WO2006095559A1 - USE OF Fgf21 AS HEMATOPOIETIC FACTOR - Google Patents

USE OF Fgf21 AS HEMATOPOIETIC FACTOR Download PDF

Info

Publication number
WO2006095559A1
WO2006095559A1 PCT/JP2006/302921 JP2006302921W WO2006095559A1 WO 2006095559 A1 WO2006095559 A1 WO 2006095559A1 JP 2006302921 W JP2006302921 W JP 2006302921W WO 2006095559 A1 WO2006095559 A1 WO 2006095559A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
hematopoietic stem
differentiation
expression
substance
Prior art date
Application number
PCT/JP2006/302921
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Itoh
Hajime Yamauchi
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of WO2006095559A1 publication Critical patent/WO2006095559A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/50Fibroblast growth factors [FGF]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/22Haematology

Definitions

  • the present invention provides an agent for regulating differentiation of hematopoietic stem cells, a method for regulating differentiation of hematopoietic stem cells, a method for screening a substance capable of regulating the differentiation of hematopoietic stem cells, and the like.
  • Blood cells are indispensable for various life activities such as oxygen transport and antibody production.
  • Red blood cells are the most abundant blood cells in the blood and differentiate from mesoderm to red blood cells via hemangioblast, hematopoietic stem cells, and erythroid progenitor cells.
  • the search for hematopoietic factors that contribute to this developmental process and the analysis of their functions are thought to contribute to the elucidation of the pathogenesis, prevention, and treatment of various hematopoietic diseases.
  • Zebrafish are fertilized and developed outside of the mother's body, and their development is fast and the embryo is transparent throughout the development period.
  • experimental developmental analysis by introduction of foreign genes and cell transplantation can be easily performed. Even if blood circulation is completely lost, it can survive for several days by passive diffusion of oxygen from the body surface.
  • zebrafish is an excellent model animal for examining human blood cell differentiation (Thisse, C. and Zon, LI (2002) Science 295, 457-462; Davidson, AJ and Zon, LI (2004) Oncogene 23, 7233-7246).
  • FGF fibroblast growth factor
  • the present invention is based on the knowledge obtained by functional analysis of the F gf 21 gene, to provide a drug or a reagent having a new action mechanism for various diseases, and to develop a drug or a reagent. Its purpose is to provide useful means.
  • the present inventors suppressed the function of F gf 21 in zebrafish and analyzed its characteristics. It was found that the differentiation into one myeloid lineage cell was suppressed. The present inventors have also found that differentiation of hematopoietic stem cells into lymphocyte lineage cells can be promoted by suppressing the function of F gf 21 in zebrafish.
  • F gf 2 1 is the differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells (eg, erythrocytes, megakaryocytes, eosinophils, neutrophils, basophils, monocytes, rod cells), or It is thought that the differentiation of hematopoietic stem cells into lymphocyte lineage cells (eg, T cells, B cells, NK cells) can be controlled.
  • erythrocyte-myeloid lineage cells eg, erythrocytes, megakaryocytes, eosinophils, neutrophils, basophils, monocytes, rod cells
  • lymphocyte lineage cells eg, T cells, B cells, NK cells
  • substances that regulate the expression or function of F gf 21 have the ability to regulate the differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells and / or diseases caused by abnormal blood cells (for example, it may be useful for the development of medicines and research reagents for hematopoietic diseases, immune diseases, allergic diseases).
  • the present invention is as follows:
  • a hematopoietic stem cell differentiation regulator comprising a substance that regulates the expression or function of F g f 21;
  • [2] A substance that regulates the expression or function of F gf 21
  • the substance that suppresses the expression or function of F gf 21 is selected from the group consisting of an antisense nucleic acid, a ribozyme, an RNAi-inducible nucleic acid, a targeting vector, an antibody, and a dominant negative mutant.
  • the agent of [2] above which is an agent for promoting differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells, or an agent for suppressing differentiation of hematopoietic stem cells into lymphocyte lineage cells;
  • [1 4] comprising culturing hematopoietic stem cells in a medium in the presence of F gf 21 and evaluating the differentiation efficiency of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells, Method for determining the differentiation efficiency of hematopoietic stem cells by the method;
  • [19] including measuring the expression level and / or polymorphism of F gf 21 using a biological sample collected from an animal, and evaluating the biological state of the animal against hematopoietic stem cell differentiation based on the measurement result.
  • a method for determining the biological state of an animal for hematopoietic stem cell differentiation
  • a diagnostic agent for the biological state of an animal against hematopoietic stem cell differentiation which contains a reagent for measuring the expression level of F g f 21 or polymorphism;
  • [2 1] Kit including the following (a) and (b):
  • a method for regulating differentiation of hematopoietic stem cells comprising administering to a subject an effective amount of a substance that regulates the expression or function of F gf 21;
  • FIG. 1 shows the amino acid sequence of zebrafish F g f 21 and the position of the gene on the chromosome.
  • A Comparison of the amino acid sequences of zebrafish F g f 21 and human F g f 21. The amino acid sequence homology is 33.3%.
  • B Location of the zebrafish F g f 21 gene and human F g f 21 gene on the chromosome. Both exist adjacent to D h rs 1 0 and C a 1 1. Mb, raegabase
  • FIG. 2 shows erythropoiesis in a zebrafish fetus with suppressed F g f 21 function.
  • F gf 21 MO l Ong
  • Wild-type (left) and F g f 21 function-suppressed fetus (right).
  • B To observe erythropoiesis, the area enclosed by the square in Figure A was enlarged. Wild-type (left) and Fgf2 1 function-suppressed fetus (right). Arrows indicate red blood cells.
  • FIG. 3 shows angiogenesis in a zebrafish fetus with suppressed F g f 21 function.
  • F g f 21 MO (l Ong) was introduced into a fertilized egg, dextran labeled with FITC was introduced into the fetal vein 48 hours after fertilization, and blood vessels were observed with a fluorescence microscope. Wild-type (left) and Fg f 2 1 function-suppressed fetus (right). Arrows indicate blood vessels.
  • F g f 21 MO (l Ong) was introduced into a fertilized egg, and the expression of the vascular endothelium gene marker f 1 k 1 in the fetus 48 hours after fertilization was observed by whole mount in situ hybridization. Dextran labeled with FITC was introduced into the vein, and blood vessels were observed with a fluorescence microscope. Arrows indicate blood vessels.
  • Figure 4 shows a model diagram of the differentiation process of hematopoietic cells.
  • Bold letters indicate a marker gene for hematopoietic cells.
  • Fig. 5 shows marker of hematopoietic cells in zebrafish fetuses with suppressed Fgf21 function.
  • the expression of the gene is shown.
  • F gf 21 MO (l Ong) was introduced into fertilized eggs, and the expression of hematopoietic cell gene markers in the fetus was observed by whole mount in situ hybridization.
  • the arrows indicate the disappearance or decrease of expression in F gf 2 1 function-suppressed fetuses.
  • FIG. 6 shows the action model of F g f21.
  • F g f 21 acts on the differentiation process from hematopoietic stem cells to erythroid-myeloid progenitor cells.
  • erythropoietin acts on the differentiation process from erythroid-myeloid progenitor cells to erythrocytes.
  • the present invention provides a hematopoietic stem cell differentiation regulator comprising a substance that regulates the expression or function of F g f 21.
  • Hematopoietic stem cells differentiate into common myeloid progenitor cells (CMP cells) or lymphocyte progenitor cells (CLP cells).
  • CMP cells are divided into granulocyte / macrophage progenitor cells (GMP cells) or megakaryocyte Z red; 33 ⁇ 4 precursor progenitor cells (megaparyocyte / erythroid progenitor cells).
  • GMP cells further differentiate into eosinophils, neutrophils, basophils, monocytes, etc. via myelocytic cells or monocytic cells. Differentiate into spheres or megakaryocytes.
  • CLP cells are common T cell progenitor cells (T-lymphocyte progenitor cells: CTP cells) and B cell common progenitor cells. Differentiate into B-lymphocyte progenitor cells (CBP cells) or NK progenitor cells (NKP cells).
  • CBP cells B-lymphocyte progenitor cells
  • NBP cells NK progenitor cells
  • the present inventors have found that a substance that promotes / suppresses the expression or function of F gf 21 is capable of differentiating hematopoietic stem cells into CMP cells or differentiated cells thereof (eg, Gata 1 positive cells, mp x positive cells). It has been found that it can be promoted / suppressed and that the differentiation of hematopoietic stem cells into CLP cells or differentiated cells thereof (for example, I karos positive cells) can be inhibited / promoted.
  • erythrocyte-myelocyte lineage cell comprehensively means CMP cells and differentiated cells thereof, and includes erythrocyte lineage cells, megakaryocyte lineage cells, and myeloid lineage cells.
  • erythroid lineage cells comprehensively mean CMP cells, MEP cells, erythroblasts, and erythrocytes.
  • megakaryocyte lineage cell means CMP cells, MEP cells, and megakaryocytes comprehensively.
  • Myeloid lineage cell is a generic term for CMP cells, GMP cells, myeloid cells, monocytic cells, eosinophils, neutrophils, basophils, and monocytes.
  • Lymphocyte lineage cell means CLP cells and differentiated cells comprehensively
  • T cell lineage cell comprehensively means CLP cells, CTP cells, and sputum cells.
  • the “spider cell lineage cell” comprehensively means CLP cells, CBP cells, and sputum cells.
  • the “spider cell lineage cell” comprehensively means CLP cells, sputum cells, and sputum cells.
  • F gf 21 refers to human F gf 21 (see, for example, GenBank accession number: AB021975) or orthologs thereof, or mutants thereof (including SNPs and haplotypes).
  • the ortholog of F gf 21 is not particularly limited, for example, any animal, for example, fish, birds, mammals (eg, urushi, hidge, pig, goat, monkey, usagi, rat, hamster, guinea pig, mouse) It can be derived from.
  • F gf 21 is a secreted protein, and a signal sequence (for example, corresponding to amino acid residues 1 to 28 in the amino acid sequence shown in SEQ ID NO: 1) can be removed by processing. In the method of the present invention, the signal sequence is removed as F gf 2 1.
  • the substance that modulates the expression or function of F g f 21 may be a substance that promotes the expression of F g f 21.
  • F g f 2 1 means that a translation product (ie, protein) from F g f 21 is produced and functionally localized at the site of action. Therefore, the substance that promotes the expression of F gf 2 1 acts at any stage including F gf 2 1 transcription, post-transcriptional regulation, translation, post-translational modification, localization and protein folding. Also good. As used herein, promotion of F g f 21 expression includes supplementation with F g f 21 (protein).
  • An example of a substance that promotes the expression of F g f 21 may be an expression vector containing a nucleic acid encoding F g f 21 or F g f 21.
  • F g f 21 can be a natural protein or a recombinant protein.
  • F gf 21 can be prepared by a method known per se, for example, a) F gf 21 may be recovered from a biological sample (eg, blood) containing F gf 21, and b) a host cell (eg, Escherichia bacteria, Bacillus bacteria, yeast, insect cells, insects, animal cells) are introduced into F gf 2 1 expression vectors (described later), and transformed transformants are produced and produced by the transformants.
  • C) F gf 2 1 may be synthesized by a cell-free system using rabbit reticulocyte lysate, wheat germ lysate, E. coli lysate or the like.
  • F gf 2 1 is a method that uses solubility such as salting-out solvent precipitation method; mainly the difference in molecular weight such as dialysis method, ultrafiltration method, gel filtration method, and SDS-polyacrylamide gel electrophoresis method.
  • Method that utilizes the difference in charge such as ion exchange chromatography, method that utilizes specific affinity such as affinity chromatography, use of F gf 2 1 antibody, etc. It is appropriately purified by a method using a difference in hydrophobicity such as a method using a difference in isoelectric point such as isoelectric focusing, or a method combining these.
  • the substance that modulates the expression or function of F gf 21 is F gf 2 It may be a substance that suppresses the expression of 1. Substances that suppress the expression of F gf 21 may act at any stage such as F gf 21 transcription, post-transcriptional regulation, translation, post-translational modification, localization, and protein folding. .
  • An example of a substance that suppresses the expression of F g f 2 1 is an antisense nucleic acid against a transcription product of F g f 2 1, in particular, mRNA or an initial transcription product.
  • Antisense nucleic acid consists of a base sequence that can hybridize with the target mRNA (early transcript) under physiological conditions of a cell that expresses the target mRNA (early transcript), and the target mRNA in a hybridized state.
  • the type of the antisense nucleic acid may be DNA or RNA, or may be a DNAZRNA chimera.
  • Other important factors in the design of antisense nucleic acids include improving water solubility and cell membrane permeability, but these can be overcome by devising dosage forms such as the use of ribosomes and microspheres. it can.
  • the length of the antisense nucleic acid is not particularly limited as long as it can specifically hybridize with the transcription product of F gf 21.
  • the short one is about 15 bases, and the long one is in the entire mRNA (initial transcript) sequence.
  • the sequence may include a complementary sequence. From the viewpoint of ease of synthesis, antigenicity problems, etc., for example, oligonucleotides comprising about 15 bases or more, preferably about 15 to about 30 bases are exemplified.
  • antisense nucleic acids not only hybridize with F gf 21 transcripts to inhibit translation, but also bind to double-stranded DNA to form triplex, It may be capable of inhibiting transcription.
  • a substance that suppresses the expression of F g, f 2 1 is the transcription product of F gf 2 1, specifically mRNA or the initial transcription product, and the inside of the coding region (intron part in the case of the initial transcription product) And a liposome that can be cleaved specifically.
  • lipozyme Refers to RNA having an enzyme activity that cleaves nucleic acid, but recently it has been clarified that oligo DNA having the base sequence of the enzyme active site also has a nucleic acid cleaving activity. As long as it has a sufficient nucleic acid cleavage activity, it is used as a concept including DNA.
  • ribozyme The most versatile ribozyme is self-splicing RNA found in infectious RNAs such as viroid and virusoid, and the hammerhead type and hairpin type are known.
  • infectious RNAs such as viroid and virusoid
  • hammerhead type and hairpin type are known.
  • the ribozyme when used in the form of an expression vector containing the DNA that encodes it, a hybrid ribozyme in which tRNA-modified sequences are further linked to promote cytoplasmic translocation. [Nucleic Acids Res., 29 (13): 2780-2788 (2001)].
  • RNA i-inducible nucleic acid refers to a nucleic acid that can induce an RNA i effect when introduced into a cell, and is preferably RNA.
  • the RNAi effect is a phenomenon in which RNA having a double-stranded structure containing the same nucleotide sequence (or a partial sequence thereof) as mRNA suppresses the expression of the mRNA.
  • RNA having a double-stranded structure having at least 20 or more consecutive target mRNAs and the same nucleotide sequence (or a partial sequence thereof).
  • the double-stranded structure may be composed of different strands, or may be a double-stranded structure provided by a single RNA stem-loop structure.
  • RNA i-inducible nucleic acids include si RNA, st RNA, mi RNA, and the like.
  • the targeting vector used in the present invention comprises a first polynucleotide and a second polynucleotide that are homologous to the F gf21 gene capable of inducing homologous recombination of the Fgf21 gene, and a selection marker.
  • the first and second polynucleotides are polynucleotides having sufficient sequence identity and length to cause homologous recombination with genomic DNA containing F gf, 21.
  • the first and second polynucleotides are the first and second polynucleotides in the genomic DNA containing the F gf 21 gene.
  • Selectable markers include positive selectable markers (eg, neomycin resistance gene, hygromycin B phosphotransferase (BPH) gene, plasticidin S deaminase gene, puromycin resistance gene), negative selectable markers (eg, simple hell) Examples include pessimidal virus (HSV) thymidine jelly “one (tk) gene, diphtheria toxin A fragment (DTA) gene", etc.
  • Targeting vectors are either a positive selection marker, a negative selection marker, or both.
  • a targeting vector can also include two or more recombinase target sequences (eg, 1 ox P sequence used in the Cre / 1 ox P system from Batateriophage P 1, FLP ZFRT system from yeast FRT sequences used in It may contain a.
  • the substance that modulates the expression or function of F g f 21 may be a substance that suppresses the function of F g f 21.
  • the substance that suppresses the function of F gf 21 is not particularly limited as long as it is a substance that can interfere with the action of F gf 21, but an antibody against F gf 21, a dominant negative mutant of F gf 21, and these codes
  • An expression vector containing a nuclear acid is exemplified.
  • the antibody against F gf 21 may be either a polyclonal antibody or a monoclonal antibody, and can be prepared by a well-known immunological technique.
  • the antibody may be an antibody fragment (eg, Fab, F (ab ′) 2 ) or a recombinant antibody (eg, a single chain antibody).
  • a nucleic acid encoding the antibody is also preferable as a substance that suppresses the expression of F gf21.
  • a polyclonal antibody is commercially available using F gf 21 or a fragment thereof (if necessary, a complex cross-linked to carrier protein such as ushi serum albumin or KLH (Keyhole Limpet Heraocyanin)) as an antigen.
  • Animal adjuvants eg, complete or incomplete Freund's adjuvant
  • animals to which the antigen is administered include mammals such as rats, mice, rabbits, goats, guinea pigs, and hamsters.
  • Monoclonal antibodies can also be produced by cell fusion methods (for example, Takeshi Watanabe, principles of cell fusion methods and creation of monoclonal antibodies, Akira Taniuchi, Toshitada Takahashi, “Monoclonal antibodies and basics and clinical one”, 2- 14 pp., Science forum publication, can be Seisuru created by 198 5 years).
  • the factor is administered to a mouse subcutaneously or intraperitoneally 2-4 times with a commercially available adjuvant, and the spleen or lymph node is collected about 3 days after the final administration, and white blood cells are collected.
  • the leukocytes and myeloma cells are fused to obtain a hybridoma that produces a monoclonal antibody against the factor.
  • Cell fusion can be performed using the PEG method [J. Immunol. Methods, 81 (2): 223-228 (1985)] or the voltage pulse method [Hybridoraa, 7 (6): 627-633 (1988)].
  • a hybridoma producing a desired monoclonal antibody can be selected by detecting an antibody that specifically binds to an antigen from the culture supernatant using a well-known EIA or RIA method.
  • the culture of the hybridoma producing the monoclonal antibody can be carried out in vitro, or in vivo, such as mouse or rat, preferably mouse ascites, and the antibody can be obtained from the culture supernatant of the hybridoma and the ascites of the animal, respectively.
  • the antibodies of the present invention may be chimeric antibodies, humanized or human antibodies.
  • chimeric antibodies include “Experimental Medicine (Special Issue), Vol. 6, No. 10, 1988”, Japanese Patent Publication No. 3-73280, and human antibodies include, for example, Japanese Patent Publication No. 4-506458.
  • human antibodies include, for example, “Nature Genetics, Vol. 15, p. 146-156, 1997”, “Nature Genetics, Vol. 7, p. 13- No. 21, 1994, Special Publication No. 4-504365, International Application Publication No. TO94 / 25585, Nikkei Science, June, 40 to 50, 1995, Nature, Vol. 368, I
  • a dominant negative mutant of F g f 21 refers to one whose activity has been reduced by introducing a mutation into F g f 21.
  • the dominant negative mutant can indirectly inhibit its activity by competing with natural F g f 21.
  • the dominant negative mutant can be prepared by introducing a mutation into a nucleic acid encoding F g f 21. Examples of the mutation include an amino acid mutation (for example, deletion, substitution or addition of one or more amino acids) that causes a decrease in the function of the site at the functional site.
  • the dominant negative mutant can be prepared by a method known per se using PCR or a known kit.
  • antisense nucleic acids liposomes, RNAi-inducible nucleic acids, targeting vectors, antibodies, and dominant negative mutants may be abbreviated as “inhibitory substances”.
  • the agent of the present invention comprises an expression vector containing a nucleic acid molecule encoding the nucleic acid molecule or protein molecule as an active ingredient. You can also.
  • the oligonucleotide or polynucleotide encoding the above-mentioned nucleic acid molecule must be operably linked to a promoter capable of exerting a promoter activity in mammalian cells to be administered.
  • the promoter used is not particularly limited as long as it can function in the mammal to be administered.
  • SV 40-derived early promoter cytomegalovirus LTR, rous sarcoma virus LTR, Mo M u LV origin
  • viral promoters such as LTR and adenovirus-derived early promoters
  • mammalian constituent protein gene promoters such as the / 3-actin gene promoter, PGK gene promoter, and transferrin gene promoter.
  • the expression vector preferably contains a transcription termination signal, ie, a terminator region, downstream of the oligo (poly) nucleotide encoding the nucleic acid molecule.
  • selectable marker genes for selection of transformed cells such as genes that confer resistance to drugs such as tetracycline, ampicillin, kanamycin, hygromycin, phosphinothricin, and genes that complement auxotrophic mutations
  • drugs such as tetracycline, ampicillin, kanamycin, hygromycin, phosphinothricin, and genes that complement auxotrophic mutations
  • Vectors suitable for administration to mammals which are basic skeletal vectors used as expression vectors, plasmids or viral vectors, include adenowinoles, retrowinoles, adeno-associated viruses, herpes.
  • Virus vectors such as S. virus, ⁇ Cincinoainoles, Box Wizores, Poliouinoles, Sindbisuinoles, Sendai Wineles, Epstein.
  • the agent of the present invention can contain any carrier, for example, a pharmaceutically acceptable carrier, in addition to the substance that modulates the expression or function of F gf 21.
  • pharmaceutically acceptable carriers include sucrose, starch, mannitol, sorbit, lactose, dalcoose, cellulose, talc, calcium phosphate, calcium carbonate, etc., cellulose, methylcellulose, hydride Roxypropylcellulose, polypropylpyrrolidone, gelatin, gum arabic, polyethylene glycol, sucrose, starch and other binders, starch, canoleoxymethyl cenorelose, hydroxypropizole starch, sodium monoglycol starch H, sodium hydrogen carbonate, calcium phosphate, calcium kennate and other disintegrants, magnesium stearate, air mouth gill, tanolec, sodium lauryl sulfate and other lubricants, citrate, menthol, glycyrrhizin, ammonium salt,
  • Dispersing agents such as turbidity agents, surfactants, water, raw foods; brine, diluents such as orange juice, base waxes such as cacao butter, polyethylene glycol, white kerosene, etc. It is not a thing.
  • Preparations suitable for oral administration include solutions in which an effective amount of substance is dissolved in a diluent such as water or physiological saline, capsules containing an effective amount of the substance as solids or granules, sachets or Examples thereof include tablets, suspensions in which an effective amount of a substance is suspended in an appropriate dispersion medium, and emulsions in which a solution in which an effective amount of a substance is dissolved is dispersed in an appropriate dispersion medium and emulsified.
  • a diluent such as water or physiological saline
  • capsules containing an effective amount of the substance as solids or granules, sachets or Examples thereof include tablets, suspensions in which an effective amount of a substance is suspended in an appropriate dispersion medium, and emulsions in which a solution in which an effective amount of a substance is dissolved is dispersed in an appropriate dispersion medium and emulsified.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants Buffer solution, antibacterial agent, tonicity agent and the like may be contained.
  • Aqueous and non-aqueous sterile suspensions can also be mentioned, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
  • the preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials.
  • the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile vehicle immediately before use.
  • the dose of the agent of the present invention varies depending on the activity and type of the active ingredient, the severity of the disease, the animal species to be administered, the drug acceptability of the administration target, body weight, age, etc. In general, the amount of active ingredient per day for an adult is about 0.01 to about 500 mg Z kg.
  • the agent of the present invention is useful, for example, as a pharmaceutical or research reagent.
  • the agent of the present invention contains a substance that promotes the expression or function of F gf 21, it is useful as an agent for promoting differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells.
  • F gf 21 is a factor responsible for promoting differentiation of hematopoietic stem cells (for example, gata 2 positive) into CMP cells (for example, gata 1 positive).
  • a substance that promotes the expression or function of F gf 21 can promote the differentiation of hematopoietic stem cells into CMP cells, and thereby increase the number of cells such as erythrocytes, megakaryocytes, and myeloid cells. Since the agent of the present invention increases the number of cells such as erythrocytes more efficiently, a substance that promotes differentiation into erythrocytes (for example, erythropoietin), a substance that promotes differentiation into megakaryocytes (for example, thrombopoietin), It may further contain a substance that promotes differentiation into myeloid cells (eg granulocyte-macrophage colony-stimulating factor). In this case, ⁇
  • Clarifying agents can be used for diseases where an increase in the number of cells such as red blood cells, platelets, and myeloid cells is desired.
  • diseases in which an increase in the number of red blood cells is desired include anemia and erythrocytopenia (for example, after cancer chemotherapy and radiation therapy).
  • diseases for which an increase in the number of platelets is desired include thrombocytopenia (for example, after cancer chemotherapy and radiation therapy).
  • diseases for which an increase in the number of myeloid cells is desired include myelocytopenia (for example, cancer chemotherapy, after radiation therapy).
  • the agent of the present invention can also be used for the purpose of improving a biological function (for example, motor function) related to oxygen transport.
  • the agent of the present invention contains a substance that promotes the expression or function of F g f 21, it is useful as an inhibitor of differentiation of hematopoietic stem cells into lymphocyte lineage cells.
  • a substance that promotes the expression or function of F gf 21 indirectly suppresses the differentiation of hematopoietic stem cells into CLP cells (eg, ikaros positive) as a result of promoting differentiation of hematopoietic stem cells into CMP cells. It is believed that the number of lymphocyte lineage cells can be reduced.
  • the agent of the present invention can be used for diseases in which a decrease in the number of lymphocyte lineage cells (eg, T cells, B cells) is desired. Examples of diseases for which the number of lymphocyte lineage cells is desired include autoimmune diseases and allergic diseases.
  • the agent of the present invention contains a substance that suppresses the expression or function of F g f 21, it is useful as an agent for suppressing the differentiation of hematopoietic stem cells into erythrocyte-one myeloid lineage cells.
  • the present inventors have found that suppression of the function of F g f 21 suppresses differentiation of hematopoietic stem cells into CMP cells. Therefore, a substance that suppresses the expression or function of F gf 21 suppresses the differentiation of hematopoietic stem cells into erythrocyte-one myeloid lineage cells, thus reducing the number of red blood cells, megakaryocytes, myelocytes, etc. It is thought to get.
  • the agent of the present invention contains a substance that suppresses the expression or function of F gf 21, it is useful as an agent for promoting differentiation of hematopoietic stem cells into lymphocyte lineage cells.
  • Substances that suppress the expression or function of F gf 21 indirectly promote the differentiation of hematopoietic stem cells into CLP cells as a result of inhibiting the differentiation of hematopoietic stem cells into CMP cells, thereby increasing the number of lymphocyte lineage cells. It can be increased.
  • the agent of the present invention is more efficient I
  • lymphocyte lineage cells In order to increase the number of lymphocyte lineage cells, it may further contain a substance that promotes differentiation into lymphocyte lineage cells. Another substance that promotes differentiation into lymphocyte lineage cells is, for example, interleukin-1.
  • the agent of the present invention can be used for diseases in which an increase in the number of lymphocyte lineage cells (for example, T cells, B cells) is desired. Examples of diseases for which an increase in the number of lymphocyte lineage cells is desired include immunodeficiency diseases.
  • the modulator of the present invention contains other substances in addition to substances that promote the expression or function of F gf 21, they are in a combined form (for example, stored as a mixture in the same container) Alternatively, they can be provided in isolated form (eg, stored in different containers).
  • the modulator of the present invention can be used in vitro or in vitro. (2. Methods for regulating differentiation of hematopoietic stem cells)
  • the present invention also provides a method for regulating differentiation of hematopoietic stem cells.
  • the method includes, for example, culturing hematopoietic stem cells in a medium in the presence of a substance that modulates the expression or function of F gf21.
  • Hematopoietic stem cells can be used in any animal, such as fish, birds, mammals (eg, ushi, sheep, pigs, goats, monkeys, humans, rabbits, rats, hamsters, guinea pigs, mice). It can be a derived cell. Hematopoietic stem cells can also be cells derived from any tissue, but can be cells present in tissues such as bone marrow and fetal liver. Hematopoietic stem cells can be cells induced to differentiate from pluripotent stem cells such as embryonic stem cells and somatic stem cells.
  • cells suitable for allogeneic transplantation can be obtained by using cells derived from the same species as the animal intended for transplantation.
  • a cell suitable for allogeneic transplantation can be obtained.
  • Hematopoietic stem cells can be obtained by a method known per se (for example, F A C S) using a cell surface marker. Examples of cell surface markers for hematopoietic stem cells include S e a-1 and c kit.
  • the medium used for culturing hematopoietic stem cells is not particularly limited as long as it is suitable for the differentiation of hematopoietic stem cells, and is appropriately selected.
  • Modified minimal essential medium D M E M
  • F 12 medium or R P M I 16 40 medium or a mixture thereof.
  • additives to the medium include various amino acids, various inorganic salts, various vitamins, various antibiotics, and buffering agents.
  • the culture conditions are also appropriately determined.
  • the pH of the medium is about 6 to about 8, and the culture temperature is usually about 30 to about 40 ° C.
  • the medium may or may not contain serum, but a serum-free medium is preferable from the viewpoint of preventing contamination of unidentified components and reducing the risk of infection.
  • the differentiation-regulating method of the present invention comprises culturing hematopoietic stem cells in a medium in the presence of F gf21.
  • the culture of hematopoietic stem cells in the presence of F g f 21 is not particularly limited as long as it results in culturing hematopoietic stem cells in a medium containing F g f 21. Therefore, F g f 21 may not be present in the medium at the start of culture.
  • Examples of the culture of hematopoietic stem cells in the presence of F gf 21 include culture of hematopoietic cells in a medium supplemented with F gf 21, culture of hematopoietic stem cells into which an F gf 21 expression vector has been introduced, F gf 21 Examples include co-culture of hematopoietic stem cells with expression cells, but culture of hematopoietic stem cells in a medium supplemented with F gf 21 is preferred.
  • F g f 21 added to the medium can be a natural protein or a recombinant protein.
  • F g f 21 can be prepared by a method known per se as described above.
  • the expression vector introduced into the hematopoietic stem cells can be the same as the F gf 21 expression vector described above.
  • the expression vector can be introduced into hematopoietic stem cells by a method known per se, for example, an electroporation method, a calcium phosphate precipitation method, a microinjection method, a liposome, a method using a lipid such as a cationic lipid. Further, a part or all of the expression vector may or may not be integrated into the hematopoietic stem cell genome.
  • methods known per se such as methods using retroviruses, A method using a getting vector or the like can be used.
  • the cells to coexist with hematopoietic stem cells in the medium are not particularly limited as long as Fgf21 can be expressed.
  • the expression cell can be, for example, a cell obtained by introducing an F gf21 expression vector into a host cell, or a natural cell that expresses Fgf21.
  • natural cells that express F g f 21 cells derived from tissues expressing F g f 21 (eg, bone marrow, liver, thymus) can be used.
  • the F gf21-expressing cells can also be primary cultured cells, cell lines derived from primary cultured cells, cells obtained by culturing undifferentiated cells such as stem cells (eg, differentiated cells), and the like.
  • the F g f21 expressing cells can also be cells from the same animal or individual as the hematopoietic stem cells. Co-culture can be performed when hematopoietic stem cells and F gf 21-expressing cells are in physical contact with each other, or when these cells are present in the same culture system but separated by a septum that allows passage of substances. This includes cases where physical contact is not possible.
  • hematopoietic stem cells and F gf 2 1-expressing cells are present in the same culture system, but separated by a partition wall that allows the passage of substances, is not possible for physical contact of the cells themselves.
  • a partition wall that allows the passage of substances.
  • it is used for normal cell culture
  • a filter for example, a cartridge
  • the method for regulating differentiation of the present invention comprises culturing hematopoietic stem cells in a culture medium so as to suppress the expression or function of Fg 21.
  • hematopoietic stem cell culture include culture of hematopoietic stem cells in a medium supplemented with an F gf 21 inhibitor (described above).
  • the differentiation regulation method of the present invention can further include isolating cells induced to differentiate from hematopoietic stem cells (for example, erythroid-one myeloid lineage cells, lymphocyte lineage cells). Isolation of differentiated cells can be performed by a method known per se using a cell surface marker.
  • hematopoietic stem cells for example, erythroid-one myeloid lineage cells, lymphocyte lineage cells.
  • the differentiation control method of the present invention can also include further differentiation of cells induced to differentiate from hematopoietic stem cells.
  • the method for further differentiation of the cells induced to differentiate from hematopoietic stem cells is not particularly limited.
  • F gf 21 expression or Is a method of culturing hematopoietic stem cells in the presence of a substance that regulates function and other differentiation regulators, or after culturing hematopoietic stem cells in the presence of a substance that regulates the expression or function of F g ⁇ 21 And a method of using a differentiation regulator.
  • Examples of other differentiation regulating substances include those mentioned above.
  • a preferred example of a method for further differentiation of cells induced to differentiate from hematopoietic stem cells is a method for promoting differentiation into erythrocytes using erythropoietin.
  • the differentiation regulation method of the present invention is useful for producing predetermined differentiated cells from hematopoietic stem cells.
  • the obtained differentiated cells can be used for cell therapy (transplantation).
  • the cells used in the culture are preferably cells derived from the same species as the subject receiving cell therapy, but from the viewpoint of allogeneic transplantation, cells derived from the subject are used. More preferred.
  • the present invention also provides a method for determining the differentiation efficiency of hematopoietic stem cells by F g f 21.
  • the determination method of the present invention includes, for example, culturing hematopoietic stem cells in a medium in the presence of F gf 21 and evaluating the efficiency of differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells. .
  • the hematopoietic stem cells used in this determination method may be the same as those used in the differentiation regulation method of the present invention, but it is desirable to determine the differentiation efficiency of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells.
  • Hematopoietic stem cells taken from a subject to be tested eg, a subject being considered for treatment with a substance that modulates F gf 21 expression or function
  • a subject to be tested eg, a subject being considered for treatment with a substance that modulates F gf 21 expression or function
  • Culture of hematopoietic stem cells in a medium in the presence of F g f 21 can be carried out in the same manner as the differentiation regulating method described above, but culture of hematopoietic stem cells in a medium supplemented with F g f 21 is preferred.
  • Evaluation of differentiation efficiency of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells The value can be determined by a method known per se. For example, the differentiation efficiency of hematopoietic stem cells into red blood cells, myeloid lineage cells or lymphocyte lineage cells is sufficient to affirm the usefulness of treatment with substances that modulate the expression or function of F gf 21. The power can be evaluated.
  • This determination method is useful, for example, in predicting the effect of treatment using a substance that modulates the expression or function of F gf 21 in a given patient and determining whether or not to adopt the treatment in the patient. It can be.
  • the present invention also includes a screening method for a substance capable of regulating the differentiation of hematopoietic stem cells, comprising evaluating whether the test substance can regulate the expression or function of F gf 21, and the screening method. And a hematopoietic stem cell differentiation regulator comprising the substance.
  • test substance to be used for the screening method may be any known compound and novel compound, for example, nucleic acid, carbohydrate, lipid, protein, peptide, low-molecular-weight organic compound, and yunpina chemistry technology
  • Compound libraries, random peptide libraries prepared by solid phase synthesis or phage display methods, or natural components derived from microorganisms, animals and plants, marine organisms, and the like may be any known compound and novel compound, for example, nucleic acid, carbohydrate, lipid, protein, peptide, low-molecular-weight organic compound, and yunpina chemistry technology
  • Compound libraries, random peptide libraries prepared by solid phase synthesis or phage display methods, or natural components derived from microorganisms, animals and plants, marine organisms, and the like for example, nucleic acid, carbohydrate, lipid, protein, peptide, low-molecular-weight organic compound, and yunpina chemistry technology
  • the screening method of the present invention can be performed using cells.
  • the screening method of the present invention includes the following steps (a) to (c):
  • step (a) of the above method the test substance and cells capable of measuring the expression of F gf 21 Place under contact conditions. Contact of the test substance with a cell capable of measuring the expression of F gf 21 can be performed in a culture medium.
  • a cell capable of measuring the expression of F g f 21 refers to a cell capable of directly or indirectly evaluating the expression level of a product of F g f 21, for example, a transcription product or a translation product.
  • Cells that can directly evaluate the expression level of the F gf 2 1 product may be cells that can naturally express F gf 2 1, while indirectly evaluating the expression level of the F gf 2 1 product.
  • a possible cell may be a cell that allows reporter assembly for the F gf21 transcriptional regulatory region.
  • the cell capable of measuring the expression of F g f 21 can be an animal cell, for example, a mammalian cell such as a mouse, a rat, a hamster, a guinea pig, a rabbit, an inu, a monkey, or a human.
  • a mammalian cell such as a mouse, a rat, a hamster, a guinea pig, a rabbit, an inu, a monkey, or a human.
  • the cell capable of naturally expressing F gf21 is not particularly limited as long as it can potentially express Fgf21.
  • Such cells can be easily identified by those skilled in the art, and primary cultured cells, cell lines derived from the primary cultured cells, commercially available cell lines, cell lines available from cell banks, and the like can be used.
  • a cell that enables reporter assembly for the F gf21 transcriptional regulatory region is a cell that contains a Fgf21 transcriptional regulatory region and a reporter gene operably linked to the region.
  • the F g f21 transcriptional regulatory region, reporter gene can be inserted into an expression vector.
  • the F gf 21 transcriptional regulatory region is not particularly limited as long as it is a region capable of controlling the expression of F gf 21, but for example, in the region from the transcription start point to about 2 kbp upstream, or in the base sequence of the region Examples include a region consisting of a base sequence in which one or more bases have been deleted, substituted or added, and having the ability to control transcription of F gf 21.
  • the reporter gene may be any gene that encodes a detectable protein or an enzyme that produces a detectable substance.
  • a GFP green fluorescent protein
  • GUS one-darc mouth nidase
  • LUC luciferase
  • CAT chloramphee-colacetyltransferase
  • F gf 21 transcriptional regulatory region reporter gene operably linked to the region
  • the cell into which is introduced is not particularly limited as long as the F gf 21 transcriptional regulatory function can be evaluated, that is, as long as the expression level of the reporter gene can be quantitatively analyzed. However, since it expresses a physiological transcriptional regulatory factor for F gf 21 and is considered to be more appropriate for the evaluation of the expression regulation of F gf 21, F gf 21 is naturally introduced as the introduced cell. Cells that can be expressed in are preferred.
  • the medium in which the test substance is contacted with the cells capable of measuring the expression of F gf 21 is appropriately selected according to the type of cells used, for example, about 5 to 20% Examples include minimal essential medium (MEM) containing serum, Dulbecco's modified minimal essential medium (DMEM), RPM I 1640 medium, and 1999 medium.
  • MEM minimal essential medium
  • DMEM Dulbecco's modified minimal essential medium
  • the culture conditions are also appropriately determined according to the type of cells used, etc.For example, the pH of the medium is about 6 to about 8, and the culture temperature is usually about 30 to about 40 ° C.
  • the incubation time should be about 12 to 72 hours.
  • step (b) of the above method first, the expression level of F g f 21 in the cell contacted with the test substance is measured.
  • the expression level can be measured by a method known per se in consideration of the type of cells used. For example, when cells that can express F gf 21 naturally are used as cells capable of measuring F gf 21 expression, the expression level is for the product of F gf 21, for example, a transcription product or a translation product. It can be measured by a method known per se.
  • the expression level of the transcript can be measured by preparing total RNA from cells and performing RT_PCR, Northern blotting, or the like.
  • the expression level of the translation product can be measured by preparing an extract from the cells and immunologically.
  • immunological methods include radioisotope immunoassay (RIA method), EL ISA method (Methods in Enzymol. 70: 419-439 (1980)), and fluorescent antibody method.
  • RIA method radioisotope immunoassay
  • EL ISA method Methods in Enzymol. 70: 419-439 (1980)
  • fluorescent antibody method a cell capable of measuring Fgf21 expression
  • the expression level can be measured based on the signal intensity of the reporter.
  • the comparison is preferably based on the presence or absence of a significant difference.
  • the expression level of F gf 2 1 in the control cells not contacted with the test substance may be the expression level measured in advance compared to the measurement of the expression level of F gf 2 1 in the cells contacted with the test substance. Although the expression level measured at the same time may be used, the expression level measured at the same time is preferable from the viewpoint of the accuracy and reproducibility of the experiment.
  • a test substance that regulates the expression level of F g f 21 is selected.
  • the regulation of the expression level of F g f21 can be an increase or decrease in the expression level.
  • the test substance that increases the expression level of F gf 2 1 promotes the expression
  • the test substance that decreases the expression level of F gf 2 1 is an inhibitory effect on the differentiation of hematopoietic stem cells into erythrocyte-one myeloid lineage cells or promotes differentiation of hematopoietic stem cells into lymphocyte lineage cells It can have an effect and can be a preventive or therapeutic agent for diseases such as immunodeficiency diseases. Accordingly, it is possible to select a pharmaceutical agent such as a preventive / therapeutic agent for a predetermined disease or a complement for a research reagent, using the expression level of F g f 21 as an index.
  • the screening method of the present invention can also be performed using animals.
  • the screening method of the present invention includes the following steps (a) to (c):
  • step (a) of the above method mammals such as mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys and the like are used as animals.
  • Administration of the test substance to the animal can be performed by a method known per se.
  • step (b) of the above method the expression level of F gf 21 is measured by a method known per se. I
  • the blood concentration of F g f 21 is measured as the expression level of F g f 21.
  • the comparison of the expression level in this step (b) and the step (c) of the above method can be carried out in the same manner as in the screening method using cells capable of measuring the expression of F g f 21.
  • the screening method of the present invention enables screening of a substance that can regulate the differentiation of hematopoietic stem cells, or a prophylactic / therapeutic agent for a given disease. Therefore, the screening method of the present invention is useful for the development of the above-mentioned pharmaceuticals or research reagents.
  • the present invention also analyzes the influence of a specific polymorphism of F gf 2 1 on the ability to regulate differentiation of hematopoietic stem cells.
  • Containing proteins ⁇ Nucleic acid molecules are provided.
  • An F gf 2 1 polymorphism means a nucleotide sequence variation found in a certain frequency in genomic DNA containing the F gf 2 1 gene in a population, and in the genomic DNA containing the F gf 2 1 gene.
  • One or more DNA substitutions, deletions, additions eg, SNPs, haplotypes
  • repeats, inversions, translocations, etc. of partial regions in the genomic DNA.
  • the type of polymorphism of F gf 21 identified by the method of the present invention is that among all types of polymorphisms in F gf 21, hematopoietic stem cells are transformed into erythrocyte-myeloid lineage cells or lymphocyte lineage cells.
  • It may be a nucleotide sequence variation that causes a change in differentiation efficiency, or a nucleotide sequence variation that differs in frequency between an animal suffering from a predetermined disease (eg, hematopoietic disease, immune disease) and an unaffected animal.
  • a predetermined disease eg, hematopoietic disease, immune disease
  • the animal to be analyzed for the F g f 21 polymorphism is not particularly limited as described above, but humans are preferred.
  • the analysis can be performed by a method known per se. For example, when there is a significant difference in the frequency of occurrence of a specific polymorphism depending on the frequency and severity of a given disease (eg, hematopoietic disease, immune disease) as a result of an analysis method such as linkage analysis Can be determined as a polymorphism that causes a change in the ability to regulate the differentiation of hematopoietic stem cells.
  • an analysis such as linkage analysis
  • linkage analysis can be determined as a polymorphism that causes a change in the ability to regulate the differentiation of hematopoietic stem cells.
  • the analysis is It is also possible to do it in vitro.
  • hematopoietic stem cells are cultured in the presence of F gf 21 containing a specific polymorphism, and the differentiation efficiency of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphoid lineage cells is compared with that of control F gf 21 By comparing with differentiation efficiency, polymorphisms can be analyzed.
  • the identification method of the present invention may further include a step of subjecting a DNA sample prepared from a biological sample derived from a mammal to sequencing and determining a new type of the F gf 21 polymorphism.
  • Biological samples can be any tissue containing genomic DNA, such as hair, nails, skin, mucous membranes, as well as samples (eg, blood) containing F gf 21-expressing tissues or cells (eg, B cells). .
  • the biological sample is preferably hair, nails, skin, mucous membrane, blood, plasma, serum, saliva or the like.
  • Polymorphism can be determined by analyzing a large number of nucleotide sequences of genomes or transcripts contained in biological samples of different origins and identifying mutations found at a certain frequency in the determined nucleotide sequence.
  • the identification method of the present invention and the F g f21 polymorphism determined by the method are useful for determining the risk of developing a predetermined disease.
  • the present invention provides a method for determining the biological state of an animal against hematopoietic stem cell differentiation based on the expression level of F g f21.
  • This method can be useful, for example, as a method for determining the onset or risk of developing a predetermined disease (eg, hematopoietic disease, immune disease) in an animal.
  • a predetermined disease eg, hematopoietic disease, immune disease
  • the determination method of the present invention includes the following steps (a) and (b):
  • step (a) of the above method the expression level of F gf 21 is measured in a biological sample collected from an animal.
  • the animal is not particularly limited as described above, but human is preferable. ⁇
  • the biological sample is not particularly limited as long as it can measure the expression level of F g f 21, and examples thereof include blood, bone marrow fluid, liver, and thymus, but less invasive blood is preferable.
  • the measurement of the expression level of F g f 21 can be performed in the same manner as the screening method of the present invention.
  • the biological state of the animal with respect to hematopoietic stem cell differentiation can be evaluated based on the expression level of F g f 21.
  • the measured expression level of F g f 21 is compared with the expression level of F g f 21 in an animal without abnormal hematopoietic stem cell differentiation or in a normal animal.
  • the comparison of expression levels is preferably performed based on the presence or absence of a significant difference.
  • the expression level of F g f 21 in animals without normal hematopoietic stem cell differentiation or in normal animals can be determined by a method known per se.
  • the present invention also provides a diagnostic agent for the biological state of an animal with respect to hematopoietic stem cell differentiation, comprising a reagent for measuring the expression level of F gf21.
  • the diagnostic agent can be useful, for example, as a diagnostic agent for the onset or risk of developing a given disease in animals.
  • Reagents for measuring the expression level of F gf 21 can be used as long as the expression of F gf 21 can be quantified.
  • the diagnostic agent of the present invention can further contain the labeling substance.
  • labeling substances include fluorescent substances such as FITC and FAM, luminescent substances such as luminol, luciferin, and lucigenin, radioisotopes such as 3H, 14 C, 32 P, 35 S, and 123 I, piotin, and streptavidin.
  • affinity substances such as gin.
  • the nucleic acid probe for the F g f21 transcript may be either DNA or RNA, but DNA is preferable in consideration of stability and the like.
  • the probe may be either single-stranded or double-stranded.
  • the size of the probe is not particularly limited as long as a transcription product of F gf 21 can be detected, but is preferably about 15 to; L 2 O 2 O bp, more preferably about 50 to 500 bp.
  • the probe may be provided in a fixed form on a substrate like a microarray.
  • a plurality of primers capable of amplifying F g f 21 are selected such that a detectable size nucleotide fragment is amplified.
  • Detectable size nucleotide fragments can have a length of, for example, about 100 bp or more, preferably about 200 bp or more, more preferably about 400 bp or more.
  • the size of the primer is not particularly limited as long as F gf 21 can be amplified, but it is preferably about 15 to 100 bp, more preferably about 18 to 50 bp, and even more preferably about 20 to 30 bp. possible.
  • the diagnostic agent of the present invention can further contain a reverse transcriptase.
  • the determination method and diagnostic agent of the present invention are useful because they enable determination of abnormal hematopoietic stem cell differentiation, the onset of a predetermined disease, or the risk of onset.
  • the present invention provides a method for determining the biological state of an animal with respect to hematopoietic cell differentiation based on the F gf 21 polymorphism.
  • the method can be used, for example, for certain diseases in animals (eg, 1
  • the determination method of the present invention includes the following steps (a) and (b):
  • step (a) of the above method the polymorphic type of F g f 2 1 is measured in biological samples collected from animals.
  • the animals are as described above.
  • the biological sample may be the same as that described above in the identification method of the present invention.
  • the polymorphic type can be measured by a method known per se. For example, RF LP (Restriction Enzyme Fragment Length Polymorphism) method, PCR—SS CP (—Single-stranded DN A conformational polymorphism analysis) method, ASO (Allele Specific Oligonucleotide) hybridization method, Direct sequence method , ARMS (Amplification Refracting Mutation System) method, Denaturing Gradient Gel Electrophoresis (RNaturing) method, RNase A cleavage method, DOL (Dye-labeled Oligonucleotide Ligation) method, TaqMan PCR method, Invader method, etc. Can be used.
  • RF LP Restriction Enzyme Fragment Length Polymorphism
  • PCR—SS CP Single-stranded DN A conformational polymorphism analysis
  • ASO Allele Specific Oligonucleotide hybridization method
  • Direct sequence method ARMS (Amplification Re
  • step (b) of the above method the biological state of the animal with respect to hematopoietic stem cell differentiation can be evaluated based on the type of polymorphism. Specifically, it is determined whether an animal may have abnormal hematopoietic stem cell differentiation (excessive promotion or suppression), or whether it is more or less likely to suffer from a given disease in the future. obtain.
  • F gf 21 contains a polymorphism that enhances its function
  • the differentiation of hematopoietic stem cells into erythrocyte-one myeloid lineage cells is further promoted, and lymphocyte lineage cells of hematopoietic stem cells
  • F gf 21 contains a polymorphism that reduces its function
  • differentiation of hematopoietic stem cells into lymphocyte lineage cells is further promoted, and It is considered that differentiation into myeloid lineage cells can be further suppressed.
  • animals that are likely to develop a specific disease often have a specific type of polymorphism in a gene associated with the disease. Therefore, an animal containing a polymorphism that reduces the function of F gf 21 has a disease such as anemia, autoimmune disease or allergic disease.
  • the likelihood of developing is relatively high.
  • an animal containing a polymorphism that enhances the function of F gf21 is considered to have a relatively high possibility of developing a disease such as an immunodeficiency disease. Therefore, it is considered possible to determine the possibility of the development of a given disease by analyzing the polymorphism.
  • the polymorphic type to be measured in this step can be obtained, for example, by the identification method of the present invention.
  • the present invention also provides a diagnostic agent for the biological state of an animal with respect to hematopoietic stem cell differentiation, comprising a reagent for measuring a polymorphism of F g f 21.
  • This method can be useful, for example, as a diagnostic agent for the risk of developing a given disease in an animal.
  • the reagent for measuring the polymorphism of F g f 21 is not particularly limited as long as the polymorphism of F g f 21 can be determined.
  • the reagent may be labeled with a labeling substance. Further, when the reagent is not labeled with a labeling substance, the labeling substance can be further included in the form of a kit.
  • the reagent for measuring the polymorphism of F gf 2 1 is a nucleic acid probe capable of specifically measuring F gf 2 1 having a specific type of polymorphism, or F having a specific type of polymorphism. It may contain a plurality of primers capable of specifically amplifying gf21. Nucleic acid probes, primers can be for genomic DNA containing F g f 21 or F g f 21 transcripts. The nucleic acid probe and primer may be provided together with a transcription product or a reagent for extracting genomic DNA.
  • the nucleic acid probe capable of specifically measuring F gf 21 having a specific type of polymorphism is not particularly limited as long as F gf 21 having a specific type of polymorphism can be selected.
  • the probe may be either DNA or RNA, but DNA is preferable in consideration of stability and the like.
  • the probe may be either single-stranded or double-stranded.
  • the size of the probe is preferably as short as possible so that F gf 2 1 having a specific type of polymorphism can be selected. For example, the size of the probe may be about 15 to 30 bp.
  • the probe may be provided in a form fixed on a substrate like a microarray.
  • the probe enables, for example, an ASO (Allele Specific Oligonucleotide) hybridization method.
  • primers capable of specifically amplifying F gf 21 with a particular type of polymorphism are selected such that measurable size nucleotide fragments are amplified.
  • Such a plurality of primers is designed to include a polymorphic site at the 3 ′ end of one of the primers, for example.
  • the measurable size nucleotide fragment may have a length of, for example, about 100 bp or more, preferably about 200 bp or more, more preferably about 400 bp or more.
  • the size of the primer is not particularly limited as long as F gf 21 can be amplified, but is preferably about 15 to 10 O bp, more preferably about 18 to 50 bp, and even more preferably about 20 to 30 bp. It can be.
  • the determination kit can further contain a reverse transcriptase.
  • a reagent for measuring the polymorphism of F g f 21 a reagent containing a restriction enzyme that recognizes a specific type of polymorphic site can also be mentioned. According to such a reagent, polymorphism analysis by RF LP becomes possible.
  • the above-described determination method and diagnostic agent of the present invention enable determination of abnormal hematopoietic stem cell differentiation and the onset risk of a predetermined disease, and provide an opportunity for improving lifestyle habits for the purpose of preventing the predetermined disease. Because it is useful.
  • the present invention provides a kit comprising the following (a) and (b):
  • the substance that regulates the expression or function of Fgf21 in (a) above may be the same as described above.
  • the reagents for identifying hematopoietic stem cells in (b) above include hematopoietic stem cell-specific cell surface markers (eg, Sea-1, ckit), hematopoietic stem cell-specific cell non-surface markers (eg, Gata— l) a substance having a specific affinity for (for example, Antibody).
  • hematopoietic stem cell-specific cell surface markers eg, Sea-1, ckit
  • hematopoietic stem cell-specific cell non-surface markers eg, Gata— l
  • a substance having a specific affinity for for example, Antibody
  • Examples of the reagent for identifying a differentiated cell of the hematopoietic stem cell include a reagent for identifying an erythrocyte-myeloid lineage cell and a lymphocyte lineage cell.
  • a reagent for identification of erythrocyte-myeloid lineage cells a substance having a specific affinity for a cell non-surface marker specific to erythrocyte-myeloid lineage cells (eg, G 1 obin, mp X) (for example, For example, antibodies).
  • Reagents for identifying lymphocyte lineage cells include cell surface markers specific for lymphocyte lineage cells (eg, B cell receptor, T cell receptor), cell surface markers specific for lymphocyte lineage cells (eg, I karos). ) And a substance having a specific affinity (for example, an antibody).
  • Examples of the differentiation regulating reagent for differentiated cells of hematopoietic stem cells (b) above include reagents for regulating differentiation of erythrocyte-myeloid lineage cells and lymphocyte lineage cells.
  • Examples of the differentiation regulator for erythrocyte-myeloid lineage cells include those containing thrombopoietin as a differentiation regulator for erythrocyte-one myeloid lineage cells.
  • Examples of the differentiation regulator for lymphocyte lineage cells include those containing interleukin-17 as a differentiation regulator for lymphocyte lineage cells.
  • the kit of the present invention is useful for the preparation of the agent of the present invention and for simply carrying out the method of the present invention.
  • the present invention also provides a novel F gf 21 polypeptide, polynucleotide.
  • the polypeptide of the present invention is a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 3 or a polypeptide having an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3.
  • the amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 3 is (a) 1 or 2 or more (for example, 1 to 50, preferably 1 to 3) in the amino acid sequence represented by SEQ ID NO: 3.
  • amino acid sequence in which 0, more preferably 1 to 20, even more preferably 1 to 10, most preferably 1 to 5 amino acids are substituted, deleted, inserted or added (b ) Shown in SEQ ID NO: 3
  • Significant amino acid sequence identity (for example, about 70% or more, preferably about 80% or more, more preferably about 90% or more, even more preferably about 95% or more, most An amino acid sequence having preferably about 9 7%, 98%, or 99% or more amino acid sequence identity) is mentioned.
  • the identity (%) can be determined using a program commonly used in this field (for example, BLAST, FASTA, etc.) by default. In another aspect, identity (%) is determined by any algorithm known in the art, such as Needleman et al. (1970) (J. Mol.
  • the polypeptide of the present invention may also have activities such as hematopoietic stem cell differentiation-regulating activity.
  • the polypeptide of the present invention may also lack or have a signal sequence portion.
  • the signal sequence portion is a portion corresponding to the 1st to 19th amino acids of the amino acid sequence represented by SEQ ID NO: 3.
  • the polynucleotide of the present invention is a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 2 or a polynucleotide having a nucleotide sequence substantially identical to the nucleotide sequence represented by SEQ ID NO: 2.
  • the polynucleotide having the nucleotide sequence substantially identical to the nucleotide sequence represented by SEQ ID NO: 2 includes: (a) High stringent conditions for a polynucleotide comprising a complementary sequence of the nucleotide sequence represented by SEQ ID NO: 2 Polynu that hyprid under (
  • nucleotides 34 nucleotides, (b) significant nucleotide sequence identity to the nucleotide sequence set forth in SEQ ID NO: 2 (eg, about 70% or more, preferably about 80% or more, more preferably about 90% or more) Even more preferably about 95% or higher, most preferably about 9 7%, 98% or 99% or higher nucleotide sequence identity).
  • the high crystallization conditions under high stringency conditions are: 6 XSSC (sodium chloride / sodium cirate) / 45 ° C after high hydration, 0.2 XSSC / 0.1% SDS / 50 ⁇ 6 5. One or more washings with C may be mentioned. Nucleotide sequence identity (%) can be determined in the same manner as amino acid sequence identity (%).
  • the polynucleotide of the present invention may also lack or have a signal sequence portion.
  • the signal sequence portion is a portion corresponding to the first to 57th nucleotides of the nucleotide sequence
  • the present invention also provides various inventions related to the polypeptides and polynucleotides of the present invention.
  • Such an invention includes an antibody against the polypeptide of the present invention (for example, a monoclonal antibody, a polyclonal antibody) and its producing cells (ie, a hybridoma), a polynucleotide encoding the polypeptide, and a polynucleotide.
  • novel F gf 2 1 inhibitors eg, antisense nucleic acids, ribozymes, RNA i-inducible nuclear acids, dominant negative mutants
  • novel F gf 2 1 Reagents eg, nucleic acid probes, primer pairs or 3 or more primer sets
  • novel F gf 2 1 transgenic animals and cells eg, animals and cells overexpressing new F gf 2 1, and new Animals and cells in which the expression or function of F gf 21 is suppressed, ie knockout animals and cells
  • novel F gf 2 1 inhibitors eg, antisense nucleic acids, ribozymes, RNA i-inducible nuclear acids, dominant negative mutants
  • novel F gf 2 1 Reagents eg, nucleic acid probes, primer pairs or 3 or more primer sets
  • novel F gf 2 1 transgenic animals and cells eg, animals and cells overexpressing new F gf 2 1, and new Animals and cells in which the expression or function of
  • Example 1 Isolation and structural analysis of zebrafish F g f 21c cNA
  • the zebrafish DNA database (genomic DNA, ESTDNA) (GenBank: http://www.ncbi.nlra.nih.gov/, Emsenble: http: / A homology search was performed using /ww.ensemble.org/) to find a zebrafish gene fragment expected to encode Fg 2.
  • F gf 2 1 consists of 194 amino acid residues (SEQ ID NO: 3).
  • the amino acid sequence (SEQ ID NO: 3) was found to have the highest homology (3.3.3% amino acid sequence identity) with human F gf 21 among known human proteins ( Figure 1 A).
  • the human F gf 2 1 gene has a force S that is close to carbonic anhydrase XI (CA 1 1) and dehydrogenase / reductase member 10 (DHR S 1 0) on the chromosome S (LocusLink: http: // www. ncbi. nlm.
  • this gene was confirmed to be the zebrafish F gf 21 gene. It was.
  • Example 2 Function suppression experiment of F g f 21 by introducing F g f 21 MO
  • the target gene can be effectively and specifically inhibited by introducing the target gene MO into the fertilized egg of zebrafish (Nasevicius, A. and Ekker, SC (2000) Nat. Genet. 26, 153-60). Therefore, we introduced F g f 2 1 MO into fertilized eggs to suppress the function of F g f 2 1 and examined its phenotype. Specifically, a morpholino-modified antisense oligo having a sequence (5, 1 GGCAAAAAGCATGACTGACTAAGCT-3, (SEQ ID NO: 6), 25 bases) complementary to the 5 'untranslated sequence of F gf 2 1 mRNA and a part of the translated sequence.
  • Nucleotide (MO) was introduced into a fertilized egg (10 ng g fertilized egg), and the phenotype of the embryo in which the function of F gf 21 was suppressed was analyzed.
  • control MO (5 '— GGAAATAAG CATCACTGAGTAACCT— 3' (SEQ ID NO: 7), 25 bases) in which 25 bases of F gf 21 MO were replaced with other bases was used. Phenotypes were similarly analyzed in the introduced embryos (1 Ong / fertilized egg).
  • F gf 21 MO and F gf 21 mRNA were simultaneously introduced into fertilized eggs (F gf 21 MO: 10 ng / fertilized egg, F gf 21 mRNA: 10 p gZ fertilized egg), and phenotype was analyzed.
  • F g f 21 mRNA was prepared by incorporating the translation region of F g f 21 cDNA into a pCS2 + vector and using it as a cage.
  • Red blood cells were observed for embryo phenotype analysis.
  • the observation of erythrocytes was performed by removing the egg membranes of zebrafish embryos 24 hours after fertilization, immersing them in o-dianisidine solution for 15 minutes in the dark and adding H 2 0 2 to develop the color.
  • Dextran labeled with the fluorescent dye FITC was introduced into the vein of a zebrafish embryo (48 hours after fertilization), and angiogenesis was observed with a fluorescence microscope.
  • the expression of the vascular endothelial cell marker gene, f1k1 was observed by whole mount in situ hybridization (Koshida, S. et al. (1998) Dev. Biol. 244, 9-20). Embryos 24 hours after fertilization were fixed with 4% paraformaldehyde, and the digoxigenin-labeled flklcRNA probe was hyperpresed.
  • FIG. 3A the angiogenesis of the F g f 2 1 function-suppressed embryo was normal (FIG. 3A).
  • the expression of the vascular endothelial cell marker, flkl was normal (Fig. 3B).
  • Red blood cells such as zebrafish are nucleated, unlike mammalian red blood cells, but the basic process of blood cell development is well conserved among vertebrates (Thisse and Zon, 2002; Davidson and Zon, 2004). That is, pattern formation of the mesoderm occurs in the early gastrulation stage of development, and hemangioplast is a progenitor cell common to blood cells and vascular endothelial cells. The last is generated. Furthermore, as a blood cell lineage, it differentiates into hematopoietic stem cells and differentiates into various blood cells such as erythrocytes, myeloids, and lymphocytes (Fig. 4) (Thisse and Zon, 2002; Davidson and Zon, 2004). These hematopoietic processes progress in a tissue called the intermediate cell mass (ICM) in the zebrafish fetus. Therefore, we investigated which stage of F gf 2 1 is involved in blood cell development.
  • ICM intermediate cell mass
  • hematopoietic cell marker genes in zebrafish embryos at various developmental stages was observed by whole mount in situ hybridization. Embryos were fixed with 4% paraformaldehyde and hybridized with a digoxigenin labeled marker cRNA probe.
  • Various hematopoietic cell markers include sc 1 (hemangioblast), gata 2 (hematopoietic stem cell), gata 1 (erythrocyte-one myeloid progenitor cell), mpx (myeloid), ikaros (lymphocyte progenitor cell) (Thisse , C. and Zon, LI (2002) • Science 295, 457-462).
  • F gf 21 has an important function in erythropoiesis.
  • F gf 21 acts on hematopoietic stem cells and was found to be a hematopoietic factor that plays an important role in the generation of erythrocyte myeloid progenitor cells (Fig. 6).
  • Erythropoietin well known as a hematopoietic factor, acts on erythroid progenitors and increases it. Promotes growth and differentiation into red blood cells ( Figure 6). Therefore, F gf 21 is expected to be clinically applied as a new hematopoietic factor having a mechanism of action different from that of erythropoietin.
  • the agent of the present invention may be useful for regulating differentiation of hematopoietic stem cells and preventing or treating certain diseases such as hematopoietic diseases and immune diseases.
  • the differentiation regulation method of the present invention is useful for regulating differentiation of hematopoietic stem cells into CMP cells, CLP cells or their differentiated cells, particularly regulation of differentiation of hematopoietic stem cells into CMP cells.
  • the method for determining differentiation efficiency according to the present invention comprises a method for regulating the expression or function of F gf 21 in the treatment of patients with diseases caused by abnormalities in blood cells (eg, hematopoietic diseases, immune diseases). This is useful because it allows prediction of treatment effects in patients.
  • the screening method of the present invention is useful for development of medicines for diseases caused by abnormal blood cells.
  • the determination method and diagnostic agent of the present invention are useful for evaluating the onset or risk of developing diseases caused by abnormal blood cells.
  • This application is based on Japanese Patent Application No. 2 0 0 5-0 7 0 0 7 2 filed in Japan (Filing Date: March 1, 1, 2005), the contents of which are hereby incorporated by reference. It is included.

Abstract

It is intended to provide novel drugs and reagents relating to Fgf21, means useful in developing them and so on. More specifically speaking, it is intended to provide: an agent for controlling the differentiation of hematopoietic stem cells which contains a substance capable of controlling the expression or function of Fgf21; a method of controlling the differentiation of hematopoietic cells and a method of evaluating the differentiation efficiency thereof by using Fgf21; a method of screening a substance capable of controlling the differentiation of hematopoietic stem cells which comprises evaluating whether or not a test substance can control the expression or function of Fgf21; a method of identifying a polymorphism in Fgf21 capable of altering the ability to control the differentiation of hematopoietic stem cells; a method of evaluating the body conditions of an animal under the differentiation of hematopoietic stem cells and a diagnostic therefor; a kit which contains a substance capable of controlling the expression or function of Fgf21; and so on.

Description

明細書  Specification
造血因子としての F g f 2 1の使用 技術分野  Use of F g f 2 1 as a hematopoietic factor
本発明は、 造血幹細胞の分化調節剤、 造血幹細胞の分化調節方法、 造血幹細胞 の分化を調節し得る物質のスクリーニング方法などを提供する。 背景技術  The present invention provides an agent for regulating differentiation of hematopoietic stem cells, a method for regulating differentiation of hematopoietic stem cells, a method for screening a substance capable of regulating the differentiation of hematopoietic stem cells, and the like. Background art
血球細胞は酸素輸送、 抗体産生など様々な生命活動に不可欠である。 赤血球は 血液中で最も多く存在する血球細胞であり、 中胚葉からへマンジオブラスト、 造 血幹細胞、 赤血球前駆細胞を経て赤血球へと分化する。 この発生過程に寄与する 造血因子の探索とその機能解析は種々の造血系疾患の病因解明や予防、 治療に貢 献するものと考えられる。  Blood cells are indispensable for various life activities such as oxygen transport and antibody production. Red blood cells are the most abundant blood cells in the blood and differentiate from mesoderm to red blood cells via hemangioblast, hematopoietic stem cells, and erythroid progenitor cells. The search for hematopoietic factors that contribute to this developmental process and the analysis of their functions are thought to contribute to the elucidation of the pathogenesis, prevention, and treatment of various hematopoietic diseases.
ゼブラフィッシュは母体外で受精および発生が行われ、 その発生が速く、 発生 期間を通して胚が透明である。 また、 外来遺伝子の導入、 細胞移植などによる実 験発生学的解析が容易に実施できる。 また、 血液循環を全く消失していても体表 からの受動的な酸素の拡散によって数日間 '生き延びることができる。 さらに、 血 球分化過程はゼブラフイシュからヒ トまで良く保存されていることが明らかにさ れている。 従って、 ゼブラフィッシュはヒ トの血球分化過程を調べる上で優れた モデル動物である (Thisse, C. and Zon, L. I. (2002) Science 295, 457-462; Davidson, A. J. and Zon, L. I. (2004) Oncogene 23, 7233—7246)。  Zebrafish are fertilized and developed outside of the mother's body, and their development is fast and the embryo is transparent throughout the development period. In addition, experimental developmental analysis by introduction of foreign genes and cell transplantation can be easily performed. Even if blood circulation is completely lost, it can survive for several days by passive diffusion of oxygen from the body surface. Furthermore, it has been shown that the cell differentiation process is well preserved from zebrafish to humans. Therefore, zebrafish is an excellent model animal for examining human blood cell differentiation (Thisse, C. and Zon, LI (2002) Science 295, 457-462; Davidson, AJ and Zon, LI (2004) Oncogene 23, 7233-7246).
線維芽細胞増殖因子 (F G F s ) はアミノ酸配列の相同性からヒトおいて現在 22種類存在することが明らかにされている。 その作用は単に、線維芽細胞に対す る増殖活性のみならず、 形態形成、 血管形成、 腫瘍形成、 創傷治癒、 神経生存維 持、代謝調節など多様な生命現象に深く関与していることが知られている(Ornitz, D. M. and Itoh, N. (2001) Genome Biol. 21, REVIEW3005; Itoh, N. and Ornitz, D. M. (2004) Trends Genet. 20, 563 - 569)。 本発明者らは以前にヒト F g f 2 1 を同定してレヽる (Nishimura, T. et al. (2000) Biochim. Biophys. Acta 1492, 203-206)。 しかしながら、 その機能については未だ不明である。 発明の開示 It has been clarified that fibroblast growth factor (FGF s) currently exists in humans based on amino acid sequence homology. It is known that the effect is not only proliferative activity on fibroblasts but also deeply involved in various life phenomena such as morphogenesis, angiogenesis, tumor formation, wound healing, nerve survival, and metabolic regulation. (Ornitz, DM and Itoh, N. (2001) Genome Biol. 21, REVIEW3005; Itoh, N. and Ornitz, DM (2004) Trends Genet. 20, 563-569). We have previously described human F gf 2 1 (Nishimura, T. et al. (2000) Biochim. Biophys. Acta 1492, 203-206). However, its function is still unknown. Disclosure of the invention
遺伝子の機能解析は、 種々の疾患に対する新たな作用機序を有する医薬、 また は試薬の開発などにつながる。 本発明は、 F g f 2 1遺伝子の機能解析により得 られた知見に基づき、 種々の疾患に対し新たな作用機序を有する医薬、 または試 薬を提供すること、 並びに医薬または試薬の開発などに有用な手段を提供するこ となどを目的とする。  Functional analysis of genes leads to the development of drugs or reagents with new mechanisms of action for various diseases. The present invention is based on the knowledge obtained by functional analysis of the F gf 21 gene, to provide a drug or a reagent having a new action mechanism for various diseases, and to develop a drug or a reagent. Its purpose is to provide useful means.
本発明者らは、 ゼブラフイシュにおいて F g f 2 1の機能を抑制し、 その形質 を解析したところ、 当該ゼブラフイシュでは赤血球が消失又は減少すること、 並 びにこの赤血球の消失又は減少は、 造血幹細胞の赤血球一骨髄球系列細胞への分 化が抑制されたためであることを見出した。 本発明者らはまた、 ゼブラフイシュ における F g f 2 1の機能抑制より.、 造血幹細胞のリンパ球系列細胞への分化が 促進し得ることを見出した。 従って、 F g f 2 1は、 造血幹細胞の赤血球一骨髄 球系列細胞 (例えば、 赤血球、 巨核球、 好酸球、 好中球.、 好塩基球、 単球、 榭状 細胞) への分化、 あるいは造血幹細胞のリンパ球系列細胞 (例えば、 T細胞、 B 細胞、 N K細胞) への分化を制御し得ると考えられる。 また、 F g f 2 1の発現 又は機能を調節する物質は、 造血幹細胞の赤血球一骨髄球系列細胞又はリンパ球 系列細胞への分化調節能を有する、 並びに/あるいは血液細胞の異常に起因する 疾患 (例えば、 造血疾患、 免疫疾患、 アレルギー疾患) に対する医薬および研究 用試薬の開発などに有用であり得ると考えられる。  The present inventors suppressed the function of F gf 21 in zebrafish and analyzed its characteristics. It was found that the differentiation into one myeloid lineage cell was suppressed. The present inventors have also found that differentiation of hematopoietic stem cells into lymphocyte lineage cells can be promoted by suppressing the function of F gf 21 in zebrafish. Thus, F gf 2 1 is the differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells (eg, erythrocytes, megakaryocytes, eosinophils, neutrophils, basophils, monocytes, rod cells), or It is thought that the differentiation of hematopoietic stem cells into lymphocyte lineage cells (eg, T cells, B cells, NK cells) can be controlled. In addition, substances that regulate the expression or function of F gf 21 have the ability to regulate the differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells and / or diseases caused by abnormal blood cells ( For example, it may be useful for the development of medicines and research reagents for hematopoietic diseases, immune diseases, allergic diseases).
以上に基づき、 本発明者らは、 本発明を完成するに至った。 即ち、 本発明は下 記の通りである :  Based on the above, the present inventors have completed the present invention. That is, the present invention is as follows:
〔 1〕 F g f 2 1の発現又は機能を調節する物質を含む、 造血幹細胞の分化調節 剤;  [1] A hematopoietic stem cell differentiation regulator comprising a substance that regulates the expression or function of F g f 21;
〔2〕 F g f 2 1の発現又は機能を調節する物質が F g f 2 1の発現又は機能を 促進する物質である、 上記 〔1〕 の剤; [2] A substance that regulates the expression or function of F gf 21 The agent of [1] above, which is a promoting substance;
〔 3〕 F g f 2 1の発現又は機能を促進する物質が F g f 2 1又はその発現べク ターである、 上記 〔2〕 の剤;  [3] The agent according to [2] above, wherein the substance that promotes the expression or function of F g f 21 is F g f 21 or an expression vector thereof;
〔4〕 F g f 2 1の発現又は機能を調節する物質が F g f 2 1の発現又は機能を 抑制する物質である、 上記 〔1〕 の剤;  [4] The agent according to [1] above, wherein the substance that regulates the expression or function of F g f 21 is a substance that suppresses the expression or function of F g f 21.
〔5〕 F g f 2 1の発現又は機能を抑制する物質が、 アンチセンス核酸、 リボザ ィム、 R NA i誘導性核酸、 ターゲテイングベクター、 抗体及びドミナントネガ ティブ変異体からなる群より選ばれる、 上記 〔4〕 の剤;  (5) The substance that suppresses the expression or function of F gf 21 is selected from the group consisting of an antisense nucleic acid, a ribozyme, an RNAi-inducible nucleic acid, a targeting vector, an antibody, and a dominant negative mutant. Agent of [4] above;
〔6〕 造血幹細胞の赤血球一骨髄球系列細胞への分化促進剤、 又は造血幹細胞の リンパ球系列細胞への分化抑制剤である、 上記 〔2〕 の剤;  [6] The agent of [2] above, which is an agent for promoting differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells, or an agent for suppressing differentiation of hematopoietic stem cells into lymphocyte lineage cells;
〔7〕 造血幹細胞の赤血球系列細胞への分化促進剤である、 上記 〔2〕 の剤; 〔8〕 造血幹細胞の赤血球一骨髄球系列細胞への分化抑制剤、 又は造血幹細胞の リンパ球系列細胞への分化促進剤である、 上記 〔4〕 の剤;  [7] The agent according to [2] above, which is an agent for promoting differentiation of hematopoietic stem cells into erythroid lineage cells; [8] an inhibitor of differentiation of hematopoietic stem cells into erythrocyte-myelocyte lineage cells, or lymphocyte lineage cells of hematopoietic stem cells The agent of [4] above, which is a differentiation promoting agent into
〔 9〕造血疾患、免疫疾患又はァレルギ一疾患の予防又は治療剤である、上記〔 1〕 の剤;  [9] The agent of [1] above, which is a preventive or therapeutic agent for hematopoietic disease, immune disease or allergic disease;
〔1 0〕 F g f 2 1の発現又は機能を調節する物質の存在下において培地中で造 血幹細胞を培養することを含む、 造血幹細胞の分化調節方法;  [10] a method for regulating differentiation of hematopoietic stem cells, comprising culturing hematopoietic stem cells in a medium in the presence of a substance that regulates the expression or function of F g f21;
〔1 1〕 F g f 2 1の発現又は機能を調節する物質が F g f 2 1である、上記〔1 0〕 の方法;  [1 1] The method according to [1 0] above, wherein the substance that regulates the expression or function of F g f 2 1 is F g f 2 1;
〔1 2〕 造血幹細胞から分化誘導された赤血球一骨髄球系列細胞又はリンパ球系 列細胞を単離することをさらに含む赤血球一骨髄球系列細胞の製造方法である、 上記 〔1 0〕 の方法;  [12] The method according to [10] above, which further comprises isolating erythrocyte-myeloid lineage cells or lymphocyte lineage cells induced to differentiate from hematopoietic stem cells, ;
〔1 3〕 造血幹細胞から分化誘導された赤血球一骨髄球系列細胞をさらに分化さ せることをさらに含む、 上記 〔1 0〕 の方法;  [13] The method according to [10] above, further comprising further differentiating erythrocyte-myelocyte lineage cells differentiated from hematopoietic stem cells;
[ 1 4 ] F g f 2 1の存在下において培地中で造血幹細胞を培養し、 造血幹細胞 の赤血球一骨髄球系列細胞又はリンパ球系列細胞への分化効率を評価することを 含む、 F g f 2 1による造血幹細胞の分化効率の判定方法; I [1 4] comprising culturing hematopoietic stem cells in a medium in the presence of F gf 21 and evaluating the differentiation efficiency of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells, Method for determining the differentiation efficiency of hematopoietic stem cells by the method; I
4  Four
〔1 5〕被験物質が F g f 2 1の発現を調節し得るか否かを評価することを含む、 造血幹細胞の分化を調節し得る物質のスクリーニング方法; [15] a screening method for a substance capable of regulating the differentiation of hematopoietic stem cells, comprising evaluating whether or not the test substance can regulate the expression of F g f 21;
〔1 6〕 下記の工程 (a) 〜 (c) を含む、 上記 〔1 5〕 の方法:  [16] The method according to [15] above, comprising the following steps (a) to (c):
(a) 被験物質と F g f 21の発現を測定可能な細胞とを接触させる工程; (b) 被験物質を接触させた細胞における F g f 21の発現量を測定し、 該発現 量を被験物質を接触させない対照細胞における F g f 2 1の発現量と比較するェ 程;  (a) contacting the test substance with a cell capable of measuring the expression of F gf 21; (b) measuring the expression level of F gf 21 in the cell contacted with the test substance; Comparison with the expression level of F gf 21 in the non-contacted control cells;
(c) 上記 (b) の比較結果に基づいて、 F g f 2 1の発現量を調節する被験物 質を選択する工程;  (c) selecting a test substance that regulates the expression level of F g f 21 based on the comparison result of (b) above;
〔1 7〕 下記の工程 (a) 〜 (c) を含む、 上記 〔1 5〕 の方法:  [17] The method of [15] above, comprising the following steps (a) to (c):
(a) 被験物質を動物に投与する工程;  (a) administering a test substance to an animal;
(b) 被験物質を投与した動物における F g f 21の発現量を測定し、 該発現量 を被験物質を投与しない対照動物における F g f 2 1の発現量と比較する工程; (c) 上記 (b) の比較結果に基づいて、 F g f 21の発現量を調節する被験物 質を選択する工程;  (b) a step of measuring the expression level of F gf 21 in an animal administered with the test substance and comparing the expression level with the expression level of F gf 21 in a control animal not administered with the test substance; ) Selecting a test substance that regulates the expression level of F gf 21 based on the comparison result of
〔1 8〕 F g f 2 1の特定の多型が造血幹細胞の分化調節能に及ぼす影響を解析 することを含む、 造血幹細胞の分化調節能に変化をもたらす F g f 2 1多型の同 定方法;  [18] Methods for identifying F gf 2 1 polymorphisms that change the ability to regulate differentiation of hematopoietic stem cells, including analyzing the effects of specific polymorphisms of F gf 2 1 on the ability to regulate differentiation of hematopoietic stem cells ;
〔1 9〕 動物から採取された生体試料を用いて F g f 2 1の発現量及び/又は多 型を測定し、 測定結果に基づき造血幹細胞分化に対する動物の生体状態を評価す ることを含む、 造血幹細胞分化に対する動物の生体状態の判定方法;  [19] including measuring the expression level and / or polymorphism of F gf 21 using a biological sample collected from an animal, and evaluating the biological state of the animal against hematopoietic stem cell differentiation based on the measurement result. A method for determining the biological state of an animal for hematopoietic stem cell differentiation;
〔20〕 F g f 2 1の発現量及ぴ 又は多型の測定用試薬を含む、 造血幹細胞分 化に対する動物の生体状態の診断剤;  [20] A diagnostic agent for the biological state of an animal against hematopoietic stem cell differentiation, which contains a reagent for measuring the expression level of F g f 21 or polymorphism;
〔2 1〕 以下 (a) 及び (b) を含む、 キット :  [2 1] Kit including the following (a) and (b):
(a) F g f 2 1の発現又は機能を調節する物質;並びに  (a) a substance that modulates the expression or function of F g f 2 1; and
(b) 造血幹細胞又はその分化細胞の同定用試薬、 及びノ又は造血幹細胞の分化 細胞の分化調節試薬; 〔22〕 F g f 21の発現又は機能を調節する物質を被験体に有効量投与するこ とを含む、 造血幹細胞の分化調節方法; (b) a reagent for identifying hematopoietic stem cells or differentiated cells thereof, and a reagent for regulating differentiation of differentiated cells of hematopoietic or stem cells; [22] A method for regulating differentiation of hematopoietic stem cells, comprising administering to a subject an effective amount of a substance that regulates the expression or function of F gf 21;
〔23〕 造血幹細胞の分化調節剤の製造における、 F g f 2 1の発現又は機能を 調節する物質の使用。 図面の簡単な説明  [23] Use of a substance that regulates the expression or function of F g f 21 in the production of a hematopoietic stem cell differentiation regulator. Brief Description of Drawings
図 1は、 ゼブラフィッシュ F g f 2 1のアミノ酸配列とその遺伝子の染色体上 の位置を示す。 (A)ゼブラフィッシュ F g f 2 1とヒ ト F g f 2 1のアミノ酸配 列の比較。 アミノ酸配列の相同性は 33. 3%である。 (B) ゼブラフィッシュ F g f 2 1遺伝子とヒ ト F g f 2 1遺伝子の染色体上の位置。 ともに、 D h r s 1 0と C a 1 1と隣接して存在している。 Mb, raegabase  FIG. 1 shows the amino acid sequence of zebrafish F g f 21 and the position of the gene on the chromosome. (A) Comparison of the amino acid sequences of zebrafish F g f 21 and human F g f 21. The amino acid sequence homology is 33.3%. (B) Location of the zebrafish F g f 21 gene and human F g f 21 gene on the chromosome. Both exist adjacent to D h rs 1 0 and C a 1 1. Mb, raegabase
図 2は、 F g f 2 1機能抑制ゼブラフィッシュ胎児の赤血球形成を示す。 (A) F g f 2 1 MO (l O n g)を受精卵に導入し、受精後 24時間後の胎児観察。 野生型(左) と F g f 21機能抑制胎児(右)。 (B)赤血球生成を観察するため、 図 Aの四角で囲まれた領域を拡大した。 野生型 (左) と F g f 2 1機能抑制胎児 (右)。 矢印は赤血球を示している。  FIG. 2 shows erythropoiesis in a zebrafish fetus with suppressed F g f 21 function. (A) F gf 21 MO (l Ong) was introduced into a fertilized egg, and the fetus was observed 24 hours after fertilization. Wild-type (left) and F g f 21 function-suppressed fetus (right). (B) To observe erythropoiesis, the area enclosed by the square in Figure A was enlarged. Wild-type (left) and Fgf2 1 function-suppressed fetus (right). Arrows indicate red blood cells.
図 3は、 F g f 2 1機能抑制ゼブラフィッシュ胎児の血管形成を示す。 (A) F g f 2 1 MO (l O n g) を受精卵に導入し、 受精後 48時間後の胎児の静脈 に F I TCで標識されたデキストランを導入、 蛍光顕微鏡で血管を観察。 野生型 (左) と F g f 2 1機能抑制胎児 (右)。 矢印は血管を示している。 (B) F g f 21 MO (l O n g) を受精卵に導入し、 受精後 48時間後の胎児での血管内 皮細胞遺伝子マーカー、 f 1 k 1の発現を whole mount in situ hybridization により観察。 静脈に F I TCで標識されたデキストランを導入、 蛍光顕微鏡で血 管を観察。 矢印は血管を示している。  FIG. 3 shows angiogenesis in a zebrafish fetus with suppressed F g f 21 function. (A) F g f 21 MO (l Ong) was introduced into a fertilized egg, dextran labeled with FITC was introduced into the fetal vein 48 hours after fertilization, and blood vessels were observed with a fluorescence microscope. Wild-type (left) and Fg f 2 1 function-suppressed fetus (right). Arrows indicate blood vessels. (B) F g f 21 MO (l Ong) was introduced into a fertilized egg, and the expression of the vascular endothelium gene marker f 1 k 1 in the fetus 48 hours after fertilization was observed by whole mount in situ hybridization. Dextran labeled with FITC was introduced into the vein, and blood vessels were observed with a fluorescence microscope. Arrows indicate blood vessels.
図 4は、 造血系細胞の分化過程のモデル図を示す。 太字は造血系細胞のマーカ 一遺伝子を示している。  Figure 4 shows a model diagram of the differentiation process of hematopoietic cells. Bold letters indicate a marker gene for hematopoietic cells.
図 5は、 F g f 21機能抑制ゼブラフィッシュ胎児の造血系細胞のマーカー遺 伝子の発現を示す。 F g f 2 1 MO (l O n g) を受精卵に導入し、 胎児での 造血系細胞遺伝子マーカーの発現を whole mount in situ hybridizationにより 観察。矢印は F g f 2 1機能抑制胎児での発現の消失あるいは減少を示している。 Fig. 5 shows marker of hematopoietic cells in zebrafish fetuses with suppressed Fgf21 function. The expression of the gene is shown. F gf 21 MO (l Ong) was introduced into fertilized eggs, and the expression of hematopoietic cell gene markers in the fetus was observed by whole mount in situ hybridization. The arrows indicate the disappearance or decrease of expression in F gf 2 1 function-suppressed fetuses.
(A) 5 s om i t e sの胎児の側板中胚葉でのへマンギオブラストのマーカ 一遺伝子、 s c 1の発現。 (B) 受精後 1 8時間の胎児の I CMでの造血幹細胞マ 一力一遺伝子、 g a t a 2の発現。 (C)受精後 24時間の胎児の I CMでの赤血 球一ミエロイド前駆細胞マーカー遺伝子、 g a t a 1の発現。 (D) 受精後 24時 間の胎児の I CMでのミエロイ ド系細胞マーカー遺伝子、 mp xの発現。 (E) 受 精後 24時間の胎児の I CMでのリンパ球前駆細胞マーカー遺伝子、 i k a r o sの発現。  (A) Expression of s c 1, a marker of hemangioblast, in the lateral mesoderm of fetus lateral plate of 5 som i tes. (B) Expression of the hematopoietic stem cell gene, g a t a 2, in fetal ICM 18 hours after fertilization. (C) Expression of erythroid-myeloid progenitor cell marker gene, ga t a 1, in fetal ICM 24 hours after fertilization. (D) Expression of mpx, a myeloid cell marker gene, in fetal ICM 24 hours after fertilization. (E) Expression of a lymphocyte progenitor marker gene, i k a r o s, in fetal ICM 24 hours after fertilization.
図 6は、 F g f 21の作用モデル図を示す。 F g f 2 1は造血幹細胞から赤血 球一ミエロイド前駆細胞への分化過程に作用する。 一方、 エリスロポエチンは赤 血球一ミエロイド前駆細胞から赤血球への分化過程に作用する。 発明を実施するための最良の形態  Fig. 6 shows the action model of F g f21. F g f 21 acts on the differentiation process from hematopoietic stem cells to erythroid-myeloid progenitor cells. On the other hand, erythropoietin acts on the differentiation process from erythroid-myeloid progenitor cells to erythrocytes. BEST MODE FOR CARRYING OUT THE INVENTION
(1. 造血幹細胞の分化調節剤)  (1. Hematopoietic stem cell differentiation regulator)
本発明は、 F g f 2 1の発現または機能を調節する物質を含有してなる、 造血 幹細胞の分化調節剤を提供する。  The present invention provides a hematopoietic stem cell differentiation regulator comprising a substance that regulates the expression or function of F g f 21.
造血幹細胞は、 骨髄球系共通前駆細胞 (common myeloid progenitor cell: C MP細胞) 又はリンパ球系共通前駆細胞 (common lymphocyte progenitor cell: C L P細胞) に分化する。 CMP細胞は、 顆粒球 Zマクロファージ系前駆細胞 (granulocyte/macrophage progenitor cell: GMP細胞) 又は巨核球 Z赤; 3¾ 系前駆糸田月包 (megakaryocyte/erythroid progenitor cell: ME P糸田月包)に分匕し、 GMP細胞はさらに骨髄性細胞 (myelocytic cell) 又は単球性細胞 (monocytic cell) .を経て好酸球、 好中球、 好塩基球、 単球等に分化し、 ME P細胞はさらに 赤芽球又は巨核球に分化する。 一方、 C L P細胞は、 T細胞系共通前駆細胞 (T- lymphocyte progenitor cell : C T P細胞)、 B細胞系共通前駆細胞 (B- lymphocyte progenitor cell: C B P細胞)又は NK前駆細胞 ( K progenitor cell: NKP細胞) に分化する。 本発明者らは、 F g f 2 1の発現または機能を 促進/抑制する物質が、 造血幹細胞の CM P細胞又はその分化細胞 (例えば、 G a t a 1陽性細胞、 mp x陽性細胞) への分化を促進/抑制し得ること、 並びに 造血幹細胞の C L P細胞又はその分化細胞 (例えば、 I k a r o s陽性細胞) へ の分化を抑制/促進し得ることを見出した。 Hematopoietic stem cells differentiate into common myeloid progenitor cells (CMP cells) or lymphocyte progenitor cells (CLP cells). CMP cells are divided into granulocyte / macrophage progenitor cells (GMP cells) or megakaryocyte Z red; 3¾ precursor progenitor cells (megaparyocyte / erythroid progenitor cells). GMP cells further differentiate into eosinophils, neutrophils, basophils, monocytes, etc. via myelocytic cells or monocytic cells. Differentiate into spheres or megakaryocytes. On the other hand, CLP cells are common T cell progenitor cells (T-lymphocyte progenitor cells: CTP cells) and B cell common progenitor cells. Differentiate into B-lymphocyte progenitor cells (CBP cells) or NK progenitor cells (NKP cells). The present inventors have found that a substance that promotes / suppresses the expression or function of F gf 21 is capable of differentiating hematopoietic stem cells into CMP cells or differentiated cells thereof (eg, Gata 1 positive cells, mp x positive cells). It has been found that it can be promoted / suppressed and that the differentiation of hematopoietic stem cells into CLP cells or differentiated cells thereof (for example, I karos positive cells) can be inhibited / promoted.
本明細書中で使用される場合、 必要に応じて、 以下の用語 「X系列(lineage) 細胞」 を使用する。  As used herein, the following terminology “lineage cells” is used where appropriate.
「赤血球—骨髄球系列細胞」 とは、 CM P細胞及びその分化細胞を包括的に意 味し、 赤血球系列細胞、 巨核球系列細胞、 骨髄球系列細胞を含む。 ここで、 「赤血 球系列細胞」 とは、 CMP細胞、 MEP細胞、 赤芽球、 赤血球を包括的に意味す る。 「巨核球系列細胞」 とは、 CMP細胞、 ME P細胞、 巨核球を包括的に意味す る。 「骨髄球系列細胞」 とは、 CMP細胞、 GMP細胞、骨髄性細胞、単球性細胞、 好酸球、 好中球、 好塩基球、 単球を包括的に意味する。  The term “erythrocyte-myelocyte lineage cell” comprehensively means CMP cells and differentiated cells thereof, and includes erythrocyte lineage cells, megakaryocyte lineage cells, and myeloid lineage cells. Here, “erythroid lineage cells” comprehensively mean CMP cells, MEP cells, erythroblasts, and erythrocytes. The term “megakaryocyte lineage cell” means CMP cells, MEP cells, and megakaryocytes comprehensively. “Myeloid lineage cell” is a generic term for CMP cells, GMP cells, myeloid cells, monocytic cells, eosinophils, neutrophils, basophils, and monocytes.
「リンパ球系列細胞」 とは、 CL P細胞及びその分化細胞を包括的に意味し、 “Lymphocyte lineage cell” means CLP cells and differentiated cells comprehensively,
T細胞系列細胞、 B細胞系列細胞、 NK細胞系列細胞を含む。 ここで、 「T細胞系 列細胞」 とは、 C LP細胞、 CTP細胞、 Τ細胞を包括的に意味する。 「Β細胞系 列細胞」 とは、 CLP細胞、 CBP細胞、 Β細胞を包括的に意味する。 「ΝΚ細胞 系列細胞」 とは、 CL P細胞、 ΝΚΡ細胞、 ΝΚ細胞を包括的に意味する。 Includes T cell lineage cells, B cell lineage cells, and NK cell lineage cells. Here, “T cell lineage cell” comprehensively means CLP cells, CTP cells, and sputum cells. The “spider cell lineage cell” comprehensively means CLP cells, CBP cells, and sputum cells. The “spider cell lineage cell” comprehensively means CLP cells, sputum cells, and sputum cells.
F g f 2 1は、ヒ ト F g f 21 (例えば、 GenBankァクセッション番号: AB021975 参照) 又はそのオルソログ、 あるいはそれらの変異体 (SNP、 ハプロタイプを 含む) をいう。 F g f 21のオルソログは特に限定されず、 例えば任意の動物、 例えば魚類、 鳥類、 哺乳動物 (例えば、 ゥシ、 ヒッジ、 ブタ、 ャギ、 サル、 ゥサ ギ、 ラット、 ハムスター、 モルモット、 マウス) に由来するものであり得る。 F g f 2 1は分泌蛋白質であり、 プロセシングによりシグナル配列 (例えば、 配列 番号 1に示されるアミノ酸配列における 1〜28番目のアミノ酸残基に相当) が 除去され得る。 本発明の方法では、 F g f 2 1としては、 シグナル配列が除去さ I F gf 21 refers to human F gf 21 (see, for example, GenBank accession number: AB021975) or orthologs thereof, or mutants thereof (including SNPs and haplotypes). The ortholog of F gf 21 is not particularly limited, for example, any animal, for example, fish, birds, mammals (eg, urushi, hidge, pig, goat, monkey, usagi, rat, hamster, guinea pig, mouse) It can be derived from. F gf 21 is a secreted protein, and a signal sequence (for example, corresponding to amino acid residues 1 to 28 in the amino acid sequence shown in SEQ ID NO: 1) can be removed by processing. In the method of the present invention, the signal sequence is removed as F gf 2 1. I
8 れたもの、 シグナル配列が除去されていないもののいずれでも使用できるが、 シ グナル配列が除去されたものが好ましい。  Any of those obtained without the signal sequence can be used, but those from which the signal sequence has been removed are preferred.
一実施形態では、 F g f 21の発現または機能を調節する物質は、 F g f 2 1 の発現を促進する物質であり得る。  In one embodiment, the substance that modulates the expression or function of F g f 21 may be a substance that promotes the expression of F g f 21.
F g f 2 1の発現とは、 F g f 2 1からの翻訳産物 (即ち、 蛋白質) が産生さ れ且つ機能的な状態でその作用部位に局在することをいう。 従って、 F g f 2 1 の発現を促進する物質は、 F g f 2 1の転写、 転写後調節、 翻訳、 翻訳後修飾、 局在化及び蛋白質フォールデイング等の、 いかなる段階で作用するものであって もよい。 なお、 本明細書で使用される場合、 F g f 21の発現の促進としては、 F g f 21 (蛋白質) の補充をも含むものとする。  The expression of F g f 2 1 means that a translation product (ie, protein) from F g f 21 is produced and functionally localized at the site of action. Therefore, the substance that promotes the expression of F gf 2 1 acts at any stage including F gf 2 1 transcription, post-transcriptional regulation, translation, post-translational modification, localization and protein folding. Also good. As used herein, promotion of F g f 21 expression includes supplementation with F g f 21 (protein).
F g f 21の発現を促進する物質の例は、 F g f 21、 または F g f 2 1をコ ードする核酸を含む発現ベクターであり得る。  An example of a substance that promotes the expression of F g f 21 may be an expression vector containing a nucleic acid encoding F g f 21 or F g f 21.
F g f 21は、 天然蛋白質又は組換え蛋白質であり得る。 F g f 21は、 自体 公知の方法により調製でき、 例えば、 a) F g f 21を含有する生体試料 (例え ば、 血液) から F g f 2 1を回収してもよく、 b) 宿主細胞 (例えば、 エシュリ ヒア属菌、 バチルス属菌、 酵母、 昆虫細胞、 昆虫、 動物細胞) に F g f 2 1発現 ベクター (後述) を導入することにより开質転換体を作製し、 該形質転換体によ り産生.される F g f 2 1を回収してもよく、 c) ゥサギ網状赤血球ライセート、 コムギ胚芽ライセート、 大腸菌ライセート等を用いる無細胞系により F g f 2 1 を合成してもよい。 F g f 2 1は、 塩析ゃ溶媒沈澱法などの溶解度を利用する方 法;透析法、 限外ろ過法、 ゲルろ過法、 および SDS—ポリアクリルアミ ドゲル 電気泳動法などの主として分子量の差を利用する方法;イオン交換クロマトダラ フィ一などの荷電の差を利用する方法;ァフィニティークロマトグラフィー、 F g f 2 1抗体の使用などの特異的親和性を利用する方法;逆相高速液体クロマト グラフィ一などの疎水性の差を利用する方法;等電点電気泳動法などの等電点の 差を利用する方法; これらを組合せた方法などにより適宜精製される。  F g f 21 can be a natural protein or a recombinant protein. F gf 21 can be prepared by a method known per se, for example, a) F gf 21 may be recovered from a biological sample (eg, blood) containing F gf 21, and b) a host cell (eg, Escherichia bacteria, Bacillus bacteria, yeast, insect cells, insects, animal cells) are introduced into F gf 2 1 expression vectors (described later), and transformed transformants are produced and produced by the transformants. C) F gf 2 1 may be synthesized by a cell-free system using rabbit reticulocyte lysate, wheat germ lysate, E. coli lysate or the like. F gf 2 1 is a method that uses solubility such as salting-out solvent precipitation method; mainly the difference in molecular weight such as dialysis method, ultrafiltration method, gel filtration method, and SDS-polyacrylamide gel electrophoresis method. Method that utilizes the difference in charge such as ion exchange chromatography, method that utilizes specific affinity such as affinity chromatography, use of F gf 2 1 antibody, etc. It is appropriately purified by a method using a difference in hydrophobicity such as a method using a difference in isoelectric point such as isoelectric focusing, or a method combining these.
別の実施形態では、 F g f 21の発現または機能を調節する物質は、 F g f 2 1の発現を抑制する物質であり得る。 F g f 21の発現を抑制する物質は、 F g f 21の転写、 転写後調節、 翻訳、 翻訳後修飾、 局在化及ぴ蛋白質フォールディ ング等の、 いかなる段階で作用するものであってもよい。 In another embodiment, the substance that modulates the expression or function of F gf 21 is F gf 2 It may be a substance that suppresses the expression of 1. Substances that suppress the expression of F gf 21 may act at any stage such as F gf 21 transcription, post-transcriptional regulation, translation, post-translational modification, localization, and protein folding. .
F g f 2 1の発現を抑制する物質の例は、 F g f 2 1の転写産物、 詳細には m RNAもしくは初期転写産物に対するアンチセンス核酸である。 アンチセンス核 酸とは、 標的 mRNA (初期転写産物) を発現する細胞の生理的条件下で該標的 mRNA (初期転写産物) とハイブリダィズし得る塩基配列からなり、 且つハイ ブリダィズした状態で該標的 mRNA (初期転写産物) にコードされるポリぺプ チドの翻訳を阻害し得る核酸をいう。 アンチセンス核酸の種類は DNAであって も RNAであってもよいし、 あるいは DNAZRNAキメラであってもよい。 ま た、 天然型のアンチセンス核酸は、 細胞中に存在する核酸分解酵素によってその リン酸ジエステル結合が容易に分解されるので、 本発明のアンチセンス核酸は、 分解酵素に安定なチォリン酸型 (リン酸結合の P = 0を P = Sに置換) や 2' - O -メチル型等の修飾ヌクレオチドを用いて合成もできる。アンチセンス核酸の設 計に重要な他の要素として、 水溶性及び細胞膜透過性を高めること等が挙げられ るが、 これらはリボソームやマイクロスフェアを使用するなどの剤形の工夫によ つても克服できる。 アンチセンス核酸の長さは、 F g f 2 1の転写産物と特異的 にハイブリダィズし得る限り特に制限はなく、 短いもので約 1 5塩基程度、 長い もので mRNA (初期転写産物) の全配列に相補的な配列を含むような配列であ つてもよい。 合成の容易さや抗原性の問題等から、 例えば約 1 5塩基以上、 好ま しくは約 1 5〜約 30塩基からなるオリゴヌクレオチドが例示される。 さらに、 アンチセンス核酸は、 F g f 2 1の転写産物とハイブリダィズして翻訳を阻害す るだけでなく、 二本鎖 DN Aと結合して三重鎖 (トリプレックス) を形成し、 m RNAへの転写を阻害し得るものであってもよい。  An example of a substance that suppresses the expression of F g f 2 1 is an antisense nucleic acid against a transcription product of F g f 2 1, in particular, mRNA or an initial transcription product. Antisense nucleic acid consists of a base sequence that can hybridize with the target mRNA (early transcript) under physiological conditions of a cell that expresses the target mRNA (early transcript), and the target mRNA in a hybridized state. A nucleic acid capable of inhibiting the translation of a polypeptide encoded by (early transcript). The type of the antisense nucleic acid may be DNA or RNA, or may be a DNAZRNA chimera. In addition, since a natural antisense nucleic acid is easily degraded by its phosphodiester bond by a nucleolytic enzyme present in the cell, the antisense nucleic acid of the present invention is a thiophosphate type ( It can also be synthesized using a modified nucleotide such as a phosphate bond (P = 0 is replaced with P = S) or 2'-O-methyl type. Other important factors in the design of antisense nucleic acids include improving water solubility and cell membrane permeability, but these can be overcome by devising dosage forms such as the use of ribosomes and microspheres. it can. The length of the antisense nucleic acid is not particularly limited as long as it can specifically hybridize with the transcription product of F gf 21. The short one is about 15 bases, and the long one is in the entire mRNA (initial transcript) sequence. The sequence may include a complementary sequence. From the viewpoint of ease of synthesis, antigenicity problems, etc., for example, oligonucleotides comprising about 15 bases or more, preferably about 15 to about 30 bases are exemplified. In addition, antisense nucleic acids not only hybridize with F gf 21 transcripts to inhibit translation, but also bind to double-stranded DNA to form triplex, It may be capable of inhibiting transcription.
F g,f 2 1の発現を抑制する物質の別の例は、 F g f 2 1の転写産物、 詳細に は mRNAもしくは初期転写産物を、 .コード領域の内部 (初期転写産物の場合は イントロン部分を含む) で特異的に切断し得るリポザィムである。 リポザィムと は核酸を切断する酵素活性を有する RNAをいうが、 最近では当該酵素活性部位 の塩基配列を有するオリゴ D N Aも同様に核酸切断活性を有することが明らかに なっているので、 本発明では配列特異的な核酸切断活性を有する限り DNAをも 包含する概念として用いるものとする。 リボザィムとして最も汎用性の高いもの としては、 ウイロイドやウィルソイド等の感染性 RNAに見られるセルフスプラ イシング R N Aがあり、ハンマーへッド型ゃヘアピン型等が知られている。また、 リボザィムを、 それをコードする DNAを含む発現ベクターの形態で使用する場 合には、 細胞質への移行を促進するために、 t RNAを改変した配列をさらに連 結したハイブリッドリボザィムとすることもできる [Nucleic Acids Res. , 29(13): 2780-2788 (2001)]。 Another example of a substance that suppresses the expression of F g, f 2 1 is the transcription product of F gf 2 1, specifically mRNA or the initial transcription product, and the inside of the coding region (intron part in the case of the initial transcription product) And a liposome that can be cleaved specifically. With lipozyme Refers to RNA having an enzyme activity that cleaves nucleic acid, but recently it has been clarified that oligo DNA having the base sequence of the enzyme active site also has a nucleic acid cleaving activity. As long as it has a sufficient nucleic acid cleavage activity, it is used as a concept including DNA. The most versatile ribozyme is self-splicing RNA found in infectious RNAs such as viroid and virusoid, and the hammerhead type and hairpin type are known. In addition, when the ribozyme is used in the form of an expression vector containing the DNA that encodes it, a hybrid ribozyme in which tRNA-modified sequences are further linked to promote cytoplasmic translocation. [Nucleic Acids Res., 29 (13): 2780-2788 (2001)].
F g f 2 1の発現を抑制する物質のさらに別の例は、 RNA i誘導性核酸であ る。 RNA i誘導性核酸とは、 細胞内に導入されることにより、 RNA i効果を. 誘導し得る核酸をいい、 好ましくは RNAである。 RNA i効果とは、 mRNA と同一のヌクレオチド配列 (又はその部分配列) を含む 2本鎖構造の RNAが、 当該 mRNAの発現を抑制する現象をいう。 R N A i効果を得るには、 例えば、 少なくとも 20以上の連続する標的 mRNAと同一のヌクレオチド配列 (又はそ の部分配列) を有する 2本鎖構造の RNAを用いることが好ましい。 2本鎖構造 は、 異なるス トランドで構成されていてもよいし、 一つの RNAのステムループ 構造によって与えられる 2本鎖であってもよい。 RNA i誘導性核酸としては、 たとえば s i RNA, s t RNA、 m i RNAなどが挙げられる。  Yet another example of a substance that suppresses the expression of F g f 21 is an RNA i-inducible nucleic acid. An RNA i-inducible nucleic acid refers to a nucleic acid that can induce an RNA i effect when introduced into a cell, and is preferably RNA. The RNAi effect is a phenomenon in which RNA having a double-stranded structure containing the same nucleotide sequence (or a partial sequence thereof) as mRNA suppresses the expression of the mRNA. In order to obtain the R N Ai effect, for example, it is preferable to use RNA having a double-stranded structure having at least 20 or more consecutive target mRNAs and the same nucleotide sequence (or a partial sequence thereof). The double-stranded structure may be composed of different strands, or may be a double-stranded structure provided by a single RNA stem-loop structure. Examples of RNA i-inducible nucleic acids include si RNA, st RNA, mi RNA, and the like.
F g f 2 1の発現を抑制する物質の他の例は、ターゲテイングベクターである。 本発明で用いられるターゲティングベクターは、 F g f 2 1遺伝子の相同組換え を誘導し得る F g f 2 1遺伝子に相同な第一のポリヌクレオチド及ぴ第二のポリ ヌクレオチド、並びに選択マーカーを含む。第一及び第二のポリヌクレオチドは、 F g f,2 1を含むゲノム DNAに対して、 相同組換えを生じるのに十分な程度の 配列同一性および長さを有するポリヌクレオチドである。 第一及び第二のポリヌ クレオチドは、 F g f 2 1遺伝子を含むゲノム DNAにおいて、 第一及び第二の ί Another example of a substance that suppresses the expression of F gf 21 is a targeting vector. The targeting vector used in the present invention comprises a first polynucleotide and a second polynucleotide that are homologous to the F gf21 gene capable of inducing homologous recombination of the Fgf21 gene, and a selection marker. The first and second polynucleotides are polynucleotides having sufficient sequence identity and length to cause homologous recombination with genomic DNA containing F gf, 21. The first and second polynucleotides are the first and second polynucleotides in the genomic DNA containing the F gf 21 gene. ί
11 ポリヌクレオチドに対して相同な 2つの領域の間に存在するゲノム DNA部分領 域が欠失すると、 F g f 2 1遺伝子の機能的欠損がもたらされるように選択され る。 選択マーカーとしては、 ポジティブ選択マーカー (例えば、 ネオマイシン耐 性遺伝子、 ハイグロマイシン Bホスホトランスフェラーゼ (B PH) 遺伝子、 プ ラスティシジン Sデアミナーゼ遺伝子、 ピューロマイシン耐性遺伝子)、ネガティ ブ選択マーカー (例えば、 単純へルぺスウィルス (HSV) のチミジンキぅ "一ゼ ( t k) 遺伝子、 ジフテリア毒素 Aフラグメント (DTA) 遺伝子) などが挙げ られる。 ターグティングベクターは、 ポジティブ選択マーカー、 ネガティブ選択 マーカーのいずれか一方、 又は両方を含むことができる。 ターグティングベクタ 一はまた、 2以上のリコンビナーゼ標的配列 (例えば、 バタテリオファージ P 1 由来の C r e/ 1 o x Pシステムで用いられる 1 o x P配列、 酵母由来の F L P ZFRTシステムで用いられる FRT配列) を含んでいてもよい。  11 Selection of a deletion of a partial region of genomic DNA between two regions homologous to the polynucleotide results in a functional defect in the F g f21 gene. Selectable markers include positive selectable markers (eg, neomycin resistance gene, hygromycin B phosphotransferase (BPH) gene, plasticidin S deaminase gene, puromycin resistance gene), negative selectable markers (eg, simple hell) Examples include pessimidal virus (HSV) thymidine jelly "one (tk) gene, diphtheria toxin A fragment (DTA) gene", etc. Targeting vectors are either a positive selection marker, a negative selection marker, or both. A targeting vector can also include two or more recombinase target sequences (eg, 1 ox P sequence used in the Cre / 1 ox P system from Batateriophage P 1, FLP ZFRT system from yeast FRT sequences used in It may contain a.
別の実施形態では、 F g f 2 1の発現又は機能を調節する物質は、 F g f 21 の機能を抑制する物質であり得る。 F g f 21の機能を抑制する物質としては、 F g f 2 1の作用を妨げ得る物質である限り特に限定されないが、 F g f 21に 対する抗体、 F g f 2 1のドミナントネガティブ変異体、 これらをコードする核 酸を含む発現ベクターが例示される。  In another embodiment, the substance that modulates the expression or function of F g f 21 may be a substance that suppresses the function of F g f 21. The substance that suppresses the function of F gf 21 is not particularly limited as long as it is a substance that can interfere with the action of F gf 21, but an antibody against F gf 21, a dominant negative mutant of F gf 21, and these codes An expression vector containing a nuclear acid is exemplified.
F g f 2 1に対する抗体は、 ポリクローナル抗体、 モノクローナル抗体のいず れであってもよく、 周知の免疫学的手法により作製できる。 また、 該抗体は、 抗 体のフラグメント (例えば、 Fab、 F(ab' )2)、 組換え抗体 (例えば、 単鎖抗体) であってもよい。 さらに、 該抗体をコードする核酸 (プロモーター活性を有する 核酸に機能可能に連結されたもの) もまた、 F g f 21の発現を抑制する物質と して好ましい。 The antibody against F gf 21 may be either a polyclonal antibody or a monoclonal antibody, and can be prepared by a well-known immunological technique. The antibody may be an antibody fragment (eg, Fab, F (ab ′) 2 ) or a recombinant antibody (eg, a single chain antibody). Furthermore, a nucleic acid encoding the antibody (that is operably linked to a nucleic acid having promoter activity) is also preferable as a substance that suppresses the expression of F gf21.
例えば、 ポリクローナル抗体は、 F g f 21あるいはそのフラグメント (必要 に応じて、 ゥシ血清アルブミン、 KLH (Keyhole Limpet Heraocyanin) 等のキヤ リア蛋白質に架橋した複合体とすることもできる) を抗原として、 市販のアジュ バント (例えば、 完全または不完全フロイントアジュバント) とともに、 動物の I For example, a polyclonal antibody is commercially available using F gf 21 or a fragment thereof (if necessary, a complex cross-linked to carrier protein such as ushi serum albumin or KLH (Keyhole Limpet Heraocyanin)) as an antigen. Animal adjuvants (eg, complete or incomplete Freund's adjuvant) I
12 皮下あるいは腹腔内に 2〜 3週間おきに 2〜 4回程度投与し (部分採血した血清 の抗体価を公知の抗原抗体反応により測定し、その上昇を確認しておく)、最終免 疫から約 3〜約 1 0日後に全血を採取して抗血清を精製することにより取得でき る。 抗原を投与する動物としては、 ラット、 マウス、 ゥサギ、 ャギ、 モルモット、 ハムスターなどの哺乳動物が挙げられる。  12 Administered subcutaneously or intraperitoneally about 2 to 4 times every 2 to 3 weeks (by measuring the antibody titer of the partially collected serum by a known antigen-antibody reaction and confirming its rise), from the final immunization It can be obtained by collecting whole blood after about 3 to about 10 days and purifying the antiserum. Examples of animals to which the antigen is administered include mammals such as rats, mice, rabbits, goats, guinea pigs, and hamsters.
また、 モノクローナル抗体は、 細胞融合法 (例えば、 渡邊武、 細胞融合法の原 理とモノクローナル抗体の作成、谷内昭、 高橋利忠編、 「モノクローナル抗体とが んー基礎と臨床一」、 第 2 - 14頁、 サイエンスフォーラム出版、 1985年) により作 製することができる。 例えば、 マウスに該因子を市販のアジュバントと共に 2〜 4回皮下あるいは腹腔内に投与し、 最終投与の約 3日後に脾臓あるいはリンパ節 を採取し、 白血球を採取する。 この白血球と骨髄腫細胞(例えば、 NS_1、 P3X63Ag8 など) を細胞融合して該因子に対するモノクローナル抗体を産生するハイブリ ド 一マを得る。 細胞融合は P E G法 [J. Immunol. Methods, 81 (2): 223 - 228 (1985) ] でも電圧パルス法 [Hybridoraa, 7 (6) : 627-633 (1988) ] であってもよレ、。 所望の モノクローナル抗体を産生するハイブリ ドーマは、 周知の E I Aまたは R I A法 等を用いて抗原と特異的に結合する抗体を、 培養上清中から検出することにより 選択できる。 モノクローナル抗体を産生するハイプリ ドーマの培養は、 インビト 口、 またはマウスもしくはラット、 好ましくはマウス腹水中等のインビボで行う ことができ、 抗体はそれぞれハイプリ ドーマの培養上清および動物の腹水から取 得できる。 Monoclonal antibodies can also be produced by cell fusion methods (for example, Takeshi Watanabe, principles of cell fusion methods and creation of monoclonal antibodies, Akira Taniuchi, Toshitada Takahashi, “Monoclonal antibodies and basics and clinical one”, 2- 14 pp., Science forum publication, can be Seisuru created by 198 5 years). For example, the factor is administered to a mouse subcutaneously or intraperitoneally 2-4 times with a commercially available adjuvant, and the spleen or lymph node is collected about 3 days after the final administration, and white blood cells are collected. The leukocytes and myeloma cells (for example, NS_1, P3X63Ag8, etc.) are fused to obtain a hybridoma that produces a monoclonal antibody against the factor. Cell fusion can be performed using the PEG method [J. Immunol. Methods, 81 (2): 223-228 (1985)] or the voltage pulse method [Hybridoraa, 7 (6): 627-633 (1988)]. . A hybridoma producing a desired monoclonal antibody can be selected by detecting an antibody that specifically binds to an antigen from the culture supernatant using a well-known EIA or RIA method. The culture of the hybridoma producing the monoclonal antibody can be carried out in vitro, or in vivo, such as mouse or rat, preferably mouse ascites, and the antibody can be obtained from the culture supernatant of the hybridoma and the ascites of the animal, respectively.
しかしながら、ヒ トにおける治療効果と安全性を考慮すると、本発明の抗体は、 キメラ抗体、 ヒ ト化又はヒト型抗体であってもよい。 キメラ抗体は、 例えば 「実 験医学 (臨時増刊号) , Vol. 6, No. 10, 1988」、 特公平 3- 73280号公報等を、 ヒ ト 化抗体は、例えば特表平 4-506458号公報、特開昭 62- 296890号公報等を、 ヒ ト抗 体は、,例えば 「Nature Genetics, Vol. 15, p. 146-156, 1997」、 「Nature Genetics, Vol. 7, p. 13-21, 1994」、 特表平 4- 504365号公報、 国際出願公開 TO94/25585号公 報、 「日経サイエンス、 6月号、 第 40〜第 50頁、 1995年」、 「Nature, Vol. 368, I However, considering the therapeutic effect and safety in humans, the antibodies of the present invention may be chimeric antibodies, humanized or human antibodies. Examples of chimeric antibodies include “Experimental Medicine (Special Issue), Vol. 6, No. 10, 1988”, Japanese Patent Publication No. 3-73280, and human antibodies include, for example, Japanese Patent Publication No. 4-506458. According to Japanese Patent Laid-Open No. 62-296890, etc., human antibodies include, for example, “Nature Genetics, Vol. 15, p. 146-156, 1997”, “Nature Genetics, Vol. 7, p. 13- No. 21, 1994, Special Publication No. 4-504365, International Application Publication No. TO94 / 25585, Nikkei Science, June, 40 to 50, 1995, Nature, Vol. 368, I
13 p. 856-859, 1994」、特表平 6- 500233号公報等を参考にそれぞれ作製することがで きる。  13 p. 856-859, 1994 ”, JP-T 6-500233, and the like.
F g f 2 1のドミナントネガティブ変異体とは、 F g f 2 1に対する変異の導 入によりその活性が低減したものをいう。 該ドミナントネガティブ変異体は、 天 然の F g f 2 1と競合することで間接的にその活性を阻害することができる。 該 ドミナントネガティブ変異体は、 F g f 2 1をコードする核酸に変異を導入する ことによって作製することができる。 変異としては、 例えば、 機能性部位におけ る、 当該部位が担う機能の低下をもたらすようなアミノ酸の変異 (例えば、 1以 上のアミノ酸の欠失、 置換、 付加) が挙げられる。 ドミナントネガティブ変異体 は、 P C Rや公知のキットを用いる自体公知の方法により作製できる。  A dominant negative mutant of F g f 21 refers to one whose activity has been reduced by introducing a mutation into F g f 21. The dominant negative mutant can indirectly inhibit its activity by competing with natural F g f 21. The dominant negative mutant can be prepared by introducing a mutation into a nucleic acid encoding F g f 21. Examples of the mutation include an amino acid mutation (for example, deletion, substitution or addition of one or more amino acids) that causes a decrease in the function of the site at the functional site. The dominant negative mutant can be prepared by a method known per se using PCR or a known kit.
なお、本明細書中以下、アンチセンス核酸、 リポザィム、 R N A i誘導性核酸、 ターゲテイングベクター、 抗体、 ドミナントネガティブ変異体を 「阻害性物質」 と省略する場合がある。  In the following description, antisense nucleic acids, liposomes, RNAi-inducible nucleic acids, targeting vectors, antibodies, and dominant negative mutants may be abbreviated as “inhibitory substances”.
F g f 2 1の発現または機能を調節する物質が、 核酸分子または蛋白質分子で ある場合、 本発明の剤は、 核酸分子または蛋白質分子をコードする核酸分子を含 む発現ベクターを有効成分とすることもできる。 当該発現ベクターは、 上記の核 酸分子をコードするオリゴヌクレオチドもしくはポリヌクレオチドが、 投与対象 である哺乳動物の細胞内でプロモータ一活性を発揮し得るプロモーターに機能的 に連結されていなければならない。 使用されるプロモーターは、 投与対象である 哺乳動物で機能し得るものであれば特に制限されず、 例えば、 S V 4 0由来初期 プロモーター、 サイトメガロウィルス L T R、 ラウス肉腫ウィルス L T R、 M o M u L V由来 L T R、 アデノウィルス由来初期プロモーター等のウィルスプロモ 一ター、 並びに /3—ァクチン遺伝子プロモーター、 P G K遺伝子プロモーター、 トランスフェリン遺伝子プロモーター等の哺乳動物の構成蛋白質遺伝子プロモー ターなどが挙げられる。  When the substance that regulates the expression or function of F gf 21 is a nucleic acid molecule or a protein molecule, the agent of the present invention comprises an expression vector containing a nucleic acid molecule encoding the nucleic acid molecule or protein molecule as an active ingredient. You can also. In the expression vector, the oligonucleotide or polynucleotide encoding the above-mentioned nucleic acid molecule must be operably linked to a promoter capable of exerting a promoter activity in mammalian cells to be administered. The promoter used is not particularly limited as long as it can function in the mammal to be administered. For example, SV 40-derived early promoter, cytomegalovirus LTR, rous sarcoma virus LTR, Mo M u LV origin Examples include viral promoters such as LTR and adenovirus-derived early promoters, and mammalian constituent protein gene promoters such as the / 3-actin gene promoter, PGK gene promoter, and transferrin gene promoter.
発現ベクターは、 好ましくは核酸分子をコードするオリゴ (ポリ) ヌクレオチ ドの下流に転写終結シグナル、すなわちターミネータ一領域を含有する。さらに、 I The expression vector preferably contains a transcription termination signal, ie, a terminator region, downstream of the oligo (poly) nucleotide encoding the nucleic acid molecule. further, I
14 形質転換細胞選択のための選択マーカー遺伝子 (テトラサイクリン、 アンピシリ ン、 カナマイシン、 ハイグロマイシン、 ホスフィノスリシン等の薬剤に対する抵 抗性を付与する遺伝子、 栄養要求性変異を相補する遺伝子等) をさらに含有する こともできる。  14 Further selectable marker genes for selection of transformed cells (such as genes that confer resistance to drugs such as tetracycline, ampicillin, kanamycin, hygromycin, phosphinothricin, and genes that complement auxotrophic mutations) It can also be contained.
発現ベクターとして使用される基本骨格のベクター、 プラスミ ドまたはウィル スベクターであり得る力 S、ヒ ト等の哺乳動物への投与に好適なベクターとしては、 アデノウイノレス、 レトロゥイノレス、 アデノ随伴ウィルス、 ヘルぺスウィルス、 ヮ クシニアゥイノレス、 ボックスウイゾレス、 ポリオゥイノレス、 シンドビスゥイノレス、 センダイゥイノレス、 ェプスタイン ■ バー · ウイノレス等のウィルスベクターが挙げ られる。  Vectors suitable for administration to mammals, such as S, humans, etc., which are basic skeletal vectors used as expression vectors, plasmids or viral vectors, include adenowinoles, retrowinoles, adeno-associated viruses, herpes. Virus vectors such as S. virus, ヮ Cincinoainoles, Box Wizores, Poliouinoles, Sindbisuinoles, Sendai Wineles, Epstein.
本発明の剤は、 F g f 2 1の発現又は機能を調節する物質に加え、任意の担体、 例えば医薬上許容され得る担体を含むことができる。 医薬上許容され得る担体と しては、 例えば、 ショ糖、 デンプン、 マンニット、 ソルビット、 乳糖、 ダルコ一 ス、 セルロース、 タルク、 リン酸カルシウム、 炭酸カルシウム等の賦形剤、 セル ロース、 メチルセルロース、 ヒ ドロキシプロピルセルロース、 ポリプロピルピロ リ ドン、 ゼラチン、 アラビアゴム、 ポリエチレングリ コール、 ショ糖、 デンプン 等の結合剤、 デンプン、 カノレボキシメチルセノレロース、 ヒ ドロキシプロピゾレスタ ーチ、 ナトリウム一グリコールースターチ、 炭酸水素ナトリウム、 リン酸カルシ ゥム、クェン酸カルシウム等の崩壌剤,ステアリン酸マグネシウム、エア口ジル、 タノレク、 ラウリル硫酸ナトリウム等の滑剤、 クェン酸、 メントール、 グリシルリ シン.アンモニゥム塩、グリシン、オレンジ粉等の芳香剤、安息香酸ナトリウム、 亜硫酸水素ナトリウム、 メチルパラベン、 プロピルパラベン等の保存剤、 クェン 酸、 クェン酸ナトリウム、 酢酸等の安定剤、 メチルセルロース、 ポリビュルピロ リ ドン、 ステアリン酸アルミニウム等の懸濁剤、 界面活性剤等の分散剤、 水、 生 理食; ϋ水、 オレンジジュース等の希釈剤、 カカオ脂、 ポリエチレングリコール、 白灯油等のベースワックスなどが挙げられるが、 それらに限定されるものではな い。 I The agent of the present invention can contain any carrier, for example, a pharmaceutically acceptable carrier, in addition to the substance that modulates the expression or function of F gf 21. Examples of pharmaceutically acceptable carriers include sucrose, starch, mannitol, sorbit, lactose, dalcoose, cellulose, talc, calcium phosphate, calcium carbonate, etc., cellulose, methylcellulose, hydride Roxypropylcellulose, polypropylpyrrolidone, gelatin, gum arabic, polyethylene glycol, sucrose, starch and other binders, starch, canoleoxymethyl cenorelose, hydroxypropizole starch, sodium monoglycol starch H, sodium hydrogen carbonate, calcium phosphate, calcium kennate and other disintegrants, magnesium stearate, air mouth gill, tanolec, sodium lauryl sulfate and other lubricants, citrate, menthol, glycyrrhizin, ammonium salt, glycine , Fragrances such as orange powder, Preservatives such as sodium benzoate, sodium bisulfite, methylparaben, propylparaben, stabilizers such as succinic acid, sodium succinate, acetic acid, etc. Dispersing agents such as turbidity agents, surfactants, water, raw foods; brine, diluents such as orange juice, base waxes such as cacao butter, polyethylene glycol, white kerosene, etc. It is not a thing. I
15 経口投与に好適な製剤は、 水、 生理食塩水のような希釈液に有効量の物質を溶 解させた液剤、 有効量の物質を固体や顆粒として含んでいるカプセル剤、 サッシ ェ剤または錠剤、 適当な分散媒中に有効量の物質を懸濁させた懸濁液剤、 有効量 の物質を溶解させた溶液を適当な分散媒中に分散させ乳化させた乳剤等である。 非経口的な投与 (例えば、 静脈内注射、 皮下注射、 筋肉注射、 局所注入など) に好適な製剤としては、 水性および非水性の等張な無菌の注射液剤があり、 これ には抗酸化剤、 緩衝液、 制菌剤、 等張化剤等が含まれていてもよい。 また、 水性 および非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、 安定化剤、 防腐剤等が含まれていてもよい。 当該製剤は、 アンプルやバイアルの ように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、 有効成分および医薬上許容され得る担体を凍結乾燥し、 使用直前に適当な無菌の ビヒクルに溶解または懸濁すればよい状態で保存することもできる。  15 Preparations suitable for oral administration include solutions in which an effective amount of substance is dissolved in a diluent such as water or physiological saline, capsules containing an effective amount of the substance as solids or granules, sachets or Examples thereof include tablets, suspensions in which an effective amount of a substance is suspended in an appropriate dispersion medium, and emulsions in which a solution in which an effective amount of a substance is dissolved is dispersed in an appropriate dispersion medium and emulsified. Formulations suitable for parenteral administration (eg, intravenous injection, subcutaneous injection, intramuscular injection, local injection, etc.) include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants Buffer solution, antibacterial agent, tonicity agent and the like may be contained. Aqueous and non-aqueous sterile suspensions can also be mentioned, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like. The preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials. In addition, the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile vehicle immediately before use.
本発明の剤の投与量は、 有効成分の活性や種類、 病気の重篤度、 投与対象とな る動物種、 投与対象の薬物受容性、 体重、 年齢等によって異なり一概に云えない 力 S、 通常、 成人 1日あたり有効成分量として約 0 . 0 0 1〜約 5 0 0 m g Z k g である。  The dose of the agent of the present invention varies depending on the activity and type of the active ingredient, the severity of the disease, the animal species to be administered, the drug acceptability of the administration target, body weight, age, etc. In general, the amount of active ingredient per day for an adult is about 0.01 to about 500 mg Z kg.
本発明の剤は、 例えば、 医薬または研究用試薬として有用である。 例えば、 本 発明の剤が F g f 2 1の発現または機能を促進する物質を含有する場合、 造血幹 細胞の赤血球一骨髄球系列細胞への分化促進剤として有用である。本発明者らは、 F g f 2 1が造血幹細胞 (例えば g a t a 2陽性) の C M P細胞 (例えば g a t a 1陽性) への分化促進を担う因子であることを見出した。 従って、 F g f 2 1 の発現または機能を促進する物質は、造血幹細胞の C M P細胞への分化を促進し、 以つて赤血球、 巨核球、 骨髄球等の細胞数を増加させ得ると考えられる。 本発明 の剤は、 さらに効率的に赤血球等の細胞数を増加させるため、 赤血球への分化を 促進する物質 (例えば、 エリスロポエチン)、 巨核球への分化を促進する物質 (例 えば、 トロンボポェチン)、骨髄球への分化を促進する物質 (例えば、 顆粒球一マ クロファージコロニー刺激因子) をさらに含有していてもよい。 この場合、 本発 ί The agent of the present invention is useful, for example, as a pharmaceutical or research reagent. For example, when the agent of the present invention contains a substance that promotes the expression or function of F gf 21, it is useful as an agent for promoting differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells. The present inventors have found that F gf 21 is a factor responsible for promoting differentiation of hematopoietic stem cells (for example, gata 2 positive) into CMP cells (for example, gata 1 positive). Therefore, it is considered that a substance that promotes the expression or function of F gf 21 can promote the differentiation of hematopoietic stem cells into CMP cells, and thereby increase the number of cells such as erythrocytes, megakaryocytes, and myeloid cells. Since the agent of the present invention increases the number of cells such as erythrocytes more efficiently, a substance that promotes differentiation into erythrocytes (for example, erythropoietin), a substance that promotes differentiation into megakaryocytes (for example, thrombopoietin), It may further contain a substance that promotes differentiation into myeloid cells (eg granulocyte-macrophage colony-stimulating factor). In this case, ί
16 明の剤は、 赤血球、 血小板、 骨髄球等の細胞数の増加が所望される疾患に使用さ れ得る。 赤血球数の増加が所望される疾患としては、 例えば、 貧血、 赤血球減少 症 (例えば、 癌化学療法、 放射線治療後) が挙げられる。 血小板数の増加が所望 される疾患としては、 例えば、 血小板減少症 (例えば、 癌化学療法、 放射線治療 後) が挙げられる。 骨髄球数の増加が所望される疾患としては、 例えば、 骨髄球 減少症 (例えば、 癌化学療法、 放射線治療後) が挙げられる。 また、 酸素運搬に 関する生体機能 (例えば、 運動機能) の向上を目的として、 本発明の剤を使用す ることもできる。  16 Clarifying agents can be used for diseases where an increase in the number of cells such as red blood cells, platelets, and myeloid cells is desired. Examples of diseases in which an increase in the number of red blood cells is desired include anemia and erythrocytopenia (for example, after cancer chemotherapy and radiation therapy). Examples of diseases for which an increase in the number of platelets is desired include thrombocytopenia (for example, after cancer chemotherapy and radiation therapy). Examples of the disease for which an increase in the number of myeloid cells is desired include myelocytopenia (for example, cancer chemotherapy, after radiation therapy). In addition, the agent of the present invention can also be used for the purpose of improving a biological function (for example, motor function) related to oxygen transport.
また、 本発明の剤が F g f 2 1の発現または機能を促進する物質を含有する場 合、 造血幹細胞のリンパ球系列細胞への分化抑制剤として有用である。 F g f 2 1の発現または機能を促進する物質は、 造血幹細胞の C M P細胞への分化促進の 結果として、 造血幹細胞の C L P細胞 (例えば i k a r o s陽性) への分化を間 接的に抑制し、 以つてリンパ球系列細胞数を減少させ得ると考えられる。 この場 合、 本発明の剤は、 リンパ球系列細胞 (例えば、 T細胞、 B細胞) 数の減少が所 望される疾患に使用され得る。 リンパ球系列細胞数の減少が所望される疾患とし ては、 例えば、 自己免疫疾患、 アレルギー疾患が挙げられる。  In addition, when the agent of the present invention contains a substance that promotes the expression or function of F g f 21, it is useful as an inhibitor of differentiation of hematopoietic stem cells into lymphocyte lineage cells. A substance that promotes the expression or function of F gf 21 indirectly suppresses the differentiation of hematopoietic stem cells into CLP cells (eg, ikaros positive) as a result of promoting differentiation of hematopoietic stem cells into CMP cells. It is believed that the number of lymphocyte lineage cells can be reduced. In this case, the agent of the present invention can be used for diseases in which a decrease in the number of lymphocyte lineage cells (eg, T cells, B cells) is desired. Examples of diseases for which the number of lymphocyte lineage cells is desired include autoimmune diseases and allergic diseases.
一方、 本発明の剤が F g f 2 1の発現または機能を抑制する物質を含有する場 合、 造血幹細胞の赤血球一骨髄球系列細胞への分化抑制剤として有用である。 本 発明者らは、 F g f 2 1の機能抑制により、 造血幹細胞の C M P細胞への分化が 抑制されることを見出した。 従って、 F g f 2 1の発現または機能を抑制する物 質は、 造血幹細胞の赤血球一骨髄球系列細胞への分化を抑制し、'以つて赤血球、 巨核球、 骨髄球等の細胞数を減少させ得ると考えられる。  On the other hand, when the agent of the present invention contains a substance that suppresses the expression or function of F g f 21, it is useful as an agent for suppressing the differentiation of hematopoietic stem cells into erythrocyte-one myeloid lineage cells. The present inventors have found that suppression of the function of F g f 21 suppresses differentiation of hematopoietic stem cells into CMP cells. Therefore, a substance that suppresses the expression or function of F gf 21 suppresses the differentiation of hematopoietic stem cells into erythrocyte-one myeloid lineage cells, thus reducing the number of red blood cells, megakaryocytes, myelocytes, etc. It is thought to get.
また、 本発明の剤が F g f 2 1の発現または機能を抑制する物質を含有する場 合、 造血幹細胞のリンパ球系列細胞への分化促進剤として有用である。 F g f 2 1の 現または機能を抑制する物質は、 造血幹細胞の C M P細胞への分化抑制の 結果として、 造血幹細胞の C L P細胞への分化を間接的に促進し、 以つてリンパ 球系列細胞数を増加させ得ると考えられる。 本発明の剤は、 さらに効率的にリ ン I In addition, when the agent of the present invention contains a substance that suppresses the expression or function of F gf 21, it is useful as an agent for promoting differentiation of hematopoietic stem cells into lymphocyte lineage cells. Substances that suppress the expression or function of F gf 21 indirectly promote the differentiation of hematopoietic stem cells into CLP cells as a result of inhibiting the differentiation of hematopoietic stem cells into CMP cells, thereby increasing the number of lymphocyte lineage cells. It can be increased. The agent of the present invention is more efficient I
17 パ球系列細胞数を増加させるため、 リンパ球系列細胞への分化を促進する物質を さらに含有していてもよい。 リンパ球系列細胞への分化を促進する他の物質とし ては、 例えば、 インターロイキン一 7が挙げられる。 この場合、 本発明の剤は、 リンパ球系列細胞 (例えば、 T細胞、 B細胞) 数の増加が所望される疾患に使用 され得る。 リンパ球系列細胞数の増加が所望される疾患としては、 例えば、 免疫 不全疾患が挙げられる。  17 In order to increase the number of lymphocyte lineage cells, it may further contain a substance that promotes differentiation into lymphocyte lineage cells. Another substance that promotes differentiation into lymphocyte lineage cells is, for example, interleukin-1. In this case, the agent of the present invention can be used for diseases in which an increase in the number of lymphocyte lineage cells (for example, T cells, B cells) is desired. Examples of diseases for which an increase in the number of lymphocyte lineage cells is desired include immunodeficiency diseases.
本発明の調節剤が F g f 2 1の発現または機能を促進する物質に加え、 他の物 質を含有する場合、 それらは一緒になった形態 (例えば、 同一容器中に混合物と して格納)、 あるいは互いに隔離された形態 (例えば、 異なる容器に格納) で提供 され得る。なお、本発明の調節剤は、インビポまたはインビトロで使用され得る。 ( 2 . 造血幹細胞の分化調節方法)  If the modulator of the present invention contains other substances in addition to substances that promote the expression or function of F gf 21, they are in a combined form (for example, stored as a mixture in the same container) Alternatively, they can be provided in isolated form (eg, stored in different containers). The modulator of the present invention can be used in vitro or in vitro. (2. Methods for regulating differentiation of hematopoietic stem cells)
本発明はまた、 造血幹細胞の分化調節方法を提供する。 本方法は、 例えば、 F g f 2 1の発現又は機能を調節する物質の存在下において培地中で造血幹細胞を 培養することを含む。  The present invention also provides a method for regulating differentiation of hematopoietic stem cells. The method includes, for example, culturing hematopoietic stem cells in a medium in the presence of a substance that modulates the expression or function of F gf21.
造血幹細胞は、 任意の動物、 例えば魚類、 鳥類、 哺乳動物 (例.えば、 ゥシ、 ヒ ッジ、 ブタ、 ャギ、 サル、 ヒ ト、 ゥサギ、 ラット、 ハムスター、 モルモッ ト、 マ ウス) に由来する細胞であり得る。 造血幹細胞はまた、 任意の組織由来の細胞で あり得るが、 例えば、 骨髄、 胎児肝等の組織中に存在する細胞であり得る。 造血 幹細胞はさらに、 胚性幹細胞、 体性幹細胞等の多能性幹細胞から分化誘導される 細胞であり得る。 また、 本発明の分化調節方法により得られる細胞の移植を意図 する場合、 移植が意図される動物と同種動物由来の細胞を用いることで、 同種移 植に好適な細胞が得られ、 また、 移植が意図される個体由来の細胞を用いること で、 同種同系移植に好適な細胞が得られる。 造血幹細胞は、 細胞表面マーカーを 利用する自体公知の方法 (例えば、 F A C S ) により入手できる。 造血幹細胞の 細胞表面マーカーとしては、 例えば、 S e a— 1、 c k i tが挙げられる。  Hematopoietic stem cells can be used in any animal, such as fish, birds, mammals (eg, ushi, sheep, pigs, goats, monkeys, humans, rabbits, rats, hamsters, guinea pigs, mice). It can be a derived cell. Hematopoietic stem cells can also be cells derived from any tissue, but can be cells present in tissues such as bone marrow and fetal liver. Hematopoietic stem cells can be cells induced to differentiate from pluripotent stem cells such as embryonic stem cells and somatic stem cells. In addition, when transplantation of cells obtained by the differentiation regulation method of the present invention is intended, cells suitable for allogeneic transplantation can be obtained by using cells derived from the same species as the animal intended for transplantation. By using a cell derived from an individual intended to be transplanted, a cell suitable for allogeneic transplantation can be obtained. Hematopoietic stem cells can be obtained by a method known per se (for example, F A C S) using a cell surface marker. Examples of cell surface markers for hematopoietic stem cells include S e a-1 and c kit.
造血幹細胞の培養に用いられる培地は、 造血幹細胞の分化に適切である限り特 に限定されず適宜選択されるが、 例えば、 最少必須培地 (M E M)、 ダルベッコ改 I The medium used for culturing hematopoietic stem cells is not particularly limited as long as it is suitable for the differentiation of hematopoietic stem cells, and is appropriately selected. For example, the minimum essential medium (MEM), Dulbecco modified I
18 変最少必須培地 (D M E M)、 F 1 2培地または R P M I 1 6 4 0培地、 あるいは それらの混合培地を基本培地として含むものなどである。 培地への添加剤として は、 例えば、 各種アミノ酸、 各種無機塩、 各種ビタミン、 各種抗生物質、 緩衝剤 などが挙げられる。 培養条件もまた適宜決定されるが、 例えば、 培地の p Hは約 6〜約 8であり、 培養温度は通常約 3 0〜約 4 0 °Cである。 培地は、 血清を含ん でも含まなくともよいが、 未同定成分の混入の防止、 感染リスクの軽減などの観 点から、 無血清培地が好ましい。  18 Modified minimal essential medium (D M E M), F 12 medium or R P M I 16 40 medium, or a mixture thereof. Examples of additives to the medium include various amino acids, various inorganic salts, various vitamins, various antibiotics, and buffering agents. The culture conditions are also appropriately determined. For example, the pH of the medium is about 6 to about 8, and the culture temperature is usually about 30 to about 40 ° C. The medium may or may not contain serum, but a serum-free medium is preferable from the viewpoint of preventing contamination of unidentified components and reducing the risk of infection.
一実施形態では、 本発明の分化調節方法は、 F g f 2 1の存在下において培地 中で造血幹細胞を培養することを含む。 F g f 2 1の存在下での造血幹細胞の培 養は、 結果的に、 F g f 2 1を含む培地中で造血幹細胞を培養することとなる限 り特に限定されない。 従って、 培養開始時に、 F g f 2 1が培地中に存在してい なくとも構わない。 F g f 2 1の存在下での造血幹細胞の培養としては、例えば、 F g f 2 1を添加した培地における造血 細胞の培養、 F g f 2 1発現ベクター を導入した造血幹細胞の培養、 F g f 2 1発現細胞との造血幹細胞の共培養など が挙げられるが、 F g f 2 1を添加した培地における造血幹細胞の培養が好まし い。  In one embodiment, the differentiation-regulating method of the present invention comprises culturing hematopoietic stem cells in a medium in the presence of F gf21. The culture of hematopoietic stem cells in the presence of F g f 21 is not particularly limited as long as it results in culturing hematopoietic stem cells in a medium containing F g f 21. Therefore, F g f 21 may not be present in the medium at the start of culture. Examples of the culture of hematopoietic stem cells in the presence of F gf 21 include culture of hematopoietic cells in a medium supplemented with F gf 21, culture of hematopoietic stem cells into which an F gf 21 expression vector has been introduced, F gf 21 Examples include co-culture of hematopoietic stem cells with expression cells, but culture of hematopoietic stem cells in a medium supplemented with F gf 21 is preferred.
F g f 2 1を添加した培地中で造血幹細胞を培養する場合、 培地に添加される F g f 2 1は、 天然蛋白質又は組換え蛋白質であり得る。 F g f 2 1は、 上述し た自体公知の方法により調製できる。  When hematopoietic stem cells are cultured in a medium supplemented with F g f 21, F g f 21 added to the medium can be a natural protein or a recombinant protein. F g f 21 can be prepared by a method known per se as described above.
F g f 2 1発現ベクターを導入した造血幹細胞を培養する場合、 造血幹細胞に 導入される発現ベクターは、 上述の F g f 2 1発現ベクターと同様であり得る。 発現ベクターの造血幹細胞への導入は、 自体公知の方法、 例えばエレク トロボレ ーシヨン法、 リン酸カルシウム沈殿法、 マイクロインジェクション法、 リポソ一 ム、 陽イオン性脂質等の脂質を使用する方法などにより行われ得る。 また、 該発 現べク.ターの一部又は全てが、 造血幹細胞のゲノムに組み込まれていても、 組み 込まれていなくてもよい。 発現ベクターの細胞内ゲノムへの組込みには、 自体公 知の方法、 例えばレトロウイルスを使用する方法、 相同組換えを可能とするター ゲティングベクターを使用する方法などが用いられ得る。 When culturing hematopoietic stem cells into which an F gf 21 expression vector has been introduced, the expression vector introduced into the hematopoietic stem cells can be the same as the F gf 21 expression vector described above. The expression vector can be introduced into hematopoietic stem cells by a method known per se, for example, an electroporation method, a calcium phosphate precipitation method, a microinjection method, a liposome, a method using a lipid such as a cationic lipid. Further, a part or all of the expression vector may or may not be integrated into the hematopoietic stem cell genome. For integration of the expression vector into the intracellular genome, methods known per se, such as methods using retroviruses, A method using a getting vector or the like can be used.
F g f 2 1発現細胞と造血幹細胞を共培養する場合、 培地中で造血幹細胞と共 存させる細胞は、 F g f 2 1を発現可能である限り特に限定されない。 該発現細 胞は、例えば、 F g f 2 1発現ベクターの宿主細胞への導入により得られる細胞、 F g f 2 1を発現する天然細胞であり得る。 F g f 2 1を発現する天然細胞とし ては、 F g f 2 1発現組織 (例えば、 骨髄、 肝臓、 胸腺) 由来の細胞を使用でき る。 F g f 2 1発現細胞はまた、 初代培養細胞、 初代培養細胞から誘導された細 胞株、 幹細胞等の未分化細胞の培養により得られる細胞 (例えば、 分化細胞) な どであり得る。 F g f 2 1発現細胞はまた、 造血幹細胞と同種動物又は同じ個体 由来の細胞であり得る。 なお、 共培養としては、 造血幹細胞と F g f 2 1発現細 胞とが物理的に接触している場合や、 これら細胞が同じ培養系に存在するが物質 の行き来が可能な隔壁により隔てられ細胞自体の物理的接触ができない場合も含 まれる。 造血幹細胞と F g f 2 1発現細胞が同じ培養系に存在するが物質の行き 来が可能な隔壁により隔てられ細胞自体の物理的接触ができない場合とは、 例え ば、 通常の細胞培養に用いられるフィルター (例えば、 カルチヤ一^ f ンサート) を用いて両細胞を隔てて培養する場合が挙げられる。  When co-culturing F gf21-expressing cells and hematopoietic stem cells, the cells to coexist with hematopoietic stem cells in the medium are not particularly limited as long as Fgf21 can be expressed. The expression cell can be, for example, a cell obtained by introducing an F gf21 expression vector into a host cell, or a natural cell that expresses Fgf21. As natural cells that express F g f 21, cells derived from tissues expressing F g f 21 (eg, bone marrow, liver, thymus) can be used. The F gf21-expressing cells can also be primary cultured cells, cell lines derived from primary cultured cells, cells obtained by culturing undifferentiated cells such as stem cells (eg, differentiated cells), and the like. The F g f21 expressing cells can also be cells from the same animal or individual as the hematopoietic stem cells. Co-culture can be performed when hematopoietic stem cells and F gf 21-expressing cells are in physical contact with each other, or when these cells are present in the same culture system but separated by a septum that allows passage of substances. This includes cases where physical contact is not possible. The case where hematopoietic stem cells and F gf 2 1-expressing cells are present in the same culture system, but separated by a partition wall that allows the passage of substances, is not possible for physical contact of the cells themselves.For example, it is used for normal cell culture One example is a case where both cells are cultured separately using a filter (for example, a cartridge).
別の実施形態では、 本発明の分化調節方法は、 F g ί 2 1の発現又は機能を抑 制するように、 培地中で造血幹細胞を培養することを含む。 このような造血幹細 胞の培養としては、 例えば、 F g f 2 1阻害性物質 (上述) を添加した培地にお ける造血幹細胞の培養などが挙げられる。  In another embodiment, the method for regulating differentiation of the present invention comprises culturing hematopoietic stem cells in a culture medium so as to suppress the expression or function of Fg 21. Examples of such hematopoietic stem cell culture include culture of hematopoietic stem cells in a medium supplemented with an F gf 21 inhibitor (described above).
本発明の分化調節方法は、 造血幹細胞から分化誘導された細胞 (例えば、 赤血 球一骨髄球系列細胞、 リンパ球系列細胞) を単離することをさらに含むことがで きる。 分化細胞の単離は、 細胞表面マーカーを利用する自体公知の方法等により 行うことができる。  The differentiation regulation method of the present invention can further include isolating cells induced to differentiate from hematopoietic stem cells (for example, erythroid-one myeloid lineage cells, lymphocyte lineage cells). Isolation of differentiated cells can be performed by a method known per se using a cell surface marker.
本発.明の分化調節方法はまた、 造血幹細胞から分化誘導された細胞をさらに分 化させることを含むこともできる。 造血幹細胞から分化誘導された細胞をさらに 分化させる方法は特に限定されるものではないが、 例えば、 F g f 2 1の発現又 は機能を調節する物質と他の分化調節物質との共存下で造血幹細胞を培養する方 法、 F g ί 2 1の発現又は機能を調節する物質の存在下での造血幹細胞の培養後 に他の分化調節物質を使用する方法が挙げられる。 他の分化調節物質としては、 上述の物質が挙げられる。 造血幹細胞から分化誘導された細胞をさらに分化させ る方法の好ましい例は、 エリスロポエチンを用いる赤血球への分化促進方法であ る。 The differentiation control method of the present invention can also include further differentiation of cells induced to differentiate from hematopoietic stem cells. The method for further differentiation of the cells induced to differentiate from hematopoietic stem cells is not particularly limited. For example, F gf 21 expression or Is a method of culturing hematopoietic stem cells in the presence of a substance that regulates function and other differentiation regulators, or after culturing hematopoietic stem cells in the presence of a substance that regulates the expression or function of F g ί 21 And a method of using a differentiation regulator. Examples of other differentiation regulating substances include those mentioned above. A preferred example of a method for further differentiation of cells induced to differentiate from hematopoietic stem cells is a method for promoting differentiation into erythrocytes using erythropoietin.
本発明の分化調節方法は、 造血幹細胞からの所定の分化細胞の製造に有用であ る。 例えば、 得られた分化細胞は、 細胞治療 (移植) に用いることができる。 こ の場合、 培養で使用する物質、 材料は、 同種移植という観点から、 細胞治療を受 ける被験体と同種動物由来の物質、 材料で統一するのが好ましい。 また、 培養で 使用する細胞は、 同種移植という観点から、 細胞治療を受ける被験体と同種動物 由来の細胞が好ましいが、 同種同系移植という観点から、 該被験体に由来する細 胞を用いるのがより好ましい。  The differentiation regulation method of the present invention is useful for producing predetermined differentiated cells from hematopoietic stem cells. For example, the obtained differentiated cells can be used for cell therapy (transplantation). In this case, from the viewpoint of allogeneic transplantation, it is preferable to unify the substances and materials used in the culture with substances and materials derived from the same animal as the subject to receive cell therapy. In addition, from the viewpoint of allogeneic transplantation, the cells used in the culture are preferably cells derived from the same species as the subject receiving cell therapy, but from the viewpoint of allogeneic transplantation, cells derived from the subject are used. More preferred.
( 3 . 造血幹細胞の分化効率の判定方法)  (3. Method for determining differentiation efficiency of hematopoietic stem cells)
本発明はまた、 F g f 2 1による造血幹細胞の分化効率の判定方法を提供する。 本発明の判定方法は、 例えば、 F g f 2 1の存在下において培地中で造血幹細胞 を培養し、 造血幹細胞の赤血球一骨髄球系列細胞又はリンパ球系列細胞への分化 効率を評価することを含む。  The present invention also provides a method for determining the differentiation efficiency of hematopoietic stem cells by F g f 21. The determination method of the present invention includes, for example, culturing hematopoietic stem cells in a medium in the presence of F gf 21 and evaluating the efficiency of differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells. .
本判定方法に用いられる造血幹細胞は、 本発明の分化調節方法で用いられるも のと同様であり得るが、 造血幹細胞の赤血球一骨髄球系列細胞又はリンパ球系列 細胞への分化効率の判定が所望される被験体 (例えば、 F g f 2 1の発現又は機 能を調節する物質による治療が検討されている被験体) から採取された造血幹細 胞が使用され得る。  The hematopoietic stem cells used in this determination method may be the same as those used in the differentiation regulation method of the present invention, but it is desirable to determine the differentiation efficiency of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells. Hematopoietic stem cells taken from a subject to be tested (eg, a subject being considered for treatment with a substance that modulates F gf 21 expression or function) can be used.
F g f 2 1の存在下における培地中での造血幹細胞の培養は、 上述した分化調 節方 ¾と同様に行われ得るが、 F g f 2 1を添加した培地における造血幹細胞の 培養が好ましい。  Culture of hematopoietic stem cells in a medium in the presence of F g f 21 can be carried out in the same manner as the differentiation regulating method described above, but culture of hematopoietic stem cells in a medium supplemented with F g f 21 is preferred.
造血幹細胞の赤血球一骨髄球系列細胞又はリンパ球系列細胞への分化効率の評 価は、 自体公知の方法により行うことができる。 例えば、 造血幹細胞の赤血球一 骨髄球系列細胞又はリンパ球系列細胞への分化効率が、 F g f 2 1の発現又は機 能を調節する物質を用いる治療の有用性を肯定する程度に十分なものであるか否 力が評価され得る。 Evaluation of differentiation efficiency of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphocyte lineage cells The value can be determined by a method known per se. For example, the differentiation efficiency of hematopoietic stem cells into red blood cells, myeloid lineage cells or lymphocyte lineage cells is sufficient to affirm the usefulness of treatment with substances that modulate the expression or function of F gf 21. The power can be evaluated.
本判定方法は、 例えば、 所定の患者における F g f 2 1の発現又は機能を調節 する物質を用いる治療の効果を予測し、 該患者において該治療を採用するか否か を決定する際などに有用であり得る。  This determination method is useful, for example, in predicting the effect of treatment using a substance that modulates the expression or function of F gf 21 in a given patient and determining whether or not to adopt the treatment in the patient. It can be.
( 4 . 造血幹細胞の分化を調節し得る物質のスクリーニング方法)  (4. Screening method for substances that can regulate the differentiation of hematopoietic stem cells)
本発明はまた、 被験物質が F g f 2 1の発現または機能を調節し得るか否かを 評価することを含む、造血幹細胞の分化を調節し得る物質のスクリ一ユング方法、 ならびに当該スクリーユング方法により得られる物質、 および当該物質を含有し てなる造血幹細胞の分化調節剤を提供する。  The present invention also includes a screening method for a substance capable of regulating the differentiation of hematopoietic stem cells, comprising evaluating whether the test substance can regulate the expression or function of F gf 21, and the screening method. And a hematopoietic stem cell differentiation regulator comprising the substance.
スクリーニング方法に供される被験物質は、 いかなる公知化合物及び新規化合 物であってもよく、 例えば、 核酸、 糖質、 脂質、 蛋白質、 ペプチド、 有機低分子 化合物、 ユンピナトリアルケミストリー技術を用いて作製された化合物ライブラ リー、 固相合成やファージディスプレイ法により作製されたランダムぺプチドラ イブラリー、 あるいは微生物、 動植物、 海洋生物等由来の天然成分等が挙げられ る。  The test substance to be used for the screening method may be any known compound and novel compound, for example, nucleic acid, carbohydrate, lipid, protein, peptide, low-molecular-weight organic compound, and yunpina chemistry technology Compound libraries, random peptide libraries prepared by solid phase synthesis or phage display methods, or natural components derived from microorganisms, animals and plants, marine organisms, and the like.
一実施形態では、 本発明のスクリーニング方法は、 細胞を用いて行われ得る。 この場合、 本発明のスクリーニング方法は、 下記の工程 (a ) 〜 (c ) を含む: In one embodiment, the screening method of the present invention can be performed using cells. In this case, the screening method of the present invention includes the following steps (a) to (c):
( a ) 被験物質と F g f 2 1の発現を測定可能な細胞とを接触させる工程;(a) contacting the test substance with a cell capable of measuring the expression of F g f 21;
( b ) 被験物質を接触させた細胞における F g f 2 1の発現量を測定し、 該発現 量を被験物質を接触させない対照細胞における F g f 2 1の発現量と比較するェ 程; (b) measuring the expression level of F g f 21 in cells contacted with the test substance and comparing the expression level with the expression level of F g f 21 in control cells not contacted with the test substance;
( c ) ,上記 (b ) の比較結果に基づいて、 F g f 2 1の発現量を調節する被験物 質を選択する工程。  (c) A step of selecting a test substance that regulates the expression level of F g f 21 based on the comparison result of (b).
上記方法の工程 (a ) では、 被験物質が F g f 2 1の発現を測定可能な細胞と 接触条件下におかれる。 F g f 2 1の発現を測定可能な細胞に対する被験物質の 接触は、 培養培地中で行われ得る。 In step (a) of the above method, the test substance and cells capable of measuring the expression of F gf 21 Place under contact conditions. Contact of the test substance with a cell capable of measuring the expression of F gf 21 can be performed in a culture medium.
F g f 2 1の発現を測定可能な細胞とは、 F g f 2 1の産物、 例えば、 転写産 物、 翻訳産物の発現レベルを直接的又は間接的に評価可能な細胞をいう。 F g f 2 1の産物の発現レベルを直接的に評価可能な細胞は、 F g f 2 1を天然で発現 可能な細胞であり得、 一方、 F g f 2 1の産物の発現レベルを間接的に評価可能 な細胞は、 F g f 2 1転写調節領域についてレポーターアツセィを可能とする細 胞であり得る。 F g f 2 1の発現を測定可能な細胞は、動物細胞、例えばマウス、 ラット、 ハムスター、 モルモッ ト、 ゥサギ、 ィヌ、 サル、 ヒ ト等の哺乳動物細胞 であり得る。  A cell capable of measuring the expression of F g f 21 refers to a cell capable of directly or indirectly evaluating the expression level of a product of F g f 21, for example, a transcription product or a translation product. Cells that can directly evaluate the expression level of the F gf 2 1 product may be cells that can naturally express F gf 2 1, while indirectly evaluating the expression level of the F gf 2 1 product. A possible cell may be a cell that allows reporter assembly for the F gf21 transcriptional regulatory region. The cell capable of measuring the expression of F g f 21 can be an animal cell, for example, a mammalian cell such as a mouse, a rat, a hamster, a guinea pig, a rabbit, an inu, a monkey, or a human.
F g f 2 1を天然で発現可能な細胞は、 F g f 2 1を潜在的に発現するもので ある限り特に限定されない。 かかる細胞は、 当業者であれば容易に同定でき、 初 代培養細胞、 当該初代培養細胞から誘導された細胞株、 市販の細胞株、 セルバン クより入手可能な細胞株などを使用できる。  The cell capable of naturally expressing F gf21 is not particularly limited as long as it can potentially express Fgf21. Such cells can be easily identified by those skilled in the art, and primary cultured cells, cell lines derived from the primary cultured cells, commercially available cell lines, cell lines available from cell banks, and the like can be used.
F g f 2 1転写調節領域についてレポーターアツセィを可能とする細胞は、 F g f 2 1転写調節領域、 当該領域に機能可能に連結されたレポーター遺伝子を含 む細胞である。 F g f 2 1転写調節領域、 レポーター遺伝子は、 発現ベクター中 に挿入され得る。 F g f 2 1転写調節領域は、 F g f 2 1の発現を制御し得る領 域である限り特に限定されないが、 例えば、 転写開始点から上流約 2 k b pまで の領域、 あるいは該領域の塩基配列において 1以上の塩基が欠失、 置換若しくは 付加された塩基配列からなり、 且つ F g f 2 1の転写を制御する能力を有する領 域などが挙げられる。 レポーター遺伝子は、 検出可能な蛋白質又は検出可能な物 質を生成する酵素をコードする遺伝子であればよく、 例えば G F P (緑色蛍光蛋 白質) 遺伝子、 G U S ( 一ダルク口ニダーゼ) 遺伝子、 L U C (ルシフェラー ゼ) 遺伝子、 C A T (クロラムフエ-コルァセチルトランスフェラーゼ) 遺伝子 等が挙げられる。  A cell that enables reporter assembly for the F gf21 transcriptional regulatory region is a cell that contains a Fgf21 transcriptional regulatory region and a reporter gene operably linked to the region. The F g f21 transcriptional regulatory region, reporter gene can be inserted into an expression vector. The F gf 21 transcriptional regulatory region is not particularly limited as long as it is a region capable of controlling the expression of F gf 21, but for example, in the region from the transcription start point to about 2 kbp upstream, or in the base sequence of the region Examples include a region consisting of a base sequence in which one or more bases have been deleted, substituted or added, and having the ability to control transcription of F gf 21. The reporter gene may be any gene that encodes a detectable protein or an enzyme that produces a detectable substance. For example, a GFP (green fluorescent protein) gene, a GUS (one-darc mouth nidase) gene, an LUC (luciferase) ) Gene, CAT (chloramphee-colacetyltransferase) gene, and the like.
F g f 2 1転写調節領域、 当該領域に機能可能に連結されたレポーター遺伝子 が導入される細胞は、 F g f 2 1転写調節機能を評価できる限り、 即ち、 該レポ 一ター遺伝子の発現量が定量的に解析可能である限り特に限定されない。 しかし ながら、 F g f 21に対する生理的な転写調節因子を発現し、 F g f 2 1の発現 調節の評価により適切であると考えられることから、該導入される細胞としては、 F g f 2 1を天然で発現可能な細胞が好ましい。 F gf 21 transcriptional regulatory region, reporter gene operably linked to the region The cell into which is introduced is not particularly limited as long as the F gf 21 transcriptional regulatory function can be evaluated, that is, as long as the expression level of the reporter gene can be quantitatively analyzed. However, since it expresses a physiological transcriptional regulatory factor for F gf 21 and is considered to be more appropriate for the evaluation of the expression regulation of F gf 21, F gf 21 is naturally introduced as the introduced cell. Cells that can be expressed in are preferred.
被験物質と F g f 2 1の発現を測定可能な細胞とが接触される培地は、 用いら れる細胞の種類などに応じて適宜選択されるが、 例えば、 約 5〜20%のゥシ胎 仔血清を含む最少必須培地(MEM)、ダルベッコ改変最少必須培地(DMEM)、 R PM I 1 640培地、 1 9 9培地などである。 培養条件もまた、 用いられる細 胞の種類などに応じて適宜決定されるが、 例えば、 培地の pHは約 6〜約 8であ り、 培養温度は通常約 30〜約 40 °Cであり、 培養時間は約 1 2〜約 7 2時間で める。  The medium in which the test substance is contacted with the cells capable of measuring the expression of F gf 21 is appropriately selected according to the type of cells used, for example, about 5 to 20% Examples include minimal essential medium (MEM) containing serum, Dulbecco's modified minimal essential medium (DMEM), RPM I 1640 medium, and 1999 medium. The culture conditions are also appropriately determined according to the type of cells used, etc.For example, the pH of the medium is about 6 to about 8, and the culture temperature is usually about 30 to about 40 ° C. The incubation time should be about 12 to 72 hours.
上記方法の工程 (b) では、 先ず、 被験物質を接触させた細胞における F g f 2 1の発現量が測定される。 発現量の測定は、 用いた細胞の種類などを考慮し、 自体公知の方法により行われ得る。 例えば、 F g f 21の発現を測定可能な細胞 として、 F g f 21を天然で発現可能な細胞を用いた場合、 発現量は、 F g f 2 1の産物、 例えば、 転写産物又は翻訳産物を対象として自体公知の方法により測 定できる。 例えば、 転写産物の発現量は、 細胞から total RNAを調製し、 RT _PCR、 ノザンブロッテイング等により測定され得る。 また、 翻訳産物の発現 量は、 細胞から抽出液を調製し、 免疫学的手法により測定され得る。 免疫学的手 法としては、 放射性同位元素免疫測定法 (R I A法)、 EL I SA法 (Methods in Enzymol. 70: 419-439 (1980))、 蛍光抗体法などが使用できる。 一方、 F g f 2 1の発現を測定可能な細胞として、 F g f 2 1転写調節領域についてレポーター アツセィを可能とする細胞を用いた場合、 発現量は、 レポーターのシグナル強度 に基づき測定され得る。  In step (b) of the above method, first, the expression level of F g f 21 in the cell contacted with the test substance is measured. The expression level can be measured by a method known per se in consideration of the type of cells used. For example, when cells that can express F gf 21 naturally are used as cells capable of measuring F gf 21 expression, the expression level is for the product of F gf 21, for example, a transcription product or a translation product. It can be measured by a method known per se. For example, the expression level of the transcript can be measured by preparing total RNA from cells and performing RT_PCR, Northern blotting, or the like. In addition, the expression level of the translation product can be measured by preparing an extract from the cells and immunologically. Examples of immunological methods include radioisotope immunoassay (RIA method), EL ISA method (Methods in Enzymol. 70: 419-439 (1980)), and fluorescent antibody method. On the other hand, when a cell capable of reporter assembly for the F gf21 transcriptional regulatory region is used as a cell capable of measuring Fgf21 expression, the expression level can be measured based on the signal intensity of the reporter.
次いで、 被験物質を接触させた細胞における F g f 2 1の発現量が、 被験物質 を接触させない対照細胞における F g f 2 1の発現量と比較される。 発現量の比 i Next, the expression level of F gf 2 1 in the cells contacted with the test substance is compared with the expression level of F gf 21 in the control cells not contacted with the test substance. Ratio of expression level i
24 較は、 好ましくは、 有意差の有無に基づいて行なわれる。 被験物質を接触させな い対照細胞における F g f 2 1の発現量は、 被験物質を接触させた細胞における F g f 2 1の発現量の測定に対し、 事前に測定した発現量であっても、 同時に測 定した発現量であってもよいが、 実験の精度、 再現性の観点から同時に測定した 発現量であることが好ましい。  The comparison is preferably based on the presence or absence of a significant difference. The expression level of F gf 2 1 in the control cells not contacted with the test substance may be the expression level measured in advance compared to the measurement of the expression level of F gf 2 1 in the cells contacted with the test substance. Although the expression level measured at the same time may be used, the expression level measured at the same time is preferable from the viewpoint of the accuracy and reproducibility of the experiment.
上記方法の工程 (c ) では、 F g f 2 1の発現量を調節する被験物質が選択さ れる。 F g f 2 1の発現量の調節は、 発現量の増加または減少であり得る。 例え ば、 F g f 2 1の発現量を増加させる (発現を促進する) 被験物質は、 造血幹細 胞の赤血球一骨髄球系列細胞への分化促進作用、 又は造血幹細胞のリンパ球系列 細胞への分化抑制作用を有し得、 貧血、 自己免疫疾患、 アレルギー疾患等の疾患 の予防 '治療薬となり得る。 一方、 F g f 2 1の発現量を減少させる (発現を抑 制する) 被験物質は、 造血幹細胞の赤血球一骨髄球系列細胞への分化抑制作用、 又は造血幹細胞のリンパ球系列細胞への分化促進作用を有し得、 免疫不全疾患等 の疾患の予防 '治療薬となり得る。 従って、 F g f 2 1の発現量を指標として、 所定の疾患の予防 ·治療剤等の医薬、 または研究用試薬のための侯補物質を選択 することが可能となる。  In step (c) of the above method, a test substance that regulates the expression level of F g f 21 is selected. The regulation of the expression level of F g f21 can be an increase or decrease in the expression level. For example, the test substance that increases the expression level of F gf 2 1 (promotes the expression) can be used to promote differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells, or hematopoietic stem cells into lymphocyte lineage cells. It can have a differentiation-inhibiting action, and can be used as a preventive or therapeutic agent for diseases such as anemia, autoimmune diseases, and allergic diseases. On the other hand, the test substance that decreases the expression level of F gf 2 1 (suppresses the expression) is an inhibitory effect on the differentiation of hematopoietic stem cells into erythrocyte-one myeloid lineage cells or promotes differentiation of hematopoietic stem cells into lymphocyte lineage cells It can have an effect and can be a preventive or therapeutic agent for diseases such as immunodeficiency diseases. Accordingly, it is possible to select a pharmaceutical agent such as a preventive / therapeutic agent for a predetermined disease or a complement for a research reagent, using the expression level of F g f 21 as an index.
本発明のスクリーニング方法はまた、 動物を用いて行われ得る。 この場合、 本 発明のスクリーニング方法は、 下記の工程 (a ) 〜 (c ) を含む:  The screening method of the present invention can also be performed using animals. In this case, the screening method of the present invention includes the following steps (a) to (c):
( a ) 被験物質を動物に投与する工程;  (a) administering a test substance to an animal;
( b ) 被験物質を投与した動物における F g f 2 1の発現量を測定し、 該発現量 を被験物質を投与しない対照動物における F g f 2 1の発現量と比較する工程; ( c ) 上記 (b ) の比較結果に基づいて、 F g f 2 1の発現量を調節する被験物 質を選択する工程。  (b) measuring the expression level of F gf 21 in an animal administered with the test substance, and comparing the expression level with the expression level of F gf 21 in a control animal not administered with the test substance; (c) b) A step of selecting a test substance that regulates the expression level of F gf 21 based on the comparison result of (b).
上記方法の工程 (a ) では、 動物として、 例えば、 マウス、 ラット、 ハムスタ 一、 モルモッ ト、 ゥサギ、 ィヌ、 サル等の哺乳動物が使用される。 被験物質の動 物への投与は自体公知の方法により行われ得る。  In step (a) of the above method, mammals such as mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys and the like are used as animals. Administration of the test substance to the animal can be performed by a method known per se.
上記方法の工程 (b ) では、 F g f 2 1の発現量は、 自体公知の方法により測 I In step (b) of the above method, the expression level of F gf 21 is measured by a method known per se. I
25 定され得る。 例えば、 F g f 2 1の発現量として、 F g f 2 1の血中濃度が測定 される。 本工程 (b ) における発現量の比較及び上記方法の工程 (c ) は、 F g f 2 1の発現を測定可能な細胞を用いるスクリーニング方法におけるものと同様 に行われ得る。  25 can be determined. For example, the blood concentration of F g f 21 is measured as the expression level of F g f 21. The comparison of the expression level in this step (b) and the step (c) of the above method can be carried out in the same manner as in the screening method using cells capable of measuring the expression of F g f 21.
本発明のスク リーニング方法は、 造血幹細胞の分化を調節し得る物質、 又は所 定の疾患に対する予防 ·治療薬のスク リーニングを可能とする。 従って、 本発明 のスクリーユング方法は、 上述の医薬又は研究用試薬の開発などに有用である。 The screening method of the present invention enables screening of a substance that can regulate the differentiation of hematopoietic stem cells, or a prophylactic / therapeutic agent for a given disease. Therefore, the screening method of the present invention is useful for the development of the above-mentioned pharmaceuticals or research reagents.
( 5 . 造血幹細胞の分化調節能に変化をもたらす F g f 2 1多型の同定方法) 本発明はまた、 F g f 2 1の特定の多型が造血幹細胞の分化調節能に及ぼす影 響を解析することを含む、 造血幹細胞の分化調節能に変化をもたらす F g f 2 1 多型の同定方法、 当該方法により同定される造血幹細胞の分化調節能に変化をも • たらす F g f 2 1多型を含むタンパク質■核酸分子を提供する。 (5. Identification method of F gf 2 1 polymorphism that causes a change in the ability to regulate differentiation of hematopoietic stem cells) The present invention also analyzes the influence of a specific polymorphism of F gf 2 1 on the ability to regulate differentiation of hematopoietic stem cells. A method for identifying an F gf 2 1 polymorphism that causes a change in the ability to regulate the differentiation of hematopoietic stem cells, and a method for causing an alteration in the ability to regulate the differentiation of hematopoietic stem cells identified by the method. Containing proteins ■ Nucleic acid molecules are provided.
F g f 2 1の多型とは、 ある母集団において、 F g f 2 1遺伝子を含むゲノム D N Aに一定頻度で見出されるヌクレオチド配列の変異を意味し、 F g f 2 1遺 伝子を含むゲノム D N Aにおける 1以上の D N Aの置換、 欠失、 付加 (例えば、 S N P、ハプロタイプ)、 並びに該ゲノム D N A中の部分領域の反復、逆位、 転座 などであり得る。 本発明の方法により同定される F g f 2 1の多型のタイプは、 F g f 2 1における全てのタイプの多型のうち、 造血幹細胞の赤血球—骨髄球系 列細胞又はリンパ球系列細胞への分化効率に変化をもたらすヌクレオチド配列の 変異、 あるいは所定の疾患 (例えば、 造血疾患、 免疫疾患) に罹患した動物と罹 患していない動物との間で頻度が異なるヌクレオチド配列の変異であり得る。 な お、 F g f 2 1多型の解析対象となる動物は上述の通り特に限定されないが、 ヒ トが好ましい。  An F gf 2 1 polymorphism means a nucleotide sequence variation found in a certain frequency in genomic DNA containing the F gf 2 1 gene in a population, and in the genomic DNA containing the F gf 2 1 gene. One or more DNA substitutions, deletions, additions (eg, SNPs, haplotypes), as well as repeats, inversions, translocations, etc. of partial regions in the genomic DNA. The type of polymorphism of F gf 21 identified by the method of the present invention is that among all types of polymorphisms in F gf 21, hematopoietic stem cells are transformed into erythrocyte-myeloid lineage cells or lymphocyte lineage cells. It may be a nucleotide sequence variation that causes a change in differentiation efficiency, or a nucleotide sequence variation that differs in frequency between an animal suffering from a predetermined disease (eg, hematopoietic disease, immune disease) and an unaffected animal. The animal to be analyzed for the F g f 21 polymorphism is not particularly limited as described above, but humans are preferred.
解析は、 自体公知の方法により行われ得る。 例えば、 連鎖解析等の解析方法の 結果、 所定の疾患 (例えば、 造血疾患、 免疫疾患) の発症頻度、 重症度に応じて 特定の多型の保有頻度に有意差が認められたとき、 そのタイプの多型は、 造血幹 細胞の分化調節能に変化をもたらす多型であると判定され得る。 また、 解析はィ ンビトロで行うことも可能である。 例えば、 特定の多型を含む F g f 2 1の存在 下で造血幹細胞を培養し、 造血幹細胞の赤血球一骨髄球系列細胞又はリンパ球系 列細胞への分化効率を、 対照 F g f 2 1での分化効率と比較することで、 多型が 解析され得る。 The analysis can be performed by a method known per se. For example, when there is a significant difference in the frequency of occurrence of a specific polymorphism depending on the frequency and severity of a given disease (eg, hematopoietic disease, immune disease) as a result of an analysis method such as linkage analysis Can be determined as a polymorphism that causes a change in the ability to regulate the differentiation of hematopoietic stem cells. The analysis is It is also possible to do it in vitro. For example, hematopoietic stem cells are cultured in the presence of F gf 21 containing a specific polymorphism, and the differentiation efficiency of hematopoietic stem cells into erythrocyte-myeloid lineage cells or lymphoid lineage cells is compared with that of control F gf 21 By comparing with differentiation efficiency, polymorphisms can be analyzed.
本発明の同定方法は、 哺乳動物由来の生体試料から調製された DNAサンプル をシークェンシング (sequencing) に供し、 F g f 2 1多型の新たなタイプを決 定する工程をさらに含むこともできる。 生体試料は、 F g f 21の発現組織又は 細胞 (例えば、 B細胞) を含む試料 (例えば、 血液) のみならず、 毛髪、 爪、 皮 膚、 粘膜等のゲノム DNAを含む任意の組織も使用できる。 入手の容易性、 人体 への負担等を考慮すれば、 生体試料は、 毛髪、 爪、 皮膚、 粘膜、 血液、 血漿、 血 清、 唾液などが好ましい。 多型の決定は、 由来が異なる生体試料に含まれるゲノ ム又は転写産物のヌクレオチド配列を多数解析し、 決定されたヌクレオチド配列 中に一定頻度で見出される変異を同定することで行われ得る。  The identification method of the present invention may further include a step of subjecting a DNA sample prepared from a biological sample derived from a mammal to sequencing and determining a new type of the F gf 21 polymorphism. . Biological samples can be any tissue containing genomic DNA, such as hair, nails, skin, mucous membranes, as well as samples (eg, blood) containing F gf 21-expressing tissues or cells (eg, B cells). . Considering availability, burden on the human body, etc., the biological sample is preferably hair, nails, skin, mucous membrane, blood, plasma, serum, saliva or the like. Polymorphism can be determined by analyzing a large number of nucleotide sequences of genomes or transcripts contained in biological samples of different origins and identifying mutations found at a certain frequency in the determined nucleotide sequence.
本発明の同定方法および当該方法により決定された F g f 21多型は、 所定の 疾患の発症リスクの判定などに有用である。  The identification method of the present invention and the F g f21 polymorphism determined by the method are useful for determining the risk of developing a predetermined disease.
(6. 造血幹細胞分化に対する動物の生体状態の判定方法および診断剤) (6. 1. 発現量の測定に基づく判定方法および診断剤)  (6. Judgment method and diagnostic agent of animal biological state for hematopoietic stem cell differentiation) (6. 1. Judgment method and diagnostic agent based on measurement of expression level)
本発明は、 F g f 21の発現量に基づく、 造血幹細胞分化に対する動物の生体 状態の判定方法を提供する。 本方法は、 例えば、 動物における所定の疾患 (例え ば、 造血疾患、 免疫疾患) の発症または発症リスクの判定方法として有用であり 得る。  The present invention provides a method for determining the biological state of an animal against hematopoietic stem cell differentiation based on the expression level of F g f21. This method can be useful, for example, as a method for determining the onset or risk of developing a predetermined disease (eg, hematopoietic disease, immune disease) in an animal.
一実施形態では、 本発明の判定方法は、 以下の工程 (a)、 (b) を含む: In one embodiment, the determination method of the present invention includes the following steps (a) and (b):
(a) 動物から採取した生体試料において F g f 2 1の発現量を測定する工程;(a) measuring the expression level of F g f 21 in a biological sample collected from an animal;
(b) F g f 2 1の発現量に基づき造血幹細胞分化に対する動物の生体状態を評 価する.工程。 (b) Evaluating the biological state of the animal against hematopoietic stem cell differentiation based on the expression level of F g f21.
上記方法の工程 (a) では、 動物から採取した生体試料において F g f 2 1の 発現量が測定される。 動物は上述の通り特に限定されないが、 ヒ トが好ましい。 ί In step (a) of the above method, the expression level of F gf 21 is measured in a biological sample collected from an animal. The animal is not particularly limited as described above, but human is preferable. ί
27 生体試料は、 F g f 2 1の発現量を測定可能な試料である限り特に限定されず、 例えば血液、 骨髄液、 肝臓、 胸腺が挙げられるが、 侵襲性がより低い血液が好ま しい。 F g f 2 1の発現量の測定は、 本発明のスクリーユング方法と同様に行わ れ得る。  27 The biological sample is not particularly limited as long as it can measure the expression level of F g f 21, and examples thereof include blood, bone marrow fluid, liver, and thymus, but less invasive blood is preferable. The measurement of the expression level of F g f 21 can be performed in the same manner as the screening method of the present invention.
上記方法の工程 (b ) では、 F g f 2 1の発現量に基づき、 造血幹細胞分化に 対する動物の生体状態が評価され得る。 詳細には、 先ず、 測定された F g f 2 1 の発現量が、 造血幹細胞分化の異常を伴わない動物又は正常動物における F g f 2 1の発現量と比較される。 発現量の比較は、 好ましくは、 有意差の有無に基づ いて行われる。 造血幹細胞分化の異常を伴わない動物又は正常動物における F g f 2 1の発現量は、 自体公知の方法により決定できる。  In step (b) of the above method, the biological state of the animal with respect to hematopoietic stem cell differentiation can be evaluated based on the expression level of F g f 21. Specifically, first, the measured expression level of F g f 21 is compared with the expression level of F g f 21 in an animal without abnormal hematopoietic stem cell differentiation or in a normal animal. The comparison of expression levels is preferably performed based on the presence or absence of a significant difference. The expression level of F g f 21 in animals without normal hematopoietic stem cell differentiation or in normal animals can be determined by a method known per se.
次いで、 F g f 2 1の発現量の比較結果より、 動物が造血幹細胞分化の異常を 有している可能性があるか否か、 あるいは所定の疾患に罹患している可能性があ るか否か、 又は将来的に罹患する可能性が高いか低いかが判断され得る。 本実施 例の結果より、 F g f 2 1の発現量が高い場合には造血幹細胞の赤血球一骨髄球 系列細胞への分化がより促進され、 造血幹細胞のリンパ球系列細胞への分化がよ り抑制され、 一方、 F g f 2 1の発現量が低い場合には造血幹細胞のリンパ球系 列細胞への分化がより促進され、 造血幹細胞の赤血球一骨髄球系列細胞への分化 がより抑制され得ると考えられる。 また、 特定の疾患を発症した動物では、 当該 疾患に関連する遺伝子の発現量の変化がしばしば観察されることが知られている。 さらに、 特定の疾患の発症前に、 特定の遺伝子の発現量の変化がしばしば観察さ れることが知られている。 従って、 F g f 2 1の発現量の解析より、 造血幹細胞 分化の異常、 所定の疾患の発症あるいは発症リスクを判定することが可能である と考えられる。  Next, based on the comparison of the expression level of F gf 21, whether the animal may have abnormal hematopoietic stem cell differentiation or may be affected by a predetermined disease Or whether it is more or less likely to be affected in the future. From the results of this example, when the expression level of F gf 21 is high, the differentiation of hematopoietic stem cells into erythrocyte-one myeloid lineage cells is further promoted, and the differentiation of hematopoietic stem cells into lymphocyte lineage cells is further suppressed. On the other hand, when the expression level of F gf 21 is low, the differentiation of hematopoietic stem cells into lymphocyte lineage cells is further promoted, and the differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells can be further suppressed. Conceivable. It is also known that in animals that develop a specific disease, changes in the expression level of genes related to the disease are often observed. Furthermore, it is known that changes in the expression level of specific genes are often observed before the onset of specific diseases. Therefore, by analyzing the expression level of F g f 21, it is considered possible to determine abnormal hematopoietic stem cell differentiation, the onset of a predetermined disease, or the risk of onset.
本発明はまた、 F g f 2 1の発現量の測定用試薬を含む、 造血幹細胞分化に対 する動物の生体状態の診断剤を提供する。 本診断剤は、 例えば、 動物における所 定の疾患の発症または発症リスクの診断剤として有用であり得る。  The present invention also provides a diagnostic agent for the biological state of an animal with respect to hematopoietic stem cell differentiation, comprising a reagent for measuring the expression level of F gf21. The diagnostic agent can be useful, for example, as a diagnostic agent for the onset or risk of developing a given disease in animals.
F g f 2 1の発現量の測定用試薬は、 F g f 2 1の発現を定量可能である限り I Reagents for measuring the expression level of F gf 21 can be used as long as the expression of F gf 21 can be quantified. I
28 特に限定されないが、例えば、 F g f 2 1に対する抗体 (上述)、 F g f 2 1転写 産物に対する核酸プローブ、 または F g f 2 1転写産物を増幅可能な複数のブラ イマ一を含むものであり得る。 これらは、 標識用物質で標識されていても標識さ れていなくともよい。 標識用物質で標識されていない場合、 本発明の診断剤は、 該標識用物質をさらに含むこともできる。 標識用物質としては、 例えば、 F I T C、 F AM等の蛍光物質、ルミノール、ルシフェリン、ルシゲニン等の発光物質、 3H、 14C、 32P、 35 S、 123 I等の放射性同位体、 ピオチン、 ス トレプトアビ ジン等の親和性物質などが挙げられる。 28 Although not particularly limited, it may include, for example, an antibody to F gf 2 1 (described above), a nucleic acid probe to F gf 2 1 transcript, or multiple primers capable of amplifying F gf 2 1 transcript . These may or may not be labeled with a labeling substance. When not labeled with a labeling substance, the diagnostic agent of the present invention can further contain the labeling substance. Examples of labeling substances include fluorescent substances such as FITC and FAM, luminescent substances such as luminol, luciferin, and lucigenin, radioisotopes such as 3H, 14 C, 32 P, 35 S, and 123 I, piotin, and streptavidin. Examples thereof include affinity substances such as gin.
F g f 21転写産物に対する核酸プローブは、 DNA、 RNAのいずれでもよ いが、 安定性等を考慮すると DNAが好ましい。 また、 該プローブは、 1本鎖又 は 2本鎖のいずれであってもよい。 該プローブのサイズは、 F g f 2 1の転写産 .物を検出可能である限り特に限定されないが、好ましくは約 1 5〜; L O O O b p、 より好ましくは約 50〜 500 b pである。 該プロープは、 マイクロアレイのよ うに基板上に固定された形態で提供されてもよい。  The nucleic acid probe for the F g f21 transcript may be either DNA or RNA, but DNA is preferable in consideration of stability and the like. The probe may be either single-stranded or double-stranded. The size of the probe is not particularly limited as long as a transcription product of F gf 21 can be detected, but is preferably about 15 to; L 2 O 2 O bp, more preferably about 50 to 500 bp. The probe may be provided in a fixed form on a substrate like a microarray.
F g f 2 1を増幅可能な複数のプライマー (例えば、 プライマー対) は、 検出 可能なサイズのヌクレオチド断片が増幅されるように選択される。 検出可能なサ ィズのヌクレオチド断片は、 例えば約 100 b p以上、 好ましくは約 200 b p ' 以上、 より好ましくは約 400 b p以上の長さを有し得る。 プライマーのサイズ は、 F g f 2 1を増幅可能な限り特に限定されないが、 好ましくは約 1 5〜1 0 0 b p、 より好ましくは約 1 8〜50 b p、 さらにより好ましくは約 20〜 30 b pであり得る。 F g f 2 1転写産物を定量可能な手段がプライマーである場合、 本発明の診断剤は、 逆転写酵素をさらに含むことができる。  A plurality of primers (eg, primer pairs) capable of amplifying F g f 21 are selected such that a detectable size nucleotide fragment is amplified. Detectable size nucleotide fragments can have a length of, for example, about 100 bp or more, preferably about 200 bp or more, more preferably about 400 bp or more. The size of the primer is not particularly limited as long as F gf 21 can be amplified, but it is preferably about 15 to 100 bp, more preferably about 18 to 50 bp, and even more preferably about 20 to 30 bp. possible. When the means capable of quantifying the F g f 21 transcript is a primer, the diagnostic agent of the present invention can further contain a reverse transcriptase.
本発明の上記判定方法及び診断剤は、 造血幹細胞分化の異常、 所定の疾患の発 症あるいは発症リスクの判定を可能とするため有用である。  The determination method and diagnostic agent of the present invention are useful because they enable determination of abnormal hematopoietic stem cell differentiation, the onset of a predetermined disease, or the risk of onset.
(6. 2. 多型の測定に基づく判定方法および診断剤)  (6. 2. Determination method and diagnostic agent based on measurement of polymorphism)
本発明は、 F g f 2 1の多型に基づく、 造血細胞分化に対する動物の生体状態 の判定方法を提供する。 本方法は、 例えば、 動物における所定の疾患 (例えば、 1 The present invention provides a method for determining the biological state of an animal with respect to hematopoietic cell differentiation based on the F gf 21 polymorphism. The method can be used, for example, for certain diseases in animals (eg, 1
29 造血疾患、 免疫疾患) の発症リスクの判定方法として有用であり得る。  29 It may be useful as a method for determining the risk of developing hematopoietic diseases and immune diseases.
一実施形態では、 本発明の判定方法は、 以下の工程 (a)、 (b) を含む: In one embodiment, the determination method of the present invention includes the following steps (a) and (b):
(a) 動物から採取した生体試料において F g f 2 1の多型を測定する工程;(a) measuring a polymorphism of F g f 2 1 in a biological sample collected from an animal;
(b) 多型のタイプに基づき造血幹細胞分化に対する動物の生体状態を評価する 工程。 (b) A step of evaluating the biological state of the animal for hematopoietic stem cell differentiation based on the type of polymorphism.
上記方法の工程 (a) では、 動物から採取された生体試料において F g f 2 1 の多型のタイプが測定される。 動物は上述の通りである。 生体試料は、 本発明の 同定方法で上述したものと同様であり得る。  In step (a) of the above method, the polymorphic type of F g f 2 1 is measured in biological samples collected from animals. The animals are as described above. The biological sample may be the same as that described above in the identification method of the present invention.
多型のタイプの測定は、 自体公知の方法により行われ得る。 例えば、 RF LP (制限酵素切断断片長多型) 法、 PCR— S S CP (—本鎖 DN A高次構造多型 解析) 法、 ASO (Allele Specific Oligonucleotide) ハイブリダィゼーシヨン 法、 ダイレクトシークェンス法、 ARMS (Amplification Refracting Mutation System ) 法、 変性濃度勾配ゲル電気泳動 ( Denaturing Gradient Gel Electrophoresis)法、 R N a s e A切断法、 D O L (Dye-labeled Oligonucleotide Ligation) 法、 Ta qMa n PCR法、 インベーダー法などが使用できる。 上記方法の工程 (b) では、 多型のタイプに基づき、 造血幹細胞分化に対する 動物の生体状態が評価され得る。 詳細には、 動物が造血幹細胞の分化異常 (過剰 な促進又は抑制) を有している可能性があるか否か、 あるいは所定の疾患に将来 的に罹患する可能性が高いか低いかが判断され得る。 本実施例の結果より、 F g f 2 1がその機能を増強させるような多型を含む場合には造血幹細胞の赤血球一 骨髄球系列細胞への分化がより促進され、 造血幹細胞のリンパ球系列細胞への分 化がより抑制され、 一方、 F g f 2 1がその機能を低下させるような多型を含む 場合には造血幹細胞のリンパ球系列細胞への分化がより促進され、 造血幹細胞の 赤血球一骨髄球系列細胞への分化がより抑制され得ると考えられる。 また、 特定 の疾皐を発症しやすい動物では、 当該疾患に関連する遺伝子に特定のタイプの多 型をしばしば有することが知られている。 従って、 F g f 21の機能を低下させ るような多型を含む動物は、 貧血、 自己免疫疾患又はアレルギー疾患等の疾患を I The polymorphic type can be measured by a method known per se. For example, RF LP (Restriction Enzyme Fragment Length Polymorphism) method, PCR—SS CP (—Single-stranded DN A conformational polymorphism analysis) method, ASO (Allele Specific Oligonucleotide) hybridization method, Direct sequence method , ARMS (Amplification Refracting Mutation System) method, Denaturing Gradient Gel Electrophoresis (RNaturing) method, RNase A cleavage method, DOL (Dye-labeled Oligonucleotide Ligation) method, TaqMan PCR method, Invader method, etc. Can be used. In step (b) of the above method, the biological state of the animal with respect to hematopoietic stem cell differentiation can be evaluated based on the type of polymorphism. Specifically, it is determined whether an animal may have abnormal hematopoietic stem cell differentiation (excessive promotion or suppression), or whether it is more or less likely to suffer from a given disease in the future. obtain. From the results of this Example, when F gf 21 contains a polymorphism that enhances its function, the differentiation of hematopoietic stem cells into erythrocyte-one myeloid lineage cells is further promoted, and lymphocyte lineage cells of hematopoietic stem cells On the other hand, when F gf 21 contains a polymorphism that reduces its function, differentiation of hematopoietic stem cells into lymphocyte lineage cells is further promoted, and It is considered that differentiation into myeloid lineage cells can be further suppressed. In addition, it is known that animals that are likely to develop a specific disease often have a specific type of polymorphism in a gene associated with the disease. Therefore, an animal containing a polymorphism that reduces the function of F gf 21 has a disease such as anemia, autoimmune disease or allergic disease. I
30 発症する可能性が相対的に高いと考えられる。 同様に、 F g f 2 1の機能を増強 させるような多型を含む動物は、 免疫不全疾患等の疾患を発症する可能性が相対 的に高いと考えられる。 従って、 多型の解析より、 所定の疾患の発症可能性を判 断することが可能であると考えられる。 なお、 本工程で測定対象となる多型のタ ィプは、 例えば、 本発明の同定方法により得られたものであり得る。  30 The likelihood of developing is relatively high. Similarly, an animal containing a polymorphism that enhances the function of F gf21 is considered to have a relatively high possibility of developing a disease such as an immunodeficiency disease. Therefore, it is considered possible to determine the possibility of the development of a given disease by analyzing the polymorphism. The polymorphic type to be measured in this step can be obtained, for example, by the identification method of the present invention.
本発明はまた、 F g f 2 1の多型の測定用試薬を含む、 造血幹細胞分化に対す る動物の生体状態の診断剤を提供する。 本方法は、 例えば、 動物における所定の 疾患の発症リスクの診断剤として有用であり得る。  The present invention also provides a diagnostic agent for the biological state of an animal with respect to hematopoietic stem cell differentiation, comprising a reagent for measuring a polymorphism of F g f 21. This method can be useful, for example, as a diagnostic agent for the risk of developing a given disease in an animal.
F g f 2 1の多型の測定用試薬は、 F g f 2 1の多型を決定可能である限り特 に限定されない。 該試薬は、 標識用物質で標識されていてもよい。 また、 該試薬 が標識用物質で標識されていない場合、 キットの形態で、 該標識用物質をさらに 含むこともできる。  The reagent for measuring the polymorphism of F g f 21 is not particularly limited as long as the polymorphism of F g f 21 can be determined. The reagent may be labeled with a labeling substance. Further, when the reagent is not labeled with a labeling substance, the labeling substance can be further included in the form of a kit.
詳細には、 F g f 2 1の多型の測定用試薬は、 特定のタイプの多型を有する F g f 2 1を特異的に測定可能である核酸プローブ、 あるいは特定のタイプの多型 を有する F g f 2 1を特異的に増幅可能である複数のプライマーを含むものであ り得る。 核酸プローブ、 プライマーは、 F g f 2 1を含むゲノム D N Aまたは F g f 2 1転写産物に対するものであり得る。 核酸プローブ、 プライマーは、 転写 産物またはゲノム D N Aの抽出用試薬とともに提供されてもよい。  Specifically, the reagent for measuring the polymorphism of F gf 2 1 is a nucleic acid probe capable of specifically measuring F gf 2 1 having a specific type of polymorphism, or F having a specific type of polymorphism. It may contain a plurality of primers capable of specifically amplifying gf21. Nucleic acid probes, primers can be for genomic DNA containing F g f 21 or F g f 21 transcripts. The nucleic acid probe and primer may be provided together with a transcription product or a reagent for extracting genomic DNA.
特定のタイプの多型を有する F g f 2 1を特異的に測定可能である核酸プロ一 ブは、 特定のタイプの多型を有する F g f 2 1を選別可能である限り特に限定さ れない。 該プローブは D N A、 R N Aのいずれでもよいが、 安定性等を考慮する と D N Aが好ましい。 また、 該プローブは、 1本鎖又は 2本鎖のいずれであって もよい。 該プローブのサイズは、 特定のタイプの多型を有する F g f 2 1を選別 可能とするため短ければ短いほどよく、 例えば、 約 1 5〜 3 0 b pのサイズであ り得る.。 該プローブは、 マイクロアレイのように基板上に固定された形態で提供 されても よい。 該プローブによ り 、 例えば A S O ( Allele Specific Oligonucleotide) ハイプリダイゼーション法が可能となる。 特定のタイプの多型を有する F g f 2 1を特異的に増幅可能である複数のブラ イマ一 (例えば、 プライマー対) は、 測定可能なサイズのヌクレオチド断片が増 幅されるように選択される。 このような複数のプライマーは、 例えば、 いずれか 一方のプライマーの 3 ' 末端に多型部位を含むように設計される。 測定可能なサ ィズのヌクレオチド断片は、 例えば約 100 b p以上、 好ましくは約 200 b p 以上、 より好ましくは約 400 b p以上の長さを有し得る。 プライマーのサイズ は、 F g f 2 1を増幅可能な限り特に限定されないが、 好ましくは約 1 5〜 1 0 O b p、 より好ましくは約 1 8〜50 b p、 さらにより好ましくは約 20〜 3 0 b pであり得る。 F g f 21の多型を測定し得る手段が F g f 2 1転写産物に対 するプライマー対である場合、 判定キットは、 逆転写酵素をさらに含むことがで きる。 The nucleic acid probe capable of specifically measuring F gf 21 having a specific type of polymorphism is not particularly limited as long as F gf 21 having a specific type of polymorphism can be selected. The probe may be either DNA or RNA, but DNA is preferable in consideration of stability and the like. The probe may be either single-stranded or double-stranded. The size of the probe is preferably as short as possible so that F gf 2 1 having a specific type of polymorphism can be selected. For example, the size of the probe may be about 15 to 30 bp. The probe may be provided in a form fixed on a substrate like a microarray. The probe enables, for example, an ASO (Allele Specific Oligonucleotide) hybridization method. Multiple primers (eg, primer pairs) capable of specifically amplifying F gf 21 with a particular type of polymorphism are selected such that measurable size nucleotide fragments are amplified. . Such a plurality of primers is designed to include a polymorphic site at the 3 ′ end of one of the primers, for example. The measurable size nucleotide fragment may have a length of, for example, about 100 bp or more, preferably about 200 bp or more, more preferably about 400 bp or more. The size of the primer is not particularly limited as long as F gf 21 can be amplified, but is preferably about 15 to 10 O bp, more preferably about 18 to 50 bp, and even more preferably about 20 to 30 bp. It can be. When the means capable of measuring the polymorphism of F gf 21 is a primer pair for the F gf 21 transcript, the determination kit can further contain a reverse transcriptase.
また、 F g f 2 1の多型の測定用試薬として、 特定のタイプの多型部位を^:識 する制限酵素を含むものを挙げることもできる。 このような試薬によれば、 RF L Pによる多型解析が可能となる。  In addition, as a reagent for measuring the polymorphism of F g f 21, a reagent containing a restriction enzyme that recognizes a specific type of polymorphic site can also be mentioned. According to such a reagent, polymorphism analysis by RF LP becomes possible.
本発明の上記判定方法及び診断剤は、 造血幹細胞分化の異常、 所定の疾患の発 症リスクの判定を可能とし、 所定の疾患等の予防を目的とする生活習慣改善の契 機などを提供するため有用である。  The above-described determination method and diagnostic agent of the present invention enable determination of abnormal hematopoietic stem cell differentiation and the onset risk of a predetermined disease, and provide an opportunity for improving lifestyle habits for the purpose of preventing the predetermined disease. Because it is useful.
(7. キット)  (7. Kit)
本発明は、 以下 (a)、 (b) を含むキットを提供する :  The present invention provides a kit comprising the following (a) and (b):
(a) F g f 2 1の発現又は機能を調節する物質;並びに  (a) a substance that modulates the expression or function of F g f 2 1; and
(b) 造血幹細胞又はその分化細胞の同定用試薬、 及び/又は造血幹細胞の分化 細胞の分化調節試薬。  (b) A reagent for identifying hematopoietic stem cells or differentiated cells thereof, and / or a reagent for regulating differentiation of hematopoietic stem cells.
上記 (a) の F g f 21の発現又は機能を調節する物質は、 上述したものと同 様であり得る。  The substance that regulates the expression or function of Fgf21 in (a) above may be the same as described above.
上記,(b) の造血幹細胞の同定用試薬としては、 造血幹細胞特異的な細胞表面 マーカー (例えば、 S e a— 1、 c k i t)、 造血幹細胞特異的な細胞非表面マー カー (例えば、 G a t a— l) に対して特異的な親和性を有する物質 (例えば、 抗体) を含むものが挙げられる。 The reagents for identifying hematopoietic stem cells in (b) above include hematopoietic stem cell-specific cell surface markers (eg, Sea-1, ckit), hematopoietic stem cell-specific cell non-surface markers (eg, Gata— l) a substance having a specific affinity for (for example, Antibody).
上記 (b ) の造血幹細胞の分化細胞の同定用試薬としては、 赤血球一骨髄球系 列細胞及びリンパ球系列細胞の同定用試薬が挙げられる。 赤血球一骨髄球系列細 胞の同定用試薬としては、 赤血球一骨髄球系列細胞特異的な細胞非表面マーカー (例えば、 G 1 o b i n、 m p X ) に対して特異的な親和性を有する物質 (例え ば、 抗体) を含むものが挙げられる。 リンパ球系列細胞の同定用試薬としては、 リンパ球系列細胞特異的な細胞表面マーカー (例えば、 B細胞レセプター、 T細 胞レセプター)、 リンパ球系列細胞特異的な細胞非表面マーカー(例えば、 I k a r o s ) に対して特異的な親和性を有する物質 (例えば、 抗体) を含むものが挙 げられる。  Examples of the reagent for identifying a differentiated cell of the hematopoietic stem cell (b) include a reagent for identifying an erythrocyte-myeloid lineage cell and a lymphocyte lineage cell. As a reagent for identification of erythrocyte-myeloid lineage cells, a substance having a specific affinity for a cell non-surface marker specific to erythrocyte-myeloid lineage cells (eg, G 1 obin, mp X) (for example, For example, antibodies). Reagents for identifying lymphocyte lineage cells include cell surface markers specific for lymphocyte lineage cells (eg, B cell receptor, T cell receptor), cell surface markers specific for lymphocyte lineage cells (eg, I karos). ) And a substance having a specific affinity (for example, an antibody).
上記 (b ) の造血幹細胞の分化細胞の分化調節試薬としては、 赤血球—骨髄球 系列細胞及びリンパ球系列細胞の分化調節試薬が挙げられる。 赤血球一骨髄球系 列細胞の分化調節試薬としては、 赤血球一骨髄球系列細胞の分化調節物質として トロンポポェチンを含むものが挙げられる。 リンパ球系列細胞の分化調節試薬と しては、 リンパ球系列細胞の分化調節物質としてインターロイキン一 7を含むも のが挙げられる。  Examples of the differentiation regulating reagent for differentiated cells of hematopoietic stem cells (b) above include reagents for regulating differentiation of erythrocyte-myeloid lineage cells and lymphocyte lineage cells. Examples of the differentiation regulator for erythrocyte-myeloid lineage cells include those containing thrombopoietin as a differentiation regulator for erythrocyte-one myeloid lineage cells. Examples of the differentiation regulator for lymphocyte lineage cells include those containing interleukin-17 as a differentiation regulator for lymphocyte lineage cells.
本発明のキットは、 本発明の剤の作製に、 並びに本発明の方法を簡便に行うた めなどに有用である。  The kit of the present invention is useful for the preparation of the agent of the present invention and for simply carrying out the method of the present invention.
( 8 . 新規 F g f 2 1遺伝子、 タンパク質、 及びそれに付随する発明) 本発明はまた、 新規 F g f 2 1ポリペプチド、 ポリヌクレオチドを提供する。 本発明のポリぺプチドは、 配列番号 3で表されるァミノ酸配列からなるポリべ プチド、 又は配列番号 3で表されるアミノ酸配列と実質的に同一のアミノ酸配列 を有するポリペプチドである。 配列番号 3で表されるアミノ酸配列と実質的に同 一のアミノ酸配列としては、 (a )配列番号 3に示されるアミノ酸配列において 1 もしくは 2以上 (例えば 1〜 5 0個、 好ましくは 1〜 3 0個、 より好ましくは 1 〜2 0個、 さらにより好ましくは 1〜1 0個、 最も好ましくは 1〜5個) のアミ ノ酸が置換、 欠失、 挿入または付加されたアミノ酸配列、 (b ) 配列番号 3に示さ れるアミノ酸配列に対して有意なアミノ酸配列同一性 (例えば約 7 0 %以上、 好 ましくは約 8 0 %以上、 より好ましくは約 9 0 %以上、 さらにより好ましくは約 9 5 %以上、 最も好ましくは約 9 7 %、 9 8 %又は 9 9 %以上のァミノ酸配列同 一性) を有するアミノ酸配列が挙げられる。 なお、 同一性 (%) は、 当該分野で 慣用のプログラム (例えば、 BLAST、 FASTA等) を初期設定で用いて決定すること ができる。 また、 別の局面では、 同一性 (%) は、 当該分野で公知の任意のアル ゴリズム、 例えば、 Needleman ら(1970) (J. Mol. Biol. 48: 444-453)、 Myers 及び Mil ler (CABIOS, 1988, 4 : 11- 17)のアルゴリズム等を使用して決定するこ とができる。 Needleman らのアルゴリズムは、 GCG ソフトウェアパッケージ (www. gcg. comで入手可能)の GAPプログラムに組み込まれており、 同一性 (%) は、 例えば、 BL0SUM 62 matrix又は PAM250 matrix、 並びに gap weight: 16、 14、 12、 10、 8、 6若しくは 4、 及び length weight : 1、 2、 3、 4、 5若しくは 6のいず れかを使用することによって決定することができる。 また、 Myers及び Millerの アルゴリズムは、 GCG 配列ァラインメントソフトウェアパッケージの一部である ALIGNプログラムに組み込まれている。 アミノ酸配列を比較するために ALIGNプ ログラムを禾 lj用する場合、 例えば、 PAM120 weight residue table, gap length penalty 12、 gap penalty 4 を用いることができる。 本発明のポリペプチドはま た、 造血幹細胞の分化調節活性等の活性を有し得る。 本発明のポリペプチドはま た、シグナル配列部分を欠失していても有していてもよい。シグナル配列部分は、 配列番号 3で表されるアミノ酸配列の 1番目から 1 9番目のアミノ酸に相当する 部分である。 (8. Novel F gf 21 gene, protein, and accompanying invention) The present invention also provides a novel F gf 21 polypeptide, polynucleotide. The polypeptide of the present invention is a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 3 or a polypeptide having an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3. The amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 3 is (a) 1 or 2 or more (for example, 1 to 50, preferably 1 to 3) in the amino acid sequence represented by SEQ ID NO: 3. An amino acid sequence in which 0, more preferably 1 to 20, even more preferably 1 to 10, most preferably 1 to 5 amino acids are substituted, deleted, inserted or added, (b ) Shown in SEQ ID NO: 3 Significant amino acid sequence identity (for example, about 70% or more, preferably about 80% or more, more preferably about 90% or more, even more preferably about 95% or more, most An amino acid sequence having preferably about 9 7%, 98%, or 99% or more amino acid sequence identity) is mentioned. The identity (%) can be determined using a program commonly used in this field (for example, BLAST, FASTA, etc.) by default. In another aspect, identity (%) is determined by any algorithm known in the art, such as Needleman et al. (1970) (J. Mol. Biol. 48: 444-453), Myers and Miller ( It can be determined using the algorithm of CABIOS, 1988, 4: 11-17). Needleman et al.'S algorithm is incorporated into the GAP program in the GCG software package (available at www.gcg.com) and the identity (%) is, for example, BL0SUM 62 matrix or PAM250 matrix, and gap weight: 16, It can be determined by using 14, 12, 10, 8, 6 or 4 and length weight: 1, 2, 3, 4, 5 or 6. The Myers and Miller algorithms are also incorporated into the ALIGN program, which is part of the GCG sequence alignment software package. When the ALIGN program is used for comparing amino acid sequences, for example, PAM120 weight residue table, gap length penalty 12, and gap penalty 4 can be used. The polypeptide of the present invention may also have activities such as hematopoietic stem cell differentiation-regulating activity. The polypeptide of the present invention may also lack or have a signal sequence portion. The signal sequence portion is a portion corresponding to the 1st to 19th amino acids of the amino acid sequence represented by SEQ ID NO: 3.
本発明のポリヌクレオチドは、 配列番号 2で表されるヌクレオチド配列からな るポリヌクレオチド、 又は配列番号 2で表されるヌクレオチド配列と実質的に同 一のヌクレオチド配列を有するポリヌクレオチドである。 配列番号 2で表される ヌクレオチド配列と実質的に同一のヌクレオチド配列を有するポリヌクレオチド としては、 ( a )配列番号 2で表されるヌクレオチド配列の相補配列からなるポリ ヌクレオチドに対してハイストリンジェント条件下でハイプリダイズするポリヌ ( The polynucleotide of the present invention is a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 2 or a polynucleotide having a nucleotide sequence substantially identical to the nucleotide sequence represented by SEQ ID NO: 2. The polynucleotide having the nucleotide sequence substantially identical to the nucleotide sequence represented by SEQ ID NO: 2 includes: (a) High stringent conditions for a polynucleotide comprising a complementary sequence of the nucleotide sequence represented by SEQ ID NO: 2 Polynu that hyprid under (
34 クレオチド、(b )配列番号 2に示されるヌクレオチド配列に対して有意なヌクレ ォチド配列同一性 (例えば約 7 0 %以上、 好ましくは約 8 0 %以上、 より好まし くは約 9 0 %以上、さらにより好ましくは約 9 5 %以上、最も好ましくは約 9 7 %、 9 8 %又は 9 9 %以上のヌクレオチド配列同一性) を有するヌクレオチド配列が 挙げられる。 ハイストリンジェント条件下でのハイプリダイゼーシヨン条件とし ては、 6 X S S C (sodium chloride/sodium ci trate) / 4 5 °Cのハイプリダイ ゼーション後、 0 . 2 X S S C / 0 . 1 % S D S / 5 0〜6 5。Cでの 1又は 2回 以上の洗浄が挙げられる。 ヌクレオチド配列同一性 (%) は、 アミノ酸配列同一 性 (%) と同様に決定できる。 本発明のポリヌクレオチドはまた、 シグナル配列 部分を欠失していても有していてもよい。 シグナル配列部分は、 配列番号 2で表 されるヌクレオチド配列の 1番目から 5 7番目のヌクレオチドに相当する部分で ある。  34 nucleotides, (b) significant nucleotide sequence identity to the nucleotide sequence set forth in SEQ ID NO: 2 (eg, about 70% or more, preferably about 80% or more, more preferably about 90% or more) Even more preferably about 95% or higher, most preferably about 9 7%, 98% or 99% or higher nucleotide sequence identity). The high crystallization conditions under high stringency conditions are: 6 XSSC (sodium chloride / sodium cirate) / 45 ° C after high hydration, 0.2 XSSC / 0.1% SDS / 50 ~ 6 5. One or more washings with C may be mentioned. Nucleotide sequence identity (%) can be determined in the same manner as amino acid sequence identity (%). The polynucleotide of the present invention may also lack or have a signal sequence portion. The signal sequence portion is a portion corresponding to the first to 57th nucleotides of the nucleotide sequence represented by SEQ ID NO: 2.
本発明はまた、 本発明のポリペプチド、 ポリヌクレオチドと関連する種々の発 明を提供する。 かかる発明としては、 本発明のポリペプチドに対する抗体 (例え ば、 モノクローナル抗体、 ポリクローナル抗体) 及びその産生細胞 (即ち、 ハイ プリ ドーマ)、該ポリべプチドをコ一ドするポリヌクレオチド、ポリヌクレオチド を含む発現ベクター、 発現ベクターが導入された形質転換体、 新規 F g f 2 1に 対する阻害性物質 (例えば、 アンチセンス核酸、 リボザィム、 R N A i誘導性核 酸、 ドミナントネガティブ変異体)、 新規 F g f 2 1の測定用試薬 (例えば、核酸 プローブ、プライマー対あるいは 3以上のプライマーセット)、新規 F g f 2 1の トランスジエニック動物及び細胞 (例えば、 新規 F g f 2 1を過剰発現する動物 及び細胞、 並びに新規 F g f 2 1の発現又は機能が抑制された動物及び細胞、 即 ちノックアウト動物及び細胞) 等が挙げられる。 これら一連の発明は、 本明細書 中に開示される方法、 及び当技術分野で公知の他の方法等により作製できる。 本明.細書中で挙げられた特許および特許出願明細書を含む全ての刊行物に記載 された内容は、 本明細書での引用により、 その全てが明示されたと同程度に本明 細書に組み込まれるものである。 f The present invention also provides various inventions related to the polypeptides and polynucleotides of the present invention. Such an invention includes an antibody against the polypeptide of the present invention (for example, a monoclonal antibody, a polyclonal antibody) and its producing cells (ie, a hybridoma), a polynucleotide encoding the polypeptide, and a polynucleotide. Expression vectors, transformants into which expression vectors have been introduced, novel F gf 2 1 inhibitors (eg, antisense nucleic acids, ribozymes, RNA i-inducible nuclear acids, dominant negative mutants), novel F gf 2 1 Reagents (eg, nucleic acid probes, primer pairs or 3 or more primer sets), novel F gf 2 1 transgenic animals and cells (eg, animals and cells overexpressing new F gf 2 1, and new Animals and cells in which the expression or function of F gf 21 is suppressed, ie knockout animals and cells) etc. And the like. These series of inventions can be made by the methods disclosed herein and other methods known in the art. The contents of all publications, including patents and patent application specifications mentioned in the detailed text, are incorporated herein by reference to the same extent as if all were explicitly stated. It is what f
35 以下に実施例を挙げ、 本発明を更に詳しく説明するが、 本発明は下記実施例等 に何ら制約されるものではない。 実施例  The following examples further illustrate the present invention in more detail, but the present invention is not limited to the following examples. Example
実施例 1 :ゼブラフイツシュ F g f 2 1 c D N Aの単離と構造解析 Example 1: Isolation and structural analysis of zebrafish F g f 21c cNA
ヒ ト F g f 2 1のアミノ酸配列を指標にして、 ゼブラフイシュ DN Aデータべ ー ス ( g e n o m i c D N A , E S T D N A ) ( GenBank: http://www.ncbi.nlra. nih.gov/, Emsenble: http://ww. ensemble.org/) を利用 して相同性検索を行い、 F g ί 2 1をコードしていると予想されるゼブラフィッ シュ遺伝子断片を見出した。 さらに、 これらの配列から、 F g f 2 1の全翻訳配 歹 (Iを増幅できるプライマー (5, - c t t a g t c a g t c a t g c t t t t t g c c— 3, (酉己歹 (J番号 4)、 5 ' — t g c t a a t g t a a a g c a t g t c t t - 3 ' (配列番号 5)) を作製し、 P CR法によりゼブラフイシュ c DNAを錡 型にして F g f 2 1 c DNAを増幅した。 次いで、 増幅された F g f 2 1 c DNAをクローニングした。 さらに、 その F g f 2 1 c DNAの全翻訳領域の 塩基配列 (配列番号 2) を決定した。  Using the amino acid sequence of human F gf 21 as an index, the zebrafish DNA database (genomic DNA, ESTDNA) (GenBank: http://www.ncbi.nlra.nih.gov/, Emsenble: http: / A homology search was performed using /ww.ensemble.org/) to find a zebrafish gene fragment expected to encode Fg 2. Furthermore, from these sequences, all translation sequences of F gf 2 1 (primers that can amplify I (5,-cttagtcagtcatgctttttg cc—3, (酉 自 歹 (J number 4), 5 '— tgctaatgtaaagcatgtctt-3' (sequence No. 5)) was prepared, and the F gf 21 cDNA was amplified using the zebrafish cDNA as a template by the PCR method, and then the amplified F gf 21 cDNA was cloned. The nucleotide sequence (SEQ ID NO: 2) of the entire translation region of 2 1 cDNA was determined.
その結果、 単離したゼブラフィッシュ F g ί 2 1 c DNAの塩基配列 (配列 番号 2) から、 F g f 2 1は 1 94ァミノ酸残基からなることが明らかになつた (配列番号 3 )。そのアミノ酸配列(配列番号 3 )は既知のヒ トタンパク質の中で、 ヒ ト F g f 2 1と最も相同性 (3 3. 3%アミノ酸配列同一性) が高いことが明 らかになつた (図 1 A)。 また、 ヒ ト F g f 2 1遺伝子は染色体上で carbonic anhydrase XI ( C A 1 1 ) と dehydrogenase/reductase member 10 (DHR S 1 0 )と近接してレヽる力 S (LocusLink: http://www. ncbi. nlm. nih. gov/ LocusLink/)、 ゼブラフィッシュ F g ί 2 1遺伝子も同様にゼブラフィッシュ染色体上で C a 1 1と D.h r s 1 0と実際に近接していた (Enzemble Zebrafish Genome Brower: http://wiv. ensemble.org/) (図 1 J3 。  As a result, it was revealed from the base sequence (SEQ ID NO: 2) of the isolated zebrafish F g 2 21 cDNA that F gf 2 1 consists of 194 amino acid residues (SEQ ID NO: 3). The amino acid sequence (SEQ ID NO: 3) was found to have the highest homology (3.3.3% amino acid sequence identity) with human F gf 21 among known human proteins ( Figure 1 A). In addition, the human F gf 2 1 gene has a force S that is close to carbonic anhydrase XI (CA 1 1) and dehydrogenase / reductase member 10 (DHR S 1 0) on the chromosome S (LocusLink: http: // www. ncbi. nlm. nih. gov / LocusLink /), the zebrafish F g ί 2 1 gene was also in close proximity to C a 1 1 and Dh rs 1 0 on the zebrafish chromosome (Enzemble Zebrafish Genome Brower: (http: // wiv. ensemble.org/) (Figure 1 J3.
以上より、 この遺伝子はゼブラフィッシュ F g f 2 1遺伝子であると確認され た。 Based on the above, this gene was confirmed to be the zebrafish F gf 21 gene. It was.
実施例 2 : F g f 21 MO導入による F g f 2 1の機能抑制実験  Example 2: Function suppression experiment of F g f 21 by introducing F g f 21 MO
ゼブラフイシュの受精卵に標的遺伝子 MOを導入することにより、 標的遺伝子 を効果的かつ特異的に機能を抑制することが明らかになつている (Nasevicius, A. and Ekker, S. C. (2000) Nat. Genet. 26, 153—60)。 そこで、 F g f 2 1 MO を受精卵に導入し、 F g f 2 1の機能を抑制させ、 その表現型を調べた。 詳細に は、 F g f 2 1 mRNAの 5' 非翻訳配列及び翻訳配列の一部と相補的な配列 (5, 一 GGCAAAAAGCATGACTGACTAAGCT— 3, (配列番号 6)、 25塩基)をもつモルフオリノ修飾アンチセンスオリゴヌクレオチド(MO) を受精卵に導入 (10 n gZ受精卵) し、 F g f 2 1の機能を抑制させた胚の表 現型を解析した。 また、 対照実験として F g f 2 1 MOの 25塩基の配列のう • ち、 5塩基を他の塩基に置換したコントロール MO ( 5 ' — GGAAATAAG CATCACTGAGTAACCT— 3' (配列番号 7)、 25塩基) を導入 (1 O n g /受精卵) した胚においても同様に表現型を解析した。 さらに、 機能回復 実験として F g f 21 MOと F g f 2 1 mR N Aを同時に受精卵に導入( F g f 21 MO: 10 n g/受精卵、 F g f 21 mRNA : 10 p gZ受精卵) し、 表現型を解析した。 F g f 2 1 mRNAは、 F g f 2 1 cDNAの翻訳 領域を p C S 2 +ベクターに組み込み、 それを鑤型にして作製した。  It has been clarified that the target gene can be effectively and specifically inhibited by introducing the target gene MO into the fertilized egg of zebrafish (Nasevicius, A. and Ekker, SC (2000) Nat. Genet. 26, 153-60). Therefore, we introduced F g f 2 1 MO into fertilized eggs to suppress the function of F g f 2 1 and examined its phenotype. Specifically, a morpholino-modified antisense oligo having a sequence (5, 1 GGCAAAAAGCATGACTGACTAAGCT-3, (SEQ ID NO: 6), 25 bases) complementary to the 5 'untranslated sequence of F gf 2 1 mRNA and a part of the translated sequence. Nucleotide (MO) was introduced into a fertilized egg (10 ng g fertilized egg), and the phenotype of the embryo in which the function of F gf 21 was suppressed was analyzed. As a control experiment, control MO (5 '— GGAAATAAG CATCACTGAGTAACCT— 3' (SEQ ID NO: 7), 25 bases) in which 25 bases of F gf 21 MO were replaced with other bases was used. Phenotypes were similarly analyzed in the introduced embryos (1 Ong / fertilized egg). Furthermore, as a functional recovery experiment, F gf 21 MO and F gf 21 mRNA were simultaneously introduced into fertilized eggs (F gf 21 MO: 10 ng / fertilized egg, F gf 21 mRNA: 10 p gZ fertilized egg), and phenotype Was analyzed. F g f 21 mRNA was prepared by incorporating the translation region of F g f 21 cDNA into a pCS2 + vector and using it as a cage.
なお、 胚の表現型の解析として赤血球の観察を行った。 赤血球の観察は、 受精 後 24時間後のゼブラフィッシュ胚の卵膜を除去し o— d i a n i s i d i n e 溶液に遮光下で 1 5分間浸し H202添加で発色させて行った。 Red blood cells were observed for embryo phenotype analysis. The observation of erythrocytes was performed by removing the egg membranes of zebrafish embryos 24 hours after fertilization, immersing them in o-dianisidine solution for 15 minutes in the dark and adding H 2 0 2 to develop the color.
その結果、 F g f 2 1導入胎児には体軸の湾曲 (図 2A) と赤血球の消失ある いは減少が確認された (図 2 B、表 1)。 また、 対照実験としてコントロール MO を導入した胚に殆ど異常は観察されなかった (表 1)。 さらに、機能回復実験とし て F g.f 2 1 MOと F g f 2 1 mRNAを同時に導入した胚においては F g f 2 1 MO単独で導入した場合に見られる赤血球の消失あるいは減少の割合は 減少した (表 1)。 I As a result, it was confirmed that the F gf 2 1-introduced fetus had curvature of the body axis (Fig. 2A) and disappearance or reduction of red blood cells (Fig. 2B, Table 1). As a control experiment, almost no abnormalities were observed in embryos introduced with control MO (Table 1). Furthermore, as a functional recovery experiment, embryos introduced with F gf 2 1 MO and F gf 2 1 mRNA simultaneously reduced the rate of disappearance or reduction of red blood cells seen when F gf 2 1 MO was introduced alone (Table). 1). I
37  37
(表 1 )
Figure imgf000038_0001
(table 1 )
Figure imgf000038_0001
以上より、 F g f 2 1 M Oの導入によって確認された赤血球の消失は F g f 2 1の機能抑制に特異的なものであると考えられた。  From the above, it was considered that the disappearance of erythrocytes confirmed by the introduction of F g f 21 M was specific to the function suppression of F g f 21.
実施例 3 :血管形成における F g f 2 1の役割の検討 Example 3: Examination of the role of F g f 21 in angiogenesis
F g f 2 1機能抑制胚で赤血球が消失あるいは減少する原因として、 1 ) 血管 形成に異常があるため血液が流れない、 あるいは 2 ) 赤血球が生成されない、 の 2つが考えられる。 そこで、 赤血球が消失あるいは減少する原因を明らかにする ため、 先ず、 F g f 2 1機能抑制胚の血管形成を検討した。  There are two possible causes for the disappearance or decrease of red blood cells in F g f 2 1 function-suppressed embryos: 1) no blood flow due to abnormal angiogenesis, or 2) no red blood cells produced. Therefore, in order to clarify the cause of the disappearance or decrease of red blood cells, we first examined the angiogenesis of F g f 21 function-suppressed embryos.
ゼブラフイシュ胚 (受精後 4 8時間後) の静脈に蛍光色素である F I T Cで標 識されたデキストランを導入し、 蛍光顕微鏡により血管形成を観察した。 また、 血管内皮細胞マーカー遺伝子、 f 1 k 1 の発現を whole mount in situ hybridizationで観察した (Koshida, S. et al. (1998) Dev. Biol. 244, 9-20)。 受精後 2 4時間後の胚を 4 %パラホルムアルデヒ ドで固定し、 ジゴキシゲニン標 識 f l k l c R N Aプローブをハイプリダイズさせた。  Dextran labeled with the fluorescent dye FITC was introduced into the vein of a zebrafish embryo (48 hours after fertilization), and angiogenesis was observed with a fluorescence microscope. The expression of the vascular endothelial cell marker gene, f1k1, was observed by whole mount in situ hybridization (Koshida, S. et al. (1998) Dev. Biol. 244, 9-20). Embryos 24 hours after fertilization were fixed with 4% paraformaldehyde, and the digoxigenin-labeled flklcRNA probe was hyperpresed.
その結果、 F g f 2 1機能抑制胚の血管形成は正常であった (図 3 A)。 また、 血管内皮細胞マーカー、 f l k l (Thisse, C. and Zon, L. I. (2002) Science 295, 457-462) の発現も正常であった (図 3 B )。  As a result, the angiogenesis of the F g f 2 1 function-suppressed embryo was normal (FIG. 3A). In addition, the expression of the vascular endothelial cell marker, flkl (Thisse, C. and Zon, L.I. (2002) Science 295, 457-462) was normal (Fig. 3B).
以上より、 F g f 2 1機能抑制胚での赤血球の消失あるいは減少は、 血管形成 の異常ではなく、 赤血球の生成異常に起因すると考えられた。  Based on the above, it was considered that the disappearance or decrease of red blood cells in F g f 2 1 function-suppressed embryos was not due to abnormal angiogenesis but to abnormal red blood cell production.
実施例 4 :血球発生過程における F g f 2 1の役割の検討 Example 4: Examination of the role of F g f 21 in the blood cell development process
ゼブラフィッシュなどの赤血球は哺乳類の赤血球と異なり有核であるが、 血球 発生の基本的過程は脊椎動物間でよく保存されている (Thisse and Zon, 2002; Davidson and Zon, 2004)。 すなわち、.発生初期の原腸胚期に中胚葉のパターニン グ形成が起こり、 血球おょぴ血管内皮細胞に共通の前駆細胞であるへマンジォプ ラストが生成する。 さらに血球系統としては造血幹細胞に分化し、 赤血球、 ミエ ロイド、 リンパ球など各種の血球細胞へ分化する (図 4 ) (Thisse and Zon, 2002; Davidson and Zon, 2004)。 これらの造血過程はゼブラフィ ッシュ胎児では内部細 胞塊 (intermediate cell mass : I C M) と呼ばれる組織で進行する。 そこで F g f 2 1が血球発生のどの段階に関与しているのか検討した。 Red blood cells such as zebrafish are nucleated, unlike mammalian red blood cells, but the basic process of blood cell development is well conserved among vertebrates (Thisse and Zon, 2002; Davidson and Zon, 2004). That is, pattern formation of the mesoderm occurs in the early gastrulation stage of development, and hemangioplast is a progenitor cell common to blood cells and vascular endothelial cells. The last is generated. Furthermore, as a blood cell lineage, it differentiates into hematopoietic stem cells and differentiates into various blood cells such as erythrocytes, myeloids, and lymphocytes (Fig. 4) (Thisse and Zon, 2002; Davidson and Zon, 2004). These hematopoietic processes progress in a tissue called the intermediate cell mass (ICM) in the zebrafish fetus. Therefore, we investigated which stage of F gf 2 1 is involved in blood cell development.
様々な発達段階にあるゼブラフィッシュ胚の造血系細胞マーカー遺伝子の発現 を whole mount in situ hybridizationで観察した。 胚を 4 %パラホルムアルデ ヒ ドで固定し、 ジゴキシゲニン標識マーカー c R N Aプローブをハイブリダィズ させた。 各種の造血系細胞マーカーとしては、 s c 1 (へマンジオブラスト)、 g a t a 2 (造血幹細胞)、 g a t a 1 (赤血球一ミエロイド前駆細胞)、 m p x (ミ エロイド)、 i k a r o s (リンパ球前駆細胞) (Thisse, C. and Zon, L. I. (2002) • Science 295, 457-462) を用いた。  The expression of hematopoietic cell marker genes in zebrafish embryos at various developmental stages was observed by whole mount in situ hybridization. Embryos were fixed with 4% paraformaldehyde and hybridized with a digoxigenin labeled marker cRNA probe. Various hematopoietic cell markers include sc 1 (hemangioblast), gata 2 (hematopoietic stem cell), gata 1 (erythrocyte-one myeloid progenitor cell), mpx (myeloid), ikaros (lymphocyte progenitor cell) (Thisse , C. and Zon, LI (2002) • Science 295, 457-462).
その結果、 将来 I C Mを形成する側板中胚葉においてへマンジオブラストのマ 一力一遺伝子、 s c 1の発現は F g f 2 1機能抑制胚では正常であった(図 5 A)。 また、 造血幹細胞マーカー遺伝子、 g a t a 2の発現も正常であった (図 5 B )。 し力、し、 赤血球一ミエロイド前駆細胞マーカー遺伝子、 g a t a l、 さらにミエ ロイドマーカー遺伝子、 m p Xの発現は消失した (図 5 C、 D )。 従って、 F g f 2 1は造血幹細胞から赤血球一ミエロイド前駆細胞への分化に必須の役割を果た していることが明らかになった。 一方、 リ ンパ球前駆細胞マーカー遺伝子、 i k a r o sの発現は増加していた (図 5 E )。  As a result, in the lateral plate mesoderm that will form I CM in the future, the expression of hemangioblast's major gene, sc1, was normal in the Fgf21 function-suppressed embryo (Fig. 5A). In addition, the expression of the hematopoietic stem cell marker gene, gata2, was normal (Fig. 5B). The expression of the erythrocyte one myeloid progenitor cell marker gene, gatal, and also the myeloid marker gene, mpX, disappeared (Figures 5C and D). Therefore, it was clarified that F g f 21 plays an essential role in the differentiation from hematopoietic stem cells to erythrocyte monoeloid progenitor cells. On the other hand, the expression of the lymphocyte progenitor cell marker gene, ikarose, increased (Fig. 5E).
以上より、 F g f 2 1の機能抑制は、 造血幹細胞からの赤血球一ミエロイド前 駆細胞の分化を阻害し、 リンパ球前駆細胞を増加させることが示された。  From the above, it was shown that suppression of the function of F g f 21 inhibits the differentiation of erythrocyte-myeloid precursor cells from hematopoietic stem cells and increases lymphocyte progenitor cells.
(結論)  (Conclusion)
本研究により、 F g f 2 1は赤血球生成に重要な機能を有していることが明ら かとなつた。 F g f 2 1は造血幹細胞に作用して、 赤血球一ミエロイド前駆細胞 の生成に重要な役割を果す造血因子であることが明らかになつた(図 6 )。造血因 子としてよく知られているエリスロポエチンは赤血球前駆細胞に作用し、 その增 殖と赤血球への分化を促進する (図 6 )。従って、 F g f 2 1はエリスロポエチン とは異なる作用機序を有する新たな造血因子としての臨床応用が期待される。 産業上の利用可能性 This study revealed that F gf 21 has an important function in erythropoiesis. F gf 21 acts on hematopoietic stem cells and was found to be a hematopoietic factor that plays an important role in the generation of erythrocyte myeloid progenitor cells (Fig. 6). Erythropoietin, well known as a hematopoietic factor, acts on erythroid progenitors and increases it. Promotes growth and differentiation into red blood cells (Figure 6). Therefore, F gf 21 is expected to be clinically applied as a new hematopoietic factor having a mechanism of action different from that of erythropoietin. Industrial applicability
本発明の剤は、 造血幹細胞の分化調節、 並びに造血疾患、 免疫疾患等の所定の 疾患の予防又は治療などに有用であり得る。 本発明の分化調節方法は、 造血幹細 胞の C M P細胞、 C L P細胞又はそれらの分化細胞への分化調節、 特に造血幹細 胞の C M P細胞への分化調節などに有用である。本発明の分化効率の判定方法は、 血液細胞の異常に起因する疾患 (例えば、 造血疾患、 免疫疾患) の患者の治療に 際して、 F g f 2 1の発現又は機能を調節する物質の当該患者における治療効果 の予測を可能とするため有用である。 本発明のスク リーニング方法は、 血液細胞 の異常に起因する疾患に対する医薬等の開発などに有用である。 本発明の判定方 法および診断剤は、 血液細胞の異常に起因する疾患の発症または発症リスクの評 価に有用である。 本出願は、 日本で出願された特願 2 0 0 5 - 0 7 0 0 7 2 (出願日 : 2 0 0 5 年 3月 1 1日) を基礎としており、 その内容は本明細書に全て包含されるもので ある。  The agent of the present invention may be useful for regulating differentiation of hematopoietic stem cells and preventing or treating certain diseases such as hematopoietic diseases and immune diseases. The differentiation regulation method of the present invention is useful for regulating differentiation of hematopoietic stem cells into CMP cells, CLP cells or their differentiated cells, particularly regulation of differentiation of hematopoietic stem cells into CMP cells. The method for determining differentiation efficiency according to the present invention comprises a method for regulating the expression or function of F gf 21 in the treatment of patients with diseases caused by abnormalities in blood cells (eg, hematopoietic diseases, immune diseases). This is useful because it allows prediction of treatment effects in patients. The screening method of the present invention is useful for development of medicines for diseases caused by abnormal blood cells. The determination method and diagnostic agent of the present invention are useful for evaluating the onset or risk of developing diseases caused by abnormal blood cells. This application is based on Japanese Patent Application No. 2 0 0 5-0 7 0 0 7 2 filed in Japan (Filing Date: March 1, 1, 2005), the contents of which are hereby incorporated by reference. It is included.

Claims

請求の範囲 The scope of the claims
1 . F g f 2 1の発現又は機能を調節する物質を含む、造血幹細胞の分化調節剤。1. A hematopoietic stem cell differentiation regulator comprising a substance that regulates the expression or function of F g f 21.
2 . F g f 2 1の発現又は機能を調節する物質が F g f 2 1の発現又は機能を促 進する物質である、 請求の範囲 1記載の剤。 2. The agent according to claim 1, wherein the substance that regulates the expression or function of F g f 21 is a substance that promotes the expression or function of F g f 21.
3 . F g f 2 1の発現又は機能を促進する物質が F g f 2 1又はその発現べクタ 一である、 請求の範囲 2記載の剤。  3. The agent according to claim 2, wherein the substance that promotes the expression or function of F g f 21 is F g f 21 or its expression vector.
4 . F g f 2 1の発現又は機能を調節する物質が F g f 2 1の発現又は機能を抑 制する物質である、 請求の範囲 1記載の剤。  4. The agent according to claim 1, wherein the substance that regulates the expression or function of F g f 21 is a substance that suppresses the expression or function of F g f 21.
5 . F g f 2 1の発現又は機能を抑制する物質が、 アンチセンス核酸、 リボザィ ム、 R N A i誘導性核酸、 ターゲテイングベクター、 抗体及びドミナントネガテ イブ変異体からなる群より選ばれる、 請求の範囲 4記載の剤。 5. The substance that suppresses the expression or function of F gf 21 is selected from the group consisting of an antisense nucleic acid, a ribozyme, an RNA i-inducible nucleic acid, a targeting vector, an antibody, and a dominant negative mutant. 4. The agent according to 4.
6 . 造血幹細胞の赤血球一骨髄球系列細胞への分化促進剤、 又は造血幹細胞のリ ンパ球系列細胞への分化抑制剤である、 請求の範囲 2記載の剤。 6. The agent according to claim 2, which is an agent for promoting differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells or an inhibitor of differentiation of hematopoietic stem cells into lymphocyte lineage cells.
7 .造血幹細胞の赤血球系列細胞への分化促進剤である、請求の範囲 2記載の剤。7. The agent according to claim 2, which is an agent for promoting the differentiation of hematopoietic stem cells into erythroid lineage cells.
8 . 造血幹細胞の赤血球一骨髄球系列細胞への分化抑制剤、 又は造血幹細胞のリ ンパ球系列細胞への分化促進剤である、 請求の範囲 4記載の剤。 8. The agent according to claim 4, which is an agent for inhibiting the differentiation of hematopoietic stem cells into erythrocyte-myeloid lineage cells, or an agent for promoting the differentiation of hematopoietic stem cells into lymphocyte lineage cells.
9 . 造血疾患、 免疫疾患又はアレルギー疾患の予防又は治療剤である、 請求の範 囲 1記載の剤。  9. The agent according to claim 1, which is a prophylactic or therapeutic agent for hematopoietic disease, immune disease or allergic disease.
1 0 . F g f 2 1の発現又は機能を調節する物質の存在下において培地中で造血 幹細胞を培養することを含む、 造血幹細胞の分化調節方法。 10. A method for regulating the differentiation of hematopoietic stem cells, comprising culturing hematopoietic stem cells in a medium in the presence of a substance that regulates the expression or function of F g f21.
1 1 . F g f 2 1の発現又は機能を調節する物質が F g f 2 1である、 請求の範 囲 1 0記載の方法。  1 1. The method according to claim 10, wherein the substance that regulates the expression or function of F g f 21 is F g f 21.
1 2 . 造血幹細胞から分化誘導された赤血球一骨髄球系列細胞又はリンパ球系列 細胞を単離することをさらに含む赤血球一骨髄球系列細胞の製造方法である、 請 求の範囲 1 0記載の方法。  1 2. The method according to claim 10, wherein the method further comprises isolating an erythrocyte-myeloid lineage cell or a lymphocyte lineage cell that has been induced to differentiate from a hematopoietic stem cell. .
1 3 . 造血幹細胞から分化誘導された赤血球一骨髄球系列細胞をさらに分化させ I 1 3. Further differentiation of erythrocyte-myeloid lineage cells induced to differentiate from hematopoietic stem cells I
41 ることをさらに含む、 請求の範囲 10記載の方法。  41. The method of claim 10, further comprising:
14. F g f 2 1の存在下において培地中で造血幹細胞を培養し、 造血幹細胞の 赤血球一骨髄球系列細胞又はリンパ球系列細胞への分化効率を評価することを含 む、 F g f 21による造血幹細胞の分化効率の判定方法。  14. Culturing hematopoietic stem cells in medium in the presence of F gf 21 and assessing the differentiation efficiency of hematopoietic stem cells into erythrocyte-myeloid or lymphocyte lineage cells. A method for determining the differentiation efficiency of stem cells.
1 5. 被験物質が F g f 2 1の発現を調節し得るか否かを評価することを含む、 造血幹細胞の分化を調節し得る物質のスクリ一二ング方法。  1 5. A method for screening a substance capable of regulating the differentiation of hematopoietic stem cells, comprising evaluating whether a test substance can regulate the expression of F g f 21.
1 6. 下記の工程 ( a ) 〜 ( c ) を含む、 請求の範囲 1 5記載の方法: 1 6. The method according to claim 15, comprising the following steps (a) to (c):
(a) 被験物質と F g f 2 1の発現を測定可能な細胞とを接触させる工程; (a) contacting the test substance with a cell capable of measuring F g f 21 expression;
(b) 被験物質を接触させた細胞における F g f 2 1の発現量を測定し、 該発現 量を被験物質を接触させない対照細胞における F g f 2 1の発現量と比較するェ 程; (b) measuring the expression level of F g f 21 in cells contacted with the test substance and comparing the expression level with the expression level of F g f 21 in control cells not contacted with the test substance;
(c) 上記 (b) の比較結果に基づいて、 F g f 2 1の発現量を調節する被験物 質を選択する工程。  (c) A step of selecting a test substance that regulates the expression level of F g f 21 based on the comparison result of (b) above.
1 7. 下記の工程 (a) 〜 (c) を含む、 請求の範囲 1 5記載の方法:  1 7. The method according to claim 15, comprising the following steps (a) to (c):
(a) 被験物質を動物に投与する工程;  (a) administering a test substance to an animal;
(b) 被験物質を投与した動物における F g f 2 1の発現量を測定し、 該発現量 を被験物質を投与しない対照動物における F g f 2 1の発現量と比較する工程; (b) measuring the expression level of F g f 21 in an animal administered with the test substance, and comparing the expression level with the expression level of F g f 21 in a control animal not administered with the test substance;
(c) 上記 (b) の比較結果に基づいて、 F g f 2 1の発現量を調節する被験物 質を選択する工程。 (c) A step of selecting a test substance that regulates the expression level of F g f 21 based on the comparison result of (b) above.
18. F g f 2 1の特定の多型が造血幹細胞の分化調節能に及ぼす影響を解析す ることを含む、 造血幹細胞の分化調節能に変化をもたらす F g f 2 1多型の同定 方法。 18. A method for identifying an F g f 21 polymorphism that causes a change in the differentiation regulating ability of a hematopoietic stem cell, comprising analyzing the effect of a specific polymorphism of F g f 21 on the differentiation regulating ability of a hematopoietic stem cell.
1 9. 動物から採取された生体試料を用いて F g f 21の発現量及び Z又は多型 を測定し、 測定結果に基づき造血幹細胞分化に対する動物の生体状態を評価する ことを食む、 造血幹細胞分化に対する動物の生体状態の判定方法。  1 9. Measure the expression level and Z or polymorphism of F gf 21 using biological samples collected from animals, and evaluate the animal's biological condition for hematopoietic stem cell differentiation based on the measurement results. For determining the biological state of an animal against
20. F g f 2 1の発現量及び/又は多型の測定用試薬を含む、 造血幹細胞分化 に対する動物の生体状態の診断剤。 20. A diagnostic agent for the biological state of an animal for hematopoietic stem cell differentiation, comprising a reagent for measuring the expression level of F gf 21 and / or a polymorphism.
2 1. 以下 (a) 及び (b) を含む、 キット : 2 1. Kit including (a) and (b) below:
(a) F g f 2 1の発現又は機能を調節する物質;並びに  (a) a substance that modulates the expression or function of F g f 2 1; and
(b) 造血幹細胞又はその分化細胞の同定用試薬、 及び Z又は造血幹細胞の分化 細胞の分化調節試薬。  (b) a reagent for identifying hematopoietic stem cells or differentiated cells thereof, and a reagent for regulating differentiation of Z or hematopoietic stem cells.
22. F g f 2 1の発現又は機能を調節する物質を被験体に有効量投与すること を含む、 造血幹細胞の分化調節方法。 22. A method for regulating differentiation of hematopoietic stem cells, comprising administering an effective amount of a substance that regulates the expression or function of F g f 21 to a subject.
23. 造血幹細胞の分化調節剤の製造における、 F g f 2 1の発現又は機能を調 節する物質の使用。  23. Use of a substance that modulates the expression or function of F g f 21 in the production of a hematopoietic stem cell differentiation regulator.
PCT/JP2006/302921 2005-03-11 2006-02-14 USE OF Fgf21 AS HEMATOPOIETIC FACTOR WO2006095559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-070072 2005-03-11
JP2005070072A JP2006246823A (en) 2005-03-11 2005-03-11 Use of fgf21 as hematopoietic factor

Publications (1)

Publication Number Publication Date
WO2006095559A1 true WO2006095559A1 (en) 2006-09-14

Family

ID=36953160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302921 WO2006095559A1 (en) 2005-03-11 2006-02-14 USE OF Fgf21 AS HEMATOPOIETIC FACTOR

Country Status (2)

Country Link
JP (1) JP2006246823A (en)
WO (1) WO2006095559A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188040B2 (en) 2009-05-05 2012-05-29 Amgen Inc. FGF21 mutants and uses thereof
US8324160B2 (en) 2009-06-17 2012-12-04 Amgen Inc. Chimeric polypeptides and uses thereof
US8361963B2 (en) 2008-06-04 2013-01-29 Amgen Inc. Uses of FGF21 polypeptides comprising two or more mutations
US8372952B2 (en) 2009-12-02 2013-02-12 Amgen Inc. Binding proteins that bind to human FGFR1C, human β-klotho and both human FGFR1C and human β-klotho
US9279013B2 (en) 2008-10-10 2016-03-08 Amgen Inc. FGF-21 mutants comprising polyethylene glycol and uses thereof
US9284378B2 (en) 2009-12-07 2016-03-15 Shaw-Fen Sylvia Hu Human antigen binding proteins that bind β-Klotho, FGF receptors and complexes thereof
US9493530B2 (en) 2009-05-05 2016-11-15 Amgen Inc. FGF21 mutants comprising a mutation at position 98, 171 and/or 180
US9517264B2 (en) 2010-04-15 2016-12-13 Amgen Inc. Human FGF receptor and β-Klotho binding proteins

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA200901550A1 (en) * 2007-05-22 2010-10-29 Новартис Аг METHODS OF TREATMENT, DIAGNOSIS AND DETECTION ASSOCIATED WITH FGF21 DISTURBANCES
JP5679458B2 (en) 2009-09-28 2015-03-04 興和株式会社 Visceral fat weight reducing agent
US9044494B2 (en) * 2010-04-09 2015-06-02 Curna, Inc. Treatment of fibroblast growth factor 21 (FGF21) related diseases by inhibition of natural antisense transcript to FGF21

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516731A (en) * 1999-11-18 2003-05-20 カイロン コーポレイション Human FGF-21 gene and gene expression product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459540B1 (en) * 1999-09-07 2008-12-02 Amgen Inc. Fibroblast growth factor-like polypeptides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516731A (en) * 1999-11-18 2003-05-20 カイロン コーポレイション Human FGF-21 gene and gene expression product

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NISHIMURA T. ET AL.: "Identification of a novel FGF, FGF21, preferentially expressed in the liver", BIOCHIM. BIOPHYS. ACTA, vol. 1492, 2000, pages 203 - 206, XP000979068 *
SUZUKI A. ET AL.: "Kan Kansaibo", BLOOD IMMUNITY CANCER, vol. 7, no. 1, 25 January 2002 (2002-01-25), pages 89 - 93, XP003001588 *
YAMAUCH H. ET AL.: "Identification of a novel fibroblast growth factor of zebrafish and its role in hematopoiesis", THE 27TH ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN, PROGRAM AND ABSTRACT, 25 November 2004 (2004-11-25), pages 685, XP003001587 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273106B2 (en) 2008-06-04 2016-03-01 Amgen Inc. FGF mutants with reduced proteolysis and aggregation
US11840558B2 (en) 2008-06-04 2023-12-12 Amgen Inc. Methods of treating non-alcoholic steatohepatitis using FGF21 mutants
US8361963B2 (en) 2008-06-04 2013-01-29 Amgen Inc. Uses of FGF21 polypeptides comprising two or more mutations
US11072640B2 (en) 2008-06-04 2021-07-27 Amgen Inc. Methods of treating non-alcoholic steatohepatitis using FGF21 mutants
US8410051B2 (en) 2008-06-04 2013-04-02 Amgen Inc. FGF21 mutants and uses thereof
US10011642B2 (en) 2008-06-04 2018-07-03 Amgen Inc. Methods of treating of diabetes and obesity using FGF21 mutants
US8642546B2 (en) 2008-06-04 2014-02-04 Amgen Inc. FGF21 mutant fusion polypeptides and uses thereof
US9279013B2 (en) 2008-10-10 2016-03-08 Amgen Inc. FGF-21 mutants comprising polyethylene glycol and uses thereof
US8835385B2 (en) 2009-05-05 2014-09-16 Amgen Inc. FGF21 polypeptides comprising two or more mutations and uses thereof
US8188040B2 (en) 2009-05-05 2012-05-29 Amgen Inc. FGF21 mutants and uses thereof
US8795985B2 (en) 2009-05-05 2014-08-05 Amgen Inc. FGF 21 polypeptides comprising two or more mutations and uses thereof
US9493530B2 (en) 2009-05-05 2016-11-15 Amgen Inc. FGF21 mutants comprising a mutation at position 98, 171 and/or 180
US8618053B2 (en) 2009-05-05 2013-12-31 Amgen Inc. FGF21 mutants multimers and uses thereof
US8324160B2 (en) 2009-06-17 2012-12-04 Amgen Inc. Chimeric polypeptides and uses thereof
US8372952B2 (en) 2009-12-02 2013-02-12 Amgen Inc. Binding proteins that bind to human FGFR1C, human β-klotho and both human FGFR1C and human β-klotho
US9284378B2 (en) 2009-12-07 2016-03-15 Shaw-Fen Sylvia Hu Human antigen binding proteins that bind β-Klotho, FGF receptors and complexes thereof
US9493577B2 (en) 2009-12-07 2016-11-15 Amgen Inc. Human antigen binding proteins that bind β-klotho, FGF receptors and complexes thereof
US10570205B2 (en) 2009-12-07 2020-02-25 Amgen, Inc. Human antigen binding proteins that bind β-Klotho, FGF receptors and complexes thereof
US9517264B2 (en) 2010-04-15 2016-12-13 Amgen Inc. Human FGF receptor and β-Klotho binding proteins

Also Published As

Publication number Publication date
JP2006246823A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
WO2006095559A1 (en) USE OF Fgf21 AS HEMATOPOIETIC FACTOR
JP4255382B2 (en) Bone morphogenetic protein (BMP), BMP receptor and BMP binding protein and their use in the diagnosis and treatment of glaucoma
JP4544865B2 (en) Targets, methods, and reagents for diagnosis and treatment of schizophrenia
JP2015515470A (en) Methods for treating hair loss disorders
US11857563B2 (en) Inhibition of expansion and function of pathogenic age-associated B cells and use for the prevention and treatment of autoimmune disease
JP2011528903A (en) FUS / TLS-based compounds and methods for diagnosis, treatment and prevention of amyotrophic lateral sclerosis and related motor neuron diseases
Wang et al. Whole exome sequencing in unexplained recurrent miscarriage families identified novel pathogenic genetic causes of euploid miscarriage
AU2019336798A1 (en) Compositions and methods for the diagnosis and treatment of lymphatic system disorders
WO2006129881A1 (en) Prophylactic/therapeutic agent for bone/joint disease and screening method for the agent
US8153764B2 (en) Biomarker specific to brain/nerve or specific to neuronal differentiation
US20150071934A1 (en) Methods For Regulating Hair Growth Disorders
US20080187917A1 (en) Compositions and methods for repressing the Ink4a and Arf senescence pathways
JPWO2007000884A1 (en) Bone and joint disease prophylactic / therapeutic agent and screening method thereof
JP2007006800A (en) Normal human hepatocyte-specific genes
US8309687B2 (en) Biomarker specific for cancer
JP5451376B2 (en) Biomarkers specific for blood cell lineage or specific for osteoclast differentiation
JP4471803B2 (en) Genes whose expression is upregulated in blood cells of patients with systemic lupus erythematosus and uses thereof
JP4931247B2 (en) New time genes and their applications
Jawaid Characterisation of two genetic loci involved in fetal haemoglobin production
JPWO2002033122A1 (en) Testing methods for allergic diseases
Sampson David J Kwiatkowski, Mary Pat Reeve, Jeremy P Cheadle and Julian R Sampson
Beale Synaptic signal transduction and transcriptional control
Ionnidou Structural and functional analysis of vascular permeability
JP2006333770A (en) Hemocyte-specific gene group in patient with angiitis
JP2007135581A (en) Blood cell-specific gene cluster of patient suffering from idiopathic thrombocytopenic purpura (itp)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714062

Country of ref document: EP

Kind code of ref document: A1