US5411769A - Method of producing micromechanical devices - Google Patents

Method of producing micromechanical devices Download PDF

Info

Publication number
US5411769A
US5411769A US08/128,459 US12845993A US5411769A US 5411769 A US5411769 A US 5411769A US 12845993 A US12845993 A US 12845993A US 5411769 A US5411769 A US 5411769A
Authority
US
United States
Prior art keywords
source material
chain aliphatic
heating
long
polar compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/128,459
Inventor
Larry J. Hornbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP93103749A priority Critical patent/EP0615147B1/en
Priority claimed from EP93103749A external-priority patent/EP0615147B1/en
Priority to JP05425993A priority patent/JP3320821B2/en
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Priority to US08/128,459 priority patent/US5411769A/en
Application granted granted Critical
Publication of US5411769A publication Critical patent/US5411769A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/0005Anti-stiction coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00912Treatments or methods for avoiding stiction of flexible or moving parts of MEMS
    • B81C1/0096For avoiding stiction when the device is in use, i.e. after manufacture has been completed
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/11Treatments for avoiding stiction of elastic or moving parts of MEMS
    • B81C2201/112Depositing an anti-stiction or passivation coating, e.g. on the elastic or moving parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • This invention deals with micromechanical devices, more particularly with micromechanical deformable mirror devices.
  • Micromechanical DMDs contain an activation or addressing electrode, a support post or posts, underneath a hinge or hinges, which in turn supports a deflection element suspended over the electrode.
  • the DMDs are primarily used in the direction of light in optical systems, with a mirrored deflection element.
  • the operation of such devices involves activating the electrode which builds up electrostatic charge in the gap between electrode and deflection element.
  • the deflection element then flexes on its hinge or hinges and moves towards the electrode. When the charge is removed, the deflection element returns to its undeflected position.
  • One method of freeing the deflection element of a DMD is by the application of a voltage pulse train with a frequency around the resonant frequency of the hinge. When the pulse train ceases, the deflection element returns to its undeflected position.
  • Other objects and advantages will be obvious, and will in part appear hereinafter and will be accomplished by the present invention which provides a technique for surface passivation in micromechanical devices. This technique comprises the cleaning of the surface, the heating of the device with the source material in an evacuated chamber, and the deposition of the source material onto the device, resulting in an oriented monolayer for surface passivation.
  • FIG. 1a shows an undeflected prior art torsion beam DMD.
  • FIG. 1b shows a deflected prior art torsion beam DMD.
  • FIG. 2 shows a flow diagram of the method of this invention.
  • FIG. 3a shows the molecular structure of a perfluordecanoic acid (PFDA) molecule.
  • FIG. 3b shows a monolayer upon a substrate.
  • FIG. 3c shows a beam tip and an electrode actor passivation.
  • FIG. 4 shows a single chamber deposition apparatus.
  • FIG. 5 shows a dual chamber deposition apparatus.
  • FIG. 1a shows an undeflected torsion beam DMD (deformable mirror device).
  • address electrode 10 When address electrode 10 is activated, an electrostatic attractive force builds between the electrode and the deflection element 12.
  • FIG. 1b the attraction between the two causes the deflection element to bend on its hinge 14, which is supported by support layer 16. The element twists and its edge touches or lands on the substrate 20 at landing electrode 18.
  • Van der Waals forces increase as the surface energy of a material increase.
  • the ratio of the Van der Waals forces to the restorative forces in the beam increases over time.
  • the contact area between the surfaces increases, and the element has a more difficult time overcoming the increasing Van der Waals forces and breaking free of the landing electrode when the addressing electrode is deactivated by removal of the voltage.
  • the element cannot break free of the landing electrode. This can be overcome by application of a voltage pulse train to the landing electrode. Over time, the amount of voltage applied must be increased to compensate for increasing Van der Waals forces. Finally, the necessary amount of voltage to free the element results in too much electrostatic force on the beam, such that the element my damaged and possibly even causing the beam to snap off of its hinge.
  • a better method to eliminate problems of this sort is to passivate the devices as shown in FIG. 2.
  • the necessary processing at the wafer level is accomplished in step 22.
  • this involves among other things layering and etching the wafer with the electrode circuitry, the organic spacer and the mirror surface.
  • the wafers are then divided up into chips and the process moves on to step 24.
  • the surfaces of the micromechanical device that is to be activated must be cleaned.
  • the organic spacer in addition to cleaning the devices, the organic spacer must be undercut to allow free movement of the deflection elements upon their posts. This is typically accomplished with a plasma etch. Consequently after a plasma etch step, the cleaning may be accomplished with oxygen plasma at room temperature. Cleaning removes any organic contaminants and chemisorbed and physisorbed water from the surface. This method also eliminates the possibility of mechanical damage to the DMD, which can occur with the use of solvents and high temperature baking.
  • the device surfaces are then activated as shown in step 26 by placing them into a oxygen/fluorine plasma.
  • Typical conditions for this step are: Power--100W; Pressure--2 torr; Flow rates (NF 3 --2 SCCM, O 2 --180 SCCM, He--50 SCCM); Temp--Room; and Time--20 sec. Activation provides a high energy surface which allows the source material molecules to form into a close-packed oriented monolayer.
  • the heating of devices as required by step 28 can be done in many ways.
  • a preferred method is to place the chips with the surfaces to be passivated fully exposed, and a small quantity of the source material to be used as the passivating material together in a covered glass container.
  • powdered perfluordecanoic acid (PFDA) is placed in the container as the passivating material.
  • PFDA powdered perfluordecanoic acid
  • This covered container is then placed in a vacuum oven. As the PFDA begins to melt, it produces a vapor that deposits upon the exposed and activated surfaces of the chips.
  • step 30 afar the deposition is finished, the cover of the container is then removed and the oven is evacuated and continuously pumped to eliminate any excess source material. This ensures that the only PFDA left is that which is in the deposited monolayer upon the chips.
  • FIG. 3a shows the molecular structure of a molecule of PFDA.
  • the COOH group 34 is the polar end that will be oriented to contact the surface to be passivated.
  • FIG. 3b shows the relationship of the molecule to the substrate afar passivation.
  • the polar end 34 forms a bond with the surface, orienting the PFDA molecule accordingly.
  • FIG. 3c shows the beam 36 and the landing electrode 38 with their respective monolayers of the passivation material. These monolayers help prevent the build up of the Van der Waals forces between the two pieces, by lowering the surface energy.
  • FIG. 4 shows one of the many ways the vapor deposition can be accomplished.
  • Oven 40 is preheated to 80° C.
  • Source material 44 in this case PFDA
  • PFDA is placed with the chips 46 in the glass container 48. These are placed in the oven which is evacuated by valve 50, and backfired through valve 42 with dry N 2 . When the PFDA reaches its melting temperature it produces a vapor which is deposited onto the surface of the chips.
  • the lid of the container is removed after about 5 minutes of deposition, and the oven is evacuated and continuously pumped to eliminate the excess PFDA.
  • FIG. 5 shows an alternate configuration for the vapor deposition process.
  • Two ovens are used, connected by a tube containing a valve.
  • Oven 52 contains the source 54 and oven 56 contains the chips 58.
  • the valve 68 is opened and both chambers are evacuated. The valve is then dosed.
  • the ovens are backfilled with N 2 through valves 60a and 60b.
  • the valve is opened and the vapor allowed to travel into the second oven, along pipe 70 past the valve and into pipe 72.
  • the time is up, the valve is closed, and the second oven evacuated and pumped through valve 62.
  • the only PFDA left in the second oven is that which was deposited as the monolayer.
  • the unique nature of the resultant monolayer produces many beneficial effects, three of which are low surface energy, low coefficient of friction, and high wear resistance. These effects result from three properties of the layer.
  • the --CF 3 terminal group forms the outermost layer of the absorbed monolayer and it is this group that is responsible for the low Van der Waals force, or low surface energy and low coefficient of friction of a surface treated with such a monolayer.
  • the polar ends of the molecules are strongly adsorbed onto the substrate.
  • the molecular chains are closely packed and oriented parallel to one another so as to give stiffness to the film in a direction parallel to the substrate surface.
  • Longer chains give greater wear resistance because, at a critical value of chain length, the monolayer undergoes a phase transition from a condensed liquid to a solid.
  • Any long-chain aliphatic halogenated polar compound that is, a compound with a terminal COOH group and a terminal CF 8 group, can be used.

Abstract

It is possible to use an oriented monolayer to limit the Van der Waals forces between two elements by passivation. The invention disclosed here details how to do so by building the device to be passivated, cleaning the surface to be passivated, activating the surface, heating it along with the material to be used as the monolayer, exposing a vapor of the material to the surface and evacuating the excess material, leaving only the monolayer.

Description

This is a division of application Ser. No. 07/823,580, filed Jan. 16, 1992, now U.S. Pat. No. 5,331,454, which is a continuation, of application Ser. No. 07/612,946, filed Nov. 13, 1990, abandoned.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention deals with micromechanical devices, more particularly with micromechanical deformable mirror devices.
2. Description of the Prior Art
There are many different types of micromechanical devices, three of which are micro-motors, micro-gears, and micromechanical deformable mirror devices (DMD). Micromechanical DMDs contain an activation or addressing electrode, a support post or posts, underneath a hinge or hinges, which in turn supports a deflection element suspended over the electrode. The DMDs are primarily used in the direction of light in optical systems, with a mirrored deflection element.
The operation of such devices involves activating the electrode which builds up electrostatic charge in the gap between electrode and deflection element. The deflection element then flexes on its hinge or hinges and moves towards the electrode. When the charge is removed, the deflection element returns to its undeflected position.
Contact between the operating and supporting pieces of micromechanical devices such as micro-gears and micro-motors may result in sticking. Likewise, if the deflection element of a DMD comes into contact with the electrode, it may possibly stick in the deflected position. One method of freeing the deflection element of a DMD is by the application of a voltage pulse train with a frequency around the resonant frequency of the hinge. When the pulse train ceases, the deflection element returns to its undeflected position.
This method of reset works very well. However, after many contacts between electrode and deflection element, the wear increases the effective contact area. This requires higher and higher voltages for reset.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a passivation layer for points of contact in micromechanical devices. It as another object of this invention to provide the method in which such a layer is developed. Other objects and advantages will be obvious, and will in part appear hereinafter and will be accomplished by the present invention which provides a technique for surface passivation in micromechanical devices. This technique comprises the cleaning of the surface, the heating of the device with the source material in an evacuated chamber, and the deposition of the source material onto the device, resulting in an oriented monolayer for surface passivation.
BRIEF DESCRIPTION OF THE DRAWINGS
For a complete understanding of the invention, and the advantages thereof, reference is now made to the following description in conjunction with the accompanying drawings, in which:
FIG. 1a shows an undeflected prior art torsion beam DMD.
FIG. 1b shows a deflected prior art torsion beam DMD.
FIG. 2 shows a flow diagram of the method of this invention.
FIG. 3a shows the molecular structure of a perfluordecanoic acid (PFDA) molecule.
FIG. 3b shows a monolayer upon a substrate.
FIG. 3c shows a beam tip and an electrode actor passivation.
FIG. 4 shows a single chamber deposition apparatus.
FIG. 5 shows a dual chamber deposition apparatus.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1a shows an undeflected torsion beam DMD (deformable mirror device). When address electrode 10 is activated, an electrostatic attractive force builds between the electrode and the deflection element 12. In FIG. 1b, the attraction between the two causes the deflection element to bend on its hinge 14, which is supported by support layer 16. The element twists and its edge touches or lands on the substrate 20 at landing electrode 18.
The contact between the electrode 18 and the element 12 results in attractive inter-molecular forces between the two surfaces commonly referred to as Van der Waals forces. Van der Waals forces increase as the surface energy of a material increase. The ratio of the Van der Waals forces to the restorative forces in the beam increases over time. As more landings are made, the contact area between the surfaces increases, and the element has a more difficult time overcoming the increasing Van der Waals forces and breaking free of the landing electrode when the addressing electrode is deactivated by removal of the voltage. Eventually, the element cannot break free of the landing electrode. This can be overcome by application of a voltage pulse train to the landing electrode. Over time, the amount of voltage applied must be increased to compensate for increasing Van der Waals forces. Finally, the necessary amount of voltage to free the element results in too much electrostatic force on the beam, such that the element my damaged and possibly even causing the beam to snap off of its hinge.
According to the present invention, a better method to eliminate problems of this sort is to passivate the devices as shown in FIG. 2. The necessary processing at the wafer level is accomplished in step 22. In the case of the DMD, this involves among other things layering and etching the wafer with the electrode circuitry, the organic spacer and the mirror surface. The wafers are then divided up into chips and the process moves on to step 24.
According to step 24, the surfaces of the micromechanical device that is to be activated must be cleaned. With the-DMD, in addition to cleaning the devices, the organic spacer must be undercut to allow free movement of the deflection elements upon their posts. This is typically accomplished with a plasma etch. Consequently after a plasma etch step, the cleaning may be accomplished with oxygen plasma at room temperature. Cleaning removes any organic contaminants and chemisorbed and physisorbed water from the surface. This method also eliminates the possibility of mechanical damage to the DMD, which can occur with the use of solvents and high temperature baking.
After cleaning the surfaces of the devices, the device surfaces are then activated as shown in step 26 by placing them into a oxygen/fluorine plasma. Typical conditions for this step are: Power--100W; Pressure--2 torr; Flow rates (NF3 --2 SCCM, O2 --180 SCCM, He--50 SCCM); Temp--Room; and Time--20 sec. Activation provides a high energy surface which allows the source material molecules to form into a close-packed oriented monolayer.
The heating of devices as required by step 28 can be done in many ways. A preferred method is to place the chips with the surfaces to be passivated fully exposed, and a small quantity of the source material to be used as the passivating material together in a covered glass container. In this case, powdered perfluordecanoic acid (PFDA) is placed in the container as the passivating material. This covered container is then placed in a vacuum oven. As the PFDA begins to melt, it produces a vapor that deposits upon the exposed and activated surfaces of the chips.
As shown in step 30, afar the deposition is finished, the cover of the container is then removed and the oven is evacuated and continuously pumped to eliminate any excess source material. This ensures that the only PFDA left is that which is in the deposited monolayer upon the chips.
FIG. 3a shows the molecular structure of a molecule of PFDA. The COOH group 34 is the polar end that will be oriented to contact the surface to be passivated. FIG. 3b shows the relationship of the molecule to the substrate afar passivation. The polar end 34 forms a bond with the surface, orienting the PFDA molecule accordingly. FIG. 3c shows the beam 36 and the landing electrode 38 with their respective monolayers of the passivation material. These monolayers help prevent the build up of the Van der Waals forces between the two pieces, by lowering the surface energy.
FIG. 4 shows one of the many ways the vapor deposition can be accomplished. Oven 40 is preheated to 80° C. Source material 44, in this case PFDA, is placed with the chips 46 in the glass container 48. These are placed in the oven which is evacuated by valve 50, and backfired through valve 42 with dry N2. When the PFDA reaches its melting temperature it produces a vapor which is deposited onto the surface of the chips. The lid of the container is removed after about 5 minutes of deposition, and the oven is evacuated and continuously pumped to eliminate the excess PFDA.
FIG. 5 shows an alternate configuration for the vapor deposition process. Two ovens are used, connected by a tube containing a valve. Oven 52 contains the source 54 and oven 56 contains the chips 58. The valve 68 is opened and both chambers are evacuated. The valve is then dosed. The ovens are backfilled with N2 through valves 60a and 60b. When the source begins to vaporize, the valve is opened and the vapor allowed to travel into the second oven, along pipe 70 past the valve and into pipe 72. When the time is up, the valve is closed, and the second oven evacuated and pumped through valve 62. The only PFDA left in the second oven is that which was deposited as the monolayer.
The unique nature of the resultant monolayer produces many beneficial effects, three of which are low surface energy, low coefficient of friction, and high wear resistance. These effects result from three properties of the layer. First, the --CF3 terminal group forms the outermost layer of the absorbed monolayer and it is this group that is responsible for the low Van der Waals force, or low surface energy and low coefficient of friction of a surface treated with such a monolayer. Second, the polar ends of the molecules are strongly adsorbed onto the substrate. Third, the molecular chains are closely packed and oriented parallel to one another so as to give stiffness to the film in a direction parallel to the substrate surface. Longer chains give greater wear resistance because, at a critical value of chain length, the monolayer undergoes a phase transition from a condensed liquid to a solid. Any long-chain aliphatic halogenated polar compound, that is, a compound with a terminal COOH group and a terminal CF8 group, can be used.
Thus, although there has been described to this point particular embodiments for passivation techniques, using an oriented monolayer, it is not intended that such specific references be considered as limitations upon the scope of this invention except in-so-far as set forth in the following claims.

Claims (19)

What is claimed is:
1. A method for producing a low surface energy wear resistant thin film on the surface of a micromechanical device comprising the steps of:
a) cleaning said device;
b) activating the surface of said cleaned device;
c) heating said activated surface;
d) heating a source material to produce a vapor, wherein said source material is a long-chain aliphatic halogenated polar compound; and
e) exposing said activated surface to said source material vapor to deposit a passivating layer on said surface.
2. The method of claim 1 wherein said exposing step deposits an oriented monolayer of said source material.
3. The method of claim 1 wherein said micromechanical device is a deformable mirror device.
4. The method of claim 1 wherein said activating step comprises the step of placing said device into an oxygen plasma.
5. The method of claim 1 wherein said step of heating said device surface and said source material, and said step of exposing the device surface to a source material vapor comprises the steps of placing said device and said source material in a covered container and then placing said covered container in a vacuum oven and heating said vacuum oven.
6. The method of claim 1 wherein said long-chain aliphatic halogenated polar compound is perfluordecanoic acid (PFDA).
7. The method of claim 1 further comprising the step of removing excess long-chain aliphatic halogenated polar compound from said device.
8. The method of claim 7 wherein said step of removing excess long-chain aliphatic halogenated polar compound from said device comprises evacuating a chamber containing said device.
9. A method for producing a low surface energy wear resistant thin film on the surface of a micromechanical device comprising the steps of:
a) cleaning said device;
b) activating the surface of said cleaned device;
c) heating said activated surface;
d) heating a source material to produce a vapor; and
e) exposing said activated surface to said vapor to deposit a passivating layer on said activated surface.
10. The method of claim 9 wherein said exposing step deposits an oriented monolayer of source material.
11. The method of claim 9 wherein said device is a deformable mirror device.
12. The method of claim 9 further comprising the step of removing excess source material from said device.
13. The method of claim 12 wherein said step of removing excess source material from said device comprises evacuating a chamber containing said device.
14. The method of claim 9 wherein said step of heating said device surface and said source material, and said step of exposing the device surface to a source material vapor comprises the steps of placing said device and said source material in a covered container and then placing said covered container in a vacuum oven and heating said vacuum oven.
15. The method of claim 9 wherein said activating step comprises the step of placing said device in an oxygen plasma.
16. A method for producing a low surface energy wear resistant oriented monolayer on the surface of a deformable micromirror device comprising the steps of:
a) cleaning said device;
b) placing said cleaned device in an oxygen plasma to activate the surface of said cleaned device;
c) placing said device and a long-chain aliphatic halogenated polar compound in a covered container;
d) heating said covered container in a vacuum oven to produce a vapor of said long-chain aliphatic halogenated polar compound;
e) exposing said activated surface to said long-chain aliphatic halogenated polar compound vapor to deposit a passivating layer on said surface.
17. The method of claim 16 wherein said long-chain aliphatic halogenated polar compound is perfluordecanoic acid.
18. The method of claim 16 further comprising the step of removing excess long-chain aliphatic halogenated polar compound from said device.
19. The method of claim 18 wherein said step of removing excess long-chain aliphatic halogenated polar compound from said device comprises evacuating a chamber containing said device.
US08/128,459 1990-11-13 1993-09-29 Method of producing micromechanical devices Expired - Lifetime US5411769A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP93103749A EP0615147B1 (en) 1992-01-16 1993-03-09 Micromechanical deformable mirror device (DMD)
JP05425993A JP3320821B2 (en) 1992-01-16 1993-03-15 Surface treatment method for micromechanical device and resulting device
US08/128,459 US5411769A (en) 1990-11-13 1993-09-29 Method of producing micromechanical devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US61294690A 1990-11-13 1990-11-13
US07/823,580 US5331454A (en) 1990-11-13 1992-01-16 Low reset voltage process for DMD
EP93103749A EP0615147B1 (en) 1992-01-16 1993-03-09 Micromechanical deformable mirror device (DMD)
US08/128,459 US5411769A (en) 1990-11-13 1993-09-29 Method of producing micromechanical devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/823,580 Division US5331454A (en) 1990-11-13 1992-01-16 Low reset voltage process for DMD

Publications (1)

Publication Number Publication Date
US5411769A true US5411769A (en) 1995-05-02

Family

ID=8212674

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/823,580 Expired - Lifetime US5331454A (en) 1990-11-13 1992-01-16 Low reset voltage process for DMD
US08/128,459 Expired - Lifetime US5411769A (en) 1990-11-13 1993-09-29 Method of producing micromechanical devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/823,580 Expired - Lifetime US5331454A (en) 1990-11-13 1992-01-16 Low reset voltage process for DMD

Country Status (2)

Country Link
US (2) US5331454A (en)
DE (1) DE69320170T2 (en)

Cited By (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516561A (en) * 1991-06-20 1996-05-14 British Technology Group Ltd. Applying a fluoropolymer film to a body
US5523878A (en) * 1994-06-30 1996-06-04 Texas Instruments Incorporated Self-assembled monolayer coating for micro-mechanical devices
US5773098A (en) * 1991-06-20 1998-06-30 British Technology Group, Ltd. Applying a fluoropolymer film to a body
US5808797A (en) 1992-04-28 1998-09-15 Silicon Light Machines Method and apparatus for modulating a light beam
US5841579A (en) 1995-06-07 1998-11-24 Silicon Light Machines Flat diffraction grating light valve
US5945898A (en) * 1996-05-31 1999-08-31 The Regents Of The University Of California Magnetic microactuator
US5982553A (en) 1997-03-20 1999-11-09 Silicon Light Machines Display device incorporating one-dimensional grating light-valve array
US6046966A (en) * 1998-06-10 2000-04-04 Seagate Technology, Inc. Magneto-optical data storage system
US6076256A (en) * 1997-04-18 2000-06-20 Seagate Technology, Inc. Method for manufacturing magneto-optical data storage system
US6088102A (en) 1997-10-31 2000-07-11 Silicon Light Machines Display apparatus including grating light-valve array and interferometric optical system
US6101036A (en) 1998-06-23 2000-08-08 Silicon Light Machines Embossed diffraction grating alone and in combination with changeable image display
US6114044A (en) * 1997-05-30 2000-09-05 Regents Of The University Of California Method of drying passivated micromachines by dewetting from a liquid-based process
US6130770A (en) 1998-06-23 2000-10-10 Silicon Light Machines Electron gun activated grating light valve
US6191883B1 (en) 1998-12-30 2001-02-20 Texas Instruments Incorporated Five transistor SRAM cell for small micromirror elements
US6195301B1 (en) 1998-12-30 2001-02-27 Texas Instruments Incorporated Feedback driver for memory array bitline
US6200882B1 (en) 1998-06-10 2001-03-13 Seagate Technology, Inc. Method for processing a plurality of micro-machined mirror assemblies
US6215579B1 (en) 1998-06-24 2001-04-10 Silicon Light Machines Method and apparatus for modulating an incident light beam for forming a two-dimensional image
US6259551B1 (en) 1998-09-30 2001-07-10 Texas Instruments Incorporated Passivation for micromechanical devices
US6266178B1 (en) 1998-12-28 2001-07-24 Texas Instruments Incorporated Guardring DRAM cell
US6271808B1 (en) 1998-06-05 2001-08-07 Silicon Light Machines Stereo head mounted display using a single display device
WO2001059504A2 (en) * 2000-02-11 2001-08-16 Zygo Corporation Stiction release mechanism
US6365229B1 (en) 1998-09-30 2002-04-02 Texas Instruments Incorporated Surface treatment material deposition and recapture
US20020197002A1 (en) * 2001-06-25 2002-12-26 Chuang-Chia Lin Self assembled micro anti-stiction structure
US6707591B2 (en) 2001-04-10 2004-03-16 Silicon Light Machines Angled illumination for a single order light modulator based projection system
US6714337B1 (en) 2002-06-28 2004-03-30 Silicon Light Machines Method and device for modulating a light beam and having an improved gamma response
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
US6728023B1 (en) 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US6764875B2 (en) 1998-07-29 2004-07-20 Silicon Light Machines Method of and apparatus for sealing an hermetic lid to a semiconductor die
US6767751B2 (en) 2002-05-28 2004-07-27 Silicon Light Machines, Inc. Integrated driver process flow
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
US6806997B1 (en) 2003-02-28 2004-10-19 Silicon Light Machines, Inc. Patterned diffractive light modulator ribbon for PDL reduction
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US20040240032A1 (en) * 1994-05-05 2004-12-02 Miles Mark W. Interferometric modulation of radiation
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US6829258B1 (en) 2002-06-26 2004-12-07 Silicon Light Machines, Inc. Rapidly tunable external cavity laser
US6829092B2 (en) 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
US20050002082A1 (en) * 1994-05-05 2005-01-06 Miles Mark W. Interferometric modulation of radiation
US20050106774A1 (en) * 2003-11-13 2005-05-19 Dmitri Simonian Surface processes in fabrications of microstructures
US20050161432A1 (en) * 2004-01-27 2005-07-28 Jonathan Doan Pre-oxidization of deformable elements of microstructures
US20050212067A1 (en) * 2004-03-26 2005-09-29 Robert Duboc Microelectromechanical devices with lubricants and getters formed thereon
US20050214970A1 (en) * 2004-03-26 2005-09-29 Jim Dunphy Method and apparatus for lubricating microelectromechanical devices in packages
US20050225832A1 (en) * 2004-04-13 2005-10-13 Jonathan Doan Method of improving the performance of microstructures
US20050243921A1 (en) * 2004-03-26 2005-11-03 The Hong Kong University Of Science And Technology Efficient multi-frame motion estimation for video compression
US20050247477A1 (en) * 2004-05-04 2005-11-10 Manish Kothari Modifying the electro-mechanical behavior of devices
US20050271810A1 (en) * 2004-06-04 2005-12-08 Boris Kobrin High aspect ratio performance coatings for biological microfluidics
US20050271900A1 (en) * 2004-06-04 2005-12-08 Boris Kobrin Controlled vapor deposition of multilayered coatings adhered by an oxide layer
US20050277277A1 (en) * 2000-10-13 2005-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Dual damascene process
US20050286113A1 (en) * 1995-05-01 2005-12-29 Miles Mark W Photonic MEMS and structures
US7012726B1 (en) 2003-11-03 2006-03-14 Idc, Llc MEMS devices with unreleased thin film components
US20060066542A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Interferometric modulators having charge persistence
US20060066938A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Method and device for multistate interferometric light modulation
US20060066559A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Method and system for writing data to MEMS display elements
US20060077524A1 (en) * 2004-09-27 2006-04-13 Lauren Palmateer System and method for display device with end-of-life phenomena
US20060077150A1 (en) * 2004-09-27 2006-04-13 Sampsell Jeffrey B System and method of providing a regenerating protective coating in a MEMS device
US20060088666A1 (en) * 2004-06-04 2006-04-27 Applied Microstructures, Inc. Controlled vapor deposition of biocompatible coatings over surface-treated substrates
US7119945B2 (en) 2004-03-03 2006-10-10 Idc, Llc Altering temporal response of microelectromechanical elements
US7123216B1 (en) 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
US7130104B2 (en) 2004-09-27 2006-10-31 Idc, Llc Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
US7142346B2 (en) 2003-12-09 2006-11-28 Idc, Llc System and method for addressing a MEMS display
US7161728B2 (en) 2003-12-09 2007-01-09 Idc, Llc Area array modulation and lead reduction in interferometric modulators
US7161730B2 (en) 2004-09-27 2007-01-09 Idc, Llc System and method for providing thermal compensation for an interferometric modulator display
US7164520B2 (en) 2004-05-12 2007-01-16 Idc, Llc Packaging for an interferometric modulator
US20070020392A1 (en) * 2004-06-04 2007-01-25 Applied Microstructures, Inc. Functional organic based vapor deposited coatings adhered by an oxide layer
US7172915B2 (en) 2003-01-29 2007-02-06 Qualcomm Mems Technologies Co., Ltd. Optical-interference type display panel and method for making the same
US7193768B2 (en) 2003-08-26 2007-03-20 Qualcomm Mems Technologies, Inc. Interference display cell
US7198973B2 (en) 2003-04-21 2007-04-03 Qualcomm Mems Technologies, Inc. Method for fabricating an interference display unit
US7221495B2 (en) 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
US7256922B2 (en) 2004-07-02 2007-08-14 Idc, Llc Interferometric modulators with thin film transistors
US7259865B2 (en) 2004-09-27 2007-08-21 Idc, Llc Process control monitors for interferometric modulators
US7259449B2 (en) 2004-09-27 2007-08-21 Idc, Llc Method and system for sealing a substrate
US7289256B2 (en) 2004-09-27 2007-10-30 Idc, Llc Electrical characterization of interferometric modulators
US7299681B2 (en) 2004-09-27 2007-11-27 Idc, Llc Method and system for detecting leak in electronic devices
US7310179B2 (en) 2004-09-27 2007-12-18 Idc, Llc Method and device for selective adjustment of hysteresis window
US7343080B2 (en) 2004-09-27 2008-03-11 Idc, Llc System and method of testing humidity in a sealed MEMS device
US7345805B2 (en) 2004-09-27 2008-03-18 Idc, Llc Interferometric modulator array with integrated MEMS electrical switches
US7355779B2 (en) 2005-09-02 2008-04-08 Idc, Llc Method and system for driving MEMS display elements
US7359066B2 (en) 2004-09-27 2008-04-15 Idc, Llc Electro-optical measurement of hysteresis in interferometric modulators
US7368803B2 (en) 2004-09-27 2008-05-06 Idc, Llc System and method for protecting microelectromechanical systems array using back-plate with non-flat portion
US7388704B2 (en) 2006-06-30 2008-06-17 Qualcomm Mems Technologies, Inc. Determination of interferometric modulator mirror curvature and airgap variation using digital photographs
USRE40436E1 (en) 2001-08-01 2008-07-15 Idc, Llc Hermetic seal and method to create the same
US7405924B2 (en) 2004-09-27 2008-07-29 Idc, Llc System and method for protecting microelectromechanical systems array using structurally reinforced back-plate
US7415186B2 (en) 2004-09-27 2008-08-19 Idc, Llc Methods for visually inspecting interferometric modulators for defects
US7417735B2 (en) 2004-09-27 2008-08-26 Idc, Llc Systems and methods for measuring color and contrast in specular reflective devices
US7424198B2 (en) 2004-09-27 2008-09-09 Idc, Llc Method and device for packaging a substrate
US20080218843A1 (en) * 2006-04-19 2008-09-11 Qualcomm Mems Technologies,Inc. Microelectromechanical device and method utilizing a porous surface
US7446927B2 (en) 2004-09-27 2008-11-04 Idc, Llc MEMS switch with set and latch electrodes
US7453579B2 (en) 2004-09-27 2008-11-18 Idc, Llc Measurement of the dynamic characteristics of interferometric modulators
US20080311690A1 (en) * 2007-04-04 2008-12-18 Qualcomm Mems Technologies, Inc. Eliminate release etch attack by interface modification in sacrificial layers
US7471444B2 (en) 1996-12-19 2008-12-30 Idc, Llc Interferometric modulation of radiation
US20090002804A1 (en) * 2007-06-29 2009-01-01 Qualcomm Mems Technologies, Inc. Electromechanical device treatment with water vapor
US7499208B2 (en) 2004-08-27 2009-03-03 Udc, Llc Current mode display driver circuit realization feature
US7515147B2 (en) 2004-08-27 2009-04-07 Idc, Llc Staggered column drive circuit systems and methods
US7532194B2 (en) 2004-02-03 2009-05-12 Idc, Llc Driver voltage adjuster
US7532195B2 (en) 2004-09-27 2009-05-12 Idc, Llc Method and system for reducing power consumption in a display
US7545550B2 (en) 2004-09-27 2009-06-09 Idc, Llc Systems and methods of actuating MEMS display elements
US7551159B2 (en) 2004-08-27 2009-06-23 Idc, Llc System and method of sensing actuation and release voltages of an interferometric modulator
US7560299B2 (en) 2004-08-27 2009-07-14 Idc, Llc Systems and methods of actuating MEMS display elements
US20090231668A1 (en) * 2007-05-03 2009-09-17 Yoshihiro Maeda Mirror device with an anti-stiction layer
US7626581B2 (en) 2004-09-27 2009-12-01 Idc, Llc Device and method for display memory using manipulation of mechanical response
US20090305010A1 (en) * 2008-06-05 2009-12-10 Qualcomm Mems Technologies, Inc. Low temperature amorphous silicon sacrificial layer for controlled adhesion in mems devices
US7636151B2 (en) 2006-01-06 2009-12-22 Qualcomm Mems Technologies, Inc. System and method for providing residual stress test structures
US7638167B2 (en) 2004-06-04 2009-12-29 Applied Microstructures, Inc. Controlled deposition of silicon-containing coatings adhered by an oxide layer
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7653371B2 (en) 2004-09-27 2010-01-26 Qualcomm Mems Technologies, Inc. Selectable capacitance circuit
US7668415B2 (en) 2004-09-27 2010-02-23 Qualcomm Mems Technologies, Inc. Method and device for providing electronic circuitry on a backplate
US7675669B2 (en) 2004-09-27 2010-03-09 Qualcomm Mems Technologies, Inc. Method and system for driving interferometric modulators
US7679627B2 (en) 2004-09-27 2010-03-16 Qualcomm Mems Technologies, Inc. Controller and driver features for bi-stable display
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7692839B2 (en) 2004-09-27 2010-04-06 Qualcomm Mems Technologies, Inc. System and method of providing MEMS device with anti-stiction coating
US7702192B2 (en) 2006-06-21 2010-04-20 Qualcomm Mems Technologies, Inc. Systems and methods for driving MEMS display
US7701631B2 (en) 2004-09-27 2010-04-20 Qualcomm Mems Technologies, Inc. Device having patterned spacers for backplates and method of making the same
US7706044B2 (en) 2003-05-26 2010-04-27 Qualcomm Mems Technologies, Inc. Optical interference display cell and method of making the same
US7706050B2 (en) 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US7710629B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. System and method for display device with reinforcing substance
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7724993B2 (en) 2004-09-27 2010-05-25 Qualcomm Mems Technologies, Inc. MEMS switches with deforming membranes
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US7777715B2 (en) 2006-06-29 2010-08-17 Qualcomm Mems Technologies, Inc. Passive circuits for de-multiplexing display inputs
US7781850B2 (en) 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7808703B2 (en) 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. System and method for implementation of interferometric modulator displays
US7813026B2 (en) 2004-09-27 2010-10-12 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US20100296073A1 (en) * 2006-12-27 2010-11-25 Asml Netherlands B.V. Lithographic Apparatus, Substrate Table, and Method for Enhancing Substrate Release Properties
US7843410B2 (en) 2004-09-27 2010-11-30 Qualcomm Mems Technologies, Inc. Method and device for electrically programmable display
USRE42119E1 (en) 2002-02-27 2011-02-08 Qualcomm Mems Technologies, Inc. Microelectrochemical systems device and method for fabricating same
US7889163B2 (en) 2004-08-27 2011-02-15 Qualcomm Mems Technologies, Inc. Drive method for MEMS devices
US7893919B2 (en) 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7903047B2 (en) 2006-04-17 2011-03-08 Qualcomm Mems Technologies, Inc. Mode indicator for interferometric modulator displays
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7920135B2 (en) 2004-09-27 2011-04-05 Qualcomm Mems Technologies, Inc. Method and system for driving a bi-stable display
US7920136B2 (en) 2005-05-05 2011-04-05 Qualcomm Mems Technologies, Inc. System and method of driving a MEMS display device
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7948457B2 (en) 2005-05-05 2011-05-24 Qualcomm Mems Technologies, Inc. Systems and methods of actuating MEMS display elements
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8014059B2 (en) 1994-05-05 2011-09-06 Qualcomm Mems Technologies, Inc. System and method for charge control in a MEMS device
US8040588B2 (en) 2004-09-27 2011-10-18 Qualcomm Mems Technologies, Inc. System and method of illuminating interferometric modulators using backlighting
US8049713B2 (en) 2006-04-24 2011-11-01 Qualcomm Mems Technologies, Inc. Power consumption optimized display update
US8124434B2 (en) 2004-09-27 2012-02-28 Qualcomm Mems Technologies, Inc. Method and system for packaging a display
US8174469B2 (en) 2005-05-05 2012-05-08 Qualcomm Mems Technologies, Inc. Dynamic driver IC and display panel configuration
US8194056B2 (en) 2006-02-09 2012-06-05 Qualcomm Mems Technologies Inc. Method and system for writing data to MEMS display elements
US8310441B2 (en) 2004-09-27 2012-11-13 Qualcomm Mems Technologies, Inc. Method and system for writing data to MEMS display elements
US8391630B2 (en) 2005-12-22 2013-03-05 Qualcomm Mems Technologies, Inc. System and method for power reduction when decompressing video streams for interferometric modulator displays
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8735225B2 (en) 2004-09-27 2014-05-27 Qualcomm Mems Technologies, Inc. Method and system for packaging MEMS devices with glass seal
US8736590B2 (en) 2009-03-27 2014-05-27 Qualcomm Mems Technologies, Inc. Low voltage driver scheme for interferometric modulators
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
US8830557B2 (en) 2007-05-11 2014-09-09 Qualcomm Mems Technologies, Inc. Methods of fabricating MEMS with spacers between plates and devices formed by same
US8878825B2 (en) 2004-09-27 2014-11-04 Qualcomm Mems Technologies, Inc. System and method for providing a variable refresh rate of an interferometric modulator display
US8885244B2 (en) 2004-09-27 2014-11-11 Qualcomm Mems Technologies, Inc. Display device
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602671A (en) * 1990-11-13 1997-02-11 Texas Instruments Incorporated Low surface energy passivation layer for micromechanical devices
US5311360A (en) * 1992-04-28 1994-05-10 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for modulating a light beam
US5412186A (en) * 1994-02-23 1995-05-02 Texas Instruments Incorporated Elimination of sticking of micro-mechanical devices
US5444566A (en) * 1994-03-07 1995-08-22 Texas Instruments Incorporated Optimized electronic operation of digital micromirror devices
US5576878A (en) * 1994-03-30 1996-11-19 Texas Instruments Incorporated Use of incompatible materials to eliminate sticking of micro-mechanical devices
US7297471B1 (en) 2003-04-15 2007-11-20 Idc, Llc Method for manufacturing an array of interferometric modulators
US7138984B1 (en) 2001-06-05 2006-11-21 Idc, Llc Directly laminated touch sensitive screen
US7550794B2 (en) 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US5512374A (en) * 1994-05-09 1996-04-30 Texas Instruments Incorporated PFPE coatings for micro-mechanical devices
US5597767A (en) * 1995-01-06 1997-01-28 Texas Instruments Incorporated Separation of wafer into die with wafer-level processing
US5579151A (en) * 1995-02-17 1996-11-26 Texas Instruments Incorporated Spatial light modulator
US5610438A (en) * 1995-03-08 1997-03-11 Texas Instruments Incorporated Micro-mechanical device with non-evaporable getter
US5535047A (en) * 1995-04-18 1996-07-09 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
JPH08330266A (en) * 1995-05-31 1996-12-13 Texas Instr Inc <Ti> Method of cleansing and processing surface of semiconductor device or the like
US5757536A (en) * 1995-08-30 1998-05-26 Sandia Corporation Electrically-programmable diffraction grating
EP0783124B1 (en) * 1995-12-15 2002-04-17 Texas Instruments Incorporated Improvements in or relating to spatial light modulators
US6011631A (en) * 1996-01-31 2000-01-04 Texas Instruments Incorporated Uniform exposure of photosensitive medium by square intensity profiles for printing
US6624944B1 (en) 1996-03-29 2003-09-23 Texas Instruments Incorporated Fluorinated coating for an optical element
US5939785A (en) * 1996-04-12 1999-08-17 Texas Instruments Incorporated Micromechanical device including time-release passivant
US6686291B1 (en) 1996-05-24 2004-02-03 Texas Instruments Incorporated Undercut process with isotropic plasma etching at package level
US6055091A (en) * 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US5754332A (en) * 1996-06-27 1998-05-19 Xerox Corporation Monolayer gyricon display
US5825529A (en) * 1996-06-27 1998-10-20 Xerox Corporation Gyricon display with no elastomer substrate
US6061323A (en) * 1996-07-30 2000-05-09 Seagate Technology, Inc. Data storage system having an improved surface micro-machined mirror
US6044056A (en) * 1996-07-30 2000-03-28 Seagate Technology, Inc. Flying optical head with dynamic mirror
US6850475B1 (en) 1996-07-30 2005-02-01 Seagate Technology, Llc Single frequency laser source for optical data storage system
US5894367A (en) * 1996-09-13 1999-04-13 Xerox Corporation Twisting cylinder display using multiple chromatic values
US5922268A (en) * 1997-10-30 1999-07-13 Xerox Corporation Method of manufacturing a twisting cylinder display using multiple chromatic values
US5904790A (en) * 1997-10-30 1999-05-18 Xerox Corporation Method of manufacturing a twisting cylinder display using multiple chromatic values
US6025951A (en) * 1996-11-27 2000-02-15 National Optics Institute Light modulating microdevice and method
DE69717595T2 (en) * 1996-12-20 2003-07-10 Seiko Epson Corp Electrostatic actuator and manufacturing method
JPH11144401A (en) 1997-11-13 1999-05-28 Teac Corp Recording and reproduction apparatus for storage medium
US6072545A (en) * 1998-01-07 2000-06-06 Gribschaw; Franklin C. Video image rotating apparatus
US5976428A (en) * 1998-01-09 1999-11-02 Xerox Corporation Method and apparatus for controlling formation of two-color balls for a twisting ball display
US5900192A (en) * 1998-01-09 1999-05-04 Xerox Corporation Method and apparatus for fabricating very small two-color balls for a twisting ball display
US5910856A (en) * 1998-04-16 1999-06-08 Eastman Kodak Company Integrated hybrid silicon-based micro-reflector
US6004912A (en) * 1998-06-05 1999-12-21 Silicon Light Machines Vapor phase low molecular weight lubricants
US6358771B1 (en) * 1998-07-02 2002-03-19 Analog Devices, Inc. Low oxygen assembly of glass sealed packages
US6348908B1 (en) 1998-09-15 2002-02-19 Xerox Corporation Ambient energy powered display
US6843936B1 (en) 1998-10-22 2005-01-18 Texas Instruments Incorporated Getter for enhanced micromechanical device performance
US6300294B1 (en) 1998-11-16 2001-10-09 Texas Instruments Incorporated Lubricant delivery for micromechanical devices
US6440252B1 (en) 1999-12-17 2002-08-27 Xerox Corporation Method for rotatable element assembly
US7026710B2 (en) 2000-01-21 2006-04-11 Texas Instruments Incorporated Molded package for micromechanical devices and method of fabrication
US6489178B2 (en) 2000-01-26 2002-12-03 Texas Instruments Incorporated Method of fabricating a molded package for micromechanical devices
US6674140B2 (en) * 2000-02-01 2004-01-06 Analog Devices, Inc. Process for wafer level treatment to reduce stiction and passivate micromachined surfaces and compounds used therefor
US6545671B1 (en) 2000-03-02 2003-04-08 Xerox Corporation Rotating element sheet material with reversible highlighting
US6498674B1 (en) 2000-04-14 2002-12-24 Xerox Corporation Rotating element sheet material with generalized containment structure
US6504525B1 (en) 2000-05-03 2003-01-07 Xerox Corporation Rotating element sheet material with microstructured substrate and method of use
US6664779B2 (en) * 2000-11-16 2003-12-16 Texas Instruments Incorporated Package with environmental control material carrier
US6524500B2 (en) 2000-12-28 2003-02-25 Xerox Corporation Method for making microencapsulated gyricon beads
US6690350B2 (en) 2001-01-11 2004-02-10 Xerox Corporation Rotating element sheet material with dual vector field addressing
US6387723B1 (en) 2001-01-19 2002-05-14 Silicon Light Machines Reduced surface charging in silicon-based devices
US6646778B2 (en) 2001-08-01 2003-11-11 Silicon Light Machines Grating light valve with encapsulated dampening gas
JP3750574B2 (en) * 2001-08-16 2006-03-01 株式会社デンソー Thin film electromagnet and switching element using the same
JP2003090969A (en) * 2001-09-17 2003-03-28 Olympus Optical Co Ltd Variable shape cylinder mirror
US20030064149A1 (en) * 2001-09-28 2003-04-03 Miller Seth A. Methods of applying coatings to micro electromechanical devices using a carbon dioxide carrier solvent
US6699570B2 (en) 2001-11-06 2004-03-02 Xerox Corporation Colored cyber toner using multicolored gyricon spheres
DE10163506A1 (en) * 2001-12-21 2003-07-10 Infineon Technologies Ag Method and device for producing a component with a movable structure
US6921680B2 (en) 2001-12-31 2005-07-26 Texas Instruments Incorporated Method and apparatus for MEMS device nebulizer lubrication system
US6794119B2 (en) 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
JP4025990B2 (en) * 2002-09-26 2007-12-26 セイコーエプソン株式会社 Mirror device, optical switch, electronic device, and mirror device driving method
TWI251712B (en) * 2003-08-15 2006-03-21 Prime View Int Corp Ltd Interference display plate
TW593127B (en) * 2003-08-18 2004-06-21 Prime View Int Co Ltd Interference display plate and manufacturing method thereof
TW593126B (en) 2003-09-30 2004-06-21 Prime View Int Co Ltd A structure of a micro electro mechanical system and manufacturing the same
US7307777B2 (en) * 2003-10-23 2007-12-11 Spatial Photonics, Inc. High-resolution spatial light modulation
US7471440B2 (en) * 2003-10-27 2008-12-30 Spatial Photonics, Inc. Fabricating micro devices using sacrificial materials
WO2005045477A2 (en) * 2003-10-27 2005-05-19 Spatial Photonics, Inc. High contrast spatial light modulator and method
CA2464207C (en) * 2004-04-14 2011-03-29 Institut National D'optique Light modulating microdevice
US7476327B2 (en) 2004-05-04 2009-01-13 Idc, Llc Method of manufacture for microelectromechanical devices
KR101354520B1 (en) 2004-07-29 2014-01-21 퀄컴 엠이엠에스 테크놀로지스, 인크. System and method for micro-electromechanical operating of an interferometric modulator
US7623142B2 (en) * 2004-09-14 2009-11-24 Hewlett-Packard Development Company, L.P. Flexure
US7554714B2 (en) 2004-09-27 2009-06-30 Idc, Llc Device and method for manipulation of thermal response in a modulator
US7460246B2 (en) 2004-09-27 2008-12-02 Idc, Llc Method and system for sensing light using interferometric elements
US7429334B2 (en) 2004-09-27 2008-09-30 Idc, Llc Methods of fabricating interferometric modulators by selectively removing a material
US7553684B2 (en) 2004-09-27 2009-06-30 Idc, Llc Method of fabricating interferometric devices using lift-off processing techniques
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7417783B2 (en) 2004-09-27 2008-08-26 Idc, Llc Mirror and mirror layer for optical modulator and method
US7369294B2 (en) 2004-09-27 2008-05-06 Idc, Llc Ornamental display device
US7302157B2 (en) 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7373026B2 (en) 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US7369296B2 (en) 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7573547B2 (en) * 2004-09-27 2009-08-11 Idc, Llc System and method for protecting micro-structure of display array using spacers in gap within display device
US7349136B2 (en) 2004-09-27 2008-03-25 Idc, Llc Method and device for a display having transparent components integrated therein
US7321456B2 (en) 2004-09-27 2008-01-22 Idc, Llc Method and device for corner interferometric modulation
US7304784B2 (en) 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7317568B2 (en) 2004-09-27 2008-01-08 Idc, Llc System and method of implementation of interferometric modulators for display mirrors
US7492502B2 (en) 2004-09-27 2009-02-17 Idc, Llc Method of fabricating a free-standing microstructure
US7405861B2 (en) 2004-09-27 2008-07-29 Idc, Llc Method and device for protecting interferometric modulators from electrostatic discharge
US7184202B2 (en) * 2004-09-27 2007-02-27 Idc, Llc Method and system for packaging a MEMS device
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7327510B2 (en) 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
TW200628877A (en) 2005-02-04 2006-08-16 Prime View Int Co Ltd Method of manufacturing optical interference type color display
CA2507177C (en) * 2005-05-13 2012-04-24 Institut National D'optique Image projector with flexible reflective analog modulator
US7927423B1 (en) 2005-05-25 2011-04-19 Abbott Kenneth A Vapor deposition of anti-stiction layer for micromechanical devices
WO2007013939A1 (en) 2005-07-22 2007-02-01 Qualcomm Incorporated Support structure for mems device and methods therefor
US7423798B2 (en) * 2005-08-16 2008-09-09 Spatial Photonics, Inc. Addressing circuit and method for bi-directional micro-mirror array
US7471439B2 (en) * 2005-11-23 2008-12-30 Miradia, Inc. Process of forming a micromechanical system containing an anti-stiction gas-phase lubricant
US7580174B2 (en) * 2005-11-23 2009-08-25 Miradia, Inc. Anti-stiction gas-phase lubricant for micromechanical systems
US7616370B2 (en) * 2005-11-23 2009-11-10 Miradia, Inc. Preferentially deposited lubricant to prevent anti-stiction in micromechanical systems
US7463404B2 (en) * 2005-11-23 2008-12-09 Miradia, Inc. Method of using a preferentially deposited lubricant to prevent anti-stiction in micromechanical systems
US7723812B2 (en) * 2005-11-23 2010-05-25 Miradia, Inc. Preferentially deposited lubricant to prevent anti-stiction in micromechanical systems
US7382515B2 (en) 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US7547568B2 (en) 2006-02-22 2009-06-16 Qualcomm Mems Technologies, Inc. Electrical conditioning of MEMS device and insulating layer thereof
US7550810B2 (en) 2006-02-23 2009-06-23 Qualcomm Mems Technologies, Inc. MEMS device having a layer movable at asymmetric rates
US7450295B2 (en) 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
WO2007120887A2 (en) * 2006-04-13 2007-10-25 Qualcomm Mems Technologies, Inc Packaging a mems device using a frame
US7527996B2 (en) 2006-04-19 2009-05-05 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7369292B2 (en) 2006-05-03 2008-05-06 Qualcomm Mems Technologies, Inc. Electrode and interconnect materials for MEMS devices
US7321457B2 (en) 2006-06-01 2008-01-22 Qualcomm Incorporated Process and structure for fabrication of MEMS device having isolated edge posts
US7405863B2 (en) 2006-06-01 2008-07-29 Qualcomm Mems Technologies, Inc. Patterning of mechanical layer in MEMS to reduce stresses at supports
US7471442B2 (en) 2006-06-15 2008-12-30 Qualcomm Mems Technologies, Inc. Method and apparatus for low range bit depth enhancements for MEMS display architectures
US7385744B2 (en) 2006-06-28 2008-06-10 Qualcomm Mems Technologies, Inc. Support structure for free-standing MEMS device and methods for forming the same
US8096665B2 (en) * 2006-10-11 2012-01-17 Miradia, Inc. Spatially offset multi-imager-panel architecture for projecting an image
US7508569B2 (en) * 2006-11-08 2009-03-24 Spatial Photonics, Inc. Low voltage micro mechanical device
US20080116554A1 (en) * 2006-11-21 2008-05-22 Spatial Photonics, Inc. Packaging micro devices
US8436453B2 (en) * 2006-12-28 2013-05-07 Texas Instruments Incorporated Micromechanical device lubrication
US8900695B2 (en) * 2007-02-23 2014-12-02 Applied Microstructures, Inc. Durable conformal wear-resistant carbon-doped metal oxide-comprising coating
US20100068489A1 (en) * 2007-02-23 2010-03-18 Applied Microstructures, Inc. Wear-resistant, carbon-doped metal oxide coatings for MEMS and nanoimprint lithography
US20090109515A1 (en) * 2007-10-30 2009-04-30 Spatial Photonics, Inc. Encapsulated spatial light modulator having large active area
US20090323170A1 (en) * 2008-06-30 2009-12-31 Qualcomm Mems Technologies, Inc. Groove on cover plate or substrate
US8120155B2 (en) * 2008-07-31 2012-02-21 Texas Instruments Incorporated Reduced stiction and mechanical memory in MEMS devices
US20100291410A1 (en) * 2009-05-13 2010-11-18 Spatial Photonics, Inc. Corrosion Protection and Lubrication of MEMS Devices
US8379392B2 (en) 2009-10-23 2013-02-19 Qualcomm Mems Technologies, Inc. Light-based sealing and device packaging
GB201622220D0 (en) 2016-12-23 2017-02-08 Barco Nv Cooling system for spatial light modulating devices
WO2019020198A1 (en) 2017-07-28 2019-01-31 Barco N.V. Spatial light modulating devices with cooling
EP4332052A1 (en) * 2022-08-31 2024-03-06 Infineon Technologies AG Encapsulated mems device and method for manufacturing the mems device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096279A (en) * 1984-08-31 1992-03-17 Texas Instruments Incorporated Spatial light modulator and method

Cited By (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516561A (en) * 1991-06-20 1996-05-14 British Technology Group Ltd. Applying a fluoropolymer film to a body
US5773098A (en) * 1991-06-20 1998-06-30 British Technology Group, Ltd. Applying a fluoropolymer film to a body
US5808797A (en) 1992-04-28 1998-09-15 Silicon Light Machines Method and apparatus for modulating a light beam
US7280265B2 (en) 1994-05-05 2007-10-09 Idc, Llc Interferometric modulation of radiation
US7379227B2 (en) 1994-05-05 2008-05-27 Idc, Llc Method and device for modulating light
US7123216B1 (en) 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
US8014059B2 (en) 1994-05-05 2011-09-06 Qualcomm Mems Technologies, Inc. System and method for charge control in a MEMS device
US20050002082A1 (en) * 1994-05-05 2005-01-06 Miles Mark W. Interferometric modulation of radiation
US8059326B2 (en) 1994-05-05 2011-11-15 Qualcomm Mems Technologies Inc. Display devices comprising of interferometric modulator and sensor
US7042643B2 (en) 1994-05-05 2006-05-09 Idc, Llc Interferometric modulation of radiation
US7692844B2 (en) 1994-05-05 2010-04-06 Qualcomm Mems Technologies, Inc. Interferometric modulation of radiation
US20040240032A1 (en) * 1994-05-05 2004-12-02 Miles Mark W. Interferometric modulation of radiation
US7012732B2 (en) 1994-05-05 2006-03-14 Idc, Llc Method and device for modulating light with a time-varying signal
US5523878A (en) * 1994-06-30 1996-06-04 Texas Instruments Incorporated Self-assembled monolayer coating for micro-mechanical devices
US7388706B2 (en) 1995-05-01 2008-06-17 Idc, Llc Photonic MEMS and structures
US20050286113A1 (en) * 1995-05-01 2005-12-29 Miles Mark W Photonic MEMS and structures
US5841579A (en) 1995-06-07 1998-11-24 Silicon Light Machines Flat diffraction grating light valve
US5945898A (en) * 1996-05-31 1999-08-31 The Regents Of The University Of California Magnetic microactuator
US7471444B2 (en) 1996-12-19 2008-12-30 Idc, Llc Interferometric modulation of radiation
US5982553A (en) 1997-03-20 1999-11-09 Silicon Light Machines Display device incorporating one-dimensional grating light-valve array
US6076256A (en) * 1997-04-18 2000-06-20 Seagate Technology, Inc. Method for manufacturing magneto-optical data storage system
US6114044A (en) * 1997-05-30 2000-09-05 Regents Of The University Of California Method of drying passivated micromachines by dewetting from a liquid-based process
US6088102A (en) 1997-10-31 2000-07-11 Silicon Light Machines Display apparatus including grating light-valve array and interferometric optical system
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US6271808B1 (en) 1998-06-05 2001-08-07 Silicon Light Machines Stereo head mounted display using a single display device
US6046966A (en) * 1998-06-10 2000-04-04 Seagate Technology, Inc. Magneto-optical data storage system
US6200882B1 (en) 1998-06-10 2001-03-13 Seagate Technology, Inc. Method for processing a plurality of micro-machined mirror assemblies
US6101036A (en) 1998-06-23 2000-08-08 Silicon Light Machines Embossed diffraction grating alone and in combination with changeable image display
US6130770A (en) 1998-06-23 2000-10-10 Silicon Light Machines Electron gun activated grating light valve
US6215579B1 (en) 1998-06-24 2001-04-10 Silicon Light Machines Method and apparatus for modulating an incident light beam for forming a two-dimensional image
US6764875B2 (en) 1998-07-29 2004-07-20 Silicon Light Machines Method of and apparatus for sealing an hermetic lid to a semiconductor die
US6365229B1 (en) 1998-09-30 2002-04-02 Texas Instruments Incorporated Surface treatment material deposition and recapture
US6259551B1 (en) 1998-09-30 2001-07-10 Texas Instruments Incorporated Passivation for micromechanical devices
US6266178B1 (en) 1998-12-28 2001-07-24 Texas Instruments Incorporated Guardring DRAM cell
US6344672B2 (en) 1998-12-28 2002-02-05 Texas Instruments Incorporated Guardring DRAM cell
US6195301B1 (en) 1998-12-30 2001-02-27 Texas Instruments Incorporated Feedback driver for memory array bitline
US6191883B1 (en) 1998-12-30 2001-02-20 Texas Instruments Incorporated Five transistor SRAM cell for small micromirror elements
US7830586B2 (en) 1999-10-05 2010-11-09 Qualcomm Mems Technologies, Inc. Transparent thin films
US7187489B2 (en) 1999-10-05 2007-03-06 Idc, Llc Photonic MEMS and structures
US20060284877A1 (en) * 1999-10-05 2006-12-21 Miles Mark W Photonic mems and structures
US7110158B2 (en) 1999-10-05 2006-09-19 Idc, Llc Photonic MEMS and structures
WO2001059504A2 (en) * 2000-02-11 2001-08-16 Zygo Corporation Stiction release mechanism
WO2001059504A3 (en) * 2000-02-11 2002-04-25 Zygo Corp Stiction release mechanism
US20050277277A1 (en) * 2000-10-13 2005-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Dual damascene process
US6707591B2 (en) 2001-04-10 2004-03-16 Silicon Light Machines Angled illumination for a single order light modulator based projection system
US20020197002A1 (en) * 2001-06-25 2002-12-26 Chuang-Chia Lin Self assembled micro anti-stiction structure
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6859577B2 (en) 2001-06-25 2005-02-22 Analog Devices Inc. Self assembled micro anti-stiction structure
USRE40436E1 (en) 2001-08-01 2008-07-15 Idc, Llc Hermetic seal and method to create the same
US6829092B2 (en) 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
USRE42119E1 (en) 2002-02-27 2011-02-08 Qualcomm Mems Technologies, Inc. Microelectrochemical systems device and method for fabricating same
US6767751B2 (en) 2002-05-28 2004-07-27 Silicon Light Machines, Inc. Integrated driver process flow
US6728023B1 (en) 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6829258B1 (en) 2002-06-26 2004-12-07 Silicon Light Machines, Inc. Rapidly tunable external cavity laser
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6714337B1 (en) 2002-06-28 2004-03-30 Silicon Light Machines Method and device for modulating a light beam and having an improved gamma response
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US7781850B2 (en) 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
US7172915B2 (en) 2003-01-29 2007-02-06 Qualcomm Mems Technologies Co., Ltd. Optical-interference type display panel and method for making the same
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US6806997B1 (en) 2003-02-28 2004-10-19 Silicon Light Machines, Inc. Patterned diffractive light modulator ribbon for PDL reduction
US7198973B2 (en) 2003-04-21 2007-04-03 Qualcomm Mems Technologies, Inc. Method for fabricating an interference display unit
US7706044B2 (en) 2003-05-26 2010-04-27 Qualcomm Mems Technologies, Inc. Optical interference display cell and method of making the same
US7221495B2 (en) 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
US8545972B2 (en) 2003-06-27 2013-10-01 Applied Microstructures, Inc. Controlled vapor deposition of multilayered coatings adhered by an oxide layer
US20100304132A1 (en) * 2003-06-27 2010-12-02 Applied Microstructures, Inc. Controlled vapor deposition of multilayered coatings adhered by an oxide layer
US7193768B2 (en) 2003-08-26 2007-03-20 Qualcomm Mems Technologies, Inc. Interference display cell
US7012726B1 (en) 2003-11-03 2006-03-14 Idc, Llc MEMS devices with unreleased thin film components
US20050106774A1 (en) * 2003-11-13 2005-05-19 Dmitri Simonian Surface processes in fabrications of microstructures
US20070035804A1 (en) * 2003-12-09 2007-02-15 Clarence Chui System and method for addressing a MEMS display
US20070035805A1 (en) * 2003-12-09 2007-02-15 Clarence Chui System and method for addressing a MEMS display
US7161728B2 (en) 2003-12-09 2007-01-09 Idc, Llc Area array modulation and lead reduction in interferometric modulators
US7242512B2 (en) 2003-12-09 2007-07-10 Idc, Llc System and method for addressing a MEMS display
US7196837B2 (en) 2003-12-09 2007-03-27 Idc, Llc Area array modulation and lead reduction in interferometric modulators
US7142346B2 (en) 2003-12-09 2006-11-28 Idc, Llc System and method for addressing a MEMS display
US7388697B2 (en) 2003-12-09 2008-06-17 Idc, Llc System and method for addressing a MEMS display
US7514012B2 (en) 2004-01-27 2009-04-07 Texas Instruments Incorporated Pre-oxidization of deformable elements of microstructures
US20050161432A1 (en) * 2004-01-27 2005-07-28 Jonathan Doan Pre-oxidization of deformable elements of microstructures
US7532194B2 (en) 2004-02-03 2009-05-12 Idc, Llc Driver voltage adjuster
US7119945B2 (en) 2004-03-03 2006-10-10 Idc, Llc Altering temporal response of microelectromechanical elements
US7706050B2 (en) 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US7880954B2 (en) 2004-03-05 2011-02-01 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US20050243921A1 (en) * 2004-03-26 2005-11-03 The Hong Kong University Of Science And Technology Efficient multi-frame motion estimation for video compression
US6979893B2 (en) 2004-03-26 2005-12-27 Reflectivity, Inc Packaged microelectromechanical device with lubricant
US20060038269A1 (en) * 2004-03-26 2006-02-23 Jim Dunphy Method and apparatus for lubricating microelectromechanical devices in packages
US20050212067A1 (en) * 2004-03-26 2005-09-29 Robert Duboc Microelectromechanical devices with lubricants and getters formed thereon
US20050214970A1 (en) * 2004-03-26 2005-09-29 Jim Dunphy Method and apparatus for lubricating microelectromechanical devices in packages
US7335535B2 (en) 2004-03-26 2008-02-26 Texas Instruments Incorporated Method and apparatus for lubricating microelectromechanical devices in packages
US20050225832A1 (en) * 2004-04-13 2005-10-13 Jonathan Doan Method of improving the performance of microstructures
US7034982B2 (en) 2004-04-13 2006-04-25 Reflectivity, Inc Method of improving the performance of microstructures
US7161094B2 (en) 2004-05-04 2007-01-09 Idc, Llc Modifying the electro-mechanical behavior of devices
US7060895B2 (en) 2004-05-04 2006-06-13 Idc, Llc Modifying the electro-mechanical behavior of devices
US20050247477A1 (en) * 2004-05-04 2005-11-10 Manish Kothari Modifying the electro-mechanical behavior of devices
US8853747B2 (en) 2004-05-12 2014-10-07 Qualcomm Mems Technologies, Inc. Method of making an electronic device with a curved backplate
US7164520B2 (en) 2004-05-12 2007-01-16 Idc, Llc Packaging for an interferometric modulator
US20060088666A1 (en) * 2004-06-04 2006-04-27 Applied Microstructures, Inc. Controlled vapor deposition of biocompatible coatings over surface-treated substrates
US7776396B2 (en) 2004-06-04 2010-08-17 Applied Microstructures, Inc. Controlled vapor deposition of multilayered coatings adhered by an oxide layer
US20050271810A1 (en) * 2004-06-04 2005-12-08 Boris Kobrin High aspect ratio performance coatings for biological microfluidics
US7879396B2 (en) 2004-06-04 2011-02-01 Applied Microstructures, Inc. High aspect ratio performance coatings for biological microfluidics
US7695775B2 (en) 2004-06-04 2010-04-13 Applied Microstructures, Inc. Controlled vapor deposition of biocompatible coatings over surface-treated substrates
US20050271900A1 (en) * 2004-06-04 2005-12-08 Boris Kobrin Controlled vapor deposition of multilayered coatings adhered by an oxide layer
US20050271893A1 (en) * 2004-06-04 2005-12-08 Applied Microstructures, Inc. Controlled vapor deposition of multilayered coatings adhered by an oxide layer
US7638167B2 (en) 2004-06-04 2009-12-29 Applied Microstructures, Inc. Controlled deposition of silicon-containing coatings adhered by an oxide layer
US20080026146A1 (en) * 2004-06-04 2008-01-31 Applied Microstrctures, Inc. Method of depositing a multilayer coating with a variety of oxide adhesion layers and organic layers
US20070020392A1 (en) * 2004-06-04 2007-01-25 Applied Microstructures, Inc. Functional organic based vapor deposited coatings adhered by an oxide layer
US7256922B2 (en) 2004-07-02 2007-08-14 Idc, Llc Interferometric modulators with thin film transistors
US7551159B2 (en) 2004-08-27 2009-06-23 Idc, Llc System and method of sensing actuation and release voltages of an interferometric modulator
US7889163B2 (en) 2004-08-27 2011-02-15 Qualcomm Mems Technologies, Inc. Drive method for MEMS devices
US7928940B2 (en) 2004-08-27 2011-04-19 Qualcomm Mems Technologies, Inc. Drive method for MEMS devices
US7515147B2 (en) 2004-08-27 2009-04-07 Idc, Llc Staggered column drive circuit systems and methods
US7560299B2 (en) 2004-08-27 2009-07-14 Idc, Llc Systems and methods of actuating MEMS display elements
US7499208B2 (en) 2004-08-27 2009-03-03 Udc, Llc Current mode display driver circuit realization feature
US7415186B2 (en) 2004-09-27 2008-08-19 Idc, Llc Methods for visually inspecting interferometric modulators for defects
US7299681B2 (en) 2004-09-27 2007-11-27 Idc, Llc Method and system for detecting leak in electronic devices
US20060066542A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Interferometric modulators having charge persistence
US7446927B2 (en) 2004-09-27 2008-11-04 Idc, Llc MEMS switch with set and latch electrodes
US9097885B2 (en) 2004-09-27 2015-08-04 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US7486429B2 (en) 2004-09-27 2009-02-03 Idc, Llc Method and device for multistate interferometric light modulation
US7446926B2 (en) 2004-09-27 2008-11-04 Idc, Llc System and method of providing a regenerating protective coating in a MEMS device
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7424198B2 (en) 2004-09-27 2008-09-09 Idc, Llc Method and device for packaging a substrate
US7417735B2 (en) 2004-09-27 2008-08-26 Idc, Llc Systems and methods for measuring color and contrast in specular reflective devices
US7532195B2 (en) 2004-09-27 2009-05-12 Idc, Llc Method and system for reducing power consumption in a display
US7545550B2 (en) 2004-09-27 2009-06-09 Idc, Llc Systems and methods of actuating MEMS display elements
US7405924B2 (en) 2004-09-27 2008-07-29 Idc, Llc System and method for protecting microelectromechanical systems array using structurally reinforced back-plate
US7403323B2 (en) 2004-09-27 2008-07-22 Idc, Llc Process control monitors for interferometric modulators
US7570865B2 (en) 2004-09-27 2009-08-04 Idc, Llc System and method of testing humidity in a sealed MEMS device
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US7602375B2 (en) 2004-09-27 2009-10-13 Idc, Llc Method and system for writing data to MEMS display elements
US7618831B2 (en) 2004-09-27 2009-11-17 Idc, Llc Method of monitoring the manufacture of interferometric modulators
US7623752B2 (en) 2004-09-27 2009-11-24 Idc, Llc System and method of testing humidity in a sealed MEMS device
US7626581B2 (en) 2004-09-27 2009-12-01 Idc, Llc Device and method for display memory using manipulation of mechanical response
US20060066938A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Method and device for multistate interferometric light modulation
US8885244B2 (en) 2004-09-27 2014-11-11 Qualcomm Mems Technologies, Inc. Display device
US8878825B2 (en) 2004-09-27 2014-11-04 Qualcomm Mems Technologies, Inc. System and method for providing a variable refresh rate of an interferometric modulator display
US8878771B2 (en) 2004-09-27 2014-11-04 Qualcomm Mems Technologies, Inc. Method and system for reducing power consumption in a display
US7653371B2 (en) 2004-09-27 2010-01-26 Qualcomm Mems Technologies, Inc. Selectable capacitance circuit
US7667884B2 (en) 2004-09-27 2010-02-23 Qualcomm Mems Technologies, Inc. Interferometric modulators having charge persistence
US7668415B2 (en) 2004-09-27 2010-02-23 Qualcomm Mems Technologies, Inc. Method and device for providing electronic circuitry on a backplate
US7675669B2 (en) 2004-09-27 2010-03-09 Qualcomm Mems Technologies, Inc. Method and system for driving interferometric modulators
US7679627B2 (en) 2004-09-27 2010-03-16 Qualcomm Mems Technologies, Inc. Controller and driver features for bi-stable display
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7368803B2 (en) 2004-09-27 2008-05-06 Idc, Llc System and method for protecting microelectromechanical systems array using back-plate with non-flat portion
US7692839B2 (en) 2004-09-27 2010-04-06 Qualcomm Mems Technologies, Inc. System and method of providing MEMS device with anti-stiction coating
US7369252B2 (en) 2004-09-27 2008-05-06 Idc, Llc Process control monitors for interferometric modulators
US20060066559A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Method and system for writing data to MEMS display elements
US7701631B2 (en) 2004-09-27 2010-04-20 Qualcomm Mems Technologies, Inc. Device having patterned spacers for backplates and method of making the same
US7359066B2 (en) 2004-09-27 2008-04-15 Idc, Llc Electro-optical measurement of hysteresis in interferometric modulators
US8791897B2 (en) 2004-09-27 2014-07-29 Qualcomm Mems Technologies, Inc. Method and system for writing data to MEMS display elements
US8735225B2 (en) 2004-09-27 2014-05-27 Qualcomm Mems Technologies, Inc. Method and system for packaging MEMS devices with glass seal
US7710629B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. System and method for display device with reinforcing substance
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7724993B2 (en) 2004-09-27 2010-05-25 Qualcomm Mems Technologies, Inc. MEMS switches with deforming membranes
US8682130B2 (en) 2004-09-27 2014-03-25 Qualcomm Mems Technologies, Inc. Method and device for packaging a substrate
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US20060077524A1 (en) * 2004-09-27 2006-04-13 Lauren Palmateer System and method for display device with end-of-life phenomena
US7345805B2 (en) 2004-09-27 2008-03-18 Idc, Llc Interferometric modulator array with integrated MEMS electrical switches
US7343080B2 (en) 2004-09-27 2008-03-11 Idc, Llc System and method of testing humidity in a sealed MEMS device
US8310441B2 (en) 2004-09-27 2012-11-13 Qualcomm Mems Technologies, Inc. Method and system for writing data to MEMS display elements
US7808703B2 (en) 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. System and method for implementation of interferometric modulator displays
US7813026B2 (en) 2004-09-27 2010-10-12 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US7310179B2 (en) 2004-09-27 2007-12-18 Idc, Llc Method and device for selective adjustment of hysteresis window
US8124434B2 (en) 2004-09-27 2012-02-28 Qualcomm Mems Technologies, Inc. Method and system for packaging a display
US20060077150A1 (en) * 2004-09-27 2006-04-13 Sampsell Jeffrey B System and method of providing a regenerating protective coating in a MEMS device
US7843410B2 (en) 2004-09-27 2010-11-30 Qualcomm Mems Technologies, Inc. Method and device for electrically programmable display
US7453579B2 (en) 2004-09-27 2008-11-18 Idc, Llc Measurement of the dynamic characteristics of interferometric modulators
US8040588B2 (en) 2004-09-27 2011-10-18 Qualcomm Mems Technologies, Inc. System and method of illuminating interferometric modulators using backlighting
US7289256B2 (en) 2004-09-27 2007-10-30 Idc, Llc Electrical characterization of interferometric modulators
US7130104B2 (en) 2004-09-27 2006-10-31 Idc, Llc Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
US7259449B2 (en) 2004-09-27 2007-08-21 Idc, Llc Method and system for sealing a substrate
US7259865B2 (en) 2004-09-27 2007-08-21 Idc, Llc Process control monitors for interferometric modulators
US7161730B2 (en) 2004-09-27 2007-01-09 Idc, Llc System and method for providing thermal compensation for an interferometric modulator display
US7893919B2 (en) 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7916103B2 (en) 2004-09-27 2011-03-29 Qualcomm Mems Technologies, Inc. System and method for display device with end-of-life phenomena
US7920135B2 (en) 2004-09-27 2011-04-05 Qualcomm Mems Technologies, Inc. Method and system for driving a bi-stable display
US7136213B2 (en) 2004-09-27 2006-11-14 Idc, Llc Interferometric modulators having charge persistence
US8174469B2 (en) 2005-05-05 2012-05-08 Qualcomm Mems Technologies, Inc. Dynamic driver IC and display panel configuration
US7920136B2 (en) 2005-05-05 2011-04-05 Qualcomm Mems Technologies, Inc. System and method of driving a MEMS display device
US7948457B2 (en) 2005-05-05 2011-05-24 Qualcomm Mems Technologies, Inc. Systems and methods of actuating MEMS display elements
US7355779B2 (en) 2005-09-02 2008-04-08 Idc, Llc Method and system for driving MEMS display elements
US8391630B2 (en) 2005-12-22 2013-03-05 Qualcomm Mems Technologies, Inc. System and method for power reduction when decompressing video streams for interferometric modulator displays
US8394656B2 (en) 2005-12-29 2013-03-12 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7636151B2 (en) 2006-01-06 2009-12-22 Qualcomm Mems Technologies, Inc. System and method for providing residual stress test structures
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8194056B2 (en) 2006-02-09 2012-06-05 Qualcomm Mems Technologies Inc. Method and system for writing data to MEMS display elements
US7903047B2 (en) 2006-04-17 2011-03-08 Qualcomm Mems Technologies, Inc. Mode indicator for interferometric modulator displays
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US20080218843A1 (en) * 2006-04-19 2008-09-11 Qualcomm Mems Technologies,Inc. Microelectromechanical device and method utilizing a porous surface
US7944603B2 (en) 2006-04-19 2011-05-17 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
US8049713B2 (en) 2006-04-24 2011-11-01 Qualcomm Mems Technologies, Inc. Power consumption optimized display update
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7702192B2 (en) 2006-06-21 2010-04-20 Qualcomm Mems Technologies, Inc. Systems and methods for driving MEMS display
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7777715B2 (en) 2006-06-29 2010-08-17 Qualcomm Mems Technologies, Inc. Passive circuits for de-multiplexing display inputs
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7388704B2 (en) 2006-06-30 2008-06-17 Qualcomm Mems Technologies, Inc. Determination of interferometric modulator mirror curvature and airgap variation using digital photographs
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US8792085B2 (en) * 2006-12-27 2014-07-29 Asml Netherlands B.V. Lithographic apparatus, substrate table, and method for enhancing substrate release properties
US20100296073A1 (en) * 2006-12-27 2010-11-25 Asml Netherlands B.V. Lithographic Apparatus, Substrate Table, and Method for Enhancing Substrate Release Properties
US20080311690A1 (en) * 2007-04-04 2008-12-18 Qualcomm Mems Technologies, Inc. Eliminate release etch attack by interface modification in sacrificial layers
US8222066B2 (en) 2007-04-04 2012-07-17 Qualcomm Mems Technologies, Inc. Eliminate release etch attack by interface modification in sacrificial layers
US20090231668A1 (en) * 2007-05-03 2009-09-17 Yoshihiro Maeda Mirror device with an anti-stiction layer
US7944600B2 (en) 2007-05-03 2011-05-17 Silicon Quest Kabushiki-Kaisha Mirror device with an anti-stiction layer
US8134772B2 (en) 2007-05-03 2012-03-13 Silicon Quest Kabushiki-Kaisha Mirror device with an anti-stiction layer
US7880952B2 (en) 2007-05-03 2011-02-01 Silicon Quest Kabushiki-Kaisha Mirror device with an anti-stiction layer
US20090231667A1 (en) * 2007-05-03 2009-09-17 Yoshihiro Maeda Mirror device with an anti-stiction layer
US8830557B2 (en) 2007-05-11 2014-09-09 Qualcomm Mems Technologies, Inc. Methods of fabricating MEMS with spacers between plates and devices formed by same
US7738158B2 (en) 2007-06-29 2010-06-15 Qualcomm Mems Technologies, Inc. Electromechanical device treatment with water vapor
US20090002804A1 (en) * 2007-06-29 2009-01-01 Qualcomm Mems Technologies, Inc. Electromechanical device treatment with water vapor
US20090305010A1 (en) * 2008-06-05 2009-12-10 Qualcomm Mems Technologies, Inc. Low temperature amorphous silicon sacrificial layer for controlled adhesion in mems devices
US7851239B2 (en) 2008-06-05 2010-12-14 Qualcomm Mems Technologies, Inc. Low temperature amorphous silicon sacrificial layer for controlled adhesion in MEMS devices
US8736590B2 (en) 2009-03-27 2014-05-27 Qualcomm Mems Technologies, Inc. Low voltage driver scheme for interferometric modulators
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same

Also Published As

Publication number Publication date
DE69320170T2 (en) 1999-03-18
US5331454A (en) 1994-07-19
DE69320170D1 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US5411769A (en) Method of producing micromechanical devices
US5602671A (en) Low surface energy passivation layer for micromechanical devices
US6024801A (en) Method of cleaning and treating a semiconductor device including a micromechanical device
KR100351077B1 (en) How to remove micromachined device parts
Ashurst et al. Wafer level anti-stiction coatings for MEMS
US5579151A (en) Spatial light modulator
US5447600A (en) Polymeric coatings for micromechanical devices
US6576489B2 (en) Methods of forming microstructure devices
US6737225B2 (en) Method of undercutting micro-mechanical device with super-critical carbon dioxide
US7471439B2 (en) Process of forming a micromechanical system containing an anti-stiction gas-phase lubricant
KR20050106428A (en) Micromirrors and off-diagonal hinge structures for micromirror arrays in projection displays
JPH0882754A (en) Self-assembly type monolayer coating for micromechanical device
JPH07318819A (en) Pfpe coating for micromechanical device
JPH03174112A (en) Method of resetting pixel of flexible spatial optical modulator
US20080290325A1 (en) MEMS Passivation with Phosphonate Surfactants
US6906845B2 (en) Micro-mechanical device having anti-stiction layer and method of manufacturing the device
US7651734B2 (en) Micromechanical device fabrication
EP0615147A1 (en) Low reset voltage process for DMD
US7580174B2 (en) Anti-stiction gas-phase lubricant for micromechanical systems
KR100303602B1 (en) Methods and electronics for manufacturing low surface energy, wear resistant thin films on micromechanical devices
KR100400230B1 (en) Micro-mechanical device having anti-adhesion layer and manufacturing method thereof
EP0690330A1 (en) improvements in or relating to micro-mechanical devices
US7244631B1 (en) MEMS surface modification for passive control of charge accumulation
US20070154622A1 (en) Surface lubrication in microstructures
KR20040048208A (en) Anti-stiction method for surface or bulk micromachining using silane derivatives

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12