off between 25 and 30 degrees.
  • the size of the exit face can be selected to conserve radiance for the 30 degree half angle and the sidewalls shaped to create a uniform distribution profile in the 25 degree half angle.
  • the height of lens 105 can be made shorter to allow some light to escape the sidewalls into the 30 degree half angle.
  • the lens geometries can be selected to emit 90% of the light in a uniform profile in the 30 degree half angle and emit the other 1 0% in the remaining area.
  • Lenses that produce a light profile having softer edges rather than a sharp cut off can be manufactured with a height that is 30% of the minimum height discussed above and still achieve greater than 70% extraction efficiencies.
  • Lenses 105 can also be shaped to project a percentage of light into a selected
  • lenses can be constructed such that 40% or greater of light emitted from the lens falls within a selected full beam angle.
  • lenses 105 can be constructed so that greater than 50% (including greater than 90% in some embodiments) of light emitted by the lens falls within a full beam angle of 10 degrees (5 degree half angle).
  • FIG. 21 is a diagrammatic representation of one embodiment of an optical system 900 including a lens 105 and an LED 1 10. While a single LED 1 10 is illustrated, multiple LEDs can be used with a single lens 105. Lens 105 can be a separate optical device shaped to emit a uniform distribution of light in a desired half angle while conserving radiance (or having other desired light extraction efficiency).
  • Figure 21 depicts the lens 105 coupled to the primary exit face of LED 1 10.
  • lens 105 may fully or partially surround the LED 1 10 on the sides as well.
  • Lens 105 is can be coupled to LED 1 10 using a friction fit, optical cement or other coupling mechanism, whether mechanical, chemical, or other.
  • lens 105 is formed of a single, molded piece of dielectric, optically transmitting material with a single Index of Refraction ("IOR") "n", such as optically transparent silicone or acrylic, though other materials can be used.
  • IOR Index of Refraction
  • the IOR of lens 105 is preferably within 20% of the IOR of the substrate of led 1 10 (and ideally, the IOR of separate lens 105 is equal to or greater than IOR of the substrate).
  • Figure 22 is a diagrammatic representation of one embodiment of adding phosphor to an optical system.
  • Figure 22 also illustrates that lens 105 can surround LED 1 10 on the sides.
  • an attachment device 902 or packaging can be used to secure lens 105 to submount 903, a circuit board or other structure.
  • LED 1 10 or the entrance face of lens 105 can be coated with phosphor particles 904 between LED 1 10 and lens 105.
  • a passage 906 can be used to introduce phosphor layer 904 and optical adhesive between lens 105 and LED 1 10.
  • lens 105 does not have passage 906 and phosphor layer 904 can be applied prior to coupling separate lens 105 to LED 1 10.
  • phosphor layer 904 can include an optical bonding material loaded with phosphor particles.
  • phosphor can be disposed between an LED and entrance face of a lens in a number of arrangements. Light from the LED is down converted by the phosphor. Lens 105 can emit light in a desired half angle with a uniform profile. This ability of lens 105 allows arrays of LEDs to be formed that have a uniform profile in a desired half angle. This has the benefit of providing color and illumination uniformity over a field. The uniformity of pattern allows the light from multiple lenses to be overlayed (superimposed) such that the light at any one point on a target area is a blend of all units.
  • Figure 23a is a diagrammatic representation of an embodiment of an optical unit 905 having LED 1 10 and lens 105.
  • Light from LED 1 10 may or may not be down converted by phosphor. If phosphor is used, the phosphor coating may be disposed on lens 105, LED 1 10 or otherwise disposed between LED 1 10 and the entrance to the body of lens 105. Though only one LED is illustrated, multiple LEDs can be used with a single lens 105.
  • Lens 105 can be constructed to emit in a uniform distribution pattern with either a sharp or soft cut off angle. In the example of Figure 23a, lens 105 has a sharp cut off at the 30 degree half angle.
  • FIG. 24 illustrates an array 910 of optical units 905. While each lens 105 of array 910 is shown as being separate, the lenses 105 may be part of a lens assembly. According to one embodiment, an array of optical units can be packaged as described above in conjunction with Figures 7-16 or can be otherwise packaged. In other embodiments, each lens 105 can be directly coupled to the corresponding LED rather than being separated by a gap.
  • the lenses 105 can be configured to emit an overall light profile to create
  • overlapping illuminated area 915 that can be illuminated with a mix of color temperatures providing an area of very uniform color.
  • the width of the border area 916 stays the same size while the illuminated area grows.
  • border area 916 becomes unnoticeable.
  • multiple arrays can be arranged such the border areas overlap to create more uniformity in the border areas, leading to a larger illuminated area having a uniform profile. Due to the square or rectangular shape of the illuminated area created by the array 910, multiple arrays can be spaced at desired distances to provide uniform lighting over large areas. The illuminated area will not have light and dark regions as found in illuminated areas created by circular field pattern devices.
  • one embodiment can include an LED array having a set of lenses optically coupled to each LED in the LED array.
  • Each lens can be configured such that light is emitted with a uniform profile in the half angle with a hard cut off or a soft cut off.
  • the set of lenses can be configured to project an overall illumination pattern having an illuminated area with an overlap area and a border area.
  • the overlap area can have a uniform profile, while the border area can have a different intensity than the overlap area.
  • the size of the overlap area with uniform profile is dependent on the target surface (e.g., screen) to lens distance such that the size of the illuminated area grows as the target surface to lens distance grows.
  • the width of the border area is not dependent on the target surface to lens distance. Consequently, as the target surface to lens distance increases the percentage of the overlap area having a uniform profile approaches 100%.
  • each LED can be a blue or ultraviolet LED used in conjunction with a pure phosphor or blend of phosphors so that the corresponding lens emits a desired color light.
  • the phosphor can be coated on the lens 105, the LED itself or be otherwise disposed between the LED and lens. In other embodiments, some or all of the LEDs selected may emit a desired color light without using a phosphor coating.
  • some of the LEDs in the array can be blue or ultraviolet (or other color) LEDs used in conjunction with phosphors while other LEDs can be red (or other color) LEDs used without phosphors.
  • the LEDs can be controlled so that the combined output in overlap area 915 has a desired spectral power distribution and color coordinates.
  • Examples of phosphors that can be used include, but are not limited to: garnets doped with Ce 3+ (such as Y 3 AI 5 0i 2 : Ce, or YAG), silicates doped with Eu 2+ (such as (MgSrBa) 2 Si0 4 : Eu, or BOS), nitrides doped with Eu 2+ (such as (MgCaSr)AISiN 3 : Eu), and other suitable materials known in the art. These phosphors can be used alone (e.g. YAG or BOS), or in blends as necessary to achieve desired color coordinates and/or color rendering index (CRI) values. According to one
  • the phosphors can be selected to achieve desired x and y values in the 1931 CIE chromaticity diagram.
  • the color coordinates of an array will lie on or near the Planckian locus, thereby producing various shades of white light (e.g. "cool” white, "neutral” white, or “warm” white).
  • Desirable regions around the Planckian locus in the chromaticity diagram are defined by the ANSI C78.377- 2008 chromaticity standard, over a range of correlated color temperature (CCT) values.
  • CCT correlated color temperature
  • a further advantage of the matrix package having blue or ultraviolet chips used in conjunction with pure phosphors of different colors is the removal of interactions between phosphors. Such interactions are caused by significant overlapping between the emission spectrum of one phosphor and the excitation spectrum of another, and can lead to reduction in CRI value, efficiency, or both.
  • a matrix package consisting of 8 elements coated with YAG and another 8 elements coated with a red nitride phosphor in a checkerboard pattern was found to have a substantially higher CRI value than a similar package coated with a blend of the same two phosphors to the same chromaticity specification.
  • One embodiment can use blue or ultraviolet LEDs in conjunction with green-yellow phosphor (such as YAG or BOS) on one set of units, and red LEDs in another set of units. It is believed that such a hybrid solution can produce a highly efficient warm white with a high CRI.
  • green-yellow phosphor such as YAG or BOS
  • red LEDs in another set of units. It is believed that such a hybrid solution can produce a highly efficient warm white with a high CRI.
  • the use of lenses as described above can produce a narrow beam pattern if desired.
  • lenses 105 can be used that produce beam angles of 10 degrees or more.
  • each LED has its own lens and the array of lenses acts to homogenize the illumination of the field. This provides advantages in terms of overall product yields to given ANSI color bins due to the elimination of phosphor to phosphor interactions.
  • FIGs 25a-c illustrate arrangements of color optical systems to produce white light units.
  • Each white light unit contains color light sources that emit light of a selected color so that the blended light produces white light.
  • the white light units include 2 green sources, one red source and one blue source.
  • White light units may share overlapping color sources (e.g., in Figure 25c, one green source and the blue source are shared between white light units).
  • Each color source of Figures 25a-c may be a single optical unit emitting a selected color or may be an array acting together to produce a desired color light. In the latter case, arrays can be constructed that emit a selected color of light and arrays emitting different colors can be combined to form a white light unit.
  • FIG. 26 is a diagrammatic representation of one embodiment of a system 950 comprising a display controller 955 and an array 960 of units 905.
  • System 950 can comprise a circuit board 970 to which the LEDs of units 905 are electrically connected.
  • the units 905 can be arranged to form white light units.
  • Controller 955 can include an interface 975 that is electrically connected to the LEDs to send control signals to the LEDs.
  • a processor 980 can execute a set of instructions 985 stored in a computer readable memory 990 to generate control signals to the LEDs.
  • the intensity of the LEDs can be individually controlled to alter the color produced by white light units.
  • arrays of units may be controlled.
  • controller 955 may control an array of multiple units to adjust the intensity of the array as a whole, rather than controlling individual units in the array.
  • Controller 955 can be implemented as a separate control module, a microprocessor and related hardware, an ASIC and related hardware, or other hardware and/or software suitable to control LEDs.
  • the instructions can be implanted as firmware, software or hardware or according to any other suitable architecture.
  • FIG. 27 is a diagrammatic representation of one embodiment of a system in which a solid dome lens 280 is used.
  • LED 1 10 is disposed in an LED cavity 130 having tapered sidewalls that act as a reflector 140.
  • a layer of phosphor 145 covers the entrance face of the body 282 of dome lens 280.
  • each LED can be provided with a separate cavity and dome lens 280.
  • an array of LEDs may be placed in each cavity under a lens.
  • dome lenses can be used including dome lenses that greater in size than the cavity.
  • Figure 28 is a diagrammatic representation of another embodiment of an optical system.
  • encapsulant in the LED cavity 130 around LED 1 10 forms a convex portion 285.
  • a lens 105 having a phosphor coating 145 can be adhered to convex portion 275 or to a housing or another structure.
  • the optical system can be assembled such that there is no air gap between lens 105 and convex portion 285.
  • lens 105 can include a concave entrance face.
  • an intermediate layer with a concave entrance face can be used.
  • each LED can be provided with a separate cavity and dome lens 280.
  • phosphor can be disposed on a lens in a variety of manners. As discussed in conjunction with several embodiments above, phosphor can be applied as a coating to an entrance face or buffer layer.
  • Figure 29 is a diagrammatic representation of another embodiment.
  • lens 805 includes a pocket 810 at the entrance face 815 to lens body 807.
  • Phosphor particles 820 can be packed in the pocket and held in place with a binding material or with another layer 825 of material.
  • Material 825 is preferably an optically transparent material that can withstand the
  • Figure 30 illustrates yet another embodiment of a lens 830 in which a layer of phosphor 835 is sandwiched between a buffer layer 840 and another layer of suitable material 845.
  • the stack of layers can be coupled to a lens body 850.
  • the layers of material can include glass, polycarbonate, silicon or other layers.

Abstract

Embodiments disclosed herein provide optical systems utilizing photon conversion materials in conjunction with a light source and an LED. An LED can be positioned in a cavity defined by a base and one or more sidewalls. Phosphors can be disposed on the entrance face of a lens between the entrance face to the lens body and the LED so that light emitted from the LED will be incident on the phosphor and down converted before entering the lens body through the entrance face. The lens can positioned so that the phosphors are separated from the LED by a gap.

