US7197355B2 - Variable-motion optical tomography of small objects - Google Patents

Variable-motion optical tomography of small objects Download PDF

Info

Publication number
US7197355B2
US7197355B2 US10/126,026 US12602602A US7197355B2 US 7197355 B2 US7197355 B2 US 7197355B2 US 12602602 A US12602602 A US 12602602A US 7197355 B2 US7197355 B2 US 7197355B2
Authority
US
United States
Prior art keywords
interest
tube
objects
optical
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/126,026
Other versions
US20030199758A1 (en
Inventor
Alan C. Nelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VisionGate Inc
Original Assignee
VisionGate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/126,026 priority Critical patent/US7197355B2/en
Application filed by VisionGate Inc filed Critical VisionGate Inc
Priority to PCT/US2003/010901 priority patent/WO2003089959A2/en
Priority to EP03721595.1A priority patent/EP1496797B1/en
Priority to AU2003224902A priority patent/AU2003224902B2/en
Priority to JP2003586640A priority patent/JP4386742B2/en
Priority to ES03721595.1T priority patent/ES2592275T3/en
Priority to CNB038121387A priority patent/CN1326492C/en
Priority to CA2482920A priority patent/CA2482920C/en
Assigned to VISIONGATE, INC. reassignment VISIONGATE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NELSON, ALAN C.
Publication of US20030199758A1 publication Critical patent/US20030199758A1/en
Priority to US10/716,744 priority patent/US7738945B2/en
Priority to US10/876,328 priority patent/US7260253B2/en
Priority to US10/964,508 priority patent/US7811825B2/en
Priority to US10/968,645 priority patent/US20050085708A1/en
Priority to HK05105692.5A priority patent/HK1074373A1/en
Priority to US11/558,593 priority patent/US7542597B2/en
Publication of US7197355B2 publication Critical patent/US7197355B2/en
Application granted granted Critical
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • G01N15/1433
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • G01N2015/1027
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/144Imaging characterised by its optical setup
    • G01N2015/1445Three-dimensional imaging, imaging in different image planes, e.g. under different angles or at different depths, e.g. by a relative motion of sample and detector, for instance by tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0813Arrangement of collimator tubes, glass or empty
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/612Specific applications or type of materials biological material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/421Filtered back projection [FBP]

Definitions

  • the present invention relates to optical tomographic (OT) imaging systems in general, and, more particularly, variable-motion optical tomography (VOT) where the motion of a small object, such as a biological cell, for example, is controlled by a mechanical motion system whose motion is not necessarily constant and/or unidirectional, but may be variable and multi-directional.
  • OPT optical tomographic
  • VET variable-motion optical tomography
  • the present invention provides a method for variable-motion optical tomography (VOT), wherein motion of an object of interest, such as a cell, has a variable velocity relative to the light path that can be varied on a cell-by-cell basis.
  • VET variable-motion optical tomography
  • Cell velocity is controlled in one example by packing cells into a capillary tube, or any other linear substrate that provides optically equivalent 360 degree viewing access, so that the cells are stationary within the capillary tube, while the capillary tube is translated and rotated mechanically through an optical tomography reconstruction cylinder.
  • the capillary tube motion may advantageously be controlled in a start-and-stop fashion and translated and rotated at any velocity for any motion interval, under the control of a computer program.
  • FIG. 1 schematically shows an example illustration of cells packed into a capillary tube as contemplated by an embodiment of the present invention.
  • FIG. 2 schematically shows an example illustration of an optical tomography reconstruction cylinder as contemplated by an embodiment of the present invention.
  • FIG. 3 schematically shows an example of an alternate system for variable-motion optical tomography (VOT) as contemplated by an embodiment of the present invention.
  • VOT variable-motion optical tomography
  • FIG. 4 schematically shows an example of a flow diagram illustrating three-dimensional (3D) image reconstruction as contemplated by an embodiment of the present invention.
  • FIG. 5 schematically shows an example illustrating the use of polarization filters and/or phase plates in a three-dimensional (3D) image reconstruction as contemplated by an embodiment of the present invention.
  • constructing a three-dimensional distribution of point densities and emission intensities within a microscopic volume allows the measurement of density and fluorescence at any location within the microscopic volume and determines the location of structures, molecules or molecular probes of interest.
  • the quantity of probes that attach to specific structures in the microscopic object may be measured.
  • an object such as a biological cell may be labeled with at least one tagged molecular probe, and the measured amount and location of this probe may yield important information about the disease state of the cell, including, but not limited to, various cancers such as lung, colon, prostate, breast, cervical and ovarian cancers, or infectious agents.
  • various cancers such as lung, colon, prostate, breast, cervical and ovarian cancers, or infectious agents.
  • FIG. 1 there shown schematically is an example illustration of cells packed into a capillary tube as contemplated by an embodiment of the present invention.
  • a section of the capillary tube 3 is filled with cells 1 that are packed rigidly into the tube.
  • Each of the cells may include a nucleus 2 .
  • the capillary tube 3 has a central axis 4 oriented with reference to a coordinate system 6 having coordinates in the x, y and z-directions.
  • at least one molecular probe 53 may be bound within the cell.
  • a computer 7 is coupled to provide control signals to a rotational motor 5 and a translational motor 8 .
  • one or more motors, gears or fluidics or other means of generating motion may also be employed to achieve the necessary translational and rotational motion of the capillary tube or other substrate.
  • one or more of the motors may be replaced by manual positioning devices or gears or by other means of generating motion such as hydraulics or piezoelectrics.
  • the axis of translation is the z-axis, and rotation is around the z-axis.
  • the positioning motor 9 is coupled to move the cell in a plane defined by the x,y-axes, substantially perpendicular to the central axis for the purpose of centration, as necessary.
  • the curved surface of the capillary tube will act as a cylindrical lens and that this focusing effect may not be desirable in a projection system.
  • Those skilled in the art will appreciate that the bending of photons by the tube can be eliminated if the spaces between the point source and the tube and between the tube and the detector surfaces are filled with a material 54 whose index of refraction matches that of the capillary tube and that the tube can be optically coupled (with oil or a gel, for example) to the space filling material.
  • the cells may preferably be packed single file so that they do not overlap.
  • the density of packing whole cells of about 100 microns in diameter into a capillary tube with diameter less than 100 microns can be roughly 100 cells per centimeter of tube length.
  • the packing can be roughly 500 nuclei per centimeter of tube length where the tube diameter is proportional to the object size, about 20 microns in this case.
  • a few thousand non-overlapping bare nuclei can be packed.
  • Moving the tube in the x,y-directions allows objects within the tube to be centered, as necessary, in the reconstruction cylinder of the optical tomography system.
  • By rotating the tube around its central axis 4 a multiplicity of radial projection views can be produced.
  • Moving the tube in the z-direction with constant velocity and no rotation simulates the special case of flow optical tomography.
  • One advantage of moving a tube filled with cells that are otherwise stationary inside the tube is that objects of interest can be stopped, then rotated, at speeds that permit nearly optimal exposure for optical tomography on a cell-by-cell basis. That is, the signal to noise ratio of the projection images can be improved to produce better images than may be usually produced at constant speeds and direction typical of flow systems. Objects that are not of interest can be moved out of the imaging system swiftly, so as to gain overall speed in analyzing cells of interest in a sample consisting of a multitude of cells. Additionally, the ability to stop on an object of interest, then rotate as needed for multiple projections, nearly eliminates motion artifacts.
  • the motion system can be guided at submicron movements and can advantageously be applied in a manner that allows sampling of the cell at a resolution finer than that afforded by the pixel size of the detector. More particularly, the Nyquist sampling factor of 2 could be managed by the motion system moving in increments that fill half a pixel width, for example. Similarly, the motion system can compensate for the imperfect fill factor of the detector.
  • FIG. 2 there shown schematically is an example illustration of an optical tomography reconstruction cylinder as contemplated by an embodiment of the present invention.
  • a VOT configuration with at least one point source 10 b arranged at fixed angles along a circumference 11 at the tube wall.
  • At least one detector 50 b includes at least one detector surface 12 , with surfaces opposing the at least one point source 10 b, arranged on a wider circumference in the same plane as the point sources.
  • Each point source projects a cone beam 13 onto a detector area 14 such that the projected cones do not overlap on the detector. It will be understood that other projection geometries may be acceptable such as those utilizing fan beam and pencil beam projections.
  • each point source projects a separate cone beam.
  • the central axis of each cone beam intersects the other cone beam central axes at a central point 15 in the middle of the tube or in the middle of the cell within the tube, as the case may be.
  • the computer 7 is coupled to transmit data, control signals and timing signals to the point sources 10 b , sensing elements 12 and motors.
  • the computer may comprise a known computer or plurality of computers and array processors adequate for image acquisition and image reconstruction processing.
  • the reconstruction cylinder in this new configuration can be designed more optimally as compared to the FOT design.
  • a reconstruction cylinder may advantageously be designed with a single point source and detector pair that creates and captures the projection image (sometimes known as a shadowgram) at each rotation angle.
  • one example VOT configuration has nine fiber optic point sources arranged at twenty radial degrees spacing around a circumference at the tube wall.
  • the opposing nine detector surfaces are arranged on a wider circumference in the same plane as the point sources.
  • Each point source projects a cone beam onto a detector area such that the projected cones do not overlap on the detector.
  • the central axis of each cone beam intersects the other cone beam central axes at a central point in the middle of the tube or in the middle of the cell within the tube.
  • Each time the tube is rotated by a 2 degree increment another set of projections is collected, so that after 10 incremental rotations, a total of 90 independent projections have been generated at each 2 degree increment around 180 radial degrees of circumference.
  • the tube containing the object of interest were centered and rotated through twenty 1 radial degree increments, then 180 unique projection images would be created. After a suitable number of projections have been created, the cell of interest or tube containing other cells of interest may be translated in the z-direction to accommodate a new view and repeat the image collection process.
  • a semicircle of equally spaced point sources have opposing detector arrays positioned around an opposite semicircle, and all elements of the imaging system are positioned on the same central plane generally perpendicular to the tube axis.
  • the point source/detector combinations need not lie on the same central plane, and point sources may be spaced at unequal intervals and advantageously be interspersed between detector arrays.
  • the reconstruction zone may comprise a plane defined by the placement of a set of point sources and detectors.
  • VET variable-motion optical tomography
  • a particularly useful design includes placing a ring of point sources 17 b in a plane 18 located just above or below proximate a ring of detectors 19 b located around a detector plane 21 such that the projection cones are aimed at their respective detector surfaces and the center of the cell 20 is located between the two planes at the point where all projection cones overlap.
  • the cell can be sampled around a full 360 degree radial circumference to achieve an optimal image reconstruction, given an adequate number of point source/detector pairs, and as such, rotation of the tube is not required.
  • the reconstruction zone 52 is located above and/or below plane 18 . This geometry also applies to the FOT.
  • 3D image reconstruction is accomplished using 2D projection images from cone beam geometry. It is also possible to use fan beam geometry whereby the 3D image is generated by stacking contiguous planar images reconstructed from linear (1D) projections using fan beam reconstruction algorithms.
  • fan beam geometry the plurality of optical point sources 10 b that are collimated to emit fan-beams, in conjunction with opposing detectors 12 mounted around a circumference of the tube can sample multiple projection angles through the entire cell 1 as it is moved past the sources. A cell is thus optically sectioned with projections through the cell that can be reconstructed to form a 2D slice in the x-y plane.
  • By stacking or mathematically combining sequential slices a 3D picture of the cell will emerge.
  • the 3D picture of the cell can yield quantitative measures of sub-cellular structures and the location and amount of tagged molecular probes that provide diagnostic information.
  • Each source may have the same general characteristics, preferably:
  • optical point sources there are several options that can be employed to create optical point sources, such as:
  • the geometry is such that, the closer the point source to the object of interest (the cell), the higher the magnification due to the wider geometric angle that is subtended by an object closer to the source.
  • the geometry can be optimized for that particular resolution.
  • those skilled in the art are directed to Blass, M., editor-in-chief, Handbook of Optics: Fiber Optics and Nonlinear Optics, 2 nd ed., Vol. IV, Mcgraw-Hill, 2001.
  • a 3D image reconstruction process 30 includes the steps of loading the tube packed with cells at step 31 , translating the tube until the first cell of interest has been located at step 32 , centering the cell of interest, as necessary, at step 33 , generating a set of projections at each different rotation angle at step 34 , determining when the data set is complete at step 35 , and repeating the process from steps 32 through 35 until all cells of interest have been analyzed.
  • the process stops at step 36 .
  • the process may be implemented in a computer software program executed by a personal computer such as computer 7 , for example.
  • the human subject in the case of clinical x-ray CT, the human subject is usually held motionless while the x-ray source and detector arrays may move along an arc or helix around the patient to collect data from multiple projection angles. Then the human subject may be repositioned along the z-axis and another set of data is collected, etc.
  • the patient in the more modern clinical helical CT, the patient may be continuously translated in the z-direction while the source-detector assembly rotates continuously to provide helical projection data, which is then interpolated to provide projections orthogonal to the patient z-axis.
  • the object In flow optical tomography (FOT) and variable-motion optical tomography (VOT), the object (a cell) is moved relative to the stationary sources and detector arrays wherein the plurality of source/detector systems acquire data in synchrony with specific gated time points along the cell velocity vector in a fashion that generates multiple projection angle data within a given slice or volume.
  • the reconstruction algorithm will compute a 2D image of a plane perpendicular to the axis of motion, and the serial stacking of multiple slices will generate the 3D picture of the object where contrast is a function of the variations in the x-ray attenuation coefficient or optical absorption coefficient as a measure of density within the object for CT or flow optical tomography, respectively.
  • the reconstruction algorithm computes a 3D image of a volume within the cell or other object directly from planar transmission or emission optical projections, where the contrast is a function of the optical density and/or tagged probe density distribution within the imaged object.
  • the general class known as iterative reconstruction algorithms is more efficacious in some instances, especially for emission tomography or, when it is possible, as in the instance of the current invention where the axial symmetry and tricompartmental nature of the object are known, to incorporate a priori information into the reconstruction algorithm to improve the quality of the reconstruction (See, for example, Gilbert, P., “Iterative Methods for the Three-dimensional Reconstruction of an Object from Projections,” Journal of Theoretical Biology 36:105–17, 1972, and other references noted hereinabove).
  • FIG. 5 there shown schematically is an example illustrating the use of polarization filters (and/or a phase plate) in a three-dimensional (3D) image reconstruction as contemplated by an embodiment of the present invention.
  • All image reconstruction algorithms are vulnerable to various forms of noise in the projection data, such as scatter and diffraction.
  • Light scatter and diffraction may become significant in optical tomography where the wavelength of the illuminating photons is of the same order as the desired resolution within the object to be reconstructed and where the object contains structures that are of the same order in size as the illuminating wavelength.
  • Interactions that can change the polarization of photons or cause a phase shift provide an opportunity to remove or reduce the contamination in a projection image through the use of polarization filters and/or a phase plate. For example, if a point source 37 is filtered through a first linear polarizer 41 , then a first polarized light ray 39 is produced that impinges on object 42 . Rays 40 represent photons scattered as a result of the first polarized light ray 39 impinging on the object 42 . A surface of a sensor 45 , positioned to sense a projection image generated by the point source 37 , is similarly filtered through a second linear polarizer 43 having the same orientation as the first linear polarizer 41 .
  • phase plate 46 can be placed proximate the second linear polarizer 43 . In this way, the background of noise due to shifts in polarization and phase can be reduced significantly.

