WO2000045034A1 - Procede et dispositif de conduite d'une turbomachine, de maniere a limiter l'encrassement de parties internes de la turbomachine par des salissures provenant du gaz de procede - Google Patents

Procede et dispositif de conduite d'une turbomachine, de maniere a limiter l'encrassement de parties internes de la turbomachine par des salissures provenant du gaz de procede Download PDF

Info

Publication number
WO2000045034A1
WO2000045034A1 PCT/FR2000/000013 FR0000013W WO0045034A1 WO 2000045034 A1 WO2000045034 A1 WO 2000045034A1 FR 0000013 W FR0000013 W FR 0000013W WO 0045034 A1 WO0045034 A1 WO 0045034A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbomachine
circuit
substance
cleaning
impurities
Prior art date
Application number
PCT/FR2000/000013
Other languages
English (en)
Inventor
Jean-Marc Pugnet
Henri Hus
Daniel Tricot
Original Assignee
Thermodyn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermodyn filed Critical Thermodyn
Priority to US09/890,187 priority Critical patent/US6575711B1/en
Priority to EP00900529A priority patent/EP1147294B1/fr
Priority to DE60005139T priority patent/DE60005139T2/de
Publication of WO2000045034A1 publication Critical patent/WO2000045034A1/fr
Priority to NO20012640A priority patent/NO20012640L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids

Definitions

  • the invention relates to a method and a device for operating a turbomachine comprising an inlet and an outlet for a process gas, so as to limit the fouling of internal parts of the turbomachine by dirt coming from the process gas.
  • the fouling of the internal parts of turbomachinery, and in particular of centrifugal compressors, is a phenomenon that the user can hardly control or prevent.
  • the conduct of the process implemented in the turbomachine can be modified significantly.
  • pressure and temperature levels or traffic flows in the compressor can be changed due to the formation of deposits in the aerodynamic channels such as blades or compressor diffusers.
  • the mechanical elements of the turbomachine can be subjected to stresses leading to their deterioration. It is therefore necessary to protect these mechanical elements.
  • the unbalance, axial thrust variations, soiling or inter linings ⁇ nes caused by deposits on the dynamic parts of the turbomachine may induce vibrations that are detrimental to the proper operation of the turbomachine.
  • the deposition and agglomeration of dirt on the internal parts of turbomachinery and in particular of centrifugal compressors are due to two main causes.
  • the filters or the separators arranged upstream of the turbomachines cannot stop particles having a size of a few micrometers which deposit on the internal parts of the turbomachine.
  • the pressure and temperature levels reached in the compressor, as well as the nature of the gases whose compression is carried out favor reactions of the polymerization type on the deposited materials or corrosion of the internal parts of the compressor under '
  • fouling of the internal parts of turbomachinery and in particular of centrifugal compressors is a general phenomenon which occurs in all cases during normal operation of the turbomachine.
  • Anti-fouling coating processes or solvents or chemical additives are known which make it possible to reduce or eliminate fouling, in certain specific cases.
  • the main methods used which can be combined with one another consist of:
  • each of the methods is adapted to a particular case and no method is known which is of general application.
  • Cleaning processes are also known which are applied outside the sector of the operation of turbomachinery and which use a solvent constituted by a dense fluid under pressure such as carbon dioxide, in the liquid state or even in the supercritical state. . In such processes, carbon dioxide can be used in place of organic solvents.
  • Carbon dioxide CO 2 has a critical point at a pressure of 73 bars (7.3 MPa) and at a temperature of 31 ° C.
  • These cleaning methods use carbon dioxide at a pressure higher than the critical pressure and at a temperature which can be lower than the critical temperature, the carbon dioxide then being liquid, or even at a temperature higher than the critical temperature, the carbon dioxide then being in a supercritical state intermediate between the liquid and gaseous states.
  • the critical CO 2 pressure and temperature values which are not very difficult to achieve, allow industrial application.
  • turbochargers which have an inlet into which a gas intervening in a process in which the gas undergoes a physical or chemical transformation is introduced, it is generally desirable to continuously carry out the removal of dirt inside the tur - bocharger, during the operation of this turbocharger. It has been proposed to introduce into the process gas stream, at the inlet of the turbocharger, a substance capable of dissolving the dirt deposited inside the turbocharger. At the outlet of the turbocharger, a fluid is recovered consisting of the process gas and the substance in the supercritical state containing the soils in the dissolved state. It is then necessary to carry out a separation of the process gas and the fluid constituted by the substance containing the soils in the dissolved state.
  • the use of the compressor to circulate the dissolving substance is generally incompatible with the dimensioning of the horn. presser due to the level of pressure and developed power necessary for a constant speed of rotation.
  • the object of the invention is therefore to propose a method for operating a turbomachine comprising an inlet and an outlet for a process gas put into circulation in a circuit called a process circuit, making it possible to limit fouling of the internal parts of the turbomachine by dirt coming from the process gas, without having to ensure the continuous circulation, regeneration and recycling of a cleaning substance, during all the operating phases of the turbomachine.
  • the method according to the invention is characterized in that between at least two successive phases of normal operation of the turbomachine during which only process gas is introduced into the inlet of the compressor and the process gas for its use, a cleaning phase is carried out during which a substance in the dense state capable of dissolving the dirt on the internal parts of the turbomachine is introduced into the process circuit the turbomachine and the process gas is separated from the substance in which the dirt is dissolved in the form of impurities in the liquid state.
  • FIGS. 1 and 2 which make it possible to implement the method of the invention according to a first mode and according to a second embodiment differ only in the construction of the turbocharger cleaning circuit. In both cases, the same use circuit, or process circuit 1, is used. Therefore, only the process circuit relating to the embodiment of FIG. 1 will be described, the corresponding elements in Figures 1 and 2 showing the same references.
  • the cleaning circuits 2 and 2 ′ are different in the case of the first and in the case of the second embodiment of the method of the invention.
  • the cleaning circuit 2 of the embodiment shown in FIG. 1 makes it possible, during the cleaning phases of the turbocharger, to continuously regenerate the dense cleaning substance which is constituted by CO 2 in the supercritical state.
  • the cleaning circuit 2 ′ does not perform any regeneration of the substance 0 used which is also CO 2 in the supercritical state, during the cleaning phases, the CO 2 supercritical containing dissolved impurities being recycled in the process circuit 1.
  • the supercritical CO 2 containing impurities is recovered in a storage container at the end of the cleaning phase, before restarting a new functional phase s normal installation.
  • the circuit of method 1 in the case of the first and second embodiment, comprises a turbocharger 3, the inlet part 4 of which is connected to a pipe 5 for the supply of process gas to circuit 1.
  • the gas from process reaching compressor 3 via line 5 contains dirt.
  • a shut-off valve 6 makes it possible to shut off the supply of process gas to the circuit 1.
  • the turbocharger 3 has an outlet part 7 connected to a pipe 8 for discharging the compressed gas in the turbocharger 25 towards a separator 9 and a pipe 10 for transferring the compressed gas to an installation for use.
  • a heat exchanger 11 is arranged which makes it possible to cool the process gas at the outlet of the turbocharger 3.
  • the pipe 8 is connected by a first branch on which is arranged a stop valve 13, at the first separation 30 teur liquid gas 9 which is constituted by a filtration unit and, by a second branch on which is disposed a stop valve 14, to a second liquid gas separator 12 also constituted by a filtration unit.
  • the process gas containing dirt is introduced into the inlet part 4 of the turbocharger, compressed and then discharged through the outlet part 7 of the turbocharger into the pipe 8.
  • the stop valve 14 is closed and the valve 13 is open.
  • the compressed and cooled process gas is introduced into the separator 9 which makes it possible to separate from the process gas impurities constituted by condensates.
  • the condensates are evacuated via line 15.
  • the compressed process gas is evacuated via line 10 to an installation allowing its use.
  • the cooling of the process gas by the heat exchanger 11 is adjusted according to the end use of the process gas.
  • pollutants contained in the process gas are deposited on internal parts of the turbocharger 3, such as blades or diffusers, these pollutants constituting dirt in the internal part of the compressor.
  • the amount of dirt deposited on the internal parts of the compressor can increase with the time of use of the compressor, which leads to the drawbacks which have been mentioned above.
  • a cleaning phase which is carried out using in the process circuit, before entry turbocharger 3, a soil dissolving substance consisting of a chemical compound in a dense and preferably supercritical state.
  • supercritical C0 2 is used for cleaning the compressor.
  • a supply tank 20 containing CO 2 in the supercritical state is used which is placed as a bypass on circuit 2, downstream of the separator 12 on a line 21 leaving the separator 12.
  • a three-way valve 19 makes it possible to put the supply tank 20 in communication with the line 21 of the cleaning circuit 2 , so as to introduce supercritical CO into the cleaning circuit 2 or to isolate the line 21 from the supply tank 20.
  • clean supercritical CO 2 is introduced into the storage tank 20 by the pipe 27.
  • the cleaning circuit 2 is then supplied from the supply tank 20, by opening the three-way valve 19.
  • the supercritical CO 2 introduced into the circuit 2 arrives in the pipe 18 to be intr oduit in the process circuit 1 and in the inlet part 4 of the turbocharger 3, in mixture with process gas admitted into the process circuit through line 5.
  • the supercritical CO 2 circulating with the process gas in the turbo-compressor 3 dissolves the dirt deposited on the internal parts of the turbocharger. Is recovered in the outlet part 7 of the turbocharger 3, compressed process gas containing CO 2 containing dirt in the dissolved state.
  • the process gas containing the dissolved dirt in the C0 2 is cooled in the heat exchanger 11 which produces a condensation of the C0 2 containing the impurities contained in the process gas.
  • the second separator 12 separates the compressed process gas which is evacuated towards the installation for use by a line 17 and the liquid mixture of CO 2 and impurities which is evacuated by the line 21 of the cleaning circuit 2.
  • the liquid phase consisting of CO 2 and impurities undergoes an expansion produced by an expansion valve 22, so that downstream of the expansion valve 22, the fluid flowing in the cleaning circuit 2 is constituted by CO 2 in gaseous form and impurities dissolved in the liquid state.
  • the fluid passes through a separator 23 of the cleaning circuit 2 constituted by a gas / liquid separator filter.
  • the separator 23 separates the gaseous CO which is sent by an outlet pipe in a compressor 24 and impurities dissolved in the liquid state or possibly in the solid state which are discharged from the separator 23, by a discharge pipe 25.
  • the purified CO 2 gas is compressed by the compressor 24 and passes through a heat exchanger 26 which makes it possible to raise the temperature of the compressed CO, so that at the outlet of the heat exchanger 26, the fluid circulating in the circuit cleaning 2 consists of clean supercritical C0 2 which can be returned to process circuit 1, via line 18.
  • the cleaning circuit can thus be operated continuously, until satisfactory cleaning of the internal parts of the turbo-compressor 3 is obtained.
  • valves 14 and 16 are closed and the stop valve 13 of the process circuit is opened. This begins a new phase of normal operation of the turbocharger 3 and the installation.
  • the three-way valve 19 is placed in a position enabling the cleaning C0 2 to be recovered in the supply container 20.
  • the installation comprising the turbocharger 3 can operate continuously with intermittent cleaning phases making it possible to avoid excessive fouling of the turbocharger. sor 3.
  • the duration of the normal operating phases and of the cleaning phases is adjusted so as to avoid excessive fouling of the turbocharger 3, while limiting the additional energy expenditure due in particular to the use of the compressor 24 on the cleaning circuit. 2.
  • the process circuit 1 is identical to the process circuit implemented in the case of the first embodiment.
  • the cleaning circuit 2 ′ comprises, as before, the shut-off valves 14 and 16 and the second separator 12 making it possible to recover from the line 21 ′ of the cleaning circuit 2 ′, during cleaning, a liquid phase constituted with CO 2 containing dirt from the turbocharger 3 in the dissolved state.
  • the cleaning circuit according to the second embodiment in which regeneration of the dissolving substance is not carried out has a simpler structure than the cleaning circuit 2 of the first embodiment.
  • the cleaning circuit comprises, following the separator 12, a CO 2 recovery tank 20 'and a pump 24'.
  • CO 2 in the supercritical state is introduced into the CO 2 recovery tank 20 ′, at the start of the cleaning phase.
  • the supercritical CO 2 is sent by the pump 24 'in the line 18 connected to the process circuit 1.
  • the supercritical C0 2 containing liquid impurities is collected in the storage tank 20 ′, the discharge pipe 25 ′ of which is closed. driven by a valve.
  • the CO 2 in the supercritical state containing impurities is then sucked by the pump 24 'then discharged into the pipe 18 to be reintroduced into the process gas.
  • Cleaning is thus carried out by circulation of CO 2 in the supercritical state, in the process circuit 1 and in the cleaning circuit, until the time when the supercritical CO 2 is saturated with impurities in the liquid state.
  • the cleaning circuit 2 ' is then isolated from the process circuit 1 and the supercritical CO 2 containing liquid impurities is recovered in the recovery tank 20'. The installation is returned to normal operation.
  • the supercritical C0 2 containing dirt in the liquid state is evacuated via the evacuation pipe 25 'from the recovery container 20' and, optionally, regenerated by separation of the CO 2 and liquid impurities, for example by a process of expansion and vaporization of C0 2 followed by filtration.
  • CO 2 in the supercritical state is introduced into the container 20 ′ to carry out a subsequent cleaning step.
  • the installation can also operate continuously, the cleaning capacity of the turbocharger 3 being limited only by increasing the quantity of impurities dissolved in the CO 2 in the state supercritical and reaching saturation state.
  • the regeneration of CO 2 in the liquid state or in the supercritical state could be carried out by decanting the liquid impurities inside a decanting container or possibly inside the recovery container 21 ′.
  • the installation can be operated continuously, without excessive fouling of the turbocharger, by adjusting the duration of the successive phases of normal operation and cleaning.
  • the method according to the first embodiment which has the advantage of greater flexibility of implementation, however has the disadvantage of requiring greater energy expenditure. This energy expenditure depends in fact on the duration of the cleaning phases interspersed between two phases of normal operation of the installation.
  • substances other than C0 2 in the supercritical state can be used for dissolving the dirt in the turbocharger.
  • Such substances can be, for example, water (H 2 0), propane (C3H8) or pentane (C 5 H 12 ), in the supercritical state.

Abstract

On effectue successivement des phases de fonctionnement normal de la turbomachine (3) au cours desquelles on introduit dans l'entrée de la turbomachine (3) uniquement du gaz de procédé et des phases de nettoyage, au cours desquelles on introduit dans le circuit du procédé (1), à l'entrée (4) de la turbomachine (3), une substance à l'état dense telle que le CO2, supercritique susceptible de dissoudre les salissures. Le nettoyage peut être effectué avec ou sans récupération en continu de la substance à l'état dense assurant la dissolution des salissures.

Description

Procédé- et dispositif de conduite d'une turbomachine, de manière à limiter l'encrassement de parties internes de la turbomachine par des sa±xssures provenant du gaz de procédé".
L'invention concerne un procédé et un dispositif de conduite d'une turbomachine comportant une entrée et une sortie pour un gaz de procédé, de manière à limiter l'encrassement de parties internes de la turbomachine par des salissures provenant du gaz de procédé. L'encrassement des parties internes des turbomachines, et en particulier des compresseurs centrifuges, est un phénomène que l'utilisateur peut difficilement maîtriser ou empêcher.
Le dépôt et l'agglomération de salissures sur les parties internes aé- rodyπamiques des turbomachines peuvent avoir des conséquences tout-à- fait indésirables sur les performances.
D'une part, la conduite du procédé mis en œuvre dans la turbomachine peut être modifiée de manière importante. Dans le cas d'un compres¬ seur centrifuge, les niveaux de pression et de température ou les débits de circulation dans le compresseur peuvent être modifiés du fait de la formation de dépôts dans les canaux aérodynamiques tels que les aubes ou les diffuseurs du compresseur.
D'autre part, les éléments mécaniques de la turbomachine peuvent être soumis à des sollicitations entraînant leur détérioration. Il est donc nécessaire de protéger ces éléments mécaniques. En particulier, les balourds, les variations de poussée axiale, ou les encrassements des garnitures inter¬ nes engendrées par les dépôts sur les parties dynamiques de la turbomachine peuvent induire des vibrations qui sont préjudiciables à la bonne marche de la turbomachine.
Le dépôt et l'agglomération de salissures sur les parties internes des turbomachines et en particulier des compresseurs centrifuges sont dus à deux causes principales. Tout d'abord, les filtres ou les séparateurs disposés en amont des turbomachines ne peuvent arrêter des particules ayant une taille de quelques micromètres qui se déposent sur les parties internes de la turbomachine. En outre, les niveaux de pression et de température atteints dans le compresseur, ainsi que la nature des gaz dont on réaiise la compression favorisent des réactions du type polymérisation sur les matières déposées ou la corrosion des parties internes du compresseur sous ' De manière générale, l'encrassement des parties internes des turbomachines et en particulier des compresseurs centrifuges est un phénomène général qui se produit dans tous les cas pendant le fonctionnement normal de la turbomachine. Cet encrassement peut atteindre un niveau tel qu'il de- vienne nécessaire d'arrêter la turbomachine et donc le cycle de production ou de fabrication en cours. Il est donc tout-à-fait souhaitable de disposer de moyens permettant d'enlever les salissures de la partie interne encrassée d'une turbomachine ou de limiter le dépôt de salissures dans cette partie interne. On ne connaît pas jusqu'ici de procédé général permettant de réaliser le nettoyage des parties internes de turbomachines quel que soit le type de turbomachines concerné, la substance en circulation dans ces turbomachines et le type et la nature des salissures susceptibles de se déposer dans leurs parties internes. Chaque exploitant de turbomachines essaie de remédier au problème d'encrassement qu'il rencontre, en fonction du type d'encrassement ou des caractéristiques d'organisation de la production.
On connaît des procédés de revêtement anti-encrassement ou des solvants ou additifs chimiques permettant de réduire ou de supprimer les encrassements, dans certains cas spécifiques. De manière générale, dans le but d'optimiser la disponibilité des équipements industriels, les principales méthodes utilisées qui peuvent être combinées entre elles consistent à :
- démonter et sabler les parties encrassées des turbomachines,
- injecter périodiquement des particules solides ou liquides (en parti- culier sous forme de brouillard) pour éroder ou dissoudre les salissures,
- mélanger en continu des additifs avec le fluide circulant dans la turbomachine, substances empêchants ou retardant la polymérisation,
- enduire les parties internes de revêtement pour réaliser des surfaces anti-adhérentes. Toutes ces méthodes présentent des inconvénients. En particulier, ces méthodes sont coûteuses et leur efficacité est ni totale ni durable.
En outre, chacune des méthodes est adaptée à un cas particulier et on ne connaît aucune méthode qui soit d'application générale. On connaît également des procédés de nettoyage qui sont appliqués en dehors du secteur de l'exploitation des turbomachines et qui utilisent un solvant constitué par un fluide dense sous pression tel que dioxyde de carbone, à l'état liquide ou encore à l'état supercritique. Dans de tels procédés, le dioxyde de carbone peut être utilisé en remplacement de solvants organiques.
Le dioxyde de carbone CO2 présente un point critique à une pression de 73 bars (7,3 MPa) et à une température de 31 °C.
Ces procédés de nettoyage utilisent du dioxyde de carbone à une pression supérieure à la pression critique et à une température qui peut être inférieure à la température critique, le dioxyde de carbone étant alors liquide, ou encore à une température supérieure à la température critique, le dioxyde de carbone étant alors dans un état supercritique intermédiaire entre les états liquide et gazeux. Les valeurs de pression et température critiques du CO2, qui ne sont pas très difficiles à atteindre, permettent une application industrielle.
A l'état supercritique, les propriétés du CO telles que sa densité, sa viscosité qui est faible, et son coefficient de diffusion qui est élevé, ainsi qu'un très bon pouvoir solvant vis-à-vis de nombreuses matières, en font un produit solvant intéressant pour le nettoyage, la purification et le traitement des matériaux.
A l'état supercritique, le CO2 dissout en particulier la plupart des composés organiques.
D'autres substances peuvent présenter à l'état supercritique des pro- priétés analogues, comme certains alcanes.
Dans le cas de turbocompresseurs qui comportent une entrée dans laquelle on introduit un gaz intervenant dans un procédé dans lequel le gaz subit une transformation physique ou chimique, il est généralement souhaitable d'effectuer en continu l'enlèvement des salissures à l'intérieur du tur- bocompresseur, pendant le fonctionnement de ce turbocompresseur. On a proposé d'introduire, dans le courant de gaz de procédé, à l'entrée du turbocompresseur, une substance susceptible de dissoudre les salissures déposées à l'intérieur du turbocompresseur. A la sortie du turbocompresseur, on récupère un fluide constitué par le gaz de procédé et la substance à l'état supercritique renfermant les salissures à l'état dissout. On doit alors effectuer une séparation du gaz de procédé et du fluide constitué par la substance renfermant les salissures à l'état dissout.
Pour réaliser le nettoyage du compresseur dans des conditions économiques, il est évidemment souhaitable d'effectuer la régénération et le recyclage de la substance utilisée pour dissoudre les salissures dans les parties internes du turbocompresseur. Pour cela, il est nécessaire de sépa- rer de la substance utilisée pour le nettoyage, les impuretés constituées par les salissures qui ont été dissoutes par la substance à l'état supercritique. Cette séparation des impuretés ne peut être effectuée en continu, sur le courant de la substance de dissolution en circulation dans le compresseur, dans des conditions qui soient suffisamment économiques pour être acceptées dans le cadre d'un processus industriel.
En effet, pour réaliser la séparation des impuretés en continu sur le courant de substance de dissolution, il est généralement nécessaire de contourner le point critique du fluide par des transformations thermodynamiques dans un ordre bien défini. Il faut réaliser une détente de la substance pour obtenir sa vaporisation, les impuretés à l'état liquide ou solide étant alors séparées de la substance à l'état gazeux.
Il est ensuite nécessaire de recomprimer la substance pour la réintroduire dans le circuit du procédé, à l'intérieur du compresseur, dans un état supercritique. Pour assurer la mise en pression de la substance de dissolu- tion, il faut utiliser un compresseur ou une pompe à grand débit dont le coût d'installation et d'utilisation est généralement incompatible avec une mise en œuvre économique d'un processus industriel utilisant le gaz de procédé.
Il est donc souhaitable de disposer d'un procédé de conduite des turbomachines qui permette de limiter leur encrassement, sans avoir à effec- tuer en continu, pendant le fonctionnement de la turbomachine, la régénération et le recyclage d'une substance de nettoyage.
L'utilisation du compresseur pour faire circuler la substance de dissolution est généralement incompatible avec le dimensionnement du corn- presseur en raison du niveau de pression et de puissance développée nécessaire pour une vitesse de rotation constante.
Le but de l'invention est donc de proposer un procédé de conduite d'une turbomachine comprenant une entrée et une sortie pour un gaz de procédé mis en circulation dans un circuit appelé circuit de procédé, permettant de limiter l'encrassement des parties internes de la turbomachine par des salissures provenant du gaz de procédé, sans avoir à assurer en continu la mise en circulation, la régénération et le recyclage d'une substance de nettoyage, pendant toutes les phases de fonctionnement de la tur- bomachine.
Dans ce but, le procédé suivant l'invention est caractérisé par le fait qu'entre au moins deux phases successives de fonctionnement normal de la turbomachine au cours desquelles on introduit, dans l'entrée du compresseur uniquement du gaz de procédé et on récupère le gaz de procédé pour son utilisation, on effectue une phase de nettoyage au cours de laquelle on introduit dans le circuit du procédé, à l'entrée de la turbomachine, une substance à l'état dense susceptible de dissoudre les salissures sur les parties internes de la turbomachine et on réalise la séparation du gaz de procédé et de la substance dans laquelle sont dissoutes les salissures sous forme d'impuretés à l'état liquide.
Afin de bien faire comprendre l'invention, on va décrire, à titre d'exemple, en se référant aux figures jointes en annexe, un procédé de conduite d'un turbocompresseur permettant de limiter l'encrassement du turbocompresseur et le dispositif utilisé pour la mise en œuvre du procédé. Les installations représentées respectivement sur les figures 1 et 2 qui permettent de mettre en œuvre le procédé de l'invention suivant un premier mode et suivant un second mode de réalisation ne diffèrent que par la réalisation du circuit de nettoyage turbocompresseur. Dans l'un et l'autre cas, on utilise le même circuit d'utilisation, ou circuit de procédé 1. De ce fait, on ne décrira que le circuit de procédé relatif au mode de réalisation de la figure 1 , les éléments correspondants sur les figures 1 et 2 présentant les mêmes repères. En revanche, les circuits de nettoyage 2 et 2' sont différents dans le cas du premier et dans le cas du second mode de réalisation du procédé de l'invention.
Le circuit de nettoyage 2 du mode de réalisation représenté sur la 5 figure 1 permet de réaliser, pendant les phases de nettoyage du turbocompresseur, une régénération en continu de la substance dense de nettoyage qui est constituée par du CO2 à l'état supercritique.
Dans le cas du second mode de réalisation représenté sur la figure 2, le circuit de nettoyage 2' n'effectue aucune régénération de la substance 0 utilisée qui est également du CO2 à l'état supercritique, pendant les phases de nettoyage, le CO2 supercritique contenant des impuretés dissoutes étant recyclé dans le circuit du procédé 1. Le CO2 supercritique renfermant des impuretés est récupéré dans un récipient de stockage à l'issue de la phase de nettoyage, avant le redémarrage d'une nouvelle phase de fonctionnel s ment normale de l'installation. Pendant la phase de fonctionnement normale de l'installation suivant la phase de nettoyage, il est possible d'évacuer le CO supercritique saturé en impuretés vers une installation de régénération. Le circuit du procédé 1 , dans le cas du premier et du second mode de réalisation, comporte un turbocompresseur 3 dont la partie d'entrée 4 est 20 reliée à une conduite 5 d'arrivée de gaz de procédé du circuit 1. Le gaz de procédé parvenant au compresseur 3 par la conduite 5 renferme des salissures. Une vanne d'arrêt 6 permet de fermer l'arrivée de gaz de procédé dans le circuit 1. Le turbocompresseur 3 comporte une partie de sortie 7 reliée à une conduite 8 d'évacuation du gaz comprimé dans le turbocom- 25 presseur vers un séparateur 9 et une conduite 10 de transfert du gaz comprimé vers une installation d'utilisation. Sur la conduite 8, est disposé un échangeur de chaleur 11 permettant de refroidir le gaz de procédé à la sortie du turbocompresseur 3. La conduite 8 est reliée par un premier embranchement sur lequel est disposée une vanne d'arrêt 13, au premier sépara- 30 teur gaz liquide 9 qui est constitué par une unité de filtration et, par un second embranchement sur lequel est disposé une vanne d'arrêt 14, à un second séparateur gaz liquide 12 constitué également par une unité de filtration. Pendant le fonctionnement normal de l'installation comportant le turbocompresseur, le gaz de procédé renfermant des salissures est introduit dans la partie d'entrée 4 du turbocompresseur, comprimé puis évacué par la partie de sortie 7 du turbocompresseur dans la conduite 8. Pendant les pha- ses d'utilisation normale de l'installation, la vanne d'arrêt 14 est fermée et la vanne 13 est ouverte. Le gaz de procédé comprimé et refroidi est introduit dans le séparateur 9 qui permet de séparer du gaz de procédé des impuretés constituées par des condensats. Les condensats sont évacués par la conduite 15. Le gaz de procédé comprimé est évacué par la conduite 10 vers une installation permettant son utilisation.
Le refroidissement du gaz de procédé par l'échangeur de chaleur 11 est réglé en fonction de l'utilisation finale du gaz de procédé.
Pendant le fonctionnement normal du turbocompresseur, des substances polluantes contenues dans le gaz de procédé se déposent sur des parties internes du turbocompresseur 3, telles que des aubages ou diffuseurs, ces substances polluantes constituant des salissures dans la partie interne du compresseur. La quantité de salissures déposées sur les parties internes du compresseur peut augmenter avec le temps d'utilisation du compresseur, ce qui entraîne les inconvénients qui ont été mentionnés plus haut.
Selon l'invention, on prévoit entre deux phases successives de fonctionnement normal du compresseur au cours desquelles la partie interne du compresseur s'est chargée en salissures, une phase de nettoyage qui est réalisée en utilisant dans le circuit du procédé, avant l'entrée du turbocom- presseur 3, une substance dissolvant les salissures constituée par un composé chimique dans un état dense et de préférence supercritique.
De préférence, on utilise pour le nettoyage du compresseur, du C02 supercritique.
Dans le cas de l'installation représentée sur la figure 1 et dans le cas de l'installation représentée sur la figure 2, on utilise un circuit de nettoyage
2 ou 2' qui comporte le second séparateur gaz/liquide 12 et qui peut être totalement isolé du circuit de procédé 1 par l'intermédiaire de la vanne d'arrêt 14 et par l'intermédiaire d'une vanne d'arrêt 16 disposée sur une conduitel 8 elle-même reliée à la conduite 5 du circuit d'utilisation normale 1 , en aval de la vanne d'arrêt 6. Le circuit de nettoyage 2 ou 2' est ainsi en dérivation sur le circuit de procédé 1 de part et d'autre de l'entrée 4 et de la sortie 7 du turbocompresseur 3. Pour mettre en fonctionnement le circuit de nettoyage 2 ou le circuit de nettoyage 2', on ferme la vanne 13 du circuit du procédé et on ouvre les vannes 14 et 16 du circuit de nettoyage 2 ou 2'.
Dans le cas de l'installation représentée sur la figure 1 , permettant de mettre en œuvre le procédé de l'invention suivant un premier mode de réali- sation, on utilise un réservoir d'alimentation 20 renfermant du C02 à l'état supercritique qui est placé en dérivation sur le circuit 2, en aval du séparateur 12 sur une conduite 21 de sortie du séparateur 12. Une vanne trois voies 19 permet de mettre en communication le réservoir d'alimentation 20 avec la conduite 21 du circuit de nettoyage 2, de manière à introduire du C0 supercritique dans le circuit de nettoyage 2 ou d'isoler la conduite 21 du réservoir d'alimentation 20. Au début de la phase de nettoyage, on introduit du CO2 supercritique propre dans le réservoir de stockage 20 par la conduite 27. On alimente ensuite le circuit de nettoyage 2 à partir du réservoir d'alimentation 20, en ouvrant la vanne trois voies 19. Le CO2 supercritique introduit dans le circuit 2 parvient dans la conduite 18 pour être introduit dans le circuit de procédé 1 et dans la partie d'entrée 4 du turbocompresseur 3, en mélange avec du gaz de procédé admis dans le circuit de procédé par la conduite 5.
Le CO2 supercritique circulant avec le gaz de procédé dans le turbo- compresseur 3 réalise une dissolution des salissures déposées sur les parties internes du turbocompresseur. On récupère dans la partie de sortie 7 du turbocompresseur 3, du gaz de procédé comprimé contenant du CO2 renfermant des salissures à l'état dissout.
Le gaz de procédé renfermant les salissures dissoutes dans le C02 est refroidi dans l'échangeur de chaleur 11 qui réalise une condensation du C02 renfermant les impuretés contenues dans le gaz de procédé. Le mélange parvenant à l'entrée du séparateur 12 constitué par une unité de filtration, comporte donc le gaz de procédé comprimé et une partie liquide constituée par le CO2 renfermant les impuretés dissoutes.
Le second séparateur 12 réalise la séparation du gaz de procédé comprimé qui est évacué vers l'installation d'utilisation par une conduite 17 et le mélange liquide de CO2 et d'impuretés qui est évacué par la conduite 21 du circuit de nettoyage 2.
La phase liquide constituée de CO2 et d'impuretés subit une détente produite par une vanne de détente 22, de sorte qu'en aval de la vanne de détente 22, le fluide circulant dans le circuit de nettoyage 2 est constitué par du CO2 sous forme gazeuse et des impuretés dissoutes à l'état liquide. Le fluide traverse un séparateur 23 du circuit de nettoyage 2 constitué par un filtre séparateur gaz/liquide. Le séparateur 23 réalise la séparation du CO gazeux qui est envoyé par une conduite de sortie dans un compresseur 24 et des impuretés dissoutes à l'état liquide ou éventuellement à l'état solide qui sont évacuées du séparateur 23, par une conduite d'évacuation 25.
Le C02 gazeux épuré est comprimé par le compresseur 24 et traverse un échangeur de chaleur 26 qui permet d'élever la température du CO comprimé, de telle sorte qu'en sortie de l'échangeur de chaleur 26, le fluide circulant dans le circuit de nettoyage 2 est constitué par du C02 supercritique propre qui peut être renvoyé dans le circuit de procédé 1 , par l'intermédiaire de la conduite 18.
On peut faire fonctionner ainsi en continu le circuit de nettoyage, jusqu'à l'obtention d'un nettoyage satisfaisant des parties internes du turbo- compresseur 3.
A l'issue de la phase de nettoyage, on ferme les vannes 14 et 16 et on ouvre la vanne d'arrêt 13 du circuit de procédé. On commence ainsi une nouvelle phase de fonctionnement normal du turbocompresseur 3 et de l'installation. La vanne trois voies 19 est placée dans une position permet- tant de récupérer le C02 de nettoyage dans le récipient d'alimentation 20.
De cette manière, l'installation comprenant le turbocompresseur 3 peut fonctionner de manière continue avec des phases de nettoyage intermittentes permettant d'éviter un encrassement excessif du turbocompres- seur 3. La durée des phases de fonctionnement normal et des phases de nettoyage est réglée de manière à éviter un encrassement excessif du turbocompresseur 3, tout en limitant la dépense énergétique supplémentaire due en particulier à l'utilisation du compresseur 24 sur le circuit de nettoyage 2.
Dans le cas de l'installation représentée sur la figure 2, le circuit de procédé 1 est identique au circuit de procédé mis en œuvre dans le cas du premier mode de réalisation. De plus, le circuit de nettoyage 2' comporte, comme précédemment, les vannes d'arrêt 14 et 16 et le second séparateur 12 permettant de récupérer sur la conduite 21 ' du circuit de nettoyage 2', pendant le nettoyage, une phase liquide constituée par du CO2 contenant des salissures du turbocompresseur 3 à l'état dissous.
Le circuit de nettoyage selon le second mode de réalisation dans lequel on n'effectue pas de régénération de la substance de dissolution pré- sente une structure plus simple que le circuit de nettoyage 2 du premier mode de réalisation.
Le circuit de nettoyage comporte, à la suite du séparateur 12, un réservoir de récupération de CO220' et une pompe 24'.
Pour effectuer le nettoyage, on introduit dans le réservoir de récupé- ration de CO2 20 ', au début de la phase de nettoyage, du CO2 propre à l'état supercritique. Le CO2 supercritique est envoyé par la pompe 24' dans la conduite 18 reliée au circuit de procédé 1.
Dans la conduite 5 du circuit de procédé, le C02 supercritique est mélangé à du gaz de procédé. Le fonctionnement de l'installation pendant la phase de nettoyage est identique au fonctionnement qui a été décrit plus haut en ce qui concerne le premier mode de réalisation, jusqu'au moment où une phase liquide constituée de C02 renfermant des impuretés est récupérée dans la conduite 21 ' du circuit de nettoyage 2'. Toutefois, le réglage de l'échangeur de chaleur 11 est réalisé de manière à récupérer le C02 renfermant des impuretés liquides, à l'état supercritique dans la conduite 21 '.
Le C02 supercritique renfermant des impuretés liquides est recueilli dans le réservoir de stockage 20' dont la conduite d'évacuation 25' est fer- mée par une vanne. Le CO2 à l'état supercritique renfermant des impuretés est alors aspiré par la pompe 24' puis refoulé dans la conduite 18 pour être réintroduit dans le gaz de procédé. On effectue ainsi le nettoyage par circulation du CO2 à l'état supercritique, dans le circuit de procédé 1 et dans le circuit de nettoyage, jusqu'au moment où le CO2 supercritique est saturé en impuretés à l'état liquide. On isole alors le circuit de nettoyage 2' du circuit de procédé 1 et on récupère le CO2 supercritique renfermant des impuretés liquides dans le réservoir de récupération 20'. L'installation est remise en fonctionnement normal. Pendant la phase de fonctionnement normal de l'installation, le C02 supercritique renfermant des salissures à l'état liquide est évacué par la conduite d'évacuation 25' du récipient de récupération 20' et, éventuellement, régénéré par séparation du CO2 et des impuretés liquides, par exemple par un procédé de détente et de vaporisation du C02 suivi d'une filtration. Du CO2 à l'état supercritique est introduit dans le récipient 20' pour réaliser une étape de nettoyage ultérieure.
Dans le cas du second mode de réalisation, l'installation peut également fonctionner de manière continue, la capacité de nettoyage du turbocompresseur 3 n'étant limitée que par l'augmentation de la quantité d'impuretés dissoutes dans le CO2 à l'état supercritique et l'arrivée à l'état de saturation.
La régénération du CO2 à l'état liquide ou à l'état supercritique pourrait être réalisée par décantation des impuretés liquides à l'intérieur d'un récipient de décantation ou éventuellement à l'intérieur du récipient de récupé- ration 21 '.
Pour pouvoir faire fonctionner le turbocompresseur 3 en continu en utilisant le procédé d'enlèvement de salissures lors de phases de nettoyage intercalées entre deux phases de fonctionnement normal, dans le cas du second mode de réalisation, il est nécessaire d'effectuer la phase d'épuration du C02 à une fréquence suffisante pour éviter un encrassement inacceptable du turbocompresseur pendant la phase de fonctionnement normal séparant deux phases de nettoyage successives. En d'autres termes, la vitesse de séparation des impuretés du C02 liquide ou gazeux doit être supérieure à la vitesse d'encrassement du turbocompresseur.
Dans le cas du premier mode de réalisation, on peut faire fonctionner l'installation de manière continue, sans encrassement excessif du turbocompresseur, en réglant la durée des phases successives de fonctionnement normal et de nettoyage. Le procédé suivant le premier mode de réalisation qui présente l'avantage d'une plus grande souplesse de mise en œuvre, présente cependant l'inconvénient de nécessiter une plus grande dépense énergétique. Cette dépense énergétique dépend en fait de la durée des phases de nettoyage intercalées entre deux phases de fonctionnement normal de l'installation.
L'invention ne se limite pas au mode de réalisation qui a été décrit.
En particulier, il est possible d'utiliser pour la dissolution des salissu- res dans le turbocompresseur d'autres substances que le C02 à l'état supercritique. De telles substances peuvent être, par exemple, l'eau (H20), le propane (C3H8) ou le pentane (C5H12), à l'état supercritique.
Il est également possible d'envisager d'utiliser le procédé suivant l'invention pour réaliser le nettoyage d'appareils ou d'installations différentes de turbocompresseurs centrifuges.

Claims

REVENDICATIONS 1.- Procédé de conduite d'une turbomachine (3) comportant une entrée (4) et une sortie (7) pour un gaz de procédé de manière à limiter l'encrassement de parties internes de la turbomachine (3) par des salissures provenant du gaz de procédé, mis en circulation dans un circuit (1 ) de procédé sur lequel est placé la turbomachine (3), caractérisé par le fait qu'entre au moins deux phases successives de fonctionnement normal de la turbomachine (3), au cours desquelles on introduit dans l'entrée (4) de la turbomachine (3) uniquement du gaz de procédé et on récupère le gaz de procé- dé pour son utilisation, on effectue une phase de nettoyage au cours de laquelle on introduit dans le circuit de procédé (1 ), à l'entrée (4) de la turbomachine (3), une substance dans un état dense susceptible de dissoudre les salissures sur les parties internes de la turbomachine (3) et on réalise la séparation du gaz de procédé et de la substance dans laquelle sont dissoutes les salissures sous forme d'impuretés à l'état liquide.
2. - Procédé suivant la revendication 1 , caractérisé par le fait qu'on réalise en continu pendant la phase de nettoyage la détente de la substance dans laquelle sont dissoutes les salissures, sous la forme d'impuretés à l'état liquide, de manière à vaporiser la substance, qu'on sépare de la subs- tance à l'état gazeux des impuretés à l'état liquide, qu'on comprime et qu'on chauffe la substance récupérée en continu et séparée des impuretés pour la mettre dans un état dense et qu'on introduit la substance à l'état dense récupérée, dans le gaz de procédé à l'entrée (4) de la turbomachine (3).
3. - Procédé suivant la revendication 1 , caractérisé par le fait que, pendant la phase de nettoyage, on recycle la substance à l'état dense renfermant les impuretés à l'état liquide, dans le gaz de procédé, à l'entrée (4) de la turbomachine (3) et qu'à la fin de la phase de nettoyage, on récupère dans un récipient de stockage (20'), la substance à l'état dense renfermant les impuretés à l'état liquide.
4. - Procédé suivant la revendication 3, caractérisé par le fait que pendant une phase de fonctionnement normal de la turbomachine (3) suivant la phase de nettoyage, on sépare les impuretés à l'état liquide de la substance.
5.- Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé par le fait que la substance dissolvant les impuretés à l'état supercritique est constitué par du dioxyde de carbone CO2.
6.- Procédé suivant l'une quelconque des revendications 1 à 4, ca- ractérisé par le fait que la substance dissolvant les salissures à l'état supercritique est constituée par l'une au moins des substances suivantes : eau (H2O), propane (C3H8), pentane (C5H12).
7.- Dispositif pour la conduite d'une turbomachine (3) comportant une entrée (4) et une sortie (7) pour un gaz de procédé, de manière à limiter l'encrassement de parties internes de la turbomachine par des salissures provenant du gaz de procédé, caractérisé par le fait qu'il comporte un circuit (1 ) d'utilisation normale du compresseur et un circuit de nettoyage (2, 2') en dérivation sur le circuit de procédé (1), de part et d'autre de l'entrée (4) et de la sortie (7) de la turbomachine, le circuit de procédé (1 ) et le circuit de net- toyage (2, 2') de la turbomachine comportant des vannes d'arrêt (14,16) permettant de mettre en service soit le circuit de procédé (1 ), soit le circuit de nettoyage (2, 2').
8. - Dispositif suivant la revendication 7, caractérisé par le fait que le circuit de nettoyage (2) comporte successivement, entre une partie de rac- cordement au circuit de procédé (1 ) en aval de la sortie (7) de la turbomachine (3) et une partie de raccordement au circuit de procédé (1) en amont de l'entrée (4) de la turbomachine, une première vanne d'arrêt (14), un séparateur gaz-liquide (12) et un réservoir de stockage (20) de la substance de dissolution d'impuretés à l'état dense en dérivation relié au circuit de net- toyage par une vanne trois voies (19), une vanne de détente (22), une unité de filtration gaz/liquide (23), un compresseur (24), un échangeur de chaleur (26) et une seconde vanne d'arrêt (16), et que le circuit de procédé (1 ) comporte entre la sortie (7) de la turbomachine (3) et le circuit de nettoyage (2), un échangeur de chaleur (11 ).
9. - Dispositif suivant la revendication 7, caractérisé par le fait que le circuit de nettoyage (2') comporte successivement, entre une partie de raccordement au circuit de procédé (1 ) en aval de la sortie (7) de la turbomachine (3) et une partie de raccordement au circuit de procédé (1) en amont de l'entrée (4) de la turbomachine, une première vanne d'arrêt (14), un séparateur gaz/liquide (12), un réservoir de récupération (20') comportant une conduite d'évacuation (25'), une pompe (24') et une seconde vanne d'arrêt (16).
PCT/FR2000/000013 1999-01-29 2000-01-05 Procede et dispositif de conduite d'une turbomachine, de maniere a limiter l'encrassement de parties internes de la turbomachine par des salissures provenant du gaz de procede WO2000045034A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/890,187 US6575711B1 (en) 1999-01-29 2000-01-05 Method and device for controlling a turbo-machine so as to limit clogging of the turbo-machine internal parts with impurities derived from a process gas
EP00900529A EP1147294B1 (fr) 1999-01-29 2000-01-05 Procede et dispositif de conduite d'une turbomachine, de maniere a limiter l'encrassement de parties internes de la turbomachine par des salissures provenant du gaz de procede
DE60005139T DE60005139T2 (de) 1999-01-29 2000-01-05 Verfahren und vorrichtung zum betrieb einer turbomaschine und zur vermeidung der verunreinigung von deren innenteilen durch schmutzpartikel aus dem betriebsgas
NO20012640A NO20012640L (no) 1999-01-29 2001-05-29 Fremgangsmate og anordning for drift av en turbomaskin for a begrense belegg pa turbomaskinens indre partier p.g.a.forurensninger fra en prosessgass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9901047A FR2789128B1 (fr) 1999-01-29 1999-01-29 Procede et dispositif de conduite d'une turbomachine de maniere a limiter l'encrassement de parties internes de la turbomachine par des salissures provenant du gaz de procede
FR99/01047 1999-01-29

Publications (1)

Publication Number Publication Date
WO2000045034A1 true WO2000045034A1 (fr) 2000-08-03

Family

ID=9541398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/000013 WO2000045034A1 (fr) 1999-01-29 2000-01-05 Procede et dispositif de conduite d'une turbomachine, de maniere a limiter l'encrassement de parties internes de la turbomachine par des salissures provenant du gaz de procede

Country Status (6)

Country Link
US (1) US6575711B1 (fr)
EP (1) EP1147294B1 (fr)
DE (1) DE60005139T2 (fr)
FR (1) FR2789128B1 (fr)
NO (1) NO20012640L (fr)
WO (1) WO2000045034A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858720B2 (en) * 2008-12-09 2014-10-14 Chevron Belgium Nv Method for cleaning deposits from turbocharger and supercharger compressors
CN101922313B (zh) * 2009-06-09 2013-06-26 同济大学 一种抑制地热发电用汽轮机结垢的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885371A (ja) * 1981-11-13 1983-05-21 Mitsubishi Heavy Ind Ltd タ−ビン翼へのスケ−ル付着防止法
JPS5960036A (ja) * 1982-09-29 1984-04-05 Hitachi Ltd ガスタ−ビンの主軸流圧縮機及びタ−ビンの水洗浄系統
JPS5977010A (ja) * 1982-10-25 1984-05-02 Fuji Electric Co Ltd 地熱タービンの洗浄方法
US4898123A (en) * 1987-06-18 1990-02-06 Framatome Water cleansing tank for steam generator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411413A (en) 1980-11-24 1983-10-25 The Budd Company Apparatus for shoring during the manufacture of a reefer container
JPS57168527A (en) 1981-04-10 1982-10-16 Nec Corp Digital logic circuit
JPH04334775A (ja) * 1991-05-13 1992-11-20 Hitachi Ltd 遠心圧縮機の自圧式羽根車洗浄システム
US5355901A (en) * 1992-10-27 1994-10-18 Autoclave Engineers, Ltd. Apparatus for supercritical cleaning
US5417768A (en) * 1993-12-14 1995-05-23 Autoclave Engineers, Inc. Method of cleaning workpiece with solvent and then with liquid carbon dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885371A (ja) * 1981-11-13 1983-05-21 Mitsubishi Heavy Ind Ltd タ−ビン翼へのスケ−ル付着防止法
JPS5960036A (ja) * 1982-09-29 1984-04-05 Hitachi Ltd ガスタ−ビンの主軸流圧縮機及びタ−ビンの水洗浄系統
JPS5977010A (ja) * 1982-10-25 1984-05-02 Fuji Electric Co Ltd 地熱タービンの洗浄方法
US4898123A (en) * 1987-06-18 1990-02-06 Framatome Water cleansing tank for steam generator

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 183 (M - 235) 12 August 1983 (1983-08-12) *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 166 (M - 314) 2 August 1984 (1984-08-02) *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 186 (M - 320) 25 August 1984 (1984-08-25) *

Also Published As

Publication number Publication date
EP1147294A1 (fr) 2001-10-24
FR2789128B1 (fr) 2001-04-20
FR2789128A1 (fr) 2000-08-04
DE60005139D1 (de) 2003-10-16
US6575711B1 (en) 2003-06-10
EP1147294B1 (fr) 2003-09-10
DE60005139T2 (de) 2004-06-09
NO20012640L (no) 2001-08-27
NO20012640D0 (no) 2001-05-29

Similar Documents

Publication Publication Date Title
WO2006070152A1 (fr) Dispositif d'epuration d'un flux gazeux contenant des vapeurs condensables
EP1846721B1 (fr) Four pour la fusion de verre
EP1941208B1 (fr) Procede d'oxy-combustion permettant la capture de la totalite du dioxyde de carbone produit
EP2379199A1 (fr) Procédé de capture de c02 par cryo-condensation solide dans une turbine
EP1844179B1 (fr) Procede d'infiltration chimique en phase gazeuse pour la densification de substrats poreux par du carbone pyrolytique
WO2009112730A2 (fr) PROCEDE DE RECYCLAGE DE SILANE (SiH4)
EP1147293B1 (fr) Procede et dispositif d'enlevement de salissures dans une partie interne d'une turbomachine, pendant le fonctionnement de la turbomachine
EP1147294B1 (fr) Procede et dispositif de conduite d'une turbomachine, de maniere a limiter l'encrassement de parties internes de la turbomachine par des salissures provenant du gaz de procede
MX2012014985A (es) Metodo y sistema para la generacion de energia en una planta quimica usando un gas de llamarada.
FR2826295A1 (fr) Dispositif et procede optimisant la circulation d'une suspension dans une installation comprenant un reacteur triphasique
FR2774135A1 (fr) Dispositif et methode de compression pour gaz humide avec evaporation du liquide
FR2826294A1 (fr) Dispositif et procede optimisant la circulation d'une suspension dans une installation comprenant un reacteur fischer-tropsch
EP0526372A1 (fr) Procédé et dispositif de décolmatage de membranes de filtration
EP2179776B1 (fr) Repressurisation d'un VSA CO2 traitant un mélange gazeux comprenant un combustible
FR2918167A1 (fr) Procede de nettoyage interne d'un echangeur de chaleur.
WO1995030469A1 (fr) Procede et dispositif pour extraire par adsorption selective un compose hydrocarbone volatil d'un melange gazeux, et applications
FR2719039A1 (fr) Nouveau procédé de déshydratation d'alcool par adsorption/regénération sur tamis moléculaire, et installation pour sa mise en Óoeuvre.
FR3041546B1 (fr) Procede et systeme de nettoyage d'un filtre a particules
EP1530697B1 (fr) Procédé et dispositif de séparation ou de purification d'un fluide
EP1064105B1 (fr) Dispositif et procede de nettoyage de pieces de travail
EP1106235A1 (fr) Installation et procédé de séparation de gaz par perméation sélective
FR2790545A1 (fr) Dispositif pour l'extraction de chaleur a partir d'un gaz et four equipe du dispositif
FR3132032A1 (fr) Procédé et système de capture de dioxyde de carbone
FR2790544A1 (fr) Dispositif pour l'extraction de chaleur a partir de gaz et four equipe du dispositif
WO2023111425A1 (fr) Installation de traitement d'un gaz effluent pollué

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR BY CN CZ ID JP KP KR NO PL RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000900529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09890187

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000900529

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000900529

Country of ref document: EP