Description

SYSTEM AND METHOD FOR A PHOSPHOR COATED LENS
RELATED APPLICATIONS
[0001 ] This application claims priority under 35 U.S.C. 1 19(e) to United States Provisional
Patent Application No. 61/319,739 entitled "System and Method for Phosphor Coated Lens" by Ko et al., filed March 31 , 2010 and United States Provisional Patent No. 61/235,491 entitled "Phosphor Coated Lens for Phosphor Converting Type White Light Engine" by Ko et al. filed August 20, 2009 and claims priority under 35 U.S.C. 120 as a continuation in part of United States Patent Application 12/646,570 entitled "System and Method for a Phosphor Coated Lens" by Ko et al., filed December 23, 2009. Each of the applications referenced above in this paragraph is hereby fully incorporated by reference herein.
TECHNICAL FIELD OF THE DISCLOSURE
[0002] The present disclosure relates generally to optical systems. More particularly, the present disclosure relates to systems and methods for using lenses. The present disclosure also relates to using arrays of LEDs/lenses to create highly uniform light distributions with selected color and/or color temperature.
BACKGROUND OF THE DISCLOSURE
[0003] Phosphors are isotropic emitters, emitting light in all directions. In traditional LED implementations, phosphor is applied on the LED chip, in a silicone matrix in proximity to the LED or to the outside of an LED dome or other LED packaging. A dome or lens may be applied to an LED chip coated with phosphor to control the light beam angle (shape) from lambertian to a very narrow spot. Such devices range from hemispherical lenses to T-5mm (T 1 ¾) aspheres. One conventional system for producing white light LEDs, for example, is constructed with pump blue/UV LED chips and a proximate mixture of phosphor in a binding matrix such as silicone. The term "goop in a cup" is used to describe LEDs with flat or very nearly flat phosphor and silicone mixture over a blue pump within a reflective cup. In remote phosphor systems, phosphor is applied away from the chip on the outside of a dome or inside of a hemispherical shell to increase converting efficiency. However, an additional lens may be needed to control light beam shape. The GE VIO employs the remote phosphor solution.
[0004] Current systems suffer efficiency losses due to heating of the LED chip and the phosphor particles. Additionally, many current system require secondary optics or additional lenses to shape the light emitted from a dome or phosphor coated LED into a desired beam angle. The coupling of a lens to a dome causes efficiency losses of approximately 10% or greater. Furthermore, current systems suffer conversion losses when multiple color phosphors are used due to cross-excitation. For instance, a red-emitting phosphor may absorb down-converted light from a green-emitting phosphor instead of the pump wavelength, thereby introducing further loses.
[0005] The following U.S. Patents describe prior efforts in addressing some of the
challenges in phosphor converting light emitting devices. U.S. Patent No. 6,614,179 discloses a light emitting device with blue light emitting diode and phosphor components. U.S. Patent Nos. 5,998,925, 6,069,440, and 6,608,332 disclose white light emitting devices, each having a nitride compound semiconductor and a phosphor containing yttrium-aluminum-garnet (YAG) elements. The nitride compound semiconductor is used as a light emitting layer. The phosphor absorbs a part of light emitted by the light emitting layer and emits light of a wavelength different from that of the absorbed light. U.S. Patent No. 6,737,681 discloses chip placement designs for white light packages. One example includes a fluorescent member having a curved surface of concave arc that extends from the height of the bottom of a case obliquely upward in a shape that continues along substantially the entire circumference of an oval or elongated round shape. It reflects the light emitted from the side faces of a semiconductor light emitting element to more efficiently utilize part of the light emitted from the semiconductor light emitting element and most of the light emitted from the side faces. U.S. Patent No.
6,924,596 discloses a color conversion type light emitting apparatus having a light emitting device and a color converting member formed from an epoxy resin containing a photoluminescence fluorescent substance and directly coating the light emitting device. U.S. Patent Nos. 7,091 ,656 and 7,247,257 disclose light emitting devices that use a mixture of at least two phosphors for more complete color rendering. U.S. Patent No. 7,071 ,616 discloses a light source having a blue LED, an optical guide plate having a planar main surface and an edge face receiving injection of the light from the blue LED and a coating material of transparent resin or glass containing fluorescent materials positioned between the blue LED and the optical guide plate. The optical guide plate is used for the final light mixing. U.S. Patent Nos. 7,026,756, 7,126,274, 7,329,988, 7,362,048 disclose light emitting devices with blue light LED and phosphor components, including the emission spectra and package designs for display backlight. U.S. Patent No. 6,960,878 discloses an LED chip having a blue die and a phosphor and including an epoxy resin for better reliability and optical stability. U.S. Patent No. 7,256,468 discloses a light emitting device having a light emitting element and a metal package with a heat radiating characteristic and mechanical strength for housing the light emitting element.
SUMMARY
[0006] Embodiments described herein provide optical systems in which phosphor can down convert light prior to the light entering a lens body. One embodiment can include a system comprising an LED, a lens and phosphor disposed on the lens. The LED is positioned in a cavity defined by a base and one or more sidewalls. The phosphors are disposed on the lens between the entrance face to the lens body and the LED so that light emitted from the LED will be incident on the phosphor and at least partially down converted before entering the lens body through the entrance face. The lens is positioned so that the phosphors are separated from the LED by a gap. The phosphor can be disposed as a coating on the entrance face of the lens body, on a buffer layer between the phosphor and the entrance face or otherwise disposed on the lens. According to one embodiment, the lens body can be shaped to emit light with a uniform distribution in a desired half-angle. Additionally, the lens body can be shaped to conserve brightness or come within a desired percentage of conserving brightness.
[0007] The cavity can have sidewalls that are shaped to direct light in the cavity to the entrance face of the LED. The material forming the cavity sidewalls can be selected to reflect light to the entrance face. In another embodiment, a reflector can surround the LED. The reflector can be a separate component or, according to one embodiment, can be formed by surface tension at the edges of the cavity if the cavity is filled with encapsulant.
[0008] Another embodiment of an optical system can comprise a submount, an array of
LEDs mounted to the submount, a housing and a set of lenses. The housing can at least partially define a set of LED cavities in cooperation with the submount. The housing can also define a set of lens cavities to accommodate the lenses. Each lens cavity can be open to a corresponding LED cavity. The lenses can be disposed in the lens cavities with each lens comprising an entrance face proximate to the opening to the corresponding LED cavity. A layer of phosphors can disposed on each lens between the entrance face and the corresponding LED so that light is down converted before entering the lens body. The entrance face of each lens is positioned a distance from the corresponding LED so that there is a gap between the LED and the phosphors. Multiple phosphors can be deposited sequentially to reduce cross-excitation. [0009] Each lens cavity can be defined by a set of sidewalls. The set of sidewalls can be shaped so that the lens cavity is smaller proximate to the opening to the
corresponding LED cavity and larger distal from the opening of the corresponding LED cavity.
[0010] Each lens in the set of lenses can be configured to emit light with a uniform
distribution pattern in a selected half-angle. The set of lenses can be closely packed so that the optical system emits light in a uniform distribution pattern in the selected half-angle over a larger area than the individual lenses in the set of lenses. Additionally, each lens in the set of lenses can be shaped to conserve brightness.
[001 1 ] The system, according to one embodiment, can include a cover that supports one or more lenses in corresponding lens cavities. The cover and one or more lenses can be formed of a single piece of material.
[0012] The phosphor layer disposed on each lens can be selected so that different lenses in the set of lenses emit different colors of light. By way of example, but not limitation, the phosphor layer disposed on each lens is selected so that the optical system forms one or more white light units.
[0013] One advantage provided by embodiments described herein is that phosphor is removed from the LED chip. Heating of the LED chip is therefore reduced or prevented.
[0014] As another advantage, phosphor conversion efficiency can be increased due to the separation of phosphor from the LED active layer. Self-heating of phosphor due to the Stoke's shift can be suppressed by heat dissipation through lens materials and through the system submount/heatsink.
[0015] As yet another advantage of some embodiments, higher phosphor conversion
efficiency can be achieved due to the lowered flux density at the entrance of the lens.
[0016] As another advantage of various embodiments, positioning phosphor at the
entrance surface of a brightness conserving separate optical device can provide an optimal balance between thermal consideration and effective phosphor package efficiencies. [0017] Embodiments described herein also provide for flexible optical system architectures. Because the phosphor coated lens can be separate from the LED chip, it can be used in conjunction with various types of optical devices, including conventional light emitting devices.
[0018] As yet another advantage, light beam pattern control, color mixing and color
conversion can be achieved at the same optical device.
[0019] Embodiments can provide another advantage by providing a uniform spatial
distribution at far field using a brightness conserving lens, making it possible for the underlying optical system to conserve the etendue of the source.
[0020] Embodiments of a brightness conserving phosphor lens provide another advantage by allowing for near and/or far field color and spatial uniformity or for near and/or far field tailored color distribution and spatial distribution.
[0021 ] Embodiments disclosed herein can further allow for close packing phosphor coated lenses.
[0022] Embodiments described herein also provide systems for using arrays of LEDS (or other light source) and lenses to create highly uniform light in a selected beam angle.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023] A more complete understanding of the embodiments and the advantages thereof may be acquired by referring to the following description, taken in conjunction with the accompanying drawings in which like reference numbers indicate like features and wherein:
[0024] Figures 1 -4 are diagrammatic representations of embodiments of optical systems;
[0025] Figures 5-6 are diagrammatic representations of embodiments of phosphor coated lenses;
[0026] Figure 7 is a diagrammatic representation of one embodiment of a packaged array;
[0027] Figure 8 is a diagrammatic representation of a cross-section of an embodiment of a packaged array;
[0028] Figure 9 is a diagrammatic representation of an LED in a cavity;
[0029] Figure 10 is a diagrammatic representation of a portion of an embodiment of a packaged array;
[0030] Figure 1 1 is a diagrammatic representation of another portion of an embodiment of a packaged array;
[0031 ] Figure 12 is a diagrammatic representation of an array of LEDs mounted on a
submount;
[0032] Figure 13 is a diagrammatic representation of an embodiment of a portion of a housing of a packaged array;
[0033] Figure 14 is a diagrammatic representation of a portion of another embodiment of a packaged array;
[0034] Figure 15 is a diagrammatic representation of another portion of the embodiment of the packaged array;
[0035] Figure 16 is a diagrammatic representation of an embodiment of a lens assembly; [0036] Figure 17A is a diagrammatic representation of a cross-section of a model of a lens for determining sidewall shapes;
[0037] Figure 17B is a diagrammatic representation of an embodiment of a portion of a sidewall of a lens;
[0038] Figure 17C is a diagrammatic representation illustrating that the facets for a
sidewall can be defined using a computer program;
[0039] Figure 17D is a diagrammatic representation of one embodiment of a lens with sidewalls shaped to cause TIR so that rays are reflected from the sidewalls to the exit surface;
[0040] Figure 18 is a diagrammatic representation illustrating one embodiment of an exit plane;
[0041 ] Figure 19 is a diagrammatic representation of one embodiment for estimating
effective solid angle;
[0042] Figures 20A-20E are diagrammatic representations describing another embodiment for estimating effective solid angle;
[0043] Figure 21 is a diagrammatic representation of an embodiment of an optical system;
[0044] Figure 22 is a diagrammatic representation of another embodiment of an optical system;
[0045] Figures 23a and 23b are diagrammatic representations showing a lens/LED
combination showing a 30 degree half-angle light combination;
[0046] Figure 24 is a diagrammatic representation of an array of lenses and a resulting light pattern;
[0047] Figures 25a-25c are diagrammatic representations of arrangements of color light sources;
[0048] Figure 26 is a diagrammatic representation of an embodiment of an array of optical units and a controller; [0049] Figure 27 is a diagrammatic representation of another embodiment of a lens with phosphor;
[0050] Figure 28 is a diagrammatic representation of yet another embodiment of a lens with phosphor;
[0051 ] Figure 29 is a diagrammatic representation of one embodiment of a lens with phosphor; and
[0052] Figure 30 is a diagrammatic representation of another lens with phosphor.
DETAILED DESCRIPTION
[0053] Embodiments and various features and advantageous details thereof are explained more fully with reference to the exemplary, and therefore non-limiting, examples illustrated in the accompanying drawings and detailed in the following description. Descriptions of known starting materials and processes may be omitted so as not to unnecessarily obscure the disclosure in detail. It should be understood, however, that the detailed description and the specific examples, while indicating the preferred embodiments, are given by way of illustration only and not by way of limitation. Various substitutions, modifications, additions and/or rearrangements within the spirit and/or scope of the underlying inventive concept will become apparent to those skilled in the art from this disclosure.
[0054] As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having" or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, product, article, or apparatus that comprises a list of elements is not necessarily limited only those elements but may include other elements not expressly listed or inherent to such process, process, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
[0055] Additionally, any examples or illustrations given herein are not to be regarded in any way as restrictions on, limits to, or express definitions of, any term or terms with which they are utilized. Instead these examples or illustrations are to be regarded as being described with respect to one particular embodiment and as illustrative only. Those of ordinary skill in the art will appreciate that any term or terms with which these examples or illustrations are utilized encompass other embodiments as well as implementations and adaptations thereof which may or may not be given therewith or elsewhere in the specification and all such embodiments are intended to be included within the scope of that term or terms. Language designating such non-limiting examples and illustrations includes, but is not limited to: "for example," "for instance," "e.g.," "in one embodiment," and the like. [0056] Reference is now made in detail to the exemplary embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, like numerals will be used throughout the drawings to refer to like and corresponding parts (elements) of the various drawings.
[0057] Embodiments described herein provide an optical system that maintains a photon conversion material away from a light source and between the light source and the entrance face of a lens. A light source can be disposed in a cavity having a base and sidewalls. In one embodiment, the cavity can be formed by a housing in cooperation with a submount. A lens can be positioned so that the entrance face of the lens is a selected distance from the light source. A layer of photon converting material can be disposed on the lens between the entrance face of the lens and the light source so that the material converts light emitted from the light source to a different wavelength before the light enters the lens. The photon converting material can be disposed directly on the entrance face to the lens, on a buffer layer or another layer of the lens. In the following examples the light source is an LED and the photon converting material includes phosphors and/or quantum dots.
