WO1996016345A1 - Pulse source with a laser and a downstream chain circuit of two sinusoidal-voltage-controlled modulators - Google Patents

Pulse source with a laser and a downstream chain circuit of two sinusoidal-voltage-controlled modulators Download PDF

Info

Publication number
WO1996016345A1
WO1996016345A1 PCT/DE1995/001538 DE9501538W WO9616345A1 WO 1996016345 A1 WO1996016345 A1 WO 1996016345A1 DE 9501538 W DE9501538 W DE 9501538W WO 9616345 A1 WO9616345 A1 WO 9616345A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pulse source
sinusoidal
modulators
voltage
Prior art date
Application number
PCT/DE1995/001538
Other languages
German (de)
French (fr)
Inventor
Erich Gottwald
Chandan Das
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1996016345A1 publication Critical patent/WO1996016345A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/16Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 series; tandem
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/54Optical pulse train (comb) synthesizer

Definitions

  • Pulse source with a laser and a series connection of two modulators controlled with sinusoidal voltages
  • mode-locked or Q-switched lasers or laser diodes directly modulated by corresponding electrical pulses are used as the optical pulse sources running at a defined repetition rate.
  • a disadvantage of mode-locked and Q-switched lasers is that only discrete pulse repetition rates can be set without integral adjustment of the laser resonator (integer multiples of the mode spacing); automatic readjustment appears to be very difficult. To the intensity or amplitude of one
  • the laser diode In order to modulate semiconductor lasers of outgoing light by direct modulation, the laser diode must be supplied with a relatively high current; It is also problematic that an undesired chirp is also associated with such direct modulation, i.e. a change in the wavelength of the emitted light depending on the level of radiation.
  • Modified direct modulation methods provide a desired frequency (or also phase) modulation of the laser with subsequent conversion into intensity modulation by means of a Mach-Zehner interferometer connected behind the semiconductor laser; an additive or subtractive interference of two mutually delayed beam paths is carried out and a corresponding intensity modulation is achieved at the output (Electronics Letters, Vol. 28, No .12, (02.07.92), pp 1305 - 1306, U. Fischer: lOGBit / s-
  • Electro absorption modulators In another known pulse source, a laser is followed by a chain connection of two electro absorption modulators (EAM) controlled with sinusoidal voltages, whereby short pulses with repetition frequencies of up to 5 GHz occur.
  • EAM electro absorption modulators
  • Electro absorption modulators Electro absorption modulators, however, only tolerate relatively low optical power levels and are otherwise too slow for higher repetition rates.
  • the invention now shows a way to an optical pulse source avoiding the disadvantages mentioned.
  • the invention relates to a pulse source with a laser and a chain circuit connected downstream of it two modulators controlled with sinusoidal voltages;
  • this pulse source is characterized in that a CW (continuous wave) -operated laser is followed by the chain connection of two amplitude modulators based on two-beam interference, in particular Mach-Zehnder interferometers, which are coupled with two sinusoidal-phase-locked coupled sinusoidal ones Modulator voltages of the frequency f or 2f - where 2f is the pulse repetition rate - are controlled, both two-beam interferometers being operated at full transmission at the operating point and the control amplitudes selected so that the respective modulator is at the peak values of the modulation voltage a state of minimal, ie at most, the transmission is negligibly low.
  • an optical pulse source with a laser LD and two amplitude modulators MZI1, MZI2 cascaded downstream of it is schematically sketched in a scope necessary for understanding the invention, each of which is supplied with a sinusoidal voltage.
  • the laser LD which is expediently formed by a laser diode, operates in CW (continuous wave) mode.
  • the two amplitude modulators which are formed, for example, with two Mach-Zehnder interferometers and are based on the principle of two-beam interference, are each operated at a full transmission operating point and controlled from this operating point by a sinusoidal modulation voltage, the respective transmission being in a cos 2 dependency on the control voltage changes.
  • the first amplitude modulator MZI1 is controlled by a sine voltage of frequency f generated by a corresponding, tunable source G
  • the second amplitude modulator MZI2 is controlled by a sine voltage of frequency 2f coupled rigidly to it.
  • the sine voltage of frequency 2f can be generated from the sine voltage of frequency f by frequency doubling in a frequency converter f / 2f.
  • the amplitudes of the two modulation voltages are chosen so that the peak values of the respective modulation voltage bring the respective modulator into a state of minimal, ie at most negligible, low transmission.
  • repetition ranges 1 / ⁇ T of approximately 20 GHz and pulse durations ⁇ t ⁇ 8 ps can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Downstream of a c.w. laser is a chain circuit of two amplitude modulators based on double-gap interferences which are controlled by two mutually phase-locked sinusoidal modulator voltages of frequency f or 2f, where 2f is the pulse repetition rate, in which both double-gap interferometers are run at the full-transmission operating point and the control amplitudes are selected so that the modulating voltage of the modulator concerned is in a state of minimum transmission at the peak modulation voltages.

Description

Beschreibung description
Pulsquelle mit einem Laser und einer ihm nachgeschalteten Kettenschaltung zweier mit sinusförmigen Spannungen angesteu- erter ModulatorenPulse source with a laser and a series connection of two modulators controlled with sinusoidal voltages
Als mit definierter Wiederholungsrate laufende optische Puls¬ quellen verwendet man im allgemeinen mode-gelockte oder güte¬ geschaltete Laser oder auch durch entsprechende elektrische Impulse direktmodulierte Laserdioden. Nachteilig bei mode¬ gelockten und güte-geschalteten Lasern ist, daß ohne Nachju¬ stierung des Laserresonators nur diskrete Pulswiederholungs- raten einstellbar sind (ganzzahlige Vielfache des Modenab¬ stands) ; eine automatische Nachregelung erscheint als sehr schwierig. Um die Intensität bzw. Amplitude des von einemIn general, mode-locked or Q-switched lasers or laser diodes directly modulated by corresponding electrical pulses are used as the optical pulse sources running at a defined repetition rate. A disadvantage of mode-locked and Q-switched lasers is that only discrete pulse repetition rates can be set without integral adjustment of the laser resonator (integer multiples of the mode spacing); automatic readjustment appears to be very difficult. To the intensity or amplitude of one
Halbleiterlaser ausgehenden Lichts im Wege einer Direktmodu¬ lation zu modulieren, muß der Laserdiode ein relativ hoher Strom zugeführt werden; problematisch ist ausserdem, daß mit einer solchen Direktmodulation auch ein unerwünschter Chirp verbunden ist, d.h. eine austeuerungsabhängige Änderung der Wellenlange des ausgesandten Lichts.In order to modulate semiconductor lasers of outgoing light by direct modulation, the laser diode must be supplied with a relatively high current; It is also problematic that an undesired chirp is also associated with such direct modulation, i.e. a change in the wavelength of the emitted light depending on the level of radiation.
Modifizierte Direktmodulationsverfahren sehen eine gewollte Frequenz-(oder auch Phasen-)Modulation des Lasers mit nach¬ folgender Umsetzung in eine Intensitätsmodulation mittels eines hinter den Halbleiterlaser geschalteteten Mach-Zehner- Interferometers vor; dabei wird eine additive bzw. subtrak- tive Interferenz zweier gegeneinander verzögerter Strahlen¬ gänge durchgeführt und damit am Ausgang eine entsprechende Intensitätsmodulation erreicht (Electronics Letters, Vol. 28, No .12, (02.07.92), pp 1305 - 1306, U. Fischer: lOGBit/s-Modified direct modulation methods provide a desired frequency (or also phase) modulation of the laser with subsequent conversion into intensity modulation by means of a Mach-Zehner interferometer connected behind the semiconductor laser; an additive or subtractive interference of two mutually delayed beam paths is carried out and a corresponding intensity modulation is achieved at the output (Electronics Letters, Vol. 28, No .12, (02.07.92), pp 1305 - 1306, U. Fischer: lOGBit / s-
Transmission Over 69 km of Νon-Dispersion-Shifted Singlemode Fibre With CPFSK Direct Modulation of 1,55 μ BH DFB-Laser) .Transmission Over 69 km of Νon-Dispersion-Shifted Singlemode Fiber With CPFSK Direct Modulation of 1.55 μ BH DFB-Laser).
Bei einer anderen bekannten Pulsquelle ist einem Laser eine Kettenschaltung zweier mit sinusförmigen Spannungen angesteu¬ erter Elektroabsorptionsmodulatoren (EAM) nachgeschaltet, wo¬ bei kurze Pulse mit Wiederholungsfrequenzen bis zu 5 GHz er- zeugt wurden (Electronics Letters, Vol.29, No.16 (05.08.93), pp 1449 ... 1451, H. Takana et al: Optical Short Pulse Gene¬ ration by Double Gate Operation of Tandem Connected Electro- absorption Modulators Driven by Sinusoidal Voltages) . Elek- troabsorptionsmodulatoren vertragen allerdings nur relativ geringe optische Leistungspegel und sind im übrigen für höhe¬ re Repititionsraten zu langsam.In another known pulse source, a laser is followed by a chain connection of two electro absorption modulators (EAM) controlled with sinusoidal voltages, whereby short pulses with repetition frequencies of up to 5 GHz occur. (Electronics Letters, Vol.29, No.16 (08/05/93), pp 1449 ... 1451, H. Takana et al: Optical Short Pulse Generation by Double Gate Operation of Tandem Connected Electro-absorption Modulators Driven by Sinusoidal Voltages). Electro absorption modulators, however, only tolerate relatively low optical power levels and are otherwise too slow for higher repetition rates.
Die Erfindung zeigt nun einen Weg zu einer die genannten Nachteile vermeidenden optischen Pulsquelle.The invention now shows a way to an optical pulse source avoiding the disadvantages mentioned.
Die Erfindung betrifft eine Pulsquelle mit einem Laser und einer ihm nachgeschalteten Kettenschaltung zweier mit sinus¬ förmigen Spannungen angesteuerter Modulatoren; diese Puls- quelle ist erfindungsgemäß dadurch gekennzeichnet, daß einem CW(Continous Wave) -betriebenen Laser die Kettenschaltung zweier auf Zweistrahlinterferenz basierender Amplitudenmodu¬ latoren, insbesondere Mach-Zehnder-Interferometer, nachge¬ schaltet ist, die mit zwei miteinander phasenstarr gekoppel- ten sinusförmigen Modulatorspannungen der Frequenz f bzw. 2f - wobei 2f die Pulswiederholungsrate ist - angesteuert wer¬ den, wobei beide Zweistrahlinterferometer im Arbeitspunkt voller Transmission betrieben werden und die Ansteuerampli¬ tuden so gewählt sind, daß bei den Scheitelwerten der Modula- tionsspannung der jeweilige Modulator sich in einem Zustand minimaler, d.h. allenfalls vernachlässigbar niedriger Trans¬ mission befindet.The invention relates to a pulse source with a laser and a chain circuit connected downstream of it two modulators controlled with sinusoidal voltages; According to the invention, this pulse source is characterized in that a CW (continuous wave) -operated laser is followed by the chain connection of two amplitude modulators based on two-beam interference, in particular Mach-Zehnder interferometers, which are coupled with two sinusoidal-phase-locked coupled sinusoidal ones Modulator voltages of the frequency f or 2f - where 2f is the pulse repetition rate - are controlled, both two-beam interferometers being operated at full transmission at the operating point and the control amplitudes selected so that the respective modulator is at the peak values of the modulation voltage a state of minimal, ie at most, the transmission is negligibly low.
Die Erfindung schafft eine hochratige Pulsquelle für fourier- limitierte optische Pulse mit durch einfaches Durchstimmen der Modulationsfrequenz f definiert kontinuierlich durch- stimmbarer Pulswiederholungsrate 2f und konstantem Verhältnis von Pulsabstand ΔT = l/2f und Pulsbreite Δt, wobei ΔT/Δt ≥ 6 ist.The invention provides a high-rate pulse source for Fourier-limited optical pulses with a continuously repetitive pulse repetition rate 2f defined by simply tuning the modulation frequency f and a constant ratio of pulse spacing ΔT = 1 / 2f and pulse width Δt, where ΔT / Δt ≥ 6.
An Hand der Zeichnungen sei die Erfindung noch näher erläu¬ tert. Dabei zeigt FIG 1 das Schaltbild einer Pulsquelle gemäß der Erfindung; FIG 2 verdeutlicht den zeitlichen Verlauf der Pulse.The invention will be explained in more detail with reference to the drawings. It shows 1 shows the circuit diagram of a pulse source according to the invention; 2 illustrates the course of the pulses over time.
In FIG 1 ist schematisch in einem zum Verständnis der Er- findung erforderlichen Umfange eine optische Pulsquelle mit einem Laser LD und zwei ihm kaskadiert nachgeschalteten Am¬ plitudenmodulatoren MZI1, MZI2 skizziert, die jeweils mit einer Sinusspannung beaufschlagt werden. Der zweckmäßiger¬ weise durch eine Laserdiode gebildete Laser LD arbeitet im CW(Continous Wave)-Betrieb. Die beiden beispielsweise mit zwei Mach-Zehnder-Interferometern gebildeten, auf dem Prinzip der Zweistrahlinterferenz basierenden Amplitudenmodulatoren werden jeweils in einem Arbeitspunkt voller Transmission be¬ trieben und aus diesem Arbeitspunkt heraus durch eine sinus- förmige ModulationsSpannung gesteuert, wobei sich die jewei¬ lige Transmission in einer cos2-Abhängigkeit von der Ansteu¬ erspannung ändert. Dabei wird der erste Amplitudenmodulator MZI1 durch eine von einer entsprechenden, durchstimmbaren Quelle G erzeugte Sinusspannung einer Frequenz f gesteuert und der zweite Amplitudenmodulator MZI2 durch eine damit pha¬ senstarr gekoppelte Sinusspannung der Frequenz 2f. Wie dies auch aus FIG 1 ersichtlich ist, kann dabei die Sinusspannung der Frequenz 2f aus der Sinusspannung der Frequenz f durch Frequenzverdoppelung in einem Frequenzumsetzer f/2f erzeugt werden. Die Amplituden der beiden Modulationsspannungen wer¬ den dabei so gewählt, daß an den Scheitelwerten der jeweili¬ gen Modulationsspannung der betreffende Modulator jeweils in einen Zustand minimaler, d.h. allenfalls vernachlässigbar niedriger Transmission gelangt. Man erhält dann am Ausgang p des zweiten Amplitudenmodulators MZI2 optische Pulse der Form p(t) = [cos(—sin2π ) ]2* [cos(— än4ιφ ) ] 2 , deren Repetitionsrate der Frequenz 2f entspricht und deren Pulsdauer etwa l/13f beträgt, wie dies auch in FIG 2 ange¬ deutet ist. Mit den zur Zeit kommerziell erhältlichen Mach- Zehnder-Modulatoren lassen sich so Repetitionsra en 1/ΔT von etwa 20 GHz und Pulsdauern Δt < 8 ps realisieren. In FIG. 1, an optical pulse source with a laser LD and two amplitude modulators MZI1, MZI2 cascaded downstream of it is schematically sketched in a scope necessary for understanding the invention, each of which is supplied with a sinusoidal voltage. The laser LD, which is expediently formed by a laser diode, operates in CW (continuous wave) mode. The two amplitude modulators, which are formed, for example, with two Mach-Zehnder interferometers and are based on the principle of two-beam interference, are each operated at a full transmission operating point and controlled from this operating point by a sinusoidal modulation voltage, the respective transmission being in a cos 2 dependency on the control voltage changes. The first amplitude modulator MZI1 is controlled by a sine voltage of frequency f generated by a corresponding, tunable source G, and the second amplitude modulator MZI2 is controlled by a sine voltage of frequency 2f coupled rigidly to it. As can also be seen from FIG. 1, the sine voltage of frequency 2f can be generated from the sine voltage of frequency f by frequency doubling in a frequency converter f / 2f. The amplitudes of the two modulation voltages are chosen so that the peak values of the respective modulation voltage bring the respective modulator into a state of minimal, ie at most negligible, low transmission. At the output p of the second amplitude modulator MZI2, optical pulses of the form p (t) = [cos (—sin2π)] 2 * [cos (- än4ιφ)] 2 are then obtained , the repetition rate of which corresponds to the frequency 2f and the pulse duration of which is approximately l / 13f is, as is also indicated in FIG. With the currently commercially available Mach-Zehnder modulators, repetition ranges 1 / ΔT of approximately 20 GHz and pulse durations Δt <8 ps can be realized.

Claims

Patentansprüche claims
1. Pulsquelle mit einem Laser und einer ihm nachgeschalteten Kettenschaltung zweier mit sinusförmigen Spannungen angesteu- erter Modulatoren, dadurch gekennzeichnet, daß einem CW-betriebenen Laser (LD) die Kettenschaltung zwei¬ er auf Zweistrahlinterferenz basierender Amplitudenmodulato¬ ren (MZIl, MZI2) nachgeschaltet ist, die mit zwei miteinander phasenstarr gekoppelten sinusförmigen Modulationsspannungen der Frequenz f bzw. 2f angesteuert werden, wobei beide Zwei- strahlinterferometer in einem Arbeitspunkt voller Transmissi¬ on betrieben werden und die Modulationsspannungsamplituden so gewählt sind, daß bei den Scheitelwerten der Modulationsspan- nung der jeweilige Modulator MZIl bzw. MZI2) sich in einem Zustand minimaler Transmission befindet.1. Pulse source with a laser and a chain circuit connected downstream of it two modulators controlled with sinusoidal voltages, characterized in that the chain circuit of two amplitude modulators (MZII, MZI2) based on two-beam interference is connected to a CW-operated laser (LD) , which are driven with two phase-locked coupled sinusoidal modulation voltages of the frequency f or 2f, both two-beam interferometers being operated at a working point full of transmission and the modulation voltage amplitudes being selected such that the respective modulator at the peak values of the modulation voltage MZIl or MZI2) is in a state of minimal transmission.
2. Pulsquelle nach Anspruch 1, dadurch gekennzeichnet, daß dem CW-Laser (LD) zwei Mach-Zehnder-Modulatoren (MZIl, MZI2) in Kette nachgeschaltet sind.2. Pulse source according to claim 1, characterized in that the CW laser (LD) two Mach-Zehnder modulators (MZIl, MZI2) are connected in chain.
3. Pulsquelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zweite Modulationsspannung durch Frequenzverdopplung aus der ersten Modulationsspannung gewonnen wird. 3. Pulse source according to claim 1 or 2, characterized in that the second modulation voltage is obtained by doubling the frequency from the first modulation voltage.
PCT/DE1995/001538 1994-11-18 1995-11-07 Pulse source with a laser and a downstream chain circuit of two sinusoidal-voltage-controlled modulators WO1996016345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4441180A DE4441180C1 (en) 1994-11-18 1994-11-18 Pulsed laser source with voltage-controlled modulators
DEP4441180.4 1994-11-18

Publications (1)

Publication Number Publication Date
WO1996016345A1 true WO1996016345A1 (en) 1996-05-30

Family

ID=6533629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001538 WO1996016345A1 (en) 1994-11-18 1995-11-07 Pulse source with a laser and a downstream chain circuit of two sinusoidal-voltage-controlled modulators

Country Status (2)

Country Link
DE (1) DE4441180C1 (en)
WO (1) WO1996016345A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925265B2 (en) 1997-08-04 2005-08-02 Cisco Photonics Italy S.R.L. System and method of high-speed transmission and appropriate transmission apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1143174C (en) * 1999-05-27 2004-03-24 西门子公司 Method and system for generating return-to-zero signals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505587A (en) * 1981-08-14 1985-03-19 Massachusetts Institute Of Technology Picosecond optical sampling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293545A (en) * 1992-07-27 1994-03-08 General Instrument Corporation Optical source with reduced relative intensity noise

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505587A (en) * 1981-08-14 1985-03-19 Massachusetts Institute Of Technology Picosecond optical sampling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA H ET AL: "Optical short pulse generation by double gate operation of tandem connected electroabsorption modulators driven by sinusoidal voltages", ELECTRONICS LETTERS, 5 AUG. 1993, UK, vol. 29, no. 16, ISSN 0013-5194, pages 1449 - 1451, XP000388437 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925265B2 (en) 1997-08-04 2005-08-02 Cisco Photonics Italy S.R.L. System and method of high-speed transmission and appropriate transmission apparatus
US7010231B1 (en) 1997-08-04 2006-03-07 Cisco Photonics Italy S.R.L. System and method of high-speed transmission and appropriate transmission apparatus

Also Published As

Publication number Publication date
DE4441180C1 (en) 1996-02-15

Similar Documents

Publication Publication Date Title
US5434693A (en) Optical short pulse generating device
US6972887B2 (en) High energy arbitrary waveform source
DE60120176T2 (en) OPTICAL IMPULSE IMPULSE GENERATOR
McKinney et al. Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping
US7483635B2 (en) Multi-wavelength pulse generator using time-lens compression
Huang et al. Spectral line‐by‐line shaping for optical and microwave arbitrary waveform generations
Gao et al. Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter
CN110967892A (en) MZM-EAM cascade and pulse signal-based optical frequency comb generation device and method
CN109155500B (en) Ultrafast pulse laser system using intensity pulse shape correction
EP1180250A2 (en) Method and system for generating return-to-zero signals
US20020141027A1 (en) Variable pulse width optical pulse generation with superposed multiple frequency drive
JPH05283804A (en) Optical pulse generator
Sheveleva et al. Nonlinear compression of besselon waves for high repetition-rate subpicosecond pulse trains
WO1996016345A1 (en) Pulse source with a laser and a downstream chain circuit of two sinusoidal-voltage-controlled modulators
DE102015104084A1 (en) Reduction of the pulse repetition frequency of a pulsed laser system
JP4468877B2 (en) Multi-wavelength light source
Dhawan et al. Photonic generation of multi-carrier chirped waveform using a dual-drive Mach Zehnder modulator
CN110989210A (en) Tunable optical frequency comb generation device and method based on EAM and pulse signal
CN114815433B (en) Optical frequency comb generating device
Kastritsis et al. Comparison of two photonic sampling mixer architectures based on SOA-MZI for all-optical frequency up-conversion
CN115144841B (en) Large-bandwidth linear frequency modulation signal generation device and method
Chou et al. Ultra-wideband continuous sawtooth generation using RF-photonic technique
Verma et al. Optical Frequency Comb Generator Employing Serially Connected LiNbO3 Mach-Zehnder Modulator
Zhang et al. Generation of tunable optical frequency combs with a high side mode suppression ratio
Li et al. A Simple Full-duty-cycle Triangular Pulse Train Generation Scheme Based on a Dual-drive Mach-Zehnder Modulator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA