WO2011008251A2 - Intelligent illumination device - Google Patents

Intelligent illumination device Download PDF

Info

Publication number
WO2011008251A2
WO2011008251A2 PCT/US2010/001919 US2010001919W WO2011008251A2 WO 2011008251 A2 WO2011008251 A2 WO 2011008251A2 US 2010001919 W US2010001919 W US 2010001919W WO 2011008251 A2 WO2011008251 A2 WO 2011008251A2
Authority
WO
WIPO (PCT)
Prior art keywords
illumination device
light
recited
illumination
light source
Prior art date
Application number
PCT/US2010/001919
Other languages
French (fr)
Other versions
WO2011008251A3 (en
Inventor
David J. Knapp
Original Assignee
Firefly Green Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firefly Green Technologies Inc. filed Critical Firefly Green Technologies Inc.
Priority to JP2012520587A priority Critical patent/JP5847711B2/en
Priority to EP10800143.9A priority patent/EP2454922A4/en
Priority to CN201080032373.7A priority patent/CN102577622B/en
Publication of WO2011008251A2 publication Critical patent/WO2011008251A2/en
Publication of WO2011008251A3 publication Critical patent/WO2011008251A3/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • This invention relates to illumination devices and, more particularly, to controlling illumination devices.
  • LED lights today consist of multiple LEDs connected together in series and/or parallel, and are driven by a switching power supply.
  • the power supply converts from the mains voltage, 85 -240V, to a current for the LEDs, while the power supply in a battery powered light converts from the battery voltage to a current for the LEDs.
  • Such circuits are offered by companies such as OnSemi and Supertex for mains connected, and Maxim for battery powered.
  • LEDs simply connect the LEDs to the power supply through a series resistor. Although cheaper, the resistor dissipates substantial power, and when connected to an AC supply, the light has a poor power factor. The power factor is poor since the LEDs only conduct during the peaks in the AC waveform.
  • the LEDs in a light can be any color or any combination of colors, including white.
  • White LEDs are typically made with a blue LED covered in some type of yellow phosphor. Much of the blue light from the LED is absorbed by the phosphor and re-emitted at lower frequencies corresponding to green, yellow, and some red colors.
  • Some advantages of this approach include low cost and more natural continuous spectrum light. Some disadvantages include low efficiency due to losses in the phosphor, a bluish color from the LED, and reduced reliability due to degradation of the phosphor. Companies such as Cree Lighting and Nichia market such high brightness LEDs.
  • the spectrum of one particular Cree product shows a sharp peak around 450nm, which is the blue light produced by the LED, and a broad peak around 550 to 600nm, which is yellow from the phosphor. At 500nm and 700nm, the output power is only 20% of the peak power. In contrast, the spectrum of sunlight is virtually flat from just below 500nm to just over 700nm.
  • Cree Lighting produces a two color overhead LED lamp that includes strings of red LEDs together with strings of phosphor coated blue LEDs.
  • the spectrum of neither the RGB nor the white plus red light match either the incandescent or sunlight spectrum very well, although the white plus red light produces a good cost/performance compromise for many applications.
  • RGB three color
  • Some techniques include feedback to the RGB driver circuits through three optically filtered photodiodes. Each photodiode is tuned to the color of each LED and is connected to a signal detection and signal processing function on an IC. The signal processor then controls the red, green, and blue drive currents accordingly.
  • Such color filter photodiodes are offered by Hamamatsu, which are relatively expensive and consume board space that would otherwise be dedicated to producing light instead of receiving light.
  • Cree's white plus red LED lamp includes two chains of 6 white LEDs, and one parallel/serial combination of 30 red LEDs, for a total of 36 LEDs. It also includes a photodetector and a temperature sensor to maintain color as described in US Published Patent Application No. 2008-0309255.
  • a wavelength selective photo-detector monitors the shorter emission wavelength (green and shorter) and adjusts the brightness of the red LEDs in response.
  • temperature is monitored with a temperature sensing element, which is used to adjust the drive current to the red LEDs to compensate for brightness degradation with increasing temperature. Neither the optical power produced by the red LEDs nor the optical power produced by the white LEDs with wavelengths longer than green are measured. Any changes in red LED brightness over lifetime are not compensated.
  • a cost effective solution for driving and controlling different color LEDs with good color discrimination and without the cost and board space for additional photodetectors and temperature sensors would be beneficial.
  • the triac dimmer reduces power consumption in the light bulb, it does not reduce the power that the utility company must produce. Power companies produce current that is in phase with the voltage. As the voltage increases, the current increases. If the entire load on a power generation plant consisted of lights dimmed 50% with triacs, the current produced during the first half of the positive and negative cycles would not go to the bulbs, but it would have to go somewhere. The utility must generate the same amount of power whether the lights are full on or dimmed and must deal with potentially dangerous transients on the grid.
  • the light from an LED can be reduced by either reducing the drive current or reducing the time that the current is applied by using what is called pulse width modulation (PWM).
  • PWM pulse width modulation
  • the current is turned on and off at a rate faster than the eye can see, with the duty cycle proportional to the desired light output. Since the wavelength of light produced by an LED changes with drive current, PWM dimming is sometimes preferred.
  • an existing triac dimmer still adjusts the power supply to the light.
  • the LED light circuitry must filter the power supply, detect the duty cycle of the supply, and adjust the PWM duty cycle accordingly, which adds cost and complexity.
  • Photosensors are commonly used to measure ambient light in a room or daylight outside and to adjust the brightness of a lamp in response.
  • An outdoor lamp may be turned on and off at dusk and dawn respectively, or an indoor lamp may be dimmed such that the light from a window plus the light from the lamp remains constant.
  • photosensors need to be placed away from lamps so that the light from the lamp does not interfere with the photosensor.
  • the photosensor is a separate electronic device, which needs to, be installed.
  • a lamp with a built in photosensor that is not affected by light output from the lamp and that does not require any wiring changes would be beneficial. Further, a lamp that could provide this functionality without a photosensor would be more beneficial.
  • Timers that turn a light on and off typically plug into a wall socket and connect and disconnect power to an attached light based on time of day. Such devices are typically bulky. An installed light socket cannot be changed to a timer without significant wiring changes. A replacement bulb that has a timer function built in that does not require additional cost or any wiring changes would be beneficial.
  • the developing world is leapfrogging developed world technology.
  • solar powered homes are wide spread throughout the developing world (i.e., Kenya, India, etc.) Lighting traditionally has been provided by firewood and recently by kerosene, which are notably inefficient.
  • the combination of a solar panel, a car battery, and led lights provides a much better solution. During the day, the solar panel charges the battery and at night the led light consumes power. The effectiveness of the re-charging system determines the usefulness of the system. Any solar power efficiency improvement is significant. LEDs are photosensitive and can produce power when exposed to light. Harnessing this energy would be beneficial.
  • an improved illumination device uses the components in an LED lamp to perform some or all of the above functions for very low cost.
  • the LEDs that produce light can be periodically turned off momentarily, for example, for a duration that the human eye cannot perceive, in order for the lamp to receive commands optically.
  • the optically transmitted commands can be sent to the lamp, for example, using a remote control device.
  • the illumination device can use the LEDs that are currently off to receive the data and then configure the light accordingly, or to measure light.
  • Such light can be ambient light for a photosensor function, or light from other LEDs in the illumination device to adjust the color mix.
  • an illumination device uses LEDs to produce light and to provide bi-directional communication to a controller that implements power saving features not possible with conventional lighting.
  • the illumination device for example, can be programmed with modulated light from a remote controller to turn on and off, to adjust brightness or color, and to turn on or off in response to changes in ambient light or timer count values.
  • the LEDs that produce the illumination during normal operation are periodically used to receive modulated light from a controller during short intervals undetectable by the human eye.
  • the illumination device can produce light modulated with data.
  • the LEDs in the controller can provide a trickle charge current to maintain full battery power.
  • the invention provides a system of an intelligent illumination device and, in some cases, a remote controller.
  • the illumination device which is typically connected to an AC mains power supply, can receive commands from the remote controller, which is typically battery powered, via light.
  • the remote controller programs the lamp for timer or photosensitive operation. For instance, at dusk the lamp could turn on and then go off, the light could come on when power is switched on and goes off a fixed time later, the light could come on and go off at fixed times, or the light could come on at dusk and off at dawn. Dimming could also be enabled or disabled, or could be automatically adjusted based ambient light.
  • the illumination device When turned on, the illumination device periodically turns off the LEDs to determine if any commands are being sent or to measure ambient light.
  • the remote control synchronizes to these momentary "light off periods and sends a command if directed by the user.
  • the commands can be on/off, dim, timer, photo cell, color, etc.
  • ac power When the light is turned off by the remote, ac power is still active. The device goes into a low power mode.
  • the remote turns the light on the incident light can power the LEDs and enable the light to turn on.
  • the light can also be turned off by removing AC power and turned on by turning AC power on. Cycling power in a certain sequence can reset the light to a default state.
  • the illumination device uses the photosensitive LEDs (i.e., the red LEDs) to detect received data or DC light during the intervals when the light output is momentarily turned off.
  • the illumination device can use a chain of the longest wavelength LEDs (i.e., the red LEDs) to detect the output power of the other colors. With two chains of the longest wavelength LEDs, each chain can measure the output power of the other, thereby enabling a feedback loop to control the output power of each color and the blended color mix.
  • the illumination device i.e., the "lamp”
  • the illumination device can be dimmed by the remote controller.
  • the remote controller sends commands to increment or decrement the output light level during the short "off periods.
  • the dimming function can be performed by pulse width modulating the LED drive current at a switching frequency preferably locked to the switching regulator frequency or by simply adjusting the LED drive current.
  • the longest wavelength LED chain can be used to measure ambient light.
  • the LEDs may be configured in photovoltaic mode, and produce a voltage proportional to incident light. If the voltage is above a level specified through a command, the lamp can turn off in response. If the voltage drops back below the specified level, the lamp can turn on. Such a mechanism enables the light to turn on at night and off during the day. In combination with a timer, the light can turn on at dusk and off after a specified amount of time.
  • the timer When the timer is enabled, the lamp can turn on and off at different times of day or turn off after a specified amount of time after being turned on. The lamp can be turned on by remote control, by power being applied through a switch, or by the photosensor function. In a mains connected application, the timer is synchronized to the AC frequency for a precise frequency reference.
  • the photosensitive LED chains When powered by a battery, the photosensitive LED chains can provide trickle current to re-charge the battery.
  • a chain of 30 red LEDs e.g., in the CREE lamp
  • the charging capability of the lamp can augment that of the solar panel.
  • FIG. 1 an exemplary system diagram of an illumination device and a remote controller.
  • FIG. 2 is an exemplary list of functions performable by an exemplary illumination device.
  • FIG. 3 is an exemplary timing diagram of data communication between the illumination device and the remote controller.
  • FIG. 4 is an exemplary timing diagram of the bit timing and coding scheme for transferring data between the illumination device and the remote controller.
  • FIG. 5 is an exemplary illumination device block diagram.
  • FIG. 1 is one example of an intelligent illumination device system 10 that comprises the illumination device 11 and the remote controller 12.
  • the remote controller 12 is preferably battery powered like a flashlight or TV remote control and is used to program the illumination device 11 with modulated light.
  • the illumination device 11 is powered preferably by the AC mains of an electrical socket (e.g., an Edison base socket)
  • the illumination device 11 can be controlled by the remote controller 12.
  • the illumination device 11 is enabled to produce light (i.e., "turned on” or “producing light"), the illumination device 11 briefly and periodically stops emitting light to detect commands from the remote controller 12 or ambient light from the environment, or to calibrate colors in a multi-colored illumination device 11.
  • the illumination device 11 When the illumination device 11 is powered by the AC mains, but is not enabled to produce light (i.e., "turned off), the illumination device enters a low power state. Commands from the remote controller 12 can still be detected by the illumination device 11 in this state. The illumination device 11 responds to the remote controller 12 by momentarily producing light modulated with data. To reset the illumination device 11 to a default state, power to the illumination device 11 is cycled in a specific sequence.
  • FIG. 1 is just one example of many possible intelligent illumination device systems.
  • the illumination device 11 could be powered with a battery or the remote controller 12 could be powered by the AC mains.
  • the illumination device is programmed when it is designed or produced, no remote controller 12 is needed.
  • pre-programmed devices include pre-configured night lights, and lights that automatically turn of perhaps 1 hour (or other delay) after being turned on. In such case, the functionality of the illumination device may be reduced.
  • light from the remote controller 12 could power an un- powered illumination device 11 with light while programming.
  • a consumer could buy a light bulb replacement including this remote controller. The consumer could then hold the bulb to the remote and configure it to turn off 35 minutes after being turned on, then take the programmed bulb and screw in a socket somewhere. Without this self-powered variant, the bulb would need to be screwed into an energized socket in order to program it, which may be possible, but still perhaps less convenient.
  • the remote controller battery could be charged by sunlight or ambient light when not in use. Additionally, multiple illumination devices 11 could communicate with each other.
  • Table 2 is an example list of commands 14 for the illumination device 11 that enable the remote controller 12 to turn the illumination device 11 on and off, adjust the output power, and change the color to one of three different settings.
  • the illumination device 11 can be configured to automatically turn on in response to a time of day counter reaching a particular count or ambient light dropping below a certain level, and to automatically turn off after a timer reaching a particular count from when the illumination device 11 is turned on or ambient light rising above certain level.
  • the color mix is always automatically measured and adjusted to a specific setting.
  • the example set of commands 14 can use 4 bits to produce hex codes 13.
  • the hex codes 13 are preceded by a synchronization pattern and followed by parity to produce an 8 bit transfer sequence. Additionally, the commands that set a time must be followed with the actual time. Since there are 1440 minutes in a day, a time with one minute resolution requires 11 bits, which could be sent in two successive transfers after the command.
  • Table 2 is just one example of many possible sets of commands 14 and hex codes 13.
  • each individual component could be dimmed or color calibration could be enabled and disabled.
  • the time of day counter could count days of the week as well.
  • the illumination device 11 could have a subset of these functions or could have a variety of other functions such as strobing or continuous color variation. Additionally, illumination device 11 status and register contents could be read. Further, the assignment of hex codes 13 to commands 14 could be completely different and could contain more or less bits depending on the number of commands 14.
  • FIG. 3 is an example timing diagram for communicating commands 14 between the illumination device 11 and the remote controller 12 when the illumination device 11 is producing light.
  • Pulse width modulated light PWM 20 from the illumination device 11 is periodically interrupted by gaps 21 when no light is produced.
  • the gap period 22 in this example is one second.
  • the gap time 23 is equal to one half the mains period or 8.33mSec at 60Hz.
  • the remote controller 12 synchronizes to gaps 21 in the PWM 20 light from the illumination device 11 and can send commands CMD 24 during gaps 21.
  • the illumination device 11 provides a response RSP 25 immediately after CMD 24.
  • the remote controller 12 may preferably be narrowly focused (much like a flashlight) to assist a user in directing the remote commands to a particular illumination device in a room with multiple such illumination devices. The user could see the light beam and shine it directly on one light. This would focus light from the remote on the illumination device and light from the illumination device on the detector in the remote.
  • the light from the illumination device 11 is pulse width modulated at 16 times the mains frequency or 960Hz for 60Hz AC, to enable dimming without changing LED wavelengths.
  • the off time is very short or nonexistent and at low light levels, the on time is short.
  • the frequency of the pulses stays fixed.
  • the last pulse from the illumination device 11 before a gap 21 is preferably not reduced below a minimum width that the remote controller 12 can detect.
  • the one second gap time 22 can be shortened to 200msec for instance, after the illumination device 1 1 and remote controller 12 communicate a first CMD 24 so that successive commands can be communicated faster. This may be important for dimming since there may be many power level steps between low and high power. Once the remote controller 12 stops sending commands, the gap period 22 widens back to one second intervals.
  • the remote controller 12 does not detect gaps 21 and can send commands CMD 24 at any time.
  • the protocol shown in FIG. 3 remains the same except that the illumination device 11 is not outputting PWM 20 light before and after the transaction.
  • the illumination device 11 can measure ambient light. The ambient light level is subtracted from the received light when commands CMD 24 are sent and is used to determine when to turn the illumination device 11 on or off when photo-sensor functionality is enabled. More specifically, when the illumination device is receiving commands, the background or ambient light produces a DC offset in the optically induced voltage across the LEDs (or photodiode). This DC offset can be eliminated by measuring the optically induced voltage during gaps 21 when no commands are sent, and subtracting it from the induced voltage when receiving commands. Alternatively, the receiver in the illumination device can high pass filter the induced voltage to remove the DC offset.
  • the receiver may use a digital filter for DC blocking (and equalization). If the DC offset is known prior to receiving a command, the initial state of the digital filter can be set accordingly, and reduce the settling time.
  • photosensor functionality is enabled, ambient light is measured during gaps 21 when the illumination device is producing light, and measured all the time when not producing light.
  • the intensity of each individual color can be measured during gaps 21 or when the illumination device 11 is not producing light. For instance, when the illumination device 11 is turned on, the illumination device 11 can briefly measure the intensity of each color before producing the desired light. Then periodically as the illumination device warms up for instance, the color components can be measured during gaps 21.
  • FIG. 3 is just one example of many possible timing diagrams.
  • the gap period 22 and gap time 23 could be substantially different depending on the applications.
  • the response RSP 25 can be sent at different times or not at all.
  • the commands CMD 24 could even be sent during the off times of the PWM cycle and responses RSP 25 could be variations in PWM duty cycle.
  • commands CMD 24 could be repeated one or more times before taking affect.
  • Many different timing diagrams and communication protocols could be implemented.
  • the protocol can include significant illumination durations in order to store sufficient charge on a capacitor for instance to power the illumination device 11 and to communicate data.
  • FIG. 4 is an example timing diagram illustrating the bit level communication between the illumination device 11 and the remote controller 12 when the illumination device 11 is producing light. Communication begins with the illumination device 11 stopping the PWM 20 output.
  • the illumination device synchronization IDSYNC 30 pulse is the last PWM pulse produced by the illumination device 11 prior to a gap 21.
  • the width of IDSYNC 30 is greater than the minimum pulse width detectable by the remote controller 12.
  • Other synchronization sequences, such as short series of pulses, may also be produced before each gap 21.
  • the CMD 24 from the remote controller 12 comprises a synchronization pattern SYNC 31 of 3 ones, a hex code 13, and an even parity bit P32 that are biphase encoded.
  • the command 14 is "light off'. If the illumination device 11 receives the CMD 24 properly, the response RSP 25 comprises the same biphase encoded SYNC 31, hex code 13, and parity P32 that comprised the CMD 24.
  • the protocol shown in FIG. 4 remains the same except that the illumination device is not outputting PWM 20 light (nor IDSYNC 30) before and after the transaction.
  • FIG. 4 is just one example of many possible bit timing diagrams.
  • the protocol could use any one of many well known coding schemes such 4b5b, 8bl ⁇ b, or NRZ.
  • the SYNC 31 could have a wide variety of lengths and sequences including none at all.
  • the hex codes 13 could have more or less bits and parity P32 could be even or odd, more than one bit, or none at all.
  • CRC codes could be used for error detection.
  • the protocol could be substantially different.
  • FIG. 5 is an example block diagram for an exemplary illumination device 11 that comprises an EMI filter and rectifier 41, an AC to DC converter, a voltage divider, an integrated circuit IC 54, and the LED chain 53.
  • the EMI filter and rectifier 41 produces a full wave rectified version of the AC mains VAC 40, and minimizes both transient disturbances on the mains from affecting the rectified power, and switching noise in the illumination device 11 from affecting the mains.
  • the voltage divider comprises resistors R 42 and R 43 and produces signal S 57 that is a reduced voltage version of the rectified mains signal for IC 54.
  • the AC to DC converter includes inductors 44 and 45 (also referred to herein as inductors L 44 and L 45), capacitors 46 and 47 (also “capacitors C 46 and C 47"), diode 48 (also “diode D 48"), the N-channel switch transistor 49 '(also "switch N 49"), and the power controller 62 on integrated circuit 54 (IC 54).
  • This example shows LED chain 53 comprising of LED 50, LED 51, and LEDn 52, with the dashed line between LED 52 and LEDn 53 indicating that LED chain 53 can include many LEDs.
  • This architecture is typical for monochrome light or white light produced by blue LEDs with a phosphor coating.
  • a multi-color illumination device typically would have separate LED chains for each color.
  • IC 54 includes memory and control 60, PLL and timing 61, power control 62, receiver 63, and output driver 64.
  • Memory and control 60 includes non- volatile memory for storing configuration information, such as enabling the timer or photo-sensor, and volatile (or non-volatile) memory for settings such as dimming.
  • Memory and control 60 also includes logic that manages the transfer of data with the remote controller 12, produces the pulse width modulated (PWM) LED drive signal S 59, and implements the timers and state machines that control the overall function of IC 54 and the illumination device 11.
  • PWM pulse width modulated
  • PLL and timing 61 includes a phase locked loop that produces a high frequency clock that is phase locked to S 57 when the illumination device is powered.
  • the voltage divider comprising of R 42 and R 43 provides a low voltage version of the rectified mains voltage S 57 that does not exceed the voltage rating of IC 54 and that the PLL locks to. All other circuitry on IC 54 is synchronized to the PLL and timing 61 outputs (not shown).
  • PLL and timing 61 enables the illumination device 11 to maintain a precise time base for time of day timer functionality by locking to the mains frequency.
  • gap period 22 and gap time 23 can be precisely aligned to VAC 40 timing.
  • Such timing could enable multiple illumination devices 11 to synchronize and communicate directly between each other with light.
  • multiple illumination devices i.e., "IDs”
  • GAPS e.g., gaps 21
  • the illumination device syncs to them. If no gaps are found, there is nothing to sync to and the illumination device effectively becomes a timing master that other illumination devices lock to when turned on.
  • Such an illumination device preferably should also be able to detect if sync is lost and to re-lock.
  • additional embodiments for illumination devices and systems as well as for visible light communication systems and methods are described in U.S. Provisional Patent Application No. 61/336,242, filed January 19, 2010 by David J. Knapp and entitled “Illumination Devices and Related Systems and Methods," and U.S. Provisional Patent Application No. 61/339,273, filed March 2, 2010 by David J. Knapp, et al., and entitled “Systems and Methods for Visible Light Communication,” each of which is hereby incorporated by reference in its entirety.
  • display related systems and methods, display calibration systems and methods, and LED calibration systems and methods are described in U.S.
  • VAC 40 When VAC 40 is turned off, capacitor C 47 can maintain power to IC 54 for some period of time. If VAC 40 is turned off and on within this time, IC 54 can remain powered. To reset the illumination device 11 to a default state, VAC 40 can be turned off and on a number of times for specified amounts of time. For instance, the reset sequence could be 3 short off and on intervals, followed by 3 longer off and on intervals, and followed finally by 3 more short off and on intervals. PLL and timing 61 monitors signal S 57, signals IC 54 to enter a low power state when signal S 57 stays low, and measures the time between short VAC 40 off and on periods. When PLL and timing 61 detects the proper VAC 40 off and on sequence, IC 54 is reset to a default state.
  • Power control 62 together with the external components inductors L 44 and L 45, capacitors C 46 and C 47, diode D 48, and switch N 49, and current sensing feedback from output driver 64, implement the AC-to-DC converter function.
  • the configuration implemented is the well known Single Ended Primary Inductor Converter (SEPIC).
  • SEPIC Single Ended Primary Inductor Converter
  • Switch N 49 is turned on and off by power control 62 at a relatively high frequency such as IMHz, with the duty cycle varying to produce the desired current through LED chain 53.
  • switch N 49 When switch N 49 is closed, the current from L 44 and L 45 is pulled through switch N 49 and charge stored on the capacitor C 46 provides current to LED chain 53.
  • switch N 49 When switch N 49 is open, the current through inductors L 44 and L 45 flows through the diode D 48 and to LED chain 53 and C 47.
  • Power control 62 compares voltage feedback signal Vfb 65 from output driver 64 to an internal reference voltage to produce an error signal that adjusts the duty cycle of the control signal S 58 that is coupled to switch N 49.
  • the signal Vfb 65 is produced by LED chain 53 current flowing through a small resistor in output driver 64 (not shown).
  • Vfb 65 becomes a divided down version of V+ 55, which occurs when receiving data and during the PWM dimming off times.
  • a control loop adjusts the feedback divider to maintain V+ 55 at the same voltage as when LED chain 53 is on.
  • This duty cycle is restored instantly the next time LED chain 53 current is turned off to prevent V+ 55 from spiking high.
  • the S 58 duty cycle is measured when the LED current is turned on, and the result is stored, and then restored to prevent V+ 55 from spiking low.
  • Output driver 64 turns LED chain 53 current on and off with a switch connected to ground (not shown). Current flows from V+ 55 to ground through LED chain 53 and the switch, when the switch is on, and no current flows when the switch is off. A small resistor in series with the switch produces Vfb 65 when the switch is on.
  • a control loop compares the output of a variable voltage divider from V+ 55 to Vfb 65 and adjusts the divider until the output equals Vfb 65.
  • the V+ 55 voltage divider loop is also turned off and the voltage divider remains fixed. While the LED chain 53 current is off, this divided version of V+ 55 is forwarded to power control 62 through Vfb 65.
  • Receiver 63 can receive data from the remote controller 12, when the LED chain 53 current is turned off by output driver 64. Modulated light from remote controller 12 is converted to a voltage signal S 59 by LED chain 53, which operates in photo-voltaic mode as in a solar panel. Receiver 63 high pass filters S 59 to block the DC content from ambient light and to cancel the low bandwidth of the photo- voltaic LED chain 53. Such bandwidth typically supports up to Ik bits per second (lkbps), but with the proper equalization filter the data rate can be increased by 10 times or more. To support the protocol in FIG.s 3 and 4, 2kbps are needed. Receiver 63 comprises an A/D converter and a digital filter to equalize signal S 59. Timing recovery is not needed since the data is sent from the remote controller 12 synchronously to the AC mains frequency that IC 54 is locked to. The output of the digital filter is simply sampled at the appropriate times.
  • the remote controller 12 detects the absence of gaps 21. Since the remote controller 12 is not synchronized to the gaps 21 from the illumination device 11, and since the remote controller 12 is battery powered, data from the remote controller 12 is asynchronous to the timing in the illumination device 11. Provided the remote controller 12 has a precise oscillator, such as a quartz crystal, the remote controller 12 and the illumination device reference clocks will typically be within a couple hundred parts per million of each other.
  • the illumination device 11 resets a timer clocked at high frequency on the falling edge of the third SYNC 31 pulse and uses this timer to sample received data and produce transmitted data. The drift between the two reference clocks over the 16 msec period of one transfer is insignificant.
  • the illumination device 11 measures ambient light during gaps 21, and also when the illumination device 11 is not producing light, by measuring the average voltage of signal S 59 with the AID converter in receiver 63.
  • the AID converter should be architected to have small DC errors, such as the well known chopper stabilization architecture, to measure very low light levels.
  • FIG. 5 is just one example of many possible illumination device 11 block diagrams.
  • an illumination device 11 architecture for multi-colored light could comprise of an LED chain 53 and output driver 64 for each component color.
  • Example color combinations could comprise of red, green, and blue, or of red, yellow, green, and blue, or of red and white.
  • the lower light frequency LEDs can measure the light intensity of each other and of the higher light frequency LEDs.
  • the white LED chain could produce light and the red LED chain could be connected to the receiver and could measure the light power.
  • red LEDs are organized in two separate chains with separate output drivers, during gaps 21 for instance, one red LED chain could measure the light power of the other. By measuring the light power from each LED chain, the illumination device could adjust the current to the different LED chains to maintain a specific color point for instance over LED variations, temperature variations, and LED lifetime.
  • a single receiver 63 could be shared and connected at different times to different LED chains, or multiple receivers 63 could be implemented.
  • FIG. 11 Another example illumination device 11 block diagram for an illumination device that can be powered by the remote controller 12 during configuration could comprise a second very low power receiver.
  • the second receiver could be powered by an LED chain receiving modulated light and could store configuration information in non-volatile memory.
  • the average voltage induced across the LED chain by light is typically significantly lower than the voltage necessary to produce light from the same LED chain.
  • the induced voltage could be stored across capacitor C 47 and a smaller segment of the LED chain 53 could be connected to output driver 64 to emit responses to the remote controller 12.
  • the communication protocol to configure an illumination device 11 when not powered could be different from FIG. 3 to enable capacitor C 47 to be re-charged after each emitted light pulse. Useful techniques for so doing are described in the aforementioned U.S. Application No.
  • the block diagram for an illumination device 11 that is powered by a battery instead of the AC mains would have a battery and potentially a different type of switching power supply such as the well known buck, boost, boost buck, or flyback. With a rechargeable battery, ambient light or sunlight incident on the LEDs could produce power to recharge the battery.
  • a block diagram for such an illumination device 11 could have a second power control 62 that manages the battery charger.
  • An illumination device powered by the AC mains could also have any of a wide variety of different AC-DC converters, such as the boost buck or flyback.
  • Such an illumination device could also have a back up re-chargeable battery that enables the illumination device to maintain the time of day counter when power goes off.
  • the timing for the illumination device 11 could also be based on a local crystal oscillator instead the mains frequency for instance.
  • the block diagram for an illumination device that uses a silicon photodiode instead of LEDs for instance for receiving data would have the receiver 63 connected to the photodiode instead of LED chain 53.
  • Such architectures would be particularly useful for illumination devices that only use phosphor coated white LEDs that do not operate well in photo-voltaic mode.
  • the silicon photodiode could receive commands 24 from the remote controller 12, measure ambient light, and measure emitted light from the LED chain.
  • an illumination device 11 could execute a protocol to synchronize to other illumination devices and to arbitrate for transmission bandwidth.
  • an illumination device 11 could monitor the ambient light, search for gaps 21 with the proper gap period 22 and gap time 23, and synchronize to the gaps 21 if found. If all the illumination devices are connected to the AC mains, then very precise synchronization is possible.
  • Illumination devices could arbitrate for bandwidth according any one of many well known arbitration protocols. For instance, if two illumination devices transmit at the same time, both illumination devices detect the collision and wait a random amount of time before trying to communicate again.
  • a CMD 24 could include a priority code that indicates in the case of a collision, which illumination device stops transmitting.
  • an illumination device is assumed to produce a general light, usually of a human-perceivable nature, but possibly infrared or some other wavelength.
  • An illumination device enabled to produce light i.e., "turned on” may be thought of as being set to an "on-state” (i.e., having its illumination state set to an on-state), even though, as described above, there may be very short periods of time during which the light source is momentarily turned “off and is not actually emitting light, such as during the gaps, and during the off-times in a PWM signal.
  • the on-state and off-state of the illumination device should be clear in the context described above and not confused with the on and off status of the actual light source.
  • An illumination device may be set to an on-state or off-state by any of several events, such as application/removal of power to the illumination device (such as by energizing the light socket into which the illumination device is inserted), by a timer event, by ambient light control, and by a remote command.
  • an illumination device attribute may represent an operational state or a configuration parameter of the illumination device. Examples include the illumination state, timer settings, delay settings, color settings for each of one or more light sources within the illumination device, photosensing mode settings, dimmer settings, time-of-day, etc.

Abstract

Intelligent illumination device are disclosed that use components in an LED light to perform one or more of a wide variety of desirable lighting functions for very low cost. The LEDs that produce light can be periodically turned off momentarily, for a duration that the human eye cannot perceive, in order for the light to receive commands optically. The optically transmitted commands can be sent to the light, for example, using a remove control device. The illumination device can use the LEDs that are currently off to receive the data and then configure the light accordingly, or to measure light. Such light can be ambient light for a photosensor function, or light from other LEDs in the illumination device to adjust the color mix.

Description

Patent Application for INTELLIGENT ILLUMINATION DEVICE
Applicant: Firefly Green Technologies Inc.
Inventor: David J. Knapp
Related Applications
[0001] This application claims priority to the following co-pending provisional application: Provisional Application Serial Number 61/224,904 entitled "INTELLIGENT ILLUMINATION DEVICE," which was filed on July 12, 2009, and is hereby incorporated by reference in its entirety.
Technical Field of the Invention
[0002] This invention relates to illumination devices and, more particularly, to controlling illumination devices.
Background
[0003] Conventional lighting historically has used incandescent and fluorescent bulbs, but recently with the invention of the blue LED, has started to use LED lights. The initial cost of the LED light may be high, but over time the power savings can reduce the overall cost of lighting substantially. Part of the high initial cost of a power efficient LED light is due to the special electronics necessary to create a constant current to the LEDs from a power source. With this special electronics, however, implementation of features such as remote control, dimming, photo-sensing, timing, and color adjustment in the light are possible at very little additional cost. Such features for conventional lighting are performed by separate electronic units that turn power to the light on and off, which add cost and complexity.
[0004] Most LED lights today consist of multiple LEDs connected together in series and/or parallel, and are driven by a switching power supply. In an AC mains connected light, the power supply converts from the mains voltage, 85 -240V, to a current for the LEDs, while the power supply in a battery powered light converts from the battery voltage to a current for the LEDs. Such circuits are offered by companies such as OnSemi and Supertex for mains connected, and Maxim for battery powered.
[0005] Less efficient LED lights simply connect the LEDs to the power supply through a series resistor. Although cheaper, the resistor dissipates substantial power, and when connected to an AC supply, the light has a poor power factor. The power factor is poor since the LEDs only conduct during the peaks in the AC waveform.
[0006] The LEDs in a light can be any color or any combination of colors, including white. White LEDs are typically made with a blue LED covered in some type of yellow phosphor. Much of the blue light from the LED is absorbed by the phosphor and re-emitted at lower frequencies corresponding to green, yellow, and some red colors. Some advantages of this approach include low cost and more natural continuous spectrum light. Some disadvantages include low efficiency due to losses in the phosphor, a bluish color from the LED, and reduced reliability due to degradation of the phosphor. Companies such as Cree Lighting and Nichia market such high brightness LEDs.
[0007] The spectrum of one particular Cree product shows a sharp peak around 450nm, which is the blue light produced by the LED, and a broad peak around 550 to 600nm, which is yellow from the phosphor. At 500nm and 700nm, the output power is only 20% of the peak power. In contrast, the spectrum of sunlight is virtually flat from just below 500nm to just over 700nm.
[0008] To overcome the lack of energy at the red end of the spectrum, Cree Lighting produces a two color overhead LED lamp that includes strings of red LEDs together with strings of phosphor coated blue LEDs. When comparing the spectrum produced by an RGB source, the Cree white LED plus red LED solution, and the standard output from an incandescent bulb, the spectrum of neither the RGB nor the white plus red light match either the incandescent or sunlight spectrum very well, although the white plus red light produces a good cost/performance compromise for many applications.
[0009] The ideal LED light from a color spectrum perspective would consist of many different colored LEDs operating at different power levels to produce a rough approximation of either incandescent or sun light. The combination of red, yellow, green, and blue is probably a minimum number of colors. Although this approach should have a good spectrum and be more energy efficient and reliable, control of the relative power levels in each color is difficult and expensive in practice today.
[0010] There are challenges to building even a three color (RGB) LED light that controls the color over process variations, temperature, aging, etc. Some techniques include feedback to the RGB driver circuits through three optically filtered photodiodes. Each photodiode is tuned to the color of each LED and is connected to a signal detection and signal processing function on an IC. The signal processor then controls the red, green, and blue drive currents accordingly. Such color filter photodiodes are offered by Hamamatsu, which are relatively expensive and consume board space that would otherwise be dedicated to producing light instead of receiving light.
[0011] National Semiconductor offers an RGB LED driver for LCD display backlighting. Their LP5520 can calibrate out the initial variation in LED optical output and then adjust over temperature. However, it does not compensate for aging. Since the output power of some LEDs goes up over time and some go down, the only effective means of compensation is through actual optical power measurement of each light component.
[0012] Cree's white plus red LED lamp includes two chains of 6 white LEDs, and one parallel/serial combination of 30 red LEDs, for a total of 36 LEDs. It also includes a photodetector and a temperature sensor to maintain color as described in US Published Patent Application No. 2008-0309255. A wavelength selective photo-detector monitors the shorter emission wavelength (green and shorter) and adjusts the brightness of the red LEDs in response. Likewise, temperature is monitored with a temperature sensing element, which is used to adjust the drive current to the red LEDs to compensate for brightness degradation with increasing temperature. Neither the optical power produced by the red LEDs nor the optical power produced by the white LEDs with wavelengths longer than green are measured. Any changes in red LED brightness over lifetime are not compensated. A cost effective solution for driving and controlling different color LEDs with good color discrimination and without the cost and board space for additional photodetectors and temperature sensors would be beneficial.
[0013] Conventional light dimming switches use a triac circuit that only allows the mains AC voltage to be applied to an incandescent light during part of the cycle. For instance, when set at half power, the voltage signal that passes through to the light is zero for the first 90 degrees of the sinusoidal voltage, jumps to the peak amplitude and follows the sinusoid down to zero for the second 90 degrees, stays at zero for the next 90 degrees, and finally jumps to the negative peak voltage and follows the sinusoid back to zero. This approach is a cheap and effective way for a consumer to dim a resistive incandescent bulb.
[0014] Although the triac dimmer reduces power consumption in the light bulb, it does not reduce the power that the utility company must produce. Power companies produce current that is in phase with the voltage. As the voltage increases, the current increases. If the entire load on a power generation plant consisted of lights dimmed 50% with triacs, the current produced during the first half of the positive and negative cycles would not go to the bulbs, but it would have to go somewhere. The utility must generate the same amount of power whether the lights are full on or dimmed and must deal with potentially dangerous transients on the grid.
[0015] The light from an LED can be reduced by either reducing the drive current or reducing the time that the current is applied by using what is called pulse width modulation (PWM). The current is turned on and off at a rate faster than the eye can see, with the duty cycle proportional to the desired light output. Since the wavelength of light produced by an LED changes with drive current, PWM dimming is sometimes preferred. When replacing an incandescent light with an LED light, an existing triac dimmer still adjusts the power supply to the light. To enable PWM dimming, the LED light circuitry must filter the power supply, detect the duty cycle of the supply, and adjust the PWM duty cycle accordingly, which adds cost and complexity.
[0016] Photosensors are commonly used to measure ambient light in a room or daylight outside and to adjust the brightness of a lamp in response. An outdoor lamp may be turned on and off at dusk and dawn respectively, or an indoor lamp may be dimmed such that the light from a window plus the light from the lamp remains constant. For existing technology, such photosensors need to be placed away from lamps so that the light from the lamp does not interfere with the photosensor. Typically, the photosensor is a separate electronic device, which needs to, be installed. A lamp with a built in photosensor that is not affected by light output from the lamp and that does not require any wiring changes would be beneficial. Further, a lamp that could provide this functionality without a photosensor would be more beneficial. [0017] Timers that turn a light on and off typically plug into a wall socket and connect and disconnect power to an attached light based on time of day. Such devices are typically bulky. An installed light socket cannot be changed to a timer without significant wiring changes. A replacement bulb that has a timer function built in that does not require additional cost or any wiring changes would be beneficial.
[0018] Electrical wiring and lighting switches in a new home or business construction consumes a significant portion of the construction cost. Additionally light switches with dimmers are much more expensive than simple toggle switches, so therefore are used much less frequently. Lights that could be remotely controlled by for instance a device like a TV remote could significantly reduce wiring costs and provide additional features, which would be beneficial.
[0019] The developing world is leapfrogging developed world technology. For instance, solar powered homes are wide spread throughout the developing world (i.e., Kenya, India, etc.) Lighting traditionally has been provided by firewood and recently by kerosene, which are terribly inefficient. The combination of a solar panel, a car battery, and led lights provides a much better solution. During the day, the solar panel charges the battery and at night the led light consumes power. The effectiveness of the re-charging system determines the usefulness of the system. Any solar power efficiency improvement is significant. LEDs are photosensitive and can produce power when exposed to light. Harnessing this energy would be beneficial.
[0020] The invention described herein, in various embodiments, provides solutions to the issues described above.
Summary
[0021] In certain exemplary embodiments, an improved illumination device .uses the components in an LED lamp to perform some or all of the above functions for very low cost. The LEDs that produce light can be periodically turned off momentarily, for example, for a duration that the human eye cannot perceive, in order for the lamp to receive commands optically. The optically transmitted commands can be sent to the lamp, for example, using a remote control device. The illumination device can use the LEDs that are currently off to receive the data and then configure the light accordingly, or to measure light. Such light can be ambient light for a photosensor function, or light from other LEDs in the illumination device to adjust the color mix.
[0022] In certain exemplary embodiments, an illumination device uses LEDs to produce light and to provide bi-directional communication to a controller that implements power saving features not possible with conventional lighting. The illumination device, for example, can be programmed with modulated light from a remote controller to turn on and off, to adjust brightness or color, and to turn on or off in response to changes in ambient light or timer count values. The LEDs that produce the illumination during normal operation are periodically used to receive modulated light from a controller during short intervals undetectable by the human eye. In response to a command from the remote controller, the illumination device can produce light modulated with data. Additionally, when the remote controller is turned off and is exposed to sunlight, the LEDs in the controller can provide a trickle charge current to maintain full battery power.
[0023] In certain aspects, the invention provides a system of an intelligent illumination device and, in some cases, a remote controller. The illumination device, which is typically connected to an AC mains power supply, can receive commands from the remote controller, which is typically battery powered, via light. The remote controller then programs the lamp for timer or photosensitive operation. For instance, at dusk the lamp could turn on and then go off, the light could come on when power is switched on and goes off a fixed time later, the light could come on and go off at fixed times, or the light could come on at dusk and off at dawn. Dimming could also be enabled or disabled, or could be automatically adjusted based ambient light. [0024] When turned on, the illumination device periodically turns off the LEDs to determine if any commands are being sent or to measure ambient light. The remote control synchronizes to these momentary "light off periods and sends a command if directed by the user. The commands can be on/off, dim, timer, photo cell, color, etc. When the light is turned off by the remote, ac power is still active. The device goes into a low power mode. When the remote turns the light on, the incident light can power the LEDs and enable the light to turn on. The light can also be turned off by removing AC power and turned on by turning AC power on. Cycling power in a certain sequence can reset the light to a default state.
[0025] In certain embodiments, the illumination device uses the photosensitive LEDs (i.e., the red LEDs) to detect received data or DC light during the intervals when the light output is momentarily turned off. For multi-colored light, the illumination device can use a chain of the longest wavelength LEDs (i.e., the red LEDs) to detect the output power of the other colors. With two chains of the longest wavelength LEDs, each chain can measure the output power of the other, thereby enabling a feedback loop to control the output power of each color and the blended color mix.
[0026] Once the illumination device (i.e., the "lamp") is installed in an existing socket that may or may not be connected to a dimming switch, the illumination device can be dimmed by the remote controller. The remote controller sends commands to increment or decrement the output light level during the short "off periods. The dimming function can be performed by pulse width modulating the LED drive current at a switching frequency preferably locked to the switching regulator frequency or by simply adjusting the LED drive current.
[0027] If photosensing is enabled, during the short light off periods, the longest wavelength LED chain can be used to measure ambient light. To do so, the LEDs may be configured in photovoltaic mode, and produce a voltage proportional to incident light. If the voltage is above a level specified through a command, the lamp can turn off in response. If the voltage drops back below the specified level, the lamp can turn on. Such a mechanism enables the light to turn on at night and off during the day. In combination with a timer, the light can turn on at dusk and off after a specified amount of time. [0028] When the timer is enabled, the lamp can turn on and off at different times of day or turn off after a specified amount of time after being turned on. The lamp can be turned on by remote control, by power being applied through a switch, or by the photosensor function. In a mains connected application, the timer is synchronized to the AC frequency for a precise frequency reference.
[0029] When powered by a battery, the photosensitive LED chains can provide trickle current to re-charge the battery. A chain of 30 red LEDs (e.g., in the CREE lamp) can produce nearly ImW of power that can keep a re-chargeable battery charged in applications, such as emergency lights, that are not used often. For applications such as solar-powered, off-grid systems that are common in the developing world, the charging capability of the lamp can augment that of the solar panel.
Description of the Drawings
[0030] The present invention may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
[0031] FIG. 1 an exemplary system diagram of an illumination device and a remote controller.
[0032] FIG. 2 is an exemplary list of functions performable by an exemplary illumination device.
[0033] FIG. 3 is an exemplary timing diagram of data communication between the illumination device and the remote controller.
[0034] FIG. 4 is an exemplary timing diagram of the bit timing and coding scheme for transferring data between the illumination device and the remote controller.
[0035] FIG. 5 is an exemplary illumination device block diagram.
[0036] The use of the same reference symbols in different drawings indicates similar or identical items. While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
Detailed Description
[0037] Turning now to the drawings, FIG. 1 is one example of an intelligent illumination device system 10 that comprises the illumination device 11 and the remote controller 12. The remote controller 12 is preferably battery powered like a flashlight or TV remote control and is used to program the illumination device 11 with modulated light. When the illumination device 11 is powered preferably by the AC mains of an electrical socket (e.g., an Edison base socket), the illumination device 11 can be controlled by the remote controller 12. When the illumination device 11 is enabled to produce light (i.e., "turned on" or "producing light"), the illumination device 11 briefly and periodically stops emitting light to detect commands from the remote controller 12 or ambient light from the environment, or to calibrate colors in a multi-colored illumination device 11. When the illumination device 11 is powered by the AC mains, but is not enabled to produce light (i.e., "turned off), the illumination device enters a low power state. Commands from the remote controller 12 can still be detected by the illumination device 11 in this state. The illumination device 11 responds to the remote controller 12 by momentarily producing light modulated with data. To reset the illumination device 11 to a default state, power to the illumination device 11 is cycled in a specific sequence.
[0038] FIG. 1 is just one example of many possible intelligent illumination device systems. For example, the illumination device 11 could be powered with a battery or the remote controller 12 could be powered by the AC mains. In another example, if the illumination device is programmed when it is designed or produced, no remote controller 12 is needed. Examples of pre-programmed devices include pre-configured night lights, and lights that automatically turn of perhaps 1 hour (or other delay) after being turned on. In such case, the functionality of the illumination device may be reduced.
[0039] In another example, light from the remote controller 12 could power an un- powered illumination device 11 with light while programming. For instance, a consumer could buy a light bulb replacement including this remote controller. The consumer could then hold the bulb to the remote and configure it to turn off 35 minutes after being turned on, then take the programmed bulb and screw in a socket somewhere. Without this self-powered variant, the bulb would need to be screwed into an energized socket in order to program it, which may be possible, but still perhaps less convenient. [0040] In a further example, the remote controller battery could be charged by sunlight or ambient light when not in use. Additionally, multiple illumination devices 11 could communicate with each other. For example, various governments have recently introduced mandates that certain buildings must have intelligent lights that automatically turn on and off based on whether or not people are present. Some large lighting companies provide systems consisting of lamps with motion detectors and 900MHz RF transceivers. When one lamp in a room detects motion, it tells the rest of the lights to turn on. The two main issues with this approach are: (1) the lights are expensive, and (2) the RF signal passes through walls to other rooms with no people. The devices described herein could communicate with each other via light which: (1) does not require the expense of the RF circuitry, and (2) does not go through walls. Additionally, functions like dimming or color control could benefit from lamps communicating with each other. For example, a user could program one lamp, and that lamp then reconfigures the other lamps. Additional applications could be security where two lamps constantly communicate with each other. If an intruder passes between them and momentarily blocks the light, the lamps detect this and broadcast info to other lamps in the building in sort of a daisy chain way to a central security system.
[0041] Table 2 is an example list of commands 14 for the illumination device 11 that enable the remote controller 12 to turn the illumination device 11 on and off, adjust the output power, and change the color to one of three different settings. Additionally, the illumination device 11 can be configured to automatically turn on in response to a time of day counter reaching a particular count or ambient light dropping below a certain level, and to automatically turn off after a timer reaching a particular count from when the illumination device 11 is turned on or ambient light rising above certain level. In this example, the color mix is always automatically measured and adjusted to a specific setting. The example set of commands 14 can use 4 bits to produce hex codes 13.
[0042] Preferably, the hex codes 13 are preceded by a synchronization pattern and followed by parity to produce an 8 bit transfer sequence. Additionally, the commands that set a time must be followed with the actual time. Since there are 1440 minutes in a day, a time with one minute resolution requires 11 bits, which could be sent in two successive transfers after the command.
[0043] Table 2 is just one example of many possible sets of commands 14 and hex codes 13. For instance, in a multi-color light each individual component could be dimmed or color calibration could be enabled and disabled. As another example the time of day counter could count days of the week as well. The illumination device 11 could have a subset of these functions or could have a variety of other functions such as strobing or continuous color variation. Additionally, illumination device 11 status and register contents could be read. Further, the assignment of hex codes 13 to commands 14 could be completely different and could contain more or less bits depending on the number of commands 14.
[0044] FIG. 3 is an example timing diagram for communicating commands 14 between the illumination device 11 and the remote controller 12 when the illumination device 11 is producing light. Pulse width modulated light PWM 20 from the illumination device 11 is periodically interrupted by gaps 21 when no light is produced. The gap period 22 in this example is one second. The gap time 23 is equal to one half the mains period or 8.33mSec at 60Hz. The remote controller 12 synchronizes to gaps 21 in the PWM 20 light from the illumination device 11 and can send commands CMD 24 during gaps 21. When a CMD 24 is sent from the remote controller 12 and is properly received by the illumination device 11, the illumination device 11 provides a response RSP 25 immediately after CMD 24. The remote controller 12 may preferably be narrowly focused (much like a flashlight) to assist a user in directing the remote commands to a particular illumination device in a room with multiple such illumination devices. The user could see the light beam and shine it directly on one light. This would focus light from the remote on the illumination device and light from the illumination device on the detector in the remote.
[0045] In this example, the light from the illumination device 11 is pulse width modulated at 16 times the mains frequency or 960Hz for 60Hz AC, to enable dimming without changing LED wavelengths. At full brightness, the off time is very short or nonexistent and at low light levels, the on time is short. The frequency of the pulses stays fixed. To prevent the remote controller 12 from losing synchronization with the illumination device 11, the last pulse from the illumination device 11 before a gap 21 is preferably not reduced below a minimum width that the remote controller 12 can detect.
[0046] In another example, the one second gap time 22 can be shortened to 200msec for instance, after the illumination device 1 1 and remote controller 12 communicate a first CMD 24 so that successive commands can be communicated faster. This may be important for dimming since there may be many power level steps between low and high power. Once the remote controller 12 stops sending commands, the gap period 22 widens back to one second intervals.
[0047] When the illumination device 11 is not producing light, the remote controller 12 does not detect gaps 21 and can send commands CMD 24 at any time. The protocol shown in FIG. 3 remains the same except that the illumination device 11 is not outputting PWM 20 light before and after the transaction.
[0048] During gaps 21 when commands CMD 24 are not sent or when the illumination device 11 is not producing light, the illumination device 11 can measure ambient light. The ambient light level is subtracted from the received light when commands CMD 24 are sent and is used to determine when to turn the illumination device 11 on or off when photo-sensor functionality is enabled. More specifically, when the illumination device is receiving commands, the background or ambient light produces a DC offset in the optically induced voltage across the LEDs (or photodiode). This DC offset can be eliminated by measuring the optically induced voltage during gaps 21 when no commands are sent, and subtracting it from the induced voltage when receiving commands. Alternatively, the receiver in the illumination device can high pass filter the induced voltage to remove the DC offset. Since the data rate is low, the receiver may use a digital filter for DC blocking (and equalization). If the DC offset is known prior to receiving a command, the initial state of the digital filter can be set accordingly, and reduce the settling time. When photosensor functionality is enabled, ambient light is measured during gaps 21 when the illumination device is producing light, and measured all the time when not producing light.
[0049] Additionally, in a multi-color illumination device 11, the intensity of each individual color can be measured during gaps 21 or when the illumination device 11 is not producing light. For instance, when the illumination device 11 is turned on, the illumination device 11 can briefly measure the intensity of each color before producing the desired light. Then periodically as the illumination device warms up for instance, the color components can be measured during gaps 21.
[0050] FIG. 3 is just one example of many possible timing diagrams. The gap period 22 and gap time 23 could be substantially different depending on the applications. The response RSP 25 can be sent at different times or not at all. The commands CMD 24 could even be sent during the off times of the PWM cycle and responses RSP 25 could be variations in PWM duty cycle. To provide additional error protection, commands CMD 24 could be repeated one or more times before taking affect. Many different timing diagrams and communication protocols could be implemented. For an illumination device 11 that is powered by the light from the remote controller 12 instead of a battery or AC mains, the protocol can include significant illumination durations in order to store sufficient charge on a capacitor for instance to power the illumination device 11 and to communicate data.
[0051] FIG. 4 is an example timing diagram illustrating the bit level communication between the illumination device 11 and the remote controller 12 when the illumination device 11 is producing light. Communication begins with the illumination device 11 stopping the PWM 20 output. The illumination device synchronization IDSYNC 30 pulse is the last PWM pulse produced by the illumination device 11 prior to a gap 21. The width of IDSYNC 30 is greater than the minimum pulse width detectable by the remote controller 12. Other synchronization sequences, such as short series of pulses, may also be produced before each gap 21. The CMD 24 from the remote controller 12 comprises a synchronization pattern SYNC 31 of 3 ones, a hex code 13, and an even parity bit P32 that are biphase encoded. In this example, the command 14 is "light off'. If the illumination device 11 receives the CMD 24 properly, the response RSP 25 comprises the same biphase encoded SYNC 31, hex code 13, and parity P32 that comprised the CMD 24.
[0052] When the illumination device 11 is not producing light, the protocol shown in FIG. 4 remains the same except that the illumination device is not outputting PWM 20 light (nor IDSYNC 30) before and after the transaction.
[0053] FIG. 4 is just one example of many possible bit timing diagrams. Instead of biphase encoding, the protocol could use any one of many well known coding schemes such 4b5b, 8blθb, or NRZ. The SYNC 31 could have a wide variety of lengths and sequences including none at all. The hex codes 13 could have more or less bits and parity P32 could be even or odd, more than one bit, or none at all. CRC codes could be used for error detection. For an illumination device 11 that is powered by light from the remote controller 12, the protocol could be substantially different. In particular, it may be necessary to transmit data one bit at a time from the illumination device 11 to the remote controller 12 with the remote controller 12 emitting light to re-charge a capacitor on the illumination device 11 for instance between bits sent from the illumination device 11. Useful transceiver techniques for so doing are described in U.S. Patent Application No. 12/360,467 filed January 27, 2009 by David J. Knapp and entitled "Fault Tolerant Network Utilizing Bi-Directional Point-to-Point Communications Links Between Nodes," and in U.S. Provisional Application No. 61/094,595 filed September 5, 2008 by David J. Knapp and entitled "Optical Communication Device, Method and System," and in U.S. Patent Application No. 12/584,143, filed September 1, 2009 by David J. Knapp and entitled "Optical Communication Device, Method and System," each of which is hereby incorporated by reference in its entirety.
[0054] FIG. 5 is an example block diagram for an exemplary illumination device 11 that comprises an EMI filter and rectifier 41, an AC to DC converter, a voltage divider, an integrated circuit IC 54, and the LED chain 53. The EMI filter and rectifier 41 produces a full wave rectified version of the AC mains VAC 40, and minimizes both transient disturbances on the mains from affecting the rectified power, and switching noise in the illumination device 11 from affecting the mains. The voltage divider comprises resistors R 42 and R 43 and produces signal S 57 that is a reduced voltage version of the rectified mains signal for IC 54. The AC to DC converter includes inductors 44 and 45 (also referred to herein as inductors L 44 and L 45), capacitors 46 and 47 (also "capacitors C 46 and C 47"), diode 48 (also "diode D 48"), the N-channel switch transistor 49 '(also "switch N 49"), and the power controller 62 on integrated circuit 54 (IC 54). This example shows LED chain 53 comprising of LED 50, LED 51, and LEDn 52, with the dashed line between LED 52 and LEDn 53 indicating that LED chain 53 can include many LEDs. This architecture is typical for monochrome light or white light produced by blue LEDs with a phosphor coating. A multi-color illumination device typically would have separate LED chains for each color.
[0055] IC 54 includes memory and control 60, PLL and timing 61, power control 62, receiver 63, and output driver 64. Memory and control 60 includes non- volatile memory for storing configuration information, such as enabling the timer or photo-sensor, and volatile (or non-volatile) memory for settings such as dimming. Memory and control 60 also includes logic that manages the transfer of data with the remote controller 12, produces the pulse width modulated (PWM) LED drive signal S 59, and implements the timers and state machines that control the overall function of IC 54 and the illumination device 11.
[0056] PLL and timing 61 includes a phase locked loop that produces a high frequency clock that is phase locked to S 57 when the illumination device is powered. The voltage divider comprising of R 42 and R 43 provides a low voltage version of the rectified mains voltage S 57 that does not exceed the voltage rating of IC 54 and that the PLL locks to. All other circuitry on IC 54 is synchronized to the PLL and timing 61 outputs (not shown).
[0057] PLL and timing 61 enables the illumination device 11 to maintain a precise time base for time of day timer functionality by locking to the mains frequency. Likewise, gap period 22 and gap time 23 can be precisely aligned to VAC 40 timing. Such timing could enable multiple illumination devices 11 to synchronize and communicate directly between each other with light. For example, multiple illumination devices (i.e., "IDs") can sync to each other by first looking for GAPS (e.g., gaps 21) just before producing light. If proper GAPs are found, the illumination device syncs to them. If no gaps are found, there is nothing to sync to and the illumination device effectively becomes a timing master that other illumination devices lock to when turned on. Such an illumination device preferably should also be able to detect if sync is lost and to re-lock. It is further noted that additional embodiments for illumination devices and systems as well as for visible light communication systems and methods are described in U.S. Provisional Patent Application No. 61/336,242, filed January 19, 2010 by David J. Knapp and entitled "Illumination Devices and Related Systems and Methods," and U.S. Provisional Patent Application No. 61/339,273, filed March 2, 2010 by David J. Knapp, et al., and entitled "Systems and Methods for Visible Light Communication," each of which is hereby incorporated by reference in its entirety. It is further noted that display related systems and methods, display calibration systems and methods, and LED calibration systems and methods are described in U.S. Provisional Patent Application No. 61/273,518, filed August 5, 2009 by David J. Knapp and entitled "Display and Optical Pointer Systems and Related Methods," and U.S. Provisional Patent Application No. 61/273,536, filed August 5, 2009 by David J. Knapp and entitled "Display Calibration Systems and Related Methods," and U.S. Provisional Patent Application No. 61/277,871, filed September 30, 2009 by David J. Knapp and entitled "LED Calibration Systems and Related Methods," and U.S. Provisional Patent Application No. 61/281,046, filed November 12, 2009 by David J. Knapp and entitled "LED Calibration Systems and Related Methods," each of which is hereby incorporated by reference in its entirety.
[0058] When VAC 40 is turned off, capacitor C 47 can maintain power to IC 54 for some period of time. If VAC 40 is turned off and on within this time, IC 54 can remain powered. To reset the illumination device 11 to a default state, VAC 40 can be turned off and on a number of times for specified amounts of time. For instance, the reset sequence could be 3 short off and on intervals, followed by 3 longer off and on intervals, and followed finally by 3 more short off and on intervals. PLL and timing 61 monitors signal S 57, signals IC 54 to enter a low power state when signal S 57 stays low, and measures the time between short VAC 40 off and on periods. When PLL and timing 61 detects the proper VAC 40 off and on sequence, IC 54 is reset to a default state.
[0059] Power control 62, together with the external components inductors L 44 and L 45, capacitors C 46 and C 47, diode D 48, and switch N 49, and current sensing feedback from output driver 64, implement the AC-to-DC converter function. The configuration implemented is the well known Single Ended Primary Inductor Converter (SEPIC). Switch N 49 is turned on and off by power control 62 at a relatively high frequency such as IMHz, with the duty cycle varying to produce the desired current through LED chain 53. When switch N 49 is closed, the current from L 44 and L 45 is pulled through switch N 49 and charge stored on the capacitor C 46 provides current to LED chain 53. When switch N 49 is open, the current through inductors L 44 and L 45 flows through the diode D 48 and to LED chain 53 and C 47.
[0060] Power control 62 compares voltage feedback signal Vfb 65 from output driver 64 to an internal reference voltage to produce an error signal that adjusts the duty cycle of the control signal S 58 that is coupled to switch N 49. The signal Vfb 65 is produced by LED chain 53 current flowing through a small resistor in output driver 64 (not shown). When LED chain 53 is turned off, Vfb 65 becomes a divided down version of V+ 55, which occurs when receiving data and during the PWM dimming off times. A control loop adjusts the feedback divider to maintain V+ 55 at the same voltage as when LED chain 53 is on.
[0061] When output driver 64 turns the current to LED chain 53 on or off, large voltage transients can occur on V+ 55 before the power control 62 can adjust to the new duty cycle of signal S 58. When the LED chain 53 current is turned off, V+ 55 will go high until the duty cycle of S 58 is reduced, and when the LED chain 53 current is turned on, V+ 55 will go low until the duty cycle of S 58 is increased. To minimize such transients, power control 62 receives information from memory and control 60 in advance of when such changes will occur and adjusts S 58 duty cycle the instant such a change is needed. Just prior to the output driver 64 turning the LED chain 53 current off, power control 62 measures S 58 duty cycle and stores the result. This duty cycle is restored instantly the next time LED chain 53 current is turned off to prevent V+ 55 from spiking high. Likewise, the S 58 duty cycle is measured when the LED current is turned on, and the result is stored, and then restored to prevent V+ 55 from spiking low.
[0062] Output driver 64 turns LED chain 53 current on and off with a switch connected to ground (not shown). Current flows from V+ 55 to ground through LED chain 53 and the switch, when the switch is on, and no current flows when the switch is off. A small resistor in series with the switch produces Vfb 65 when the switch is on. When the switch is on, a control loop compares the output of a variable voltage divider from V+ 55 to Vfb 65 and adjusts the divider until the output equals Vfb 65. When the LED chain 53 current is turned off, the V+ 55 voltage divider loop is also turned off and the voltage divider remains fixed. While the LED chain 53 current is off, this divided version of V+ 55 is forwarded to power control 62 through Vfb 65.
[0063] Receiver 63 can receive data from the remote controller 12, when the LED chain 53 current is turned off by output driver 64. Modulated light from remote controller 12 is converted to a voltage signal S 59 by LED chain 53, which operates in photo-voltaic mode as in a solar panel. Receiver 63 high pass filters S 59 to block the DC content from ambient light and to cancel the low bandwidth of the photo- voltaic LED chain 53. Such bandwidth typically supports up to Ik bits per second (lkbps), but with the proper equalization filter the data rate can be increased by 10 times or more. To support the protocol in FIG.s 3 and 4, 2kbps are needed. Receiver 63 comprises an A/D converter and a digital filter to equalize signal S 59. Timing recovery is not needed since the data is sent from the remote controller 12 synchronously to the AC mains frequency that IC 54 is locked to. The output of the digital filter is simply sampled at the appropriate times.
[0064] When the illumination device 11 is not producing light, the remote controller 12 detects the absence of gaps 21. Since the remote controller 12 is not synchronized to the gaps 21 from the illumination device 11, and since the remote controller 12 is battery powered, data from the remote controller 12 is asynchronous to the timing in the illumination device 11. Provided the remote controller 12 has a precise oscillator, such as a quartz crystal, the remote controller 12 and the illumination device reference clocks will typically be within a couple hundred parts per million of each other. The illumination device 11 resets a timer clocked at high frequency on the falling edge of the third SYNC 31 pulse and uses this timer to sample received data and produce transmitted data. The drift between the two reference clocks over the 16 msec period of one transfer is insignificant. [0065] The illumination device 11 measures ambient light during gaps 21, and also when the illumination device 11 is not producing light, by measuring the average voltage of signal S 59 with the AID converter in receiver 63. The AID converter should be architected to have small DC errors, such as the well known chopper stabilization architecture, to measure very low light levels.
[0066] FIG. 5 is just one example of many possible illumination device 11 block diagrams. For example, an illumination device 11 architecture for multi-colored light could comprise of an LED chain 53 and output driver 64 for each component color. Example color combinations could comprise of red, green, and blue, or of red, yellow, green, and blue, or of red and white. During gaps 21, and also when the illumination device 11 is not producing light, the lower light frequency LEDs can measure the light intensity of each other and of the higher light frequency LEDs. For instance, in a red and white illumination device, during gaps 21 for instance, the white LED chain could produce light and the red LED chain could be connected to the receiver and could measure the light power. If the red LEDs are organized in two separate chains with separate output drivers, during gaps 21 for instance, one red LED chain could measure the light power of the other. By measuring the light power from each LED chain, the illumination device could adjust the current to the different LED chains to maintain a specific color point for instance over LED variations, temperature variations, and LED lifetime. A single receiver 63 could be shared and connected at different times to different LED chains, or multiple receivers 63 could be implemented.
[0067] Another example illumination device 11 block diagram for an illumination device that can be powered by the remote controller 12 during configuration could comprise a second very low power receiver. The second receiver could be powered by an LED chain receiving modulated light and could store configuration information in non-volatile memory. The average voltage induced across the LED chain by light is typically significantly lower than the voltage necessary to produce light from the same LED chain. The induced voltage could be stored across capacitor C 47 and a smaller segment of the LED chain 53 could be connected to output driver 64 to emit responses to the remote controller 12. The communication protocol to configure an illumination device 11 when not powered could be different from FIG. 3 to enable capacitor C 47 to be re-charged after each emitted light pulse. Useful techniques for so doing are described in the aforementioned U.S. Application No. 12/360,467 and the aforementioned U.S. Provisional Application No. 61/094,595. [0068] The block diagram for an illumination device 11 that is powered by a battery instead of the AC mains would have a battery and potentially a different type of switching power supply such as the well known buck, boost, boost buck, or flyback. With a rechargeable battery, ambient light or sunlight incident on the LEDs could produce power to recharge the battery. A block diagram for such an illumination device 11 could have a second power control 62 that manages the battery charger. An illumination device powered by the AC mains could also have any of a wide variety of different AC-DC converters, such as the boost buck or flyback. Such an illumination device could also have a back up re-chargeable battery that enables the illumination device to maintain the time of day counter when power goes off. The timing for the illumination device 11 could also be based on a local crystal oscillator instead the mains frequency for instance.
[0069] As a further example, the block diagram for an illumination device that uses a silicon photodiode instead of LEDs for instance for receiving data would have the receiver 63 connected to the photodiode instead of LED chain 53. Such architectures would be particularly useful for illumination devices that only use phosphor coated white LEDs that do not operate well in photo-voltaic mode. The silicon photodiode could receive commands 24 from the remote controller 12, measure ambient light, and measure emitted light from the LED chain.
[0070] Multiple illumination devices could also communicate with each other. In this example, an illumination device 11 could execute a protocol to synchronize to other illumination devices and to arbitrate for transmission bandwidth. When turned on, an illumination device 11 could monitor the ambient light, search for gaps 21 with the proper gap period 22 and gap time 23, and synchronize to the gaps 21 if found. If all the illumination devices are connected to the AC mains, then very precise synchronization is possible. Illumination devices could arbitrate for bandwidth according any one of many well known arbitration protocols. For instance, if two illumination devices transmit at the same time, both illumination devices detect the collision and wait a random amount of time before trying to communicate again. As another possibility, a CMD 24 could include a priority code that indicates in the case of a collision, which illumination device stops transmitting.
[0071] As used herein, an illumination device is assumed to produce a general light, usually of a human-perceivable nature, but possibly infrared or some other wavelength. An illumination device enabled to produce light (i.e., "turned on") may be thought of as being set to an "on-state" (i.e., having its illumination state set to an on-state), even though, as described above, there may be very short periods of time during which the light source is momentarily turned "off and is not actually emitting light, such as during the gaps, and during the off-times in a PWM signal. The on-state and off-state of the illumination device should be clear in the context described above and not confused with the on and off status of the actual light source.
[0072] An illumination device may be set to an on-state or off-state by any of several events, such as application/removal of power to the illumination device (such as by energizing the light socket into which the illumination device is inserted), by a timer event, by ambient light control, and by a remote command.
[0073] Exemplary block diagrams are depicted herein. However, other block partitionings of an illumination device may be provided. As used herein, an illumination device attribute may represent an operational state or a configuration parameter of the illumination device. Examples include the illumination state, timer settings, delay settings, color settings for each of one or more light sources within the illumination device, photosensing mode settings, dimmer settings, time-of-day, etc.
[0074] While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown and described by way of example. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed.

Claims

Claims What is claimed is:
1. An illumination device comprising:
a light source configured to provide illumination when the illumination device is set in an on-state; and
a light control circuit configured to control the light source responsive to incident light originating outside the illumination device.
2. The illumination device as recited in claim 1 wherein:
said light control circuit is responsive to an optically modulated command conveyed by the incident light.
3. The illumination device as recited in claim 1 wherein:
when the illumination device is set in an on-state, the light control circuit is
configured to turn off the light source momentarily at certain times; and the light control circuit is responsive to said incident light during the certain times when the light source is turned off.
4. The illumination device as recited in claim 3 wherein:
said light control circuit comprises a receiver block configured to demodulate the incident light originating outside the illumination device to detect an optically modulated command conveyed by the incident light; and
said receiver block is responsive to said incident light during said certain times when the light source is turned off.
5. The illumination device as recited in claim 1 wherein:
said light control circuit is responsive to ambient light conveyed by the incident light.
6. The illumination device as recited in claim 3 wherein: said light control circuit is responsive to incident ambient light during said certain times when the light source is turned off, configured to provide control of the illumination device responsive to the level of ambient light received by the illumination device.
7. The illumination device as recited in claim 1 wherein:
the light source comprises a light-emitting-diode (LED) device; and
the LED device also functions, at times, as a light sensor for the light control circuit.
8. The illumination device as recited in claim 1 further comprising a light sensor coupled to the light control circuit, said light sensor being distinct from said light source.
9. The illumination device as recited in claim 1 wherein:
the light control circuit includes a timer block configured to provide temporal control of the illumination device.
10. The illumination device as recited in claim 9 wherein:
the timer block cooperates to change the illumination state of the illumination device at one or more prescribed times.
11. The illumination device as recited in claim 9 wherein:
the timer block cooperates to change the illumination state of the illumination device after a controllable delay after a particular event.
12. The illumination device as recited in claim 11 wherein:
the illumination state is set to an off-state after a particular delay after being set in the on-state.
13. The illumination device as recited in claim 12 wherein:
the illumination state is set to an off-state after a particular delay after being set in the on-state resulting from being energized.
14. The illumination device as recited in claim 12 wherein: the illumination state is set to an off-state after a particular delay after being set in the on-state resulting from receiving a digital command to turn on.
15. The illumination device as recited in claim 1 further comprising:
a housing including an industry-standard base, thereby forming a backward- compatible device for use in industry-standard light sockets.
16. The illumination device as recited in claim 3 wherein the light control circuit further comprises:
a light source control circuit configured to pulse-width-modulate the light source when the illumination device is set in the on-state, and configured to turn off the light source momentarily at said certain times when the illumination device is set in the on-state.
17. The illumination device as recited in claim 16 wherein the light source control circuit, in response to a received data command, can vary the pulse-width-modulation of the light source to achieve a dimming capability.
18. The illumination device as recited in claim 16 wherein the light source control circuit is configured to modulate the light source with a synchronization sequence before each of the certain times when the light source is momentarily turned off when the illumination device is set in the on-state.
19. The illumination device as recited in claim 18 wherein the synchronization sequence comprises a single pulse having a width greater than the minimum width pulse that is detectable by a remote controller.
20. . The illumination device as recited in claim 7 further comprising:
a power generation block responsive to power produced by the LED in response to incident light.
21. The illumination device as recited in claim 20 wherein the power generation block is configured to charge a battery.
22. The illumination device as recited in claim 20 wherein the power generation block is sufficient to operate the light control block, when powered solely by incident light conveying optically modulated commands, to receive and decode an optically modulated command, and configure the illumination device accordingly.
23. The illumination device as recited in claim 3 further comprising:
a power supply block operably powered by an AC voltage source, the power supply block being configured to provide power to the light control circuit and light source.
24. The illumination device as recited in claim 23 wherein the time when the light source is turned off is synchronized to the AC mains.
25. The illumination device as recited in 3 wherein the light source control circuit is configured to control the light source to communicate with an external device.
26. The illumination device as recited in 25 wherein the external device comprises a second illumination device.
27. The illumination device as recited in 25 wherein the external device comprises a remote controller.
28. The illumination device as recited in 3 wherein the light source is turned off momentarily for a duration that a human eye cannot perceive.
29. A method for operating an illumination device comprising:
when said illumination device is set in an on-state, engaging a light source at first times to provide illumination, and turning off the light source momentarily at second times; detecting incident light originating outside the illumination device during said second times when the light source is turned off; and
controlling the illumination device responsive to the incident light.
30. The method as recited in claim 29 further comprising:
powering the illumination device using an AC voltage source; and
synchronizing said second times to the frequency of the AC voltage source.
31. The method as recited in claim 29 further comprising:
using the light source at times as a light detector to detect incident light.
32. The method as recited in claim 31 wherein the light source comprises an LED.
33. The method as recited in claim 29 further comprising:
demodulating the incident light to decode an optically modulated data command conveyed by the incident light; and
changing an attribute of the illumination device in response to the data command decoded from the incident light.
34. The method as recited in claim 33 further comprising transmitting an
acknowledgement response after receiving the data command.
35. The method as recited in claim 33 further comprising resetting the attribute by power cycling the illumination device in a prescribed sequence.
36. The method as recited in claim 33 wherein the attribute comprises a color adjustment setting of one or more light sources within the illumination device.
37. The method as recited in claim 33 wherein the attribute comprises a change in illumination state after a controllable time delay after a particular event.
38. The method as recited in claim 37 wherein the change in illumination state comprises setting the illumination device to an off-state, and the particular event comprises said illumination device being set to an on-state by action of a user, to thereby achieve an automatic turn-off delay of the illumination device after being turned on.
39. The method as recited in claim 37 wherein the change in illumination state comprises setting the illumination device to an off-state, and the particular event comprises being set to an on-state by a particular level of ambient light received by illumination device, to thereby achieve an automatic turn-off delay of the illumination device after being turned on.
40. The method as recited in claim 29 wherein:
the incident light originating outside the illumination device comprises ambient light; and
the controlling comprises adjusting the dimming responsive to the amount of ambient light.
41. The method as recited in claim 29 further comprising:
generating power from incident light when the illumination device is "off, to power the illumination device or charge a battery.
42. The method as recited in claim 33 further comprising:
synchronizing the command to periodic gaps in detected light from the illumination device during said second times when the light source is turned off.
43. The method as recited in 29 wherein the incident light originating outside the illumination device comprises light from a second illumination device.
44. The method as recited in 29 wherein the incident light originating outside the illumination device comprises light from a remote controller.
45. The method as recited in 29 further comprising controlling said light source to communicate with an external device.
46. The method as recited in 45 wherein the external device comprises a second illumination device.
47. The method as recited in 45 wherein the external device comprises a remote controller.
48. The method as recited in 29 wherein the light source is turned off momentarily for a duration that a human eye cannot perceive.
49. An illumination device comprising:
a light source configured to provide illumination when said illumination device is set in an on-state; and
a light detector configured to detect light during certain times when the light source is not providing illumination.
50. The illumination device of claim 49, wherein the light source comprises a first LED configured to provide the illumination, and wherein the first LED is also configured to be the light detector during certain times when the first LED is not providing illumination.
51. The illumination device as recited in claim 50 further comprising a second LED, wherein the first LED detects light emitted from the second LED.
52. The illumination device as recited in claim 51 further comprising a control circuit to adjust a color of light produced by the illumination device.
53. The illumination device as recited in claim 52 wherein light produced by the first LED or the second LED or both are adjusted in order to adjust the color.
54. A method for operating an illumination device comprising:
when said illumination device is set in an on-state, engaging a light source to provide illumination; and
using a light detector to detect light during certain times when the light source is not providing illumination.
55. The method as recited in claim 54, wherein the engaging step comprises engaging a first LED to provide illumination, and wherein the using step comprises using the first LED to detect light during certain times when the first LED is not providing illumination.
56. The method as recited in claim 55 wherein the using step comprises using the first LED to detect light emitted from a second LED.
57. The method as recited in claim 56 further comprising adjusting a color of light produced by the illumination device.
58. The method as recited in claim 57 wherein the adjusting step comprises adjusting light produced by the first LED or the second LED or both in order to adjust the color.
PCT/US2010/001919 2009-07-12 2010-07-07 Intelligent illumination device WO2011008251A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012520587A JP5847711B2 (en) 2009-07-12 2010-07-07 Intelligent lighting device
EP10800143.9A EP2454922A4 (en) 2009-07-12 2010-07-07 Intelligent illumination device
CN201080032373.7A CN102577622B (en) 2009-07-12 2010-07-07 Intelligent illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22490409P 2009-07-12 2009-07-12
US61/224,904 2009-07-12

Publications (2)

Publication Number Publication Date
WO2011008251A2 true WO2011008251A2 (en) 2011-01-20
WO2011008251A3 WO2011008251A3 (en) 2011-04-21

Family

ID=43450030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/001919 WO2011008251A2 (en) 2009-07-12 2010-07-07 Intelligent illumination device

Country Status (5)

Country Link
EP (1) EP2454922A4 (en)
JP (1) JP5847711B2 (en)
KR (1) KR20120042978A (en)
CN (1) CN102577622B (en)
WO (1) WO2011008251A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328299A1 (en) * 2011-06-27 2012-12-27 Cree, Inc. Apparatus and methods for optical control of lighting devices
WO2013081930A1 (en) 2011-11-21 2013-06-06 Lighting Science Group Corporation Wavelength sensing lighting system and associated methods
US8492995B2 (en) 2011-10-07 2013-07-23 Environmental Light Technologies Corp. Wavelength sensing lighting system and associated methods
CN103389710A (en) * 2013-07-22 2013-11-13 重庆邮电大学 Internet of Things environment control method and device based on context-aware
US8674608B2 (en) 2011-05-15 2014-03-18 Lighting Science Group Corporation Configurable environmental condition sensing luminaire, system and associated methods
US8933638B2 (en) 2011-05-15 2015-01-13 Lighting Science Group Corporation Programmable luminaire and programmable luminaire system
US9006987B2 (en) 2012-05-07 2015-04-14 Lighting Science Group, Inc. Wall-mountable luminaire and associated systems and methods
US9174067B2 (en) 2012-10-15 2015-11-03 Biological Illumination, Llc System for treating light treatable conditions and associated methods
US9185783B2 (en) 2011-05-15 2015-11-10 Lighting Science Group Corporation Wireless pairing system and associated methods
EP2945469A1 (en) * 2014-05-13 2015-11-18 Yu-Sheng So Illuminance configuring illumination system and method using the same
US9303825B2 (en) 2013-03-05 2016-04-05 Lighting Science Group, Corporation High bay luminaire
US9402294B2 (en) 2012-05-08 2016-07-26 Lighting Science Group Corporation Self-calibrating multi-directional security luminaire and associated methods
US9420240B2 (en) 2011-05-15 2016-08-16 Lighting Science Group Corporation Intelligent security light and associated methods
EP2815635A4 (en) * 2012-02-15 2016-10-26 Lumenpulse Lighting Inc Led lighting systems
WO2017009022A1 (en) * 2015-07-16 2017-01-19 Philips Lighting Holding B.V. A lighting unit and a method of controlling the same
US9648284B2 (en) 2011-05-15 2017-05-09 Lighting Science Group Corporation Occupancy sensor and associated methods
WO2019160731A1 (en) * 2018-02-13 2019-08-22 Hubbell Incorporated Voltage transducer for a lighting system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318251B2 (en) * 2013-11-26 2018-04-25 レンセラール ポリテクニック インスティチュート Flash lighting with optimized spectral power distribution
WO2017138029A1 (en) * 2016-02-08 2017-08-17 Beghelli S.P.A. Apparatus and method for remote control of lighting equipments
KR102149546B1 (en) * 2016-07-07 2020-08-31 천홍구 Light harvesting display
CN107864539B (en) * 2017-10-12 2019-10-11 惠州莫思特智照科技有限公司 Sense light and sensing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080309255A1 (en) 2007-05-08 2008-12-18 Cree Led Lighting Solutions, Inc Lighting devices and methods for lighting
US9459508B2 (en) 2014-12-25 2016-10-04 Japan Display Inc. Display device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302384A (en) * 1993-04-15 1994-10-28 Matsushita Electric Works Ltd Remote control lighting system
JPH1125822A (en) * 1997-06-30 1999-01-29 Matsushita Electric Works Ltd Wall switch
US6016038A (en) * 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
JP2000286067A (en) * 1999-03-31 2000-10-13 Audio Technica Corp Lighting controller
JP2002353900A (en) * 2001-05-30 2002-12-06 Nakayo Telecommun Inc Optical wireless transmitting system and optical wireless transmitting method
EP1860800A1 (en) * 2002-10-24 2007-11-28 Nakagawa Laboratories, Inc. Illumination light communication device
JP2006260927A (en) * 2005-03-17 2006-09-28 Sony Corp Illumination device, manufacturing method of the same, and display device
CN101026413B (en) * 2006-02-17 2012-01-04 华为技术有限公司 Lighting light wireless communication system
JP2007267037A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Illumination light transmission system
JP4182989B2 (en) * 2006-05-30 2008-11-19 ソニー株式会社 Illumination device and liquid crystal display device
JP2008077862A (en) * 2006-09-19 2008-04-03 Alps Electric Co Ltd Light control circuit
US8692656B2 (en) * 2006-11-30 2014-04-08 Koninklijke Philips N.V. Intrinsic flux sensing
US8035320B2 (en) * 2007-04-20 2011-10-11 Sibert W Olin Illumination control network
JP2008300152A (en) * 2007-05-30 2008-12-11 Nakagawa Kenkyusho:Kk Light-emitting diode automatic dimming device
US7961075B2 (en) * 2007-05-30 2011-06-14 Glp German Light Products Gmbh Programmable lighting unit and remote control for a programmable lighting unit
JP2009134877A (en) * 2007-11-28 2009-06-18 Sharp Corp Lighting apparatus
CN101458067B (en) * 2008-12-31 2010-09-29 苏州大学 Laser flare measuring device and measuring method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080309255A1 (en) 2007-05-08 2008-12-18 Cree Led Lighting Solutions, Inc Lighting devices and methods for lighting
US9459508B2 (en) 2014-12-25 2016-10-04 Japan Display Inc. Display device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9185783B2 (en) 2011-05-15 2015-11-10 Lighting Science Group Corporation Wireless pairing system and associated methods
US8674608B2 (en) 2011-05-15 2014-03-18 Lighting Science Group Corporation Configurable environmental condition sensing luminaire, system and associated methods
US9420240B2 (en) 2011-05-15 2016-08-16 Lighting Science Group Corporation Intelligent security light and associated methods
US9681108B2 (en) 2011-05-15 2017-06-13 Lighting Science Group Corporation Occupancy sensor and associated methods
US8933638B2 (en) 2011-05-15 2015-01-13 Lighting Science Group Corporation Programmable luminaire and programmable luminaire system
US9648284B2 (en) 2011-05-15 2017-05-09 Lighting Science Group Corporation Occupancy sensor and associated methods
US20120328299A1 (en) * 2011-06-27 2012-12-27 Cree, Inc. Apparatus and methods for optical control of lighting devices
EP2724128A4 (en) * 2011-06-27 2015-01-21 Cree Inc Apparatus and methods for optical control of lighting devices
EP2724128A1 (en) * 2011-06-27 2014-04-30 Cree, Inc. Apparatus and methods for optical control of lighting devices
US9337925B2 (en) 2011-06-27 2016-05-10 Cree, Inc. Apparatus and methods for optical control of lighting devices
CN103718005A (en) * 2011-06-27 2014-04-09 克里公司 Apparatus and methods for optical control of lighting devices
WO2013003117A1 (en) 2011-06-27 2013-01-03 Cree, Inc. Apparatus and methods for optical control of lighting devices
US8492995B2 (en) 2011-10-07 2013-07-23 Environmental Light Technologies Corp. Wavelength sensing lighting system and associated methods
WO2013081930A1 (en) 2011-11-21 2013-06-06 Lighting Science Group Corporation Wavelength sensing lighting system and associated methods
US9125275B2 (en) 2011-11-21 2015-09-01 Environmental Light Technologies Corp Wavelength sensing lighting system and associated methods
US8515289B2 (en) 2011-11-21 2013-08-20 Environmental Light Technologies Corp. Wavelength sensing lighting system and associated methods for national security application
US9307608B2 (en) 2011-11-21 2016-04-05 Environmental Light Technologies Corporation Wavelength sensing lighting system and associated methods
EP3294042A1 (en) 2011-11-21 2018-03-14 Environmental Light Technologies Corp. Wavelength sensing lighting system and associated methods
JP2015504581A (en) * 2011-11-21 2015-02-12 エンバイロメンタル ライト テクノロジーズ コーポレーション Wavelength sensitive illumination system and related methods
US9713227B2 (en) 2012-02-15 2017-07-18 Lumenpulse Lighting Inc. LED lighting systems
EP2815635A4 (en) * 2012-02-15 2016-10-26 Lumenpulse Lighting Inc Led lighting systems
US9006987B2 (en) 2012-05-07 2015-04-14 Lighting Science Group, Inc. Wall-mountable luminaire and associated systems and methods
US9402294B2 (en) 2012-05-08 2016-07-26 Lighting Science Group Corporation Self-calibrating multi-directional security luminaire and associated methods
US9174067B2 (en) 2012-10-15 2015-11-03 Biological Illumination, Llc System for treating light treatable conditions and associated methods
US9303825B2 (en) 2013-03-05 2016-04-05 Lighting Science Group, Corporation High bay luminaire
CN103389710A (en) * 2013-07-22 2013-11-13 重庆邮电大学 Internet of Things environment control method and device based on context-aware
EP2945469A1 (en) * 2014-05-13 2015-11-18 Yu-Sheng So Illuminance configuring illumination system and method using the same
AU2015202557B2 (en) * 2014-05-13 2017-05-04 Yu-Sheng So Illumination Regulating System in Synchronization with AC Power Frequency and Method Using the Same
WO2017009022A1 (en) * 2015-07-16 2017-01-19 Philips Lighting Holding B.V. A lighting unit and a method of controlling the same
CN108029166A (en) * 2015-07-16 2018-05-11 飞利浦照明控股有限公司 Lighting unit and the method for controlling it
CN108029166B (en) * 2015-07-16 2020-08-11 飞利浦照明控股有限公司 Lighting unit and method of controlling the same
WO2019160731A1 (en) * 2018-02-13 2019-08-22 Hubbell Incorporated Voltage transducer for a lighting system
US10638563B2 (en) 2018-02-13 2020-04-28 Hubell Incorporated Voltage transducer for a lighting system

Also Published As

Publication number Publication date
KR20120042978A (en) 2012-05-03
JP2012533164A (en) 2012-12-20
EP2454922A2 (en) 2012-05-23
CN102577622A (en) 2012-07-11
CN102577622B (en) 2014-10-15
WO2011008251A3 (en) 2011-04-21
JP5847711B2 (en) 2016-01-27
EP2454922A4 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
US9848482B2 (en) Intelligent illumination device
EP2454922A2 (en) Intelligent illumination device
US11101686B1 (en) Emergency lighting device with remote lighting
US8521035B2 (en) Systems and methods for visible light communication
KR100948736B1 (en) Led lamp management system using ac phase control
KR101931265B1 (en) System and method for lighting power and control system
EP2979520B1 (en) Dual-mode luminaire controllers
US9526142B2 (en) Luminaire controller
TWI387396B (en) Dimmable led lamp and dimmable led lighting apparatus
EP2277357B1 (en) Methods and apparatus for encoding information on an a.c. line voltage
CN102548101B (en) LED dimming system
CN106664755B (en) Radio frequency with light modulator compatibility(RF)Controlled lamp
US9320119B2 (en) System-voltage transmission branch of an interface of an operating device for light-emitting means
US20140300290A1 (en) Methods and apparatus for controlling a lighting fixture utilizing a communication protocol
CN110572895B (en) Primary and secondary lighting device, control method of primary and secondary lighting device and intelligent lighting system
US11602028B2 (en) LED device and lighting device including the same
CN215073040U (en) LED lamp lighting system and dimmer and LED lamp that contain thereof
KR20220107485A (en) Led control device and lighting device including the same
US20180287665A1 (en) Power line-based communication method and device
WO2015092598A1 (en) Controlling lighting system subjected to loss of power event
KR101139344B1 (en) Led drive circuit, led illumination fixture, led illumination device, and led illumination system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032373.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10800143

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012520587

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010800143

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127003792

Country of ref document: KR

Kind code of ref document: A