However, it should be understood that embodiments disclosed herein can be used with other light sources and photon converting materials.
[0058] Figures 1 -4 are diagrammatic representations of optical systems comprising a lens
105 separated by a gap from an LED 1 10. The LED can be a lateral LED as shown in Figures 1 and 2, a flip-chip LED as illustrated in Figure 3, a vertical LED as illustrated in Figure 4, or any other suitable type of LED or light source. LED 1 10 can include a substrate 1 15 of any suitable LED substrate material including sapphire, silicon carbide, diamond, molded glass or other substrate material.
Additionally, LED 1 10 can have non-substrate layers 120 that can include one or more layers or regions of doping, buffer layers or other layers. Non-substrate layers 120 can include a light emitting region (or active region), typically a compound semiconductor such as InGaN or AllnGaP or AIGaN. LED 1 10 can be rectangular (including square), hexagonal, circular or have another geometric or irregular shape.
[0059] LED 1 10 is mounted to a submount 125. According to one embodiment, submount
125 that can be made of a material with high thermal conductivity to spread and conduct the heat produced by LED 1 10. Any suitable submount known or developed in the art can be used. LED 1 10 is disposed in an LED cavity 130 defined by housing 135. Housing 135 can be a portion of a larger housing, a layer(s) of material mounted on submount 125 or other material positioned around LED 1 10 that forms a cavity in cooperation with submount 125 or other layer. For example, according to one embodiment, material 135 can be a layer of molded plastic mounted to submount 125.
[0060] LED cavity 130, according to one embodiment, can have straight sidewalls that are parallel to the sides of the LED (i.e., vertical from the perspective of Figure 1 ). In other embodiments, the walls of LED cavity 130 can be curved (e.g., parabolic, multi-parabolic or other curved shape), tapered or otherwise shaped to better direct light upwards. LED cavity 130 can be filled with air, molded silicone, silicone mixed with phosphor particles, molded plastic, or other encapsulant. Using a material having a higher index of refraction than LED 1 10 can prevent light from being trapped in LED 1 10 due to total internal reflection ("TIR") in LED 1 10, thereby allowing more light to escape into LED cavity 130.
[0061 ] A reflector 140 (see Figure 2) disposed around LED 1 10 can reflect light toward lens 105. In some embodiments, reflector 140 can be a discrete component. By way of example, but not limitation, the reflector can be Teflon, Teflon paper, diffuse reflective plastic, silver coated plastic, white paper, Ti02 coated material or other reflective material. In another embodiment, reflector 140 can be formed through selection of material 135 or the encapsulant. For example, material 135 can be a white plastic material such that the walls inherently form a diffuse white reflector. In another embodiment, reflector 140 can be formed by the surface tension of an encapsulant disposed in LED cavity 130.
[0062] In some cases, an LED may only leak light out the sides of some portions of the
LED. In the embodiment of Figure 4, for example, the substrate 1 15 may include non-transparent sides such that LED 1 10 does not emit light from the sides of its substrate 1 15. Consequently, optical system 1 10 can be constructed so reflector 140 only surrounds the side portions of LED 1 10 through which light is emitted.
[0063] Lens 105 can include an entrance face 150 to receive light into the lens body 107 of lens 105. Lens body 105 is the primary portion of lens 105 that is responsible for guiding or distributing light from an entrance face to an exit face. It should be noted, however, lens 105 can include additional layers, such as buffer or protective layers, that light may traverse prior to entering entrance face 150. According to one embodiment, entrance face 150 can be parallel to the primary emitting plane of LED 1 10 (e.g., a plane parallel to face 1 17 in Figure 2). In other embodiments, the entrance face can have another orientation (e.g. perpendicular) relative to the primary emitting plane of the LED. A phosphor layer 145 can be disposed on lens 105 between the entrance face of lens body 107 and LED 1 10. The phosphor layer can be disposed directly on the entrance face 150 or on a buffer layer between phosphor layer 145 and entrance face 150. The phosphor in phosphor layer 145 absorbs the higher energy, short wavelength light waves, and re-emits lower energy, longer wavelength light. Light emitted by phosphor layer 145 can enter the lens body 107 through entrance face 150.
[0064] According to one embodiment, phosphor layer 145 can include a layer of phosphor particles in a binding material, such as silicone, coated on the entrance face 150 of lens body 107. The phosphor particles can include any suitably sized phosphor particles including, but not limited to, nano-phosphor particles, quantum dots, or smaller or larger particles and can include a single color or multiple colors of phosphor particles. In other embodiments, the phosphor layer 145 can be separated from the entrance face 150 of lens body 107 by one or more buffer layers. There may also be additional layers of material coupled to lens body 107 between phosphor layer 145 such that, for example, phosphor layer 145 is sandwiched between entrance face 150 and one or more additional layers of material. Materials and adhesives can be selected with indexes of refraction such that losses do not occur or are minimized at layer boundaries. The phosphor can be disposed using any technique known or developed in the art including, but not limited to, silk screening, stencil printing pad printing, syringe dispense or jetting.
[0065] The color of light emitted by system 100 can be selected based on LED 1 10 and the phosphor particles in phosphor layer 145. For example, LED 1 10 can be a UV LED and phosphor layer 145 can include phosphors that down convert UV light to red, green, blue, yellow or other color light. In another example, LED 1 10 can be a blue LED and phosphor layer 145 can down convert the blue light into a desired color. Reflector 140 can be selected to reflect both the color light emitted by the LED 1 10 and the down converted light from phosphor layer 145.
[0066] Lens 105 is positioned so that phosphor layer 145 is maintained a distance from
LED 1 10. The position of lens 105 can be maintained by a housing, coupling lens 105 to encapsulant in LED cavity 130 or otherwise positioning lens 105 relative LED 1 10. If lens 105 is adhered to an encapsulant, an adhesive with an index of refraction equal to or greater than that of the encapsulant can be used to prevent TIR at the encapsulant/adhesive boundary.
[0067] Lens 105 can act as a light guide to guide light from entrance face 150 to exit face
155. Examples of a lens 105 that can utilize TIR at shaped sidewalls 157 to guide light to exit face 155 are described below and in United Sates, Provisional Patent Application No. 60/756,845, entitled "Optical Device", to Duong et al., filed January 5, 2006 and United States Patent Application No. 1 1 /649,018 entitled "Separate Optical Device for Directing Light from an LED," filed January 3, 2007, each of which is hereby fully incorporated by reference herein. Lens 105 can be a separate optical device designed so that all the light can be extracted out exit face 155 (not accounting for Fresnel losses) in the smallest package design possible through selection of exit face area 155, distance between the exit face 155 and entrance face 150 and the design of sidewalls 157. Other embodiments can be shaped to have different sizes or achieve different extraction efficiencies. For example, according to one embodiment, lens 105 can be configured such that at least 70% of the light entering lens body 107 at entrance 150 exits exit face 155. Lenses 105 with lower extraction efficiencies can also be used. Additionally, the lens 105 can be selected to provide a uniform light distribution and to emit light in a desired half- angle. The shape of lens 105, according to one embodiment, can be selected as described below in conjunction with Figures 19A-19D. Other embodiments of lenses can also be used, including, but not limited to, dome, Fresnel, conical, tapered or other lenses. According to one embodiment, the lens body 107 can be a solid piece of material having a single index of refraction.
[0068] In operation, LED 1 10 produces light that can exit LED 1 10 from surface 1 17 (see
Figure 2) and sides 1 19 (see Figure 2). Reflector 140 acts as a redirecting lens to redirect light escaping sides 1 19 to entrance surface 150 of lens body 107. When the light is incident on phosphor layer 145, phosphor layer 145 down converts the light and emits light into lens body 107 and back into LED cavity 130. Reflector 140 can again direct the light in LED cavity 130 to entrance face 150. Lens body 107 guides light entering entrance face 150 from phosphor layer 145 to exit face 155. If lens body 107 provides light in a uniform distribution in a desired half-angle, the need for additional lens is not required to shape the beam. Consequently, color conversion and beam shaping can be achieved with a single lens. [0069] One consideration is that phosphor can heat up to a temperature of approximately 150C during use. Consequently, lens body 107 can be constructed of a material that can withstand continuous use at this temperature. In another embodiment, a buffer layer of silicon or other material capable of withstanding high temperatures can be introduced between the phosphor layer 145 and entrance face 150 of lens 105. While thicker or thinner buffers can be used, one embodiment can include a layer of silicon that is 100 to 200 microns thick. This can allow, for example, polycarbonates to be used for lens body 107.
[0070] Figures 5 and 6, for example, are diagrammatic representations of embodiments of lens 105 having body 107, a buffer 160 layer and phosphor layer 145. The buffer layer can be a suitable, high temperature material such as silicon or other material that can withstand the operating temperatures of the selected phosphor layer 145. In one embodiment, buffer 160 can be adhered to or otherwise coupled to the bottom of lens body 107 or, as shown in Figure 7, all or a portion of buffer 160 can rest in a pocket formed at the entrance face of lens 105. The phosphor layer can be disposed on lens 105 as a coating on buffer layer 160. Figures 5 and 6 also illustrate an adhesive layer to adhere lens 105 to an encapsulant in LED cavity 130 (Figures 1 -4).
[0071 ] Embodiments described herein provide an advantage over traditional systems of using phosphors with LEDs because the phosphor is removed a distance from the LED. Because the phosphor is located at the entrance of the lens, there is high coupling efficiency. Additionally, self-heating of the phosphor due to Stoke's shift can be reduced because heat can be dissipated through the material of lens 140, housing135 and/or submount 125. Higher phosphor conversion efficiency can also be achieved due to low flux density at the entrance face 150 of lens 105.
[0072] The distance between phosphor 145 and LED 1 10 can be optimized to provide an optimal balance between thermal considerations and effective phosphor package efficiencies. While any gap suitable gap size can be used as needed or desired, one embodiment of an optical system has a gap of 100-200 microns between surface 1 17 (see Figure 2) and phosphor layer 145.
[0073] Additionally, embodiments described herein provide for flexible optical system
architectures. Because the phosphor coated lens can be separate from the LED chip, it can be used in conjunction with various types of optical devices, including conventional light emitting devices. Furthermore, LEDs 1 10 can be used with a variety of different lens types depending on need.
[0074] Some embodiments of lenses 105 can be tightly packed in an array. According to one embodiment, an array of lenses 105 can be formed where each lens 105 is selected to emit light in a desired half-angle having a uniform distribution in near and far fields. The lenses 105 can be spaced so that there are no perceivable gaps between emitted light for adjacent lenses 105. Because the emitted light from each lens 105 is uniform and in a desired half-angle, the light output of the array will be in the desired half-angle with uniform near and far field distributions, but covering a larger area than the light emitted by a single lens. This provides a very practical benefit for display or lighting manufacturers because additional optics are no longer required to get light from an LED array using phosphors into a desired angle.
[0075] Figure 7 is a diagrammatic representation of one embodiment of a packaged array 200. In the embodiment of Figure 7, packaged array 200 comprises submount 125, main housing 205 and cover 210. Submount 125 provides mechanical support and electrical connections for LEDs. Embodiments of submount materials include, but are not limited to: Low Temperature Cofire Ceramic (LTCC) with thermal vias, High Temperature Cofire Ceramic (HTCC) with thermal vias, Beryllium Oxide (BeO) ceramic, Alumina ceramic, Silicon, Aluminum Nitride (AIN), Metal (Cu, Al, etc.), and Flex circuit.
[0076] Main housing 205 can be formed of suitable materials including, but are not limited to, plastic, thermoplastic, and other types of polymeric materials. Composite materials or other engineered materials may also be used. In some embodiments, main housing 205 may be made by a plastic injection molding manufacturing process. Various molding processes and other types of manufacturing processes may also be used. In some embodiments, main housing 205 may be opaque. In some embodiments, main housing 205 may be transparent or semi-transparent. Main housing 205 can be bonded or otherwise coupled to a layer of material 215 to complete the housing about the LEDs and lenses. In other embodiments, the housing can be formed of any number of layers or pieces of suitable material that will not unacceptably deform during operation due to heating and can protect the LEDs and lens for expected contact or shock during use, transportation or manufacture. [0077] In the embodiment of Figure 7, packaged array 200 is a 4X4 array and each group of 4 lenses shares a cover 210. In other embodiments a single cover 210 can be used for all lenses or each lens can have its own cover 210. Cover 210, according to one embodiment, can have a sufficient thickness to prevent the lenses from becoming damaged during handling of packaged array 200.
[0078] Figure 8 is a diagrammatic representation of a cross-sectional view of one
embodiment of packaged array 200 illustrating main housing 205, lens 105, cover 210, LED 1 10, LED cavity 130, housing layer 215 and submount 125 (only on instance of each is indicated for clarity). In the embodiment of Figure 8, cover 210 is integrated with lens 105 such that they form a single lens assembly. Cover 210 can be integrated with other lenses 105 so that a single lens assembly will have a cover portion and multiple lens portions. The body 107 of lens 105 and cover 210 can be made of a single piece of molded plastic, polycarbonate or other material. In other embodiments, cover 210 can be coupled to lens 105 using an adhesive. Cover 210 also may simply be in contact with lens 105 or may be separated from lens 105 by a gap. If lens 105 is designed to limit TIR at the exit face in a particular surrounding medium (e.g., air), then any layers or covers coupled to the exit face can be selected so that TIR does not occur when the layers or covers are added. For example, cover 210 and any adhesive or other layers between lens 105 and cover 210 can have indexes of refraction selected so that they do not cause TIR at the exit face of lens 105 if TIR would not have occurred in absence of the layers/cover. In other embodiments, shape of lens body 107 can be selected to account for the transition into cover 210.
[0079] Cover 210 can be an optically transparent material, such as a plastic, glass,
composite material, or other material and may include one or more layers.
Additionally, cover 210 may include layers of material to perform photon conversion (e.g., an additional phosphor layers), filtering or other functions with respect to light exiting lens 105.
[0080] Main housing 205 forms a lens cavity 220 sized to fit lens 105. The sidewalls 225 of lens cavity 220 can be curved to match or approximate the sidewall shapes of lens 105 so that the size of lens cavity 220 is smaller proximate to the
corresponding LED cavity 130 and larger distal from LED cavity 130. In other embodiments, the sidewalls 225 can be vertically straight (from the perspective of Figure 8) or can be tapered. Sidewalls 225 can include reflective coatings or other coatings to reflect any light leaking from the sides of lens 105 to the exit of cover 205. In another embodiment, main housing 205 can be formed of white plastic or other color material so that sidewalls 225 form reflectors.
[0081 ] According to one embodiment, lens cavity 220 can be sized so that there is a gap between the sidewalls of lens body 107 and sidewalls 225 of lens cavity 220 to preserve TIR in lens body 107. The size of the gap can be constant or can increase or decrease further from the base of lens cavity 220. The gap can be filled with air or other material. Preferably, the material has the same or lower index of refraction than body 107 of lens 105. In other embodiments, sidewalls 225 can contact that sidewalls of lens body 107 and act as a reflector for light in lens body 107.
[0082] Main housing 205 can include a shoulder 230 on which ledge 235 of cover 210 rests. An adhesive, mechanical fasteners or other suitable fastening mechanism can be used to couple cover 210 to main housing 205. In other embodiments a secondary structure, such as a clamping structure, can maintain cover 210 against main housing 205.
[0083] According to one embodiment, by coupling cover 210 to main housing 205, lens
105 is held in a desired position in lens cavity 220. In this case, lens 105 may not require additional attachment to cover 205. In other embodiments, a portion of lens 105 can be adhered to or otherwise coupled to a shoulder 240 at the base of lens cavity 220 or other portion(s) of lens 105 can be coupled to main housing 205.
[0084] Main housing 205 defines a portion or all of LED cavity 130 in cooperation with submount 125 and housing layer 215. Although LED cavity 130 is shown with vertical sidewalls, LED cavity 130 can have tapered, curved or otherwise shaped sidewalls to act as a redirector lens. The opening to LED cavity 130 can have the same shape as and be rotationally aligned with LED 1 10 or can have another shape or alignment.
[0085] A phosphor layer can be disposed proximate to entrance face 150 such that light exiting LED cavity 130 will be incident on the phosphor layer. The phosphor layer down converts light before the light enters lens body 107. The down converted light is guided through lens 105 and exits cover 210. Entrance face 150 of lens body 107 can be the same shape as and be rotationally aligned with the opening to LED cavity 130 or have another shape or alignment.
[0086] Figure 9 is a diagrammatic representation of a cutaway view of one embodiment of an LED cavity 130. Submount 125 forms the base of the cavity, while the sidewalls are formed by main housing 205 and layer 215. According to one embodiment, a portion of LED 1 10 can extend into the portion of LED cavity 130 defined by main housing 205. For example, the non-substrate layers 120 including the active region of the LED may extend into this opening or, in a flip chip design, the substrate 1 15 may extend into this portion. LED cavity 130 can become larger closer to submount 125 to accommodate electrical connections or otherwise provide space around LED 1 10. While portions of submount 125, layer 215 and main housing 205 are shown, the packaged array 200 can include additional layers that define cavity 130.
[0087] Figure 10 is a diagrammatic representation of packaged array 200 with main
housing 205 removed. It can be noted in Figure 10 that the entrance face 150 to lens body 107 is maintained a distance away from the corresponding LED 1 10. Consequently, any phosphors disposed on or near the entrance face will also be separated from LED 1 10.
[0088] Figure 1 1 is a diagrammatic representation of one embodiment of a portion of
packaged array 200 having layer 215 and submount 125 forming separate LED cavities 130 for each LED 1 10. While, in the embodiment of Figure 1 1 , LED cavity 130 has straight vertical sidewalls, LED cavity 130 can have curved, tapered or otherwise shaped sidewalls and can act as a reflector. The area of LED cavity 130 defined by layer 215 can be larger than that defined by main housing 205 to accommodate electrical connections or to otherwise provide space around LED 1 10. In other embodiments, the cavity can have a uniform size or become wider as it approaches lens 105. Cavity 130 can be entirely or partially filled with an encapsulant, air, silicone "goop", or other filler material. Layer 215 can be adhered or otherwise coupled to submount 125.
[0089] Figure 12 is a diagrammatic representation of one embodiment of LEDs 1 10
mounted on submount 125. Submount 125, as illustrated in Figure 12, can provide support for LEDs 1 10 and provide electrical connections 250. Electrical
connections can be provided using suitable metals or other conductors. While a particular pattern and type of electrical connection are illustrated, any suitable electrical connections to LED 1 10 and submount 125 can be provided.
[0090] Figure 13 is a diagrammatic representation of one embodiment of main housing
205 defining lens cavities 220 sized to fit lenses 105. Lens cavity 220 extends from an opening 260 to LED cavity 130 to a second opening 265. The sizes of the openings can have, according to one embodiment, a ratio that is the same as the size ratio of the exit face to entrance face of the lens. In another embodiment, opening 260 may be approximately the same size as the entrance face to the lens 105 while opening 165 is larger than the exit face. Sidewalls 225 can be curved, tapered, vertical or have another selected shape. A shoulder 230 provides a surface to which cover 210 can be coupled.
[0091 ] In the embodiment of Figure 13, main housing 205 forms a 4X4 array. However, main housing 205 can accommodate larger or smaller arrays or a single optical system. Additionally, main housing 205 can be shaped to accommodate circular, hexagonal or other shaped lenses 105 in a tightly packed array.
[0092] Figures 8-13 provide an example embodiment of a packaged LED. As discussed above, however, there may be additional portions of housing or other components in the packaged array. For example, the embodiment of Figure 14 is similar to that of Figure 8, but also illustrates layer 255. A portion of the cavity that houses LED 1 10 can be formed by layer 255 rather than the main housing 205. In this case, main housing 205 can define lens cavities 220 with sidewalls that extend to layer 255. Housing layers 255 and 215, on the other hand, define the LED cavities 130. Layers 215 and 255 can include any suitable materials including plastics or other materials. Layer 255 can be inset from layer 215 to form a ledge to which main housing 205 can be bonded. The use of layers 215 and 255 can ease
manufacturability by providing a mechanism by which to align main housing 205. Figure 15 is a diagrammatic representation of one embodiment of a portion of a packaged array 200 with lenses 105 and cover 210 removed illustrating that layer 255 can define a portion of and provide an opening to LED cavity 130.
[0093] Figure 16 is a diagrammatic representation of a lens assembly 275 comprising portions with shape sidewalls that form lens bodies 107 of lenses 105 and a portion without shaped sidewalls that acts as cover 210. The shaped and unshaped portions can be a single piece of material. Each lens 105 can be a phosphor coated lens selected to emit a desired color light. If more than one phosphor lens is used in a system, multiple types of phosphors may be used to achieve the desired color temperature and CRI. For instance, three yellow phosphor lenses and one red phosphor lens may be used in conjunction with a blue pump to attain warm white light. Since each of the four phosphor lens can emit to the same far field distribution, the colors will undergo superposition and will not bleed or create ringlike effects. As another example, in the 2X2 array of lenses shown, each lens can be selected to emit red, green or blue light. The light from lenses 105 can be combined to form white light. In another embodiment, each assembly 275 can emit a single color light. In a 4X4 array as shown in Figure 7, for example, four lens assemblies 275 can be used. One lens assembly 275 can emit blue light, one assembly 275 can emit red light and two assemblies 275 can emit green light such that the array as whole acts as a white light source. A lens assembly 275 can include any number of lenses 1 05.
[0094] As discussed below, lenses 1 05 can be configured with lens bodies 1 07 shaped to conserve radiance (or come within an acceptable percentage of conserving radiance), control the emission angle of light and emit light with a uniform or other desired distribution. According to one embodiment, lenses 1 05 can be closely packed so that there is no or minimal space between adjacent exit faces. As long as lenses 105 are tightly enough packed, there will be no gaps between the light emitted by lenses 105. Consequently, the light emitted by array 200 as a whole will be within the desired half-angle and appear uniform with no dark spots or ghosting.
[0095] Referring again to Figure 1 , Figure 1 illustrates an embodiment of a lens 105 having a lens body 1 07 with an entrance face 1 50, an exit face 1 55 and sidewalls 1 57. According to one embodiment, lens 1 05 can be constructed with the assumption that phosphor layer 145 will emit uniformly into entrance face 1 50. To conserve radiance so that all the light entering lens body 1 07 through entrance face 1 50 can be extracted through exit face 155, the area of exit face 1 55 is selected according to the etendue equation such that:
= A '2 [EQN. 1 ]
Where Ω1 = effective solid angle whereby enters through entrance face 1 50; Ω2 = effective solid angle whereby light leaves exit face 155; Ai = area of entrance face 1 50; A2 = area of exit face 155; n1 = refractive index of material of lens body 1 07; and n2 = refractive index of substance external to the exit face 1 55 of lens body 107 (e.g. air or other medium). In another embodiment, it can be assumed that Ai is the size of the phosphor layer and that the phosphor layer acts as a uniform emitter over that area.
[0097] There are various models for determining effective solid angle including those
described in United States Patent Application No. 1 1 /906, 1 94 entitled "LED System and Method" to Duong, et al. filed October 1 , 2007, United States Patent
Application No. 1 1 /906,21 9 entitled "LED System and Method" to Duong, et al., filed October 1 , 2007 and United States Patent Application No. 1 1 /649.01 8 entitled "Separate Optical Device for Directing Light from an LED," filed January 3, 2007, each of which is hereby fully incorporated by reference herein. Preferably, the area of exit face 155 is within 30% (plus or minus) of the minimum area necessary to conserve radiance.
[0098] The distance between exit face 155 and entrance face 150 can be selected so that all rays having a straight transmission path from entrance face 1 50 to exit face 155 are incident on exit face 155 at less than or equal to the critical angle at exit face 155 to prevent TIR at exit face 1 55. According to one embodiment, the minimum distance can be selected based on a limiting ray. The limiting ray is a ray that travels the longest straight line distance from entrance face 150 to exit face 1 55. For square or rectangular faces 150 and 155, the limiting ray will be a ray that travels from a corner of entrance face 150 to the opposite corner of exit face 1 55. Preferably, the distance between the entrance face 155 and exit face 155 is within 30% of this minimum distance, though smaller distances can be used.
[0099] In addition, the sidewalls 1 57 can be shaped. Broadly speaking, the sidewall
shapes are determined so that any ray incident on a sidewall is reflected to exit face 155 and is incident on exit face 1 55 at the critical angle or less (i.e., so that there is no loss due to internal reflection at exit face 155). While, in one embodiment, the sidewalls are shaped so that all rays that encounter the inner surface of the sidewalls experience total internal reflection to exit face 1 55 and are incident on exit face 155 at the critical angle or less, other sidewall shapes that allow some loss can be used. [00100] Figure 17A is a diagrammatic representation of a cross-section of a model of lens 305 for determining sidewall shapes. Sidewall shapes can be determined using computer-aided design. A model of the sidewall can be created in a computer- aided design package and simulations run to determine an appropriate sidewall shape.
[00101 ] According to one embodiment, each sidewall can be divided into n facets with each facet being a planar section. For example, model sidewall 370 is made of fifteen planar facets 372a-372o rather than a continuous curve. The variables of each facet can be iteratively adjusted and the resulting distribution profiles analyzed until a satisfactory profile is achieved as described below. While the example of fifteen facets is used, each sidewall can be divided into any number of facets, including twenty or more facets.
[00102] Each facet can be analyzed with respect to reflecting a certain subset of rays within a lens. This area of interest can be defined as an "angular subtense." The angular subtense for a facet may be defined in terms of the angles of rays emanating from a predefined point. Preferably, the point selected is one that will give rays with the highest angles of incidence on the facet because such rays are the least likely to experience TIR at the facet. In a lens with a square shaped entrance area, for example, this will be a point on the opposite edge of the entrance.
[00103] According to one embodiment, for a selected Ai , A2, and height, the maximum of angle 374 of any ray that will be incident on a given sidewall (e.g., sidewall 370) without being previously reflected by another sidewall can be determined. In this example, ray 376 emanating from point 378 establishes the maximum angle 374 for sidewall 370. If the maximum of angle 374 is 48 degrees and there are 15 facets for sidewall 370, each facet (assuming an even distribution of angular subtenses) will correspond to a 3.2 degree band of angle 374 (e.g., a first facet will be the area on which rays emanating from point 378 with an angle 1 7 of 0-3.2 degrees are incident, the second facet will be the area on which rays emanating 374 from point 378 with an angle 95 of 3.2-6.4 degrees are incident, and so on).
[00104] For each facet, the exit angle, facet size, tilt angle, or other parameter of the facet can be set so that all rays incident on the facet experience TIR and are reflected to exit surface 355 such that they are incident on exit surface 355 with an angle of incidence of less than or equal to the critical angle. Preferably, the sidewalls are also shaped so that a ray viewed in a cross-sectional view only hits a side wall once. However, there may be additional reflection from a sidewall out of plane of the section. For a full 3D analysis, a ray that strikes a first sidewall near a corner, may then bounce over to a second side wall, adjacent to the first, and from there to the exit face. A curve fit or other numerical analysis may be performed to create a curved sidewall shape that best fits the desired facets.
[00105] To optimize the variables for each facet, a simulated detector plane 380 can be established. Detector plane 380 can include x number of detectors to
independently record incident power. A simulation of light passing through the lens 305 may be performed and the intensity and irradiance distributions as received by detector plane 380 analyzed. If the intensity and irradiance distributions are not satisfactory for a particular application, the angles and angular subtenses of the facets can be adjusted, a new curved surface generated and the simulation re- performed until a satisfactory intensity profile, exitance profile or other light output profile is reached. Additional detector planes can be analyzed to ensure that both near field and far field patterns are satisfactory. Alternatively, the simulation(s) can be performed using the facets rather than curved surfaces and the surface curves determined after a desired light output profile is reached. In yet another
embodiment, the sidewalls can remain faceted and no curve be generated.
[00106] According to another embodiment, the sidewall shape can be selected based on multiple parabolas with each planer facet representing a linear approximation of a portion of a parabola. For example, Figure 17B is a diagrammatic representation of a portion of a modeled lens 305. In Figure 17B, a hypothetical ray 384 is depicted that emanates from the focus 386 of a parabola 388 and intersects sidewall 370 such that it is reflected off sidewall 370 due to TIR and traverses the lens 305 to intersect exit plane 355 at an exit angle 390 that is less than the critical angle and exits lens 305 into air or other medium. As can be seen from Figure 17B, at the transition from the lens 305 to air, ray 384 bends as described by Snell's law. Since the tangent point of the sidewall is determined from a parabola and because the ray incident and reflected off the sidewall is in the same medium, the ray will be parallel to the optical axis of the parabola. Thus, light is projected with a half-angle 392. Angular subtenses 396 defining the shape of sidewall 370 may be adjusted so that hypothetical ray 384 reflects off sidewall 370 such that ray 384 traverses exit face 355 with a desired exit angle 390 or projects light with a desired half angle 392. [00107] In one embodiment, when fabricating a sidewall or calculating the angular subtense of a sidewall, finer subtenses may be used towards the base of the sidewall (i.e. nearer the phosphor layer) because the effects of the subtense are greater or more acute upon reflection near the base, and thus finer subtenses allow for a sidewall with better TIR properties, whereas further from the base, where the effects of the subtenses are less, the subtenses may be coarser. Thus, facets of a sidewall may be numerically greater towards the base of a lens body 107. In one embodiment, a sidewall may have 20 or more facets, with finer facets at the base of the sidewall, wherein the facets approximate one or more subtenses.
[00108] A facet can be a linear approximation of a portion of a parabola 388. The
parameters of parabola 388 can be adjusted until the portion achieves the desired goal of all rays incident on the portion reflecting to exit face 355 such that the rays have an exit angle 390 of less than the critical angle. Each facet can be formed from a parabola having different parameters. Thus, a facet for one angular subtense may be based on a parabola while another facet is based on another parabola. A 20-facet sidewall, for example, may be based on 20 different parabolas.
[00109] Figure 17C depicts a spreadsheet 500 that can be utilized to design a sidewall shape as shown in graph 510 through the specification of angular subtenses.
Projected half angle column 550 contains a plurality of angles that correspond to projected half angle 450 of Figure 4B. Exit angle columns 540a (in radians) and 540b (in degrees) contain a plurality of exit angles corresponding to exit angle 392 of Figure 17B. More particularly, all or a subset of the angles in column 540a may be angles that are less than the critical angle such that light rays intersecting the exit face at those angles traverse the exit face, exiting the shaped device. Columns 540a and 540b may be utilized to develop parabola focus column 560, containing a plurality of foci defining different parabolas. Angular subtense column 565 contains a plurality of angles (in radians) that define the limits of an angular subtense that can be used in conjunction with parabola focus column 560 to define the shape of a sidewall such that a ray reflects off the sidewall to exit the exit face at less than the critical angle. Using the values contained in parabola focus column 560 and angular subtense column 565, theta column 570 and radius column 575 can be developed wherein corresponding values in columns 570 and 575 correspond to points on a desired parabola for the angular subtense. In turn, theta column 570 and radius column 575 can be utilized to develop Cartesian coordinates for points on a sidewall (e.g. coordinate transformation columns 577) that approximate the parabola for the angular subtense.
[001 10] For example, a user can specify the size of the entrance face of the shaped device (in this case marked LED size) and material index. The size can correspond to the size of the entrance face or emitting size of the phosphor layer. Using a
hypothetical example of a size of 1 , and an index of refraction of 1 .77, a row in screen 500 can be completed as follows. The user can specify an exit angle in air (assuming air is the medium in which the lens will operate) in column 550. In the example of the first row, the user has selected 55.3792 degrees. The exit angle in the lens can be calculated as sin(55.3792/180*7t)/1 .77 or .4649323 radians, column 540a. Column 540b can be calculated as asin(.4649323)/ *180=27.2058407. The focus of the parabola can be calculated as 1 (size)/2 * (1 +cos(7t/2- 27.2058407/180*π))=.732466. Angular subtense column 565 can be calculated based on the number in the next column (representing the relative size of a particular facet) as (90-27.7058047)/20=3.1 14708. Theta column 570 can be calculated using a selected number of facets (in this example 20). For example, in the first row theta is calculated as (90 27.7058407)+3,1 14708*20=124.5883. The radius of the parabola (column 575) for the first facet can be calculated as
2*.732466/(1 +cos(124.5883/180*π)). The contents of coordinate transformation columns 577 can be calculated as follows for the first row: x= -3.3885*
cos(124.5883/180*π)=1 .923573; y= -3.3885* sin(124.5883/180*π)=2.789594, X=1 .923573*cos(27.7058407/180*7t)+2.789594* sin(27.7058407/180*7t) ;
Y=2.789594* cos(27.7058407/180*π)-1 .923573*sin(27.7058407/180*π)- 1 (size)/2=1 .075452 and Y'=-Y. The X, Y coordinates can then be used as data point inputs for a shape fitting chart in Excel. For example graph 510 is based on the data points in the X and Y columns (with the Y column values used as x-axis coordinates and the X column values used as y-axis coordinates in graph 510). In addition to the X and Y values a starting value can be set (e.g., .5 and 0). The shape from graph 510 can be entered into an optical design package and simulations run. If a simulation is unsatisfactory, the user can adjust the values in spreadsheet 500 until a satisfactory profile is achieved.
[001 1 1 ] When a satisfactory efficiency and intensity profile are achieved, a separate optical device can be formed having the specified parameters. An example of such a lens body 107 is shown in Figure 17D which provides a diagrammatic representation of one embodiment of lens body 107 with sidewalls shaped to cause TIR so that rays are reflected from the sidewalls to the exit surface. The shape of each sidewall, in this embodiment, is a superposition of multiple contoured surfaces as defined by the various facets. While a curve fit is performed for ease of manufacturability, other embodiments can retain faceted sidewalls.
[001 12] In the above example, it is assumed that the exit plane of light for purposes of
shaping a lens is the exit face of the lens. However, as shown in the embodiment of Figure 16, the exit plane of the shaped lens 105 may be the transition from shaped portion into another portion such as cover 210. If cover 210 is the same material as or has the same index of refraction as the shaped portion, the exit plane can be the transition between the shaped portion of lens body 107 and cover 210. Figure 18, for example, illustrates a lens 105 having a shaped lens body 107 and cover 210 as an integrated lens 105. While light will exit the lens assembly through the cover 210, the transition 400 between shaped lens body 107 and cover 210 can serve as the "exit face" for determining the shape of lens 105 as described above. If cover 210 has the same index of refraction as lens body 107, then the critical angle at the used in shaping lens 105 will be the same as if transition 400 were exposed to the outside medium because if light traverses transition 400 at less than or equal to the critical angle, it will also be incident on surface 404 at less than or equal to the critical angle. If the index of refraction of cover 210 is lower (or any adhesives or other layers between cover 210 and lens body 107), the critical angle at the exit face will be the critical angle based on the lower index of refraction.
[001 13] The various boundary conditions, particularly the area of exit surface 155, can be determined for the separate optical device so that brightness can be conserved. The minimum area of exit surface 155 can be determined from EQN. 1 above, which relies on various effective solid angles. Typically, the effective solid angle of light is determined based on equations derived from sources that radiate as Lambertian emitters, but that are treated as points because the distances of interest are much greater than the size of the source. The observed Radiant Intensity (flux/steradian) of a Lambertian source varies with the angle to the normal of the source by the cosine of that angle. This occurs because although the radiance (flux/steradian/m2) remains the same in all directions, the effective area of the source decreases to zero as the observed angle increases to 90 degrees. Integration of this effect over a full hemisphere results in a projected solid angle value equal to π steradians.
Turning to Figure 1 9, assume a sphere 630 of given radius (R) surrounds point source 632 (in this example, point source 632 approximates a Lambertian source at a significant distance). The projected area of a hemisphere of the sphere is TZR2 and the projected area of the full sphere is 2%R2. This model can be used to design lens because the phosphors can be modeled as a Lambertian emitter such that from any point on a hypothetical hemisphere centered over the interface, a given point on the interface will have the same radiance. The area A3 can be calculated as the flat, circular surface (e.g., surface 636) that is subtended by the beam solid angle of interest using a radius of the circle 634 (Rc) that is the distance from the normal ray to the intersection of the spherical surface. For a given half angle 637 of Θ of the beam, Rc is the product of R (the radius of the sphere) and the sine of the angle Θ, such that
Rc=R*Sin(9) [EQN. 2]
The area equals:
Α3 = π Rc 2 = π (R*Sin(0))2 [EQN. 3A]
The area A3 is the projected area of the solid angle as it intersects the sphere. The area A3 is divided by the projected area of the hemisphere (Ah =π R2) and the quotient is multiplied by the projected solid angle of the full hemisphere (equal to 7t) to obtain the projected solid angle Ω, such that:
Ω = π {projected area of desired solid angle}/(projected area of hemisphere)
[EQN. 3B]
Ω = ( 71) * [ { π (R*Sin(0))2}/( π R2)] [EQN. 3C] π *Sin2(0) [EQN. 4] For entrance face 150 of Figure 1 , for example, Θ is 90 degrees, leading to a projected solid angle of 7t*sin2 (90 ) , and for the desired half angle of 30 degrees, the projected solid angle is π *Sin2(30). Using these values for Ωι and Ω2 for EQN. 1 , A2 can be determined for any half angle.
[001 15] In the above example, the solid angle is determined using equations derived from a
Lambertian source modeled as a point source. These equations do not consider the fact that light may enter a lens body 107 through an interface that may be square, rectangular, circular, oval or otherwise shaped. While the above-described method can give a good estimate of the solid angle, which can be later adjusted if necessary based on empirical or computer simulation testing, other methods of determining the effective solid angle can be used.
[001 16] Figures 20A-20E describe another method for determining the effective solid angle for a lens. Figure 20A is a diagrammatic representation of one embodiment of an entrance face 750 and an exit face 755 of a lens 760 and a hypothetical target plane 756 onto which light is projected. Figure 20A illustrates examples for a position of an effective source origin 752, central normal 753 and effective output origin 754. For purposes of further discussion, it is assumed that the center of interface 750 is at 0,0,0 in a Cartesian coordinate system. Target plane 756 represents the parameters of the resulting pattern (e.g., size and half angle used by other optics). According to one embodiment, the half angle at the diagonal (shown as Oi in Figure 20B) is the starting point. For example, if the desired light at target plane 756 has a maximum half angle of 30 degrees, CH for a square- or rectangular- faced separate optical device is 30 degrees. The half-angle within the separate optical device (labeled βι and also shown in Figure 20C) can then be determined according to: n2Sin(a1)=n1Sin(31) [EQN. 5] where is the IOR of the lens 760; n2 is the IOR of the material (typically air) into which the light is projected from the lens 760;
Qi is the half angle at the exit face in the medium external to the lens 760; βι is the desired half angle of lens 760.
[001 17] For example, if the desired half-angle a1 is 30 degrees, and a lens having an IOR of 1 .5 is projecting into air having an IOR of 1 , then βι=19.47 degrees. A similar calculation can be performed for a ray projecting from a point on the long and short sides of entrance surface 150. For example, as shown in Figures 22B and 22C, a2 and β2 can be determined for a ray traveling from the center of one edge on entrance surface 450 to the center of the opposite edge of exit surface 755. (The critical angle is the same at 19.47, but β1 is not the same as β2. β2 is determined by the geometry of the sides and the height to the optical device.)
[001 18] Using the angles calculated, the location of an effective point source 757 can be determined. For a square entrance face 450, of length l1 ; the effective point source will be located X=0, Y=0 and
Ζ ' -Έ^ [EQN. 6]
Where Zeps is the distance the effective point source is displaced from the emitting surface of the LED.
[001 19] The X, Y and Z distances from the effective point source 757 to points Fi and F2 can be calculated assuming Fi intersects a sphere of unity radius according to:
Figure imgf000032_0001
YFI = sin(ipi )sin(3i) [EQN. 8]
Figure imgf000032_0002
XF2=COS(l|J2) [EQN. 10]
Figure imgf000032_0003
ZF2= οοε(β2) [EQN. 12] where ψι is the angle of the diagonal ray in the X-Y plane (45 degrees for a square) and where ψ2=90 degrees for a ray projecting from the middle of a side parallel to the X axis as shown in Figure 20C. A similar methodology based on the geometries previously calculated can be used to determine other points (e.g., for example, the location of points ΤΊ and T2 can be determined based on the location of points Fi and F2 and the desired half angle of light at target plane 756.)
[00120] Figure 20D illustrates the diagonal rays and one ray from the short side projected onto a sphere 759 for exit face 755 and sphere 761 for target plane 756. For exit face 755, the projection of the intersection of the edge rays at the sphere 759 onto the plane of the exit face 755, forms elliptical segments. Likewise, the projection of the diffracted exit rays at the edge of the target face intersect the sphere 761 . Figure 20E, for example, points out the circular intersection of the rays lying in the plane formed by the edge 763 of target face 756 intersecting sphere 761 , and the projection of that intersection onto the target plane 756. By calculating the area of each of the elliptical segments surrounding the square of the target face, and adding that to the area of the target face we find the total projected area of the target face, the effective solid angle can be determined for the target plane using EQN. 3B. Similarly, by using sphere 159 and the elliptical segments formed thereon by rays, the effective solid angle for the optical device can be determined. For example, the total projected area is determined as described above and inserted as "projected area of desired solid angle" in equation 3B.
[00121 ] As one illustrative example, using the above method for a half-angle of 30 degrees with a square LED and output face yields an effective solid angle of 0.552 steradians to the target in air. By contrast, the use of the traditional circular projected area with a 30 degree half angle would yield an effective solid angle of 0.785 steradians. When these values are then used in EQUATION 1 , for given lORs and flux, the traditional (circular) calculation yields a required exit area that is undersized by about 30%. If one were to design a system using this approach, the applicable physics (conservation of radiance) would reduce the light output by 30% over the optimum design. Conversely, using the corrected effective solid angle described above calculates an exit face area that will produce 42% more light output than is achievable with the circular calculation.
[00122] Although particular methods of determining the effective solid angle for a separate optical device are described above, any method known or developed in the art can be used. Alternatively, the minimum surface area to conserve brightness can be determined empirically. Moreover, while the minimum surface area calculations above assume 100% of the emitting entrance face of the separate optical device is receiving light, the phosphor layer may be disposed over only a part of the entrance surface such that a smaller entrance surface area is used. The calculations of the minimum area of the exit plane can be adjusted to account of the actual area receiving light. That is, the actual area of the phosphor layer can used as Ai .
[00123] The lens body 107 can be optimized for use with a phosphor layer 145 as a uniform emitter at the entrance face using modeling as described above. Lenses according to embodiments described herein can project light into a desired cone angle of 1 0- 60 degrees with a theoretical efficiency of up to 96% in the lens body (meaning that 96% of the light received from the phosphors is emitted in the desired half-angles with 4% Fresnel loss). The efficiency can be 1 00% without Fresnel losses.
[00124] Embodiments of lenses can be shaped to achieve optimal efficiency in a small package size. In other embodiments, lenses can be shaped to achieve lower efficiencies, while still offering advantages over traditional systems. For example, in one embodiment, a lens can be shaped with an exit face that is at least 70% of the size necessary to conserve radiance for light entering the entrance face for a selected half angle of light emitted from the exit plane. The sidewalls can have a shape so that at least a majority of the light having a straight transmission path from the entrance face to the exit plane are incident on the exit plane at less than or equal to the critical angle. Even at only 60% or 70% efficiency, such an
embodiment provides greater efficiency than many other technologies, while also producing uniform or near uniform intensity distributions (or other controlled distribution) at both near and far fields.
[00125] Lenses 105 can be constructed to emit light in a uniform distribution pattern with either a sharp or soft cut off (i.e., transition). Using an example of a lens emitting light with a 30 degree half angle, in one embodiment the lens can be shaped so that the uniform light profile extends through the entire 30 degrees and cuts off sharply. In another embodiment, lens can be shaped to produce a profile that is uniform in the 25 degree half angle but tapers off between 25 and 30 degrees. In one such embodiment, the size of the exit face can be selected to conserve radiance for the 30 degree half angle and the sidewalls shaped to create a uniform distribution profile in the 25 degree half angle. In some cases the height of lens 105 can be made shorter to allow some light to escape the sidewalls into the 30 degree half angle. By way of example, but not limitation, the lens geometries can be selected to emit 90% of the light in a uniform profile in the 30 degree half angle and emit the other 1 0% in the remaining area. Lenses that produce a light profile having softer edges rather than a sharp cut off can be manufactured with a height that is 30% of the minimum height discussed above and still achieve greater than 70% extraction efficiencies.
[00126] Lenses 105 can also be shaped to project a percentage of light into a selected
beam angle while allowing other light to escape the sidewalls or fall outside of the selected angle. For example, lenses can be constructed such that 40% or greater of light emitted from the lens falls within a selected full beam angle. By way of example, but not limitation, lenses 105 can be constructed so that greater than 50% (including greater than 90% in some embodiments) of light emitted by the lens falls within a full beam angle of 10 degrees (5 degree half angle).
[00127] In the above embodiments, lenses are separated from the LED by a gap. In other embodiments, a lens can be bonded to or otherwise coupled to the LED. Figure 21 is a diagrammatic representation of one embodiment of an optical system 900 including a lens 105 and an LED 1 10. While a single LED 1 10 is illustrated, multiple LEDs can be used with a single lens 105. Lens 105 can be a separate optical device shaped to emit a uniform distribution of light in a desired half angle while conserving radiance (or having other desired light extraction efficiency).
Figure 21 depicts the lens 105 coupled to the primary exit face of LED 1 10. In other embodiments, lens 105 may fully or partially surround the LED 1 10 on the sides as well.
[00128] Lens 105 is can be coupled to LED 1 10 using a friction fit, optical cement or other coupling mechanism, whether mechanical, chemical, or other. Preferably, in the embodiment of Figure 21 , lens 105 is formed of a single, molded piece of dielectric, optically transmitting material with a single Index of Refraction ("IOR") "n", such as optically transparent silicone or acrylic, though other materials can be used.
Furthermore, the IOR of lens 105 is preferably within 20% of the IOR of the substrate of led 1 10 (and ideally, the IOR of separate lens 105 is equal to or greater than IOR of the substrate).
[00129] Figure 22 is a diagrammatic representation of one embodiment of adding phosphor to an optical system. Figure 22 also illustrates that lens 105 can surround LED 1 10 on the sides. According to one embodiment, as illustrated in Figure 22, an attachment device 902 or packaging can be used to secure lens 105 to submount 903, a circuit board or other structure. LED 1 10 or the entrance face of lens 105 can be coated with phosphor particles 904 between LED 1 10 and lens 105. A passage 906 can be used to introduce phosphor layer 904 and optical adhesive between lens 105 and LED 1 10. In another embodiment, lens 105 does not have passage 906 and phosphor layer 904 can be applied prior to coupling separate lens 105 to LED 1 10. According to one embodiment, phosphor layer 904 can include an optical bonding material loaded with phosphor particles.
[00130] Thus, phosphor can be disposed between an LED and entrance face of a lens in a number of arrangements. Light from the LED is down converted by the phosphor. Lens 105 can emit light in a desired half angle with a uniform profile. This ability of lens 105 allows arrays of LEDs to be formed that have a uniform profile in a desired half angle. This has the benefit of providing color and illumination uniformity over a field. The uniformity of pattern allows the light from multiple lenses to be overlayed (superimposed) such that the light at any one point on a target area is a blend of all units.
[00131 ] Figure 23a is a diagrammatic representation of an embodiment of an optical unit 905 having LED 1 10 and lens 105. Light from LED 1 10 may or may not be down converted by phosphor. If phosphor is used, the phosphor coating may be disposed on lens 105, LED 1 10 or otherwise disposed between LED 1 10 and the entrance to the body of lens 105. Though only one LED is illustrated, multiple LEDs can be used with a single lens 105. Lens 105 can be constructed to emit in a uniform distribution pattern with either a sharp or soft cut off angle. In the example of Figure 23a, lens 105 has a sharp cut off at the 30 degree half angle.
[00132] Figure 23b is a diagrammatic representation of the illumination pattern of the unit 905 with a target surface 907 being a substantial distance away compared to the size of the unit 905 (in this example approximately 20:1 ). At a distance that is 20 times the size of the lens exit face the lighted field dimension will be 20*2*tan(30) = 23 times as wide as the exit face. At this distance the pattern is uniform with well defined edges.
[00133] When another unit is placed next to the first, it will have the same field size as the first unit (assuming similar geometries), but the field will be displaced only by the width of the lens exit face (assuming the lenses are closely packed so that there is little or no distance between adjacent lenses). The effect of this is that, for most of the field area, the illumination patterns from the units overlap to create a uniform profile with a less uniform border. Figure 24 illustrates an array 910 of optical units 905. While each lens 105 of array 910 is shown as being separate, the lenses 105 may be part of a lens assembly. According to one embodiment, an array of optical units can be packaged as described above in conjunction with Figures 7-16 or can be otherwise packaged. In other embodiments, each lens 105 can be directly coupled to the corresponding LED rather than being separated by a gap.
[00134] The lenses 105 can be configured to emit an overall light profile to create
overlapping illuminated area 915 that can be illuminated with a mix of color temperatures providing an area of very uniform color. As the distance between the illuminated surface and array 905 grows, the width of the border area 916 stays the same size while the illuminated area grows. At far field, border area 916 becomes unnoticeable. Furthermore, multiple arrays can be arranged such the border areas overlap to create more uniformity in the border areas, leading to a larger illuminated area having a uniform profile. Due to the square or rectangular shape of the illuminated area created by the array 910, multiple arrays can be spaced at desired distances to provide uniform lighting over large areas. The illuminated area will not have light and dark regions as found in illuminated areas created by circular field pattern devices.
[00135] Thus, one embodiment can include an LED array having a set of lenses optically coupled to each LED in the LED array. Each lens can be configured such that light is emitted with a uniform profile in the half angle with a hard cut off or a soft cut off. The set of lenses can be configured to project an overall illumination pattern having an illuminated area with an overlap area and a border area. The overlap area can have a uniform profile, while the border area can have a different intensity than the overlap area. The size of the overlap area with uniform profile is dependent on the target surface (e.g., screen) to lens distance such that the size of the illuminated area grows as the target surface to lens distance grows. The width of the border area is not dependent on the target surface to lens distance. Consequently, as the target surface to lens distance increases the percentage of the overlap area having a uniform profile approaches 100%.
[00136] The color of the overlap area 915 can depend on the color emitted by each lens which, in turn, can depend on the LED and phosphor selected. According to one embodiment, each LED can be a blue or ultraviolet LED used in conjunction with a pure phosphor or blend of phosphors so that the corresponding lens emits a desired color light. The phosphor can be coated on the lens 105, the LED itself or be otherwise disposed between the LED and lens. In other embodiments, some or all of the LEDs selected may emit a desired color light without using a phosphor coating. Thus, for example, some of the LEDs in the array can be blue or ultraviolet (or other color) LEDs used in conjunction with phosphors while other LEDs can be red (or other color) LEDs used without phosphors. The LEDs can be controlled so that the combined output in overlap area 915 has a desired spectral power distribution and color coordinates.
[00137] Examples of phosphors that can be used include, but are not limited to: garnets doped with Ce3+ (such as Y3AI50i2: Ce, or YAG), silicates doped with Eu2+ (such as (MgSrBa)2Si04: Eu, or BOS), nitrides doped with Eu2+ (such as (MgCaSr)AISiN3: Eu), and other suitable materials known in the art. These phosphors can be used alone (e.g. YAG or BOS), or in blends as necessary to achieve desired color coordinates and/or color rendering index (CRI) values. According to one
embodiment the phosphors can be selected to achieve desired x and y values in the 1931 CIE chromaticity diagram. In particular, the color coordinates of an array will lie on or near the Planckian locus, thereby producing various shades of white light (e.g. "cool" white, "neutral" white, or "warm" white). Desirable regions around the Planckian locus in the chromaticity diagram are defined by the ANSI C78.377- 2008 chromaticity standard, over a range of correlated color temperature (CCT) values. However, embodiments described herein may be used to achieve any color coordinates.
[00138] An advantage of using a matrix of units having blue or ultraviolet chips used in
conjunction with a pure phosphor or a phosphor blend is that averaging of chromaticity variation between individual elements (due to random differences in phosphor loading or chip wavelength) takes place, and the lamp to lamp color variation is thereby reduced versus that for individual LED components. The yield to the ANSI color bins is consequentially increased.
[00139] A further advantage of the matrix package having blue or ultraviolet chips used in conjunction with pure phosphors of different colors (in addition to averaging to color coordinates) is the removal of interactions between phosphors. Such interactions are caused by significant overlapping between the emission spectrum of one phosphor and the excitation spectrum of another, and can lead to reduction in CRI value, efficiency, or both. For example, a matrix package consisting of 8 elements coated with YAG and another 8 elements coated with a red nitride phosphor in a checkerboard pattern was found to have a substantially higher CRI value than a similar package coated with a blend of the same two phosphors to the same chromaticity specification.
[00140] Yet another advantage of the matrix package is the ability to provide "hybrid"
solutions with narrow beam angles. One embodiment can use blue or ultraviolet LEDs in conjunction with green-yellow phosphor (such as YAG or BOS) on one set of units, and red LEDs in another set of units. It is believed that such a hybrid solution can produce a highly efficient warm white with a high CRI. The use of lenses as described above can produce a narrow beam pattern if desired. By way of example, but not limitation, lenses 105 can be used that produce beam angles of 10 degrees or more.
[00141 ] Additionally, by using units emitting various colors (with or without phosphor
added), one can achieve dynamic color control of the light (e.g. by using an RGB approach), or a dynamic white light changing from warm to neutral to cool (and back if necessary) over the course of the day, as a few examples. The use of lenses constructed to emit uniform light in a controlled beam angle as described above allow for excellent color mixing (with no diffuser-associated losses) and superior beam angle control at the same time.
[00142] In the embodiments of Figures 24 and 25, each LED has its own lens and the array of lenses acts to homogenize the illumination of the field. This provides advantages in terms of overall product yields to given ANSI color bins due to the elimination of phosphor to phosphor interactions.
[00143] Figures 25a-c illustrate arrangements of color optical systems to produce white light units. Each white light unit contains color light sources that emit light of a selected color so that the blended light produces white light. In Figures 25a-25c, for example, the white light units include 2 green sources, one red source and one blue source. White light units may share overlapping color sources (e.g., in Figure 25c, one green source and the blue source are shared between white light units). Each color source of Figures 25a-c may be a single optical unit emitting a selected color or may be an array acting together to produce a desired color light. In the latter case, arrays can be constructed that emit a selected color of light and arrays emitting different colors can be combined to form a white light unit. [00144] Figure 26 is a diagrammatic representation of one embodiment of a system 950 comprising a display controller 955 and an array 960 of units 905. System 950 can comprise a circuit board 970 to which the LEDs of units 905 are electrically connected. According to one embodiment, the units 905 can be arranged to form white light units. Controller 955 can include an interface 975 that is electrically connected to the LEDs to send control signals to the LEDs. A processor 980 can execute a set of instructions 985 stored in a computer readable memory 990 to generate control signals to the LEDs. The intensity of the LEDs can be individually controlled to alter the color produced by white light units. In another embodiment, arrays of units may be controlled. Thus for example, controller 955 may control an array of multiple units to adjust the intensity of the array as a whole, rather than controlling individual units in the array. Controller 955 can be implemented as a separate control module, a microprocessor and related hardware, an ASIC and related hardware, or other hardware and/or software suitable to control LEDs. The instructions can be implanted as firmware, software or hardware or according to any other suitable architecture.
[00145] While a lens 105 that emits light in a uniform distribution in a desired half angle provides advantages for light blending to create uniform white or color light, other embodiments of lenses can be used with phosphors. Figure 27, for example, is a diagrammatic representation of one embodiment of a system in which a solid dome lens 280 is used. In the embodiment of Figure 27, LED 1 10 is disposed in an LED cavity 130 having tapered sidewalls that act as a reflector 140. A layer of phosphor 145 covers the entrance face of the body 282 of dome lens 280. In an array, each LED can be provided with a separate cavity and dome lens 280. In another embodiment an array of LEDs may be placed in each cavity under a lens. Various embodiments of dome lenses can be used including dome lenses that greater in size than the cavity.
[00146] Figure 28 is a diagrammatic representation of another embodiment of an optical system. In the embodiment of Figure 28, encapsulant in the LED cavity 130 around LED 1 10 forms a convex portion 285. A lens 105 having a phosphor coating 145 can be adhered to convex portion 275 or to a housing or another structure. The optical system can be assembled such that there is no air gap between lens 105 and convex portion 285. By way of example, but not limitation, lens 105 can include a concave entrance face. In another embodiment, an intermediate layer with a concave entrance face can be used. In an array, each LED can be provided with a separate cavity and dome lens 280.
[00147] One of ordinary skill in the art would understand that phosphor can be disposed on a lens in a variety of manners. As discussed in conjunction with several embodiments above, phosphor can be applied as a coating to an entrance face or buffer layer. Figure 29 is a diagrammatic representation of another embodiment. In the embodiment of Figure 29, lens 805 includes a pocket 810 at the entrance face 815 to lens body 807. Phosphor particles 820 can be packed in the pocket and held in place with a binding material or with another layer 825 of material. Material 825 is preferably an optically transparent material that can withstand the
temperatures of phosphor 820. Figure 30 illustrates yet another embodiment of a lens 830 in which a layer of phosphor 835 is sandwiched between a buffer layer 840 and another layer of suitable material 845. The stack of layers can be coupled to a lens body 850. The layers of material can include glass, polycarbonate, silicon or other layers.
[00148] While this disclosure describes particular embodiments, it should be understood that the embodiments are illustrative and that the scope of the invention is not limited to these embodiments. Many variations, modifications, additions and improvements to the embodiments described above are possible. For example, the various ranges and dimensions provided are provided by way of example and LEDs and lenses may be operable within other ranges using other dimensions. It is contemplated that these variations, modifications, additions and improvements fall within the scope of the disclosure.

Claims

WHAT IS CLAIMED IS:
1 . An optical system comprising: an LED disposed in a cavity defined by a base and one or more cavity sidewalls; a lens further comprising: a lens body having an entrance face positioned to receive light from an LED; a layer of phosphor disposed on the lens between the entrance face of the lens body and the LED such that light emitted from the LED will be incident on the phosphor and down converted before entering the lens body through the entrance face; and wherein the lens is positioned so that the phosphor is separated from the LED by a gap.
2. The optical system of Claim 1 , wherein the one or more cavity sidewalls shaped to direct light incident on the sidewalls to the exit face of the lens.
3. The optical system of Claim 2, wherein the one or more cavity sidewalls are formed of a material that acts as a reflector.
4. The optical system of Claim 2, further comprising an encapsulant at least partially filling the cavity, wherein the encapsulant forms a reflector around the LED through surface tension.
5. The optical system of Claim 1 , wherein the phosphor is disposed as a phosphor coating on the entrance face of the lens body.
6. The optical system of Claim 1 , wherein the phosphor is separated from the entrance face of the lens body by one or more layers of material.
7. The optical system of Claim 6, wherein the phosphor layer is disposed on a buffer layer of material adapted to protect the lens body from heat generated by the phosphor.
8. The optical system of Claim 1 , wherein the lens body is shaped to emit greater than 50% of the light in a selected beam angle. .
9. The optical system of Claim 8, wherein the lens body is shaped to conserve brightness.
10. The optical system of Claim 9, wherein the one or more cavity sidewalls are shaped to direct light incident the cavity sidewalls to the entrance face of the lens, wherein the cavity sidewalls are formed of a material that acts as a reflector of light produced by the LED and phosphor.
1 1 . The optical system of Claim 9, further comprising a reflector to reflect light in the cavity to the entrance face of the lens.
12. The optical system of Claim 1 1 , wherein the cavity is at least partially filled with an encapsulant and the reflector is formed from surface tension of the encapsulant.
13. An optical system comprising: a submount; an array of LEDs mounted to the submount; a housing, the housing at least partially defining a set of LED cavities in cooperation with the submount and a set of lens cavities, each lens cavity open to a corresponding LED cavity and sized to accommodate a lens; a set of lenses disposed in the lens cavities, each lens comprising: a lens body having an entrance face proximate to the opening to the corresponding LED cavity; and a layer of phosphors disposed on the lens between the entrance face and a corresponding LED such that light emitted by a corresponding LED will be downcoverted before entering the lens body; wherein the entrance face of each lens is positioned a distance from the corresponding LED.
14. The optical system of Claim 13, wherein the lens body of each lens in the set of lenses is configured to emit light with a uniform distribution pattern in a selected half-angle.
15. The optical system of Claim 14, wherein the set of lenses is closely packed so that the optical system emits light in a uniform distribution pattern in the selected half-angle over a larger area then the individual lenses in the set of lenses.
16. The optical system of Claim 15, wherein the lens body of each lens in the set of lenses is shaped to conserve brightness.
17. The optical system of Claim 13, wherein each lens cavity is defined by a set of sidewalls, wherein the sidewalls of each lens cavity are shaped so that the lens cavity is smaller proximate to the opening to the corresponding LED cavity and larger distal from the opening of the corresponding LED cavity.
18. The optical system of Claim 17, further comprising a cover supporting one or more lenses in corresponding lens cavities.
19. The optical system of Claim 18, wherein the cover and one or more lens bodies are formed of a single piece of material.
20. The optical system of Claim 13, wherein the phosphor layer disposed on each lens is selected so that different lenses in the set of lenses emit different colors of light.
21 . The optical system of Claim 13, wherein the phosphor layer disposed on each lens is selected so that the optical system forms one or more white light units.
PCT/US2010/046108 2009-08-20 2010-08-20 System and method for a phosphor coated lens WO2011022610A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012525714A JP2013502695A (en) 2009-08-20 2010-08-20 System and method for phosphor-coated lenses
EP10810640A EP2467638A1 (en) 2009-08-20 2010-08-20 System and method for a phosphor coated lens
CN2010800428809A CN102686936A (en) 2009-08-20 2010-08-20 System and method for a phosphor coated lens

