US6254633B1 - Delivery device for a medical device having a constricted region - Google Patents

Delivery device for a medical device having a constricted region Download PDF

Info

Publication number
US6254633B1
US6254633B1 US08/989,119 US98911997A US6254633B1 US 6254633 B1 US6254633 B1 US 6254633B1 US 98911997 A US98911997 A US 98911997A US 6254633 B1 US6254633 B1 US 6254633B1
Authority
US
United States
Prior art keywords
medical device
body lumen
delivery device
outer sheath
constricted region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/989,119
Inventor
Leonard Pinchuk
John B. Martin, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corvita Corp
Original Assignee
Corvita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corvita Corp filed Critical Corvita Corp
Priority to US08/989,119 priority Critical patent/US6254633B1/en
Assigned to CORVITA CORPORATION reassignment CORVITA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARTIN, JOHN B., JR., PINCHUK, LEONARD
Application granted granted Critical
Publication of US6254633B1 publication Critical patent/US6254633B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices

Definitions

  • the present invention relates generally to delivery devices of the type for delivering an implantable medical device to a desired location in a body lumen and deploying the medical device at the desired location.
  • the present invention is a delivery device that is adapted for use with a radially expandable medical device having a constricted region.
  • Stents of this type can be used to treat vascular stenosis and to maintain openings in the urinary, bilary, esophageal, tracheal and bronchial tracts of a patient.
  • Self-expanding stents are generally comprised of a plurality of resilient filaments that are helically wound and interwoven to form a porous lattice. The stents assume a generally tubular form having a first diameter in an unloaded state, but can be forced into a reduced-diameter, extended length form (i.e. the “loaded” state) by inwardly-directed radial forces.
  • Occlusion devices designed to occlude a body lumen and thus stop fluid flow though the body lumen.
  • One such occlusion device is described in the commonly assigned and co-pending U.S. patent application Ser. No. 08/797,983, which is expressly incorporated herein by reference in its entirety for all purposes.
  • Occlusion devices of this type can be used to control internal bleeding, bypass a lumen, relieve the pressure created by an aneurysm in a lumen, or stop the flow of fluid to a tumor in a lumen.
  • Occlusion devices of the type shown and disclosed in application Ser. No. 08/797,983 are comprised of a self-expandable support structure and a flexible fluid flow-occluding membrane attached to the support structure.
  • the support structure can be formed from any self-expanding means, including a number of filaments that are interwoven in a manner similar to that described in the Wallsten U.S. Pat. No. 4,655,771.
  • the support structure can be comprised of etched or machined self-expanding tubes formed from nitinol or spring steel, such as those marketed under the tradename “Symphony” from MediTech, or other designs utilizing a plurality of zig-zag formed spring steels and the like.
  • the membrane can be interwoven with at least portions of the support structure, or it can be formed separately from the support structure and attached to a portion of the interior or exterior surface of the support structure.
  • the membrane can be fabricated from a micro-porous or non-porous material. Similar to self-expanding stents, the occlusion device assumes a substantially tubular shape in an unloaded, expanded state, and can be forced into a reduceddiameter, extended-length shape when subjected to inwardly directed radial forces.
  • the occlusion device further includes a constricted region, which can be formed in either the membrane alone or in both the membrane and the support structure. The constricted region of the occlusion device is “closed” to fluid flow, and in this manner, the device occludes the lumen in which the occlusion device is implanted to restrict fluid flow through the lumen.
  • a delivery system having proximal and distal ends and comprising an outer sheath, an inner catheter having a pointed tip, and a plunger is often used to deploy a self-expanding stent at the desired treatment location in a body lumen.
  • the stent is compressed into its reduced-diameter state, and is held in its compressed state at the end of the inner catheter between the pointed tip and the plunger by the outer sheath of the delivery system.
  • Such a delivery system can be inserted into a body lumen and tracked radiographically by monitoring the position of a radiopaque marker positioned on the outer sheath to guide the delivery system to the desired treatment location.
  • the pointed tip of the inner catheter expands the body lumen in advance of the delivery system to ease navigation.
  • a guide wire that extends through the inner catheter along the length of the outer sheath can also be used to aid in moving the delivery system through the lumen.
  • Such a delivery system can be difficult to use with occlusion devices such as those described above, however. Because such occlusion devices include a constricted region, it is difficult to withdraw the inner catheter and pointed tip through the constricted region when the occlusion device has been deployed at the treatment site.
  • a delivery system having an outer sheath and a plunger without an inner catheter and pointed tip i.e. an “open” delivery system
  • An open delivery system may encounter difficulty in navigating the body lumen due to the tortuous nature of lumens.
  • the present invention is a combination medical device and delivery device for delivering and implanting the medical device at a desired location in a body lumen.
  • the medical device is of the type having a proximal end and a constricted region.
  • the delivery device includes an outer sheath that encompasses the medical device at a distal end of the outer sheath.
  • a manifold is attached to a proximal end of the outer sheath, and an inner tube that is coupled to the manifold is positioned within the outer sheath.
  • the inner tube terminates in an end adjacent the proximal end of the medical device in the outer sheath.
  • the delivery device further includes a guide member that is attached to a distal end of the medical device.
  • the guide member extends beyond the distal end of the outer sheath, and is adapted to guide the delivery device as it is advanced in a body lumen.
  • the end of the inner tube engages the proximal end of the medical device to permit the retraction of the outer sheath at the desired location in the body lumen. In this manner, the medical device is deployed and implanted.
  • the guide member of this first embodiment can include a dilator tip that is attached to and extends away from the tip of the constricted region of the medical device.
  • the dilator tip can be attached to and be coincident with at least a portion of the constricted region of the medical device.
  • the delivery device in a second embodiment, includes a guide member and an inflation tube adapted to receive and carry a fluid flow.
  • the inflation tube is positioned within the outer sheath of the delivery device.
  • the guide member of this second embodiment includes an inflatable balloon fluidly coupled to the inflation tube.
  • the balloon is inflated to provide a surface that is adapted to guide the delivery device through the body lumen as the delivery device is advanced at the lumen.
  • the medical device can be deployed by retracting the outer sheath.
  • the balloon can be deflated and withdrawn through the constricted region of the medical device after the medical device is deployed and implanted.
  • FIG. 1 is a side view of a delivery device in accordance with the present invention.
  • FIGS. 2-4 are side views of three different embodiments of medical devices for which the present invention is particularly suited.
  • FIG. 5 is a side view of a medical device having a dilator tip attached to and extending, away from the constricted region of the medical device.
  • FIGS. 6-8 are side views of a first embodiment of the present invention in the various stages of deploying the medical device shown in FIG. 4 .
  • FIG. 9 is a side view of a medical device having a dilator tip attached to and coincident with the constricted region of the medical device.
  • FIG. 10 is a side view of a second embodiment of a delivery device in use with the medical device shown in FIG. 9 with portions of the outer sheath of the delivery device shown in section to illustrate the medical device in the outer sheath.
  • FIG. 11 is a side view of a third embodiment of a delivery device in accordance with the present invention with portions of the outer sheath shown in section to illustrate the medical device in the outer sheath and the guide member of the delivery device.
  • FIGS. 12-15 are side views of the third embodiment of the present invention showing the various stages of deploying a medical device having a constricted region, with portions of the medical device in FIGS. 13 and 14 being shown in section to better illustrate the deployment of the medical device.
  • FIG. 16 is a side view of a medical device having a dilator tip integral with the membrane of the medical device.
  • FIG. 17 is a side view of a fourth embodiment of a delivery device in use with the medical device shown in FIG. 16 with portions of the outer sheath of the delivery device shown in section to illustrate the medical device in the outer sheath.
  • FIG. 18 is a side view of the delivery device shown in FIG. 17 further including a reconstrainment member, with portions of the outer sheath of the delivery device shown in section to illustrate the medical device in the outer sheath.
  • FIG. 19 is a side view of the medical device of FIG. 16 wherein the constricted region is pinched upon deployment of the device to better occlude fluid flow.
  • FIG. 1 is an illustration of a delivery device 20 in accordance with the present invention.
  • Delivery device 20 is comprised of a flexible outer sheath 22 having a proximal end 21 and a distal end 23 , an inner tube 24 , and a manifold 25 coupled to the proximal end 21 of outer sheath 22 .
  • Inner tube 24 includes a rigid portion 60 and a flexible portion 62 , the rigid portion 60 being bonded to the flexible portion 62 in any conventional manner such as by using adhesive.
  • the rigid portion 60 and flexible portion 62 of inner tube 24 are adapted to extend into manifold 25 , and outer sheath 22 surrounds the flexible portion of inner tube 24 in a coaxial fashion.
  • the flexible portion 62 terminates at the distal end of inner tube 24 in a deployment member, such as a plunger (not visible in FIG. 1 ).
  • a guide member 28 is positioned within outer sheath 22 distally of inner tube 24 , and guide member 28 extends beyond the distal end 23 of outer sheath 22 to ease navigation through a body lumen by delivery device 20 .
  • delivery device 20 is used to deliver and implant a medical device having a constricted region at a desired location within a body lumen.
  • FIGS. 2-4 show three medical devices which can be deployed by the present invention. Specifically, FIGS. 2-4 show different embodiments of an occlusion device having a constricted region for occluding fluid flow in a body lumen, each of which is described in detail in the aforementioned co-pending and commonly assigned U.S. patent application Ser. No. 08/797,983.
  • FIG. 2 shows an occlusion device 10 having a support structure 12 and a flexible fluid flow-occluding membrane 14 .
  • Support structure 12 is comprised of a plurality of elongated filaments 18 that are interbraided to form a collapsible and self-expanding structure 12 .
  • Support structure 12 can alternatively be formed from other self-expanding means, including self-expanding tubes formed from nitinol or spring steel, or other designs utilizing a plurality of zig-zag formed spring steels and the like.
  • Fluid flow-occluding membrane 14 is positioned within and circumferentially engages support structure 12 .
  • Membrane 14 can be formed from a micro-porous or a non-porous material, and can be comprised of a plurality of filaments that are interwoven with the support structure 12 .
  • membrane 14 Materials well-suited for membrane 14 include polyurethane, silicone rubber, polyolefin, expanded polytetrafluoroethylene, or polymers generally known as hydrogels such as poly(2-hydroxyethyl methacrylate), polyacrylamide, and the like.
  • the membrane 14 can include eluting or attached drugs such as antibiotics, bacteriostats, drugs generally denoted as chemotherapy drugs, drugs or particles emitting actinic radiation, drugs which promote blood clotting such as protamine, and the like, and combinations of the above.
  • a preferred material for membrane 14 is polycarbonate urethane.
  • Occlusion device 10 includes a constricted region 16 at an end of device 10 , the constricted region 16 being substantially “closed” to occlude fluid flow in the body lumen in which occlusion device 10 is implanted.
  • constricted region 16 is formed in both the support structure 12 and the fluid flow-occluding membrane 14 .
  • FIG. 3 shows a second embodiment 10 ′ of an occlusion device.
  • the individual features of occlusion device 10 ′ are similar to those shown in FIG. 2 and described above, and the same reference numbers followed by the prime (′) symbol are used to indicate such features.
  • Constricted region 16 ′ of occlusion device 10 ′ is positioned between the ends of occlusion device 10 ′, and constricted region 16 ′ is formed solely in membrane 14 ′.
  • FIG. 4 shows a third embodiment 10 ′′ of an occlusion device.
  • the individual features of occlusion device 10 ′′ are similar to those shown in FIGS. 2 and 3 and described above, and the same reference numbers followed by the double prime (′′) symbol are used to indicate such features.
  • constricted region 16 ′′ of occlusion device 10 ′′ constricts both the support structure 12 ′′ and the membrane 14 ′′ between the ends of occlusion device 10 ′′.
  • FIGS. 2-4 are representative of the types of medical devices that are suited for use with the present invention.
  • Other medical devices having a constricted region and a support structure can also be used with the present invention.
  • Occlusion device 10 is carried within outer sheath 22 in a collapsed condition. Specifically, occlusion device 10 is carried within outer sheath 22 with the occlusion device 10 at a medical device encompassing region 27 distally of plunger 44 , which, as described above, is a deployment member positioned at the distal end of inner tube 24 .
  • Guide member 28 of delivery device 20 includes a dilator tip 30 , which extends from the distal end 23 of outer sheath 22 .
  • Dilator tip 30 has a tapered surface 34 that is adapted to dilate a body lumen and guide the delivery device through the lumen as the delivery device 20 is advanced in the body lumen in the manner described below.
  • Dilator tip 30 is preferably conical, although other shapes having a surface that dilates a lumen as delivery device 20 is advanced in the lumen can of course be used.
  • Dilator tip 30 can include a guide wire passage 32 (shown in phantom in FIGS. 6 and 7 ).
  • a guide wire 26 can be inserted through an axial lumen in inner tube 24 and through guide wire passage 32 in dilator tip 30 to aid navigation of delivery device 20 through a body lumen.
  • dilator tip 30 of delivery device 20 is permanently attached to occlusion device 10 .
  • Dilator tip 30 is attached using conventional means, such as adhesive or insert molding, to the distal end of the constricted region 16 of occlusion device 10 in such a manner that the dilator tip 30 extends away from constricted region 16 of occlusion device 10 .
  • the occlusion device 10 and dilator tip 30 are positioned in the medical device encompassing region 27 of outer sheath 22 so that dilator tip 30 extends beyond the distal end 23 of outer sheath 22 .
  • Delivery device 20 can thus be used to position occlusion device 10 at a desired treatment location in a body lumen. Specifically, the distal end of the delivery device 20 is inserted in the body lumen, and the tapered surface 34 of dilator tip 30 expands the body lumen in advance of the remainder of delivery system 20 . In this manner, tortuous body lumens can more easily be navigated.
  • the position of delivery device 20 in the lumen can be tracked radiographically by monitoring the position of a conventional radiopaque marker (not shown) positioned on delivery device 20 .
  • the dilator tip 30 can be fabricated from a material compounded with a radiopaque filler such as bismuth subcarbonate or barium sulfate to enable visualization by radiography.
  • occlusion device 10 When occlusion device 10 is positioned at the desired treatment location, inner tube 24 is advanced in outer sheath 22 to engage plunger 44 with the end of occlusion device 10 . Outer sheath 22 is then retracted by proximally moving outer sheath 22 and manifold 25 (shown in FIG. 1) relative to occlusion device 10 . Plunger 44 holds occlusion device 10 stationary while outer sheath 22 is retracted, and in this manner, occlusion device 10 is deployed from the outer sheath 22 and self expands to engage the wall of the body lumen. Occlusion device 10 is thus implanted in the body lumen at the desired treatment location.
  • dilator tip 30 of delivery device 20 is deployed along with occlusion device 10 and remains implanted in the body lumen. After implantation outer sheath 22 , inner tube 24 , and guide wire 26 can be withdrawn from the body lumen.
  • FIGS. 6-8 show a delivery device wherein the occlusion device 10 is deployed by proximal movement of outer sheath 22 relative to the occlusion device 10
  • outer sheath 22 can be comprised of a flexible material at its distal end that is rolled back on itself to expose an occlusion device contained within the sheath. As the outer sheath is rolled back, the occlusion device self-expands to engage the wall of the body lumen, and is thus deployed and implanted in the lumen.
  • FIGS. 9 and 10 show a second embodiment of the present invention wherein similar features of the first embodiment shown in FIGS. 1 and 6 - 8 and described above are referred to using the same reference numeral preceded by the number “1.”
  • delivery device 120 includes a conical dilator tip 130 having a tapered surface 134 and attached to the constricted region 116 of the occlusion device 110 .
  • Dilator tip 130 is coincident and integrated with the constricted region 116 .
  • Dilator tip 130 can be attached to occlusion device 110 in a conventional manner, such as with adhesive, stitching, or insert molding.
  • Occlusion device 110 is positioned in delivery device 120 so that dilator tip 130 extends beyond distal end 123 of outer sheath 120 , and is deployed by engaging plunger 144 at the end of inner tube 124 of delivery device 120 with occlusion device 110 to hold occlusion device 110 stationary as outer sheath 122 is retracted. Occlusion device 110 thus exits delivery device 120 and expands to engage the body lumen at the desired treatment location.
  • the dilator tip 30 of delivery device 20 and dilator tip 130 of delivery device 120 can be made from any implantable, biocompatible material, including polytetrafluoroethylene, PET, polyurethane, silicone, or metal.
  • a preferred material for dilator tip 30 and dilator tip 130 is polycarbonate urethane.
  • Delivery device 220 includes an outer sheath 222 , an inner tube 224 terminating in a plunger 244 at the distal end of inner tube 224 , an inflation tube 246 that is concentric with both outer sheath 222 and inner tube 224 , and guide member 228 .
  • Inflation tube 246 is adapted to receive and carry a fluid flow.
  • the guide member 228 of delivery device 220 includes an inflatable balloon 250 that is positioned at the distal end of outer sheath 222 and that is fluidly coupled to inflation tube 246 .
  • Balloon 250 receives fluid through inflation tube 246 and is thus enlarged to an inflated state. In its inflated state, balloon 250 assumes a substantially elongated shape having a tapered surface 234 . In this manner, balloon 250 can be used to dilate a body lumen and guide delivery device 220 through the lumen to the desired treatment location in a manner similar to that described above.
  • Delivery device 220 is well suited for delivering an occlusion device having a constricted region between the ends of the occlusion device, such as those shown in FIGS. 3 and 4 and described above, to a desired treatment location in a body lumen.
  • Occlusion device 210 is carried within outer sheath 22 in a collapsed condition distally of plunger 244 of inner tube 224 and proximally of balloon 250 .
  • Balloon 250 is inflated by receiving fluid through inflation tube 246 , and the delivery device 220 is then inserted in the body lumen and guided to a desired treatment location using known techniques, such as radiography.
  • occlusion device 210 is deployed by advancing inner tube 224 in outer sheath 222 to engage plunger 244 with occlusion device 210 , and thus hold it stationary during deployment. Sheath 222 is then retracted, and occlusion device 210 exits delivery device 220 and expands to engage the body lumen. Occlusion device 210 is thus implanted in the body lumen. After implantation, balloon 250 is deflated by removing fluid from balloon 250 through inflation tube 246 .
  • balloon 250 In its deflated state, balloon 250 can be withdrawn through a gap in the constricted region 216 , such as exists between individual filaments of the support structure and/or the membrane of occlusion device 210 . Delivery device 222 can then be withdrawn from the body lumen.
  • Balloon 250 of the delivery device 220 shown in FIGS. 11-15 can be formed from any known balloon material, including nylon, PET, polyethylene, polyurethane, and polyvinylchloride.
  • the preferred material for ballon 250 is Nylon 12 .
  • the delivery device shown and described above provides many advantages over conventional delivery devices. Specifically, the delivery device provides a guide member that dilates a body lumen in advance of the delivery device, and thus eases navigation through the lumen, yet can efficiently be used with a medical device having a constricted region. In addition, a delivery device in accordance with the present invention contains few moving parts, and thus is efficient to manufacture and to use.
  • FIGS. 16 and 19 show another embodiment 310 of an occlusion device which can be deployed by the present invention.
  • Occlusion device 310 is comprised of a self-expanding support structure 312 and a membrane 314 .
  • Self-expanding support structure 312 is comprised of a plurality of helically braided wires 312 , which are preferably formed of nitinol, stainless steel, Elgiloy, or the like.
  • self-expanding support structure 312 can be made by machining diamond-shaped windows with a laser i or by EDM means from a thin-walled tube to form struts that comprise the self-expanding support structure 312 .
  • Membrane 314 is attached to the inner surface of support structure 312 . Specifically, membrane 314 lines and is integrally attached to a center portion 350 of support structure 312 . Alternatively,membraine 314 can be sewen to support structure 312 . Membrane 314 includes a constricted region 316 that terminates at a cylindrical section 351 . Cylindrical section 351 is integrally attached at its distal end to a dilator tip 330 , which includes tapered surface 334 . Membrane 314 can contain a guidewire channel 332 (shown in phantom) concentric within membrane 314 .
  • Occlusion device 310 includes regions 360 and 365 , which are free from attachment to membrane 314 . Regions 360 and 365 thus enable flow through and across the regions, and across membrane 314 in region 365 , if occlusion device 310 is placed across a branch vessel in a body lumen wherein maintenance of fluid flow is desired. Regions 360 and/or 365 can of course contain membranes to occlude side branch vessels if required.
  • the cylindrical section 351 of constricted region 316 of occlusion device 310 can be bent or kinked to pinch off the guidewire channel 332 to hasten occlusion of the body lumen in which occlusion device 310 is implanted.
  • membrane 314 is flexible, and can be formed of a sufficiently thin walled material such as those described above to permit the bending of cylindrical section 351 under normal fluid flow forces.
  • the guidewire can be adapted to form a pinch in cylindrical section 351 as it is withdrawn from occlusion device 310 , or membrane 314 can be formed of a material that softens once occlusion device 310 is implanted in the body to pinch off guidewire channel 332 .
  • FIG. 17 shows a delivery device 320 for delivering and implanting occlusion device 310 at a desired location within a body lumen.
  • Delivery device 320 includes an outer sheath 322 and an inner tube 324 terminating at its distal end in a plunger 344 .
  • Occlusion device 310 is contained in its compressed state within outer sheath 322 at a distal end of outer sheath 322 .
  • Dilator tip 330 extends distally from the distal end of outer sheath 322 , and is adapted to dilate a body lumen and guide the delivery device 320 through the lumen as it is advanced in the body lumen.
  • a guide wire can be inserted through channel 322 in medical device 310 and throughout the length of delivery device 320 through a channel 333 to facilitate maneuvering in tortuous body lumens.
  • Medical device 310 is deployed from delivery device 320 in a manner similar to that described above. Specifically, occlusion device 310 is deployed by pushing inner tube 324 so that plunger 344 butts up against the proximal end of occlusion device 310 . Inner tube 324 is then held firmly in place while outer sheath 322 is retracted. In this manner, occlusion device 310 self expands as it exists the outer sheath 322 , and is thus implanted in the body lumen to occlude fluid flow through the body lumen.
  • the delivery device 320 can include a reconstrainment member 355 that enables the occlusion device 310 to be reconstrained into its compressed state by loading occlusion device 310 back into outer sheath 322 prior to being totally deployed in the event occlusion device 310 is incorrectly placed or located in the body lumen.
  • Reconstrainment members are generally known, and are described in U.S. Pat. No. 5,026,377 to Burton et al.
  • Reconstrainment member 355 can be attached to plunger 344 , and is positioned within the end of occlusion device 310 .
  • Reconstrainment member 355 is sized and shaped to frictionally engage the support structure of occlusion device 310 when occlusion device 310 is in its compressed state.
  • reconstrainment member is preferably constructed of a material that has a sufficiently high coefficient of friction on its outer surface to prevent relative motion between occlusion device 310 and reconstrainment member 355 .
  • Suitable materials for reconstrainment member 355 include silicone rubber and polyurethane.
  • reconstrainment member 355 frictionally engages occlusion device 310 , reconstrainment member 355 allows the occlusion device 310 to be drawn back into outer sheath 322 prior to complete deployment of occlusion device 310 by extending outer sheath 322 relative to occlusion device 310 . Extending outer sheath 322 re-compresses occlusion device 310 , and loads it back into delivery device 320 .
  • Reconstrainment member 355 can include a hollow chamber coincident with chamber 333 of device 320 to permit the insertion of a guidewire through reconstrainment member 355 .
  • the delivery device and medical devices of FIGS. 16-19 provide additional advantages over conventional delivery systems. Because the ends of the support structure of the occlusion devices shown in FIGS. 16 and 19 are free from attachment to the fluid-flow occluding membrane, the ends of the support structure flare out. The flared ends of the support structure thus prevent migration of the occlusion device in both prograde and retrograde flow through a body lumen in which the occlusion device is implanted.
  • an occlusion device having bare metal on either end and with minimum membrane material in a center region of the occlusion device can be factory loaded into a delivery device without the occlusion device taking a permanent set with time.
  • Occlusion devices having voluminous membranes when stored for a long periods of time, assume a set in the compressed state of the occlusion device, and thus may not readily open in a body lumen upon deployment in the lumen.
  • Occlusion device having a membrane such as those shown in FIGS. 16 and 19 and described above overcome such a shortcoming, and thus allow the occlusion device to be factory loaded into a delivery device. Such a medical device and delivery device is particularly helpful to a practitioner.

Abstract

A delivery device for delivering an implantable, radially expandable medical device having a constricted region for occluding fluid flow to a desired location in a body lumen. The delivery device includes an outer sleeve, an inner tube terminating at its distal end in a plunger, and a tapered guide member. In one embodiment, the tapered guide member is attached to and extends away from the constricted region of the occlusion device, and is thus implanted in the body lumen along with the occlusion device upon deployment of the occlusion device at the desired treatment location. In a second embodiment, the tapered guide member is integrated into the constricted region of the occlusion device. In a third embodiment, an inflatable balloon is positioned distally of the medical device, and when inflated provides a tapered guide surface that eases the navigation of the delivery device through the body lumen. Upon deployment of the medical device at the desired location, the balloon is deflated to such a size as to be able to be withdrawn through the constricted region of the occlusion device, and is thus removed from the body lumen.

Description

This application claims the benefit of U.S. Provisional Application No. 60/040,062 filed Feb. 12, 1997.
TECHNICAL FIELD
The present invention relates generally to delivery devices of the type for delivering an implantable medical device to a desired location in a body lumen and deploying the medical device at the desired location. In particular, the present invention is a delivery device that is adapted for use with a radially expandable medical device having a constricted region.
BACKGROUND OF THE INVENTION
Medical devices adapted for implantation into body lumens that support fluid flow are well known and commercially available. One such device is the self-expandable stent of the type disclosed in the Wallsten U.S. Pat. No. 4,655,771. Stents of this type can be used to treat vascular stenosis and to maintain openings in the urinary, bilary, esophageal, tracheal and bronchial tracts of a patient. Self-expanding stents are generally comprised of a plurality of resilient filaments that are helically wound and interwoven to form a porous lattice. The stents assume a generally tubular form having a first diameter in an unloaded state, but can be forced into a reduced-diameter, extended length form (i.e. the “loaded” state) by inwardly-directed radial forces.
Another type of medical device adapted for implantation into a body lumen is an occlusion device designed to occlude a body lumen and thus stop fluid flow though the body lumen. One such occlusion device is described in the commonly assigned and co-pending U.S. patent application Ser. No. 08/797,983, which is expressly incorporated herein by reference in its entirety for all purposes. Occlusion devices of this type can be used to control internal bleeding, bypass a lumen, relieve the pressure created by an aneurysm in a lumen, or stop the flow of fluid to a tumor in a lumen.
Occlusion devices of the type shown and disclosed in application Ser. No. 08/797,983 are comprised of a self-expandable support structure and a flexible fluid flow-occluding membrane attached to the support structure. The support structure can be formed from any self-expanding means, including a number of filaments that are interwoven in a manner similar to that described in the Wallsten U.S. Pat. No. 4,655,771. Alternatively, the support structure can be comprised of etched or machined self-expanding tubes formed from nitinol or spring steel, such as those marketed under the tradename “Symphony” from MediTech, or other designs utilizing a plurality of zig-zag formed spring steels and the like. The membrane can be interwoven with at least portions of the support structure, or it can be formed separately from the support structure and attached to a portion of the interior or exterior surface of the support structure. The membrane can be fabricated from a micro-porous or non-porous material. Similar to self-expanding stents, the occlusion device assumes a substantially tubular shape in an unloaded, expanded state, and can be forced into a reduceddiameter, extended-length shape when subjected to inwardly directed radial forces. The occlusion device further includes a constricted region, which can be formed in either the membrane alone or in both the membrane and the support structure. The constricted region of the occlusion device is “closed” to fluid flow, and in this manner, the device occludes the lumen in which the occlusion device is implanted to restrict fluid flow through the lumen.
Methods for implanting medical devices in a body lumen are also known. A delivery system having proximal and distal ends and comprising an outer sheath, an inner catheter having a pointed tip, and a plunger is often used to deploy a self-expanding stent at the desired treatment location in a body lumen. The stent is compressed into its reduced-diameter state, and is held in its compressed state at the end of the inner catheter between the pointed tip and the plunger by the outer sheath of the delivery system. Such a delivery system can be inserted into a body lumen and tracked radiographically by monitoring the position of a radiopaque marker positioned on the outer sheath to guide the delivery system to the desired treatment location. As the system is guided through the lumen, the pointed tip of the inner catheter expands the body lumen in advance of the delivery system to ease navigation. A guide wire that extends through the inner catheter along the length of the outer sheath can also be used to aid in moving the delivery system through the lumen. When positioned at the treatment site, the stent is deployed by retracting the outer sheath, which releases the stent and allows it to self expand and engage the body lumen. After the outer sheath has been retracted and the stent is fully expanded, the inner catheter and pointed tip can be withdrawn back through the interior of the stent.
Such a delivery system can be difficult to use with occlusion devices such as those described above, however. Because such occlusion devices include a constricted region, it is difficult to withdraw the inner catheter and pointed tip through the constricted region when the occlusion device has been deployed at the treatment site. A delivery system having an outer sheath and a plunger without an inner catheter and pointed tip (i.e. an “open” delivery system) can more efficiently be used to deploy such a medical device. An open delivery system, however, may encounter difficulty in navigating the body lumen due to the tortuous nature of lumens. It is thus highly desirable to include a tip or a guide member that dilates the body lumen at the distal end of a delivery system used to deliver and deploy a medical device having a constricted region. A need therefore exists for an improved medical device delivery system that includes a guide member for dilating body lumens, yet is capable of being efficiently used with medical devices having a constricted region.
SUMMARY OF THE INVENTION
The present invention is a combination medical device and delivery device for delivering and implanting the medical device at a desired location in a body lumen. The medical device is of the type having a proximal end and a constricted region. The delivery device includes an outer sheath that encompasses the medical device at a distal end of the outer sheath. A manifold is attached to a proximal end of the outer sheath, and an inner tube that is coupled to the manifold is positioned within the outer sheath. The inner tube terminates in an end adjacent the proximal end of the medical device in the outer sheath.
In a first embodiment, the delivery device further includes a guide member that is attached to a distal end of the medical device. The guide member extends beyond the distal end of the outer sheath, and is adapted to guide the delivery device as it is advanced in a body lumen. The end of the inner tube engages the proximal end of the medical device to permit the retraction of the outer sheath at the desired location in the body lumen. In this manner, the medical device is deployed and implanted. The guide member of this first embodiment can include a dilator tip that is attached to and extends away from the tip of the constricted region of the medical device.
Alternatively, the dilator tip can be attached to and be coincident with at least a portion of the constricted region of the medical device.
In a second embodiment of the present invention, the delivery device includes a guide member and an inflation tube adapted to receive and carry a fluid flow. The inflation tube is positioned within the outer sheath of the delivery device. The guide member of this second embodiment includes an inflatable balloon fluidly coupled to the inflation tube. The balloon is inflated to provide a surface that is adapted to guide the delivery device through the body lumen as the delivery device is advanced at the lumen. The medical device can be deployed by retracting the outer sheath. The balloon can be deflated and withdrawn through the constricted region of the medical device after the medical device is deployed and implanted.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side view of a delivery device in accordance with the present invention.
FIGS. 2-4 are side views of three different embodiments of medical devices for which the present invention is particularly suited.
FIG. 5 is a side view of a medical device having a dilator tip attached to and extending, away from the constricted region of the medical device.
FIGS. 6-8 are side views of a first embodiment of the present invention in the various stages of deploying the medical device shown in FIG. 4.
FIG. 9 is a side view of a medical device having a dilator tip attached to and coincident with the constricted region of the medical device.
FIG. 10 is a side view of a second embodiment of a delivery device in use with the medical device shown in FIG. 9 with portions of the outer sheath of the delivery device shown in section to illustrate the medical device in the outer sheath.
FIG. 11 is a side view of a third embodiment of a delivery device in accordance with the present invention with portions of the outer sheath shown in section to illustrate the medical device in the outer sheath and the guide member of the delivery device.
FIGS. 12-15 are side views of the third embodiment of the present invention showing the various stages of deploying a medical device having a constricted region, with portions of the medical device in FIGS. 13 and 14 being shown in section to better illustrate the deployment of the medical device.
FIG. 16 is a side view of a medical device having a dilator tip integral with the membrane of the medical device.
FIG. 17 is a side view of a fourth embodiment of a delivery device in use with the medical device shown in FIG. 16 with portions of the outer sheath of the delivery device shown in section to illustrate the medical device in the outer sheath.
FIG. 18 is a side view of the delivery device shown in FIG. 17 further including a reconstrainment member, with portions of the outer sheath of the delivery device shown in section to illustrate the medical device in the outer sheath.
FIG. 19 is a side view of the medical device of FIG. 16 wherein the constricted region is pinched upon deployment of the device to better occlude fluid flow.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an illustration of a delivery device 20 in accordance with the present invention. Delivery device 20 is comprised of a flexible outer sheath 22 having a proximal end 21 and a distal end 23, an inner tube 24, and a manifold 25 coupled to the proximal end 21 of outer sheath 22. Inner tube 24 includes a rigid portion 60 and a flexible portion 62, the rigid portion 60 being bonded to the flexible portion 62 in any conventional manner such as by using adhesive. The rigid portion 60 and flexible portion 62 of inner tube 24 are adapted to extend into manifold 25, and outer sheath 22 surrounds the flexible portion of inner tube 24 in a coaxial fashion. The flexible portion 62 terminates at the distal end of inner tube 24 in a deployment member, such as a plunger (not visible in FIG. 1). A guide member 28 is positioned within outer sheath 22 distally of inner tube 24, and guide member 28 extends beyond the distal end 23 of outer sheath 22 to ease navigation through a body lumen by delivery device 20. As described in greater detail below, delivery device 20 is used to deliver and implant a medical device having a constricted region at a desired location within a body lumen.
FIGS. 2-4 show three medical devices which can be deployed by the present invention. Specifically, FIGS. 2-4 show different embodiments of an occlusion device having a constricted region for occluding fluid flow in a body lumen, each of which is described in detail in the aforementioned co-pending and commonly assigned U.S. patent application Ser. No. 08/797,983. FIG. 2 shows an occlusion device 10 having a support structure 12 and a flexible fluid flow-occluding membrane 14. Support structure 12 is comprised of a plurality of elongated filaments 18 that are interbraided to form a collapsible and self-expanding structure 12. Support structure 12 can alternatively be formed from other self-expanding means, including self-expanding tubes formed from nitinol or spring steel, or other designs utilizing a plurality of zig-zag formed spring steels and the like. Fluid flow-occluding membrane 14 is positioned within and circumferentially engages support structure 12. Membrane 14 can be formed from a micro-porous or a non-porous material, and can be comprised of a plurality of filaments that are interwoven with the support structure 12. Materials well-suited for membrane 14 include polyurethane, silicone rubber, polyolefin, expanded polytetrafluoroethylene, or polymers generally known as hydrogels such as poly(2-hydroxyethyl methacrylate), polyacrylamide, and the like. The membrane 14 can include eluting or attached drugs such as antibiotics, bacteriostats, drugs generally denoted as chemotherapy drugs, drugs or particles emitting actinic radiation, drugs which promote blood clotting such as protamine, and the like, and combinations of the above. A preferred material for membrane 14 is polycarbonate urethane. Occlusion device 10 includes a constricted region 16 at an end of device 10, the constricted region 16 being substantially “closed” to occlude fluid flow in the body lumen in which occlusion device 10 is implanted. In the embodiment shown in FIG. 2, constricted region 16 is formed in both the support structure 12 and the fluid flow-occluding membrane 14.
FIG. 3 shows a second embodiment 10′ of an occlusion device. The individual features of occlusion device 10′ are similar to those shown in FIG. 2 and described above, and the same reference numbers followed by the prime (′) symbol are used to indicate such features. Constricted region 16′ of occlusion device 10′ is positioned between the ends of occlusion device 10′, and constricted region 16′ is formed solely in membrane 14′.
FIG. 4 shows a third embodiment 10″ of an occlusion device. The individual features of occlusion device 10″ are similar to those shown in FIGS. 2 and 3 and described above, and the same reference numbers followed by the double prime (″) symbol are used to indicate such features. In the embodiment shown in FIG. 4, constricted region 16″ of occlusion device 10″ constricts both the support structure 12″ and the membrane 14″ between the ends of occlusion device 10″.
The occlusion devices shown in FIGS. 2-4 are representative of the types of medical devices that are suited for use with the present invention. Other medical devices having a constricted region and a support structure can also be used with the present invention.
Turning now to FIGS. 6-8, a distal portion of the delivery device 20 of FIG. 1 and discussed above is shown in the various stages of deploying occlusion device 10 of FIG. 2. Occlusion device 10 is carried within outer sheath 22 in a collapsed condition. Specifically, occlusion device 10 is carried within outer sheath 22 with the occlusion device 10 at a medical device encompassing region 27 distally of plunger 44, which, as described above, is a deployment member positioned at the distal end of inner tube 24. Guide member 28 of delivery device 20 includes a dilator tip 30, which extends from the distal end 23 of outer sheath 22. Dilator tip 30 has a tapered surface 34 that is adapted to dilate a body lumen and guide the delivery device through the lumen as the delivery device 20 is advanced in the body lumen in the manner described below. Dilator tip 30 is preferably conical, although other shapes having a surface that dilates a lumen as delivery device 20 is advanced in the lumen can of course be used. Dilator tip 30 can include a guide wire passage 32 (shown in phantom in FIGS. 6 and 7). A guide wire 26 can be inserted through an axial lumen in inner tube 24 and through guide wire passage 32 in dilator tip 30 to aid navigation of delivery device 20 through a body lumen.
As perhaps best shown in FIG. 5, dilator tip 30 of delivery device 20 is permanently attached to occlusion device 10. Dilator tip 30 is attached using conventional means, such as adhesive or insert molding, to the distal end of the constricted region 16 of occlusion device 10 in such a manner that the dilator tip 30 extends away from constricted region 16 of occlusion device 10. The occlusion device 10 and dilator tip 30 are positioned in the medical device encompassing region 27 of outer sheath 22 so that dilator tip 30 extends beyond the distal end 23 of outer sheath 22.
Delivery device 20 can thus be used to position occlusion device 10 at a desired treatment location in a body lumen. Specifically, the distal end of the delivery device 20 is inserted in the body lumen, and the tapered surface 34 of dilator tip 30 expands the body lumen in advance of the remainder of delivery system 20. In this manner, tortuous body lumens can more easily be navigated. The position of delivery device 20 in the lumen can be tracked radiographically by monitoring the position of a conventional radiopaque marker (not shown) positioned on delivery device 20. Alternatively, the dilator tip 30 can be fabricated from a material compounded with a radiopaque filler such as bismuth subcarbonate or barium sulfate to enable visualization by radiography. When occlusion device 10 is positioned at the desired treatment location, inner tube 24 is advanced in outer sheath 22 to engage plunger 44 with the end of occlusion device 10. Outer sheath 22 is then retracted by proximally moving outer sheath 22 and manifold 25 (shown in FIG. 1) relative to occlusion device 10. Plunger 44 holds occlusion device 10 stationary while outer sheath 22 is retracted, and in this manner, occlusion device 10 is deployed from the outer sheath 22 and self expands to engage the wall of the body lumen. Occlusion device 10 is thus implanted in the body lumen at the desired treatment location. In this first embodiment, because it is attached to occlusion device 10, dilator tip 30 of delivery device 20 is deployed along with occlusion device 10 and remains implanted in the body lumen. After implantation outer sheath 22, inner tube 24, and guide wire 26 can be withdrawn from the body lumen.
While FIGS. 6-8 show a delivery device wherein the occlusion device 10 is deployed by proximal movement of outer sheath 22 relative to the occlusion device 10, other deployment techniques are contemplated. For example, outer sheath 22 can be comprised of a flexible material at its distal end that is rolled back on itself to expose an occlusion device contained within the sheath. As the outer sheath is rolled back, the occlusion device self-expands to engage the wall of the body lumen, and is thus deployed and implanted in the lumen.
FIGS. 9 and 10 show a second embodiment of the present invention wherein similar features of the first embodiment shown in FIGS. 1 and 6-8 and described above are referred to using the same reference numeral preceded by the number “1.” In this embodiment, delivery device 120 includes a conical dilator tip 130 having a tapered surface 134 and attached to the constricted region 116 of the occlusion device 110. Dilator tip 130 is coincident and integrated with the constricted region 116. Dilator tip 130 can be attached to occlusion device 110 in a conventional manner, such as with adhesive, stitching, or insert molding. Occlusion device 110 is positioned in delivery device 120 so that dilator tip 130 extends beyond distal end 123 of outer sheath 120, and is deployed by engaging plunger 144 at the end of inner tube 124 of delivery device 120 with occlusion device 110 to hold occlusion device 110 stationary as outer sheath 122 is retracted. Occlusion device 110 thus exits delivery device 120 and expands to engage the body lumen at the desired treatment location.
The dilator tip 30 of delivery device 20 and dilator tip 130 of delivery device 120 can be made from any implantable, biocompatible material, including polytetrafluoroethylene, PET, polyurethane, silicone, or metal. A preferred material for dilator tip 30 and dilator tip 130 is polycarbonate urethane.
A third embodiment of the present invention is shown in FIGS. 11-15. This third embodiment includes many of the features and components shown and described above in connection with the first and second embodiments of the present invention, and similar reference numbers preceded by the number “2” will be used to describe these features. Delivery device 220 includes an outer sheath 222, an inner tube 224 terminating in a plunger 244 at the distal end of inner tube 224, an inflation tube 246 that is concentric with both outer sheath 222 and inner tube 224, and guide member 228. Inflation tube 246 is adapted to receive and carry a fluid flow. The guide member 228 of delivery device 220 includes an inflatable balloon 250 that is positioned at the distal end of outer sheath 222 and that is fluidly coupled to inflation tube 246. Balloon 250 receives fluid through inflation tube 246 and is thus enlarged to an inflated state. In its inflated state, balloon 250 assumes a substantially elongated shape having a tapered surface 234. In this manner, balloon 250 can be used to dilate a body lumen and guide delivery device 220 through the lumen to the desired treatment location in a manner similar to that described above.
Delivery device 220 is well suited for delivering an occlusion device having a constricted region between the ends of the occlusion device, such as those shown in FIGS. 3 and 4 and described above, to a desired treatment location in a body lumen. Occlusion device 210 is carried within outer sheath 22 in a collapsed condition distally of plunger 244 of inner tube 224 and proximally of balloon 250. Balloon 250 is inflated by receiving fluid through inflation tube 246, and the delivery device 220 is then inserted in the body lumen and guided to a desired treatment location using known techniques, such as radiography. As delivery device 220 is guided to the desired treatment location, tapered surface 234 of balloon 250 dilates the body lumen in advance of the delivery system to ease navigation through the body lumen. At the desired treatment location, occlusion device 210 is deployed by advancing inner tube 224 in outer sheath 222 to engage plunger 244 with occlusion device 210, and thus hold it stationary during deployment. Sheath 222 is then retracted, and occlusion device 210 exits delivery device 220 and expands to engage the body lumen. Occlusion device 210 is thus implanted in the body lumen. After implantation, balloon 250 is deflated by removing fluid from balloon 250 through inflation tube 246. In its deflated state, balloon 250 can be withdrawn through a gap in the constricted region 216, such as exists between individual filaments of the support structure and/or the membrane of occlusion device 210. Delivery device 222 can then be withdrawn from the body lumen.
Balloon 250 of the delivery device 220 shown in FIGS. 11-15 can be formed from any known balloon material, including nylon, PET, polyethylene, polyurethane, and polyvinylchloride. The preferred material for ballon 250 is Nylon 12.
The delivery device shown and described above provides many advantages over conventional delivery devices. Specifically, the delivery device provides a guide member that dilates a body lumen in advance of the delivery device, and thus eases navigation through the lumen, yet can efficiently be used with a medical device having a constricted region. In addition, a delivery device in accordance with the present invention contains few moving parts, and thus is efficient to manufacture and to use.
FIGS. 16 and 19 show another embodiment 310 of an occlusion device which can be deployed by the present invention. Occlusion device 310 is comprised of a self-expanding support structure 312 and a membrane 314. Self-expanding support structure 312 is comprised of a plurality of helically braided wires 312, which are preferably formed of nitinol, stainless steel, Elgiloy, or the like. Alternatively, self-expanding support structure 312 can be made by machining diamond-shaped windows with a laser i or by EDM means from a thin-walled tube to form struts that comprise the self-expanding support structure 312. Membrane 314 is attached to the inner surface of support structure 312. Specifically, membrane 314 lines and is integrally attached to a center portion 350 of support structure 312. Alternatively,membraine 314 can be sewen to support structure 312. Membrane 314 includes a constricted region 316 that terminates at a cylindrical section 351. Cylindrical section 351 is integrally attached at its distal end to a dilator tip 330, which includes tapered surface 334. Membrane 314 can contain a guidewire channel 332 (shown in phantom) concentric within membrane 314.
Occlusion device 310 includes regions 360 and 365, which are free from attachment to membrane 314. Regions 360 and 365 thus enable flow through and across the regions, and across membrane 314 in region 365, if occlusion device 310 is placed across a branch vessel in a body lumen wherein maintenance of fluid flow is desired. Regions 360 and/or 365 can of course contain membranes to occlude side branch vessels if required.
As perhaps best shown in FIG. 19, the cylindrical section 351 of constricted region 316 of occlusion device 310 can be bent or kinked to pinch off the guidewire channel 332 to hasten occlusion of the body lumen in which occlusion device 310 is implanted. As described above, membrane 314 is flexible, and can be formed of a sufficiently thin walled material such as those described above to permit the bending of cylindrical section 351 under normal fluid flow forces. Alternatively, the guidewire can be adapted to form a pinch in cylindrical section 351 as it is withdrawn from occlusion device 310, or membrane 314 can be formed of a material that softens once occlusion device 310 is implanted in the body to pinch off guidewire channel 332.
FIG. 17 shows a delivery device 320 for delivering and implanting occlusion device 310 at a desired location within a body lumen. Delivery device 320 includes an outer sheath 322 and an inner tube 324 terminating at its distal end in a plunger 344. Occlusion device 310 is contained in its compressed state within outer sheath 322 at a distal end of outer sheath 322. Dilator tip 330 extends distally from the distal end of outer sheath 322, and is adapted to dilate a body lumen and guide the delivery device 320 through the lumen as it is advanced in the body lumen. A guide wire can be inserted through channel 322 in medical device 310 and throughout the length of delivery device 320 through a channel 333 to facilitate maneuvering in tortuous body lumens.
Medical device 310 is deployed from delivery device 320 in a manner similar to that described above. Specifically, occlusion device 310 is deployed by pushing inner tube 324 so that plunger 344 butts up against the proximal end of occlusion device 310. Inner tube 324 is then held firmly in place while outer sheath 322 is retracted. In this manner, occlusion device 310 self expands as it exists the outer sheath 322, and is thus implanted in the body lumen to occlude fluid flow through the body lumen.
As is shown in FIG. 18, the delivery device 320 can include a reconstrainment member 355 that enables the occlusion device 310 to be reconstrained into its compressed state by loading occlusion device 310 back into outer sheath 322 prior to being totally deployed in the event occlusion device 310 is incorrectly placed or located in the body lumen. Reconstrainment members are generally known, and are described in U.S. Pat. No. 5,026,377 to Burton et al. Reconstrainment member 355 can be attached to plunger 344, and is positioned within the end of occlusion device 310. Reconstrainment member 355 is sized and shaped to frictionally engage the support structure of occlusion device 310 when occlusion device 310 is in its compressed state. Toward this end, reconstrainment member is preferably constructed of a material that has a sufficiently high coefficient of friction on its outer surface to prevent relative motion between occlusion device 310 and reconstrainment member 355. Suitable materials for reconstrainment member 355 include silicone rubber and polyurethane. Because reconstrainment member 355 frictionally engages occlusion device 310, reconstrainment member 355 allows the occlusion device 310 to be drawn back into outer sheath 322 prior to complete deployment of occlusion device 310 by extending outer sheath 322 relative to occlusion device 310. Extending outer sheath 322 re-compresses occlusion device 310, and loads it back into delivery device 320. Reconstrainment member 355 can include a hollow chamber coincident with chamber 333 of device 320 to permit the insertion of a guidewire through reconstrainment member 355.
In addition to the advantages of the present invention described above, the delivery device and medical devices of FIGS. 16-19 provide additional advantages over conventional delivery systems. Because the ends of the support structure of the occlusion devices shown in FIGS. 16 and 19 are free from attachment to the fluid-flow occluding membrane, the ends of the support structure flare out. The flared ends of the support structure thus prevent migration of the occlusion device in both prograde and retrograde flow through a body lumen in which the occlusion device is implanted. In addition, an occlusion device having bare metal on either end and with minimum membrane material in a center region of the occlusion device can be factory loaded into a delivery device without the occlusion device taking a permanent set with time. Occlusion devices having voluminous membranes, when stored for a long periods of time, assume a set in the compressed state of the occlusion device, and thus may not readily open in a body lumen upon deployment in the lumen. Occlusion device having a membrane such as those shown in FIGS. 16 and 19 and described above overcome such a shortcoming, and thus allow the occlusion device to be factory loaded into a delivery device. Such a medical device and delivery device is particularly helpful to a practitioner.
Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims (6)

What is claimed is:
1. A combination fluid flow-occluding medical device and delivery device, the delivery device adapted to be advanced in a body lumen to deliver the medical device to a desired location in the body lumen and to deploy the medical device at the desired location, comprising:
a radially expandable fluid flow-occluding medical device having a constricted region, the constricted region substantially preventing the passage of fluid through the body lumen when the device is deployed;
an outer sheath having a distal end, the medical device being positioned within the outer sheath in a radially compressed state;
an actuator for deploying and implanting the medical device at the desired location in the body lumen; and
a guide member attached to the fluid-flow occluding medical device and extending beyond the distal end of the outer sheath when the medical device is positioned within the outer sheath for dilating the body lumen and guiding the delivery device through the body lumen as the delivery device is advanced in the body lumen.
2. The combination medical device and delivery device of claim 1, wherein the actuator includes an inner tube positioned within the outer sheath, the inner tube terminating in an end adjacent a proximal end of the medical device.
3. The combination medical device and delivery device of claim 2, wherein the guide member includes a dilator tip having an outwardly sloping surface for dilating the body lumen as the delivery device is advanced in the body lumen.
4. The combination medical device and delivery device of claim 3 wherein the dilator tip is attached to the constricted region of the medical device and extends away from the constricted region of the medical device.
5. The combination medical device and delivery device of claim 4, further including a reconstrainment member attached to the end of the inner tube and positioned within the medical device for reconstraining the medical device prior to complete deployment of the medical device from the delivery device.
6. The combination medical device and delivery device of claim 3 wherein the dilator tip is attached to the constricted region of the medical device and is coincident with at least a portion of the constricted region.
US08/989,119 1997-02-12 1997-12-11 Delivery device for a medical device having a constricted region Expired - Lifetime US6254633B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/989,119 US6254633B1 (en) 1997-02-12 1997-12-11 Delivery device for a medical device having a constricted region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4006297P 1997-02-12 1997-02-12
US08/989,119 US6254633B1 (en) 1997-02-12 1997-12-11 Delivery device for a medical device having a constricted region

Publications (1)

Publication Number Publication Date
US6254633B1 true US6254633B1 (en) 2001-07-03

Family

ID=21908880

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/989,119 Expired - Lifetime US6254633B1 (en) 1997-02-12 1997-12-11 Delivery device for a medical device having a constricted region

Country Status (5)

Country Link
US (1) US6254633B1 (en)
EP (1) EP0864300B1 (en)
JP (1) JP3990019B2 (en)
CA (1) CA2229325C (en)
DE (1) DE69828714T8 (en)

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020121472A1 (en) * 2001-03-01 2002-09-05 Joseph Garner Intravascular filter retrieval device having an actuatable dilator tip
US20050080476A1 (en) * 2003-10-09 2005-04-14 Gunderson Richard C. Medical device delivery system
US20050131514A1 (en) * 1999-05-20 2005-06-16 Hijlkema Lukas J. Delivery system for endoluminal implant
US20050184306A1 (en) * 2000-06-20 2005-08-25 Parker Ian D. Multilayer structures as stable hole-injecting electrodes for use in high efficiency organic electronic devices
US20060025805A1 (en) * 2001-02-28 2006-02-02 Dobrava Eric M Filter retrieval catheter
US20060036263A1 (en) * 1998-07-27 2006-02-16 Schneider (Usa) Inc. Neuroaneurysm occlusion and delivery device and method of using same
US20080125853A1 (en) * 1999-12-31 2008-05-29 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US7410491B2 (en) * 1999-07-30 2008-08-12 Incept Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US20080221656A1 (en) * 2007-03-06 2008-09-11 William A. Cook Australia Pty. Ltd. Endovascular deployment device
WO2009103011A1 (en) * 2008-02-13 2009-08-20 Nellix, Inc. Graft endoframe having axially variable characteristics
US20090264898A1 (en) * 2008-04-17 2009-10-22 Medtronic Vascular, Inc. Steerable Endovascular Retrieval Device
US20090319029A1 (en) * 2008-06-04 2009-12-24 Nellix, Inc. Docking apparatus and methods of use
US7662166B2 (en) 2000-12-19 2010-02-16 Advanced Cardiocascular Systems, Inc. Sheathless embolic protection system
US7678131B2 (en) 2002-10-31 2010-03-16 Advanced Cardiovascular Systems, Inc. Single-wire expandable cages for embolic filtering devices
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US7704267B2 (en) 2004-08-04 2010-04-27 C. R. Bard, Inc. Non-entangling vena cava filter
US7717892B2 (en) 2006-07-10 2010-05-18 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US7766934B2 (en) 2005-07-12 2010-08-03 Cook Incorporated Embolic protection device with an integral basket and bag
US7771452B2 (en) 2005-07-12 2010-08-10 Cook Incorporated Embolic protection device with a filter bag that disengages from a basket
US7780694B2 (en) 1999-12-23 2010-08-24 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US7794473B2 (en) 2004-11-12 2010-09-14 C.R. Bard, Inc. Filter delivery system
US7815660B2 (en) 2002-09-30 2010-10-19 Advanced Cardivascular Systems, Inc. Guide wire with embolic filtering attachment
US7842064B2 (en) 2001-08-31 2010-11-30 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
US7850708B2 (en) 2005-06-20 2010-12-14 Cook Incorporated Embolic protection device having a reticulated body with staggered struts
US7867273B2 (en) 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
US7887579B2 (en) * 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
US7892251B1 (en) 2003-11-12 2011-02-22 Advanced Cardiovascular Systems, Inc. Component for delivering and locking a medical device to a guide wire
US20110054512A1 (en) * 2008-04-03 2011-03-03 William Cook Europe Aps Occlusion device
US7918820B2 (en) 1999-12-30 2011-04-05 Advanced Cardiovascular Systems, Inc. Device for, and method of, blocking emboli in vessels such as blood arteries
US7959647B2 (en) 2001-08-30 2011-06-14 Abbott Cardiovascular Systems Inc. Self furling umbrella frame for carotid filter
US7959646B2 (en) 2001-06-29 2011-06-14 Abbott Cardiovascular Systems Inc. Filter device for embolic protection systems
US20110144689A1 (en) * 2009-12-15 2011-06-16 Med Institute, Inc. Occlusion Device
US7972356B2 (en) 2001-12-21 2011-07-05 Abbott Cardiovascular Systems, Inc. Flexible and conformable embolic filtering devices
US7976560B2 (en) 2002-09-30 2011-07-12 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US8016854B2 (en) 2001-06-29 2011-09-13 Abbott Cardiovascular Systems Inc. Variable thickness embolic filtering devices and methods of manufacturing the same
US8109962B2 (en) 2005-06-20 2012-02-07 Cook Medical Technologies Llc Retrievable device having a reticulation portion with staggered struts
US8137377B2 (en) 1999-12-23 2012-03-20 Abbott Laboratories Embolic basket
US8142442B2 (en) 1999-12-23 2012-03-27 Abbott Laboratories Snare
US8152831B2 (en) 2005-11-17 2012-04-10 Cook Medical Technologies Llc Foam embolic protection device
US8177791B2 (en) 2000-07-13 2012-05-15 Abbott Cardiovascular Systems Inc. Embolic protection guide wire
US8182508B2 (en) 2005-10-04 2012-05-22 Cook Medical Technologies Llc Embolic protection device
US8187298B2 (en) 2005-08-04 2012-05-29 Cook Medical Technologies Llc Embolic protection device having inflatable frame
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US8216269B2 (en) 2005-11-02 2012-07-10 Cook Medical Technologies Llc Embolic protection device having reduced profile
US8221446B2 (en) 2005-03-15 2012-07-17 Cook Medical Technologies Embolic protection device
US8252018B2 (en) 2007-09-14 2012-08-28 Cook Medical Technologies Llc Helical embolic protection device
US8252017B2 (en) 2005-10-18 2012-08-28 Cook Medical Technologies Llc Invertible filter for embolic protection
US8262689B2 (en) 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
US8267954B2 (en) 2005-02-04 2012-09-18 C. R. Bard, Inc. Vascular filter with sensing capability
US20130041450A1 (en) * 2002-11-08 2013-02-14 Jacques Séguin Endoprosthesis for vascular bifurcation
US8377092B2 (en) 2005-09-16 2013-02-19 Cook Medical Technologies Llc Embolic protection device
US8388644B2 (en) 2008-12-29 2013-03-05 Cook Medical Technologies Llc Embolic protection device and method of use
US8419748B2 (en) 2007-09-14 2013-04-16 Cook Medical Technologies Llc Helical thrombus removal device
US8430903B2 (en) 2005-08-09 2013-04-30 C. R. Bard, Inc. Embolus blood clot filter and delivery system
US8574261B2 (en) 2005-05-12 2013-11-05 C. R. Bard, Inc. Removable embolus blood clot filter
US8591540B2 (en) 2003-02-27 2013-11-26 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US8608639B2 (en) 2006-07-10 2013-12-17 Mcneil-Ppc, Inc. Resilient device
US8613754B2 (en) 2005-05-12 2013-12-24 C. R. Bard, Inc. Tubular filter
US8632562B2 (en) 2005-10-03 2014-01-21 Cook Medical Technologies Llc Embolic protection device
US8690906B2 (en) 1998-09-25 2014-04-08 C.R. Bard, Inc. Removeable embolus blood clot filter and filter delivery unit
US8735777B1 (en) 2013-07-29 2014-05-27 Insera Therapeutics, Inc. Heat treatment systems
US8753371B1 (en) * 2013-03-15 2014-06-17 Insera Therapeutics, Inc. Woven vascular treatment systems
US8753258B2 (en) 2006-07-10 2014-06-17 Mcneil-Ppc, Inc. Resilient device
US8795315B2 (en) 2004-10-06 2014-08-05 Cook Medical Technologies Llc Emboli capturing device having a coil and method for capturing emboli
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US8831741B2 (en) 2011-03-14 2014-09-09 Medtronic Vascular, Inc. Catheter with deflectable cap
US8845583B2 (en) 1999-12-30 2014-09-30 Abbott Cardiovascular Systems Inc. Embolic protection devices
US8870941B2 (en) 2004-07-22 2014-10-28 Nellix Graft systems having filling structures supported by scaffolds and methods for their use
US8906084B2 (en) 2005-07-07 2014-12-09 Nellix, Inc. System and methods for endovascular aneurysm treatment
US8926682B2 (en) 2008-04-25 2015-01-06 Nellix, Inc. Stent graft delivery system
US8945199B2 (en) 2008-06-04 2015-02-03 Nellix, Inc. Sealing apparatus and methods of use
US8945169B2 (en) 2005-03-15 2015-02-03 Cook Medical Technologies Llc Embolic protection device
US9034007B2 (en) 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US20150142049A1 (en) * 2013-11-21 2015-05-21 Edwards Lifesciences Corporation Sealing devices, related delivery apparatuses, and uses thereof
US9113999B2 (en) 2002-09-20 2015-08-25 Nellix, Inc. Methods for deploying a positioning anchor with a stent-graft
US9131999B2 (en) 2005-11-18 2015-09-15 C.R. Bard Inc. Vena cava filter with filament
US9138307B2 (en) 2007-09-14 2015-09-22 Cook Medical Technologies Llc Expandable device for treatment of a stricture in a body vessel
US9179931B2 (en) 2013-03-15 2015-11-10 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy systems
US9204956B2 (en) 2002-02-20 2015-12-08 C. R. Bard, Inc. IVC filter with translating hooks
US9259305B2 (en) 2005-03-31 2016-02-16 Abbott Cardiovascular Systems Inc. Guide wire locking mechanism for rapid exchange and other catheter systems
US9289536B2 (en) 2013-03-14 2016-03-22 Endologix, Inc. Method for forming materials in situ within a medical device
US9314324B2 (en) 2013-03-15 2016-04-19 Insera Therapeutics, Inc. Vascular treatment devices and methods
US9326842B2 (en) 2006-06-05 2016-05-03 C. R . Bard, Inc. Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access
US9415195B2 (en) 2011-04-06 2016-08-16 Engologix, Inc. Method and system for treating aneurysms
US9427234B2 (en) * 2012-06-13 2016-08-30 Cook Medical Technologies Llc Implantable occluder or filter
US9492570B2 (en) 1998-12-24 2016-11-15 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US20170035311A1 (en) * 2015-08-06 2017-02-09 Boston Scientific Scimed Inc. Deployment control apparatus for a catheter with a deployable array
US9669113B1 (en) * 1998-12-24 2017-06-06 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US9788841B2 (en) 2014-06-25 2017-10-17 Cook Medical Technologies Llc Implantable medical device with lumen constriction
US9877821B2 (en) 2012-01-06 2018-01-30 Emboline, Inc. Introducer sheath with embolic protection
US9901434B2 (en) 2007-02-27 2018-02-27 Cook Medical Technologies Llc Embolic protection device including a Z-stent waist band
US9907639B2 (en) 2006-09-19 2018-03-06 Cook Medical Technologies Llc Apparatus and methods for in situ embolic protection
US10004584B2 (en) 2006-07-10 2018-06-26 First Quality Hygienic, Inc. Resilient intravaginal device
US10188496B2 (en) 2006-05-02 2019-01-29 C. R. Bard, Inc. Vena cava filter formed from a sheet
US10219884B2 (en) 2006-07-10 2019-03-05 First Quality Hygienic, Inc. Resilient device
US10390926B2 (en) 2013-07-29 2019-08-27 Insera Therapeutics, Inc. Aspiration devices and methods
US10617509B2 (en) 2015-12-29 2020-04-14 Emboline, Inc. Multi-access intraprocedural embolic protection device
US20210228216A1 (en) * 2018-05-08 2021-07-29 W. L. Gore & Associates, Inc. Occluder devices
US11191611B2 (en) 2016-06-03 2021-12-07 Somatex Medical Technologies Gmbh Marking device and implantation system
US11304792B2 (en) 2019-02-13 2022-04-19 Emboline, Inc. Catheter with integrated embolic protection device
US11638638B2 (en) 2009-12-30 2023-05-02 Endologix Llc Filling structure for a graft system and methods of use
US11877898B2 (en) 2016-11-23 2024-01-23 Hologic, Inc. Biopsy site marker
US11937957B2 (en) 2015-11-09 2024-03-26 Radiaction Ltd. Radiation shielding apparatuses and applications thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813518B1 (en) 2000-09-04 2002-10-31 Claude Mialhe VASCULAR OCCLUSION DEVICE, APPARATUS AND METHOD OF USE
FR2847151B1 (en) * 2002-11-15 2005-01-21 Claude Mialhe OCCLUSIVE DEVICE WITH MEDICAL OR SURGICAL DESTINATION
GB2556105B (en) * 2016-11-21 2019-01-02 Cook Medical Technologies Llc Implantable medical device with atraumatic tip

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130119A (en) * 1977-04-01 1978-12-19 Barlow Mfg. Corp. Occlusion device
US4705517A (en) 1985-09-03 1987-11-10 Becton, Dickinson And Company Percutaneously deliverable intravascular occlusion prosthesis
US4793348A (en) * 1986-11-15 1988-12-27 Palmaz Julio C Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation
US5026377A (en) 1989-07-13 1991-06-25 American Medical Systems, Inc. Stent placement instrument and method
DE9205797U1 (en) 1992-04-30 1992-06-17 Schmitz-Rode, Thomas, Dipl.-Ing. Dr.Med.
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
WO1995032018A1 (en) 1994-05-25 1995-11-30 Teirstein Paul S Body passageway closure apparatus and method
US5484444A (en) 1992-10-31 1996-01-16 Schneider (Europe) A.G. Device for the implantation of self-expanding endoprostheses
WO1996001591A1 (en) 1994-07-08 1996-01-25 Microvena Corporation Method of forming medical devices; intravascular occlusion devices
US5626605A (en) * 1991-12-30 1997-05-06 Scimed Life Systems, Inc. Thrombosis filter
US5681347A (en) * 1995-05-23 1997-10-28 Boston Scientific Corporation Vena cava filter delivery system
US5695519A (en) * 1995-11-30 1997-12-09 American Biomed, Inc. Percutaneous filter for carotid angioplasty
US5941896A (en) * 1997-09-08 1999-08-24 Montefiore Hospital And Medical Center Filter and method for trapping emboli during endovascular procedures
US6022336A (en) * 1996-05-20 2000-02-08 Percusurge, Inc. Catheter system for emboli containment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
FR2624747A1 (en) * 1987-12-18 1989-06-23 Delsanti Gerard REMOVABLE ENDO-ARTERIAL DEVICES FOR REPAIRING ARTERIAL WALL DECOLLEMENTS
JPH0546419Y2 (en) * 1990-06-19 1993-12-06
ATE149325T1 (en) * 1992-10-12 1997-03-15 Schneider Europ Ag CATHETER WITH A VESSEL SUPPORT

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130119A (en) * 1977-04-01 1978-12-19 Barlow Mfg. Corp. Occlusion device
US4705517A (en) 1985-09-03 1987-11-10 Becton, Dickinson And Company Percutaneously deliverable intravascular occlusion prosthesis
US4793348A (en) * 1986-11-15 1988-12-27 Palmaz Julio C Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation
US5026377A (en) 1989-07-13 1991-06-25 American Medical Systems, Inc. Stent placement instrument and method
US5626605A (en) * 1991-12-30 1997-05-06 Scimed Life Systems, Inc. Thrombosis filter
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
DE9205797U1 (en) 1992-04-30 1992-06-17 Schmitz-Rode, Thomas, Dipl.-Ing. Dr.Med.
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5484444A (en) 1992-10-31 1996-01-16 Schneider (Europe) A.G. Device for the implantation of self-expanding endoprostheses
WO1995032018A1 (en) 1994-05-25 1995-11-30 Teirstein Paul S Body passageway closure apparatus and method
WO1996001591A1 (en) 1994-07-08 1996-01-25 Microvena Corporation Method of forming medical devices; intravascular occlusion devices
US5681347A (en) * 1995-05-23 1997-10-28 Boston Scientific Corporation Vena cava filter delivery system
US5695519A (en) * 1995-11-30 1997-12-09 American Biomed, Inc. Percutaneous filter for carotid angioplasty
US6022336A (en) * 1996-05-20 2000-02-08 Percusurge, Inc. Catheter system for emboli containment
US5941896A (en) * 1997-09-08 1999-08-24 Montefiore Hospital And Medical Center Filter and method for trapping emboli during endovascular procedures

Cited By (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060036263A1 (en) * 1998-07-27 2006-02-16 Schneider (Usa) Inc. Neuroaneurysm occlusion and delivery device and method of using same
US9615909B2 (en) 1998-09-25 2017-04-11 C.R. Bard, Inc. Removable embolus blood clot filter and filter delivery unit
US9351821B2 (en) 1998-09-25 2016-05-31 C. R. Bard, Inc. Removable embolus blood clot filter and filter delivery unit
US8690906B2 (en) 1998-09-25 2014-04-08 C.R. Bard, Inc. Removeable embolus blood clot filter and filter delivery unit
US9669113B1 (en) * 1998-12-24 2017-06-06 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US9492570B2 (en) 1998-12-24 2016-11-15 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US7632298B2 (en) * 1999-05-20 2009-12-15 Boston Scientific Scimed, Inc. Delivery system for endoluminal implant
US20050131514A1 (en) * 1999-05-20 2005-06-16 Hijlkema Lukas J. Delivery system for endoluminal implant
USRE43902E1 (en) 1999-07-30 2013-01-01 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US9283066B2 (en) 1999-07-30 2016-03-15 Incept Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US7410491B2 (en) * 1999-07-30 2008-08-12 Incept Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US8617201B2 (en) 1999-07-30 2013-12-31 Incept Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US8142442B2 (en) 1999-12-23 2012-03-27 Abbott Laboratories Snare
US8137377B2 (en) 1999-12-23 2012-03-20 Abbott Laboratories Embolic basket
US7780694B2 (en) 1999-12-23 2010-08-24 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US7918820B2 (en) 1999-12-30 2011-04-05 Advanced Cardiovascular Systems, Inc. Device for, and method of, blocking emboli in vessels such as blood arteries
US8845583B2 (en) 1999-12-30 2014-09-30 Abbott Cardiovascular Systems Inc. Embolic protection devices
US8992597B2 (en) 1999-12-31 2015-03-31 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US8221493B2 (en) * 1999-12-31 2012-07-17 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US20080125853A1 (en) * 1999-12-31 2008-05-29 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US9421100B2 (en) 1999-12-31 2016-08-23 ABPS Venture One, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US20050184306A1 (en) * 2000-06-20 2005-08-25 Parker Ian D. Multilayer structures as stable hole-injecting electrodes for use in high efficiency organic electronic devices
US8177791B2 (en) 2000-07-13 2012-05-15 Abbott Cardiovascular Systems Inc. Embolic protection guide wire
US7662166B2 (en) 2000-12-19 2010-02-16 Advanced Cardiocascular Systems, Inc. Sheathless embolic protection system
US7931666B2 (en) 2000-12-19 2011-04-26 Advanced Cardiovascular Systems, Inc. Sheathless embolic protection system
US20060025805A1 (en) * 2001-02-28 2006-02-02 Dobrava Eric M Filter retrieval catheter
US7942893B2 (en) * 2001-02-28 2011-05-17 Boston Scientific Scimed, Inc. Filter retrieval catheter
US8034074B2 (en) 2001-03-01 2011-10-11 Boston Scientific Scimed, Inc. Intravascular filter retrieval device having an actuatable dilator tip
US7226464B2 (en) * 2001-03-01 2007-06-05 Scimed Life Systems, Inc. Intravascular filter retrieval device having an actuatable dilator tip
US20070106324A1 (en) * 2001-03-01 2007-05-10 Scimed Life Systems, Inc. Intravascular filter retrieval device having an actuatable dilator tip
US20020121472A1 (en) * 2001-03-01 2002-09-05 Joseph Garner Intravascular filter retrieval device having an actuatable dilator tip
US8016854B2 (en) 2001-06-29 2011-09-13 Abbott Cardiovascular Systems Inc. Variable thickness embolic filtering devices and methods of manufacturing the same
US7959646B2 (en) 2001-06-29 2011-06-14 Abbott Cardiovascular Systems Inc. Filter device for embolic protection systems
US7959647B2 (en) 2001-08-30 2011-06-14 Abbott Cardiovascular Systems Inc. Self furling umbrella frame for carotid filter
US7842064B2 (en) 2001-08-31 2010-11-30 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
US8262689B2 (en) 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
US7972356B2 (en) 2001-12-21 2011-07-05 Abbott Cardiovascular Systems, Inc. Flexible and conformable embolic filtering devices
US9204956B2 (en) 2002-02-20 2015-12-08 C. R. Bard, Inc. IVC filter with translating hooks
US9113999B2 (en) 2002-09-20 2015-08-25 Nellix, Inc. Methods for deploying a positioning anchor with a stent-graft
US9814612B2 (en) 2002-09-20 2017-11-14 Nellix, Inc. Stent-graft with positioning anchor
US7976560B2 (en) 2002-09-30 2011-07-12 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US8029530B2 (en) 2002-09-30 2011-10-04 Abbott Cardiovascular Systems Inc. Guide wire with embolic filtering attachment
US7815660B2 (en) 2002-09-30 2010-10-19 Advanced Cardivascular Systems, Inc. Guide wire with embolic filtering attachment
US7678131B2 (en) 2002-10-31 2010-03-16 Advanced Cardiovascular Systems, Inc. Single-wire expandable cages for embolic filtering devices
US20130041450A1 (en) * 2002-11-08 2013-02-14 Jacques Séguin Endoprosthesis for vascular bifurcation
US8864817B2 (en) * 2002-11-08 2014-10-21 Jacques Séguin Endoprosthesis for vascular bifurcation
US8591540B2 (en) 2003-02-27 2013-11-26 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
US20050080476A1 (en) * 2003-10-09 2005-04-14 Gunderson Richard C. Medical device delivery system
US7892251B1 (en) 2003-11-12 2011-02-22 Advanced Cardiovascular Systems, Inc. Component for delivering and locking a medical device to a guide wire
US7879065B2 (en) 2004-03-19 2011-02-01 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US8308753B2 (en) 2004-03-19 2012-11-13 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US10022249B2 (en) 2004-07-22 2018-07-17 Nellix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
US10905571B2 (en) 2004-07-22 2021-02-02 Nellix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
US8870941B2 (en) 2004-07-22 2014-10-28 Nellix Graft systems having filling structures supported by scaffolds and methods for their use
US7704267B2 (en) 2004-08-04 2010-04-27 C. R. Bard, Inc. Non-entangling vena cava filter
US8372109B2 (en) 2004-08-04 2013-02-12 C. R. Bard, Inc. Non-entangling vena cava filter
US8628556B2 (en) 2004-08-04 2014-01-14 C. R. Bard, Inc. Non-entangling vena cava filter
US9144484B2 (en) 2004-08-04 2015-09-29 C. R. Bard, Inc. Non-entangling vena cava filter
US11103339B2 (en) 2004-08-04 2021-08-31 C. R. Bard, Inc. Non-entangling vena cava filter
US7887579B2 (en) * 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
US8795315B2 (en) 2004-10-06 2014-08-05 Cook Medical Technologies Llc Emboli capturing device having a coil and method for capturing emboli
US10512531B2 (en) 2004-11-12 2019-12-24 C. R. Bard, Inc. Filter delivery system
US8992562B2 (en) 2004-11-12 2015-03-31 C.R. Bard, Inc. Filter delivery system
US7794473B2 (en) 2004-11-12 2010-09-14 C.R. Bard, Inc. Filter delivery system
US8267954B2 (en) 2005-02-04 2012-09-18 C. R. Bard, Inc. Vascular filter with sensing capability
US8945169B2 (en) 2005-03-15 2015-02-03 Cook Medical Technologies Llc Embolic protection device
US8221446B2 (en) 2005-03-15 2012-07-17 Cook Medical Technologies Embolic protection device
US9259305B2 (en) 2005-03-31 2016-02-16 Abbott Cardiovascular Systems Inc. Guide wire locking mechanism for rapid exchange and other catheter systems
US10729527B2 (en) 2005-05-12 2020-08-04 C.R. Bard, Inc. Removable embolus blood clot filter
US9498318B2 (en) 2005-05-12 2016-11-22 C.R. Bard, Inc. Removable embolus blood clot filter
US9017367B2 (en) 2005-05-12 2015-04-28 C. R. Bard, Inc. Tubular filter
US11554006B2 (en) 2005-05-12 2023-01-17 C. R. Bard Inc. Removable embolus blood clot filter
US8574261B2 (en) 2005-05-12 2013-11-05 C. R. Bard, Inc. Removable embolus blood clot filter
US11730583B2 (en) 2005-05-12 2023-08-22 C.R. Band. Inc. Tubular filter
US10813738B2 (en) 2005-05-12 2020-10-27 C.R. Bard, Inc. Tubular filter
US8613754B2 (en) 2005-05-12 2013-12-24 C. R. Bard, Inc. Tubular filter
US8109962B2 (en) 2005-06-20 2012-02-07 Cook Medical Technologies Llc Retrievable device having a reticulation portion with staggered struts
US7850708B2 (en) 2005-06-20 2010-12-14 Cook Incorporated Embolic protection device having a reticulated body with staggered struts
US8845677B2 (en) 2005-06-20 2014-09-30 Cook Medical Technologies Llc Retrievable device having a reticulation portion with staggered struts
US8906084B2 (en) 2005-07-07 2014-12-09 Nellix, Inc. System and methods for endovascular aneurysm treatment
US9737425B2 (en) 2005-07-07 2017-08-22 Nellix, Inc. System and methods for endovascular aneurysm treatment
US7867247B2 (en) 2005-07-12 2011-01-11 Cook Incorporated Methods for embolic protection during treatment of a stenotic lesion in a body vessel
US7766934B2 (en) 2005-07-12 2010-08-03 Cook Incorporated Embolic protection device with an integral basket and bag
US7771452B2 (en) 2005-07-12 2010-08-10 Cook Incorporated Embolic protection device with a filter bag that disengages from a basket
US8187298B2 (en) 2005-08-04 2012-05-29 Cook Medical Technologies Llc Embolic protection device having inflatable frame
US8430903B2 (en) 2005-08-09 2013-04-30 C. R. Bard, Inc. Embolus blood clot filter and delivery system
US10492898B2 (en) 2005-08-09 2019-12-03 C.R. Bard, Inc. Embolus blood clot filter and delivery system
US11517415B2 (en) 2005-08-09 2022-12-06 C.R. Bard, Inc. Embolus blood clot filter and delivery system
US9387063B2 (en) 2005-08-09 2016-07-12 C. R. Bard, Inc. Embolus blood clot filter and delivery system
US8377092B2 (en) 2005-09-16 2013-02-19 Cook Medical Technologies Llc Embolic protection device
US8632562B2 (en) 2005-10-03 2014-01-21 Cook Medical Technologies Llc Embolic protection device
US8182508B2 (en) 2005-10-04 2012-05-22 Cook Medical Technologies Llc Embolic protection device
US8252017B2 (en) 2005-10-18 2012-08-28 Cook Medical Technologies Llc Invertible filter for embolic protection
US8216269B2 (en) 2005-11-02 2012-07-10 Cook Medical Technologies Llc Embolic protection device having reduced profile
US8152831B2 (en) 2005-11-17 2012-04-10 Cook Medical Technologies Llc Foam embolic protection device
US9131999B2 (en) 2005-11-18 2015-09-15 C.R. Bard Inc. Vena cava filter with filament
US10842608B2 (en) 2005-11-18 2020-11-24 C.R. Bard, Inc. Vena cava filter with filament
US10188496B2 (en) 2006-05-02 2019-01-29 C. R. Bard, Inc. Vena cava filter formed from a sheet
US10980626B2 (en) 2006-05-02 2021-04-20 C. R. Bard, Inc. Vena cava filter formed from a sheet
US9326842B2 (en) 2006-06-05 2016-05-03 C. R . Bard, Inc. Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access
US11141257B2 (en) 2006-06-05 2021-10-12 C. R. Bard, Inc. Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access
US8613698B2 (en) 2006-07-10 2013-12-24 Mcneil-Ppc, Inc. Resilient device
US9050183B2 (en) 2006-07-10 2015-06-09 First Quality Hygienic, Inc. Resilient device
US8608639B2 (en) 2006-07-10 2013-12-17 Mcneil-Ppc, Inc. Resilient device
US8753258B2 (en) 2006-07-10 2014-06-17 Mcneil-Ppc, Inc. Resilient device
US9173768B2 (en) 2006-07-10 2015-11-03 First Quality Hygienic, Inc. Resilient device
US7717892B2 (en) 2006-07-10 2010-05-18 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US10004584B2 (en) 2006-07-10 2018-06-26 First Quality Hygienic, Inc. Resilient intravaginal device
US8177706B2 (en) 2006-07-10 2012-05-15 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US10219884B2 (en) 2006-07-10 2019-03-05 First Quality Hygienic, Inc. Resilient device
US7892163B2 (en) 2006-07-10 2011-02-22 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US8047980B2 (en) 2006-07-10 2011-11-01 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US9907639B2 (en) 2006-09-19 2018-03-06 Cook Medical Technologies Llc Apparatus and methods for in situ embolic protection
US9901434B2 (en) 2007-02-27 2018-02-27 Cook Medical Technologies Llc Embolic protection device including a Z-stent waist band
US20080221656A1 (en) * 2007-03-06 2008-09-11 William A. Cook Australia Pty. Ltd. Endovascular deployment device
US8702780B2 (en) * 2007-03-06 2014-04-22 Cook Medical Technologies Llc Endovascular deployment device
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US7867273B2 (en) 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
US8419748B2 (en) 2007-09-14 2013-04-16 Cook Medical Technologies Llc Helical thrombus removal device
US9138307B2 (en) 2007-09-14 2015-09-22 Cook Medical Technologies Llc Expandable device for treatment of a stricture in a body vessel
US8252018B2 (en) 2007-09-14 2012-08-28 Cook Medical Technologies Llc Helical embolic protection device
US9398946B2 (en) 2007-09-14 2016-07-26 Cook Medical Technologies Llc Expandable device for treatment of a stricture in a body vessel
US9034007B2 (en) 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
WO2009103011A1 (en) * 2008-02-13 2009-08-20 Nellix, Inc. Graft endoframe having axially variable characteristics
US20100004728A1 (en) * 2008-02-13 2010-01-07 Nellix, Inc. Graft endoframe having axially variable characteristics
US9687242B2 (en) * 2008-04-03 2017-06-27 Cook Medical Technologies Llc Occlusion device
US20110054512A1 (en) * 2008-04-03 2011-03-03 William Cook Europe Aps Occlusion device
US20090264898A1 (en) * 2008-04-17 2009-10-22 Medtronic Vascular, Inc. Steerable Endovascular Retrieval Device
US9730700B2 (en) 2008-04-25 2017-08-15 Nellix, Inc. Stent graft delivery system
US8926682B2 (en) 2008-04-25 2015-01-06 Nellix, Inc. Stent graft delivery system
US10898201B2 (en) 2008-04-25 2021-01-26 Nellix, Inc. Stent graft delivery system
US8945199B2 (en) 2008-06-04 2015-02-03 Nellix, Inc. Sealing apparatus and methods of use
US20090319029A1 (en) * 2008-06-04 2009-12-24 Nellix, Inc. Docking apparatus and methods of use
US8388644B2 (en) 2008-12-29 2013-03-05 Cook Medical Technologies Llc Embolic protection device and method of use
US8657849B2 (en) 2008-12-29 2014-02-25 Cook Medical Technologies Llc Embolic protection device and method of use
US20110144689A1 (en) * 2009-12-15 2011-06-16 Med Institute, Inc. Occlusion Device
US11638638B2 (en) 2009-12-30 2023-05-02 Endologix Llc Filling structure for a graft system and methods of use
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US8831741B2 (en) 2011-03-14 2014-09-09 Medtronic Vascular, Inc. Catheter with deflectable cap
US10390836B2 (en) 2011-04-06 2019-08-27 Endologix, Inc. Method and system for treating aneurysms
US9415195B2 (en) 2011-04-06 2016-08-16 Engologix, Inc. Method and system for treating aneurysms
US10349946B2 (en) 2011-04-06 2019-07-16 Endologix, Inc. Method and system for treating aneurysms
US11786252B2 (en) 2011-04-06 2023-10-17 Endologix Llc Method and system for treating aneurysms
US10617510B2 (en) 2012-01-06 2020-04-14 Emboline, Inc. Introducer sheath with embolic protection
US9877821B2 (en) 2012-01-06 2018-01-30 Emboline, Inc. Introducer sheath with embolic protection
US9427234B2 (en) * 2012-06-13 2016-08-30 Cook Medical Technologies Llc Implantable occluder or filter
US9289536B2 (en) 2013-03-14 2016-03-22 Endologix, Inc. Method for forming materials in situ within a medical device
US8895891B2 (en) 2013-03-15 2014-11-25 Insera Therapeutics, Inc. Methods of cutting tubular devices
US10342655B2 (en) 2013-03-15 2019-07-09 Insera Therapeutics, Inc. Methods of treating a thrombus in an artery using cyclical aspiration patterns
US8882797B2 (en) 2013-03-15 2014-11-11 Insera Therapeutics, Inc. Methods of embolic filtering
US8852227B1 (en) 2013-03-15 2014-10-07 Insera Therapeutics, Inc. Woven radiopaque patterns
US8753371B1 (en) * 2013-03-15 2014-06-17 Insera Therapeutics, Inc. Woven vascular treatment systems
US9314324B2 (en) 2013-03-15 2016-04-19 Insera Therapeutics, Inc. Vascular treatment devices and methods
US8783151B1 (en) 2013-03-15 2014-07-22 Insera Therapeutics, Inc. Methods of manufacturing vascular treatment devices
US11298144B2 (en) 2013-03-15 2022-04-12 Insera Therapeutics, Inc. Thrombus aspiration facilitation systems
US10335260B2 (en) 2013-03-15 2019-07-02 Insera Therapeutics, Inc. Methods of treating a thrombus in a vein using cyclical aspiration patterns
US9592068B2 (en) 2013-03-15 2017-03-14 Insera Therapeutics, Inc. Free end vascular treatment systems
US9750524B2 (en) 2013-03-15 2017-09-05 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy systems
US9833251B2 (en) 2013-03-15 2017-12-05 Insera Therapeutics, Inc. Variably bulbous vascular treatment devices
US8904914B2 (en) 2013-03-15 2014-12-09 Insera Therapeutics, Inc. Methods of using non-cylindrical mandrels
US9901435B2 (en) 2013-03-15 2018-02-27 Insera Therapeutics, Inc. Longitudinally variable vascular treatment devices
US10463468B2 (en) 2013-03-15 2019-11-05 Insera Therapeutics, Inc. Thrombus aspiration with different intensity levels
US8910555B2 (en) 2013-03-15 2014-12-16 Insera Therapeutics, Inc. Non-cylindrical mandrels
US9179931B2 (en) 2013-03-15 2015-11-10 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy systems
US8789452B1 (en) 2013-03-15 2014-07-29 Insera Therapeutics, Inc. Methods of manufacturing woven vascular treatment devices
US9179995B2 (en) 2013-03-15 2015-11-10 Insera Therapeutics, Inc. Methods of manufacturing slotted vascular treatment devices
US10251739B2 (en) 2013-03-15 2019-04-09 Insera Therapeutics, Inc. Thrombus aspiration using an operator-selectable suction pattern
US8866049B1 (en) 2013-07-29 2014-10-21 Insera Therapeutics, Inc. Methods of selectively heat treating tubular devices
US8870901B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Two-way shape memory vascular treatment systems
US8803030B1 (en) 2013-07-29 2014-08-12 Insera Therapeutics, Inc. Devices for slag removal
US8813625B1 (en) 2013-07-29 2014-08-26 Insera Therapeutics, Inc. Methods of manufacturing variable porosity flow diverting devices
US10390926B2 (en) 2013-07-29 2019-08-27 Insera Therapeutics, Inc. Aspiration devices and methods
US8816247B1 (en) 2013-07-29 2014-08-26 Insera Therapeutics, Inc. Methods for modifying hypotubes
US8932320B1 (en) 2013-07-29 2015-01-13 Insera Therapeutics, Inc. Methods of aspirating thrombi
US8828045B1 (en) 2013-07-29 2014-09-09 Insera Therapeutics, Inc. Balloon catheters
US8932321B1 (en) 2013-07-29 2015-01-13 Insera Therapeutics, Inc. Aspiration systems
US8795330B1 (en) 2013-07-29 2014-08-05 Insera Therapeutics, Inc. Fistula flow disruptors
US8790365B1 (en) 2013-07-29 2014-07-29 Insera Therapeutics, Inc. Fistula flow disruptor methods
US8872068B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Devices for modifying hypotubes
US8863631B1 (en) 2013-07-29 2014-10-21 Insera Therapeutics, Inc. Methods of manufacturing flow diverting devices
US8845679B1 (en) 2013-07-29 2014-09-30 Insera Therapeutics, Inc. Variable porosity flow diverting devices
US10751159B2 (en) 2013-07-29 2020-08-25 Insera Therapeutics, Inc. Systems for aspirating thrombus during neurosurgical procedures
US8784446B1 (en) 2013-07-29 2014-07-22 Insera Therapeutics, Inc. Circumferentially offset variable porosity devices
US8845678B1 (en) 2013-07-29 2014-09-30 Insera Therapeutics Inc. Two-way shape memory vascular treatment methods
US8859934B1 (en) 2013-07-29 2014-10-14 Insera Therapeutics, Inc. Methods for slag removal
US8735777B1 (en) 2013-07-29 2014-05-27 Insera Therapeutics, Inc. Heat treatment systems
US8870910B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Methods of decoupling joints
US8869670B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Methods of manufacturing variable porosity devices
US9775591B2 (en) * 2013-11-21 2017-10-03 Edwards Lifesciences Corporation Sealing devices and related delivery apparatuses
US20150142049A1 (en) * 2013-11-21 2015-05-21 Edwards Lifesciences Corporation Sealing devices, related delivery apparatuses, and uses thereof
US9788841B2 (en) 2014-06-25 2017-10-17 Cook Medical Technologies Llc Implantable medical device with lumen constriction
US10398443B2 (en) 2014-06-25 2019-09-03 Cook Medical Technologies Llc Implantable medical device with lumen constriction
US20170035311A1 (en) * 2015-08-06 2017-02-09 Boston Scientific Scimed Inc. Deployment control apparatus for a catheter with a deployable array
US10492857B2 (en) * 2015-08-06 2019-12-03 Boston Scientific Scimed Inc Deployment control apparatus for a catheter with a deployable array
US11937957B2 (en) 2015-11-09 2024-03-26 Radiaction Ltd. Radiation shielding apparatuses and applications thereof
US11399927B2 (en) 2015-12-29 2022-08-02 Emboline, Inc. Multi-access intraprocedural embolic protection device
US10617509B2 (en) 2015-12-29 2020-04-14 Emboline, Inc. Multi-access intraprocedural embolic protection device
US11191611B2 (en) 2016-06-03 2021-12-07 Somatex Medical Technologies Gmbh Marking device and implantation system
US11779432B2 (en) 2016-06-03 2023-10-10 Somatex Medical Technologies Gmbh Marking device and implantation system
US11877898B2 (en) 2016-11-23 2024-01-23 Hologic, Inc. Biopsy site marker
US20210228216A1 (en) * 2018-05-08 2021-07-29 W. L. Gore & Associates, Inc. Occluder devices
US11564693B2 (en) * 2018-05-08 2023-01-31 W. L. Gore & Associates, Inc. Occluder devices
US11304792B2 (en) 2019-02-13 2022-04-19 Emboline, Inc. Catheter with integrated embolic protection device

Also Published As

Publication number Publication date
DE69828714T8 (en) 2006-04-27
JPH10295825A (en) 1998-11-10
DE69828714D1 (en) 2005-03-03
CA2229325C (en) 2001-09-04
DE69828714T2 (en) 2006-01-12
CA2229325A1 (en) 1998-08-12
EP0864300B1 (en) 2005-01-26
EP0864300A1 (en) 1998-09-16
JP3990019B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
US6254633B1 (en) Delivery device for a medical device having a constricted region
US10610390B2 (en) Implant delivery system and method of use
US6280465B1 (en) Apparatus and method for delivering a self-expanding stent on a guide wire
US8057503B2 (en) Blood vessel occluder and method of use
US9326792B2 (en) Methods for fluid flow through body passages
EP2585157B1 (en) Method and apparatus for the endoluminal delivery of intravascular devices
US6380457B1 (en) Apparatus for deploying body implantable stents
US6458151B1 (en) Ostial stent positioning device and method
US5645559A (en) Multiple layer stent
JP2006175245A (en) Device for deploying endovascular implant piece having bifurcation
US20190083228A1 (en) Devices for fluid flow through body passages
JPH0724688B2 (en) Stent that can be radially expanded in a blood vessel and its implantation device
BRPI0809253A2 (en) DEVICES AND METHODS FOR EMBOLIC PROTECTIVE STENT INSTALLATION.
JP2008508936A (en) Intravascular stent assembly and method of placement thereof
US20170216068A1 (en) Anti-migration stent deployment delivery systems and methods
CN104042378A (en) Distal Capture Device for a Self-Expanding Stent
US20180125687A1 (en) Retrieval of medical devices
CN111031971B (en) Implant delivery system

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORVITA CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PINCHUK, LEONARD;MARTIN, JOHN B., JR.;REEL/FRAME:008912/0319

Effective date: 19971209

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12