WO1999046544A1 - Coolant distributor, and air conditioner using it - Google Patents

Coolant distributor, and air conditioner using it Download PDF

Info

Publication number
WO1999046544A1
WO1999046544A1 PCT/JP1998/001066 JP9801066W WO9946544A1 WO 1999046544 A1 WO1999046544 A1 WO 1999046544A1 JP 9801066 W JP9801066 W JP 9801066W WO 9946544 A1 WO9946544 A1 WO 9946544A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
distributor
air conditioner
outflow
Prior art date
Application number
PCT/JP1998/001066
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Kubota
Toshio Hatada
Naoki Shikazono
Hiroshi Iwata
Kensaku Oguni
Takao Sensyu
Kunio Fujie
Hiroo Nakamura
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1998/001066 priority Critical patent/WO1999046544A1/en
Publication of WO1999046544A1 publication Critical patent/WO1999046544A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence

Definitions

  • the present invention relates to a distributor or heat exchanger that divides a refrigerant into a plurality of flow paths and an air conditioner using the same, and is suitable for making the refrigerant uniform, improving the performance, and making the refrigerant compact. .
  • a refrigerant branch generally uses, for example, a branch pipe 4 as shown in FIG. 20, and the branch pipe 4 simply connects the inflow pipe 5 and the outflow pipe 8 spatially. .
  • a distributor in which perforated plates are laminated is known, for example, as described in Japanese Patent Application Laid-Open No. Hei 6-229656.
  • the distributor according to the prior art is composed of a perforated plate having a larger number of holes than the number of branches, a collecting plate for collecting a plurality of refrigerants passing through the perforated plate, and the like.
  • the liquid phases are separated by the action of gravity, and each phase is branched by a perforated plate.
  • the branched refrigerants of each phase are combined at the collecting plate so that the total cross-sectional area of the holes is equally divided for each flow path, and is guided to the outflow pipe. Since the apparatus shown in FIG. 20 does not have a mechanism for controlling the refrigerant, there is a problem that the distribution amount of the refrigerant becomes non-uniform, and the distribution becomes more non-uniform as the number of branches increases.
  • An object of the present invention is to provide a distributor in which the pressure loss is suppressed, the distribution of the refrigerant is improved unevenly over a wide range of operating conditions that does not affect the type and installation state of the refrigerant, and the amount of refrigerant used with high efficiency using the distributor is small.
  • An object of the present invention is to provide a refrigerant-saving air conditioner.
  • the present invention does not change the distribution characteristics even for refrigerants that cannot be treated as a single component such as non-azeotropic refrigerants (for example, R407C) due to the demand for environmental protection.
  • An object of the present invention is to provide a high distributor and an air conditioner using the same.
  • the present invention provides a refrigerant distributor in which a flow path through which a refrigerant flows in from one side and a flow path out of the other side is formed by a pair of plate members.
  • the refrigerant distributor is formed by the plate-shaped member, there is no three-dimensional meandering of the refrigerant, the pressure loss can be suppressed, and the number of flow paths can be easily increased or decreased. Therefore, the uniformity of distribution can be set freely.
  • the portion into which the refrigerant flows is branched into a plurality of parts, by increasing the number of branches, errors per branch are absorbed as a whole, and the influence of processing and assembly errors is suppressed. Can be.
  • the branched refrigerants are merged, and the merged refrigerants are branched and flow out, the non-uniform refrigerant masses in the respective flow paths at the merging portion directly collide with each other.
  • the exchange of the amount of refrigerant movement is promoted, and the amount of refrigerant can be made uniform.
  • the distribution of the refrigerant can be made uniform under a wide range of operating conditions that do not affect the type and installation state of the refrigerant while suppressing the pressure loss, and the amount of the refrigerant used with high efficiency can be reduced.
  • the present invention provides a refrigerant distributor having a flow path from an inflow pipe to an outflow pipe, wherein the inflow pipe into which the refrigerant flows is connected to one side, and a plurality of outflow pipes is connected to the other side.
  • the refrigerant is branched off by the flow paths provided in excess of the number of the outflow pipes, so that each flow path is at least smaller than the size of the outflow pipe.
  • the influence of gravity as an external force acting on the refrigerant is reduced, and the non-uniformity of each phase or each substance due to the density difference in the refrigerant can be prevented. Can be handled uniformly. Accordingly, distribution of the refrigerant with good reproducibility and its control can be performed.
  • the present invention relates to a refrigerant distributor having a flow path from an inflow pipe to an outflow pipe, wherein one side is connected to an inflow pipe through which a refrigerant flows, and the other side is connected to a plurality of outflow pipes. It has an outflow pipe with a diameter of 15 mm or less, and a flow path with a diameter of 2 mm or more and 8 mm or less and more than the number of outflow pipes. They are merged and discharged.
  • the diameter of the flow path should be 2 mm or more and 8 mm or less, and by increasing the number of outflow pipes more than the number of outflow pipes, air conditioning for business use
  • air conditioners package air conditioners
  • room air conditioners the pressure loss can be suppressed even when the capacity is taken into consideration, and the uneven distribution of refrigerant can be improved and the amount of refrigerant used can be reduced over a wide range of operating conditions.
  • the present invention has a compressor, an expansion valve, a heat exchanger, and a refrigerant distributor, and in an air conditioner in which the refrigerant circulates, a flow path through which the refrigerant flows in from one side and flows out from the other side is a pair.
  • the distribution of the refrigerant can be made uniform under a wide range of operating conditions that do not affect the type and installation state of the refrigerant, and the amount of the refrigerant used can be reduced.
  • the present invention provides an air conditioner having a compressor, a heat exchanger, and an expansion valve, in which a refrigerant circulates, one of which is connected to an inflow pipe through which the refrigerant flows, and the other of which is connected to a plurality of outflow pipes.
  • the flow path from the inflow pipe to the outflow pipe includes a heat exchanger formed by a plate-like member, and a flow path provided with more than the number of outflow pipes.
  • the refrigerant branched and branched by the passage merges into the outflow pipe through a plurality of flow paths and flows out.
  • the present invention has a compressor, a heat exchanger, and an expansion valve, and the refrigerant circulates.
  • a heat exchanger having a flow path from the inflow pipe to the outflow pipe connected to one of the inflow pipes through which the refrigerant flows and the other to which a plurality of outflow pipes are connected, and having a diameter of 4 mm or more. It has an outflow pipe with a diameter of 15 mm or less, and a flow path with a diameter of 2 mm or more and 8 mm or less and more than the number of outflow pipes. They are merged and discharged.
  • the present invention has a compressor, an expansion valve, a heat exchanger, and a refrigerant distributor, and in an air conditioner in which the refrigerant circulates, the refrigerant that is a non-azeotropic mixed refrigerant and the refrigerant flow in from the opposite direction
  • a flow path flowing out from the other side is provided with a refrigerant distributor formed by a pair of plate members.
  • FIG. 2 is a perspective view of the refrigerant distributor according to the first embodiment
  • FIG. 1 is a plan view of a small-diameter flow path group of the refrigerant distributor according to the second embodiment
  • FIG. FIG. 4 is a cross-sectional view of the refrigerant distributor according to the second embodiment
  • FIG. 5 is a refrigerant distribution according to the second embodiment
  • FIG. 6 is a cross-sectional view of the refrigerant distributor according to the second embodiment
  • FIG. 7 is a perspective view of the refrigerant distributor according to the third embodiment
  • FIG. FIG. 9 is a plan view of a small diameter channel group of the refrigerant distributor according to the fourth embodiment of the refrigerant distributor according to the embodiment
  • FIG. 11 is a cross-sectional view of a refrigerant distributor of an embodiment showing a modification of the fourth embodiment.
  • FIG. 11 is a cross-sectional view of a refrigerant distributor of the embodiment showing a modification of the first to fourth embodiments.
  • Figure 12 shows the fifth fruit.
  • Sectional side view of a refrigerant distributor according to example 1 3 the flow path cross-sectional view of the refrigerant distributor according to a fifth embodiment
  • FIG 4 Is a cross-sectional view of a refrigerant distributor according to an embodiment showing a modification of the fifth embodiment
  • FIG. 15 is a side cross-sectional view of the refrigerant distributor according to the sixth embodiment
  • FIG. 17 is a side sectional view of the refrigerant distributor according to the seventh embodiment
  • FIG. 18 is a side sectional view of the refrigerant distributor according to the seventh embodiment
  • FIG. 19 is a block diagram showing a configuration of an air conditioner according to an embodiment
  • FIG. 20 is a perspective view of a refrigerant distributor for a heat exchanger according to a conventional technique.
  • air conditioners have been required to save energy and save coolant in order to protect the global environment.
  • air conditioners are to be equipped with refrigerant circuits with multiple parallel coolant channels. This is desirable.
  • room-eacons use a configuration in which a plurality of small-diameter tubes are used as heat transfer tubes for a heat exchanger and divided into appropriate paths to maximize heat exchange performance.
  • a distributor 6a according to a first embodiment of the present invention will be described with reference to FIGS.
  • the distributor 66a is manufactured by bonding a plate 601 formed with a groove-shaped small-diameter flow path group 7 and a plate-shaped plate 602 by brazing or the like.
  • the inlet pipe 5 and the outlet pipe 8 via the diffuser 14 are connected by brazing or the like so as to communicate with the internal flow path of the distributor 6a.
  • the small-diameter flow path group 7 formed on the same plane by pressing or the like on the plate 601 has an inlet branch 7a, a straight flow path 7b, and an outlet branch 7d.
  • the number of the straight flow paths 7b is larger than that of the outflow pipes 8, and in the first embodiment, the number of the outflow pipes 8 is set to 12 in comparison with four.
  • the representative diameter of the straight flow path 7b is such that the sum of the cross-sectional areas of all the flow paths is larger than the cross-sectional area of the inlet pipe 5 or the outlet pipe 8. Therefore, the size of the distributor 6a is proportional to the size of the diameter of the target refrigerant circuit pipe (the inlet pipe 5 or the outlet pipe 8). For example, when the distributor 6a is used for a room air conditioner, the diameter of the outflow pipe 8 is about 4 to 15 mm, the typical diameter of the straight flow path 7b is about 2 to 8 mm, and the length is about 10 to 40 mm .
  • the number of the straight flow path 7b is larger than that of the outflow pipe 8, and the refrigerant flowing from the inflow pipe 5 is guided along the inlet branch 7a, the straight flow path 7b, and mixed at the outlet branch 7d. After that, it is discharged from each outflow pipe 8. In this process, distribution unevenness due to a processing error or the like is suppressed in the entrance branch portion 7a. Since the small-diameter flow path group 7 is integrally formed on the plate 601, the distributor 6a has a small number of parts and does not have a three-dimensional meandering refrigerant. Therefore, the pressure loss of the refrigerant is low and an extremely thin shape is possible.
  • FIG. 1 The only difference from the first embodiment is the shape of the small-diameter flow path group 7 formed in the plate 601. As shown in FIG. 6, it is desirable that the cross section of the small diameter channel group 7 is cylindrical.
  • the straight flow paths 7b are respectively arranged in parallel, and have a junction / branch 7c in the middle of the flow paths. In the present embodiment, all the straight flow paths 7b are guided to the same junction ⁇ branching section 7c, but a shape in which a part of the straight flow path 7b merges and branches may be used.
  • the branching portion 7c is arranged such that fluid masses ejected from the straight flow path 7b directly collide with each other to promote momentum exchange. Therefore, the amount of the refrigerant is equalized, and the refrigerant is evenly distributed in the outflow pipe 8, and although there is collision between the refrigerants or deflection of the refrigerants, the amount is small and the pressure loss can be reduced.
  • the installation position of the distributor 6b may be vertical or horizontal with respect to gravity.
  • the number of the straight flow paths 7b is equal to the number of the outflow pipes 8, but the number of the straight flow paths 7b is larger. It is good to configure with the number.
  • the straight flow path 7b may be configured in a three-dimensional manner, such as a cylindrical pipe.
  • the distributor 6c is the same as the first embodiment except for the shape of the plate 601.
  • the small-diameter flow path group 7 has a flow path cross-sectional shape similar to that of the first or second embodiment, and includes an inlet branch 7a, a straight flow path 7b, and a junction / branch 7c. Have.
  • the straight flow passages 7b which are larger than the outflow pipes 8, are arranged in a mesh form to form a plurality of junctions / branches 7c.
  • the junction / branch 7c is arranged such that fluid masses ejected from the straight flow path 7b directly collide with each other to promote momentum exchange.
  • the non-uniform refrigerant joins along the straight flow path 7b ⁇ is guided to the branch part 7c. Due to repeated mixing and re-branching, it is evenly distributed in the outflow pipe 8.
  • the installation posture of the distributor 6c can be either vertical or horizontal with respect to gravity as in the second embodiment.
  • the representative diameter of the straight flow path 7b is sufficiently smaller than the representative diameter of the inflow pipe 5 and the outflow pipe 8, and the number of the straight flow paths 7b is arranged sufficiently.
  • a structure in which a plurality of straight flow path portions 7b are bundled and led to the outflow pipe 8 is further improved, and the uniformity of the coolant distribution is further improved.
  • the third embodiment has a combination of the mechanisms shown in the first and second embodiments, and has a shape in which the refrigerant repeatedly joins and branches.
  • the distributor 6c has a feature that it has a larger number of junctions and branches than other shapes, and therefore has good reproducibility.
  • the distributor 6d differs from the second embodiment only in the shape of the plate 61.
  • a small-diameter flow passage group 7 having a larger number than the outflow pipe 8 is used, and the number of junctions and branches 7c is larger than that in the second embodiment. Therefore, the joining and branching of the refrigerant are repeatedly performed, and the distribution is further equalized.
  • This shape has a smaller number of branches than the third embodiment, so that the pressure loss can be reduced.
  • the plate 602 has been described as a plate-shaped member. However, as shown in the cross-sectional view of FIG. 7 may be provided. Further, when the plates 61 and 62 are joined, if the small-diameter flow path groups 7 of the two do not overlap, the effect of improving the distribution is further enhanced.
  • the plate 62 into a concave shape. This shape reduces distribution uniformity, but increases the cross-sectional area of the flow path and reduces pressure loss.
  • the small-diameter flow path group is formed by forming grooves on the plate 61 or 602, but combining a circular pipe or the like. It is also good to mold.
  • a fifth embodiment of the present invention will be described with reference to FIGS.
  • a plate 601 is inserted into a plate 602 formed into a cylindrical shape, and the inflow pipe 5 and the outflow pipe 8 are joined to each other via a diffuser 14 by means of a mouth.
  • the plate 601 has the small diameter channel group 7 as described in the first to fourth embodiments. Therefore, it is the same as that already described for the improvement of the refrigerant distribution unevenness.
  • the distributor 6e of the present embodiment is cylindrically deformed so that the plate 601 has a symmetric axis in the refrigerant flow direction. Therefore, the installation area is small, the outer shape is compact, and the inflow pipe 5 and the outflow pipe 8 are parallel to each other. Further, as shown in FIG. 14, when the plate 61 is formed into a cylindrical shape, the small-diameter flow path group 7 may be oriented in the opposite direction. In this case, even if plate 602 is omitted, Some improvement in non-uniform distribution can be expected.
  • the distributor 6f is obtained by rounding a plate 601 provided with the small-diameter flow path 7 in a spiral shape along the refrigerant flow direction, and integrating both ends by brazing or the like.
  • the inflow pipe 5 may be connected to the cover 10, but may be connected so as to be inserted into the center of the plate 601 as shown in FIG.
  • the refrigerant that has flowed in from the inflow pipe 5 changes its direction at the inlet branch portion 7a, and flows down spirally along the small-diameter flow path group 7 formed in the plate 601.
  • the distributor 6 f can be shortened in the longitudinal direction by the number of turns of the plate 601, and is more compact than the fifth embodiment. Further, by adjusting the length of the plate 601, there is an advantage that the number of the merging and branching portions 7c can be adjusted and the degree of improvement of the refrigerant distribution unevenness can be easily set.
  • the small-diameter flow path 7 may be directed outward and the plate 602 may be formed as an outer wall, as in the fifth embodiment shown in FIG.
  • the distributor 6 g is obtained by laminating a plurality of plates 601 having the small-diameter flow paths 7 in the case 9 and joining the case 9 and the cover 10 together by a mouth or the like.
  • the small diameter channel group 7 may be formed on both sides of the plate 601.
  • the plates 601 are stacked in the thickness direction by alternately shifting the installation positions with respect to the flow direction.
  • the refrigerant flowing in from the inflow pipe 5 flows down the meandering small-diameter flow path group 7 formed in the plate 601, and in the process, the uneven distribution of the refrigerant is improved.
  • the distributor 6 g has a small installation area and can be installed in a small space as compared with the first and second embodiments.
  • the number of the plates 601 can be adjusted, and the pressure loss can be easily adjusted.
  • the number of parts is increased as compared with the fifth and sixth embodiments, it is possible to make it easier to process.
  • the number of inflow pipes 5 is described as one, but a plurality of inflow pipes 5 may be used.
  • Fig. 19 shows a case where the room is heated, consisting of a compressor 11, an indoor heat exchanger 1 a, an outdoor heat exchanger 1 b, a refrigerant distributor 6, an expansion valve 12, and a refrigerant circuit 13. Is done. Since the plurality of outdoor heat exchangers 1b are used, the distributor 6 is provided in the middle of the refrigerant circuit 13 upstream thereof.
  • the distributor 6 eliminates the difference between the refrigerant flow rates of the outlet pipes 8, so that the capacity of the outdoor heat exchanger 1b can be used without loss, and the performance of the air conditioner can be improved. Since no extra refrigerant is required, it is also desirable to save refrigerant.
  • a refrigerant distributor in an air conditioner including a compressor, a heat exchanger, a refrigerant distributor, a refrigerant circuit, and the like has been described. It goes without saying that it can be applied. Furthermore, due to the demand for environmental protection, even for refrigerants that cannot be treated as a single component, such as non-azeotropic refrigerants (for example, R407C), the distribution characteristics are not changed, and versatility is high. It can be something.
  • non-azeotropic refrigerants for example, R407C
  • the refrigerant distributor is formed by the plate-shaped member, the pressure loss can be suppressed, the number of channels can be easily increased and decreased, and the uniformity of distribution can be freely set. Can be set to Therefore, the distribution of the refrigerant can be made uniform under a wide range of use conditions that do not affect the type of the refrigerant or the installation state, and the amount of the refrigerant to be used can be reduced.
  • the refrigerant is branched by the flow path provided with more than the number of outflow pipes, it is possible to prevent unevenness of each phase or each substance due to a density difference in the refrigerant. Distribution of refrigerant with good reproducibility and its control I can do it.
  • the diameter of the flow path is set to 2 mm or more and 8 mm or less for an outflow pipe having a diameter of 4 mm or more and 15 mm or less, so that the number of outflow pipes is larger than the number of outflow pipes. Therefore, in the case of a commercial air conditioner (package air conditioner) or a room air conditioner, uneven distribution of the refrigerant can be improved under a wide range of use conditions.
  • the arrangement of the plurality of flow paths can be freely changed, so that a form suitable for the installation space can be adopted.
  • An efficient air conditioner can be obtained.
  • a distributor capable of uniformly distributing refrigerant without being affected by the type and installation state of the refrigerant while suppressing pressure loss, and the amount of refrigerant used with high efficiency using the distributor. It is possible to obtain a refrigerant-saving air conditioner with a small amount.