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US23549109P 2009-08-20 2009-08-20
US61/235,491 2009-08-20
US12/646,570 2009-12-23
US12/646,570 US8449128B2 (en) 2009-08-20 2009-12-23 System and method for a lens and phosphor layer
US31973910P 2010-03-31 2010-03-31
US61/319,739 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011022610A1 true WO2011022610A1 (en) 2011-02-24

Family

ID=43607337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/046108 WO2011022610A1 (en) 2009-08-20 2010-08-20 System and method for a phosphor coated lens

Country Status (6)

Country Link
EP (1) EP2467638A1 (en)
JP (1) JP2013502695A (en)
KR (1) KR20120090975A (en)
CN (1) CN102686936A (en)
TW (1) TW201126114A (en)
WO (1) WO2011022610A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130021775A1 (en) * 2011-07-22 2013-01-24 Guardian Industries Corp. Heat management subsystems for led lighting systems, led lighting systems including heat management subsystems, and/or methods of making the same
WO2013037556A1 (en) * 2011-09-13 2013-03-21 Osram Opto Semiconductors Gmbh Method for producing a plurality of opto-electronic components and opto-electronic component
WO2013015949A3 (en) * 2011-07-22 2013-04-25 Guardian Industries Corp. Led lighting systems with phosphor subassemblies, and/or methods of making the same
WO2013057656A3 (en) * 2011-10-20 2013-06-13 Koninklijke Philips Electronics N.V. Lighting unit comprising a lamp shade
US8540394B2 (en) 2011-07-22 2013-09-24 Guardian Industries Corp. Collimating lenses for LED lighting systems, LED lighting systems including collimating lenses, and/or methods of making the same
US8992045B2 (en) 2011-07-22 2015-03-31 Guardian Industries Corp. LED lighting systems and/or methods of making the same
CN110274162A (en) * 2012-09-13 2019-09-24 夸克星有限责任公司 Luminaire with long-range dispersing element and total internal reflection extractor element
EP2827048B1 (en) * 2012-03-15 2020-04-22 Koito Manufacturing Co., Ltd. Automotive lamp
EP2789897B1 (en) * 2011-12-11 2020-06-17 YLX Incorporated Light source and illuminating device
CN114981592A (en) * 2018-05-01 2022-08-30 生态照明公司 Lighting system and device with central silicone module
US11811011B2 (en) 2016-02-24 2023-11-07 Magic Leap, Inc. Low profile interconnect for light emitter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509190B (en) * 2013-04-18 2015-11-21 Nat Inst Chung Shan Science & Technology Composite light source lamps
CN105745489B (en) * 2013-09-24 2019-06-28 飞利浦灯具控股公司 Lighting unit
US10862014B2 (en) * 2015-11-12 2020-12-08 Advanced Semiconductor Engineering, Inc. Optical device package and method of manufacturing the same
JP2020003705A (en) * 2018-06-29 2020-01-09 日機装株式会社 Optical component, manufacturing method of optical component, and light irradiation device
KR102601799B1 (en) * 2018-10-15 2023-11-14 현대모비스 주식회사 Lamp for vehicle
WO2020185866A1 (en) * 2019-03-11 2020-09-17 Lumileds Llc Light extraction bridge in cups

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050051782A1 (en) * 2003-09-09 2005-03-10 Negley Gerald H. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US20070152230A1 (en) * 2006-01-05 2007-07-05 Duong Dung T Separate optical device for directing light from an LED
US20080030993A1 (en) * 2004-05-05 2008-02-07 Nadarajah Narendran High Efficiency Light Source Using Solid-State Emitter and Down-Conversion Material
US20080030974A1 (en) * 2006-08-02 2008-02-07 Abu-Ageel Nayef M LED-Based Illumination System
US20080062672A1 (en) * 2004-05-07 2008-03-13 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light emitting device
US20080080166A1 (en) * 2006-10-02 2008-04-03 Duong Dung T LED system and method
US20080266893A1 (en) * 2005-04-06 2008-10-30 Tir Systems Ltd. Lighting Module With Compact Colour Mixing and Collimating Optics
US7473933B2 (en) * 2004-10-29 2009-01-06 Ledengin, Inc. (Cayman) High power LED package with universal bonding pads and interconnect arrangement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2335878T3 (en) * 2002-08-30 2010-04-06 Lumination, Llc COVERED LED WITH IMPROVED EFFECTIVENESS.
US8174036B2 (en) * 2003-12-30 2012-05-08 Osram Opto Semiconductors Gmbh Lighting device
JP4480407B2 (en) * 2004-01-29 2010-06-16 京セラ株式会社 Light emitting element storage package and light emitting device
JP4301075B2 (en) * 2004-05-12 2009-07-22 パナソニック電工株式会社 Light emitting diode package and light emitting device using the same
JP3978451B2 (en) * 2005-07-27 2007-09-19 京セラ株式会社 Light emitting device
JP2007281260A (en) * 2006-04-07 2007-10-25 Sumitomo Metal Electronics Devices Inc Reflector, package for housing light-emitting element using the same, and lens used for reflector
JP2008041739A (en) * 2006-08-02 2008-02-21 Tokai Kogaku Kk Fluorescent device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050051782A1 (en) * 2003-09-09 2005-03-10 Negley Gerald H. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US20080030993A1 (en) * 2004-05-05 2008-02-07 Nadarajah Narendran High Efficiency Light Source Using Solid-State Emitter and Down-Conversion Material
US20080062672A1 (en) * 2004-05-07 2008-03-13 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light emitting device
US7473933B2 (en) * 2004-10-29 2009-01-06 Ledengin, Inc. (Cayman) High power LED package with universal bonding pads and interconnect arrangement
US20080266893A1 (en) * 2005-04-06 2008-10-30 Tir Systems Ltd. Lighting Module With Compact Colour Mixing and Collimating Optics
US20070152230A1 (en) * 2006-01-05 2007-07-05 Duong Dung T Separate optical device for directing light from an LED
US20080030974A1 (en) * 2006-08-02 2008-02-07 Abu-Ageel Nayef M LED-Based Illumination System
US20080080166A1 (en) * 2006-10-02 2008-04-03 Duong Dung T LED system and method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992045B2 (en) 2011-07-22 2015-03-31 Guardian Industries Corp. LED lighting systems and/or methods of making the same
WO2013015896A3 (en) * 2011-07-22 2013-04-04 Guardian Industries Corp. Heat management subsystems for led lighting systems, led lighting systems including heat management subsystems, and/or methods of making the same
WO2013015949A3 (en) * 2011-07-22 2013-04-25 Guardian Industries Corp. Led lighting systems with phosphor subassemblies, and/or methods of making the same
US8742655B2 (en) 2011-07-22 2014-06-03 Guardian Industries Corp. LED lighting systems with phosphor subassemblies, and/or methods of making the same
US8540394B2 (en) 2011-07-22 2013-09-24 Guardian Industries Corp. Collimating lenses for LED lighting systems, LED lighting systems including collimating lenses, and/or methods of making the same
CN103797299A (en) * 2011-07-22 2014-05-14 葛迪恩实业公司 Heat management subsystems for led lighting systems, LED lighting systems including heat management subsystems, and/or methods of making the same
US20130021775A1 (en) * 2011-07-22 2013-01-24 Guardian Industries Corp. Heat management subsystems for led lighting systems, led lighting systems including heat management subsystems, and/or methods of making the same
JP2014526120A (en) * 2011-07-22 2014-10-02 ガーディアン・インダストリーズ・コーポレーション LED lighting system equipped with phosphor subassembly and / or manufacturing method thereof
US9845943B2 (en) 2011-07-22 2017-12-19 Guardian Glass, LLC Heat management subsystems for LED lighting systems, LED lighting systems including heat management subsystems, and/or methods of making the same
CN103797295A (en) * 2011-07-22 2014-05-14 葛迪恩实业公司 Led lighting systems with phosphor subassemblies, and/or methods of making the same
US9450162B2 (en) 2011-07-22 2016-09-20 Guardian Industries Corp. LED lighting systems with phosphor subassemblies, and/or methods of making the same
WO2013037556A1 (en) * 2011-09-13 2013-03-21 Osram Opto Semiconductors Gmbh Method for producing a plurality of opto-electronic components and opto-electronic component
US9466769B2 (en) 2011-09-13 2016-10-11 Osram Opto Semiconductors Gmbh Method for producing a plurality of opto-electronic components and opto-electronic component
US9777906B2 (en) 2011-10-20 2017-10-03 Philips Lighting Holding B.V. Lighting unit comprising a lamp shade
WO2013057656A3 (en) * 2011-10-20 2013-06-13 Koninklijke Philips Electronics N.V. Lighting unit comprising a lamp shade
EP2789897B1 (en) * 2011-12-11 2020-06-17 YLX Incorporated Light source and illuminating device
EP2827048B1 (en) * 2012-03-15 2020-04-22 Koito Manufacturing Co., Ltd. Automotive lamp
CN110274162A (en) * 2012-09-13 2019-09-24 夸克星有限责任公司 Luminaire with long-range dispersing element and total internal reflection extractor element
US11811011B2 (en) 2016-02-24 2023-11-07 Magic Leap, Inc. Low profile interconnect for light emitter
CN114981592A (en) * 2018-05-01 2022-08-30 生态照明公司 Lighting system and device with central silicone module

Also Published As

Publication number Publication date
TW201126114A (en) 2011-08-01
CN102686936A (en) 2012-09-19
EP2467638A1 (en) 2012-06-27
JP2013502695A (en) 2013-01-24
KR20120090975A (en) 2012-08-17

Similar Documents

Publication Publication Date Title
US9086211B2 (en) System and method for color mixing lens array
US8449128B2 (en) System and method for a lens and phosphor layer
WO2011022610A1 (en) System and method for a phosphor coated lens
CA2565339C (en) High efficiency light source using solid-state emitter and down-conversion material
US9082946B2 (en) Light emitting module, a lamp, a luminaire and a display device
US9599292B2 (en) Light emitting module, a lamp, a luminaire and a display device
US8164825B2 (en) High-power white LEDs and manufacturing method thereof
JP2008135701A (en) Outline of inclusion body for light-emitting diode
CN103765090A (en) LED based illumination module with a reflective mask
US9890911B2 (en) LED module with uniform phosphor illumination
JP2013229230A (en) Lighting device
EP3685099B1 (en) Luminescent concentrator with cpc, light guide and additional phosphor
EP1930959A1 (en) Phosphor-coated led with improved efficiency
Tran et al. LED package design for high optical efficiency and low viewing angle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042880.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1260/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012525714

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1552/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010810640

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127006808

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE