WO2003081667A1 - Semiconductor device and production method therefor - Google Patents

Semiconductor device and production method therefor Download PDF

Info

Publication number
WO2003081667A1
WO2003081667A1 PCT/JP2003/003493 JP0303493W WO03081667A1 WO 2003081667 A1 WO2003081667 A1 WO 2003081667A1 JP 0303493 W JP0303493 W JP 0303493W WO 03081667 A1 WO03081667 A1 WO 03081667A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate electrode
insulating film
film
semiconductor device
forming
Prior art date
Application number
PCT/JP2003/003493
Other languages
English (en)
French (fr)
Inventor
Takashi Nishikawa
Takashi Ohtsuka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2003221212A priority Critical patent/AU2003221212A1/en
Priority to JP2003579276A priority patent/JP3622055B2/ja
Priority to US10/616,917 priority patent/US7135736B2/en
Publication of WO2003081667A1 publication Critical patent/WO2003081667A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure

Definitions

  • the present invention relates to a semiconductor device in which a gate electrode having a floating gate electrode and a dielectric film is stacked on a semiconductor substrate, and a method of manufacturing the same.
  • the flash memory is summarized in the first document, "Applied Physics, Vol. 65, No. 11, (1996), pp. 1141-1124: Flash Memory Technology, Hitoshi Kume".
  • For the FeRAM refer to the second reference "Journal of the Institute of Electronics, Information and Communication Engineers, Vol. 80, No. 2 (1997), pp. 169-175: Ferroelectric memory as an ideal memory, Elliott M. Ph ilofs ky ”summarizes the outline.
  • the current flash memory requires a high operating voltage.
  • the internal maximum voltage is 12 V. This is much higher than normal DRAM and LSI operating at 3-4V.
  • the current flash memory requires a rewrite time of 1 millisecond to 1 second, When rewriting data, there is a problem that it puts a great stress on the user.
  • FeRAM has an internal voltage of 5 V or less, which is lower than that of flash memory. .
  • the access time is very short, 250 nanoseconds.
  • FeRAM has the problem that the switching characteristics of ferroelectric capacitors are sensitive to temperature.
  • the ferroelectric layer contains low-melting-point metals such as PbBi, and these elements diffuse into the substrate. There's a problem.
  • MFS transistors non-volatile memory devices
  • This device has a ferroelectric material placed at the gate of a normal M ⁇ S transistor.Let's realize nonvolatile memory by changing the channel conductance in the transistor according to the polarization direction of this ferroelectric material. It is assumed that.
  • Such an MFS transistor has the following structure. Usually, it is difficult to dispose a ferroelectric directly on a Si substrate due to problems such as diffusion of elements. For this reason, an MF IS structure in which an insulator film (Insulator) also serving as a diffusion suppression layer is inserted between the Si substrate and the ferroelectric film, or a floating gate is further added to this MF IS structure. In many cases, an MFM IS structure with a built-in electrode is adopted. However, there are actually some problems with the transistor having this MFM IS structure. That is, even if the voltage is removed after switching the ferroelectric film by applying a voltage to the gate, there is an anti-electric field due to the polarization in the ferroelectric film.
  • the ferroelectric film is always subjected to a force in a direction in which the direction of the stored polarization is canceled, and there is a problem that it is difficult to maintain the polarization stably.
  • a current gradually flows from the semiconductor substrate or the upper control gate electrode into the floating gate electrode and the ferroelectric film due to the anti-electric field.
  • the flowing current is ferroelectric
  • the charge of the floating gate electrode generated by the polarization of the film is gradually compensated, and the stored information is eventually lost. That is, the information is volatilized, and the function as the nonvolatile memory element cannot be exhibited.
  • retention time The time during which information is retained as a nonvolatile memory element is referred to as retention time (retention time). If the information volatilizes as described above, this retention time cannot be secured sufficiently.
  • the standard retention time guaranteed for flash memory is currently 3 ⁇ 10 8 seconds, which is almost 10 years.
  • an MS transistor in order to suppress such a leakage current, conventionally, silicon dioxide, tetranitrogen trioxide, or silicon nitride conventionally provided between a gate electrode and a semiconductor substrate is used.
  • silicon dioxide, tetranitrogen trioxide, or silicon nitride conventionally provided between a gate electrode and a semiconductor substrate is used.
  • the use of an insulating film material having a higher relative dielectric constant is being studied in place of the insulating film made of such materials.
  • Such an insulating film having a high relative dielectric constant is usually called a “high-dielectric-constant film” or a “high-k film”, and the use of this film increases the thickness of the physical insulating film. Thus, leakage current can be suppressed.
  • the insulating film material used herein for example, Z r0 2, A 1 2 0 3, La 2 0 3, P R_ ⁇ 3, Gd 2 ⁇ 3, Y 2 0 3 is promising.
  • oxides of hafnium represented by hafdium oxide (Hf 0 2 ), silicide (Hf Si x ), silicified aluminum oxide (Hf Si A 1 O x ), nitrided Materials such as oxides (H f ⁇ N) are also promising.
  • the high-k film used for the MOS transistor is changed to a In order to suppress the peak current, it is conceivable to introduce it to the MIFIMS transistor.
  • the performance of the insulating film required for the MOS transistor and the MIF IMIS transistor will be examined.
  • Figure 11 is a performance index that is required in MOS transistors and MFMI S transistors, i.e. S i 0 2 equivalent thickness: shows the relationship between (EOT Equivalent Oxide Thickness) and leakage current density (J). According to the figure, at the MOS transistor evening, the EOT which was 1.6 nm in 2001
  • the leakage current density is met 1 X 10- 8 A / cm 2 at 2001 the thing is, 1 at the time of the 2005 X 10 - 1
  • the performance required for the insulating film is greatly different between the conventional MOS transistor and the MFMIS transistor. Therefore, the high-k film, which is being considered for introduction at the MOS transistor, is used as it is as the MFMIS transistor.
  • the present invention has been made to solve the above-described problems.
  • a structure such as MIFIMIS having an insulating film in an MFMIS structure
  • a semiconductor device capable of reducing the amount of leakage current of the insulating film and a method of manufacturing the same The purpose is to provide. Disclosure of the invention
  • a semiconductor device includes a semiconductor substrate, a source region and a drain region formed on the semiconductor substrate with a channel region interposed therebetween.
  • a floating gate electrode formed on the channel region via a gate insulating film, a ferroelectric film formed on the floating gate electrode, and a control gate electrode formed on the ferroelectric film
  • An intermediate insulating film is formed between the floating gate electrode and the self-dielectric film, and at least one between the strong dielectric film and the control gate electrode.
  • a hafnium oxide containing a nitrogen atom is provided.
  • the step of forming a floating gate electrode on a semiconductor substrate via a gate insulating film, and the step of forming a ferroelectric film on the floating gate electrode Forming a control gate electrode on the ferroelectric film; and forming a source region and a drain region on the semiconductor substrate.
  • a step of forming a floating gate electrode on a semiconductor substrate via a gate insulating film; and forming a ferroelectric film on the floating gate electrode Forming a control gate electrode on the ferroelectric film; and forming a source region and a drain region on the semiconductor substrate.
  • a ferroelectric film, and at least one of between the ferroelectric layer and the floating gate electrode further comprising a step of forming an intermediate insulating film, wherein the intermediate insulating film is an organic metal containing hafnium. It is formed by MOC VD using a compound gas, a gas containing oxygen atoms, and a gas containing nitrogen atoms as source gases.
  • the method includes the steps of: forming a floating gate electrode on a semiconductor substrate via a gate insulating film; and forming a strong dielectric film on the floating gate electrode. Forming a control gate electrode on the ferroelectric film; and forming a source region and a drain region on the semiconductor substrate. Forming an intermediate insulating film at least between the gate electrode and the ferroelectric film and between the ferroelectric layer and the floating gate electrode; And further wherein the intermediate insulating film, H f C l 4 gas, H 2 0 gas, and a gas containing nitrogen atoms as the raw material gas, those formed by AL D. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a sectional view showing one embodiment of a semiconductor device according to the present invention.
  • Figure 2 is a schematic diagram of a device for measuring leakage current density.
  • FIG. 3 is a diagram showing the relationship between the nitrogen flow ratio and the leakage current density.
  • FIG. 4 is a diagram showing the relationship between the nitrogen flow ratio and the relative permittivity.
  • FIG. 5 is a diagram showing the relationship between the content of nitrogen atoms and the relative dielectric constant.
  • FIG. 6 is a sectional view showing another example of the semiconductor device shown in FIG.
  • FIG. 7 is a diagram showing a schematic configuration of a sputtering apparatus for forming a film of the semiconductor device shown in FIG.
  • FIG. 8 is a diagram showing the relationship between the nitrogen flow ratio and the nitrogen content in the insulating film.
  • FIG. 9 is a diagram showing a schematic configuration of a MOC VD apparatus for forming a film of the semiconductor device shown in FIG.
  • FIG. 10 is a timing chart showing the inflow of each gas when the semiconductor device shown in FIG. 1 is formed using the ALD.
  • FIG. 11 is a diagram illustrating a relationship between EOT and leakage current density required in the MOS transistor and the MIFIMIS transistor.
  • the semiconductor device 1 includes a semiconductor substrate 11 and a source region 12 and a drain region 13 formed on the semiconductor substrate 11.
  • a gate electrode body 15 is formed on a channel region 14 between the source region 12 and the drain region 13.
  • the semiconductor substrate 11 is a Si semiconductor substrate containing a p-type or n-type impurity, and usually has a resistivity of 0.1 ⁇ cm or more and 50 ⁇ cm or less. Also saw The semiconductor region 11 and the drain region 13 are formed of a conductivity type different from that of the semiconductor substrate 11.
  • the gate electrode body 15 is configured as follows. That is, the floating gate electrode 152 is formed on the channel region 14 via the gate insulating film 151, and the ferroelectric film 154 is formed on the floating gate electrode 152 via the first intermediate insulating film 153. . Further, a control gate electrode 156 is formed on the ferroelectric film 154 via a second intermediate insulating film 155.
  • the floating gate electrode 152 is an electrode for holding the charge induced by the ferroelectric film 154, and includes platinum (Pt), ruthenium (Ru), indium (Ir), or an oxide thereof. And the like. Note that the floating gate electrode 152 may be formed of a material other than the above, polysilicon may be used as in a normal MOS transistor, or silicide of various metals used as a metal gate, for example, ⁇ WS i, PtSi or the like may be used. Alternatively, a laminated structure of a combination of some of these may be employed.
  • the ferroelectric film 154 has small values of ferroelectric parameters such as coercive electric field (Ec) and remanent polarization (Pr) and a small amount of leakage current, and has thermal stability and reduction resistance. It is preferable to use a high material. For example, B i 4 T i 3 ⁇ 12 (B IT), S r B i 2 Ta 2 O g (SBT), Pb (Z r, T i) 0 3 (PZT) or the like can be used.
  • the control gate electrode 156 can be made of the same material as that of the MS transistor, for example, polysilicon or aluminum (A1). Alternatively, platinum (Pt), ruthenium (Ru), or silica (Ir), or a conductive oxide thereof can be used.
  • Hf_ ⁇ 2: N represents the nitrogen hafnium oxide are contained about doping amount
  • HfO N indicates that that compound with nitrogen not hafnium oxygen only.
  • the content of nitrogen atoms contained in these insulating films 151, 153, and 155 is determined as follows.
  • Hf0: N or HfON as described above as a high-k film has already been studied for use as a gate insulating film in MOS transistors.
  • the amount of nitrogen added is not disclosed. This is because the performance required for a gate insulating film in a MOS transistor is based on the following: interface order density, fixed charge in the film, relative dielectric constant (or equivalent film thickness), leakage current, breakdown voltage, reliability This is because the evaluation of each parameter has not been completed yet.
  • the gate insulating film used in the MS transistor is very thin, less than a few nm, and the composition of nitrogen cannot be measured precisely enough to be associated with each parameter.
  • the electrical characteristics of the transistor structure are mainly evaluated, and the film thickness itself has not been sufficiently studied.
  • the physical thickness of the insulating film used is as large as 10 nm or more, and the parameter to be evaluated is mainly the leak current density. It is possible to systematically study the relationship between the leakage current density. Below, the nitrogen content is examined.
  • FIG. 2 is a schematic diagram of an apparatus for measuring a leak current density.
  • This apparatus 2 forms a Si0 2 layer 22 with a thickness of 30 O nm on a p-type semiconductor substrate 21 and forms an upper electrode 23 / insulating film 24 / lower electrode 25 thereon.
  • a MIM structure is formed.
  • the MIM structure consists of an insulating film with a thickness of about 300 nm between an upper electrode 23 of platinum with a thickness of about 150 nm and a lower electrode 25 of platinum with a thickness of about 100 nm. It is the one with 24 in between.
  • Figure 3 shows the relationship between the measured leakage current density and time.
  • the nitrogen flow rate ratio R N is also of the 0% means that the insulating film to which nitrogen is not ⁇ Ka ⁇ those nitrogen flow rate ratio R N is 5% 37., measurement start In some cases, it can be seen that the leak current density is less than half.
  • nitrogen flow rate ratio R N is set to less than 1/100 of that of 0%.
  • the nitrogen flow ratio 1 ⁇ was increased to 62.5% and 85.4%, the leakage current density gradually increased.
  • the addition of nitrogen greatly reduces the leakage current density, but increases when the amount exceeds a certain amount. Therefore, it is not necessary to add a large amount of nitrogen.
  • Figure 4 shows the relationship between the relative dielectric constant epsilon r of the nitrogen flow rate ratio R N and the insulating film in the sputtering. According to the figure, with the nitrogen flow rate ratio R N is increased, with the nitrogen supplied Ri That increases, the dielectric constant epsilon r of the insulating film is reduced. Therefore, to determine the nitrogen content, the relative permittivity ⁇ r must also be considered.
  • Figure 5 is a graph showing the relationship between the content of nitrogen atoms (atomic%) and the relative dielectric constant epsilon r.
  • the content of nitrogen atoms in the insulating film was measured using an XPS measuring device (ESCAA5400MC, manufactured by Physical Electronics) and a SIMS measuring device (SIMS4500, manufactured by ATOMIKA).
  • XPS measuring device ESCAA5400MC, manufactured by Physical Electronics
  • SIMS4500 manufactured by ATOMIKA
  • the measurement was performed with the X-ray anode being an A-line and the output being 14 kV and 200 W.
  • the SIMS instrument measured the primary ion species as Cs +, the secondary ion species as negative ions, and the primary ion energy as 2. Ok eV.
  • the content of nitrogen atoms is preferably from 0.1 atomic% to 30.0 atomic%, more preferably from 0.5 atomic% to 10.0 atomic%, and more preferably from 1.0 atomic% to 1.0 atomic%. It is considered particularly preferable that the content be 6.0 atomic% or less.
  • the intermediate insulating films 153 and 155 according to the present embodiment have a nitrogen-containing hafnium oxide, the leakage current can be significantly suppressed, and the holding time can be reduced. Can be further extended. Moreover, since the intermediate insulating films 153 and 155 have a high relative dielectric constant, the voltage applied to the intermediate insulating film can be reduced. Can be driven.
  • an intermediate point is provided between both the floating gate electrode 152 and the ferroelectric film 1554 and between the ferroelectric film 1554 and the control gate electrode 1556.
  • the insulating films 153 and 155 are formed, an intermediate insulating film may be provided on only one of them.
  • the intermediate insulating layer 155 can be provided only between the ferroelectric film 154 and the control gate electrode 156.
  • FIG. 7 is a schematic configuration diagram of the sputter device.
  • this sputtering apparatus has an apparatus body 31 in which a semiconductor substrate can be installed, and a load lock chamber connected to the apparatus body 31 via an ultra-high vacuum gate valve (not shown). 3 2
  • the apparatus main body 31 is provided with a vacuum pump 33 for depressurizing the inside of the apparatus main body 31 to an ultra-high vacuum state, and the semiconductor substrate S is placed in an ultra-high vacuum state from the atmosphere via a load lock chamber 32. It is transported inside the main body 3 1. As described above, by transporting the semiconductor substrate S through the mouth lock chamber 32, it is possible to form a film on the semiconductor substrate S without directly opening the inside of the apparatus main body 31 to the atmosphere.
  • the degree of vacuum inside the apparatus main body S can be maintained for a long time at a high degree of vacuum, for example, IX 10 " 10 Torr or less, thereby preventing contamination of the inside of the apparatus main body 31 and the semiconductor substrate S. Can be.
  • a substrate heating mechanism 311 for heating the back surface of the installed semiconductor substrate S, and a shutter 311 for shutting off between the substrate 1 and the substrate S are provided inside the apparatus main body 31 .
  • the shutter 312 is removed from between the target T and the substrate S during film formation, but shuts off between the target T and the substrate S except during film formation, and the target material T is deposited on the substrate S.
  • Hf metal is used as the target T.
  • three cylinders 34, 35, and 36, each of which contains a gas serving as a raw material of the sputter gas, are connected to the apparatus main body 31 via a gas supply line 37. These cylinders 34, 35, and 36 contain oxygen gas, nitrogen gas, and argon gas, respectively.
  • the substrate temperature is heated by the substrate heating mechanism 311.
  • the substrate temperature is preferably from 200 ° C. to 65 ° C., and more preferably from 250 ° C. to 350 ° C.
  • the valve of the gas supply line 37 is opened, and only argon gas is supplied to the inside of the apparatus main body 31 to form a film.
  • the supply flow rate during this film formation depends on the volume of the apparatus body 31 and the evacuation speed of the vacuum pump 33, but is preferably 1 sccm or more and 100 sccm or less, more preferably 5 sccm or more and 20 s or less. More preferably, it is not more than ccm.
  • the total pressure during film formation depends on the volume of the apparatus main body 31, the pumping speed of the vacuum pump 33, and the performance of a voltage applying apparatus (not shown). It is preferably not more than mT orr, more preferably not less than lT orr and not more than 20 mT orr.
  • a plasma is generated inside the apparatus main body 31 using argon gas as a sputtering gas.
  • the surface of T is cleaned with argon plasma.
  • the target T does not deposit on the Si substrate S.
  • the cleaning time depends on the state of the target T, but is usually 3 minutes to 60 minutes, and preferably 5 minutes to 30 minutes.
  • the plasma is stopped, oxygen gas and nitrogen gas are introduced into the apparatus body 31 in addition to argon gas. Then, with these three gases mixed, the plasma is turned on again.
  • the shutter 312 is opened, and a gate insulating film made of octaphenylene oxide to which nitrogen is added is deposited on the substrate S.
  • the shirt 312 is closed to remove the applied power, and the supply of gas is stopped. Note that it is preferable that the time until a desired film thickness is obtained is calculated based on a film formation rate measured in advance.
  • the substrate S is taken out of the apparatus main body 31.
  • the floating gate electrode 15 2, the first intermediate insulating film 15 3, the ferroelectric film 15 4, the second intermediate insulating film 15 5, and the control gate electrode 15 shown in FIG. 6 is formed in the same manner as the gate insulating film by the sputtering apparatus.
  • a resist pattern is formed on the control gate electrode 156 by photolithography, and the gate electrode body 15 is formed by etching.
  • the gate electrode body 15 is used as a mask, the source region 12 and the drain region 13 are formed by a known method such as an ion implantation method, and finally an annealing process is performed.
  • the annealing process can be performed after each insulating film is formed.
  • the formation of the source region 12 and the drain region 13 by ion implantation or the like may be performed during the formation of the gate electrode body 15.
  • the annealing temperature is preferably set to 200 ° C. or more and 110 ° C. or less, more preferably 550 ° C. or more and 750 ° C. or less.
  • the anneal time depends on the anneal temperature, but is preferably from 5 seconds to 360 seconds.For example, when the anneal temperature is 700 ° C., the anneal time is preferably from 5 minutes to 30 minutes. preferable.
  • the anneal atmosphere varies depending on the metal electrode used and other elements mounted on the substrate.
  • the nitrogen concentration is preferably 80% or more. More preferably, it is set to 0%.
  • the flow rate ratio of the nitrogen gas supplied to the sputtering evening gas i.e. it is necessary to control the nitrogen flow rate ratio R N.
  • FIG. 8 shows the relationship between the nitrogen flow rate ratio and the nitrogen content in the insulating film. According to the figure, it can be seen that as the nitrogen flow ratio RN increases, the nitrogen content also increases.
  • nitrogen flow rate ratio R N in the sputter-ring is 0.0 5 above 0.9 0 or less, and 0.1 or more on 0.4 It is more preferred that: Note that the argon gas contributes to laminating Hf on the substrate, but does not affect oxygen or nitrogen, so it is not necessary to consider the flow rate of the argon gas.
  • the sputtering according to the present invention is not limited to the above, and various modifications are possible.
  • the use of the H f metal is targeted, it is also possible to use H f compounds such as H f ⁇ 2.
  • the ferroelectric film can be formed by other than spattering, for example, by a sol-gel method or MOCVD.
  • FIG. 9 is a schematic configuration diagram of a MOCVD apparatus used in this method.
  • this device is equipped with a device body 41 in which a semiconductor substrate can be installed, and the back of the semiconductor substrate S installed in the device body 41 is heated by the substrate. It is configured to be heated by the mechanism 411.
  • the apparatus main body 41 is provided with a vacuum pump 42 for depressurizing the inside to an ultra-high vacuum state, and three cylinders 43, 44, and 45 containing a gas serving as a MOCVD raw material.
  • Each cylinder 43, 44, 45 is connected to the apparatus main body 41 via the gas supply line 46, the evening over tertiary butoxy hafnium (Hi (0- tC 4 H 9 ) 4) gas, oxygen gas, nitrogen gas Are accommodated respectively. These gases can be stored in the cylinders 43, 44 and 45 in the liquid state. Pumps 431, 441, 451 for supply are provided. When the raw material is in a liquid state, it is supplied to the device main body 41 after being vaporized.
  • the inside of the apparatus main body 41 is depressurized over a sufficient time.
  • the pressure is preferably below 1 X 10_ 5 To rr.
  • the substrate heating mechanism 411 is energized to heat the Si substrate S.
  • the heating is preferably performed so that the temperature of the substrate is 200 ° C. or more and 750 ° C. or less, and more preferably 250 ° C. or more and 350 ° C. or less.
  • a short butoxy hafnium gas, an oxygen gas, and a nitrogen gas are introduced into the apparatus main body 41 to start film formation.
  • the flow rate of the mixed gas during film formation depends on the volume of the apparatus main body 41 and the pumping speed of the vacuum pump 42, but is preferably 1 sccm or more and 100 sccm or less, and more preferably 5 sccm or more and 20 sccm or less. More preferred.
  • the total pressure during the film formation depends on the volume of the apparatus main body 41, the evacuation speed of the vacuum pump, and the performance of the voltage application device (not shown), but is usually 0.1 lTo rr or more and 50 OmTo rr or less. It is more preferable that it is not less than lOTorr and not more than 200 mTorr.
  • the supply of gas is stopped and the film formation is terminated. It is preferable that the time until the desired film thickness is obtained is calculated based on the film formation rate measured in advance.
  • the substrate S is taken out of the apparatus main body 41, and the floating gate electrode 161, the first intermediate insulating film 162, and the ferroelectric film 16 are formed as in the case of sputtering. 3.
  • the source region 12 and the drain region 13 are formed.
  • Each of the intermediate insulating films 162 and 164 can be formed by a MOCVD apparatus similarly to the gate insulating film 15.
  • an annealing treatment is performed as in the case of sputtering.
  • the annealing treatment can be performed under the same conditions as the above-described sputtering.
  • the flow ratios of the charly butoxy hafnium, oxygen gas, and nitrogen gas are important parameters, and strongly influence the electrical characteristics of the formed insulating film.
  • the flow rate ratio of oxygen gas and nitrogen gas i.e. nitrogen flow rate ratio R N is, it means that determines the amount of nitrogen into the formed Sani ⁇ hafnium, especially important.
  • a preferred range of the nitrogen flow rate ratio R N is 0.90 or less under 0.05 or more, still more preferably 0.1 or more 0.4 or less.
  • the MOCVD according to the present invention is not limited to this, and various modifications are possible.
  • evening-sharybutoxy hafnium gas is used to supply hafnium into the insulating film.
  • the invention is not limited to this, and any organic metal compound containing hafnium may be used. Good.
  • a gas containing an oxygen atom for example, water vapor (H 2 gas) can be used.
  • the gas containing nitrogen atoms in addition to nitrogen gas for example nitrous oxide (New 2 ⁇ ), nitric oxide (NO), hydrazine (New 2 Eta 4), diisopropylamine (i_C 3 H 7) 2 NH , Yuichi Sharybutyramine ((t-ChH 9 ) NH 2 ), ammonia (NH 3 ), and trimethylammonium (N (CH 3 ) 3 ) can be used.
  • ALD Advanced Deposition
  • the equipment for film formation used in ALD is almost the same as that shown in Fig. 9, The description will be made using the apparatus of FIG. 9, and the same components will be denoted by the same reference numerals and detailed description thereof will be omitted.
  • the major differences between the ALD method and the M ⁇ C VD method are the type of gas supplied into the apparatus body 41 and the supply sequence. As a result, the film formation rate and the film flatness also differ.
  • Raw material used is 4 hafnium tetrachloride (H f C l 4), water (H 2 0), and there (N 2 H 4) with hydrazine, to be supplied to the apparatus main body 4 in 1 of these in a gaseous state.
  • These raw materials may be stored in gas cylinders 43, 44, and 45, or may be in a liquid state. However, when a liquid is used, it is supplied into the apparatus body 41 after being heated to a gas state. Further, in addition to these cylinders, a cylinder containing nitrogen gas as a purge gas is connected to the apparatus body.
  • the inside of the apparatus main body 41 is depressurized over a sufficient time.
  • the pressure at this time is preferably 1 X 10 " 5 Torr or less.
  • the substrate heating mechanism 4 11 is energized to heat the Si substrate S.
  • the substrate temperature is 20 ° C.
  • the heating is preferably performed at a temperature of at least 30 ° C and at most 550 ° C, more preferably at least 30 ° C and at most 300 ° C.
  • the gas is sequentially supplied into the apparatus main body 41.
  • nitrogen which is a purge gas
  • stop the purge gas supplying H f C 1 4 to the apparatus main body 4 in 1 starts deposition (stearyl - di (b)).
  • H f C 1 4 to purge the apparatus main body 4 in 1 (stage (c)).
  • adsorbed Pas one purge gas is on the substrate surface, the surface coverage is greater than 1 extra H f C 1 4 to desorbed are.
  • a purge gas is stopped, and supplies the H 2 0 (stage (d)).
  • H f 0 2 is deposited and H f C 1 4 and H 2 0 adsorbed on the substrate surface react.
  • HC 1 is desorbed.
  • stage (e) the supply of H 20 is stopped, and the purge gas is supplied again to desorb excess H 20 adsorbed on the substrate S.
  • supply of the purge gas is stopped, hydrazine gas is supplied into the apparatus main body 41, and hydrazine gas is supplied to the substrate surface.
  • Adsorb gin The hydrazine is decomposed by the heat of the substrate S, this nitrogen occurs Te cowpea to is incorporated into the surface of the Hf_ ⁇ 2 (stage (f)).
  • the supply of hydrazine gas is stopped, and the purge gas is supplied. Thereby, excess hydrazine adsorbed on the substrate S can be eliminated (stage (g)).
  • stage (h) is the beginning of the next cycle and is the same as stage (b), as described later.
  • the flow rate of the gas during film formation is preferably 1 sccm or more and 100 sccm or less, and more preferably 5 sccm or more and 20 sccm or less, depending on the volume of the apparatus main body 41 and the pumping speed of the vacuum pump 42. Is more preferable.
  • the total pressure during the film formation depends on the volume of the device main body 41, the pumping speed of the vacuum pump 42, and the performance of the voltage application device, but it is usually from 0.1 torr to 50 OmTorr. More preferably, it is not less than 1 OTorr and not more than 200 mTorr.
  • the substrate is taken out of the apparatus main body, and a floating gate electrode, a first intermediate insulating film, a ferroelectric film, a second intermediate insulating film, and a control gate electrode are formed in the same manner as in each of the above methods. Subsequently, a source region and a drain region are formed. Each intermediate insulating film is formed by the above-described ALD apparatus, similarly to the gate insulating film. Thereafter, an annealing treatment is performed in the same manner as in the case of sputtering. The annealing treatment can be performed under the same conditions as the sputtering.
  • the flow rate of hydrazine gas F H that supplies nitrogen to the insulating film is important, and the flow rate of hydrazine gas relative to the sum of the flow rate of H 20 gas F H2 (3 and the flow rate of hydrazine gas is important.
  • preferred of this hydrazine flow ratio R H A preferable range is from 0.05 to 0.90, and a more preferable range is from 0.1 to 0.4.
  • the flow rate F H hydrazine the flow rate of hydrazine supplied in stage (f) is the flow rate of H 2 0 gas supplied at stage (d) are a flow F H 20 of H 2 0 gas .
  • the ALD method used in the present invention is not limited to this, and various modifications are possible.
  • nitrogen gas is used as the purge gas.
  • an inert gas may be used.
  • argon gas, neon gas, or the like can be used.
  • hydrazine is used to supply nitrogen into the insulating film.
  • any material containing a nitrogen atom may be used, such as nitrogen gas (N 2 ), nitrous oxide (N 2 ⁇ ), Nitric oxide (NO), ammonia (NH 3 ), and trimethylammonium (N (CH 3 ) 3 ) can be used. These may be used alone or as a mixture of two or more.
  • a semiconductor device capable of reducing the amount of leakage current of an insulating film in a structure such as a MIFIMIS having an insulating film in an MFMIS structure, and a method of manufacturing the same.
  • a switching element with a reduced amount of leakage current is provided.

Description

明 細 書 半導体装置及びその製造方法 技 術 分 野
本発明は、 半導体基板上に、 浮遊ゲート電極及ぴ^虽誘電体膜を有するゲート電 極体を積層した半導体装置及びその製造方法に関する。 背 景 技 術
従来より、 電力の供給を遮断しても情報を保持する能力、 つまり情報記録の不 揮発性は、 磁気テープ装置、 ハードディスク装置、 光ディスク装置、 或いは光磁 気ディスク装置などで実現されていた。 これに対し、 近年、 半導体による固体素 子を用いて不揮発性を実現しょうとする試みが盛んに行われている。 このうち、 既に実用化されているものとしては、 例えば、 フラッシュメモリや Fe RAMが ある。 これらの素子は、 上記した磁気テープ装置等で必要な可動機械部分を有し ておらず、 しかも小型で消費電力が小さいことから、 大きな期待が寄せられてい る。
なお、 フラッシュメモリについては、 第 1の文献 「応用物理、 第 65巻、 第 1 1号 (1996年) , 1114〜1124頁:フラッシュメモリ技術, 久米 均 」 にその概要がまとめられている。 また、 FeRAMについては、 第 2の文献 「 電子情報通信学会誌, Vo l. 80, No. 2 (1997年) , 169〜175 頁:理想的なメモリとしての強誘電体メモリ, E l l i o t t M. Ph i l o f s ky」 にその概要がまとめられている。
しかしながら、 フラッシュメモリや F e R AMには、 以下のような問題があつ た。
現状のフラッシュメモリは高い動作電圧を必要とし、 例えば第 1の文献によれ ば、 その内部最大電圧は 12 Vとなっている。 これは、 通常の DRAMや LS I が 3〜4Vで動作するのに比べて非常に高い。 このような問題に加え、 現状のフ ラッシュメモリでは、 書き換え時間に 1ミリ秒〜 1秒を必要とし、 頻繁なデータ の書き換えを行う場合には、 使用者に大きなストレスを与えるという問題がある 一方、 第 2の文献によると、 FeRAMは、 その内部電圧が 5 V以下であり、 フラッシュメモリに比べて低くなつている。 また、 アクセス時間も 250ナノ秒 と非常に短い。 しかしながら、 FeRAMには、 強誘電体キャパシタのスィッチ ング特性が温度の影響を受けやすいという問題がある。 さらに、 FeRAMを形 成するには高温ァニールが必要であるにも関わらず、 強誘電層の構成要素として Pb B iなどの低融点金属を含んでいるため、 それらの元素が基板へ拡散する という問題がある。
こうした状況から、 フラッシュメモリ、 FeRAM以外に、 最近、 「MFSト ランジス夕」 と総称される不揮発性記憶素子の開発検討が精力的になされている 。 これについては、 例えば、 第 3の文献 「電子情報通信学会誌, Vo 1. 77, No. 9, 976〜 979頁:強誘電体メモリの開発動向と将来, 垂井康夫」 に その概要がまとめられている。 この素子は、 通常の M〇Sトランジスタのゲート 部分に強誘電体を配置したものであり、 この強誘電体の分極の向きによってトラ ンジス夕におけるチャンネルコンダクタンスを変えて、 不揮発性のメモリを実現 しょうとするものである。
このような MFSトランジスタは、 次のような構造が採られている。 通常、 強 誘電体を S i基板上に直接配置することは元素の拡散などの問題から困難である 。 そのため、 拡散抑制層を兼ねた絶縁体膜 (I ns u l a t o r) を S i基板と 強誘電体膜との間に挿入した MF I S構造が採られたり、 或いは、 この MF I S 構造にさらに浮遊ゲ一ト電極を揷入した MFM I S構造が採られることが多い。 しかしながら、 この MFM I S構造を有するトランジスタにも、 現実にはいく つかの問題が存在する。 すなわち、 ゲートに電圧を印加して強誘電体膜をスイツ チングさせた後、 電圧を取り去っても、 強誘電体膜には、 その分極による反電界 が存在する。 このため、 強誘電体膜は、 常に記憶された分極の向きが解消される 方向に力を受けることになり、 分極の安定的な保持が困難になるという問題があ る。 さらに、 この反電界により半導体基板或いは上部の制御ゲート電極から浮遊 ゲート電極及び強誘電体膜に電流が徐々に流れ込む。 流れ込んだ電流は強誘電体 膜の分極により発生した浮遊ゲ一ト電極の電荷を徐々に補償することになり、 最 終的には記憶情報を失ってしまう。 すなわち、 情報が揮発してしまうことになり 、 不揮発性記憶素子としての機能を発揮できないことになる。
不揮発性記憶素子として、 情報を保っている時間のことを保持時間 (リテンシ ヨンタイム) と呼ぶが、 上記のように情報が揮発してしまうと、 この保持時間が 十分に確保できないことになる。 なお、 フラッシュメモリについて保証されてい る標準的な保持時間は、 現在のところ 3X 108秒であり、 これはほぼ 10年間 に相当する。
これに対し、 MFM I Sトランジスタにおいて、 そのリーク電流を抑制して保 持時間を延ばそうとする試みはいくつかなされている。 例えば、 第 4の文献 「M . Takaha s h i e t a 1. , J pn. , J. App l. Phys. , Vo l. 10 (2001) , . 2923— 2927」 によれば、 MFM I Sトランジスタの制御ゲート電極と強誘電体膜との間にリーク電流の小さな絶縁 膜を挿入し、 MI FMI Sトランジスタ構造とすることで、 その保持時間を IX 1012秒に延ばすことが可能であることを、 計算によって報告している。 さらに 、 絶縁膜を浮遊ゲート電極と強誘電体膜との間にも挿入して、 リーク電流を低減 する M I F I M I S型の構造も提案されている。
ところで、 M〇Sトランジスタにおいては、 このようなリーク電流を抑制する ために、 従来、 ゲート電極と半導体基板との間に設けられていた二酸化珪素、 三 酸化四窒素、 或いは酸ィ匕窒化ケィ素等からなる絶縁膜に換えて、 より比誘電率の 高い絶縁膜材料を用いることが検討されている。 このような比誘電率の高い絶縁 膜は、 通常 「高誘電率膜」 或いは 「h i gh— k膜」 と呼ばれており、 これを用 いると物理的な絶縁膜の厚さが増大するため、 リーク電流を抑制することができ る。 ここで用いられる絶縁膜材料としては、 例えば、 Z r02、 A 1203、 La2 03、 P r〇3、 Gd23、 Y203などが有望視されている。 同様に、 酸化ハフ二 ゥム (Hf 02) に代表されるハフニウムの酸化物や珪酸ィ匕物 (Hf S i〇x) 、 珪化アルミン酸化物 (H f S i A 1 Ox) 、 窒化酸化物 (H f 〇N) などの材料 も有望視されている。
そこで、 このように MOSトランジスタに用いられる h i gh— k膜を、 リー ク電流抑制のために、 MI F IMI Sトランジスタにも導入することが考えられ る。 以下、 MOSトランジスタ及び M I F IMI Sトランジスタで要求される絶 縁膜の性能について検討する。
図 11は、 MOSトランジスタ及び MFMI Sトランジスタにおいて必要とさ れる性能指数、 つまり S i 02換算膜厚 (EOT: Equivalent Oxide Thickness) とリーク電流密度 (J) との関係を示したものである。 同図によると、 MOSト ランジス夕では、 2001年時点で 1. 6 nmであった EOTが 2005年には
0. 8 nmと予測されている。 これは、 MOSトランジスタでは、 素子の微細化 によってゲート面積が減少するため、 高いキャパシタンスを得る必要があり、 絶 縁膜の厚さを極端に薄くすることが求められるからである。 しかしながら、 これ によって、 リーク電流密度は上昇することになり、 0. lAZcm2から 1X 1
03A/cm2へと増大している。
これに対し、 MFMI Sトランジスタでは、 その不揮発性素子としての動作が 最も重要であり、 記憶情報を保持するため、 そのリーク電流密度は、 2001年 時点で 1 X 10-8A/cm2であったものが、 2005年の時点では 1 X 10 -1
3 AZcm2以下であることが求められる。 一方、 EOTはより低いものが求めら れるものの、 不揮発性素子という観点からは、 2005年の時点でも 5 nmでよ いと考えられている。
このように、 従来の MOSトランジスタと MFMI Sトランジスタとでは、 そ の絶縁膜に求められる性能が大きく異なるため、 MO Sトランジス夕で導入が検 討されている h i gh— k膜をそのまま MFMI Sトランジスタに適用して M I
F IMI S構造とするだけでは不十分であると言える。
本発明は、 上記問題を解決するためになされたものであり、 MFMI S構造に 絶縁膜を備えた M I F I M I S等の構造において、 絶縁膜のリーク電流量を低減 することができる半導体装置及びその製造方法を提供することを目的とする。 発 明 の 開 示
上記問題を解決するため、 第 1の本発明に係る半導体装置は、 半導体基板と、 該半導体基板にチャネル領域を挟んで形成されたソース領域及びドレイン領域と 、 前記チャネル領域上にゲート絶縁膜を介して形成された浮遊ゲート電極と、 前 記浮遊ゲート電極上に形成された強誘電体膜と、 該強誘電体膜上に形成された制 御ゲート電極とを備え、 前記浮遊ゲート電極と自誘電体膜との間、 及び前記強誘 電体膜と制御ゲート電極との間の少なくとも一方に中間絶縁膜が形成されており 、 前記中間絶縁膜は、 窒素原子を含有するハフニウム酸化物を備えている。 また、 第 2の本発明に係る半導体装置の製造方法は、 半導体基板上にゲート絶 縁膜を介して浮遊ゲート電極を形成する工程と、 前記浮遊ゲート電極上に強誘電 体膜を形成する工程と、 前記強誘電体膜上に制御ゲート電極を形成する工程と、 前記半導体基板にソース領域及びドレイン領域を形成する工程とを備えた半導体 装置の製造方法であって、 前記浮遊ゲート電極と強誘電体膜との間、 及び前記強 誘電体膜と浮遊ゲート電極との間の少なくとも一方に中間絶縁膜を形成する工程 をさらに備えており、 前記中間絶縁膜は、 ハフニウムまたはその化合物をタ一ゲ ットにするとともに、 成膜空間内にアルゴン、 酸素、 及び窒素を含有するガスを 導入してスパッタリングすることで形成されるものである。
また、 第 3の本発明に係る半導体装置の製造方法は、 半導体基板上にゲート絶 縁膜を介して浮遊ゲート電極を形成する工程と、 前記浮遊ゲ一ト電極上に強誘電 体膜を形成する工程と、 前記強誘電体膜上に制御ゲート電極を形成する工程と、 前記半導体基板にソース領域及びドレイン領域を形成する工程とを備えた半導体 装置の製造方法であって、 前記浮遊ゲート電極と強誘電体膜との間、 及び前記強 誘電層と浮遊ゲート電極との間の少なくとも一方に中間絶縁膜を形成する工程を さらに備えており、 前記中間絶縁膜は、 ハフニウムを含有する有機金属化合物か らなるガス、 酸素原子を含有するガス、 及び窒素原子を含有するガスを原料ガス として、 MO C VDによって形成されるものである。
さらに、 第 4の本発明に係る半導体装置の製造方法は、 半導体基板上にゲート 絶縁膜を介して浮遊ゲート電極を形成する工程と、 前記浮遊ゲート電極上に強誘 電体膜を形成する工程と、 前記強誘電体膜上に制御ゲ一ト電極を形成する工程と 、 前記半導体基板にソース領域及びドレイン領域を形成する工程とを備えた半導 体装置の製造方法であって、 前記浮遊ゲート電極と強誘電体膜との間、 及び前記 強誘電層と浮遊ゲート電極との間の少なくとも一方に中間絶縁膜を形成する工程 をさらに備えており、 前記中間絶縁膜は、 H f C l 4ガス、 H20ガス、 及び窒素 原子を含有するガスを原料ガスとして、 AL Dによって形成されるものである。 図面の簡単な説明
図 1は、 本発明に係る半導体装置の一実施形態を示す断面図である。
図 2は、 リーク電流密度を測定する装置の概略図である
図 3は、 窒素流量比とリ一ク電流密度との関係を示す図である。
図 4は、 窒素流量比と比誘電率との関係を示す図である。
図 5は、 窒素原子の含有量と比誘電率との関係を示す図である。
図 6は、 図 1に示す半導体装置の他の例を示す断面図である。
図 7は、 図 1に示す半導体装置の成膜を行うスパッ夕装置の概略構成を示す図 である。
図 8は、 窒素流量比と絶縁膜中の窒素含有量との関係を示す図である。
図 9は、 図 1に示す半導体装置の成膜を行う MO C VD装置の概略構成を示す 図である。
図 1 0は、 図 1に示す半導体装置の成膜を AL Dを用いて行う場合の、 各ガス の流入を示すタイミングチヤ一トである。
図 1 1は、 MO Sトランジスタ及び M I F I M I Sトランジスタにおいて必要 とされる E OTとリーク電流密度との関係を示す図である。 発明を実施するための最良の形態
( 1 . 半導体装置)
以下、 本発明に係る半導体装置の一実施形態について説明する。 図 1に示すよ うに、 この半導体装置 1は、 半導体基板 1 1と、 この半導体基板 1 1上に形成さ れるソース領域 1 2及びドレイン領域 1 3とを備えている。 ソース領域 1 2とド レイン領域 1 3との間のチャネル領域 1 4上には、 ゲート電極体 1 5が形成され ている。
半導体基板 1 1は、 p型或いは n型の不純物を含む S i半導体基板であり、 通 常、 抵抗率が 0 . 1 Ω c m以上 5 0 Ω c m以下のものが用いられる。 また、 ソー ス領域 12及びドレイン領域 13は、 半導体基板 11とは異なる導電型のものが 形成される。
ゲート電極体 15は、 次のように構成されている。 すなわち、 チャネル領域 1 4上にゲート絶縁膜 151を介して浮遊ゲート電極 152が形成され、 この浮遊 ゲート電極 152上に第 1の中間絶縁膜 153を介して強誘電体膜 154が形成 されている。 さらに、 この強誘電体膜 154上には、 第 2の中間絶縁膜 155を 介して制御ゲート電極 156が形成されている。
浮遊ゲート電極 152は、 強誘電体膜 154によって誘起された電荷を保持し ておくための電極であり、 白金 (P t) 、 ルテニウム (Ru) 、 インジウム (I r) 、 或いは、 これらの酸化物等によって構成される導電性の薄膜である。 なお 、 浮遊ゲート電極 152は、 これら以外の材料で形成してもよく、 通常の MOS トランジスタと同様に、 ポリシリコンを用いてもよいし、 メタルゲートとして用 いられる各種金属のシリサイド、 例え^ WS i, P t S i等の珪化物でもよい。 或いは、 これらのうちのいくつかの組み合わせによる積層構造とすることもでき る。
強誘電体膜 154は、 抗電界 (Ec) や残留分極 (P r) などの強誘電体に係 るパラメータの値及びリ一ク電流量が小さく、 しかも、 熱的安定性ゃ耐還元性の 高い材料で構成することが好ましい。 例えば、 B i 4T i 312 (B IT) , S r B i 2Ta2Og (SBT) , Pb (Z r, T i) 03 (PZT) などを用いること ができる。
制御ゲート電極 156は、 M〇Sトランジスタと同様の材料を用いることがで き、 例えばポリシリコン、 アルミニウム (A1) などが用いられる。 或いは、 白 金 (P t) 、 ルテニウム (Ru) 、 またはシリジゥム (I r) や、 これらの導電 性酸化物などを用いることもできる。
ゲート絶縁膜 151、 及び各中間絶縁膜 153, 155は、 窒素原子を含有す るハフニウム酸ィ匕物、 例えば窒素が添加された酸化ハフニウム (Hf〇2 : N) や、 窒化酸ィ匕ハフニウム (HfON) で形成されている。 ここで、 Hf〇2 : N は、 酸化ハフニウムに窒素がドーピング量程度含まれていることを表し、 HfO Nはハフニウムが酸素のみならず窒素とも化合していることを表す。 これらの絶縁膜 1 5 1、 1 5 3、 1 5 5に含まれる窒素原子の含有量について は、 以下のように決められる。
上記のような H f 0: Nや H f ONは、 h i g h— k膜として、 既に MO Sト ランジス夕でゲ一ト絶縁膜に用いることが検討されている。 しかしながら、 その 窒素の添加量については明らかにされていない。 これは、 MO Sトランジスタに おいてはゲート絶縁膜として求められる性能が、 界面順位密度、 膜中固定電荷量 、 比誘電率 (或いは換算膜厚) 、 リ一ク電流量、 破壊耐圧、 信頼性などの多岐に 亘るため、 各パラメ一夕に対する評価が未だに完了していないからである。 また 、 M〇Sトランジスタで用いられるゲート絶縁膜は数 nm以下と非常に薄く、 各 パラメータと関連付けられるほど窒素の組成を厳密に測定できていないためでも ある。 さらに、 MO Sトランジスタでは、 主としてトランジスタ構造に関する電 気特性を評価するため、 その膜厚自体に関する検討が十分に行われていないこと もその原因である。
これに対して、 本発明に係る半導体装置では、 使用する絶縁膜の物理的な膜厚 が 1 0 nm以上と厚く、 しかも評価すべきパラメ一夕が主としてリーク電流密度 であるため、 窒素の組成とリーク電流密度との関係を系統的に検討することが可 能である。 以下、 窒素の含有量を検討する。
図 2は、 リーク電流密度を測定する装置の概略図である。 この装置 2は、 p型 半導体基板 2 1上に厚さ 3 0 O nmの S i 02層 2 2を形成し、 その上に上部電 極 2 3 /絶縁膜 2 4/下部電極 2 5からなる M I M構造を形成したものである。 この M I M構造は、 厚さ約 1 5 0 nmの白金からなる上部電極 2 3と、 厚さ約 1 0 0 nmの白金からなる下部電極 2 5との間に厚さ約 3 0 nmの絶縁膜 2 4を挟 んだものである。 この装置を用い、 上部及び下部電極 2 3, 2 5間に I Vの電圧 を印加したときに絶縁膜を流れるリーク電流密度を計測した。 このとき計測され たリーク電流密度と時間との関係を図 3に示す。
ここで用いられる絶縁膜は、 後述するスパッタリングによって形成されたもの であり、 スパッタガスとして用いられる窒素ガスの流量 FNと酸素ガス F。の流量 との和に対する、 窒素ガスの流量 FNの割合 (以下、 「窒素流量比 RN (= FNZ (FN+ F0) 」 という) が、 0 %、 3 7 . 5 %、 6 2. 5 %、 及び 8 5 . 4 %の 4種類のものについて検討した。 図 3に示すように、 窒素流量比 RNが 0%のも の、 つまり窒素が添カ卩されていない絶縁膜に対して、 窒素流量比 RNが 37. 5 %のものは、 計測開始時においてリーク電流密度が半分以下であることが分かる 。 また、 時間の経過に伴ってリーク電流密度は減少していき、 5秒経過後は、 窒 素流量比 RNが 0%のものの 100分の 1以下になっている。 しかし、 窒素流量 比1^を62. 5%、 85. 4%と上昇していくと、 リーク電流密度が徐々に増 加している。 以上より、 窒素を添加することによってリーク電流密度は大幅に減 少するが、 ある量を超えると上昇していく。 したがって、 窒素の添加量は多けれ ばよいというものではない。
図 4はスパッタリングにおける窒素流量比 RNと絶縁膜の比誘電率 ε rとの関係 を示したものである。 同図によれば、 窒素流量比 RNが増加するに伴って、 つま り供給される窒素が増加するに伴って、 絶縁膜の比誘電率 ε rが減少している。 したがって、 窒素の含有量を決めるには、 比誘電率 ε rも検討する必要がある。 図 5は、 窒素原子の含有量 (原子%) と比誘電率 ε rとの関係を示したもので ある。 ここでは、 絶縁膜中の窒素原子の含有量を、 XPS測定装置 (Physical Electronics社製、 ESCAA5400MC) 及び S IMS測定装置 (ATOMIKA社製、 SIMS4500 ) を使って測定した。 なお、 XPS測定装置では、 X線アノードを A卜 Κο;線とし 、 出力を 14kV, 200Wとして測定した。 また、 S IMS測定装置では、 1 次イオン種を Cs+, 2次イオン種を負イオン、 1次イオンエネルギを 2. Ok eVとして測定した。
図 5によれば、 窒素原子の含有量が増加すると、 比誘電率が減少していくこと が分かる。 ここで、 リーク電流抑制の観点からすると、 上述のように比誘電率は 高い方がよい。 したがって、 図 3に示すように、 窒素が僅かに含まれているだけ でもリーク電流が低減すること、 及び図 5における窒素原子の含有量と比誘電率 との関係を勘案すると、 絶縁膜中の窒素原子の含有量は、 0. 1原子%以上 30 . 0原子%以下であることが好ましく、 0. 5原子%以上 10. 0原子%以下で あることがさらに好ましく、 1. 0原子%以上 6. 0原子%以下であることが特 に好ましいと考えられる。
以上のように構成された本実施形態に係る半導体装置によれば、 ゲ一ト電極体 1 5において、 浮遊ゲ一ト電極 1 5 2と強誘電体膜 1 5 4との間、 及ぴ 誘電体 膜 1 5 4と制御ゲ一ト電極 1 5 6との間に、 H f〇: Nや H f ONを備えた中間 絶縁膜 1 5 3 , 1 5 5を配置している。 そのため、 次のような効果を得ることが できる。 すなわち、 このような構造の半導体装置では、 制御ゲート電極 1 5 6側 からリーク電流が流れ、 このリーク電流が強誘電体膜 1 5 4を介して浮遊ゲート 電極 1 5 2に流れ込んで蓄えられた電荷を補償してしまうという問題があった。 これに対して、 上記のように中間絶縁膜 1 5 3, 1 5 5を配置しているため、 制 御ゲート電極 1 5 6側からのリーク電流を確実に抑制することができる。 その結 果、 保持時間を延ばすことができる。
特に、 本実施形態に係る中間絶縁膜 1 5 3 , 1 5 5は、 窒素を含有するハフ二 ゥム酸化物を有しているため、 リーク電流を大幅に抑制することができ、 保持時 間をさらに延ばすことができる。 しかも、 この中間絶縁膜 1 5 3 , 1 5 5は、 高 い比誘電率を実現しているため、 中間絶縁膜に印加される電圧を低減することが でき、 その結果、 低電圧で半導体装置を駆動することができる。
なお、 本実施形態では、 浮遊ゲート電極 1 5 2と強誘電体膜 1 5 4との間、 及 び強誘電体膜 1 5 4と制御ゲ一ト電極 1 5 6との間の両方に中間絶縁膜 1 5 3, 1 5 5を形成しているが、 このうちの一方にのみ中間絶縁膜を設けてもよい。 例 えば、 図 6に示すように、 強誘電体膜 1 5 4と制御ゲ一ト電極 1 5 6との間にの み中間絶縁層 1 5 5を設けることができる。
( 2. 半導体装置の製造方法)
次に、 上記のように構成された半導体装置の製造方法について説明する。 ここ では、 特に上記半導体装置におけるゲート電極体の成膜工程について詳細に説明 し、 スパッタリング、 MO C VD法、 及び A L D法を用いた場合の成膜方法につ いて説明する。
( 2 - 1 . スパッタリング)
図 7は、 スパッ夕装置の概略構成図である。 同図に示すように、 このスパッタ 装置は、 内部に半導体基板を設置可能な装置本体 3 1と、 この装置本体 3 1と超 高真空ゲートバルブ (図示省略) を介して接続されるロードロックチャンパ 3 2 とを備えている。 装置本体 3 1には、 その内部を超高真空状態に減圧する真空ポ ンプ 3 3が取り付けられており、 半導体基板 Sはロードロックチャンバ 3 2を介 して大気中から超高真空状態の装置本体 3 1内部へと搬送される。 このように、 口一ドロックチヤンバ 3 2を介して半導体基板 Sを搬送することで、 装置本体 3 1内部を大気に直接開放することなく、 半導体基板 Sへの成膜を行うことができ る。 その結果、 装置本体 S内部の真空度を、 長い時間、 高い真空度、 例えば I X 1 0 "1 0 T o r r以下に保つことができ、 装置本体 3 1内部及び半導体基板 Sの 汚染を防止することができる。
また、 装置本体 3 1内部には、 設置した半導体基板 Sの背面を加熱するための 基板加熱機構 3 1 1と、 夕一ゲット Tと基板 Sとの間を遮断するシャツタ一 3 1 2とが設けられている。 このシャッター 3 1 2は、 成膜時にはターゲット Tと基 板 Sとの間から取り除かれる一方、 成膜時以外にはターゲット Tと基板 Sとの間 を遮断しターゲット材料 Tが基板 S上に堆積するのを防止する。 なお、 ここでは 、 ターゲット Tとして H f金属を使用する。 さらに、 装置本体 3 1には、 スパッ 夕ガスの原料となる気体が収容された 3つのボンべ 3 4、 3 5、 3 6がガス供給 ライン 3 7を介して連結されている。 これらボンべ 3 4、 3 5、 3 6には、 それ ぞれ酸素ガス、 窒素ガス、 アルゴンガスが収容されている。
次に、 上記スパッ夕装置を用いた成膜工程について説明する。 ここで、 ゲート 絶縁膜を成膜する場合について説明する。 まず、 S i基板等の半導体基板 Sを口 一ドロツクチャンパー 3 2を介して装置本体 3 1内部に搬入して設置した後、 装 置本体 3 1の内部を時間をかけて充分に減圧する。 この場合、 内部の圧力を I X 1 0 _7 T o r r以下にすることが好ましい。 なお、 この状態ではシャッ夕一 3 1 2によって基板 Sとターゲット Tとの間を遮断しておく。
続いて、 基板加熱機構 3 1 1によって基板温度を加熱する。 このときの基板温 度は、 2 0 0 °C以上 6 5 0 °C以下にすることが好ましく、 2 5 0 °C以上 3 5 0 °C 以下であることがさらに好ましい。 これに続いて、 ガス供給ライン 3 7のバルブ を開き、 アルゴンガスのみを装置本体 3 1内部へ供給し成膜を行う。 この成膜中 の供給流量は、 装置本体 3 1の容積、 真空ポンプ 3 3の排気速度にもよるが、 1 s c c m以上 1 0 0 s c c m以下であることが好ましく、 5 s c c m以上 2 0 s c c m以下であることがさらに好ましい。 また、 成膜中の全圧は、 装置本体 3 1 の容積、 真空ポンプ 3 3の排気速度、 及び電圧印加装置 (図示省略) の性能にも よるが、 通常 0 . l T o r r以上 1 0 O mT o r r以下であることが好ましく、 l T o r r以上 2 0 mT o r r以下であることがさらに好ましい。
次に、 アルゴンガスをスパッ夕ガスとして、 装置本体 3 1内部でプラズマを発 生させる。 この状態でしばらくの間、 時間をおいて夕一ゲット Tの表面をァルゴ ンプラズマによってクリーニングする。 このとき、 シャッター 3 1 2は閉じられ ているため、 ターゲット Tが S i基板 S上に堆積することはない。 クリーニング の時間は、 ターゲット Tの状態にもよるが、 通常、 3分以上 6 0分以下であり、 5分以上 3 0分以下にすることが好ましい。
ターゲット表面のクリーニングが終了すると、 一旦、 プラズマを止めた後、 ァ ルゴンガスに加えて、 酸素ガス及び窒素ガスを装置本体 3 1内に導入する。 そし て、 これら 3つのガスを混合させた状態で、 再びプラズマを点灯させる。 装置本 体 3 1内部のガス流量、 印加電圧、 真空度などが安定したら、 シャッター 3 1 2 を開放し、 基板 S上に、 窒素が添加された酸化八フニゥムからなるゲート絶縁膜 を堆積させる。 その後、 所定時間が経過して所望の膜厚が得られると、 シャツ夕 —3 1 2を閉じて印加電力を除去するとともに、 スパッ夕ガスの供給を停止する 。 なお、 所望の膜厚が得られるまでの時間は、 事前に測定した成膜レートによつ て算出しておくことが好ましい。
ゲ一ト絶縁膜の成膜が終了すると、 装置本体 3 1から基板 Sを取り出す。 そし て、 図 1に示す浮遊ゲ一ト電極 1 5 2、 第 1の中間絶縁膜 1 5 3、 強誘電体膜 1 5 4、 第 2の中間絶縁膜 1 5 5、 および制御ゲート電極 1 5 6を、 上記スパッタ 装置によってゲート絶縁膜と同様に成膜する。 その後、 フォトリソグラフィによ り制御ゲート電極 1 5 6上にレジストパターンを形成し、 エッチングによってゲ ート電極体 1 5を形成する。 続いて、 ゲート電極体 1 5をマスクにしてイオン注 入法等の公知の方法によってソース領域 1 2及びドレイン領域 1 3を形成し、 最 後にァニール処理を行う。 なお、 ァニール処理は、 各絶縁膜が成膜された後にそ れぞれ行うこともできる。 また、 イオン注入等によるソース領域 1 2及びドレイ ン領域 1 3の形成は、 ゲート電極体 1 5の形成途中に行ってもよい。 ァニ一ル処理では、 ァニール温度を 2 0 0 °C以上 1 1 0 0 °C以下にすることが 好ましく、 5 5 0 °C以上 7 5 0 °C以下にすることがさらに好ましい。 ァニール時 間は、 ァニール温度にもよるが、 5秒以上 3 6 0 0秒以下にすることが好ましく 、 例えばァニール温度が 7 0 0 °Cのときには、 5分以上 3 0分以下にすることが 好ましい。 また、 ァニール雰囲気は、 使用する金属電極や基板上に実装される他 の素子などによっても異なるが、 例えば電極に白金を用いる場合には、 窒素濃度 が 8 0 %以上にすることが好ましく、 1 0 0 %にすることがさらに好ましい。 ところで、 絶縁膜に適切な範囲の窒素原子を含有させるには、 スパッ夕ガスと して供給される窒素ガスの流量比、 つまり窒素流量比 RNを制御する必要がある 。 そこで、 窒素流量比と絶縁膜中の窒素含有量との関係を調べると図 8に示す通 りである。 同図によれば、 窒素流量比 RNが増加するのに伴って、 窒素含有量も 増加しているのが分かる。 また、 窒素流量比 RNが増加しても、 窒素含有量は上 記のように設定した適正な窒素原子の含有量の範囲内となっている。 したがって 、 ハフニウムを酸化させるための酸素ガスの供給量も考慮すれば、 スパッタリン グにおける窒素流量比 RNは、 0. 0 5以上0 . 9 0以下が好ましく、 0 . 1以 上 0 . 4以下であることがさらに好ましい。 なお、 アルゴンガスは、 H fを基板 上に積層させることには寄与するが、 酸素や窒素に対しては影響を与えないため 、 アルゴンガスの流量を考慮する必要はない。
本発明に係るスパッタリングは、 上記したものに限定されるものではなく、 種 々の変更が可能である。 例えば、 上記説明では、 ターゲットして H f金属を使用 しているが、 H f 〇2等の H f化合物を使用することもできる。 また、 強誘電体 膜は、 スパッ夕リング以外でも形成することができ、 例えばゾル ·ゲル法や MO C VDによって形成することもできる。
( 2 - 2 . MO CVD法)
以下、 MO C VD (Metal Organic Chemical Vapor Deposi t ion)法を用いた絶縁 膜の成膜方法について説明する。 ここでは、 主としてゲート絶縁膜の成膜方法に ついて説明する。 図 9は、 この方法で用いられる MO CVD装置の概略構成図で ある。.同図に示すように、 この装置は、 内部に半導体基板を設置可能な装置本体 4 1を備えており、 装置本体 4 1内の設置された半導体基板 Sの背面は基板加熱 機構 411によって加熱されるように構成されている。 装置本体 41には、 内部 を超高真空状態に減圧する真空ポンプ 42と、 MOCVD原料となる気体が収容 された 3つのボンべ 43, 44, 45とが取り付けられている。 各ボンべ 43, 44, 45は、 ガス供給ライン 46を介して装置本体 41に連結されており、 夕 ーシャリーブトキシハフニウム (Hi (0- t-C4H9) 4) ガス、 酸素ガス、 窒素ガスがそれぞれ収容されている。 これらのガスは、 液体状態にして各ボンべ 43, 44, 45に収容することもでき、 力、かる場合のために各ボンべ 43, 4 4, 45には、 各液体を装置本体 41に供給するためのポンプ 431, 441, 451が設けられている。 なお、 原料が液体状態の場合には、 気化させた後、 装 置本体 41に供給する。
次に、 上記 MOCVD装置を用いた成膜工程について説明する。 まず、 S i基 板等の半導体基板 Sを装置本体 41内に装着した後、 充分な時間をかけて装置本 体 41内を減圧する。 このときの圧力は、 1 X 10_5To r r以下にすることが 好ましい。 続いて、 基板加熱機構 411に通電し S i基板 Sを加熱する。 この場 合、 基板の温度が 200 °C以上 750 °C以下となるように加熱することが好まし く、 250°C以上 350°C以下にすることがさらに好ましい。
続いて、 装置本体 41内に夕ーシャリーブトキシハフニウムガス、 酸素ガス、 及び窒素ガスを導入して成膜を開始する。 成膜中の混合ガスの流量は、 装置本体 41の容積、 真空ポンプ 42の排気速度にもよるが、 1 s c cm以上 100 s c c m以下であることが好ましく、 5 s c c m以上 20 s c c m以下であることが さらに好ましい。 また、 成膜中の全圧は、 装置本体 41の容積、 真空ポンプの排 気速度、 及び電圧印加装置 (図示省略) の性能にもよるが、 通常 0. lTo r r 以上 50 OmTo r r以下であることが好ましく、 l OTo r r以上 200mT o r r以下であることがさらに好ましい。
その後、 所定時間が経過して所望の膜厚が得られると、 ガスの供給を停止して 成膜を終了する。 なお、 所望の膜厚が得られるまでの時間は、 事前に測定した成 膜レートによって算出しておくことが好ましい。
成膜が終了すると、 装置本体 41から基板 Sを取り出し、 スパッタリングの場 合と同様に、 浮遊ゲート電極 161、 第 1の中間絶縁膜 162、 強誘電体膜 16 3、 第 2の中間絶縁膜 164、 および制御ゲート電極 165を形成した後、 ソ一 ス領域 12及びドレイン領域 13を形成する。 各中間絶縁膜 162、 164は、 ゲート絶縁膜 15と同様に、 MOCVD装置によって成膜することができる。 そ して、 スパッタリングの場合と同様に、 ァニール処理を行う。 ァニール処理につ いては、 上記したスパッタリングと同様の条件で行うことができる。
ところで、 上記成膜工程において、 夕一シャリーブトキシハフニウム、 酸素ガ ス、 窒素ガスの流量比は重要なパラメ一夕であり、 形成される絶縁膜の電気特性 に強い影響を与える。 特に、 酸素ガスと窒素ガスとの流量比、 つまり窒素流量比 RNは、 成膜した酸ィ匕ハフニウムへの窒素の添加量を決めることになるので、 特 に重要である。 この窒素流量比 RNの好ましい範囲は、 0. 05以上 0. 90以 下であり、 さらに好ましくは 0. 1以上 0. 4以下である。
以上、 MO C VDを用いて半導体装置の絶縁膜を形成する方法の一例を示した が、 本発明に係る MOCVDはこれに限定されるものではなく、 種々の変更が可 能である。 例えば、 上記説明では、 絶縁膜中にハフニウムを供給するために、 夕 —シャリーブトキシハフニウムガスを使用しているが、 これに限定されるもので はなく、 ハフニウムを含有する有機金属化合物であればよい。 例えば、 イソプロ ポキシハフニウム (Hf (〇一 i一 C3H7) 4) , ハフニウム DPM錯体 (テト ラキスジピバロイルメタナ一トハフニウム) (Hf (CX1H1902) 4) , イソプ 口ポキシハフニウム DPM錯体 (Hf (〇一 i— C3H7) 2 (CuH^Os) 2) , テトラメチルハフニウム (Hf (CH4) 4) を使用することができる。
また、 酸素ガス以外にも酸素原子を含有するガス、 例えば水蒸気 (H2〇ガス ) を使用することができる。 さらに、 窒素ガス以外にも窒素原子を含有するガス 、 例えば亜酸化窒素 (Ν2〇) , 一酸化窒素 (NO) , ヒドラジン (Ν2Η4) , ジイソプロピルアミン (i_C3H7) 2NH, 夕一シャリーブチルァミン ( (t -ChH9) NH2) , アンモニア (NH3) 、 卜リメチルアンモニゥム (N (C H3) 3) を使用することができる。
(2-3. ALD法)
次に、 ALD (Atomic Layer Deposition)法を用いた絶縁膜の成膜について説明 する。 A LDで用いる成膜用の装置は、 図 9に示したものとほぼ同じであるため 、 図 9の装置を用いて説明し、 同一の構成については同一の符号を用いてその詳 しい説明は省略する。 AL D法がM〇C VD法と大きく異なる点は、 装置本体 4 1内に供給される気体の種類、 供給シーケンスであり、 結果的に成膜レートと膜 の平坦性も相違する。 使用する原料は、 4塩化ハフニウム (H f C l 4) 、 水 ( H20) 、 及びヒドラジンで (N2H4) あり、 これらを気体状態で装置本体 4 1 内に供給する。 これらの原料は、 気体状態でボンべ 4 3, 4 4 , 4 5に収容して おいてもよいし、 液体の状態にしておいてもよい。 但し、 液体を使用した場合は 、 加熱して気体状態にした後に装置本体 4 1内へ供給する。 さらに、 これらのポ ンベの他に、 パージガスとして窒素ガスが収容されたボンベが装置本体に接続さ れている。
続いて、 成膜手順について説明する。 まず、 S i基板 Sを装置本体 4 1内に装 着した後、 充分な時間をかけて装置本体 4 1内を減圧する。 このときの圧力は、 1 X 1 0 "5 T o r r以下にすることが好ましい。 続いて、 基板加熱機構 4 1 1に 通電し S i基板 Sを加熱する。 この場合、 基板の温度が 2 0 °C以上 5 5 0 °C以下 となるように加熱することが好ましく、 3 0 °C以上 3 0 0 °C以下にすることがさ らに好ましい。
次に、 図 1 0に示すタイミングチャートにしたがって、 気体を順次装置本体 4 1内へ供給する。 まずはじめにパージガスである窒素を装置本体 4 1内へ供給し 、 S i基板 Sの表面から余分な元素を脱離させる (ステージ (a) ) 。 続いて、 パージガスを止め、 H f C 1 4を装置本体 4 1内へ供給し成膜を開始する (ステ —ジ (b) ) 。 次に、 H f C 1 4の供給を停止してパージガスを装置本体 4 1内 へ供給する (ステージ (c ) ) 。 これにより、 パ一ジガスが基板表面に吸着し、 表面被覆率を 1より大きくさせている余分な H f C 1 4を脱離させる。 その後、 パージガスを停止し、 H20を供給する (ステージ (d) ) 。 これにより、 基板 表面に吸着された H f C 1 4と H20とが反応して H f 02が成膜される。 これと 同時に H C 1が脱離される。
続いて、 H20の供給を停止するとともに、 再びパ一ジガスを供給し、 基板 S 上に吸着した余分な H20を脱離させる (ステージ (e ) ) 。 次に、 パージガス の供給を停止し、 装置本体 4 1内にヒドラジンガスを供給し、 基板表面にヒドラ ジンを吸着させる。 このヒドラジンは、 基板 Sの熱によって分解し、 これによつ て生じた窒素が Hf〇2の表面に取り込まれる (ステージ (f) ) 。 そして、 ヒ ドラジンガスの供給を停止し、 パージガスを供給する。 これにより、 基板 S上に 吸着する余分なヒドラジンを脱離させることができる (ステージ (g) ) 。 なお 、 ステージ (h) は、 後述するように、 次のサイクルのはじまりであり、 ステ一 ジ (b) と同じである。
以上のステージ (a) 〜 (g) までの一連の流れが成膜工程の 1サイクルを構 成しており、 この 1サイクルによって窒素が供給された H f〇2の 1分子層を成 膜することができる。 そして、 このサイクルを繰り返すことにより、 さらに厚い Hf 02を成膜することができる。 成膜の終了は上記各製造方法と同様である。 すなわち、 所望の膜厚が得られるまでの成膜サイクルを、 事前に測定した成膜レ ートによって算出しておき、 そのサイクルを繰り返した後に、 ガスの供給を停止 し成膜を終了する。
成膜中のガスの流量は、 装置本体 41の容積、 真空ポンプ 42の排気速度にも よるが、 1 s c cm以上 100 s c cm以下であることが好ましく、 5 s c cm 以上 20 s c cm以下であることがさらに好ましい。 また、 成膜中の全圧は、 装 置本体 41の容積、 真空ポンプ 42の排気速度、 及び電圧印加装置の性能にもよ るが、 通常 0. lTo r r以上 50 OmTo r r以下であることが好ましく、 1 OTo r r以上 200mTo r r以下であることがさらに好ましい。
成膜が終了すると、 装置本体から基板を取り出し、 上記各方法と同じく浮遊ゲ ート電極、 第 1の中間絶縁膜、 強誘電体膜、 第 2の中間絶縁膜、 および制御ゲー 卜電極を形成し、 これに続いてソース領域及びドレイン領域を形成する。 各中間 絶縁膜は、 ゲート絶縁膜と同様に、 上記 A LD装置によって成膜する。 その後、 スパッタリングの場合と同様にァニール処理を行う。 ァニール処理については、 スパッタリングと同様の条件で行うことができる。
ところで、 この ALD法においては、 絶縁膜に窒素を供給するヒドラジンガス の流量 FHが重要であり、 H20ガスの流量 FH2(3とヒドラジンガスの流量の和に 対する、 ヒドラジンガスの流量の割合、 つまりヒドラジン流量比 RHが (=FH/ (FH+FH20) ) 、 重要なパラメ一夕となる。 このヒドラジン流量比 RHの好ま しい範囲は、 0 . 0 5以上 0 . 9 0以下であり、 さらに好ましい範囲は 0 . 1以 上 0. 4以下である。 なお、 ヒドラジンの流量 FHとはステージ (f ) で供給さ れるヒドラジンの流量であり、 H20ガスの流量 FH 20とはステージ(d) で供給 される H20ガスの流量である。
以上、 AL D法を用いて絶縁膜を形成する方法の一例を示したが、 本発明で使 用する AL D法はこれに限定されるものではなく、 種々の変更が可能である。 例 えば、 上記説明では、 パージガスとして窒素ガスを用いたが、 不活性ガスであれ ばよく、 例えばアルゴンガス、 ネオンガス等を用いることができる。
また、 上記説明では、 絶縁膜中に窒素を供給するためにヒドラジンを用いてい るが、 窒素原子を含有するものであればよく、 窒素ガス (N 2) 、 亜酸化窒素 ( N2〇) , 一酸化窒素 (NO) , アンモニア (NH3) 、 トリメチルアンモニゥム (N (CH3) 3) を使用することができる。 これらは単独で用いられても良く、 2種類以上を混合して用いられても良い。 産業上の利用可能性
本発明により、 MFM I S構造に絶縁膜を備えた M I F I M I S等の構造にお いて、 絶縁膜のリ一ク電流量を低減することができる半導体装置及びその製造方 法が提供される。 この半導体装置により、 リーク電流量が低減されたスィッチン グ素子が提供される。

Claims

請 求 の 範 囲
1 . 半導体基板と、
該半導体基板にチャネル領域を挟んで形成されたソース領域及びドレイン領域 と、
前記チャネル領域上にゲート絶縁膜を介して形成された浮遊ゲー卜電極と、 前記浮遊ゲート電極上に形成された強誘電体膜と、
該強誘電体膜上に形成された制御ゲート電極とを備え、
前記浮遊ゲート電極と強誘電体膜との間、 及び前記強誘電体膜と制御ゲート電 極との間の少なくとも一方に中間絶縁膜が形成されており、
前記中間絶縁膜は、 窒素原子を含有するハフニウム酸化物からなる半導体装置
2 . 前記浮遊ゲート電極と強誘電体膜との間、 及び前記強誘電体膜と制御ゲート 電極との間のいずれにも前記中間絶縁膜が形成されている、 請求項 1に記載の半
3 . 前記ゲート絶縁膜が、 窒素原子を含有するハフニウム酸化物からなる、 請求 項 1に記載の半導体装置。
4. 前記中間絶縁膜は、 0 . 1原子%以上 3 0. 0原子%以下の窒素原子を含有 している請求項 1に記載の半導体装置。
5 . 前記中間絶縁膜は、 0 . 5原子%以上 1 0 . 0原子%以下の窒素原子を含有 している請求項 1に記載の半導体装置。
6. 前記中間絶縁膜は、 1 . 0原子%以上 6 . 0原子%以下の窒素原子を含有し ている請求項 1に記載の半導体装置。
7. 半導体基板上にゲート絶縁膜を介して浮遊ゲート電極を形成する工程と、 前 記浮遊ゲート電極上に強誘電体膜を形成する工程と、 前記強誘電体膜上に制御ゲ 一ト電極を形成する工程と、 前記半導体基板にソース領域及びドレイン領域を形 成する工程とを備えた半導体装置の製造方法であって、
前記浮遊ゲート電極と強誘電体膜との間、 及び前記強誘電体膜と浮遊ゲート電 極との間の少なくとも一方に中間絶縁膜を形成する工程をさらに備えており、 前記中間絶縁膜は、 ハフニウムまたはその化合物をターゲットにするとともに 、 成膜空間内にアルゴン、 酸素、 及び窒素を含有するガスを導入してスパッタリ ングすることで形成される半導体装置の製造方法。
8 . 前記成膜空間内に導入される酸素ガスと窒素ガスの流量との和に対する、 該 窒素ガスの流量の割合が 0 . 0 5以上 0. 9 0以下である請求項 7に記載の半導 体装置の製造方法。
9 . 前記成膜空間内に導入される酸素ガスと窒素ガスの流量との和に対する、 該 窒素ガスの流量の割合が 0 . 1以上 0. 4以下である請求項 7に記載の半導体装 置の製造方法。
1 0 . 各中間絶縁膜を形成した後、 或いは前記制御ゲート電極を形成した後に、 ァニール処理を行う工程をさらに備えている請求項 7に記載の半導体装置の製造 方法。
1 1 . 前記ァニール処理は、 2 0 0 °C以上 1 1 0 0 °C以下の温度で行われる請求 項 1 0に記載の半導体装置の製造方法。
1 2 . 半導体基板上にゲート絶縁膜を介して浮遊ゲート電極を形成する工程と、 前記浮遊ゲート電極上に強誘電体膜を形成する工程と、 前記強誘電体膜上に制御 ゲート電極を形成する工程と、 前記半導体基板にソース領域及びドレイン領域を 形成する工程とを備えた半導体装置の製造方法であって、
前記浮遊ゲート電極と強誘電体膜との間、 及び前記強誘電層と浮遊ゲート電極 との間の少なくとも一方に中間絶縁膜を形成する工程をさらに備えており、 前記中間絶縁膜は、 ノ フニゥムを含有する有機金属化合物からなるガス、 酸素 原子を含有するガス、 及び窒素原子を含有するガスを原料ガスとして、 MO C V Dによって形成される半導体装置の製造方法。
1 3. 成膜空間内に導入される酸素原子を含有するガスの流量と窒素原子を含有 するガスの流量との和に対する、 該窒素原子を含有するガスの流量の割合が 0 .
0 5以上 0 . 9 0以下である請求項 1 2に記載の半導体装置の製造方法。
1 4. 成膜空間内に導入される酸素原子を含有するガスの流量と窒素原子を含有 するガスの流量との和に対する、 該窒素原子を含有するガスの流量の割合が 0 . 1以上 0. 4以下である請求項 1 2に記載の半導体装置の製造方法。
1 5 . 各中間絶縁膜を形成した後、 或いは前記制御ゲート電極を形成した後に、 ァニール処理を行う工程をさらに備えている請求項 1 2に記載の半導体装置の製 造方法。
1 6 . 前記ァニ一ル処理は、 2 0 0 °C以上 1 1 0 0 °C以下の温度で行われる請求 項 1 5に記載の半導体装置の製造方法。
1 7 . 半導体基板上にゲート絶縁膜を介して浮遊ゲート電極を形成する工程と、 前記浮遊ゲート電極上に強誘電体膜を形成する工程と、 前記強誘電体膜上に制御 ゲート電極を形成する工程と、 前記半導体基板にソース領域及びドレイン領域を 形成する工程とを備えた半導体装置の製造方法であって、
前記浮遊ゲー卜電極と強誘電体膜との間、 及び前記弓 誘電層と浮遊ゲー卜電極 との間の少なくとも一方に中間絶縁膜を形成する工程をさらに備えており、 前記中間絶縁膜は、 Hf C l4ガス、 H20ガス、 及び窒素原子を含有するガス を原料ガスとして、 ALDによって形成される半導体装置の製造方法。
18. 成膜空間内に導入される H20ガスの流量と窒素原子を含有するガスの流 量との和に対する、 該窒素原子を含有するガスの流量の割合が 0. 05以上 0. 90以下である請求項 17に記載の半導体装置の製造方法。
19. 成膜空間内に導入される H2〇ガスの流量と窒素原子を含有するガスの流 量との和に対する、 該窒素原子を含有するガスの流量の割合が 0. 1以上 0. 4 以下である請求項 17に記載の半導体装置の製造方法。
20. 各中間絶縁膜を形成した後、 或いは前記制御ゲート電極を形成した後に、 ァニール処理を行う工程をさらに備えている請求項 17に記載の半導体装置の製 造方法。
21. 前記ァニール処理は、 200°C以上 1100°C以下の温度で行われる請求 項 20に記載の半導体装置の製造方法。
PCT/JP2003/003493 2002-03-26 2003-03-24 Semiconductor device and production method therefor WO2003081667A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003221212A AU2003221212A1 (en) 2002-03-26 2003-03-24 Semiconductor device and production method therefor
JP2003579276A JP3622055B2 (ja) 2002-03-26 2003-03-24 半導体装置及びその製造方法
US10/616,917 US7135736B2 (en) 2002-03-26 2003-07-11 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-85284 2002-03-26
JP2002085284 2002-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/616,917 Continuation US7135736B2 (en) 2002-03-26 2003-07-11 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2003081667A1 true WO2003081667A1 (en) 2003-10-02

Family

ID=28449249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003493 WO2003081667A1 (en) 2002-03-26 2003-03-24 Semiconductor device and production method therefor

Country Status (5)

Country Link
US (1) US7135736B2 (ja)
JP (1) JP3622055B2 (ja)
CN (1) CN1306599C (ja)
AU (1) AU2003221212A1 (ja)
WO (1) WO2003081667A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250565A (ja) * 2006-03-13 2007-09-27 Toshiba Corp 不揮発性半導体メモリ装置及びその製造方法
US7482234B2 (en) 2003-11-28 2009-01-27 Rohm Co., Ltd. Method of fabricating a metal oxynitride thin film that includes a first annealing of a metal oxide film in a nitrogen-containing atmosphere to form a metal oxynitride film and a second annealing of the metal oxynitride film in an oxidizing atmosphere
JP2009044195A (ja) * 2002-08-20 2009-02-26 National Institute Of Advanced Industrial & Technology 半導体強誘電体記憶デバイスの製造方法
JP2010087089A (ja) * 2008-09-30 2010-04-15 Toshiba Corp 半導体記憶素子、半導体記憶素子の製造方法
JP2015165523A (ja) * 2013-03-19 2015-09-17 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、基板処理システムおよびプログラム

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620723B1 (en) * 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6846516B2 (en) * 2002-04-08 2005-01-25 Applied Materials, Inc. Multiple precursor cyclical deposition system
US20030235961A1 (en) * 2002-04-17 2003-12-25 Applied Materials, Inc. Cyclical sequential deposition of multicomponent films
US6858547B2 (en) * 2002-06-14 2005-02-22 Applied Materials, Inc. System and method for forming a gate dielectric
US7067439B2 (en) * 2002-06-14 2006-06-27 Applied Materials, Inc. ALD metal oxide deposition process using direct oxidation
US20030232501A1 (en) * 2002-06-14 2003-12-18 Kher Shreyas S. Surface pre-treatment for enhancement of nucleation of high dielectric constant materials
JP4212435B2 (ja) * 2003-08-29 2009-01-21 株式会社東芝 半導体装置およびその製造方法
US20050252449A1 (en) * 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8323754B2 (en) * 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US20060062917A1 (en) * 2004-05-21 2006-03-23 Shankar Muthukrishnan Vapor deposition of hafnium silicate materials with tris(dimethylamino)silane
US20060153995A1 (en) * 2004-05-21 2006-07-13 Applied Materials, Inc. Method for fabricating a dielectric stack
US20060019033A1 (en) * 2004-05-21 2006-01-26 Applied Materials, Inc. Plasma treatment of hafnium-containing materials
KR100642635B1 (ko) * 2004-07-06 2006-11-10 삼성전자주식회사 하이브리드 유전체막을 갖는 반도체 집적회로 소자들 및그 제조방법들
US7138680B2 (en) * 2004-09-14 2006-11-21 Infineon Technologies Ag Memory device with floating gate stack
US20060125027A1 (en) * 2004-12-10 2006-06-15 National Applied Research Laboratories Nonvolatile flash memory with HfO2 nanocrystal
US20070020890A1 (en) * 2005-07-19 2007-01-25 Applied Materials, Inc. Method and apparatus for semiconductor processing
US20070049043A1 (en) * 2005-08-23 2007-03-01 Applied Materials, Inc. Nitrogen profile engineering in HI-K nitridation for device performance enhancement and reliability improvement
US7402534B2 (en) * 2005-08-26 2008-07-22 Applied Materials, Inc. Pretreatment processes within a batch ALD reactor
KR100641075B1 (ko) * 2005-09-20 2006-11-01 삼성전자주식회사 트랜지스터, 이의 형성 방법, 이를 포함하는 반도체 장치및 그 제조 방법
US20070065578A1 (en) * 2005-09-21 2007-03-22 Applied Materials, Inc. Treatment processes for a batch ALD reactor
JP2007141170A (ja) * 2005-11-22 2007-06-07 Matsushita Electric Ind Co Ltd データキャリアシステム及びそのデータの退避復元方法
US7436034B2 (en) * 2005-12-19 2008-10-14 International Business Machines Corporation Metal oxynitride as a pFET material
US7964514B2 (en) * 2006-03-02 2011-06-21 Applied Materials, Inc. Multiple nitrogen plasma treatments for thin SiON dielectrics
US20070252299A1 (en) * 2006-04-27 2007-11-01 Applied Materials, Inc. Synchronization of precursor pulsing and wafer rotation
US7798096B2 (en) * 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US8389976B2 (en) * 2006-12-29 2013-03-05 Intel Corporation Methods of forming carbon nanotube transistors for high speed circuit operation and structures formed thereby
US7791172B2 (en) * 2007-03-19 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device
JP4549401B2 (ja) * 2008-03-11 2010-09-22 富士通株式会社 抵抗記憶素子の製造方法
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US20100062149A1 (en) 2008-09-08 2010-03-11 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US8491967B2 (en) * 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US9337210B2 (en) 2013-08-12 2016-05-10 Micron Technology, Inc. Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors
US9263577B2 (en) 2014-04-24 2016-02-16 Micron Technology, Inc. Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors
US9472560B2 (en) 2014-06-16 2016-10-18 Micron Technology, Inc. Memory cell and an array of memory cells
US9159829B1 (en) 2014-10-07 2015-10-13 Micron Technology, Inc. Recessed transistors containing ferroelectric material
US9276092B1 (en) 2014-10-16 2016-03-01 Micron Technology, Inc. Transistors and methods of forming transistors
US9305929B1 (en) 2015-02-17 2016-04-05 Micron Technology, Inc. Memory cells
US9853211B2 (en) 2015-07-24 2017-12-26 Micron Technology, Inc. Array of cross point memory cells individually comprising a select device and a programmable device
US10134982B2 (en) * 2015-07-24 2018-11-20 Micron Technology, Inc. Array of cross point memory cells
CN105788864B (zh) * 2016-02-29 2017-12-08 湘潭大学 一种提高pzt铁电薄膜负电容的方法
JP6751866B2 (ja) * 2016-04-22 2020-09-09 国立研究開発法人産業技術総合研究所 半導体強誘電体記憶素子の製造方法及び半導体強誘電体記憶トランジスタ
US10396145B2 (en) 2017-01-12 2019-08-27 Micron Technology, Inc. Memory cells comprising ferroelectric material and including current leakage paths having different total resistances
KR20180097377A (ko) * 2017-02-23 2018-08-31 에스케이하이닉스 주식회사 강유전성 메모리 장치 및 그 제조 방법
CN108091693B (zh) * 2017-11-03 2020-10-27 中国科学院微电子研究所 铁电场效应晶体管及其制备方法
CN108538850B (zh) * 2018-04-18 2020-11-03 湘潭大学 一种高抗疲劳性的铁电栅场效应晶体管存储器及制备工艺
US11170834B2 (en) 2019-07-10 2021-11-09 Micron Technology, Inc. Memory cells and methods of forming a capacitor including current leakage paths having different total resistances
US11302810B1 (en) * 2020-11-20 2022-04-12 International Business Machines Corporation Ferroelectric field effect transistor with nanowire core
US20220199631A1 (en) * 2020-12-22 2022-06-23 Advanced Nanoscale Devices Ferroelectric semiconducting floating gate field-effect transistor
US11690228B2 (en) * 2021-02-25 2023-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Annealed seed layer to improve ferroelectric properties of memory layer
EP4075481A1 (en) * 2021-04-15 2022-10-19 Terra Quantum AG Field effect transistor with a negative capacitance gate structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204404A (ja) * 1992-12-28 1994-07-22 Hitachi Ltd 半導体装置、並びに容量素子およびその製造方法
EP1124262A2 (en) * 2000-02-11 2001-08-16 Sharp Kabushiki Kaisha Multilayer dielectric stack and method
US20010028582A1 (en) * 2000-04-07 2001-10-11 Yasuo Tarui Ferroelectric memory element
JP2002313966A (ja) * 2001-04-16 2002-10-25 Yasuo Tarui トランジスタ型強誘電体不揮発性記憶素子とその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US28582A (en) * 1860-06-05 Bedstead
JPS624404A (ja) * 1985-06-29 1987-01-10 Shimadzu Corp ワツクストラツプ装置
CN1033384C (zh) * 1993-01-15 1996-11-27 山东大学 钛酸铋铁电薄膜的制备方法
US6013553A (en) * 1997-07-24 2000-01-11 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US6069381A (en) * 1997-09-15 2000-05-30 International Business Machines Corporation Ferroelectric memory transistor with resistively coupled floating gate
JPH11168069A (ja) 1997-12-03 1999-06-22 Nec Corp 半導体装置の製造方法
JPH11168096A (ja) 1997-12-04 1999-06-22 Sony Corp 高誘電酸化膜の形成方法
US6048766A (en) * 1998-10-14 2000-04-11 Advanced Micro Devices Flash memory device having high permittivity stacked dielectric and fabrication thereof
US6541806B2 (en) * 1999-01-14 2003-04-01 Symetrix Corporation Ferroelectric device with capping layer and method of making same
EP1220318A4 (en) * 1999-09-30 2007-06-06 Rohm Co Ltd NON-VOLATILE MEMORY
US6674138B1 (en) * 2001-12-31 2004-01-06 Advanced Micro Devices, Inc. Use of high-k dielectric materials in modified ONO structure for semiconductor devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204404A (ja) * 1992-12-28 1994-07-22 Hitachi Ltd 半導体装置、並びに容量素子およびその製造方法
EP1124262A2 (en) * 2000-02-11 2001-08-16 Sharp Kabushiki Kaisha Multilayer dielectric stack and method
US20010028582A1 (en) * 2000-04-07 2001-10-11 Yasuo Tarui Ferroelectric memory element
JP2002313966A (ja) * 2001-04-16 2002-10-25 Yasuo Tarui トランジスタ型強誘電体不揮発性記憶素子とその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044195A (ja) * 2002-08-20 2009-02-26 National Institute Of Advanced Industrial & Technology 半導体強誘電体記憶デバイスの製造方法
US7482234B2 (en) 2003-11-28 2009-01-27 Rohm Co., Ltd. Method of fabricating a metal oxynitride thin film that includes a first annealing of a metal oxide film in a nitrogen-containing atmosphere to form a metal oxynitride film and a second annealing of the metal oxynitride film in an oxidizing atmosphere
US7772678B2 (en) 2003-11-28 2010-08-10 Rohm Co., Ltd. Metallic compound thin film that contains high-k dielectric metal, nitrogen, and oxygen
JP2007250565A (ja) * 2006-03-13 2007-09-27 Toshiba Corp 不揮発性半導体メモリ装置及びその製造方法
JP4719035B2 (ja) * 2006-03-13 2011-07-06 株式会社東芝 不揮発性半導体メモリ装置及びその製造方法
JP2010087089A (ja) * 2008-09-30 2010-04-15 Toshiba Corp 半導体記憶素子、半導体記憶素子の製造方法
JP2015165523A (ja) * 2013-03-19 2015-09-17 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、基板処理システムおよびプログラム
US9831082B2 (en) 2013-03-19 2017-11-28 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device, substrate processing apparatus, substrate processing system and non-transitory computer-readable recording medium

Also Published As

Publication number Publication date
JP3622055B2 (ja) 2005-02-23
US7135736B2 (en) 2006-11-14
CN1643679A (zh) 2005-07-20
JPWO2003081667A1 (ja) 2005-07-28
US20040036111A1 (en) 2004-02-26
AU2003221212A1 (en) 2003-10-08
CN1306599C (zh) 2007-03-21

Similar Documents

Publication Publication Date Title
JP3622055B2 (ja) 半導体装置及びその製造方法
JP7194171B2 (ja) プラズマ処理および/または熱処理を使用して、酸化ハフニウムに基づく強誘電体材料の性能を向上させるための方法
US9123644B2 (en) Semiconductor device, method of manufacturing semiconductor device and system of processing substrate
US7989285B2 (en) Method of forming a film containing dysprosium oxide and hafnium oxide using atomic layer deposition
US7365027B2 (en) ALD of amorphous lanthanide doped TiOx films
JP3912990B2 (ja) 集積回路構造およびその製造方法
US7510983B2 (en) Iridium/zirconium oxide structure
JP6218384B2 (ja) タングステンゲート電極を備えた半導体装置の製造方法
US20030185980A1 (en) Thin film forming method and a semiconductor device manufacturing method
US20110298028A1 (en) Hafnium tantalum titanium oxide films
US6998275B2 (en) Hydrogen-less CVD TiN process for FeRAM VIA0 barrier application
US7501325B2 (en) Method for fabricating semiconductor device
JP5655585B2 (ja) 半導体装置の製造方法
KR101153310B1 (ko) Mos형 반도체 메모리 장치의 제조 방법 및 플라즈마 cvd 장치
JP2015010247A (ja) 半導体装置の製造方法、基板処理装置及び基板処理プログラム
JP4616830B2 (ja) 半導体装置の製造方法
JP2003188356A (ja) 金属、絶縁膜、強誘電体膜積層構造とその製造方法
JP2004134507A (ja) 積層絶縁膜を備えた不揮発電界効果型トランジスタ
TW202247357A (zh) 用於環繞式閘極fet架構之臨界電壓調變
JP2000232102A (ja) 誘電体膜の製造方法
JP2011129719A (ja) 半導体装置およびその製造方法
JP2004063891A (ja) 強誘電体メモリの製造方法
JP2005209871A (ja) 容量素子の製造方法
JP2005209872A (ja) 容量素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10616917

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: EXCEPT/SAUF US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003579276

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038071231

Country of ref document: CN

122 Ep: pct application non-entry in european phase