Abstract

Motion of an object of interest, such as a cell, has a variable velocity that can be varied on a cell-by-cell basis. Cell velocity is controlled in one example by packing cells into a capillary tube, or any other linear substrate that provides optically equivalent 360 degree viewing access, so that the cells are stationary within the capillary tube, but the capillary tube is translated and rotated mechanically through a variable motion optical tomography reconstruction cylinder. The capillary tube motion may advantageously be controlled in a start-and-stop fashion and translated and rotated at any velocity for any motion interval, under the control of a computer program. As such, there are several configurations of the optical tomography system that take advantage of this controlled motion capability. Additionally, the use of polarization filters and phase plates to reduce light scatter and diffraction background noise is described.

Description

FIELD OF THE INVENTION
The present invention relates to optical tomographic (OT) imaging systems in general, and, more particularly, variable-motion optical tomography (VOT) where the motion of a small object, such as a biological cell, for example, is controlled by a mechanical motion system whose motion is not necessarily constant and/or unidirectional, but may be variable and multi-directional.
BACKGROUND OF THE INVENTION
U.S. application Ser. No. 09/927,151 of Alan C. Nelson, filed Aug. 10, 2001, now U.S. Pat. No. 6,522,775 issued Feb. 18, 2003, entitled “APPARATUS AND METHOD FOR IMAGING SMALL OBJECTS IN A FLOW STREAM USING OPTICAL TOMOGRAPHY,” (hereinafter called the FOT design) is incorporated herein by this reference. In the aforesaid Nelson patent application, cell motion is accomplished in a flow stream, wherein cells in suspension move with constant velocity along the single flow axis of a capillary tube. The FOT design does not address the more general case where cell velocity and/or direction of motion are variable.
SUMMARY OF THE INVENTION
In one embodiment, the present invention provides a method for variable-motion optical tomography (VOT), wherein motion of an object of interest, such as a cell, has a variable velocity relative to the light path that can be varied on a cell-by-cell basis. Cell velocity is controlled in one example by packing cells into a capillary tube, or any other linear substrate that provides optically equivalent 360 degree viewing access, so that the cells are stationary within the capillary tube, while the capillary tube is translated and rotated mechanically through an optical tomography reconstruction cylinder. The capillary tube motion may advantageously be controlled in a start-and-stop fashion and translated and rotated at any velocity for any motion interval, under the control of a computer program.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically shows an example illustration of cells packed into a capillary tube as contemplated by an embodiment of the present invention.
FIG. 2 schematically shows an example illustration of an optical tomography reconstruction cylinder as contemplated by an embodiment of the present invention.
FIG. 3 schematically shows an example of an alternate system for variable-motion optical tomography (VOT) as contemplated by an embodiment of the present invention.
FIG. 4 schematically shows an example of a flow diagram illustrating three-dimensional (3D) image reconstruction as contemplated by an embodiment of the present invention.
FIG. 5 schematically shows an example illustrating the use of polarization filters and/or phase plates in a three-dimensional (3D) image reconstruction as contemplated by an embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention is described herein with respect to specific examples relating to biological cells, however, it will be understood that these examples are for the purpose of illustrating the principals of the invention, and that the invention is not so limited. In one example, constructing a three-dimensional distribution of point densities and emission intensities within a microscopic volume allows the measurement of density and fluorescence at any location within the microscopic volume and determines the location of structures, molecules or molecular probes of interest. By using tagged molecular probes, the quantity of probes that attach to specific structures in the microscopic object may be measured. For illustrative purposes, an object such as a biological cell may be labeled with at least one tagged molecular probe, and the measured amount and location of this probe may yield important information about the disease state of the cell, including, but not limited to, various cancers such as lung, colon, prostate, breast, cervical and ovarian cancers, or infectious agents.
Referring now to FIG. 1, there shown schematically is an example illustration of cells packed into a capillary tube as contemplated by an embodiment of the present invention. In this example embodiment, a section of the capillary tube 3 is filled with cells 1 that are packed rigidly into the tube. Each of the cells may include a nucleus 2. The capillary tube 3 has a central axis 4 oriented with reference to a coordinate system 6 having coordinates in the x, y and z-directions. In some instances, at least one molecular probe 53 may be bound within the cell. A computer 7 is coupled to provide control signals to a rotational motor 5 and a translational motor 8. It will be recognized that equivalent arrangements of one or more motors, gears or fluidics or other means of generating motion may also be employed to achieve the necessary translational and rotational motion of the capillary tube or other substrate. In some cases, one or more of the motors may be replaced by manual positioning devices or gears or by other means of generating motion such as hydraulics or piezoelectrics. The axis of translation is the z-axis, and rotation is around the z-axis. The positioning motor 9 is coupled to move the cell in a plane defined by the x,y-axes, substantially perpendicular to the central axis for the purpose of centration, as necessary.
It will be recognized that the curved surface of the capillary tube will act as a cylindrical lens and that this focusing effect may not be desirable in a projection system. Those skilled in the art will appreciate that the bending of photons by the tube can be eliminated if the spaces between the point source and the tube and between the tube and the detector surfaces are filled with a material 54 whose index of refraction matches that of the capillary tube and that the tube can be optically coupled (with oil or a gel, for example) to the space filling material.
Consider the present example of cells packed into a capillary tube. The cells may preferably be packed single file so that they do not overlap. The density of packing whole cells of about 100 microns in diameter into a capillary tube with diameter less than 100 microns can be roughly 100 cells per centimeter of tube length. For bare nuclei of about 20 microns in diameter, the packing can be roughly 500 nuclei per centimeter of tube length where the tube diameter is proportional to the object size, about 20 microns in this case. Thus, within several centimeters of capillary tube length, a few thousand non-overlapping bare nuclei can be packed. By translating the tube along its central axis 4, motion in the z-direction can be achieved. Moving the tube in the x,y-directions allows objects within the tube to be centered, as necessary, in the reconstruction cylinder of the optical tomography system. By rotating the tube around its central axis 4, a multiplicity of radial projection views can be produced. Moving the tube in the z-direction with constant velocity and no rotation simulates the special case of flow optical tomography.
One advantage of moving a tube filled with cells that are otherwise stationary inside the tube is that objects of interest can be stopped, then rotated, at speeds that permit nearly optimal exposure for optical tomography on a cell-by-cell basis. That is, the signal to noise ratio of the projection images can be improved to produce better images than may be usually produced at constant speeds and direction typical of flow systems. Objects that are not of interest can be moved out of the imaging system swiftly, so as to gain overall speed in analyzing cells of interest in a sample consisting of a multitude of cells. Additionally, the ability to stop on an object of interest, then rotate as needed for multiple projections, nearly eliminates motion artifacts. Still further, the motion system can be guided at submicron movements and can advantageously be applied in a manner that allows sampling of the cell at a resolution finer than that afforded by the pixel size of the detector. More particularly, the Nyquist sampling factor of 2 could be managed by the motion system moving in increments that fill half a pixel width, for example. Similarly, the motion system can compensate for the imperfect fill factor of the detector.
Referring now to FIG. 2, there shown schematically is an example illustration of an optical tomography reconstruction cylinder as contemplated by an embodiment of the present invention. There shown is a VOT configuration with at least one point source 10 b arranged at fixed angles along a circumference 11 at the tube wall. At least one detector 50 b includes at least one detector surface 12, with surfaces opposing the at least one point source 10 b, arranged on a wider circumference in the same plane as the point sources. Each point source projects a cone beam 13 onto a detector area 14 such that the projected cones do not overlap on the detector. It will be understood that other projection geometries may be acceptable such as those utilizing fan beam and pencil beam projections. To simplify the figure for understanding, only one cone beam has been shown, but it will be understood that each point source projects a separate cone beam. The central axis of each cone beam intersects the other cone beam central axes at a central point 15 in the middle of the tube or in the middle of the cell within the tube, as the case may be. Each time the tube is rotated by a desired incremental angle 16 while the arrangement of point sources and detectors remains fixed, another set of projections are collected, thus generating a new set of independent projections at different radial angles, and so on.
The computer 7 is coupled to transmit data, control signals and timing signals to the point sources 10 b, sensing elements 12 and motors. The computer may comprise a known computer or plurality of computers and array processors adequate for image acquisition and image reconstruction processing.
The reconstruction cylinder in this new configuration, can be designed more optimally as compared to the FOT design. In particular, because the object of interest can be rotated, a reconstruction cylinder may advantageously be designed with a single point source and detector pair that creates and captures the projection image (sometimes known as a shadowgram) at each rotation angle.
In the example embodiment shown in FIG. 2, one example VOT configuration has nine fiber optic point sources arranged at twenty radial degrees spacing around a circumference at the tube wall. The opposing nine detector surfaces are arranged on a wider circumference in the same plane as the point sources. Each point source projects a cone beam onto a detector area such that the projected cones do not overlap on the detector. The central axis of each cone beam intersects the other cone beam central axes at a central point in the middle of the tube or in the middle of the cell within the tube. Each time the tube is rotated by a 2 degree increment another set of projections is collected, so that after 10 incremental rotations, a total of 90 independent projections have been generated at each 2 degree increment around 180 radial degrees of circumference. Similarly, if the tube containing the object of interest were centered and rotated through twenty 1 radial degree increments, then 180 unique projection images would be created. After a suitable number of projections have been created, the cell of interest or tube containing other cells of interest may be translated in the z-direction to accommodate a new view and repeat the image collection process.
In this design, a semicircle of equally spaced point sources have opposing detector arrays positioned around an opposite semicircle, and all elements of the imaging system are positioned on the same central plane generally perpendicular to the tube axis. However, the point source/detector combinations need not lie on the same central plane, and point sources may be spaced at unequal intervals and advantageously be interspersed between detector arrays.
As also shown in FIG. 2, because of the unbounded nature of the tube in the z-direction above and below the circle of point sources and detectors that comprise a reconstruction zone 51, it may be useful to position additional sources 10 a, 10 c and additional detectors 50 a, 50 c above and below the reconstruction zone 51 to generate images for improving the accuracy of the computed image reconstruction. Note that in a particular embodiment, the reconstruction zone may comprise a plane defined by the placement of a set of point sources and detectors. These configurations would apply to the flow optical tomographic (FOT) system design as well.
Referring now to FIG. 3, there shown is an example of an alternate system for variable-motion optical tomography (VOT) as contemplated by an embodiment of the present invention. A particularly useful design includes placing a ring of point sources 17 b in a plane 18 located just above or below proximate a ring of detectors 19 b located around a detector plane 21 such that the projection cones are aimed at their respective detector surfaces and the center of the cell 20 is located between the two planes at the point where all projection cones overlap. In this configuration, the cell can be sampled around a full 360 degree radial circumference to achieve an optimal image reconstruction, given an adequate number of point source/detector pairs, and as such, rotation of the tube is not required. Again, it may be useful to position additional sets of optical point sources 17 a, 17 c and opposing detectors 19 a, and 19 c above and/or below a reconstruction zone 52 to improve the accuracy of the computed image reconstruction. In the example of FIG. 3, the reconstruction zone 52 is located above and/or below plane 18. This geometry also applies to the FOT.
In the preceding example, 3D image reconstruction is accomplished using 2D projection images from cone beam geometry. It is also possible to use fan beam geometry whereby the 3D image is generated by stacking contiguous planar images reconstructed from linear (1D) projections using fan beam reconstruction algorithms. With fan beam geometry, the plurality of optical point sources 10 b that are collimated to emit fan-beams, in conjunction with opposing detectors 12 mounted around a circumference of the tube can sample multiple projection angles through the entire cell 1 as it is moved past the sources. A cell is thus optically sectioned with projections through the cell that can be reconstructed to form a 2D slice in the x-y plane. By stacking or mathematically combining sequential slices, a 3D picture of the cell will emerge. The 3D picture of the cell can yield quantitative measures of sub-cellular structures and the location and amount of tagged molecular probes that provide diagnostic information.
Light Source.
Each source may have the same general characteristics, preferably:
    • it may approximate a small circular point source for use in cone beam geometry,
    • it may be bright, uniform and with known spectral content,
    • the photons emitted from the source may have a known geometry such as a cone beam or a fan beam.
      Further, the wavelength of the sources is selectable either by use of various diode emitters or other lasers or by bandpass filtering of a white or other broadband source, for example a mercury or xenon arc lamp.
There are several options that can be employed to create optical point sources, such as:
    • a pinhole in front of a laser or other high intensity photon source,
    • an optical fiber with a small cross-section and small apparent aperture,
    • a short focal length lens in front of a photon source,
    • an electron beam that irradiates a point on a phosphor surface (a form of CRT), and
    • various combinations of the above.
The geometry is such that, the closer the point source to the object of interest (the cell), the higher the magnification due to the wider geometric angle that is subtended by an object closer to the source. Magnification in a simple projection system is approximately M=(A+B)/A, where A is the distance between the point source and the object (cell) and B is the distance between the object and the detector. Conversely, if the required resolution is known in advance of the system design, then the geometry can be optimized for that particular resolution. For background, those skilled in the art are directed to Blass, M., editor-in-chief, Handbook of Optics: Fiber Optics and Nonlinear Optics, 2nd ed., Vol. IV, Mcgraw-Hill, 2001.
Referring now to FIG. 4, an example of a flow diagram illustrating three-dimensional (3D) image reconstruction as contemplated by an embodiment of the present invention is shown. As contemplated by one example of the present invention, a 3D image reconstruction process 30 includes the steps of loading the tube packed with cells at step 31, translating the tube until the first cell of interest has been located at step 32, centering the cell of interest, as necessary, at step 33, generating a set of projections at each different rotation angle at step 34, determining when the data set is complete at step 35, and repeating the process from steps 32 through 35 until all cells of interest have been analyzed. The process stops at step 36. The process may be implemented in a computer software program executed by a personal computer such as computer 7, for example.
Image Reconstruction.
The most common and easily implemented reconstruction algorithms, known as filtered backprojection methods, are derived from a similar paradigm in computerized x-ray tomography (CT) using cone-beam and fan-beam geometry. (See the following references, for example, Kak, A. C. and Slaney, M., Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988, and Herman, G, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.) These methods are based on theorems for Radon transforms with modifications that reflect the particular geometry of the source/detector configuration and the ray paths in the irradiating beam. However, in the case of clinical x-ray CT, the human subject is usually held motionless while the x-ray source and detector arrays may move along an arc or helix around the patient to collect data from multiple projection angles. Then the human subject may be repositioned along the z-axis and another set of data is collected, etc. Alternatively, in the more modern clinical helical CT, the patient may be continuously translated in the z-direction while the source-detector assembly rotates continuously to provide helical projection data, which is then interpolated to provide projections orthogonal to the patient z-axis.
In flow optical tomography (FOT) and variable-motion optical tomography (VOT), the object (a cell) is moved relative to the stationary sources and detector arrays wherein the plurality of source/detector systems acquire data in synchrony with specific gated time points along the cell velocity vector in a fashion that generates multiple projection angle data within a given slice or volume. For slice-by-slice scanning using a fan beam, the reconstruction algorithm will compute a 2D image of a plane perpendicular to the axis of motion, and the serial stacking of multiple slices will generate the 3D picture of the object where contrast is a function of the variations in the x-ray attenuation coefficient or optical absorption coefficient as a measure of density within the object for CT or flow optical tomography, respectively. For volumetric, cone-beam scanning the reconstruction algorithm computes a 3D image of a volume within the cell or other object directly from planar transmission or emission optical projections, where the contrast is a function of the optical density and/or tagged probe density distribution within the imaged object.
It may be desirable for either the transmission data to produce the cell density reconstruction or for the emission data (from internal sources, if any) to reconstruct the labeled probe distribution, or both, to employ image reconstruction algorithms other than filtered backprojection. The general class known as iterative reconstruction algorithms is more efficacious in some instances, especially for emission tomography or, when it is possible, as in the instance of the current invention where the axial symmetry and tricompartmental nature of the object are known, to incorporate a priori information into the reconstruction algorithm to improve the quality of the reconstruction (See, for example, Gilbert, P., “Iterative Methods for the Three-dimensional Reconstruction of an Object from Projections,” Journal of Theoretical Biology 36:105–17, 1972, and other references noted hereinabove).
Referring now to FIG. 5, there shown schematically is an example illustrating the use of polarization filters (and/or a phase plate) in a three-dimensional (3D) image reconstruction as contemplated by an embodiment of the present invention. All image reconstruction algorithms are vulnerable to various forms of noise in the projection data, such as scatter and diffraction. Light scatter and diffraction may become significant in optical tomography where the wavelength of the illuminating photons is of the same order as the desired resolution within the object to be reconstructed and where the object contains structures that are of the same order in size as the illuminating wavelength. Interactions that can change the polarization of photons or cause a phase shift provide an opportunity to remove or reduce the contamination in a projection image through the use of polarization filters and/or a phase plate. For example, if a point source 37 is filtered through a first linear polarizer 41, then a first polarized light ray 39 is produced that impinges on object 42. Rays 40 represent photons scattered as a result of the first polarized light ray 39 impinging on the object 42. A surface of a sensor 45, positioned to sense a projection image generated by the point source 37, is similarly filtered through a second linear polarizer 43 having the same orientation as the first linear polarizer 41. As indicated by the rays 40, photons whose polarization vector has shifted will be removed from detection. At the same time, unscattered light rays will pass through both polarization filters resulting in a portion of unscattered light 44, impinging on the sensor 45. To remove phase shift, a phase plate 46 can be placed proximate the second linear polarizer 43. In this way, the background of noise due to shifts in polarization and phase can be reduced significantly.
The invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles of the present invention, and to construct and use such exemplary and specialized components as are required. However, it is to be understood that the invention may be carried out by specifically different equipment, and devices and reconstruction algorithms, and that various modifications, both as to the equipment details and operating procedures, may be accomplished without departing from the true spirit and scope of the present invention.

Claims (13)

1. A method for variable-motion optical tomography of an object of interest, comprising the steps of:
(a) packing a plurality of objects of interest into a tubular container so that the plurality of objects of interest remain stationary within the tubular container, the tubular container having a central axis;
(b) illuminating the plurality of objects of interest with at least one optical projection beam;
(c) translating the tubular container until at least one object of interest is located within a region of the at least one optical projection beam;
(d) centering the at least one object of interest as necessary;
(e) rotating the tubular container holding the at least one object of interest through a plurality of radial angles that are perpendicular to the central axis;
(f) generating a set of projection images onto at least one detector surface at each radial angle of the plurality of angles, where spaces between the at least one optical projection beam and the at least one object of interest and spaces between the at least one object of interest and the at least one detector surface are filled with a material whose index of refraction is matched with that of the tubular container; and
(g) repeating the steps (b) through (f) until the plurality of objects of interest have been radially scanned.
2. The method of claim 1, wherein the at least one object of interest is a cell or a cell nucleus.
3. The method of claim 1 wherein the optical projection beam is selected from the group consisting of fan beam projections and cone beam projections.
4. A method for three dimensional (3D) reconstruction of an object of interest, the method comprising the steps of:
(a) packing a plurality of objects of interest into a tubular container so that the plurality of objects of interest remain stationary within the tube, where an axis of rotation is aligned with a central axis of the tube;
(b) illuminating the plurality of objects of interest with a plurality of optical projection beams;
(c) translating the linear container until at least one object of interest is located within a region of the plurality of optical projection beams;
(d) centering the at least one object of interest as necessary;
(c) generating a set of projection images onto at least one detector surface at a plurality of radial angles that are perpendicular to the axis of rotation, where spaces between the plurality of optical projection beams and the at least one object of interest and spaces between the object and the at least one detector surface are filled with a material whose index of refraction is matched with that of the tabular container;
(f) repeating the steps (b) through (e) until the objects of interest have been radially scanned; and
(g) reconstructing a 3D image from the set of projection images.
5. A variable-motion optical tomography system comprising:
a tubular container for holding objects of interest having a tube wall and a tube axis, wherein the objects of interest are packed in the tube so as to remain stationary relatively to the tubular container;
a plurality of optical light sources arranged to project light round a circumference at the tube wall;
a plurality of opposing detector surfaces arranged on a wider circumference in the same plane as the light sources, to form a reconstruction zone, so that each light source projects a beam through the tubular container onto a detector area to form projection images, such that one of the projection images does not overlap another on any of the plurality of opposing detector surfaces, and a central axis of each beam intersects the central axes of the other beams within the tube, where spaces between the plurality of optical light sources and the objects of interest and spaces between the objects of interest and the plurality of opposing detector surfaces are filled with a material whose index of refraction is matched with that of the tube; and
means, coupled to the tube, for rotating and translating tubular container in a variable motion.
6. The system of claim 5 wherein the means for moving comprises a computer controlled motion apparatus.
7. The system of claim 5 wherein the means for moving comprises a means for rotating the tubular container such that a set of projections is collected each time the tube is rotated by a rotation displacement value.
8. The system of claim 5 wherein the plurality of optical light sources comprises two or more point sources.
9. The system of claim 5 wherein the plurality of optical light sources include a semicircle of spaced point sources that have opposing detector arrays positioned around an opposite semicircle, tho spaced point sources and the opposing detector arrays being positioned on the same central plane generally perpendicular to the tube axis.
10. The system of claim 5 wherein the plurality of optical light sources and the plurality of opposing detector surfaces lie in the same plane, and the plurality of optical light sources are interspersed between detector arrays.
11. The system of claim 5 wherein additional sets of optical light sources and detectors are positioned above and/or below the reconstruction zone to provide additional projection data.
12. The system of claim 5 wherein at least two polarization filters are positioned between the plurality of light sources and the plurality of opposing detector surfaces.
13. The system of claim 5 wherein at least one phase plate is positioned between the object and the plurality of opposing detector surfaces.
US10/126,026 2002-04-19 2002-04-19 Variable-motion optical tomography of small objects Expired - Lifetime US7197355B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US10/126,026 US7197355B2 (en) 2002-04-19 2002-04-19 Variable-motion optical tomography of small objects
PCT/US2003/010901 WO2003089959A2 (en) 2002-04-19 2003-04-09 Variable-motion optical tomography of small objects
EP03721595.1A EP1496797B1 (en) 2002-04-19 2003-04-09 Variable-motion optical tomography of small objects
AU2003224902A AU2003224902B2 (en) 2002-04-19 2003-04-09 Variable-motion optical tomography of small objects
JP2003586640A JP4386742B2 (en) 2002-04-19 2003-04-09 Variable moving optical tomography of minute objects
ES03721595.1T ES2592275T3 (en) 2002-04-19 2003-04-09 Optical tomography of variable motion of small objects
CNB038121387A CN1326492C (en) 2002-04-19 2003-04-09 Variable-motion optical tomography of small objects
CA2482920A CA2482920C (en) 2002-04-19 2003-04-09 Variable-motion optical tomography of small objects
US10/716,744 US7738945B2 (en) 2002-04-19 2003-11-18 Method and apparatus for pseudo-projection formation for optical tomography
US10/876,328 US7260253B2 (en) 2002-04-19 2004-06-24 Method for correction of relative object-detector motion between successive views
US10/964,508 US7811825B2 (en) 2002-04-19 2004-10-13 System and method for processing specimens and images for optical tomography
US10/968,645 US20050085708A1 (en) 2002-04-19 2004-10-19 System and method for preparation of cells for 3D image acquisition
HK05105692.5A HK1074373A1 (en) 2002-04-19 2005-07-06 Variable-motion optical tomography of small objects
US11/558,593 US7542597B2 (en) 2002-04-19 2006-11-10 Method for correction of relative object-detector motion between successive views

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/126,026 US7197355B2 (en) 2002-04-19 2002-04-19 Variable-motion optical tomography of small objects

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/716,744 Continuation-In-Part US7738945B2 (en) 2002-04-19 2003-11-18 Method and apparatus for pseudo-projection formation for optical tomography
US10/876,328 Continuation-In-Part US7260253B2 (en) 2002-04-19 2004-06-24 Method for correction of relative object-detector motion between successive views
US10/968,645 Continuation-In-Part US20050085708A1 (en) 2002-04-19 2004-10-19 System and method for preparation of cells for 3D image acquisition

Publications (2)

Publication Number Publication Date
US20030199758A1 US20030199758A1 (en) 2003-10-23
US7197355B2 true US7197355B2 (en) 2007-03-27

Family

ID=29214911

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/126,026 Expired - Lifetime US7197355B2 (en) 2002-04-19 2002-04-19 Variable-motion optical tomography of small objects

Country Status (9)

Country Link
US (1) US7197355B2 (en)
EP (1) EP1496797B1 (en)
JP (1) JP4386742B2 (en)
CN (1) CN1326492C (en)
AU (1) AU2003224902B2 (en)
CA (1) CA2482920C (en)
ES (1) ES2592275T3 (en)
HK (1) HK1074373A1 (en)
WO (1) WO2003089959A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050163390A1 (en) * 2004-01-23 2005-07-28 Ann-Shyn Chiang Method for improving the depth of field and resolution of microscopy
US20080076977A1 (en) * 2006-09-26 2008-03-27 Nellcor Puritan Bennett Inc. Patient monitoring device snapshot feature system and method
US20080205739A1 (en) * 2007-02-23 2008-08-28 Visiongate, Inc. Fluid focusing for positional control of a specimen for 3-d imaging
US7542597B2 (en) 2002-04-19 2009-06-02 Visiongate, Inc. Method for correction of relative object-detector motion between successive views
US20100214639A1 (en) * 2009-02-23 2010-08-26 Visiongate, Inc. Optical tomography system with high-speed scanner
US7787112B2 (en) 2007-10-22 2010-08-31 Visiongate, Inc. Depth of field extension for optical tomography
US7835561B2 (en) 2007-05-18 2010-11-16 Visiongate, Inc. Method for image processing and reconstruction of images for optical tomography
US8090183B2 (en) 2009-03-12 2012-01-03 Visiongate, Inc. Pattern noise correction for pseudo projections
US8143600B2 (en) 2008-02-18 2012-03-27 Visiongate, Inc. 3D imaging of live cells with ultraviolet radiation
US8155420B2 (en) 2009-05-21 2012-04-10 Visiongate, Inc System and method for detecting poor quality in 3D reconstructions
US8391943B2 (en) 2010-03-31 2013-03-05 Covidien Lp Multi-wavelength photon density wave system using an optical switch
US8457440B1 (en) * 2009-01-27 2013-06-04 Axsun Technologies, Inc. Method and system for background subtraction in medical optical coherence tomography system
US8867803B2 (en) 2010-04-20 2014-10-21 Eric J. Seibel Optical projection tomography microscopy (OPTM) for large specimen sizes
US9042967B2 (en) 2008-05-20 2015-05-26 University Health Network Device and method for wound imaging and monitoring
US10162162B2 (en) 2014-09-24 2018-12-25 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Microfluidic systems and methods for hydrodynamic microvortical cell rotation in live-cell computed tomography
US10438356B2 (en) 2014-07-24 2019-10-08 University Health Network Collection and analysis of data for diagnostic purposes
US11069054B2 (en) 2015-12-30 2021-07-20 Visiongate, Inc. System and method for automated detection and monitoring of dysplasia and administration of immunotherapy and chemotherapy
US11456581B2 (en) * 2020-08-24 2022-09-27 Daiwa Kasei Industry Co., Ltd. Routing structure of wire harness
US11954861B2 (en) 2022-12-30 2024-04-09 University Health Network Systems, devices, and methods for visualization of tissue and collection and analysis of data regarding same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060023219A1 (en) * 2001-03-28 2006-02-02 Meyer Michael G Optical tomography of small objects using parallel ray illumination and post-specimen optical magnification
US7907765B2 (en) * 2001-03-28 2011-03-15 University Of Washington Focal plane tracking for optical microtomography
US6944322B2 (en) * 2001-03-28 2005-09-13 Visiongate, Inc. Optical tomography of small objects using parallel ray illumination and post-specimen optical magnification
US6991738B1 (en) 2004-10-13 2006-01-31 University Of Washington Flow-through drum centrifuge
US20060096358A1 (en) * 2004-10-28 2006-05-11 University Of Washington Optical projection tomography microscope
CA2588126C (en) * 2004-11-24 2014-01-07 Battelle Memorial Institute Optical system for cell imaging
NO327576B1 (en) * 2006-06-01 2009-08-17 Ana Tec As Method and apparatus for analyzing objects
BRPI0719141A2 (en) * 2006-11-21 2014-03-04 Koninkl Philips Electronics Nv SYSTEM AND METHOD FOR GENERATING PROSTATE CANCER IMAGE, COMPUTER-READABLE MEDIA, AND USES OF THE SYSTEM AND DIFFUS OPTIC TOMOGRAPHY
US20100188739A1 (en) * 2009-01-19 2010-07-29 Visiongate, Inc. Tomographic Light Field Microscope
GB201204004D0 (en) * 2012-03-07 2012-04-18 Imp Innovations Ltd Multiplexed optical projection tomography
US9836861B2 (en) * 2014-12-12 2017-12-05 Samsung Electronics Co., Ltd. Tomography apparatus and method of reconstructing tomography image
US11327004B2 (en) 2016-03-02 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Live-cell computed tomography
JP6731868B2 (en) * 2017-02-17 2020-07-29 株式会社Screenホールディングス Imaging method and imaging apparatus
US11315292B2 (en) 2017-03-02 2022-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Live-cell computed tomography
EP3413033B1 (en) * 2017-06-09 2020-09-23 Roche Diagnostics GmbH Method and apparatus for determining properties of a laboratory sample contained in a laboratory sample container
CN112835190B (en) * 2021-01-04 2022-08-09 桂林电子科技大学 Based on two core optic fibre light manipulation and dynamic speckle illumination microscopic imaging system

Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470373A (en) 1966-10-18 1969-09-30 Litton Systems Inc Method for analysis and identification of biologic entities by phosphorescence
US3497690A (en) 1967-09-21 1970-02-24 Bausch & Lomb Method and apparatus for classifying biological cells by measuring the size and fluorescent response thereof
US3598471A (en) 1968-11-22 1971-08-10 Corning Glass Works Optical contrast enhancement system
US3657537A (en) 1970-04-03 1972-04-18 Bausch & Lomb Computerized slit-scan cyto-fluorometer for automated cell recognition
US3748468A (en) 1971-12-22 1973-07-24 Gen Electric Automatic electron microscope field counter
US3833762A (en) 1973-06-04 1974-09-03 Rockwell International Corp Solid state integrating, image motion compensating imager
US3960449A (en) 1975-06-05 1976-06-01 The Board Of Trustees Of Leland Stanford Junior University Measurement of angular dependence of scattered light in a flowing stream
US3999047A (en) 1972-09-05 1976-12-21 Green James E Method and apparatus utilizing color algebra for analyzing scene regions
US4175860A (en) 1977-05-31 1979-11-27 Rush-Presbyterian-St. Luke's Medical Center Dual resolution method and apparatus for use in automated classification of pap smear and other samples
US4183623A (en) 1977-10-11 1980-01-15 Haines Kenneth A Tomographic cross-sectional imaging using incoherent optical processing
US4200353A (en) 1974-06-05 1980-04-29 Robert Hoffman Modulation contrast microscope with three regions
US4293221A (en) 1979-04-17 1981-10-06 Research Corporation Multidimensional slit-scan flow system
US4657676A (en) 1981-12-08 1987-04-14 Imperial Chemical Industries Plc Sedimentation field flow fractionation
US4858128A (en) 1986-08-11 1989-08-15 General Electric Company View-to-view image correction for object motion
US4891829A (en) 1986-11-19 1990-01-02 Exxon Research And Engineering Company Method and apparatus for utilizing an electro-optic detector in a microtomography system
US4966576A (en) 1986-06-07 1990-10-30 Westfalia Separator Ag Continuously operating centrifuge drum
US5141609A (en) 1990-11-16 1992-08-25 The Trustees Of The Leland Stanford Junior University Method and device employing time-delayed integration for detecting sample components after separation
US5308990A (en) 1991-05-15 1994-05-03 Hitachi, Ltd. Method for measuring microparticles, quantitative measuring method therefor and instrument for measuring microparticles
US5312535A (en) 1992-07-17 1994-05-17 Beckman Instruments, Inc. Capillary electrophoresis detection
US5321501A (en) 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US5402460A (en) 1993-08-02 1995-03-28 University Of Washington Three-dimensional microtomographic analysis system
US5630938A (en) 1995-07-13 1997-05-20 Krauss-Maffei Ag Evertable drum centrifuge filter
US5668887A (en) 1992-05-29 1997-09-16 Eastman Kodak Company Coating density analyzer and method using non-synchronous TDI camera
US5676631A (en) 1993-07-06 1997-10-14 Westfalia Separator Aktiengesellschaft Centrifuge drum for concentrating suspended solids
US5680484A (en) 1992-06-09 1997-10-21 Olympus Optical Co., Ltd. Optical image reconstructing apparatus capable of reconstructing optical three-dimensional image having excellent resolution and S/N ratio
US5710429A (en) 1995-04-06 1998-01-20 Alfano; Robert R. Ultrafast optical imaging of objects in or behind scattering media
US5741411A (en) 1995-05-19 1998-04-21 Iowa State University Research Foundation Multiplexed capillary electrophoresis system
US5760901A (en) 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation
US5760951A (en) 1992-09-01 1998-06-02 Arthur Edward Dixon Apparatus and method for scanning laser imaging of macroscopic samples
US5828408A (en) 1996-01-04 1998-10-27 Commissariat A L'energie Atomique Device for reading detector arrays with TDI effect
US5848123A (en) 1995-11-21 1998-12-08 Planmed Oy Methods and apparatus for use in imaging an object
US5880838A (en) 1996-06-05 1999-03-09 California Institute Of California System and method for optically measuring a structure
US5915048A (en) 1996-06-05 1999-06-22 Zetetic Institute Method and apparatus for discriminating in-focus images from out-of-focus light signals from background and foreground light sources
US5987158A (en) 1994-09-20 1999-11-16 Neopath, Inc. Apparatus for automated identification of thick cell groupings on a biological specimen
US6005617A (en) 1996-03-11 1999-12-21 Matsushita Electric Industrial Co., Ltd. Electronic camera with mechanical subscanner
US6026174A (en) 1992-10-14 2000-02-15 Accumed International, Inc. System and method for automatically detecting malignant cells and cells having malignancy-associated changes
US6038067A (en) 1996-05-23 2000-03-14 The Regents Of The University Of California Scanning computed confocal imager
US6091983A (en) 1997-02-07 2000-07-18 Alfano; Robert R. Imaging of objects in turbid media based upon the preservation of polarized luminescence emitted from contrast agents
US6165734A (en) 1995-12-12 2000-12-26 Applied Spectral Imaging Ltd. In-situ method of analyzing cells
US6201628B1 (en) 1997-11-19 2001-03-13 University Of Washington High throughput optical scanner
US6211955B1 (en) 2000-01-24 2001-04-03 Amnis Corporation Imaging and analyzing parameters of small moving objects such as cells
US6215587B1 (en) 1994-02-14 2001-04-10 Robert R. Alfano Microscope imaging inside highly scattering media
US6248988B1 (en) 1998-05-05 2001-06-19 Kla-Tencor Corporation Conventional and confocal multi-spot scanning optical microscope
US6251615B1 (en) 1998-02-20 2001-06-26 Cell Analytics, Inc. Cell analysis methods
US6252979B1 (en) 1995-06-07 2001-06-26 Tripath Imaging, Inc. Interactive method and apparatus for sorting biological specimens
US6251586B1 (en) 1995-10-02 2001-06-26 The United States Of America As Represented By The Department Of Health And Human Services Epithelial protein and DNA thereof for use in early cancer detection
US20010012069A1 (en) 1997-04-07 2001-08-09 Eberhard Derndinger Confocal microscope with a motorized scanning table
US6312914B1 (en) 1992-09-14 2001-11-06 Orasure Technologies, Inc. Up-converting reporters for biological and other assays
US6330106B1 (en) * 1999-02-17 2001-12-11 Lucid, Inc. Tissue specimen holder
US20020045525A1 (en) 1997-09-12 2002-04-18 Andrea Marziali Flow-through microcentrifuge
US6388809B1 (en) 1997-10-29 2002-05-14 Digital Optical Imaging Corporation Methods and apparatus for improved depth resolution use of out-of-focus information in microscopy
US6452179B1 (en) 1998-08-14 2002-09-17 Global Technovations, Inc. On-site analyzer
US20020161534A1 (en) 2000-12-15 2002-10-31 Kla-Tencor Corporation Method and apparatus for inspecting a substrate
US20020173034A1 (en) 2001-05-21 2002-11-21 Emilio Barbera-Guillem Centrifuge apparatus and methods for separating components from a cell culture device
WO2002095476A2 (en) 2001-05-22 2002-11-28 Medical Research Council Rotary stage for imaging a specimen
US6529614B1 (en) 1998-08-05 2003-03-04 California Institute Of Technology Advanced miniature processing handware for ATR applications
US6591003B2 (en) * 2001-03-28 2003-07-08 Visiongate, Inc. Optical tomography of small moving objects using time delay and integration imaging

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068882A (en) * 1990-08-27 1991-11-26 General Electric Company Dual parallel cone beam circular scanning trajectories for reduced data incompleteness in three-dimensional computerized tomography
US5447159A (en) * 1993-02-03 1995-09-05 Massachusetts Institute Of Technology Optical imaging for specimens having dispersive properties
US5585246A (en) * 1993-02-17 1996-12-17 Biometric Imaging, Inc. Method for preparing a sample in a scan capillary for immunofluorescent interrogation
US5694938A (en) * 1995-06-07 1997-12-09 The Regents Of The University Of California Methodology and apparatus for diffuse photon mimaging
US6208886B1 (en) * 1997-04-04 2001-03-27 The Research Foundation Of City College Of New York Non-linear optical tomography of turbid media
JP2001174404A (en) * 1999-12-15 2001-06-29 Takahisa Mitsui Apparatus and method for measuring optical tomographic image
AU2001237963A1 (en) * 2000-01-24 2001-07-31 The General Hospital Corporation Detection of stroke events using diffuse optical tomography
JP3999437B2 (en) * 2000-03-10 2007-10-31 富士フイルム株式会社 Optical tomographic imaging system
CN1175784C (en) * 2000-06-27 2004-11-17 华南师范大学 Optically Chronatographic imaging method and equipment with focusing, ultraconic wave and modulation

Patent Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470373A (en) 1966-10-18 1969-09-30 Litton Systems Inc Method for analysis and identification of biologic entities by phosphorescence
US3497690A (en) 1967-09-21 1970-02-24 Bausch & Lomb Method and apparatus for classifying biological cells by measuring the size and fluorescent response thereof
US3598471A (en) 1968-11-22 1971-08-10 Corning Glass Works Optical contrast enhancement system
US3657537A (en) 1970-04-03 1972-04-18 Bausch & Lomb Computerized slit-scan cyto-fluorometer for automated cell recognition
US3748468A (en) 1971-12-22 1973-07-24 Gen Electric Automatic electron microscope field counter
US3999047A (en) 1972-09-05 1976-12-21 Green James E Method and apparatus utilizing color algebra for analyzing scene regions
US3833762A (en) 1973-06-04 1974-09-03 Rockwell International Corp Solid state integrating, image motion compensating imager
US4200353A (en) 1974-06-05 1980-04-29 Robert Hoffman Modulation contrast microscope with three regions
US3960449A (en) 1975-06-05 1976-06-01 The Board Of Trustees Of Leland Stanford Junior University Measurement of angular dependence of scattered light in a flowing stream
US4175860A (en) 1977-05-31 1979-11-27 Rush-Presbyterian-St. Luke's Medical Center Dual resolution method and apparatus for use in automated classification of pap smear and other samples
US4183623A (en) 1977-10-11 1980-01-15 Haines Kenneth A Tomographic cross-sectional imaging using incoherent optical processing
US4293221A (en) 1979-04-17 1981-10-06 Research Corporation Multidimensional slit-scan flow system
US4657676A (en) 1981-12-08 1987-04-14 Imperial Chemical Industries Plc Sedimentation field flow fractionation
US4966576A (en) 1986-06-07 1990-10-30 Westfalia Separator Ag Continuously operating centrifuge drum
US4858128A (en) 1986-08-11 1989-08-15 General Electric Company View-to-view image correction for object motion
US4891829A (en) 1986-11-19 1990-01-02 Exxon Research And Engineering Company Method and apparatus for utilizing an electro-optic detector in a microtomography system
US5141609A (en) 1990-11-16 1992-08-25 The Trustees Of The Leland Stanford Junior University Method and device employing time-delayed integration for detecting sample components after separation
US5321501A (en) 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US5308990A (en) 1991-05-15 1994-05-03 Hitachi, Ltd. Method for measuring microparticles, quantitative measuring method therefor and instrument for measuring microparticles
US6072624A (en) 1992-01-09 2000-06-06 Biomedical Photometrics Inc. Apparatus and method for scanning laser imaging of macroscopic samples
US5668887A (en) 1992-05-29 1997-09-16 Eastman Kodak Company Coating density analyzer and method using non-synchronous TDI camera
US5680484A (en) 1992-06-09 1997-10-21 Olympus Optical Co., Ltd. Optical image reconstructing apparatus capable of reconstructing optical three-dimensional image having excellent resolution and S/N ratio
US5312535A (en) 1992-07-17 1994-05-17 Beckman Instruments, Inc. Capillary electrophoresis detection
US5760951A (en) 1992-09-01 1998-06-02 Arthur Edward Dixon Apparatus and method for scanning laser imaging of macroscopic samples
US6312914B1 (en) 1992-09-14 2001-11-06 Orasure Technologies, Inc. Up-converting reporters for biological and other assays
US6026174A (en) 1992-10-14 2000-02-15 Accumed International, Inc. System and method for automatically detecting malignant cells and cells having malignancy-associated changes
US5676631A (en) 1993-07-06 1997-10-14 Westfalia Separator Aktiengesellschaft Centrifuge drum for concentrating suspended solids
US5402460A (en) 1993-08-02 1995-03-28 University Of Washington Three-dimensional microtomographic analysis system
US6215587B1 (en) 1994-02-14 2001-04-10 Robert R. Alfano Microscope imaging inside highly scattering media
US5987158A (en) 1994-09-20 1999-11-16 Neopath, Inc. Apparatus for automated identification of thick cell groupings on a biological specimen
US5710429A (en) 1995-04-06 1998-01-20 Alfano; Robert R. Ultrafast optical imaging of objects in or behind scattering media
US5741411A (en) 1995-05-19 1998-04-21 Iowa State University Research Foundation Multiplexed capillary electrophoresis system
US6252979B1 (en) 1995-06-07 2001-06-26 Tripath Imaging, Inc. Interactive method and apparatus for sorting biological specimens
US5630938A (en) 1995-07-13 1997-05-20 Krauss-Maffei Ag Evertable drum centrifuge filter
US6251586B1 (en) 1995-10-02 2001-06-26 The United States Of America As Represented By The Department Of Health And Human Services Epithelial protein and DNA thereof for use in early cancer detection
US5848123A (en) 1995-11-21 1998-12-08 Planmed Oy Methods and apparatus for use in imaging an object
US6165734A (en) 1995-12-12 2000-12-26 Applied Spectral Imaging Ltd. In-situ method of analyzing cells
US5828408A (en) 1996-01-04 1998-10-27 Commissariat A L'energie Atomique Device for reading detector arrays with TDI effect
US6005617A (en) 1996-03-11 1999-12-21 Matsushita Electric Industrial Co., Ltd. Electronic camera with mechanical subscanner
US6038067A (en) 1996-05-23 2000-03-14 The Regents Of The University Of California Scanning computed confocal imager
US5915048A (en) 1996-06-05 1999-06-22 Zetetic Institute Method and apparatus for discriminating in-focus images from out-of-focus light signals from background and foreground light sources
US5880838A (en) 1996-06-05 1999-03-09 California Institute Of California System and method for optically measuring a structure
US5760901A (en) 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation
US6091983A (en) 1997-02-07 2000-07-18 Alfano; Robert R. Imaging of objects in turbid media based upon the preservation of polarized luminescence emitted from contrast agents
US20010012069A1 (en) 1997-04-07 2001-08-09 Eberhard Derndinger Confocal microscope with a motorized scanning table
US20020045525A1 (en) 1997-09-12 2002-04-18 Andrea Marziali Flow-through microcentrifuge
US6388809B1 (en) 1997-10-29 2002-05-14 Digital Optical Imaging Corporation Methods and apparatus for improved depth resolution use of out-of-focus information in microscopy
US6201628B1 (en) 1997-11-19 2001-03-13 University Of Washington High throughput optical scanner
US6251615B1 (en) 1998-02-20 2001-06-26 Cell Analytics, Inc. Cell analysis methods
US6248988B1 (en) 1998-05-05 2001-06-19 Kla-Tencor Corporation Conventional and confocal multi-spot scanning optical microscope
US6529614B1 (en) 1998-08-05 2003-03-04 California Institute Of Technology Advanced miniature processing handware for ATR applications
US6452179B1 (en) 1998-08-14 2002-09-17 Global Technovations, Inc. On-site analyzer
US6249341B1 (en) * 1999-01-25 2001-06-19 Amnis Corporation Imaging and analyzing parameters of small moving objects such as cells
US6330106B1 (en) * 1999-02-17 2001-12-11 Lucid, Inc. Tissue specimen holder
US6211955B1 (en) 2000-01-24 2001-04-03 Amnis Corporation Imaging and analyzing parameters of small moving objects such as cells
US20020161534A1 (en) 2000-12-15 2002-10-31 Kla-Tencor Corporation Method and apparatus for inspecting a substrate
US6591003B2 (en) * 2001-03-28 2003-07-08 Visiongate, Inc. Optical tomography of small moving objects using time delay and integration imaging
US20020173034A1 (en) 2001-05-21 2002-11-21 Emilio Barbera-Guillem Centrifuge apparatus and methods for separating components from a cell culture device
WO2002095476A2 (en) 2001-05-22 2002-11-28 Medical Research Council Rotary stage for imaging a specimen

Non-Patent Citations (52)

* Cited by examiner, † Cited by third party
Title
A. Klug and J.L. Finch, "Structure of viruses of the papilloma-polyoma type," J. Mol. Biol., vol. 37, p. 1 (1968).
A. Klug, "Image analysis and reconstruction in the electron microscopy of biological macromolecules," Chem. Scripta, vol. 14, p. 245 (1978).
Almeida and Fuji, Fourier transform differences and averaged simularities in diatoms, Applied Optics, vol. 18, No. 10, pp. 1663-1667, (1979).
Bayat, S, Le Duc, G, Porra, L, Berrruyer, G, Nemoz, C, Monfraix, S, Fiedler, S, Thomlinson, W, Suortti, P, Standertskjold-Nordenstam, CG, and Sovijarvi, ARA, "Quantitative Functional Lung Imaging with Synchrotron Radiation Using Inhaled Xenon as Contrast Agent", Physics in Medicine and Biology 46(3287-99) 2001.
Bellman, SH, Bender, R, Gordon, R, and Rowe, JE, "ART is Science being A Defense of Algebraic Reconstruction Techniques for Three dimensional Electron Microscopy," Journal of Theoretical Biology 32:205-16, 1971.
Bem, W, et al., "Modification of Chromatin Pattern in the Course of Terminal Differentiation During Human Granulocytopiesis: Optical Diffractometry Study," Cellular and Molecular Biology 33(5), 563-571 (1987).
Bentley, MD, Ortiz, MC, Ritman, EL, and Romero, JC, "The Use of Microcomputed Tomography to Study Microvasculature in Small Rodents", American Journal of Physiology (Regulatory Integrative Comp Physiol) 282(R1267-R1279) 2002.
Cheng, PC, Lin, TH, Wang, G, Shinozaki, DM, Kim, HG, and Newberry, SP, "Review on the Development of Cone-beam X-ray Microtomography", Proceedings of the X-ray Optics and Microanalysis 1992, Institute of Physics Ser. No. 130, Kenway, PB, et al. (eds.), Manchester, UK, Aug. 31-Sep. 4, 1992, pp. 559-566.
D.E. Burger, et al., "Extraction of Morphilogical Features from Biological Models and Cells by Fourier Analysis of Static Light Scatter Measurements," Cytometry, vol. 2, No. 5, pp. 327-336 (1982).
Defrise, M, Clack, R, and Townsend, DW, "Image Reconstruction from Truncated, Two-dimensional, Parallel Projections", Inverse Problems 11(287-313) 1995.
Defrise, M, Noo, F, and Kudo, H, "A Solution to the Long-object Problem in Helical Cone-beam Tomography", Physics in Medicine and Biology 45(623-43) 2000.
Dziedzic-Goclawska, et al., "Application of the Optical Fourier Transform for Analysis of the Spatial Distribution of Collagen Fibers in Normal and Osteopetrotic Bone Tissue," Histochemistry (1982) 74:123-137.
E.G. Steward, Fourier Optics: An Introduction, 2nd ed. (Halsted Press, New York, 1987).
Endo, M, Tsunoo, T, Nakamori, N, and Yoshida, K, "Effect of Scattered Radiation on Image Noise in Cone Beam CT", Medical Physics 28(4) (469-74) 2001.
Farichild Imaging, Preliminary Data Sheet CCD525, TDI, Time Delay and Integration Sensor, Jan. 12, 2001.
Farichild Imaging, Preliminary Data Sheet CCD582, TDI, Time Delay and Integration Sensor, Jan. 18, 2000.
George, JS et al., "Virtual Pinhole Confocal Microscope," Physics Division Progress Report, www.lanl.gov/p/pdfs/papp<SUB>-</SUB>pinhole.pdf, (1999-2000).
Gilbert, P, "Iterative Methods for the Three dimensional Reconstruction of an Object from Projections," Journal of Theoretical Biology 36:105-17, 1972.
H. Banda-Gamboa et al., "Spectral-Analysis of Cervical Cells Using the Discrete Fourier-Transform," Anal. Cell. Path., vol. 5(2), pp. 85-102 (1993).
Hampel, U and Freyer, R, "Fast Image Reconstruction for Optical Absorption Tomography in Media with Radially Symmetric Boundaries", Medical Physics 25 (1):92-101, 1998.
Herman, G, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.
HJ Tiziani and MI Uhde, Three-dimensional analysis by a microlens array confocal arrangements (Applied Optics 33, 567 [1994]).
Jiang, H, Paulsen, KD, and Osterberg, UL, "Frequency-domain Near-infrared Photo Diffusion Imaging: Initial Evaluation in Multitarget Tissuelike Phantoms", Medical Physics 25(2):183-93, 1998.
Jorgensen, SM, Demirkaya, O, and Ritman, EL, "Three Dimensional Imaging of Vasculature and Parenchyma in Intact Rodent Organs with X-ray Micro-CT", Am. J. Physiology 275(Heart Circ. Physiol. 44) pp. H1103-H1114, 1998.
Kak, A.C. and Slaney, M., Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.
Kinney, JH and Nichols, MC, "X-ray Tomographic Microscopy (XTM) Using Synchrotron Ratiation", Annu. Rev. Mater. Sci. 22pp. 121-152, 1992.
Kinney, JH, Johnson, QC, Saroyan, RA, Nichols, MC, Bonse, U, Nusshardt, R, and Pahl, R, "Energy-modulated X-ray Microtomography", Rev. Sci. Instrum. 59(1)pp. 196-197, 1988.
M. Rozycka, et al., "Optical Diffraction as a Tool for Semiautomatic , Quantitative Analysis of Tissue Specimens," Cytometry, vol. 2, No. 4, pp. 244-248 (1982).
Manglos, SH, Gagne, GM, Krol A, Thomas, FD, and Narayanaswamy, R, "Transmission Maximum-likelihood Reconstruction with Ordered Subsets for Cone Beam CT", Physics in Medicine and Biology 40(7):1225-41, 1995, #4389.
Manglos, SH, Jaszcak, RJ, and Floyd, CE, "Maximum Likelihood Reconstruction for Cone Beam SPECT: Development and Initial Tests," Physics in Medicine and Biology 34(12):1947-57,1989, #1382.
Mareel, MM, et al., "Numerical Evaluation of Changes in the Cytoplasmic Microtubule Complex of C3H Mouse Cells by Optical Diffractometry and of Changesin Cell Shape by Fourier Analysis," Cytometry 7:18-24 (1986).
Miles, CP, Jaggard, DL, "The Use of Optical Fourier Transforms to Diagnose Pleomorphism, Size and Chromatin Clumping in Nuclear Models," Anal Quant Cytol Histol vol. 3, No. 2, pp. 149-156, 1981.
Mueller, K and Yage, R, "Rapid 3-D Cone-beam Reconstruction with the Simultaneous Algebraic Reconstruction Technique (SART) Using 2-D Texture Mapping Hardware", IEEE Transactions on Medical imaging 19(12):1227-37, 2001.
Ong, SH, Development of an imaging flow cytometer. Anal Quant Cytol Histol 9(5)pp. 375-382, 1987.
Oppenheim, BE, More Accurate Algorithms for Iterative 3 dimensional Reconstruction, IEEE Transactions on Nuclear Science NS-21:72-7, 1974.
Ostrowski, et al., "Application of Optical Diffractometry in Studies of Cell Fine Structure," Histochemistry (1983) 78:435-449.
Paulsen, KD and Jiang, H, "Spatially Varying Optical Property Reconstruction Using a Finite Element Diffusion Equation Approximation", Medical Physics 22(691-701) 1995.
Pawley, JB, Handbook of Biological Confocal Microscopy, Plenum Press, NY, 479-490 (1995).
RH Anderson, "Close-up imaging of documents and displays with lens arrays," Applied Optics 18, 477 (1979).
Rozycka, M, et al., "Analysis of chromatin pattern in blood lymphocytes of healthy donors and in lymphoid cells of patients with chronic lymphocytic leukaemia," J. Clin. Pathol. 1988:41:504-509.
Schmitz, "Instrumentation for Real-Time Dynamic Optical Tomography," undated, SUNY Downstate Medicial Center Brooklyn, NY.
Schmitz, "Perfomance Characteristics of a Silicon Photodiode (SiPD) Based Instrucment for Fast Functional Optical Tomography," undated, SUNY Downstate Medicial Center Brooklyn, NY.
Shapiro, HM, Practical Flow Cytometry, 3<SUP>rd </SUP>ed., Wiley-Liss, 1995.
Sharpe, J, Ahlgren, U et al., "Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies," SCIENCE, vol. 296, pp. 541-545, Apr. 19, 2002.
Sharpe, J, review, "Optical Projection Tomography as a New Tool for Studying Embryo Anatomy," J. Anat. (2003), pp. 175-181.
Singer, JR, Grunbaum, FA, Kohn, P, and Zubelli, JP, "Image Reconstruction of the Interior of Bodies that Diffuse Radiation," Science 248(4958):990-3, 1990.
Smolinska and Dawidowicz, "Extraction of common or different part from optical images," Institute of Physics, Warsaw Technical University, 222-223.
T.C. Wedberg and J.J. Stamnes, "Recent results in optical diffraction microtomography," Meas. Sci. Technol., vol. 7, p. 414 (1996).
Taguchi, K and Aradate, H, "Algorithm for Image Reconstruction in Multi-slice Helical CT", Medical Physics 25(4) pp. 550-561, 1998.
Y. Li, et al., "Comparison of analog and digital Fourier transforms in medical image analysis," J. Biomed. Optics, vol. 7, p. 255 (2002).
Y. Xu et al., "Three-dimensional diffuse optical tomography of bones and joints," J. Biomed. Optics, vol. 7, p. 88 (2002).
Yu, DF, Fessler, JA, and Ficaro, EP, "Maximum-Likelihood Transmission Image Reconstruction for Overlapping Transmission Beams", IEEE Transactions on Medical Imaging 19(11)pp. 1094-1105, 2000.

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7542597B2 (en) 2002-04-19 2009-06-02 Visiongate, Inc. Method for correction of relative object-detector motion between successive views
US20050163390A1 (en) * 2004-01-23 2005-07-28 Ann-Shyn Chiang Method for improving the depth of field and resolution of microscopy
US20080076977A1 (en) * 2006-09-26 2008-03-27 Nellcor Puritan Bennett Inc. Patient monitoring device snapshot feature system and method
US7867778B2 (en) 2007-02-23 2011-01-11 Visiongate, Inc. Fluid focusing for positional control of a specimen for 3-D imaging
US20080205739A1 (en) * 2007-02-23 2008-08-28 Visiongate, Inc. Fluid focusing for positional control of a specimen for 3-d imaging
US7835561B2 (en) 2007-05-18 2010-11-16 Visiongate, Inc. Method for image processing and reconstruction of images for optical tomography
US7787112B2 (en) 2007-10-22 2010-08-31 Visiongate, Inc. Depth of field extension for optical tomography
US7933010B2 (en) 2007-10-22 2011-04-26 Rahn J Richard Depth of field extension for optical tomography
US8143600B2 (en) 2008-02-18 2012-03-27 Visiongate, Inc. 3D imaging of live cells with ultraviolet radiation
US8368035B2 (en) 2008-02-18 2013-02-05 Visiongate Inc. 3D imaging of live cells with ultraviolet radiation
US11284800B2 (en) 2008-05-20 2022-03-29 University Health Network Devices, methods, and systems for fluorescence-based endoscopic imaging and collection of data with optical filters with corresponding discrete spectral bandwidth
US9042967B2 (en) 2008-05-20 2015-05-26 University Health Network Device and method for wound imaging and monitoring
US11375898B2 (en) 2008-05-20 2022-07-05 University Health Network Method and system with spectral filtering and thermal mapping for imaging and collection of data for diagnostic purposes from bacteria
US11154198B2 (en) 2008-05-20 2021-10-26 University Health Network Method and system for imaging and collection of data for diagnostic purposes
US8457440B1 (en) * 2009-01-27 2013-06-04 Axsun Technologies, Inc. Method and system for background subtraction in medical optical coherence tomography system
US20100214639A1 (en) * 2009-02-23 2010-08-26 Visiongate, Inc. Optical tomography system with high-speed scanner
US8254023B2 (en) 2009-02-23 2012-08-28 Visiongate, Inc. Optical tomography system with high-speed scanner
US8090183B2 (en) 2009-03-12 2012-01-03 Visiongate, Inc. Pattern noise correction for pseudo projections
US8155420B2 (en) 2009-05-21 2012-04-10 Visiongate, Inc System and method for detecting poor quality in 3D reconstructions
US8391943B2 (en) 2010-03-31 2013-03-05 Covidien Lp Multi-wavelength photon density wave system using an optical switch
US10557778B2 (en) 2010-04-20 2020-02-11 Eric J. Seibel Optical projection tomography microscopy (OPTM) for large specimen sizes
US8867803B2 (en) 2010-04-20 2014-10-21 Eric J. Seibel Optical projection tomography microscopy (OPTM) for large specimen sizes
US10438356B2 (en) 2014-07-24 2019-10-08 University Health Network Collection and analysis of data for diagnostic purposes
US11676276B2 (en) 2014-07-24 2023-06-13 University Health Network Collection and analysis of data for diagnostic purposes
US10162162B2 (en) 2014-09-24 2018-12-25 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Microfluidic systems and methods for hydrodynamic microvortical cell rotation in live-cell computed tomography
US11069054B2 (en) 2015-12-30 2021-07-20 Visiongate, Inc. System and method for automated detection and monitoring of dysplasia and administration of immunotherapy and chemotherapy
US11456581B2 (en) * 2020-08-24 2022-09-27 Daiwa Kasei Industry Co., Ltd. Routing structure of wire harness
US11954861B2 (en) 2022-12-30 2024-04-09 University Health Network Systems, devices, and methods for visualization of tissue and collection and analysis of data regarding same

Also Published As

Publication number Publication date
JP4386742B2 (en) 2009-12-16
WO2003089959A2 (en) 2003-10-30
ES2592275T3 (en) 2016-11-29
CA2482920C (en) 2015-07-21
CN1655716A (en) 2005-08-17
JP2005523455A (en) 2005-08-04
US20030199758A1 (en) 2003-10-23
AU2003224902A1 (en) 2003-11-03
EP1496797B1 (en) 2016-08-17
CA2482920A1 (en) 2003-10-30
AU2003224902B2 (en) 2007-11-01
EP1496797A2 (en) 2005-01-19
WO2003089959A3 (en) 2004-08-12
EP1496797A4 (en) 2010-10-06
HK1074373A1 (en) 2005-11-11
CN1326492C (en) 2007-07-18

Similar Documents

Publication Publication Date Title
US7197355B2 (en) Variable-motion optical tomography of small objects
CA2504787C (en) Optical tomography of small objects using parallel ray illumination and post-specimen optical magnification
JP4034188B2 (en) Apparatus and method for imaging micro-objects in a flow stream using optical tomography
AU2003234340B2 (en) Method and apparatus for emission computed tomography using temporal signatures
KR101252010B1 (en) Method and device of reconstruction an n+1-dimensional image function from radon data
JP5404400B2 (en) Focal plane tracking for optical microtomography
US20060023219A1 (en) Optical tomography of small objects using parallel ray illumination and post-specimen optical magnification
JP4718777B2 (en) Optical projection imaging system and method for automatically detecting nucleated cells and cytoplasm density features involved in disease
Burns Optical tomography for three-dimensional spectroscopy
Simon et al. Multi-purpose 3D computed tomography system
AU2002303160B2 (en) Apparatus and method for imaging small objects in a flow stream using optical tomography
AU2002303160A1 (en) Apparatus and method for imaging small objects in a flow stream using optical tomography

Legal Events

Date Code Title Description
AS Assignment

Owner name: VISIONGATE, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NELSON, ALAN C.;REEL/FRAME:013956/0871

Effective date: 20030403

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2556); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12