Abstract

A coolant distributor (6a) whose passage where coolant flows in from one end and flows out from the other is formed by a pair of plate members comprises an inlet branching section (7b) for branching the part where the coolant flows in into a plurality of parts; a confluent section (7c) for bringing together the coolant branched by the inlet branching section (7c); and an outlet branching section (7d) for branching the coolant brought together by the confluent section (7c) and letting it out. Thereby are provided a distributor achieving improvement of uneven distribution of coolant in a wide range of conditions of use unaffected by the type of coolant and the state of installation while keeping the pressure loss low, and an air conditioner using it, which can be operated at high efficiency and uses a smaller volume of coolant.

Description

明 細 書  Specification
冷媒分配器及びそれを用いた空気調和機 技術分野  Refrigerant distributor and air conditioner using the same
本発明は、 複数の流路に冷媒を分流する分配器あるいは熱交換器及 びそれを用いた空気調和機に関し、 冷媒を均一にして性能を向上し、 かつコンパク トにするものに好適である。  The present invention relates to a distributor or heat exchanger that divides a refrigerant into a plurality of flow paths and an air conditioner using the same, and is suitable for making the refrigerant uniform, improving the performance, and making the refrigerant compact. .
背景技術 Background art
従来、 冷媒分岐は、 例えば図 2 0 に示すよ う な分岐管 4 を用いるの が一般的であり 、 分岐管 4 は、 単に流入管 5 と流出管 8 を空間的に接 続したものである。  Conventionally, a refrigerant branch generally uses, for example, a branch pipe 4 as shown in FIG. 20, and the branch pipe 4 simply connects the inflow pipe 5 and the outflow pipe 8 spatially. .
冷媒の不均一な分配を改善する分岐機構と して、 多孔板を積層する 分配器が、 例えば特開平 6 - 2 2 9 6 5 1 号公報に記載のよ う に知ら れている。 本従来技術の分配器は、 分岐数よ り も多数の孔を有す多孔 板と、 多孔板を通過した複数の冷媒を集合する集合板等よ り構成され、 分配器入り 口で気相と液相を重力の作用で分離し、 各相それぞれを多 孔板によ り分岐する。 分岐された各相の冷媒は、 各流路毎に、 孔の総 断面積が等分されるよ うに集合板で合流させ、 流出管へ導かれる。 上記の図 2 0に示したものは、 冷媒を制御する機構を持たないため、 冷媒分配量が不均一となり 、 分岐数の増加に伴って、 よ り一層不均一 となる問題がある。  As a branching mechanism for improving the uneven distribution of the refrigerant, a distributor in which perforated plates are laminated is known, for example, as described in Japanese Patent Application Laid-Open No. Hei 6-229656. The distributor according to the prior art is composed of a perforated plate having a larger number of holes than the number of branches, a collecting plate for collecting a plurality of refrigerants passing through the perforated plate, and the like. The liquid phases are separated by the action of gravity, and each phase is branched by a perforated plate. The branched refrigerants of each phase are combined at the collecting plate so that the total cross-sectional area of the holes is equally divided for each flow path, and is guided to the outflow pipe. Since the apparatus shown in FIG. 20 does not have a mechanism for controlling the refrigerant, there is a problem that the distribution amount of the refrigerant becomes non-uniform, and the distribution becomes more non-uniform as the number of branches increases.
また、 特開平 6 — 2 2 9 6 5 1号公報に記載の多孔板を積層するも のは分配器入り 口で重力の作用を利用 して気相と液相を分離するため、 設置誤差などに対する許容度が低く 、 加工精度によって大き く 特性が 異なり、 均等分配に対する信頼性が充分とは言い難い。 さ らに、 部品 点数が多い上、 三次元的で複雑な内部流路となるため、 冷媒が壁面と 衝突する個所が多く 、 圧力損失が高く なる。 さ らに、 冷媒の気相と液相の分布状態によ り 、 分配特性が大き く 変 ィ匕し、 非共沸混合冷媒等の冷媒では、 相分布が不均一になるのに加え、 各物質の濃度の不均一分布も性能に影響する問題もある。 In the case of stacking the perforated plates described in Japanese Patent Application Laid-Open No. 6-2299651, the gas phase and the liquid phase are separated by the action of gravity at the inlet of the distributor. And the characteristics vary greatly depending on the processing accuracy, and it is hard to say that the reliability for uniform distribution is sufficient. Furthermore, since the number of parts is large and the internal flow path is three-dimensional and complicated, there are many places where the refrigerant collides with the wall surface, and the pressure loss increases. Furthermore, the distribution characteristics vary greatly depending on the distribution of the gaseous phase and the liquid phase of the refrigerant. In addition to the non-uniform phase distribution of refrigerants such as non-azeotropic refrigerant mixtures, There is also a problem that the uneven distribution of the concentration of the substance affects the performance.
本発明の目的は、 圧力損失を抑えつつ、 冷媒の種類や設置状態など に影響しない広い使用条件で冷媒の不均一分配を改善した分配器及び それを用いた高効率で使用する冷媒量の少ない省冷媒の空気調和機を 提供するこ とにある。  An object of the present invention is to provide a distributor in which the pressure loss is suppressed, the distribution of the refrigerant is improved unevenly over a wide range of operating conditions that does not affect the type and installation state of the refrigerant, and the amount of refrigerant used with high efficiency using the distributor is small. An object of the present invention is to provide a refrigerant-saving air conditioner.
また、 本発明は環境保護への要求から非共沸混合冷媒 (例えば R 4 0 7 C ) のよ う に単一成分と して扱えない冷媒に対しても分配特性の 変わらない、 汎用性の高い分配器及びそれを用いた空気調和機を提供 することにある。  In addition, the present invention does not change the distribution characteristics even for refrigerants that cannot be treated as a single component such as non-azeotropic refrigerants (for example, R407C) due to the demand for environmental protection. An object of the present invention is to provide a high distributor and an air conditioner using the same.
発明の開示 Disclosure of the invention
上記目的を達成するため本発明は、 冷媒がー方から流入し他方よ り 流出する流路がー対の板状部材によって形成される冷媒分配器におい て、 冷媒が流入する部分を複数に分岐する入口分岐部と、 入口分岐部 によって分岐された冷媒を合流する合流部と、 合流部によって合流さ れた冷媒を分岐して流出する出口分岐部とを備えたものである。  In order to achieve the above object, the present invention provides a refrigerant distributor in which a flow path through which a refrigerant flows in from one side and a flow path out of the other side is formed by a pair of plate members. An inlet branch portion, a merging portion for merging the refrigerant branched by the inlet branch portion, and an outlet branch portion for branching and flowing out the refrigerant merged by the merging portion.
これによ り、 冷媒分配器は板状部材によって形成されるので、 冷媒 の三次元的な蛇行がなく 、 圧力損失を抑え、 流路数の増減を容易にで きる。 よって、 分配の均一度を自由に設定するこ とができる。 また、 冷媒が流入する部分は複数に分岐されるので、 分岐数を増加するこ と によ り、 一分岐当たり の誤差を全体と して吸収し、 加工や組み立ての 誤差の影響を抑制する こ とができる。 さ らに、 分岐された冷媒を合流 し、 合流された冷媒を分岐して流出するので、 合流部で各流路におけ る不均一となった冷媒の塊はそれぞれ直接衝突する。 よて、 冷媒の運 動量の交換が促進され、 冷媒量を均一化することができる。 以上よ り 、 圧力損失を抑えつつ、 冷媒の種類や設置状態などに影響 しない広い使用条件で冷媒の分配を均一にし、 高効率で使用する冷媒 量を少なくすることができる。 Accordingly, since the refrigerant distributor is formed by the plate-shaped member, there is no three-dimensional meandering of the refrigerant, the pressure loss can be suppressed, and the number of flow paths can be easily increased or decreased. Therefore, the uniformity of distribution can be set freely. In addition, since the portion into which the refrigerant flows is branched into a plurality of parts, by increasing the number of branches, errors per branch are absorbed as a whole, and the influence of processing and assembly errors is suppressed. Can be. Furthermore, since the branched refrigerants are merged, and the merged refrigerants are branched and flow out, the non-uniform refrigerant masses in the respective flow paths at the merging portion directly collide with each other. Therefore, the exchange of the amount of refrigerant movement is promoted, and the amount of refrigerant can be made uniform. As described above, the distribution of the refrigerant can be made uniform under a wide range of operating conditions that do not affect the type and installation state of the refrigerant while suppressing the pressure loss, and the amount of the refrigerant used with high efficiency can be reduced.
また、 本発明は、 一方に冷媒が流入する流入管が接続され他方に複 数の流出管が接続され、 流入管から流出管に至る流路を有する冷媒分 配器において、 板状部材によって形成され流出管の本数よ り も多く 設 けられた流路と を備え、 前記流入管よ り流入する冷媒は流路によって 分岐され、 分岐された冷媒は複数の流路ょ り前記流出管へ合流して流 出するものである。  Also, the present invention provides a refrigerant distributor having a flow path from an inflow pipe to an outflow pipe, wherein the inflow pipe into which the refrigerant flows is connected to one side, and a plurality of outflow pipes is connected to the other side. A flow path provided with more than the number of outflow pipes, wherein the refrigerant flowing in from the inflow pipe is branched by the flow path, and the branched refrigerant joins the outflow pipe through a plurality of flow paths. It flows out.
これによ り、 冷媒は流出管の本数よ り も多く 設けられた流路によ り 分岐されるので、 各流路は少なく と も流出管の寸法よ り も小さ くする こ とになる。 そ して、 冷媒に働く外力と しての重力の影響が減少し、 冷媒内の密度差に起因する各相あるいは各物質の不均一を防ぐこ とが でき、 かつ小径の流路内では統計的に均等な取り扱いができる。 よつ て、 再現性よい冷媒の分配及びその制御ができる。  As a result, the refrigerant is branched off by the flow paths provided in excess of the number of the outflow pipes, so that each flow path is at least smaller than the size of the outflow pipe. In addition, the influence of gravity as an external force acting on the refrigerant is reduced, and the non-uniformity of each phase or each substance due to the density difference in the refrigerant can be prevented. Can be handled uniformly. Accordingly, distribution of the refrigerant with good reproducibility and its control can be performed.
さ らに、 本発明は一方に冷媒が流入する流入管が接続され他方に複 数の流出管が接続され、 流入管から流出管に至る流路を有する冷媒分 配器において、 直径が 4 m m以上 1 5 m m以下と された流出管と、 直 径が 2 m m以上 8 m m以下と され流出管の本数よ り も多く設けられた 流路とを備え、 冷媒は複数の流路よ り流出管へ合流して流出される も のである。  Further, the present invention relates to a refrigerant distributor having a flow path from an inflow pipe to an outflow pipe, wherein one side is connected to an inflow pipe through which a refrigerant flows, and the other side is connected to a plurality of outflow pipes. It has an outflow pipe with a diameter of 15 mm or less, and a flow path with a diameter of 2 mm or more and 8 mm or less and more than the number of outflow pipes. They are merged and discharged.
直径が 4 m m以上 1 5 m m以下の流出管に対して流路の直径を 2 m m以上 8 m m以下と し、 流出管の本数よ り も多くする こ とによ り、 業 務用の空気調和機 (パッケージエアコン) あるいはルームエアコンの 場合、 その能力を考慮しても圧力損失を抑え、 広い使用条件で冷媒の 不均一分配を改善し使用する冷媒量を少なくすることができる。 さ らに、 本発明は圧縮機、 膨張弁、 熱交換器及び冷媒分配器を有し、 冷媒が循環する空気調和機において、 冷媒がー方から流入し他方よ り 流出する流路がー対の板状部材によって形成される冷媒分配器を有し、 該冷媒分配器は、 冷媒が流入する部分を複数に分岐する入口分岐部と、 該入口分岐部によって分岐された冷媒を合流する合流部と、 該合流部 によって合流された冷媒を分岐して流出する出口分岐部とを備えたも のである。 For air outlets with a diameter of 4 mm or more and 15 mm or less, the diameter of the flow path should be 2 mm or more and 8 mm or less, and by increasing the number of outflow pipes more than the number of outflow pipes, air conditioning for business use In the case of air conditioners (package air conditioners) or room air conditioners, the pressure loss can be suppressed even when the capacity is taken into consideration, and the uneven distribution of refrigerant can be improved and the amount of refrigerant used can be reduced over a wide range of operating conditions. Furthermore, the present invention has a compressor, an expansion valve, a heat exchanger, and a refrigerant distributor, and in an air conditioner in which the refrigerant circulates, a flow path through which the refrigerant flows in from one side and flows out from the other side is a pair. A refrigerant distributor formed by the plate-shaped member of the above, wherein the refrigerant distributor comprises: an inlet branch portion for branching a portion into which the refrigerant flows into a plurality of portions; and a merging portion for joining the refrigerant branched by the inlet branch portion. And an outlet branching portion for branching and flowing out the refrigerant merged by the merging portion.
これによ り、 流路数の増減及び分岐数を増加することが容易となり、 一分岐当たり の誤差を全体と して吸収して加工や組み立ての誤差の影 響を抑制するこ とができる。 よって、 冷媒の種類や設置状態などに影 響しない広い使用条件で冷媒の分配を均一に し、 使用する冷媒量を少 なくすることができる。  This makes it easy to increase or decrease the number of flow paths and increase the number of branches, thereby absorbing errors per branch as a whole and suppressing the effects of processing and assembly errors. Therefore, the distribution of the refrigerant can be made uniform under a wide range of operating conditions that do not affect the type and installation state of the refrigerant, and the amount of the refrigerant used can be reduced.
以上によ り 、 非共沸混合冷媒のよ う に単一成分と して扱えない冷媒 に対しても分配特性の変わらない、 汎用性の高いものとするこ とがで きる。  As described above, even for a refrigerant that cannot be treated as a single component, such as a non-azeotropic refrigerant mixture, it is possible to obtain a highly versatile refrigerant with the same distribution characteristics and no change in distribution characteristics.
さ らに本発明は、 圧縮機、 熱交換器及び膨張弁を有し、 冷媒が循環 する空気調和機において、 一方に冷媒が流入する流入管が接続され他 方に複数の流出管が接続され流入管から流出管に至る流路は板状部材 によつて形成された熱交換器と、 流出管の本数よ り も多く設けられた 流路とを備え、 流入管よ り流入する冷媒は流路によって分岐され、 分 岐された冷媒は複数の流路ょ り流出管へ合流して流出するものである。 これによ り 、 分配器あるいは熱交換器において、 複数の流路の配置 を自由に変更できるため、 設置スペースに適した形態を採る こ とがで きる。 例えば、 流路群を平面状に配置すれば、 極めて薄い形状となる。 よって、 コンパク トで高効率な空気調和機とすることができる。  Further, the present invention provides an air conditioner having a compressor, a heat exchanger, and an expansion valve, in which a refrigerant circulates, one of which is connected to an inflow pipe through which the refrigerant flows, and the other of which is connected to a plurality of outflow pipes. The flow path from the inflow pipe to the outflow pipe includes a heat exchanger formed by a plate-like member, and a flow path provided with more than the number of outflow pipes. The refrigerant branched and branched by the passage merges into the outflow pipe through a plurality of flow paths and flows out. Thereby, in the distributor or the heat exchanger, the arrangement of the plurality of flow paths can be freely changed, so that a form suitable for the installation space can be adopted. For example, if the channels are arranged in a plane, the shape becomes extremely thin. Therefore, a compact and highly efficient air conditioner can be obtained.
さ らに、 本発明は圧縮機、 熱交換器及び膨張弁を有し、 冷媒が循環 する空気調和機において、 一方に冷媒が流入する流入管が接続され他 方に複数の流出管が接続され流入管から流出管に至る流路を有する前 記熱交換器と、 直径が 4 m m以上 1 5 m m以下と された流出管と、 直 径が 2 m m以上 8 m m以下と され流出管の本数よ り も多く設けられた 流路とを備え、 冷媒は複数の流路よ り流出管へ合流して流出されるも のである。 Further, the present invention has a compressor, a heat exchanger, and an expansion valve, and the refrigerant circulates. A heat exchanger having a flow path from the inflow pipe to the outflow pipe connected to one of the inflow pipes through which the refrigerant flows and the other to which a plurality of outflow pipes are connected, and having a diameter of 4 mm or more. It has an outflow pipe with a diameter of 15 mm or less, and a flow path with a diameter of 2 mm or more and 8 mm or less and more than the number of outflow pipes. They are merged and discharged.
さ らに、 本発明は圧縮機、 膨張弁、 熱交換器及び冷媒分配器を有し、 冷媒が循環する空気調和機において、 非共沸混合冷媒と された冷媒と、 冷媒がー方から流入し他方よ り流出する流路がー対の板状部材によつ て形成される冷媒分配器を備えたものである。  Further, the present invention has a compressor, an expansion valve, a heat exchanger, and a refrigerant distributor, and in an air conditioner in which the refrigerant circulates, the refrigerant that is a non-azeotropic mixed refrigerant and the refrigerant flow in from the opposite direction In addition, a flow path flowing out from the other side is provided with a refrigerant distributor formed by a pair of plate members.
これによ り、 オゾン層破壊の恐れの少ない非共沸混合冷媒及びそれ に適した冷媒を用い、 冷媒の量そのものも少なく でき るので、 環境保 護への対応と して好適なものとすることができる。  This makes it possible to use a non-azeotropic refrigerant with low risk of depletion of the ozone layer and a refrigerant suitable for it, and to reduce the amount of refrigerant itself, making it suitable for environmental protection. be able to.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 2は、 第 1 の実施例に係る冷媒分配器の斜視図、 図 1 は、 第 2 の 実施例に係る冷媒分配器の、 小径流路群の平面図、 図 3 は、 第 1 の実 施例に係る冷媒分配器の、 小径流路群の平面図、 図 4 は、 第 2の実施 例に係る冷媒分配器の流路断面図、 図 5は、 第 2の実施例に係る冷媒 分配器の斜視図、 図 6 は、 第 2 の実施例に係る冷媒分配器の流路断面 図、 図 7 は、 第 3の実施例に係わる冷媒分配器の斜視図、 図 8 は、 第 3の実施例に係る冷媒分配器の、 小径流路群の平面図、 図 9 は、 第 4 の実施例に係る冷媒分配器の、 小径流路群の平面図、 図 1 0 は、 第 1 から第 4 の実施例の変形例を示す実施例の冷媒分配器の流路断面図、 図 1 1 は、 第 1 から第 4の実施例の変形例を示す実施例の冷媒分配器 の流路断面図、 図 1 2 は、 第 5 の実施例に係わる冷媒分配器の側断面 図、 図 1 3は、 第 5の実施例に係る冷媒分配器の流路断面図、 図 1 4 は、 第 5 の実施例の変形例を示す実施例の冷媒分配器の流路断面図、 図 1 5 は、 第 6 の実施例に係わる冷媒分配器の側断面図、 図 1 6 は、 第 6の実施例に係る冷媒分配器の流路断面図、 図 1 7 は、 第 7の実施 例に係わる冷媒分配器の側断面図、 図 1 8 は、 第 7の実施例に係る冷 媒分配器の断面図、 図 1 9 は、 実施例に係る空気調和機の構成を示す ブロ ック図、 図 2 0は、 従来技術に係る熱交換器用冷媒分配器の斜視 図である。 FIG. 2 is a perspective view of the refrigerant distributor according to the first embodiment, FIG. 1 is a plan view of a small-diameter flow path group of the refrigerant distributor according to the second embodiment, and FIG. FIG. 4 is a cross-sectional view of the refrigerant distributor according to the second embodiment, and FIG. 5 is a refrigerant distribution according to the second embodiment. FIG. 6 is a cross-sectional view of the refrigerant distributor according to the second embodiment, FIG. 7 is a perspective view of the refrigerant distributor according to the third embodiment, and FIG. FIG. 9 is a plan view of a small diameter channel group of the refrigerant distributor according to the fourth embodiment of the refrigerant distributor according to the embodiment, and FIG. FIG. 11 is a cross-sectional view of a refrigerant distributor of an embodiment showing a modification of the fourth embodiment. FIG. 11 is a cross-sectional view of a refrigerant distributor of the embodiment showing a modification of the first to fourth embodiments. Figure 12 shows the fifth fruit. Sectional side view of a refrigerant distributor according to example 1 3, the flow path cross-sectional view of the refrigerant distributor according to a fifth embodiment, FIG 4 Is a cross-sectional view of a refrigerant distributor according to an embodiment showing a modification of the fifth embodiment, FIG. 15 is a side cross-sectional view of the refrigerant distributor according to the sixth embodiment, and FIG. FIG. 17 is a side sectional view of the refrigerant distributor according to the seventh embodiment, and FIG. 18 is a side sectional view of the refrigerant distributor according to the seventh embodiment. FIG. 19 is a block diagram showing a configuration of an air conditioner according to an embodiment, and FIG. 20 is a perspective view of a refrigerant distributor for a heat exchanger according to a conventional technique.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
近年、 空気調和機は、 地球環境を保護するため省エネルギ化や省冷 媒化が要求され、 それを目的と した高効率化のため、 複数の並列な冷 媒流路を持つ冷媒回路とするこ とが望ま しい。 例えばルームェアコン では、 複数の細径管を熱交換器の伝熱管と して用い、 熱交換性能を最 大にすべく 、 適当なパスに分割する構成を採用 している。  In recent years, air conditioners have been required to save energy and save coolant in order to protect the global environment.To achieve high efficiency, air conditioners are to be equipped with refrigerant circuits with multiple parallel coolant channels. This is desirable. For example, room-eacons use a configuration in which a plurality of small-diameter tubes are used as heat transfer tubes for a heat exchanger and divided into appropriate paths to maximize heat exchange performance.
本発明の第 1 の実施例に係わる分配器 6 aを図 2 と図 3 を用いて説明 する。 分配器 6 6 aは、 溝状の小径流路群 7を形成したプレー ト 60 1と、 平板状のプレー ト 602をロー付け等によ り 接着 して製作する。 ディ フューザ 1 4を介した入り 口管 5 と流出管 8 は、 分配器 6 aの内部流路 と連通するよ うにロー付け等によ り接続される。 プレー ト 60 1にプレス 加工等によ り 同一平面上に成形された小径流路群 7は、 入り 口分岐部 7 a、 直線流路 7 b、 出口分岐部 7 dを有している。  A distributor 6a according to a first embodiment of the present invention will be described with reference to FIGS. The distributor 66a is manufactured by bonding a plate 601 formed with a groove-shaped small-diameter flow path group 7 and a plate-shaped plate 602 by brazing or the like. The inlet pipe 5 and the outlet pipe 8 via the diffuser 14 are connected by brazing or the like so as to communicate with the internal flow path of the distributor 6a. The small-diameter flow path group 7 formed on the same plane by pressing or the like on the plate 601 has an inlet branch 7a, a straight flow path 7b, and an outlet branch 7d.
直線流路 7 bの本数は流出管 8 よ り も多数設けられ、 第 1 の実施例で は流出管 8の本数 4 に対して 1 2本と している。 直線流路 7 bの代表径 は、 すべての流路断面積の総和が、 入り 口管 5若しく は流出管 8の断 面積よ り も大きく なるよ うにされている。 従って分配器 6 aの大き さは、 対象とする冷媒回路配管(入り 口管 5若しく は流出管 8 )の径の大き さ に比例する。 例えば分配器 6 aをルームエアコ ンに使用 した場合、 流出管 8 の直径 は 4〜15mm程度であり、 直線流路 7 bの代表径は 2〜 8 mm程度、 長さは 10 〜40mm程度である。 The number of the straight flow paths 7b is larger than that of the outflow pipes 8, and in the first embodiment, the number of the outflow pipes 8 is set to 12 in comparison with four. The representative diameter of the straight flow path 7b is such that the sum of the cross-sectional areas of all the flow paths is larger than the cross-sectional area of the inlet pipe 5 or the outlet pipe 8. Therefore, the size of the distributor 6a is proportional to the size of the diameter of the target refrigerant circuit pipe (the inlet pipe 5 or the outlet pipe 8). For example, when the distributor 6a is used for a room air conditioner, the diameter of the outflow pipe 8 is about 4 to 15 mm, the typical diameter of the straight flow path 7b is about 2 to 8 mm, and the length is about 10 to 40 mm .
直線流路 7bは、 流出管 8 よ り も多数の本数と され、 流入管 5よ り流入 した冷媒は、 入り 口分岐部 7a、 直線流路 7bにそって導かれ、 出口分岐 部 7dで混合された後、 各流出管 8から排出される。 この過程で入り 口 分岐部 7aにおいて、 加工誤差等による分配の不均一は抑制される。 分配器 6 aは、 小径流路群 7がプレー ト 601上に一体成形されている から、 部品点数が少なく 、 冷媒の三次元的な蛇行もない。 従って冷媒 の圧力損失が低い上、 極めて薄い形状が可能となる。  The number of the straight flow path 7b is larger than that of the outflow pipe 8, and the refrigerant flowing from the inflow pipe 5 is guided along the inlet branch 7a, the straight flow path 7b, and mixed at the outlet branch 7d. After that, it is discharged from each outflow pipe 8. In this process, distribution unevenness due to a processing error or the like is suppressed in the entrance branch portion 7a. Since the small-diameter flow path group 7 is integrally formed on the plate 601, the distributor 6a has a small number of parts and does not have a three-dimensional meandering refrigerant. Therefore, the pressure loss of the refrigerant is low and an extremely thin shape is possible.
次に本発明の第 2の実施例に係わる分配器を図 1 、 図 5及び図 6 を 用いて説明する。 第 1 の実施例と異なる点は、 プレー ト 601に形成され た小径流路群 7 の形状だけである。 図 6 に示すよ う に小径流路群 7 の 断面は円筒状であるこ とが望ま しい。  Next, a distributor according to a second embodiment of the present invention will be described with reference to FIGS. 1, 5, and 6. FIG. The only difference from the first embodiment is the shape of the small-diameter flow path group 7 formed in the plate 601. As shown in FIG. 6, it is desirable that the cross section of the small diameter channel group 7 is cylindrical.
直線流路 7bは、 それぞれ並列に配置され、 流路途中で合流 · 分岐部 7cを有している。 本実施例では、 すべての直線流路 7bが同じ合流 ♦ 分 岐部 7cに導かれているが、 直線流路 7bの一部が合流 · 分岐する形状で も良い。  The straight flow paths 7b are respectively arranged in parallel, and have a junction / branch 7c in the middle of the flow paths. In the present embodiment, all the straight flow paths 7b are guided to the same junction ♦ branching section 7c, but a shape in which a part of the straight flow path 7b merges and branches may be used.
合流 ♦ 分岐部 7cは、 直線流路 7bから噴出される流体塊が、 お互いに 直接衝突し、 運動量交換を促進するよ う に配置される。 よって、 冷媒 量が均等化され、 流出管 8では均等に分配され、 冷媒間での衝突ある いは冷媒の偏曲はある ものの、 その量は少なく 、 圧力損失も少なく で きる。  Merging ♦ The branching portion 7c is arranged such that fluid masses ejected from the straight flow path 7b directly collide with each other to promote momentum exchange. Therefore, the amount of the refrigerant is equalized, and the refrigerant is evenly distributed in the outflow pipe 8, and although there is collision between the refrigerants or deflection of the refrigerants, the amount is small and the pressure loss can be reduced.
第 1 の実施例と異なる点は、 重力を冷媒の分配制御の駆動力と しな いことであり、 分配器 6 bの設置姿勢は重力対して縦でも横でもよい。 本実施例では、 直線流路 7bは、 流出管 8 と同数であるが、 よ り多数の 本数で構成するこ とが良い。 また、 直線流路 7 bを円筒管等で構成した、 立体的な配置することもできる。 The difference from the first embodiment is that gravity is not used as the driving force for refrigerant distribution control, and the installation position of the distributor 6b may be vertical or horizontal with respect to gravity. In this embodiment, the number of the straight flow paths 7b is equal to the number of the outflow pipes 8, but the number of the straight flow paths 7b is larger. It is good to configure with the number. In addition, the straight flow path 7b may be configured in a three-dimensional manner, such as a cylindrical pipe.
次に本発明の第 3の実施例に係わる分配器を図 7から図 8 を用いて 説明する。  Next, a distributor according to a third embodiment of the present invention will be described with reference to FIGS.
分配器 6 cは、 プレー ト 6 0 1 の形状以外は第 1 の実施例と同じであ る。 小径流路群 7 は、 その流路断面形状が第 1若しく は第 2 の実施例 に準じたものであり、 入り 口分岐部 7 a、 直線流路 7 b、 合流 · 分岐部 7 c を有している。  The distributor 6c is the same as the first embodiment except for the shape of the plate 601. The small-diameter flow path group 7 has a flow path cross-sectional shape similar to that of the first or second embodiment, and includes an inlet branch 7a, a straight flow path 7b, and a junction / branch 7c. Have.
流出管 8 よ り も多数と された直線流路 7 bは、 網目状に配置され、 複 数の合流 · 分岐部 7 cを形成している。 合流 · 分岐部 7 cは、 直線流路 7 b から噴出される流体塊がお互いに直接衝突し、 運動量交換を促進する よ うに配置される。  The straight flow passages 7b, which are larger than the outflow pipes 8, are arranged in a mesh form to form a plurality of junctions / branches 7c. The junction / branch 7c is arranged such that fluid masses ejected from the straight flow path 7b directly collide with each other to promote momentum exchange.
本実施例では、 流入管 5から流入した冷媒が入り 口分岐部 7 aで不均一 に分岐しても、 不均一冷媒は、 直線流路 7 bにそって合流 ♦ 分岐部 7 cに 導かれ混合 · 再分岐を繰り返すため、 流出管 8では均等に分配される。 分配器 6 cの設置姿勢は、 第 2の実施例と同様に重力対して縦でも横で も可能である。  In this embodiment, even if the refrigerant flowing from the inflow pipe 5 is non-uniformly branched at the inlet branch part 7a, the non-uniform refrigerant joins along the straight flow path 7b ♦ is guided to the branch part 7c. Due to repeated mixing and re-branching, it is evenly distributed in the outflow pipe 8. The installation posture of the distributor 6c can be either vertical or horizontal with respect to gravity as in the second embodiment.
直線流路 7 bの代表直径は、 流入管 5や流出管 8の代表直径よ り も十分 小さ く 、 直線流路 7 bの本数は十分に多く配置される。 本実施例では、 直線流路部 7 bを複数を束ねて流出管 8 に導く構造と しており、 よ り冷 媒分配の均一化をよ り 高めている。 第 3の実施例は、 第 1 、 第 2の実 施例で示した機構を合わせ持つており 、 冷媒の合流 · 分岐を繰り返す 形状である。 分配器 6 cは、 他の形状に比べ合流 · 分岐数が多く 、 その ため再現性が良いという特徴がある。  The representative diameter of the straight flow path 7b is sufficiently smaller than the representative diameter of the inflow pipe 5 and the outflow pipe 8, and the number of the straight flow paths 7b is arranged sufficiently. In the present embodiment, a structure in which a plurality of straight flow path portions 7b are bundled and led to the outflow pipe 8 is further improved, and the uniformity of the coolant distribution is further improved. The third embodiment has a combination of the mechanisms shown in the first and second embodiments, and has a shape in which the refrigerant repeatedly joins and branches. The distributor 6c has a feature that it has a larger number of junctions and branches than other shapes, and therefore has good reproducibility.
次に本発明の第 4の実施例に係わる分配器を図 9 を用いて説明する。 分配器 6 dは、 プレー ト 6 0 1の形状だけが第 2の実施例と異なる。 本実 施例では流出管 8 よ り多数となる小径流路群 7 を用いており 、 合流 ♦ 分岐部 7 cの個数が、 第 2 の実施例よ り も多く なつている。 従って冷媒 の合流と分岐が繰り返し行われ、 分配がよ り 一層均等化される。 この 形状は、 第 3 の実施例に比べ分岐数が少ないので、 圧力損失を少なく することができる。 Next, a distributor according to a fourth embodiment of the present invention will be described with reference to FIG. The distributor 6d differs from the second embodiment only in the shape of the plate 61. Real truth In this embodiment, a small-diameter flow passage group 7 having a larger number than the outflow pipe 8 is used, and the number of junctions and branches 7c is larger than that in the second embodiment. Therefore, the joining and branching of the refrigerant are repeatedly performed, and the distribution is further equalized. This shape has a smaller number of branches than the third embodiment, so that the pressure loss can be reduced.
第 1 から第 4までの実施例では、 プレー ト 60 2 は平板状の部材と し て説明したが、 図 1 0の断面図に示すよ う にプレ一 ト 6 0 2 にも小径 流路群 7 を設けても良い。 さ らにプレー ト 6 0 1 と 6 0 2 を接合する 際、 両者の小径流路群 7が重ならない様にすれば、 よ り分配改善の効 果が高く なる。  In the first to fourth embodiments, the plate 602 has been described as a plate-shaped member. However, as shown in the cross-sectional view of FIG. 7 may be provided. Further, when the plates 61 and 62 are joined, if the small-diameter flow path groups 7 of the two do not overlap, the effect of improving the distribution is further enhanced.
また図 1 1 に示すよ う にプレー ト 6 0 2 を凹状に成形するこ と も良 い。 この形状は、 分配の均一度は下がるものの、 流路断面積が広が り 圧力損失を少なく できる。 第 1 から第 4までのいずれの実施例でも、 小径流路群は、 プレー ト 6 0 1若しく は 6 0 2上に溝加工を行い成形 すること と しているが、 円管等を組み合わせて、 成形することも良い。 次に本発明の第 5の実施例を図 1 2ないし 1 4 を参照して説明する。 分配器 6 eは、 円筒に成形したプレー ト 6 0 2 にプレー ト 60 1を挿入 し、 ディ フューザ 1 4 を介して流入管 5や流出管 8を口一付け等によ り 接合される。 プレー ト 60 1は、 第 1 から第 4までの実施例で説明したよ うな小径流路群 7 を有する。 従って冷媒分配不均一の改善に対しては 既に述べたものと同様である。 本実施例の分配器 6 eは、 プレー ト 60 1 が冷媒流れ方向が対称軸と なる よ う に、 円筒状に変形されている。 よって、 設置面積が少なく 、 コ ンパク トな外形となり 、 流入管 5 と流 出管 8が平行となるため、 配管経路途中にも設置し易く なる。 また、 図 1 4に示すよ うに、 プレー ト 6 0 1 を円筒状にする際、 小径流路群 7をう ち向きにしてもよい。 この場合、 プレー ト 6 0 2 を省略しても、 ある程度の不均一分配の改善が期待できる。 Also, as shown in FIG. 11, it is good to form the plate 62 into a concave shape. This shape reduces distribution uniformity, but increases the cross-sectional area of the flow path and reduces pressure loss. In any of the first to fourth embodiments, the small-diameter flow path group is formed by forming grooves on the plate 61 or 602, but combining a circular pipe or the like. It is also good to mold. Next, a fifth embodiment of the present invention will be described with reference to FIGS. In the distributor 6e, a plate 601 is inserted into a plate 602 formed into a cylindrical shape, and the inflow pipe 5 and the outflow pipe 8 are joined to each other via a diffuser 14 by means of a mouth. The plate 601 has the small diameter channel group 7 as described in the first to fourth embodiments. Therefore, it is the same as that already described for the improvement of the refrigerant distribution unevenness. The distributor 6e of the present embodiment is cylindrically deformed so that the plate 601 has a symmetric axis in the refrigerant flow direction. Therefore, the installation area is small, the outer shape is compact, and the inflow pipe 5 and the outflow pipe 8 are parallel to each other. Further, as shown in FIG. 14, when the plate 61 is formed into a cylindrical shape, the small-diameter flow path group 7 may be oriented in the opposite direction. In this case, even if plate 602 is omitted, Some improvement in non-uniform distribution can be expected.
次に、 本発明の第 6の実施例を図 1 5、 図 1 6 を参照して説明する。 分配器 6 fは、 小径流路 7を備えたプレー ト 601を、 冷媒流れ方向に 沿って螺旋状に丸め、 両端をロー付け等によ り一体化したものである。 流入管 5 はカバー 1 0 に接続すればよいが、 図 1 5のよ うにプレー ト 601の中心に差し込むように接続してもよレ、。  Next, a sixth embodiment of the present invention will be described with reference to FIGS. The distributor 6f is obtained by rounding a plate 601 provided with the small-diameter flow path 7 in a spiral shape along the refrigerant flow direction, and integrating both ends by brazing or the like. The inflow pipe 5 may be connected to the cover 10, but may be connected so as to be inserted into the center of the plate 601 as shown in FIG.
流入管 5 よ り流入した冷媒は、 入り 口分岐部 7aで流れの向きを変え、 プレー ト 601に形成された小径流路群 7に沿って螺旋状に流下する。 分 配器 6 fは、 プレー ト 601の巻き数によ り長手方向に短縮でき、 第 5 の 実施例よ り コンパク ト となる。 またプレー ト 601の長さを調節すること で、 合流 , 分岐部 7cの個数を調節し、 冷媒分配不均一の改善度を簡単 に設定できる利点がある。 プレー ト 601を螺旋状にする際、 図 1 4に示 した第 5 の実施例と同様に、 小径流路 7 を外向きにし、 プレー ト 6 0 2 を外壁と して構成しても良い。  The refrigerant that has flowed in from the inflow pipe 5 changes its direction at the inlet branch portion 7a, and flows down spirally along the small-diameter flow path group 7 formed in the plate 601. The distributor 6 f can be shortened in the longitudinal direction by the number of turns of the plate 601, and is more compact than the fifth embodiment. Further, by adjusting the length of the plate 601, there is an advantage that the number of the merging and branching portions 7c can be adjusted and the degree of improvement of the refrigerant distribution unevenness can be easily set. When the plate 601 is formed into a spiral shape, the small-diameter flow path 7 may be directed outward and the plate 602 may be formed as an outer wall, as in the fifth embodiment shown in FIG.
本発明の第 7の実施例を図 1 7、 図 1 8 を参照して説明する。  A seventh embodiment of the present invention will be described with reference to FIGS.
分配器 6 gは、 小径流路 7 を備えたプレー ト 601を、 ケース 9内に複 数個積層 し、 ケース 9 とカバー 1 0 を口一付け等によ り接合したもの である。 ただし小径流路群 7は、 プレー ト 601の両面に形成してもよい。 プレ一 ト 601は、 流れ方向に対して設置位置を交互にずら し、 厚さ方向 に積層される。 流入管 5 よ り流入した冷媒は、 プレー ト 601に形成され た小径流路群 7 を蛇行しながら流下し、 その過程で冷媒の不均一分配 が改善される。 分配器 6 gは、 第 1 、 第 2の実施例と比較し、 設置面積 が小さく小スペースに設置できる。 さ らに、 プレー ト 601の個数を調節 するこ とで、 合流 · 分岐部 7cの個数を調節し、 圧力損失を簡単に調節 できる。 また第 5、 第 6 の実施例に比べ、 部品点数は増える ものの、 加工し易いものとすることができる。 第 1 から第 7までの実施例では、 流入管 5は 1本と して説明したが、 複数本と しても良い。 The distributor 6 g is obtained by laminating a plurality of plates 601 having the small-diameter flow paths 7 in the case 9 and joining the case 9 and the cover 10 together by a mouth or the like. However, the small diameter channel group 7 may be formed on both sides of the plate 601. The plates 601 are stacked in the thickness direction by alternately shifting the installation positions with respect to the flow direction. The refrigerant flowing in from the inflow pipe 5 flows down the meandering small-diameter flow path group 7 formed in the plate 601, and in the process, the uneven distribution of the refrigerant is improved. The distributor 6 g has a small installation area and can be installed in a small space as compared with the first and second embodiments. Further, by adjusting the number of the plates 601, the number of the merging / branching portions 7 c can be adjusted, and the pressure loss can be easily adjusted. Further, although the number of parts is increased as compared with the fifth and sixth embodiments, it is possible to make it easier to process. In the first to seventh embodiments, the number of inflow pipes 5 is described as one, but a plurality of inflow pipes 5 may be used.
図 1 9 を参照して、 以上の実施例に示した分配器 6 を用いた空気調 和機の構成を説明する。  The configuration of the air conditioner using the distributor 6 shown in the above embodiment will be described with reference to FIG.
図 1 9 は、 室内を暖房する場合であ り、 圧縮機 1 1 、 室内熱交換器 1 a、 室外熱交換器 1 b、 冷媒分配器 6、 膨張弁 1 2、 冷媒回路 1 3 よ り構成される。 複数の室外熱交換器 1 bを使用するため、 分配器 6はそ の上流の冷媒回路 1 3の途中に設置されている。  Fig. 19 shows a case where the room is heated, consisting of a compressor 11, an indoor heat exchanger 1 a, an outdoor heat exchanger 1 b, a refrigerant distributor 6, an expansion valve 12, and a refrigerant circuit 13. Is done. Since the plurality of outdoor heat exchangers 1b are used, the distributor 6 is provided in the middle of the refrigerant circuit 13 upstream thereof.
分配器 6 によ り 、 各流出管 8 の冷媒流量の差がなく なるため、 室外 熱交換器 1 bの能力を損失なく利用でき、 空気調和機の高性能化を図る こ とができる。 さ らに余分な冷媒が必要ないため、 省冷媒化にも望ま しい。  The distributor 6 eliminates the difference between the refrigerant flow rates of the outlet pipes 8, so that the capacity of the outdoor heat exchanger 1b can be used without loss, and the performance of the air conditioner can be improved. Since no extra refrigerant is required, it is also desirable to save refrigerant.
以上の本発明の実施例と して、 圧縮機、 熱交換器、 冷媒分配器、 冷 媒回路等よ り構成される空気調和機における冷媒分配器について述べ たが、 冷凍機や冷蔵庫等にも適用できるこ とは言うまでもない。 さ ら に、 環境保護への要求から非共沸混合冷媒 (例えば R 4 0 7 C ) のよ う に単一成分と して扱えない冷媒に対しても分配特性を変えず、 汎用 性の高いものにするこ とができる。  As an embodiment of the present invention, a refrigerant distributor in an air conditioner including a compressor, a heat exchanger, a refrigerant distributor, a refrigerant circuit, and the like has been described. It goes without saying that it can be applied. Furthermore, due to the demand for environmental protection, even for refrigerants that cannot be treated as a single component, such as non-azeotropic refrigerants (for example, R407C), the distribution characteristics are not changed, and versatility is high. It can be something.
以上述べたよ う に、 本発明によれば、 冷媒分配器は板状部材によつ て形成されるので、 圧力損失を抑え、 流路数の増減を容易にでき、 分 配の均一度を自由に設定するこ とができる。 よって、 冷媒の種類ゃ設 置状態などに影響しない広い使用条件で冷媒の分配を均一にし、 使用 する冷媒量を少なくすることができる。  As described above, according to the present invention, since the refrigerant distributor is formed by the plate-shaped member, the pressure loss can be suppressed, the number of channels can be easily increased and decreased, and the uniformity of distribution can be freely set. Can be set to Therefore, the distribution of the refrigerant can be made uniform under a wide range of use conditions that do not affect the type of the refrigerant or the installation state, and the amount of the refrigerant to be used can be reduced.
また、 本発明によれば、 冷媒は流出管の本数よ り も多く設けられた 流路によ り分岐されるので、 冷媒内の密度差に起因する各相あるいは 各物質の不均一を防ぐこ とができ、 再現性よい冷媒の分配及びその制 御ができる。 Further, according to the present invention, since the refrigerant is branched by the flow path provided with more than the number of outflow pipes, it is possible to prevent unevenness of each phase or each substance due to a density difference in the refrigerant. Distribution of refrigerant with good reproducibility and its control I can do it.
さ らに、 本発明によれば、 直径が 4 m m以上 1 5 m m以下の流出管 に対して流路の直径を 2 m m以上 8 m m以下と し、 流出管の本数よ り も多くするこ とによ り 、 業務用の空気調和機 (パッケージエアコン) あるいはル一ムエアコンの場合、 広い使用条件で冷媒の不均一分配を 改善することができる。  Further, according to the present invention, the diameter of the flow path is set to 2 mm or more and 8 mm or less for an outflow pipe having a diameter of 4 mm or more and 15 mm or less, so that the number of outflow pipes is larger than the number of outflow pipes. Therefore, in the case of a commercial air conditioner (package air conditioner) or a room air conditioner, uneven distribution of the refrigerant can be improved under a wide range of use conditions.
さ らに、 本発明によれば、 分配器あるいは熱交換器において、 複数 の流路の配置を自由に変更でき るため、 設置スペースに適した形態を 採るこ とができるので、 コンパク トで高効率な空気調和機を得るこ と ができる。  Further, according to the present invention, in the distributor or the heat exchanger, the arrangement of the plurality of flow paths can be freely changed, so that a form suitable for the installation space can be adopted. An efficient air conditioner can be obtained.
以上述べたよ う に、 本発明によれば圧力損失を抑えつつ、 冷媒の種 類や設置状態などに影響されず、 冷媒を均一に分配できる分配器及び それを用いた高効率で使用する冷媒量の少ない省冷媒の空気調和機を 得ることができる。  As described above, according to the present invention, a distributor capable of uniformly distributing refrigerant without being affected by the type and installation state of the refrigerant while suppressing pressure loss, and the amount of refrigerant used with high efficiency using the distributor. It is possible to obtain a refrigerant-saving air conditioner with a small amount.
また、 本発明によれば非共沸混合冷媒に対しても分配特性の変わら ない、 汎用性の高い分配器及びそれを用いた空気調和機を得るこ とが できる。  Further, according to the present invention, it is possible to obtain a highly versatile distributor in which the distribution characteristics do not change even for a non-azeotropic mixed refrigerant, and an air conditioner using the same.

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷媒がー方から流入し他方よ り流出する流路がー対の板状部材に よって形成される冷媒分配器において、  1. In a refrigerant distributor in which a flow path through which a refrigerant flows in from one side and flows out from the other side is formed by a pair of plate members,
前記冷媒が流入する部分を複数に分岐する入口分岐部と、  An inlet branch portion that branches the portion into which the refrigerant flows into a plurality,
前記入口分岐部によつて分岐された冷媒を合流する合流部と、 前記合流部によって合流された冷媒を分岐して流出する出口分岐部 と  A merging section for merging the refrigerant branched by the inlet branch section, and an outlet branch section for branching and flowing out the refrigerant merged by the merging section.
を備えたこ とを特徴とする冷媒分配器。 A refrigerant distributor characterized by comprising:
2 . 一方に冷媒が流入する流入管が接続され他方に複数の流出管が接 続され、 流入管から流出管に至る流路を有する冷媒分配器において、 板状部材によつて形成され前記流出管の本数よ り も多く 設けられた 前記流路と  2. A refrigerant distributor having a flow path from an inflow pipe to an outflow pipe, wherein the inflow pipe into which the refrigerant flows is connected to one side, and a plurality of outflow pipes is connected to the other side. With the above-mentioned flow channel provided more than the number of pipes
を備え、 前記流入管よ り流入する冷媒は前記流路によって分岐され、 分岐された冷媒は複数の前記流路ょ り 前記流出管へ合流して流出する ことを特徴とする冷媒分配器。 A refrigerant distributor, comprising: a refrigerant flowing from the inflow pipe, branched by the flow path, and the branched refrigerant flowing out of the plurality of flow paths into the outflow pipe.
3 . 請求項 1 に記載のものにおいて、 前記入口分岐部と出口分岐部と の間で前記合流部を複数有し、 冷媒の分岐と合流を繰り返すこ と を特 徴とする冷媒分配器。  3. The refrigerant distributor according to claim 1, comprising a plurality of the merging portions between the inlet branch portion and the outlet branch portion, wherein the branching and merging of the refrigerant are repeated.
4 . 請求項 1又は 2 に記載のものにおいて、 前記流路が網目状に形成 されたことを特徴とする冷媒分配器。  4. The refrigerant distributor according to claim 1, wherein the flow path is formed in a mesh.
5 . 一方に冷媒が流入する流入管が接続され他方に複数の流出管が接 続され、 流入管から流出管に至る流路を有する冷媒分配器において、 直径が 4 m m以上 1 5 m m以下と された前記流出管と、  5. In the refrigerant distributor, which has a flow path from the inflow pipe to the outflow pipe, the diameter of the refrigerant distributor is 4 mm or more and 15 mm or less. Said outflow pipe,
直径が 2 m m以上 8 m m以下と され前記流出管の本数よ り も多く 設 けられた前記流路と  The flow path has a diameter of 2 mm or more and 8 mm or less and is provided with more than the number of outflow pipes.
を備え、 冷媒は複数の前記流路よ り前記流出管へ合流して流出される ことを特徴とする冷媒分配器。 And the refrigerant is merged into the outflow pipe from the plurality of flow paths and is discharged. A refrigerant distributor characterized in that:
6 . 圧縮機、 膨張弁、 熱交換器及び冷媒分配器を有し、 冷媒が循環す る空気調和機において、  6. An air conditioner that has a compressor, an expansion valve, a heat exchanger, and a refrigerant distributor, and in which refrigerant circulates,
冷媒がー方から流入し他方よ り流出する流路がー対の板状部材に よって形成される前記冷媒分配器を有し、  A flow path in which the refrigerant flows in from one side and flows out from the other side has the refrigerant distributor formed by a pair of plate-shaped members;
該冷媒分配器は、 前記冷媒が流入する部分を複数に分岐する入口分 岐部と、 該入口分岐部によって分岐された冷媒を合流する合流部と、 該合流部によって合流された冷媒を分岐して流出する出口分岐部とを 備えたこ とを特徴とする空気調和機。  The refrigerant distributor includes an inlet branching portion that branches the portion into which the refrigerant flows into a plurality of portions, a merging portion that merges the refrigerant branched by the inlet branching portion, and a branching portion that branches the refrigerant merged by the merging portion. An air conditioner, comprising: an outlet branch for outflow.
7 . 請求項 6 に記載のものにおいて、 前記入口分岐部と出口分岐部と の間で前記合流部を複数有し、 冷媒の分岐と合流を繰り返すこ と を特 徴とする空気調和機。 7. The air conditioner according to claim 6, wherein the air conditioner has a plurality of the merging portions between the inlet branch portion and the outlet branch portion, and repeats branching and merging of the refrigerant.
8 . 請求項 6 に記載のものにおいて、 前記流路は網目状に形成され前 記合流部を複数有し、 冷媒の分岐と合流を繰り返すこ とを特徴とする 空気調和機。  8. The air conditioner according to claim 6, wherein the flow path is formed in a mesh shape, has a plurality of the merging portions, and repeats branching and merging of the refrigerant.
9 . 圧縮機、 熱交換器及び膨張弁を有し、 冷媒が循環する空気調和機 において、  9. An air conditioner having a compressor, a heat exchanger, and an expansion valve, and in which a refrigerant circulates,
一方に冷媒が流入する流入管が接続され他方に複数の流出管が接続 され流入管から流出管に至る流路は板状部材によって形成された前記 熱交換器と、  A flow path from the inflow pipe to the outflow pipe connected to the inflow pipe through which the refrigerant flows into one side and a plurality of outflow pipes to the other side, and the heat exchanger formed by a plate-shaped member;
前記流出管の本数よ り も多く設けられた前記流路と  The flow path provided with more than the number of the outflow pipes;
を備え、 前記流入管よ り流入する冷媒は前記流路によって分岐され、 分岐された冷媒は複数の前記流路よ り前記流出管へ合流して流出する ことを特徴とする空気調和機。 An air conditioner, comprising: a refrigerant that flows in from the inflow pipe, branched by the flow path, and the branched refrigerant flows out of the flow paths by merging into the outflow pipe.
1 0 . 請求項 9 に記載のものにおいて、 前記流路は網目状に形成され 前記冷媒の分岐と合流を繰り返すことを特徴とする空気調和機。 10. The air conditioner according to claim 9, wherein the flow path is formed in a mesh shape and repeats branching and joining of the refrigerant.
1 1 . 圧縮機、 熱交換器及び膨張弁を有し、 冷媒が循環する空気調和 機において、 1 1. In an air conditioner that has a compressor, heat exchanger, and expansion valve and circulates refrigerant,
一方に冷媒が流入する流入管が接続され他方に複数の流出管が接続 され流入管から流出管に至る流路を有する前記熱交換器と、  The heat exchanger having a flow path from the inflow pipe to the outflow pipe, wherein the inflow pipe through which the refrigerant flows in is connected to one side, and a plurality of outflow pipes is connected to the other side, and
直径が 4 mm以上 1 5 mm以下と された前記流出管と、  The outlet pipe having a diameter of 4 mm or more and 15 mm or less;
直径が 2 mm以上 8 mm以下と され前記流出管の本数よ り も多く 設 けられた前記流路と  The diameter is 2 mm or more and 8 mm or less, and the flow path is provided with more than the number of the outflow pipes.
を備え、 冷媒は複数の前記流路よ り前記流出管へ合流して流出される こ とを特徴とする空気調和機。 An air conditioner, comprising: a refrigerant that flows out of the plurality of flow paths into the outflow pipe.
1 2. 圧縮機、 膨張弁、 熱交換器及び冷媒分配器を有し、 冷媒が循環 する空気調和機において、  1 2. In an air conditioner that has a compressor, an expansion valve, a heat exchanger, and a refrigerant distributor,
非共沸混合冷媒と された前記冷媒と、  Said refrigerant as a non-azeotropic mixed refrigerant,
前記冷媒がー方から流入し他方よ り流出する流路がー対の板状部材 によって形成される前記冷媒分配器を備えたこ とを特徴とする空気調 和機。  An air conditioner comprising the refrigerant distributor, wherein a flow path through which the refrigerant flows in from one side and flows out from the other side is formed by a pair of plate members.
PCT/JP1998/001066 1998-03-13 1998-03-13 Coolant distributor, and air conditioner using it WO1999046544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001066 WO1999046544A1 (en) 1998-03-13 1998-03-13 Coolant distributor, and air conditioner using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001066 WO1999046544A1 (en) 1998-03-13 1998-03-13 Coolant distributor, and air conditioner using it

Publications (1)

Publication Number Publication Date
WO1999046544A1 true WO1999046544A1 (en) 1999-09-16

Family

ID=14207767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001066 WO1999046544A1 (en) 1998-03-13 1998-03-13 Coolant distributor, and air conditioner using it

Country Status (1)

Country Link
WO (1) WO1999046544A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543021A (en) * 2006-07-10 2009-12-03 ダエウ・エレクトロニクス・コーポレーション Rotating regenerator and magnetic refrigerator using this regenerator
US7652884B2 (en) 2006-07-25 2010-01-26 Fujitsu Limited Electronic apparatus including liquid cooling unit
US7672125B2 (en) 2006-07-25 2010-03-02 Fujitsu Limited Electronic apparatus
US7701715B2 (en) 2006-07-25 2010-04-20 Fujitsu Limited Electronic apparatus
WO2011035831A3 (en) * 2009-09-23 2011-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fluid distribution element for single-phase or multi-phase fluids, method for the production thereof, and use thereof
JP2012042121A (en) * 2010-08-19 2012-03-01 Hitachi Appliances Inc Refrigerant distributor, and refrigerating cycle device
US20120125560A1 (en) * 2010-11-24 2012-05-24 Mckeown David Wayne Multi-Circuit Manifold and Method for a Geothermal Energy System
US8289701B2 (en) * 2006-07-25 2012-10-16 Fujistu Limited Liquid cooling unit and heat receiver therefor
JP2013050221A (en) * 2011-08-30 2013-03-14 Hitachi Appliances Inc Refrigerant distributor and heat pump apparatus using the same
WO2013182666A1 (en) * 2012-06-08 2013-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Heat exchanger system, method for producing same, and fluid distribution element
WO2014199484A1 (en) * 2013-06-13 2014-12-18 三菱電機株式会社 Coolant distribution unit and air conditioning device using same
EP2843347A1 (en) 2013-08-30 2015-03-04 Fujitsu Limited Radiator and method for manufacturing radiator
WO2017029780A1 (en) * 2015-08-17 2017-02-23 ダイキン工業株式会社 Refrigerant flow divider
WO2017103965A1 (en) * 2015-12-14 2017-06-22 三菱電機株式会社 Distributor, heat exchanger, air conditioning device, and method for manufacturing distributor
CN108931083A (en) * 2018-08-20 2018-12-04 珠海格力电器股份有限公司 Current divider and refrigeration system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838438U (en) * 1971-09-10 1973-05-12
JPS59110871U (en) * 1983-01-17 1984-07-26 株式会社東芝 air conditioner
JPS6054066U (en) * 1983-09-20 1985-04-16 株式会社東芝 Refrigeration cycle flow divider
JPH05322378A (en) * 1992-05-26 1993-12-07 Mitsubishi Heavy Ind Ltd Distributor for two-phase fluid of gas and liquid
JPH06194000A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Air conditioner
JPH07133971A (en) * 1993-11-09 1995-05-23 Hitachi Ltd Refrigerant shunt of heat exchanger
JPH07318200A (en) * 1994-05-19 1995-12-08 Matsushita Refrig Co Ltd Heat exchanger with fins

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838438U (en) * 1971-09-10 1973-05-12
JPS59110871U (en) * 1983-01-17 1984-07-26 株式会社東芝 air conditioner
JPS6054066U (en) * 1983-09-20 1985-04-16 株式会社東芝 Refrigeration cycle flow divider
JPH05322378A (en) * 1992-05-26 1993-12-07 Mitsubishi Heavy Ind Ltd Distributor for two-phase fluid of gas and liquid
JPH06194000A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Air conditioner
JPH07133971A (en) * 1993-11-09 1995-05-23 Hitachi Ltd Refrigerant shunt of heat exchanger
JPH07318200A (en) * 1994-05-19 1995-12-08 Matsushita Refrig Co Ltd Heat exchanger with fins

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543021A (en) * 2006-07-10 2009-12-03 ダエウ・エレクトロニクス・コーポレーション Rotating regenerator and magnetic refrigerator using this regenerator
US7652884B2 (en) 2006-07-25 2010-01-26 Fujitsu Limited Electronic apparatus including liquid cooling unit
US7672125B2 (en) 2006-07-25 2010-03-02 Fujitsu Limited Electronic apparatus
US7701715B2 (en) 2006-07-25 2010-04-20 Fujitsu Limited Electronic apparatus
US8289701B2 (en) * 2006-07-25 2012-10-16 Fujistu Limited Liquid cooling unit and heat receiver therefor
WO2011035831A3 (en) * 2009-09-23 2011-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fluid distribution element for single-phase or multi-phase fluids, method for the production thereof, and use thereof
CN102667392A (en) * 2009-09-23 2012-09-12 弗劳恩霍弗促进应用研究注册公司 Fluid distribution element for single-phase or multi-phase fluids, method for the production thereof, and use thereof
JP2012042121A (en) * 2010-08-19 2012-03-01 Hitachi Appliances Inc Refrigerant distributor, and refrigerating cycle device
US9127858B2 (en) * 2010-11-24 2015-09-08 David Wayne McKeown Multi-circuit manifold and method for a geothermal energy system
US20120125560A1 (en) * 2010-11-24 2012-05-24 Mckeown David Wayne Multi-Circuit Manifold and Method for a Geothermal Energy System
JP2013050221A (en) * 2011-08-30 2013-03-14 Hitachi Appliances Inc Refrigerant distributor and heat pump apparatus using the same
WO2013182666A1 (en) * 2012-06-08 2013-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Heat exchanger system, method for producing same, and fluid distribution element
WO2014199484A1 (en) * 2013-06-13 2014-12-18 三菱電機株式会社 Coolant distribution unit and air conditioning device using same
JPWO2014199484A1 (en) * 2013-06-13 2017-02-23 三菱電機株式会社 Air conditioner
EP2843347A1 (en) 2013-08-30 2015-03-04 Fujitsu Limited Radiator and method for manufacturing radiator
US9784504B2 (en) 2013-08-30 2017-10-10 Fujitsu Limited Radiator and method for manufacturing radiator
WO2017029780A1 (en) * 2015-08-17 2017-02-23 ダイキン工業株式会社 Refrigerant flow divider
JP2017040382A (en) * 2015-08-17 2017-02-23 ダイキン工業株式会社 Coolant flow diverter and process of manufacture of heat exchanging unit
EP3330638A4 (en) * 2015-08-17 2019-05-01 Daikin Industries, Ltd. Refrigerant flow divider
WO2017103965A1 (en) * 2015-12-14 2017-06-22 三菱電機株式会社 Distributor, heat exchanger, air conditioning device, and method for manufacturing distributor
JPWO2017103965A1 (en) * 2015-12-14 2018-06-28 三菱電機株式会社 Distributor, heat exchanger, air conditioner, and method of manufacturing distributor
CN108931083A (en) * 2018-08-20 2018-12-04 珠海格力电器股份有限公司 Current divider and refrigeration system
CN108931083B (en) * 2018-08-20 2023-11-10 珠海格力电器股份有限公司 Flow divider and refrigeration system

Similar Documents

Publication Publication Date Title
WO1999046544A1 (en) Coolant distributor, and air conditioner using it
KR100216052B1 (en) Evaporator
US6491092B2 (en) Heat exchanger
US10060685B2 (en) Laminated header, heat exchanger, and air-conditioning apparatus
US7107787B2 (en) Evaporator
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
WO2015045073A1 (en) Laminate-type header, heat exchanger, and air-conditioning apparatus
EP3088831B1 (en) Heat exchanger and air conditioning apparatus
JP6584514B2 (en) Laminated header, heat exchanger, and air conditioner
JP2002130988A (en) Laminated heat-exchanger
JP2006207997A (en) Heat exchanger
WO2017175346A1 (en) Distributor, heat exchanger, and air conditioning device
EP1462750A2 (en) Heat exchanger
JP6188926B2 (en) Laminated header, heat exchanger, and air conditioner
JP2011522207A (en) Valve assembly with integral header
US20060144051A1 (en) Evaporator designs for achieving high cooling performance at high superheats
US5431217A (en) Heat exchanger evaporator
JP2000111205A (en) Distributor and air conditioner
JP2007085594A5 (en)
WO2020090015A1 (en) Refrigerant distributor, heat exchanger, and air conditioning device
JPH11166795A (en) Heat exchanger
JP7313557B2 (en) Refrigerant distributors, heat exchangers and air conditioners
JPS6155565A (en) Horizontal system laminating type evaporator
EP0619467B1 (en) Evaporator
JP2513324Y2 (en) Heat exchanger

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase