US9653603B1 - Semiconductor device and method for fabricating the same - Google Patents

Semiconductor device and method for fabricating the same Download PDF

Info

Publication number
US9653603B1
US9653603B1 US15/139,305 US201615139305A US9653603B1 US 9653603 B1 US9653603 B1 US 9653603B1 US 201615139305 A US201615139305 A US 201615139305A US 9653603 B1 US9653603 B1 US 9653603B1
Authority
US
United States
Prior art keywords
buffer layer
forming
layer
substrate
dopants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/139,305
Inventor
Li-Wei Feng
Shih-Hung Tsai
Yi-Fan Li
Kun-Hsin Chen
Tong-Jyun Huang
Jyh-Shyang Jenq
Nan-Yuan Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Assigned to UNITED MICROELECTRONICS CORP. reassignment UNITED MICROELECTRONICS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, KUN-HSIN, FENG, Li-wei, HUANG, NAN-YUAN, HUANG, TONG-JYUN, JENQ, JYH-SHYANG, LI, YI-FAN, TSAI, SHIH-HUNG
Priority to US15/481,419 priority Critical patent/US10121881B2/en
Application granted granted Critical
Publication of US9653603B1 publication Critical patent/US9653603B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/66803Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with a step of doping the vertical sidewall, e.g. using tilted or multi-angled implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7849Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being provided under the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • H01L21/26546Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds of electrically active species

Definitions

  • the invention relates to a method for fabricating semiconductor device, and more particularly, to a method of forming a buffer layer on a substrate before forming fin-shaped structures.
  • FinFET fin field effect transistor technology
  • a method for fabricating semiconductor device includes the steps of: providing a substrate; forming a recess in the substrate; forming a buffer layer in the recess; forming an epitaxial layer on the buffer layer; and removing part of the epitaxial layer, part of the buffer layer, and part of the substrate to form fin-shaped structures.
  • a method for fabricating semiconductor device includes the steps of: providing a substrate; forming a fin-shaped structure on the substrate and an insulating layer around the fin-shaped structure; removing part of the fin-shaped structure for forming a recess; forming a buffer layer in the recess; forming an epitaxial layer on the buffer layer; and removing part of the insulating layer to form a shallow trench isolation (STI).
  • STI shallow trench isolation
  • a semiconductor device includes: a substrate; a fin-shaped structure on the substrate; a buffer layer on the fin-shaped structure, wherein the buffer layer comprises three or more than three elements; and an epitaxial layer on the buffer layer.
  • FIGS. 1-7 illustrate a method for fabricating a semiconductor device according to a first embodiment of the present invention.
  • FIGS. 8-11 illustrate a method for fabricating semiconductor device according to a second embodiment of the present invention.
  • FIGS. 12-16 illustrate a method for fabricating a semiconductor device according to a third embodiment of the present invention.
  • FIGS. 1-7 illustrate a method for fabricating a semiconductor device according to a first embodiment of the present invention.
  • a substrate 12 such as a silicon substrate is provided.
  • a hard mask 14 could be selectively formed on the substrate 12 , in which the hard mask 14 could be composed of silicon oxide or silicon nitride.
  • a patterned mask such as a patterned resist 16 is formed on the hard mask 14 , and an etching process is conducted to remove part of the hard mask 14 for exposing the surface of the substrate 12 .
  • an implant or ion implantation process 18 is conducted to implant dopants into the substrate 12 not covered by the patterned resist 16 .
  • the well 20 on the active region 22 is preferably used to fabricate active devices such as FinFETs in the later process.
  • the dopants implanted through the implant process 18 preferably depend on the conductive type of the transistor being fabricated. Since the present embodiment pertains to fabricating a PMOS transistor, n-type dopants are preferably implanted and the well 20 formed in the substrate 12 is preferably a n-well. If a NMOS transistor were to be fabricated, p-type dopants would be implanted into the substrate 12 to form a p-well. After the fabrication of well 20 is completed a thermal anneal process could be selectively conducted to activates the implanted dopants.
  • another etching process is conducted by either using the patterned resist 16 as mask or stripping the patterned resist 16 and then using the patterned hard mask 14 as mask to remove part of the substrate 12 including the well 20 to form a recess 26 in the substrate 12 .
  • the order for forming the well 20 and recess 26 is not limited to the one disclosed in this embodiment. For instance, it would also be desirable to conduct an etching process to remove part of the substrate 12 for forming a recess 26 after forming the patterned resist 16 , and then conducts an implant process to form a well 20 in the substrate 12 and under the recess 26 , which is also within the scope of the present invention.
  • the buffer layer 28 is preferably a buffer material layer utilized for adjusting stress, which is preferably composed of silicon germanium (SiGe), but could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors.
  • SiGe silicon germanium
  • the formation of the buffer layer 28 could be accomplished by forming a buffer layer with in-situly doped dopants directly, in which the dopants within the buffer layer 28 is preferably selected from the ion group consisting of P, As, Sb and Bi.
  • the ions implanted could be selected from dopants not carrying charge or dopants carrying charge. If the implanted dopants were dopants not carrying charge, the buffer layer 28 formed could be serving as a stress adjustment layer between the well 20 and epitaxial layer formed afterwards. If the implanted dopants were dopants carrying charge and due to the fact that the implanted dopants and the well 20 share same conductive type and the concentration of the ions is higher than the well 20 , the buffer layer 28 formed could be serving as a stress adjustment layer as well as an isolation structure between the well 20 and an epitaxial layer formed afterwards. In this embodiment, the implanted dopants could be selected from the group consisting of P, As, Sb, Bi, C, and F.
  • the aforementioned dopants implanted into the buffer layer 28 from in-situ doping process or extra ion implantation thereafter could include one type or more types of dopants listed above, so that the buffer layer 28 formed could include at least three or more elements.
  • the buffer layer 28 composed of SiGe as an example, if at least one element or dopant such as phosphorus (P) is implanted into the buffer layer 28 , the buffer layer 28 would eventually include silicon, germanium, and phosphorus. If one more element such as arsenic (As) is added to the buffer layer 28 , the buffer layer 28 would have four elements including silicon, germanium, phosphorus, and arsenic.
  • a thermal treatment could be conducted selectively to remove defect, repair lattice structure, and recrystallize.
  • a growth process is conducted by using selective epitaxial growth process to form an epitaxial layer 30 on the buffer layer 28 , in which a top surface of the epitaxial layer 30 is preferably higher than the top surfaces of the surrounding substrate 12 and hard mask 14 .
  • the epitaxial layer 30 and buffer layer 28 are preferably composed of same material, such as both being composed of SiGe.
  • the epitaxial layer 30 could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V compound semiconductors.
  • the concentration of the epitaxial layer 30 is preferably greater than the concentration of the buffer layer 28 , such as the germanium concentration of the epitaxial layer 30 is greater than the germanium concentration of the buffer layer 28 .
  • a planarizing process such as a chemical mechanical polishing (CMP) process is conducted to remove part of the epitaxial layer 30 so that the top surface of the remaining epitaxial layer 30 is substantially even with the top surface of the surrounding hard mask 14 .
  • CMP chemical mechanical polishing
  • At least one hard mask could be formed on the hard mask 14 and the epitaxial layer 30 , in which the at least one hard mask could further include a hard mask 32 composed of same material as the hard mask 14 and another hard mask 34 composed of different material.
  • a sidewall image transfer (SIT) process or a photo-etching process is conducted to remove part of the hard mask 34 , part of the hard mask 32 , part of the epitaxial layer 30 , part of the buffer layer 28 , and part of the substrate 12 on the active region 22 for forming fin-shaped structures 36 . Since the formation of fin-shaped structures through SIT process or photo-etching process is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity.
  • an insulating layer (not shown) is deposited to cover the hard mask 34 on the peripheral region 34 and the fin-shaped structures 36 on the active region 22 so that the insulating layer is higher than the top surface of the fin-shaped structures 36 , and a planarizing process, such as CMP process is conducted to remove part of the insulating layer, the hard masks 34 , 32 , and 14 so that the top surface of the remaining insulating layer is even with the top surface of the epitaxial layer 30 of the fin-shaped structures 36 .
  • an etching process is conducted to remove part of the insulating layer so that the top surface of the remaining insulating layer is slightly lower than the top surface of the fin-shaped structures 36 . This forms a shallow trench isolation (STI) 38 around the fin-shaped structures 36 .
  • STI shallow trench isolation
  • follow-up FinFET fabrication process could be conducted by forming gate structure on the fin-shaped structures 36 , forming spacers adjacent to the gate structure and source/drain region in the fin-shaped structures 36 adjacent to the spacers.
  • a contact etch stop layer CESL
  • ILD interlayer dielectric
  • RMG replacement metal gate
  • FIGS. 8-11 illustrate a method for fabricating semiconductor device according to a second embodiment of the present invention.
  • a substrate 42 such as a silicon substrate or a silicon-on-insulator (SOI) substrate is provided, and at least one fin-shaped structure 44 is formed on the substrate.
  • SOI silicon-on-insulator
  • the fin-shaped structures 44 of this embodiment are preferably obtained by a sidewall image transfer (SIT) process.
  • a layout pattern is first input into a computer system and is modified through suitable calculation.
  • the modified layout is then defined in a mask and further transferred to a layer of sacrificial layer on a substrate through a photolithographic and an etching process.
  • a deposition process and an etching process are carried out such that spacers are formed on the sidewalls of the patterned sacrificial layers.
  • sacrificial layers can be removed completely by performing an etching process.
  • the pattern defined by the spacers can be transferred into the substrate underneath, and through additional fin cut processes, desirable pattern structures, such as stripe patterned fin-shaped structures could be obtained.
  • the fin-shaped structure 44 of this embodiment could also be obtained by first forming a patterned mask (not shown) on the substrate, 42 , and through an etching process, the pattern of the patterned mask is transferred to the substrate 42 to form the fin-shaped structure 44 .
  • the formation of the fin-shaped structure 44 could also be accomplished by first forming a patterned hard mask (not shown) on the substrate 42 , and a semiconductor layer composed of silicon germanium is grown from the substrate 42 through exposed patterned hard mask via selective epitaxial growth process to form the corresponding fin-shaped structure 44 .
  • an insulating layer 46 is formed to cover the fin-shaped structures 44 , and a planarizing process, such as CMP is conducted to remove part of the insulating layer 46 and even part of the fin-shaped structures 44 so that the top surface of the remaining insulating layer 46 is even with the top surface of the fin-shaped structures 44 .
  • the insulating layer 46 is preferably composed of silicon oxide, but not limited thereto.
  • an etching process is conducted by using the insulating layer 46 as mask to remove part of the fin-shaped structures 44 to form a plurality of recesses 48 .
  • a buffer layer 50 is formed in the recesses 48 without filling the recesses 48 completely, in which the buffer layer 50 is preferably composed of SiGe, but could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors.
  • the formation of the buffer layer 50 could be accomplished by forming a buffer layer with in-situly doped dopants directly, in which the dopants within the buffer layer 50 is preferably selected from the ion group consisting of P, As, Sb, and Bi.
  • ion implantation process is conducted to alter the lattice structure of the buffer layer 50 through an amorphization process, in which the implanted dopants could be selected from the group consisting of P, As, Sb, Bi, C, and F.
  • the dopants implanted into the buffer layer 50 from either in-situ doping process or extra ion implantation conducted thereafter could include one type or more types of dopants so that the buffer layer 50 formed could include at least three or more elements.
  • the buffer layer 50 composed of SiGe as an example, if at least one element or dopant such as phosphorus (P) is implanted into the buffer layer 50 , the buffer layer 50 would eventually include silicon, germanium, and phosphorus. If one more element such as arsenic (As) is added to the buffer layer 50 , the buffer layer 50 would have four elements including silicon, germanium, phosphorus, and arsenic.
  • a thermal treatment could be conducted selectively to remove defect, repair lattice structure, and recrystallize.
  • a growth process is conducted by using selective epitaxial growth process to form an epitaxial layer 52 on the buffer layer 50 , in which a top surface of the epitaxial layer 52 is preferably higher than the top surfaces of the surrounding insulating layer 46 .
  • the epitaxial layer 52 and buffer layer 50 are preferably composed of same material, such as both being composed of SiGe.
  • the epitaxial layer 52 could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors.
  • the concentration of the epitaxial layer 52 is preferably greater than the concentration of the buffer layer 50 , such as the germanium concentration of the epitaxial layer 52 is greater than the germanium concentration of the buffer layer 50 .
  • a planarizing process such as CMP is conducted to remove part of the epitaxial layer 52 and even part of the insulating layer 46 so that the top surface of the remaining epitaxial layer 52 is even with the top surface of the insulating layer 46 .
  • the original fin-shaped structures 44 and the newly formed buffer layer 50 and epitaxial layer 52 together form new fin-shaped structures 54 .
  • an etching process is conducted by using the epitaxial layer 52 as mask to remove part of the insulating layer 46 for forming a STI 56 .
  • follow-up FinFET fabrication process could be conducted by forming gate structure on the fin-shaped structures 54 , forming spacers adjacent to the gate structure and source/drain region in the fin-shaped structures 54 adjacent to the spacers.
  • a contact etch stop layer CESL
  • ILD interlayer dielectric
  • RMG replacement metal gate
  • a thermal treatment could be conducted selectively and an epitaxial layer is formed on the buffer layer through selective epitaxial growth process.
  • FIGS. 12-16 illustrate a method for fabricating a semiconductor device according to a third embodiment of the present invention.
  • a liner or pad layer 62 is deposited on the surface of the hard mask 14 and into the recesses 26 while not filling the recesses 26 completely.
  • the pad layer 62 filled into the recess 26 is disposed on the surface of the well 20 and the exposed sidewalls of the substrate 12 .
  • the material of the pad layer 62 could be the same as or different from the material of the hard mask 14 , in which the pad layer 62 is preferably composed of silicon oxide while the hard mask 14 could be selected from the group consisting of silicon oxide and silicon nitride, but not limited thereto.
  • an etching process is conducted to remove part of the pad layer 62 on the hard mask 14 and part of the pad layer 62 on the well 20 surface. This exposes the hard mask 14 surface and part of the well 20 surface and forms spacers 64 on the sidewalls of the exposed substrate 12 , in which the top surface of the spacers 64 is even with the top surface of the hard mask 14 .
  • the buffer layer 66 is preferably a buffer material layer utilized for adjusting stress, which is preferably composed of silicon germanium (SiGe), but could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors.
  • SiGe silicon germanium
  • the formation of the buffer layer 66 could be accomplished by forming a buffer layer with in-situly doped dopants directly, in which the dopants within the buffer layer 66 is preferably selected from the ion group consisting of P, As, Sb and Bi.
  • the ions implanted could be selected from dopants not carrying charge or dopants carrying charge. If the implanted dopants were dopants not carrying charge, the buffer layer 66 formed could be serving as a stress adjustment layer between the well 20 and epitaxial layer 68 formed afterwards. If the implanted dopants were dopants carrying charge and due to the fact that the implanted dopants and the well 20 share same conductive type and the concentration of the ions is higher than the well 20 , the buffer layer 66 formed could be serving as a stress adjustment layer as well as an isolation structure between the well 20 and an epitaxial layer 68 formed afterwards. In this embodiment, the implanted dopants could be selected from the group consisting of P, As, Sb, Bi, C, and F.
  • the aforementioned dopants implanted into the buffer layer 66 from in-situ doping process or an extra ion implantation thereafter could include one type or more types of dopants listed above, so that the buffer layer 66 formed could include at least three or more elements.
  • the buffer layer 66 composed of SiGe if at least one element or dopant such as phosphorus (P) is implanted into the buffer layer 66 , the buffer layer 66 would eventually include silicon, germanium, and phosphorus. If one more element such as arsenic (As) is added to the buffer layer 66 , the buffer layer 66 would have four elements including silicon, germanium, phosphorus, and arsenic.
  • a thermal treatment could be conducted selectively to remove defect, repair lattice structure, and recrystallize.
  • a growth process is conducted by using selective epitaxial growth process to form epitaxial layer 68 on the buffer layer 66 , in which a top surface of the epitaxial layer 68 is preferably higher than the top surfaces of the surrounding substrate 12 and hard mask 14 .
  • the epitaxial layer 68 and buffer layer 66 are preferably composed of same material, such as both being composed of SiGe.
  • the epitaxial layer 68 could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors.
  • the concentration of the epitaxial layer 68 is preferably greater than the concentration of the buffer layer 66 , such as the germanium concentration of the epitaxial layer 68 is greater than the germanium concentration of the buffer layer 66 .
  • an alternative embodiment of the present invention could be accomplished by forming a buffer layer 66 with in-situly doped dopants and then forming an epitaxial layer 68 directly through epitaxial growth process, or forming a buffer layer 66 without containing any dopants, conducting an ion implant process to implant ions carrying charge or not carrying charge into the buffer layer 66 for amorphization purpose, and then forming an epitaxial layer 68 on the buffer layer 66 , which are all within the scope of the present invention.
  • a planarizing process such as a chemical mechanical polishing (CMP) process is conducted to remove part of the epitaxial layer 68 so that the top surface of the remaining epitaxial layer 68 is substantially even with the top surface of the surrounding hard mask 14 .
  • CMP chemical mechanical polishing
  • At least one hard mask could be formed on the hard mask 14 and the epitaxial layer 68 , in which the at least one hard mask could further include a hard mask 70 composed of same material as the hard mask 14 and another hard mask 72 composed of different material.
  • a sidewall image transfer (SIT) process or a photo-etching process is conducted to remove part of the hard mask 72 , part of the hard mask 70 , part of the epitaxial layer 68 , part of the buffer layer 66 , and part of the substrate 12 on the active region 22 for forming fin-shaped structures 74 . Since the formation of fin-shaped structures through SIT process or photo-etching process is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity.
  • typical epitaxial buffer layer and epitaxial layer formed in a recess were grown through selective epitaxial growth process from silicon substrate either underneath the epitaxial buffer layer and/or around the epitaxial buffer layer.
  • the epitaxial buffer layer formed through this manner typically reveals a substantially U-shaped gradient profile, in which the concentration gradient of the epitaxial buffer layer could vary either inwardly or outwardly along the U-shaped profile. This induces a problem when poor fin-cut process were conducted in the later stage to form fin-shaped structures containing vertical edge portions of the U-shaped profile of the epitaxial buffer layer.
  • spacers 64 preferably made of dielectric material in the recesses 26 to surround the buffer layer 66 and epitaxial layer 68 , the present embodiment ensures that the buffer layer 66 formed in the recesses 26 would have a horizontal I-shaped profile instead of a U-shaped profile and further guarantees that the fin-shaped structures formed afterwards would have a much more uniform gradient distribution.

Abstract

A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a recess in the substrate; forming a buffer layer in the recess; forming an epitaxial layer on the buffer layer; and removing part of the epitaxial layer, part of the buffer layer, and part of the substrate to form fin-shaped structures.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method for fabricating semiconductor device, and more particularly, to a method of forming a buffer layer on a substrate before forming fin-shaped structures.
2. Description of the Prior Art
With the trend in the industry being towards scaling down the size of the metal oxide semiconductor transistors (MOS), three-dimensional or non-planar transistor technology, such as fin field effect transistor technology (FinFET) has been developed to replace planar MOS transistors. Since the three-dimensional structure of a FinFET increases the overlapping area between the gate and the fin-shaped structure of the silicon substrate, the channel region can therefore be more effectively controlled. This way, the drain-induced barrier lowering (DIBL) effect and the short channel effect are reduced. The channel region is also longer for an equivalent gate length, thus the current between the source and the drain is increased. In addition, the threshold voltage of the fin FET can be controlled by adjusting the work function of the gate.
However, the design of fin-shaped structure in current FinFET fabrication still resides numerous bottlenecks which induces current leakage of the device and affects overall performance of the device. Hence, how to improve the current FinFET fabrication and structure has become an important task in this field.
SUMMARY OF THE INVENTION
According to a preferred embodiment of the present invention, a method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a recess in the substrate; forming a buffer layer in the recess; forming an epitaxial layer on the buffer layer; and removing part of the epitaxial layer, part of the buffer layer, and part of the substrate to form fin-shaped structures.
According to another aspect of the present invention, a method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a fin-shaped structure on the substrate and an insulating layer around the fin-shaped structure; removing part of the fin-shaped structure for forming a recess; forming a buffer layer in the recess; forming an epitaxial layer on the buffer layer; and removing part of the insulating layer to form a shallow trench isolation (STI).
According to another aspect of the present invention, a semiconductor device is disclosed. The semiconductor device includes: a substrate; a fin-shaped structure on the substrate; a buffer layer on the fin-shaped structure, wherein the buffer layer comprises three or more than three elements; and an epitaxial layer on the buffer layer.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1-7 illustrate a method for fabricating a semiconductor device according to a first embodiment of the present invention.
FIGS. 8-11 illustrate a method for fabricating semiconductor device according to a second embodiment of the present invention.
FIGS. 12-16 illustrate a method for fabricating a semiconductor device according to a third embodiment of the present invention.
DETAILED DESCRIPTION
Referring to FIGS. 1-7, FIGS. 1-7 illustrate a method for fabricating a semiconductor device according to a first embodiment of the present invention. As shown in FIG. 1, a substrate 12, such as a silicon substrate is provided. A hard mask 14 could be selectively formed on the substrate 12, in which the hard mask 14 could be composed of silicon oxide or silicon nitride. Next, a patterned mask, such as a patterned resist 16 is formed on the hard mask 14, and an etching process is conducted to remove part of the hard mask 14 for exposing the surface of the substrate 12. Next, an implant or ion implantation process 18 is conducted to implant dopants into the substrate 12 not covered by the patterned resist 16. This forms a well 20 or well region in the substrate 12 and defines an active region 22 and a peripheral region 24. Preferably, the well 20 on the active region 22 is preferably used to fabricate active devices such as FinFETs in the later process.
In this embodiment, the dopants implanted through the implant process 18 preferably depend on the conductive type of the transistor being fabricated. Since the present embodiment pertains to fabricating a PMOS transistor, n-type dopants are preferably implanted and the well 20 formed in the substrate 12 is preferably a n-well. If a NMOS transistor were to be fabricated, p-type dopants would be implanted into the substrate 12 to form a p-well. After the fabrication of well 20 is completed a thermal anneal process could be selectively conducted to activates the implanted dopants.
Next, as shown in FIG. 2, another etching process is conducted by either using the patterned resist 16 as mask or stripping the patterned resist 16 and then using the patterned hard mask 14 as mask to remove part of the substrate 12 including the well 20 to form a recess 26 in the substrate 12.
It should be noted that even though the well 20 is formed before the recess 26 in this embodiment, the order for forming the well 20 and recess 26 is not limited to the one disclosed in this embodiment. For instance, it would also be desirable to conduct an etching process to remove part of the substrate 12 for forming a recess 26 after forming the patterned resist 16, and then conducts an implant process to form a well 20 in the substrate 12 and under the recess 26, which is also within the scope of the present invention.
Next, as shown in FIG. 3, a buffer layer 28 is formed in the recess 26 and on the surface of the well 20. In this embodiment, the buffer layer 28 is preferably a buffer material layer utilized for adjusting stress, which is preferably composed of silicon germanium (SiGe), but could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors.
According to an embodiment of the present invention, the formation of the buffer layer 28 could be accomplished by forming a buffer layer with in-situly doped dopants directly, in which the dopants within the buffer layer 28 is preferably selected from the ion group consisting of P, As, Sb and Bi.
Next, another ion implantation process is conducted to alter the lattice structure of the buffer layer 28 through an amorphization process, in which the ions implanted could be selected from dopants not carrying charge or dopants carrying charge. If the implanted dopants were dopants not carrying charge, the buffer layer 28 formed could be serving as a stress adjustment layer between the well 20 and epitaxial layer formed afterwards. If the implanted dopants were dopants carrying charge and due to the fact that the implanted dopants and the well 20 share same conductive type and the concentration of the ions is higher than the well 20, the buffer layer 28 formed could be serving as a stress adjustment layer as well as an isolation structure between the well 20 and an epitaxial layer formed afterwards. In this embodiment, the implanted dopants could be selected from the group consisting of P, As, Sb, Bi, C, and F.
It should be noted that the aforementioned dopants implanted into the buffer layer 28 from in-situ doping process or extra ion implantation thereafter could include one type or more types of dopants listed above, so that the buffer layer 28 formed could include at least three or more elements. Taking the buffer layer 28 composed of SiGe as an example, if at least one element or dopant such as phosphorus (P) is implanted into the buffer layer 28, the buffer layer 28 would eventually include silicon, germanium, and phosphorus. If one more element such as arsenic (As) is added to the buffer layer 28, the buffer layer 28 would have four elements including silicon, germanium, phosphorus, and arsenic. After the buffer layer 28 containing dopants is formed, a thermal treatment could be conducted selectively to remove defect, repair lattice structure, and recrystallize.
Next, as shown in FIG. 4, a growth process is conducted by using selective epitaxial growth process to form an epitaxial layer 30 on the buffer layer 28, in which a top surface of the epitaxial layer 30 is preferably higher than the top surfaces of the surrounding substrate 12 and hard mask 14. In this embodiment, the epitaxial layer 30 and buffer layer 28 are preferably composed of same material, such as both being composed of SiGe. Nevertheless, the epitaxial layer 30 could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V compound semiconductors. Moreover, the concentration of the epitaxial layer 30 is preferably greater than the concentration of the buffer layer 28, such as the germanium concentration of the epitaxial layer 30 is greater than the germanium concentration of the buffer layer 28.
It should be noted that instead of employing the aforementioned embodiment of using sin-situly doping process to form buffer layer 28 with in-situ dopants, conducting another ion implant process to amorphize the buffer layer 28, and then forming the epitaxial layer 30, alternative embodiments of the present invention could be accomplished by forming a buffer layer 28 with in-situly doped dopants and then forming an epitaxial layer 30 directly through epitaxial growth process, or forming a buffer layer 28 without containing any dopants, conducting an ion implant process to implant ions carrying charge or not carrying charge into the buffer layer 28 for amorphization purpose, and then forming an epitaxial layer 30 on the buffer layer 28, which are all within the scope of the present invention.
Next, as shown in FIG. 5, a planarizing process, such as a chemical mechanical polishing (CMP) process is conducted to remove part of the epitaxial layer 30 so that the top surface of the remaining epitaxial layer 30 is substantially even with the top surface of the surrounding hard mask 14. It should be noted that if no hard mask 14 were formed on the substrate 12 in FIG. 1, the top surface of the planarized epitaxial layer 30 at this stage is preferably even with the surface of the substrate 12.
Next, as shown in FIG. 6, at least one hard mask could be formed on the hard mask 14 and the epitaxial layer 30, in which the at least one hard mask could further include a hard mask 32 composed of same material as the hard mask 14 and another hard mask 34 composed of different material. Next, a sidewall image transfer (SIT) process or a photo-etching process is conducted to remove part of the hard mask 34, part of the hard mask 32, part of the epitaxial layer 30, part of the buffer layer 28, and part of the substrate 12 on the active region 22 for forming fin-shaped structures 36. Since the formation of fin-shaped structures through SIT process or photo-etching process is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity.
Next, as shown in FIG. 7, an insulating layer (not shown) is deposited to cover the hard mask 34 on the peripheral region 34 and the fin-shaped structures 36 on the active region 22 so that the insulating layer is higher than the top surface of the fin-shaped structures 36, and a planarizing process, such as CMP process is conducted to remove part of the insulating layer, the hard masks 34, 32, and 14 so that the top surface of the remaining insulating layer is even with the top surface of the epitaxial layer 30 of the fin-shaped structures 36. Next, an etching process is conducted to remove part of the insulating layer so that the top surface of the remaining insulating layer is slightly lower than the top surface of the fin-shaped structures 36. This forms a shallow trench isolation (STI) 38 around the fin-shaped structures 36.
Next, follow-up FinFET fabrication process could be conducted by forming gate structure on the fin-shaped structures 36, forming spacers adjacent to the gate structure and source/drain region in the fin-shaped structures 36 adjacent to the spacers. Next, a contact etch stop layer (CESL) could be formed to cover the gate structure, an interlayer dielectric (ILD) layer is formed on the CESL, and a replacement metal gate (RMG) process is selectively conducted to transform the gate structure into metal gate. Since the transformation from dummy gate to metal gate through RMG process is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity. This completes the fabrication of a semiconductor device according to a first embodiment of the present invention.
Referring to FIGS. 8-11, FIGS. 8-11 illustrate a method for fabricating semiconductor device according to a second embodiment of the present invention. As shown in FIG. 8, a substrate 42, such as a silicon substrate or a silicon-on-insulator (SOI) substrate is provided, and at least one fin-shaped structure 44 is formed on the substrate. It should be noted that even though three fin-shaped structures 44 are disclosed in this embodiment, the quantity of the fin-shaped structures 44 could be adjusted according to the demand of the product.
The fin-shaped structures 44 of this embodiment are preferably obtained by a sidewall image transfer (SIT) process. For instance, a layout pattern is first input into a computer system and is modified through suitable calculation. The modified layout is then defined in a mask and further transferred to a layer of sacrificial layer on a substrate through a photolithographic and an etching process. In this way, several sacrificial layers distributed with a same spacing and of a same width are formed on a substrate. Each of the sacrificial layers may be stripe-shaped. Subsequently, a deposition process and an etching process are carried out such that spacers are formed on the sidewalls of the patterned sacrificial layers. In a next step, sacrificial layers can be removed completely by performing an etching process. Through the etching process, the pattern defined by the spacers can be transferred into the substrate underneath, and through additional fin cut processes, desirable pattern structures, such as stripe patterned fin-shaped structures could be obtained.
Alternatively, the fin-shaped structure 44 of this embodiment could also be obtained by first forming a patterned mask (not shown) on the substrate, 42, and through an etching process, the pattern of the patterned mask is transferred to the substrate 42 to form the fin-shaped structure 44. Moreover, the formation of the fin-shaped structure 44 could also be accomplished by first forming a patterned hard mask (not shown) on the substrate 42, and a semiconductor layer composed of silicon germanium is grown from the substrate 42 through exposed patterned hard mask via selective epitaxial growth process to form the corresponding fin-shaped structure 44. These approaches for forming fin-shaped structure 44 are all within the scope of the present invention.
Next, an insulating layer 46 is formed to cover the fin-shaped structures 44, and a planarizing process, such as CMP is conducted to remove part of the insulating layer 46 and even part of the fin-shaped structures 44 so that the top surface of the remaining insulating layer 46 is even with the top surface of the fin-shaped structures 44. The insulating layer 46 is preferably composed of silicon oxide, but not limited thereto.
Next, as shown in FIG. 9, an etching process is conducted by using the insulating layer 46 as mask to remove part of the fin-shaped structures 44 to form a plurality of recesses 48. Next, a buffer layer 50 is formed in the recesses 48 without filling the recesses 48 completely, in which the buffer layer 50 is preferably composed of SiGe, but could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors.
Similar to the first embodiment, the formation of the buffer layer 50 could be accomplished by forming a buffer layer with in-situly doped dopants directly, in which the dopants within the buffer layer 50 is preferably selected from the ion group consisting of P, As, Sb, and Bi.
Next, another ion implantation process is conducted to alter the lattice structure of the buffer layer 50 through an amorphization process, in which the implanted dopants could be selected from the group consisting of P, As, Sb, Bi, C, and F.
Again, similar to the aforementioned embodiment, the dopants implanted into the buffer layer 50 from either in-situ doping process or extra ion implantation conducted thereafter could include one type or more types of dopants so that the buffer layer 50 formed could include at least three or more elements. Taking the buffer layer 50 composed of SiGe as an example, if at least one element or dopant such as phosphorus (P) is implanted into the buffer layer 50, the buffer layer 50 would eventually include silicon, germanium, and phosphorus. If one more element such as arsenic (As) is added to the buffer layer 50, the buffer layer 50 would have four elements including silicon, germanium, phosphorus, and arsenic. After the buffer layer containing dopants is formed, a thermal treatment could be conducted selectively to remove defect, repair lattice structure, and recrystallize.
Next, as shown in FIG. 10, a growth process is conducted by using selective epitaxial growth process to form an epitaxial layer 52 on the buffer layer 50, in which a top surface of the epitaxial layer 52 is preferably higher than the top surfaces of the surrounding insulating layer 46. In this embodiment, the epitaxial layer 52 and buffer layer 50 are preferably composed of same material, such as both being composed of SiGe. Nevertheless, the epitaxial layer 52 could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors. Moreover, the concentration of the epitaxial layer 52 is preferably greater than the concentration of the buffer layer 50, such as the germanium concentration of the epitaxial layer 52 is greater than the germanium concentration of the buffer layer 50.
It should be noted that instead of employing the aforementioned embodiment of using sin-situly doping process to form buffer layer 50 with in-situ dopants, conducting another ion implant process to amorphize the buffer layer 50, and then forming the epitaxial layer 52, alternative embodiments of the present invention could be accomplished by forming a buffer layer 50 with in-situly doped dopants and then forming an epitaxial layer 52 directly through epitaxial growth process, or forming a buffer layer 50 without containing any dopants, conducting an ion implant process to implant ions carrying charge or not carrying charge into the buffer layer 50 for amorphization purpose, and then forming an epitaxial layer 52 on the buffer layer 50, which are all within the scope of the present invention.
Next, a planarizing process, such as CMP is conducted to remove part of the epitaxial layer 52 and even part of the insulating layer 46 so that the top surface of the remaining epitaxial layer 52 is even with the top surface of the insulating layer 46. At this stage, the original fin-shaped structures 44 and the newly formed buffer layer 50 and epitaxial layer 52 together form new fin-shaped structures 54.
Next, as shown in FIG. 11, an etching process is conducted by using the epitaxial layer 52 as mask to remove part of the insulating layer 46 for forming a STI 56.
Next, follow-up FinFET fabrication process could be conducted by forming gate structure on the fin-shaped structures 54, forming spacers adjacent to the gate structure and source/drain region in the fin-shaped structures 54 adjacent to the spacers. Next, a contact etch stop layer (CESL) could be formed to cover the gate structure, an interlayer dielectric (ILD) layer is formed on the CESL, and a replacement metal gate (RMG) process is selectively conducted to transform the gate structure into metal gate. Since the transformation from dummy gate to metal gate through RMG process is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity. This completes the fabrication of a semiconductor device according to a second embodiment of the present invention.
According to an embodiment of the present invention, it would also be desirable to remove part of the fin-shaped structures for forming plurality of recesses after a gate structure is formed on the fin-shaped structures, forma buffer layer in the recesses without filling the recesses completely, and then implant dopants into the buffer layer according to aforementioned dopant selections so that the buffer layer formed could be amorphized while serving as a stress adjustment and doped isolation structure between well region and epitaxial layer. Next, a thermal treatment could be conducted selectively and an epitaxial layer is formed on the buffer layer through selective epitaxial growth process.
Referring to FIGS. 12-16, FIGS. 12-16 illustrate a method for fabricating a semiconductor device according to a third embodiment of the present invention. As shown in FIG. 12, after forming recesses 26 in the substrate 12 and then stripping the patterned resist 16 as disclosed in FIGS. 1-2, a liner or pad layer 62 is deposited on the surface of the hard mask 14 and into the recesses 26 while not filling the recesses 26 completely. Preferably, the pad layer 62 filled into the recess 26 is disposed on the surface of the well 20 and the exposed sidewalls of the substrate 12.
In this embodiment, the material of the pad layer 62 could be the same as or different from the material of the hard mask 14, in which the pad layer 62 is preferably composed of silicon oxide while the hard mask 14 could be selected from the group consisting of silicon oxide and silicon nitride, but not limited thereto.
Next, as shown in FIG. 13, an etching process is conducted to remove part of the pad layer 62 on the hard mask 14 and part of the pad layer 62 on the well 20 surface. This exposes the hard mask 14 surface and part of the well 20 surface and forms spacers 64 on the sidewalls of the exposed substrate 12, in which the top surface of the spacers 64 is even with the top surface of the hard mask 14.
Next, as shown in FIG. 14, a buffer layer 66 and an epitaxial layer 68 are formed into the recesses 26 and filling the recesses 26 completely. Preferably, the buffer layer 66 is preferably a buffer material layer utilized for adjusting stress, which is preferably composed of silicon germanium (SiGe), but could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors. Similar to the aforementioned embodiments, the formation of the buffer layer 66 could be accomplished by forming a buffer layer with in-situly doped dopants directly, in which the dopants within the buffer layer 66 is preferably selected from the ion group consisting of P, As, Sb and Bi.
Next, another ion implantation process is conducted to alter the lattice structure of the buffer layer 66 through an amorphization process, in which the ions implanted could be selected from dopants not carrying charge or dopants carrying charge. If the implanted dopants were dopants not carrying charge, the buffer layer 66 formed could be serving as a stress adjustment layer between the well 20 and epitaxial layer 68 formed afterwards. If the implanted dopants were dopants carrying charge and due to the fact that the implanted dopants and the well 20 share same conductive type and the concentration of the ions is higher than the well 20, the buffer layer 66 formed could be serving as a stress adjustment layer as well as an isolation structure between the well 20 and an epitaxial layer 68 formed afterwards. In this embodiment, the implanted dopants could be selected from the group consisting of P, As, Sb, Bi, C, and F.
It should be noted that the aforementioned dopants implanted into the buffer layer 66 from in-situ doping process or an extra ion implantation thereafter could include one type or more types of dopants listed above, so that the buffer layer 66 formed could include at least three or more elements. Taking the buffer layer 66 composed of SiGe as an example, if at least one element or dopant such as phosphorus (P) is implanted into the buffer layer 66, the buffer layer 66 would eventually include silicon, germanium, and phosphorus. If one more element such as arsenic (As) is added to the buffer layer 66, the buffer layer 66 would have four elements including silicon, germanium, phosphorus, and arsenic. After the buffer layer 66 containing dopants is formed, a thermal treatment could be conducted selectively to remove defect, repair lattice structure, and recrystallize.
After the buffer layer 66 is formed, a growth process is conducted by using selective epitaxial growth process to form epitaxial layer 68 on the buffer layer 66, in which a top surface of the epitaxial layer 68 is preferably higher than the top surfaces of the surrounding substrate 12 and hard mask 14. In this embodiment, the epitaxial layer 68 and buffer layer 66 are preferably composed of same material, such as both being composed of SiGe. Nevertheless, the epitaxial layer 68 could also be selected from the group consisting of Si, Ge, SiC, GaAs, InP, InGaAs, InAlP, and elementary group III-V semiconductors. Moreover, the concentration of the epitaxial layer 68 is preferably greater than the concentration of the buffer layer 66, such as the germanium concentration of the epitaxial layer 68 is greater than the germanium concentration of the buffer layer 66.
It should be noted that instead of employing the aforementioned embodiment of using sin-situly doping process to form buffer layer 66 with in-situ dopants, conducting another ion implant process to amorphize the buffer layer 66, and then forming the epitaxial layer 68, an alternative embodiment of the present invention could be accomplished by forming a buffer layer 66 with in-situly doped dopants and then forming an epitaxial layer 68 directly through epitaxial growth process, or forming a buffer layer 66 without containing any dopants, conducting an ion implant process to implant ions carrying charge or not carrying charge into the buffer layer 66 for amorphization purpose, and then forming an epitaxial layer 68 on the buffer layer 66, which are all within the scope of the present invention.
Next, as shown in FIG. 15, a planarizing process, such as a chemical mechanical polishing (CMP) process is conducted to remove part of the epitaxial layer 68 so that the top surface of the remaining epitaxial layer 68 is substantially even with the top surface of the surrounding hard mask 14. It should be noted that if no hard mask 14 were formed on the substrate 12 in FIG. 1, the top surface of the planarized epitaxial layer 68 at this stage is preferably even with the surface of the substrate 12.
Next, as shown in FIG. 16, at least one hard mask could be formed on the hard mask 14 and the epitaxial layer 68, in which the at least one hard mask could further include a hard mask 70 composed of same material as the hard mask 14 and another hard mask 72 composed of different material. Next, a sidewall image transfer (SIT) process or a photo-etching process is conducted to remove part of the hard mask 72, part of the hard mask 70, part of the epitaxial layer 68, part of the buffer layer 66, and part of the substrate 12 on the active region 22 for forming fin-shaped structures 74. Since the formation of fin-shaped structures through SIT process or photo-etching process is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity.
It should be noted that typical epitaxial buffer layer and epitaxial layer formed in a recess were grown through selective epitaxial growth process from silicon substrate either underneath the epitaxial buffer layer and/or around the epitaxial buffer layer. The epitaxial buffer layer formed through this manner typically reveals a substantially U-shaped gradient profile, in which the concentration gradient of the epitaxial buffer layer could vary either inwardly or outwardly along the U-shaped profile. This induces a problem when poor fin-cut process were conducted in the later stage to form fin-shaped structures containing vertical edge portions of the U-shaped profile of the epitaxial buffer layer. By forming spacers 64 preferably made of dielectric material in the recesses 26 to surround the buffer layer 66 and epitaxial layer 68, the present embodiment ensures that the buffer layer 66 formed in the recesses 26 would have a horizontal I-shaped profile instead of a U-shaped profile and further guarantees that the fin-shaped structures formed afterwards would have a much more uniform gradient distribution.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (17)

What is claimed is:
1. A method for fabricating semiconductor device, comprising:
providing a substrate;
forming a recess in the substrate;
forming a buffer layer in the recess;
forming an epitaxial layer on the buffer layer; and
removing part of the epitaxial layer, part of the buffer layer, and part of the substrate to form fin-shaped structures.
2. The method of claim 1, further comprising:
performing an implant process to form a well in the substrate; and
removing part of the well to form the recess.
3. The method of claim 1, further comprising:
forming the recess; and
performing an implant process to form a well in the substrate and under the recess.
4. The method of claim 1, wherein the buffer layer comprises silicon germanium (SiGe).
5. The method of claim 4, further comprising performing an implant process to implant dopants into the buffer layer.
6. The method of claim 5, wherein the dopants are selected from the group consisting of P, As, Sb, Bi, C, and F.
7. The method of claim 1, further comprising forming the buffer layer with in-situly doped dopants.
8. The method of claim 7, wherein the dopants are selected from the group consisting of P, As, Sb, Bi, C, and F.
9. The method of claim 1, further comprising performing an anneal process after forming the buffer layer and before forming the epitaxial layer.
10. The method of claim 1, further comprising:
forming a pad layer on the substrate and into the recess;
removing part of the pad layer to form spacers in the recess;
forming the buffer in the recess; and
forming the epitaxial layer on the buffer layer; and
removing the spacers, part of the epitaxial layer, part of the buffer layer, and part of the substrate to form fin-shaped structures.
11. A method for fabricating semiconductor device, comprising:
providing a substrate;
forming a fin-shaped structure on the substrate and an insulating layer around the fin-shaped structure;
removing part of the fin-shaped structure for forming a recess;
forming a buffer layer in the recess;
forming an epitaxial layer on the buffer layer; and
removing part of the insulating layer to form a shallow trench isolation (STI).
12. The method of claim 11, wherein the buffer layer comprises silicon germanium (SiGe).
13. The method of claim 12, further comprising forming the buffer layer with in-situly doped dopants.
14. The method of claim 13, wherein the dopants are selected from the group consisting of P, As, Sb, Bi, C, and F.
15. The method of claim 12, further comprising performing an implant process to implant dopants into the buffer layer.
16. The method of claim 15, wherein the dopants are selected from the group consisting of P, As, Sb, Bi, C, and F.
17. The method of claim 11, further comprising performing an anneal process after forming the buffer layer and before forming the epitaxial layer.
US15/139,305 2016-03-08 2016-04-26 Semiconductor device and method for fabricating the same Active US9653603B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/481,419 US10121881B2 (en) 2016-03-08 2017-04-06 Semiconductor device and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105106997 2016-03-08
TW105106997A TWI717338B (en) 2016-03-08 2016-03-08 Semiconductor device and method for fabricating the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/481,419 Continuation US10121881B2 (en) 2016-03-08 2017-04-06 Semiconductor device and method for fabricating the same

Publications (1)

Publication Number Publication Date
US9653603B1 true US9653603B1 (en) 2017-05-16

Family

ID=58670604

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/139,305 Active US9653603B1 (en) 2016-03-08 2016-04-26 Semiconductor device and method for fabricating the same
US15/481,419 Active 2036-05-04 US10121881B2 (en) 2016-03-08 2017-04-06 Semiconductor device and method for fabricating the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/481,419 Active 2036-05-04 US10121881B2 (en) 2016-03-08 2017-04-06 Semiconductor device and method for fabricating the same

Country Status (2)

Country Link
US (2) US9653603B1 (en)
TW (1) TWI717338B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170140992A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor and method for fabricating the same
US11495627B2 (en) 2020-05-10 2022-11-08 United Microelectronics Corp. Single photon avalanche diode fabricated on a silicon-on-insulator substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923436B2 (en) * 2020-08-07 2024-03-05 Taiwan Semiconductor Manufacturing Co., Ltd. Source/drain structure for semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
US8497177B1 (en) 2012-10-04 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a FinFET device
US8628989B2 (en) 2006-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ration trapping
US20140151766A1 (en) 2012-12-05 2014-06-05 Imec FinFET DEVICE WITH DUAL-STRAINED CHANNELS AND METHOD FOR MANUFACTURING THEREOF
US20150041764A1 (en) 2012-06-22 2015-02-12 Samsung Electronics Co., Ltd. Semiconductor devices and methods of manufacturing the same
US9136332B2 (en) * 2013-12-10 2015-09-15 Taiwan Semiconductor Manufacturing Company Limited Method for forming a nanowire field effect transistor device having a replacement gate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289304A1 (en) * 2006-04-07 2009-11-26 Koninklijke Philips Electronics Nv Co-integration of multi-gate fet with other fet devices in cmos technology
US8975125B2 (en) * 2013-03-14 2015-03-10 International Business Machines Corporation Formation of bulk SiGe fin with dielectric isolation by anodization
WO2015147833A1 (en) * 2014-03-27 2015-10-01 Intel Corporation Germanium tin channel transistors
US9799771B2 (en) * 2015-04-20 2017-10-24 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET and method for manufacturing the same
US9947658B2 (en) * 2015-10-28 2018-04-17 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
US8628989B2 (en) 2006-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ration trapping
US20150041764A1 (en) 2012-06-22 2015-02-12 Samsung Electronics Co., Ltd. Semiconductor devices and methods of manufacturing the same
US8497177B1 (en) 2012-10-04 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a FinFET device
US20140151766A1 (en) 2012-12-05 2014-06-05 Imec FinFET DEVICE WITH DUAL-STRAINED CHANNELS AND METHOD FOR MANUFACTURING THEREOF
US9136332B2 (en) * 2013-12-10 2015-09-15 Taiwan Semiconductor Manufacturing Company Limited Method for forming a nanowire field effect transistor device having a replacement gate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chih-Kai Hsu et al., Title: A Method for Fabricating a Fin Field Effect Transistor (FinFET), pending U.S. Appl. No. 15/170,958 , filed Jun. 2, 2016.
Li-Wei Feng et al., Title: Semiconductor Fin Structure and Method of Forming the Same, pending U.S. Appl. No. 15/196,024, filed Jun. 28, 2016.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170140992A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor and method for fabricating the same
US11495627B2 (en) 2020-05-10 2022-11-08 United Microelectronics Corp. Single photon avalanche diode fabricated on a silicon-on-insulator substrate

Also Published As

Publication number Publication date
US10121881B2 (en) 2018-11-06
US20170263732A1 (en) 2017-09-14
TW201732937A (en) 2017-09-16
TWI717338B (en) 2021-02-01

Similar Documents

Publication Publication Date Title
US9196543B2 (en) Structure and method for finFET device
US9023715B2 (en) Methods of forming bulk FinFET devices so as to reduce punch through leakage currents
US8497171B1 (en) FinFET method and structure with embedded underlying anti-punch through layer
US8969932B2 (en) Methods of forming a finfet semiconductor device with undoped fins
US8993399B2 (en) FinFET structures having silicon germanium and silicon fins
US9502252B2 (en) Semiconductor device and method for fabricating the same
US9508853B2 (en) Channel cladding last process flow for forming a channel region on a FinFET device having a reduced size fin in the channel region
US9711417B2 (en) Fin field effect transistor including a strained epitaxial semiconductor shell
US9954104B2 (en) Multiwidth finFET with channel cladding
US20140349458A1 (en) Source and Drain Dislocation Fabrication in FinFETs
US9640662B2 (en) Method for fabricating semiconductor device
US20140070322A1 (en) Methods of forming different finfet devices with different threshold voltages and integrated circuit products containing such devices
US10256155B1 (en) Method for fabricating single diffusion break structure directly under a gate line
US10236383B2 (en) Method for fabricating semiconductor device
US10121881B2 (en) Semiconductor device and method for fabricating the same
US9437740B2 (en) Epitaxially forming a set of fins in a semiconductor device
US20130302954A1 (en) Methods of forming fins for a finfet device without performing a cmp process
US9847392B1 (en) Semiconductor device and method for fabricating the same
US9780165B2 (en) Semiconductor device and method for fabricating the same
US10707135B2 (en) Method for fabricating semiconductor device
US9640661B1 (en) FinFET having a fin and a V-shaped epitaxial layer formed on the top surface of the fin and method for fabricating the same
US9875941B1 (en) Method for fabricating semiconductor device
CN106876393B (en) Semiconductor device and method of forming the same
US9842760B1 (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED MICROELECTRONICS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FENG, LI-WEI;TSAI, SHIH-HUNG;LI, YI-FAN;AND OTHERS;REEL/FRAME:038388/0957

Effective date: 20160425

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4