US5115433A - Method and system for routing packets in a packet communication network - Google Patents

Method and system for routing packets in a packet communication network Download PDF

Info

Publication number
US5115433A
US5115433A US07/513,364 US51336490A US5115433A US 5115433 A US5115433 A US 5115433A US 51336490 A US51336490 A US 51336490A US 5115433 A US5115433 A US 5115433A
Authority
US
United States
Prior art keywords
node
packet
network
destination node
ultimate destination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/513,364
Inventor
Paul Baran
George H. Flammer, III
Robert L. Kalkwarf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proxim Wireless Corp
Original Assignee
Metricom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/383,273 external-priority patent/US4939726A/en
Application filed by Metricom Inc filed Critical Metricom Inc
Priority to US07/513,364 priority Critical patent/US5115433A/en
Assigned to METRICOM, INC. reassignment METRICOM, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BARAN, PAUL, FLAMMER, GEORGE H. III, KALKWARF, ROBERT L.
Priority to DE69131240T priority patent/DE69131240T2/en
Priority to EP91104042A priority patent/EP0455959B1/en
Application granted granted Critical
Publication of US5115433A publication Critical patent/US5115433A/en
Assigned to METRICOM, INC., A DE CORP. reassignment METRICOM, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: METRICOM, INC., A CORP. OF CA
Assigned to SOUTHERN CALIFORNIA EDISON COMPANY reassignment SOUTHERN CALIFORNIA EDISON COMPANY NON-EXCLUSIVE LICENSE Assignors: METRICOM, INC.
Assigned to VULCAN VENTURES INC. reassignment VULCAN VENTURES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: METRICOM, INC.
Assigned to METRICOM, INC. reassignment METRICOM, INC. RELEASE & REASSIGNMENT Assignors: VULCAN VENTURES INCORPORATED
Assigned to RICOCHET NETWORKS, INC. reassignment RICOCHET NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: METRICOM, INC.
Assigned to TERABEAM, INC. reassignment TERABEAM, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RICOCHET NETWORKS, INC.
Assigned to PROXIM WIRELESS CORPORATION reassignment PROXIM WIRELESS CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TERABEAM, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing

Definitions

  • This application contains a microfiche appendix, containing two fiche and a total of 119 frames.
  • the invention relates generally to a method for routing data packets through a packet communication network.
  • Packet communications is a form of data communications whereby segments or packets of data are routed with error checking and confirmation of receipt directly or relayed via relay stations between a source node or station and a destination node or station.
  • Several methods of data packet routing are known. According to one method, the address in the header of the packet is used as an index to a directory of packet routing lists. Packet routing lists must be prepared with knowledge about the location of each node in the network. Each node is identified by a header identifier. A packet routing list consists of an ordered list of packet node identifiers or call signs. Directory-based routing schemes require continued maintenance and communication of network interconnectivity information employed in the directory. Each of these functions drains network resources and can become intractable in a large network. However, one of the advantages of directory-based routing techniques is that it permits optimization of routing for a wide variety of network parameters, including data delay, throughput, reliability, priority and the like.
  • nondirectory-based routing Another basic routing technique is the nondirectory-based routing technique.
  • nondirectory-based routing the complexities associated with routing techniques are avoided. There is no connectivity information, which thus simplifies construction of each node.
  • nondirectory-based routing techniques do not permit network parameter optimization.
  • the Maxemchuk patents of Bell Laboratories teach the use of data packet systems over cable television networks and also teach the use of variable length packets for voice.
  • the George et al. patent to IBM teaches the use of routing notes utilizing the topology of the network.
  • the Sanders patent teaches the use of satellite communications whereby messages are routed via a local relay station.
  • the Lea patent to Bell Labs teaches the use of a self-routing packet switching network. None of these patents suggest routing based on a node identifier which employs absolute geographic location indicia in the identifier for use in establishing routing.
  • a noteworthy background reference related to radio-based packet communications is the published standard for AX.25 entitled “AX.25 Amateur Packet-Radio Link-Layer Protocol,” Version 2.0 (October 1984), Publication No. 56, American Radio Relay League, Inc., Newington, Conn.. This protocol is directed to the link layer or level 2 of the International Organization for Standardization (ISO) seven-layered reference model of Open Systems Interconnection (OSI) and is based on the CCITT X.25 level 2 LAPB protocol standard of Recommendation X.25 of the International Brass and Telephone Consultative Committee (CCITT).
  • ISO International Organization for Standardization
  • OSI Open Systems Interconnection
  • the AX.25 protocol differs from the X.25 protocol in that the AX.25 protocol provides for repeater stations and repeater linking at the link layer, and specifically up to eight repeater stations under Version 2.0. Whereas the ability to address a destination via a prescribed repeater chain proved to be an advance for link layer protocols, the link remains susceptible to breakdown in linking if the chain is interrupted or changed. As will be explained hereinbelow, the present invention represents a substantial departure from an addressing protocol based on explicitly predefining a routing.
  • Takagi and Kleinrock "Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals," IEEE Transactions on Communications, Com.-32, No. 3, March 1984, pp. 246-257.
  • the Takagi et al. article and the subsequently-cited article describe academic research relating to the problems of packet radio networks.
  • Takagi et al. refers to state-of-the art analysis of the slightly different packet radio network, the slotted/nonslotted single-frequency ALOHA network first published in the early 1970's.
  • NET/ROM has been a very successful "Layer 3/4" implementation of a network, but it suffers the weakness of all large routing-table-driven packet networks: excessive system overhead related to dynamic adaptation of the network to changes. This documentation is provided to show the process of making routing decisions in a real-world implementation.
  • Cartesian routing protocol of one form.
  • the Cartesian routing protocol described therein associates a semi-unique ordered Cartesian location with each gateway (node) as part of a Cartesian address combining a location element and a gateway identifier. Position is represented by this location identifier and a metric distance is calculated between two such locations based on the location identifier.
  • each node in a packet communication network is uniquely identified by absolute geographical coordinates or by a code indicating absolute location in an external coordinate-based reference system (node coordinates), and such absolute geographical coordinates or the equivalent are employed as part of a packet identifier for each packet generated for use in making routing decisions (packet coordinates).
  • the node coordinates of a local node and its neighboring nodes and the packet coordinates are used by means at each node through which a packet is routed for determining a desired forwarding route of a data packet.
  • the routing may be prioritized according to preselected criteria, preferably achieving optimum forward progress, that is, maximum forward progress using the least amount of power and taking into account characteristics of the system.
  • the packet routing protocol requires no routing directory or table to perform data routing.
  • Each node of the network collects or is otherwise provided with information about the quality of communication between itself and its neighboring nodes within its communication range.
  • a data packet When a data packet has been received at a node, it is routed further through the network based on criteria derived from the history of communication between the local node and its neighbors. The criteria include distance, power requirements, retry history (reliability), throughput history, speed of transfer (net data rate), network delay, and data priority.
  • LQ link quality
  • the metric may be used in to establish a hierarchy among possible local destinations based on the maximum forward progress attainable using the minimum amount of power, herein termed optimum forward progress or OFP.
  • OFP optimum forward progress
  • FIG. 1 is a block diagram illustrating a generalized data network topology
  • FIG. 2 is a flow chart describing the basic steps of the invention for use with specific routing algorithms
  • FIG. 3 is a block diagram illustrating a general node according to the present invention.
  • FIG. 4 is a flow chart of a specific routine according to the present invention.
  • each node in a network is identifiable by location.
  • Each packet is thereby able to be directed to a destination based primarily on location information contained in a header at the proper level of its data packet.
  • a packet is organized as follows: ##STR1## where: L indicates "layer";
  • Layer 1 is the "physical layer,” which is responsible for transferring data in a packet in error-free form. If a packet is received which contains an indication of error, the packet is discarded and not acknowledged by the receiver. When sending data, the physical layer performs no error checking, it is not responsible for resending failed packets, and it is not responsible for any form of packet routing.
  • a suitable Layer 1 is organized as follows: ##STR2## where Start Flag is a unique one-byte word signalling the start of a packet;
  • DL is the Data Length in two bytes
  • CRC is a two-byte long cyclic redundancy check word field calculated from the beginning of the data length field through the CRC field;
  • End Flag is a unique one-byte word signalling termination of the packet.
  • Nonflag pad characters which convey no information may precede or trail a packet for timing delay and synchronization without affecting the protocol.
  • a complete header must contain at least the following information: the address of the ultimate destination in geographic coordinates and the address of the best next hop in geographic coordinates. Only the address of the best next hop is changed when a packet is forwarded. At least part of this information is contained in the Layer 2 header.
  • the Layer 2 header or ISO link layer header comprises the destination address, the source address, a protype field (packet protocol and type) and a frame identification.
  • a suitable Layer 2 header is organized as follows: ##STR3## where DA is Destination Address (5 bytes);
  • PT is packet protocol or packet type (1 byte);
  • FID is the frame identifier (FID) field.
  • the destination address is the geographic coordinates of the next local destination and the source address is the geographic coordinates of the local node. Further in accordance with the invention, the destination address of a received packet becomes the source address of the same packet on its retransmission, and the destination address for retransmission is selected by the local node based on analysis of the metrics used to establish optimum forward progress.
  • the field designated Destination Address is a five-byte address of the desired destination of the local specific packet at the current time in its current form, that is, the Layer 2 destination. It is not the ultimate destination of the packet.
  • the field designated Source Address is a five-byte address of the layer 2 source node, the address to which an immediate acknowledgment of receipt is directed.
  • the protype is an eight bit field further broken down into two parts: a four bit protocol designation field and a four bit packet type designation field.
  • the frame identifier field is used to uniquely identify the data frame (DATA) and its related acknowledgment field (ACK) as well as its related acknowledgment of acknowledgment field (ACK-ACK). Packets containing ACK and ACK-ACK are short, since the full data information need not be employed. What is needed are the protype, frame identifier, destination address and source address.
  • the wide area network (WAN) destination address and source address are also express in terms of geographic coordinates.
  • the ultimate destination address is contained in a Layer 3 header, which is used for routing a packet between any source and any destination within a wide area net or between wide area nets.
  • a suitable Layer 3 header is organized as follows: ##STR4## where: WANDA is the Wide Area Net Destination Address (5 bytes);
  • WANSA Wide Area Net Source Address (5 bytes);
  • PT is packet protocol or packet type (1 byte);
  • WANFID is the frame identifier field (2 bytes)
  • LUCK is 1 byte for indicating luck status.
  • the Layer 3 header is examined to determine if the WANDA in the header corresponds to the WANDA of the node. If the WANDAs are not identical, the node routes the packet by forwarding it to a next hop in the network in accordance with the protocol supported by the node which is requested by the packet. Several routing protocols are contemplated.
  • the "CROW” protocol is a protocol calling for forwarding in the most direct route, i.e., "as the crow flies.”
  • the "WILDFIRE” protocol is a protocol calling for broadcasting the packet to virtually all addressable nodes from the local node, i.e., to spread a packet "like a wildfire.” In the wildfire protocol, where several identical packets may be circulating simultaneously, it is helpful to uniquely identify each packet via the WANFID so that a receiving node can identify whether the packet has been heard before and hence need not be forwarded.
  • Other protocols may be defined as need arises or as technology develops for use in an installed system.
  • the luck byte is analogous to a "time-to-live" field in other protocols. It is set by the originator and algorithmically decremented by each transferring repeater until it reaches zero and is "out of luck.” It is then treated in accordance with any predefined error handling mechanism.
  • the luck concept prevents wayward packets from endlessly propagating around a network.
  • the Layer 4 header for data packets contains information needed for delivery of a packet within a local area net (LAN).
  • LAN local area net
  • the device identifier that is, the LAN destination address.
  • a suitable Layer 4 header is organized as follows: ##STR5## where: DA is Destination Address (5 bytes);
  • PT is packet protocol or packet type (1 byte).
  • the LAN Destination Address is the identifier of the exact device, e.g., meter, within the LAN.
  • the LAN Source Address is the device identifier of the originating device. It is used by the destination device for formatting a response packet.
  • the packet protocol is as above and may be optionally implemented as needed.
  • Routing a response back to the source merely involves swapping the LAN Destination Address for the LAN Source Address, assuming the Layer 3 header has been properly rebuilt for the return.
  • Each device in a network thus has a primary address, namely, the WAN Address, and a secondary address, namely, the LAN Address.
  • the WAN address is the unique latitude and longitude designation of each repeater node, within one second (20 meters) of geographic accuracy. All devices within the LAN of the repeater node use the WAN Address of the repeater node as their WAN Address.
  • routing tables i.e., a table which contains information on the best path to any destination in the network.
  • the overhead for maintaining a routing table which increases as the square of the number of nodes, is thereby eliminated. Since direction is inherent in the addressing scheme according to the invention, routing tables are eliminated in favor of decision making at each repeater node on routing in accordance with the requested protocol embedded in the received packets.
  • WAN addresses are all unique, and assignments of WAN addresses are so chosen.
  • the LAN addresses provide the device names reachable at each WAN address, and they are also assumed and defined to be unique for each WAN address.
  • the network 10 consists of repeater nodes labelled A through Z interconnected by paths 12 representing allowable communication links between nodes.
  • paths 12 representing allowable communication links between nodes.
  • FIG. 2 is a flow chart illustrating the basic routing method at each node.
  • the data is first received (Step S1), and then it is determined whether the data is intended for this node (Step S2). If it is, the data is processed at the local node (Step S3). If the packet is not for this node, it is determined if the packet is for the LAN or the WAN subnet (S4). If for the LAN (i.e., the WAN address is the same as the node performing the routing), the packet is re-built (S5) and queued for transmission on the LAN (S6).
  • the packet is re-built for a WAN routing (S7), enqueued (S8) and passed to the ⁇ scan for link ⁇ algorithm (S9 and FIG. 4)When the link is found that will accept the packet, the packet is sent (S10). Should the packet not be able to be routed in a forward manner an error process is initiated. For example, the local node may inform the source, namely the previous node in the path, to resend the packet via another node. Alternatively, the local node may return the received packet to the source node for rerouting using an entirely different routing protocol.
  • a local table maintained by the local node is examined to determine the best next hop.
  • the best next hop may be based on various criteria including distance, output power required to establish communication, retry history (reliability), throughput history, speed of transfer (net data rate), network delay, data priority, link utilization percentage, closeness to desired destination, closeness to desired bearing, randomness, closeness to local bearing, a link quality factor and the like.
  • optimum forward progress is the primary criterion, that is, maximum forward progress attainable using the least amount of power and taking into account characteristics of the system. This is determined by calculating the metric between the destination coordinate and the neighbor node and selecting the optimum metric among all neighboring nodes of the subject node.
  • the power requirement may be observed by simply noting whether a "sent" packet reaches the next node; if not, there was not enough power. The packet is then sent to the best node based on this power limitation, or the system automatically increases power so the packet will reach the best node.
  • there is an initialization procedure which is executed to determine the latitude and longitude of neighbors within a destination quadrant, and the criteria are weighted in accordance with preselected protocol criteria. The criteria may be adjusted from time to time or automatically based on experience with the network.
  • History of communication is an important factor in developing and maintaining a local table. For example, history of communication with a dead end node would provide an indication to the local node that such a dead end node is not useful for forwarding packets.
  • Routing errors are identified by type and processed accordingly. There are for example three types of routing errors, Bad Destination, Can't Get There, Retried Out.
  • Bad Destination errors are errors where the destination node is incorrectly specified. A packet containing a Bad Destination designator will have searched for the destination until it is discarded by the network.
  • Can't Get There errors are similar to Bad Destination errors, except that a proper destination address has been specified. For example, if no provision is provided to get around a topological obstacle, such an error would be generated. The packet would require retransmission via a more robust protocol if delivery of the packet is to be achieved.
  • Retry Out errors occur when the network is too busy to handle all packets. Undelivered packets require retransmission at a later time.
  • the local node changes the packet header address by putting the address of the best next hop into an appropriate field of the header and then sending it to the interim destination or neighbor node.
  • the process is repeated for each hop as the receiving neighbor node becomes the local node for the subject packet. The process continues until the packet finds its ultimate destination.
  • the method according to the invention can be used with a variety of routing algorithms and protocols.
  • a maximum forward progress (MFP) routing algorithm may be used.
  • MFP maximum forward progress
  • a node attempts to send data to its neighbor closest to the final destination.
  • the transmitter power is selected to be whatever is required to establish the link. This technique has particular advantage where transit time is critical.
  • a nearest forward progress (NFP) algorithm may be used.
  • NFP nearest forward progress
  • the local node utilizes the minimum power necessary to link with a neighbor and still make some forward progress.
  • This technique has particular advantage in dense and complex networks where transit time is less critical. It has been found that overall network throughput improves in a very active network when the nearest forward progress technique is employed, as compared to conventional techniques which create large numbers of collisions due to large numbers of active packets in the same broadcast area. This represents a departure from conventional theory which preferred to cause data to be moved as far as possible with each hop on grounds that minimizes relays would avoid delay.
  • a nearest forward progress algorithm uses a channel more efficiently in packet radio communications because transmitters can use lower power and are less likely to be heard by unaddressed stations and therefore are less likely to cause interference due to collisions.
  • flooding sink Another useable algorithm is the flooding sink or "Wildfire" algorithm, mentioned hereinabove.
  • the local node routes data to all neighbors (other than the source node).
  • Some directional bias may be applied in order to limit the range within a destination quadrant or hemisphere to which data packets are sent.
  • a packet is only rebroadcast when heard for the first time.
  • the biased random routing algorithm is the simplest routing algorithm. It distributes data relatively quickly and preferably it is biased to deliver data to only one hemisphere so that data is sent to anyone in the correct general direction of the destination.
  • the present invention can be viewed in the context of the seven-layer OSI (Open Systems Interconnection) architecture and protocols in connection with HDLC, the standard bit-transparent data link control for point-to-point and point-to-multipoint connections.
  • OSI Open Systems Interconnection
  • the invention is intentionally designed to be independent of any specific apparatus so long as it operates within the standard.
  • FIG. 1 In an exemplary implementation as shown in FIG. 1
  • a network could comprise a plurality of nodes 20, each consisting of a standard terminal node controller (TNC) (such as a TAPR TNC-2) implemented as an ordinary AX.25 digipeater node broadcasting through an ordinary VHF transceiver 24 (such as a Kenwood Model 7930) and using an optional personal computer 26 (such as an IBM PC-XT) as a terminal emulator and running appropriate software in the TNC 22 and/or the computer 26 according to the invention.
  • TNC standard terminal node controller
  • VHF transceiver 24 such as a Kenwood Model 7930
  • personal computer 26 such as an IBM PC-XT
  • the transceiver 24 typically includes means for measuring, directly or indirectly, the strength of a received signal, and imbedded in the structure of the packet according to the invention is sufficient information to identify location from which distances can be computed.
  • the module L2SCAN.C contains routines that determine which "link” (W1) on which the packet would be “best” routed out (W2).
  • the routine "ScanForLink(. . . )” is the central decision making module. It is passed the destination WAN address and selects from the set of links it has available (W3) the ones most likely to provide forward progress of the packet (as determined by the routine "ProbableProgress(. . . )". These are placed in a list by the routine "insert -- in -- poll -- list( . . . ).” This list is then tested for viability (W4) in decreasing order of desirability (W5), if the link responds (W6), the packet is sent. Should the best "link” fail, the system exists (W7).
  • the module L2WAN.C contains routines that manage the WAN links. This includes determining if any of the packets queued for transmit require the ⁇ ScanForLink(. . . ) ⁇ routine to provide routing. Packets that do not require routing (i.e., whose WAN destination is directly reachable) are sent directly, all others are passed through to the ⁇ ScanForLink(. . . ) ⁇ routine, Most of the functionality of the routines in L2WAN.C consists of the implementation of the WAN link layer protocol and as such is not directly germane to this application.
  • the module L2NODE.C is a utility module providing various support routines to manage the NODE data structure.
  • the node table used for all routing decisions is constructed using the NODE structure. These routines keep current and valid all the data required to be able to predict the link quality before attempting transmission.
  • Major data are the tries/retries ratio and the Received Signal Strength Indicator (RSSI).
  • RSSI Received Signal Strength Indicator
  • the module L2MAINT.C contains routines that perform the maintenance of the link. A great variety of information is passed between links: connectivity, age of the node (amount of time that the node has been operational), tine-of-day information, etc. This information has to be kept current.
  • the L2MAINT,C routines rely on several timers to initiate the transmittal of maintenance packets.
  • the present invention is presently undergoing field testing in select regions.
  • the testing and use of the present invention is but a simulation of the present invention.
  • a simulation of limited scope is being done because it is estimated that nearly 20,000 nodal positions would be needed to fully evaluate the principles disclosed herein, and such a full-scale test would be extremely difficult to evaluate without significant commercial overtones.
  • beta testing is nearly completed and FCC certification very likely, if not actually issued, before the date of this filing.

Abstract

A packet network routing method and system based on geographic coordinate identifiers is described. Each node in a network is uniquely identified by absolute geographical coordinates or by a code indicating absolute location in an external coordinate-based reference system (node coordinates), and such absolute geographical coordinates or the equivalent are employed as part of a packet identifier for each packet generated for use in making routing decisions. The node coordinates of a local node and its neighboring nodes and the packet coordinates are used by means at each node through which a packet is routed for determining a desired forwarding route of a data packet. The routing may be prioritized according to preselected criteria, preferably achieving maximum forward progress using the least amount of power. The packet routing protocol according to the invention requires no routing directory or table to perform data routing.

Description

BACKGROUND OF THE INVENTION
This invention is a continuation-in-part of U.S. patent application Ser. No. 383,273, filed Jul 18, 1989, now U.S. Pat. No. 4,939,726, which was a File Wrapper Continuation of Ser. No. 133,720, filed Dec. 16, 1987, now abandoned.
MICROFICHE APPENDIX
This application contains a microfiche appendix, containing two fiche and a total of 119 frames.
The invention relates generally to a method for routing data packets through a packet communication network.
Packet communications is a form of data communications whereby segments or packets of data are routed with error checking and confirmation of receipt directly or relayed via relay stations between a source node or station and a destination node or station. Several methods of data packet routing are known. According to one method, the address in the header of the packet is used as an index to a directory of packet routing lists. Packet routing lists must be prepared with knowledge about the location of each node in the network. Each node is identified by a header identifier. A packet routing list consists of an ordered list of packet node identifiers or call signs. Directory-based routing schemes require continued maintenance and communication of network interconnectivity information employed in the directory. Each of these functions drains network resources and can become intractable in a large network. However, one of the advantages of directory-based routing techniques is that it permits optimization of routing for a wide variety of network parameters, including data delay, throughput, reliability, priority and the like.
Another basic routing technique is the nondirectory-based routing technique. In nondirectory-based routing, the complexities associated with routing techniques are avoided. There is no connectivity information, which thus simplifies construction of each node. However, nondirectory-based routing techniques do not permit network parameter optimization.
The following patents were uncovered in a search of prior art with respect to the subject invention:
______________________________________                                    
Inventor      Patent No. Date of Patent                                   
______________________________________                                    
Otomo et al.  4,074,232  February 14, 1978                                
Sanders, Jr. et al.                                                       
              4,135,156  January 16, 1979                                 
deCouasnon et al.                                                         
              4,168,400  September 18, 1979                               
Maxemchuk     4,516,239  May 7, 1985                                      
Cohen et al.  4,525,830  June 25, 1985                                    
Maxemchuk et al.                                                          
              4,534,024  August 6, 1985                                   
Gable et al.  4,550,402  October 29, 1985                                 
George et al. 4,644,532  February 17, 1987                                
Lea et al.    4,661,947  April 28, 1987                                   
Lambarelli et al.                                                         
              4,663,758  May 5, 1987                                      
______________________________________                                    
The Maxemchuk patents of Bell Laboratories teach the use of data packet systems over cable television networks and also teach the use of variable length packets for voice. The George et al. patent to IBM teaches the use of routing notes utilizing the topology of the network. The Sanders patent teaches the use of satellite communications whereby messages are routed via a local relay station. The Lea patent to Bell Labs teaches the use of a self-routing packet switching network. None of these patents suggest routing based on a node identifier which employs absolute geographic location indicia in the identifier for use in establishing routing.
The remaining patents above relate to the general state of the art of packet communication.
A noteworthy background reference related to radio-based packet communications is the published standard for AX.25 entitled "AX.25 Amateur Packet-Radio Link-Layer Protocol," Version 2.0 (October 1984), Publication No. 56, American Radio Relay League, Inc., Newington, Conn.. This protocol is directed to the link layer or level 2 of the International Organization for Standardization (ISO) seven-layered reference model of Open Systems Interconnection (OSI) and is based on the CCITT X.25 level 2 LAPB protocol standard of Recommendation X.25 of the International Telegraph and Telephone Consultative Committee (CCITT). The AX.25 protocol differs from the X.25 protocol in that the AX.25 protocol provides for repeater stations and repeater linking at the link layer, and specifically up to eight repeater stations under Version 2.0. Whereas the ability to address a destination via a prescribed repeater chain proved to be an advance for link layer protocols, the link remains susceptible to breakdown in linking if the chain is interrupted or changed. As will be explained hereinbelow, the present invention represents a substantial departure from an addressing protocol based on explicitly predefining a routing.
Additional background information can be found in the following references.
Mischa Schwartz, Telecommunication Networks: Protocols, Modeling and Analysis, New York: Addison-Wesley, 1987, Chapter 6. This chapter from a standard textbook describes the routing function of the Network Layer of the protocol. It provides a view of what is currently being taught to those skilled in the art, and it contains a particularly pertinent discussion of decentralized algorithms, of which the present invention is one example. Of interest is credit given to the lead inventor of the present invention on page 273.
Takagi and Kleinrock, "Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals," IEEE Transactions on Communications, Com.-32, No. 3, March 1984, pp. 246-257. The Takagi et al. article and the subsequently-cited article describe academic research relating to the problems of packet radio networks. Takagi et al. refers to state-of-the art analysis of the slightly different packet radio network, the slotted/nonslotted single-frequency ALOHA network first published in the early 1970's.
Hou and Li, "Performance Analysis of Routing Strategies in Multihop Packet Radio Network," (Conference Paper CH2064-4/84/0000-0487), IEEE, 1984. In this paper, the authors provide definitions and disclose a model for analyzing the throughput and forward progress of a multiple hop packet radio network. Routing strategies are demonstrated, and a specific strategy adopted in the present claimed invention, namely, "Nearest with Forward Progress" or simply nearest forward progress (NFP), is disclosed and analyzed. The conclusion is reached therein that the best strategy for propagating packets in a large network is NFP. It basically states that the overall best interest of a multihop packet network is served when each node uses the least power possible to maintain forward progress of a packet.
M. D. Busch, "NET/ROM for the TNC-2, Amateur Radio Version 1," May 1987. This paper is a printout of the documentation of the software for the current best low-cost commercial implementation of a packet radio network. The NET/ROM software was written by R. E. Raikes, (Amateur call WA8DED), and is sold by Software 2000, Inc. of Arroyo Grande, Calif.. This documentation discusses for example one solution to the routing problem, namely, the use of routing-table-driven routing, the routing tables being created by the distributed algorithm at each node and then the updates to the table is propagated throughout the network. NET/ROM has been a very successful "Layer 3/4" implementation of a network, but it suffers the weakness of all large routing-table-driven packet networks: excessive system overhead related to dynamic adaptation of the network to changes. This documentation is provided to show the process of making routing decisions in a real-world implementation.
In a theoretical paper first published in March of 1987, less than one year prior to the effective filing date of this application, entitled "Routing and Addressing Problems in Large Metropolitan-scale Internetworks" by Gregory G. Finn, ISI Research Report ISI/RR-87-180 March 1987 (Marina del Rey, Calif.) there appears a description of a Cartesian routing protocol of one form. The Cartesian routing protocol described therein associates a semi-unique ordered Cartesian location with each gateway (node) as part of a Cartesian address combining a location element and a gateway identifier. Position is represented by this location identifier and a metric distance is calculated between two such locations based on the location identifier. Specific reference is made therein to the use of latitude and longitude values as the basis of the Cartesian coordinate system. A hierarchy is suggested therein based on the hop range of reachable nodes in the network. The hierarchy suggested therein is used in conventional telephone networking protocols. The Finn paper is believed to be the only description of a packet routing protocol suggesting use of Cartesian geographical coordinates. Notwithstanding, this paper is not prior art to the subject invention under the patent laws of the United States.
SUMMARY OF THE INVENTION
According to the invention, each node in a packet communication network is uniquely identified by absolute geographical coordinates or by a code indicating absolute location in an external coordinate-based reference system (node coordinates), and such absolute geographical coordinates or the equivalent are employed as part of a packet identifier for each packet generated for use in making routing decisions (packet coordinates). The node coordinates of a local node and its neighboring nodes and the packet coordinates are used by means at each node through which a packet is routed for determining a desired forwarding route of a data packet. The routing may be prioritized according to preselected criteria, preferably achieving optimum forward progress, that is, maximum forward progress using the least amount of power and taking into account characteristics of the system.
The packet routing protocol according to the invention requires no routing directory or table to perform data routing. Each node of the network collects or is otherwise provided with information about the quality of communication between itself and its neighboring nodes within its communication range. When a data packet has been received at a node, it is routed further through the network based on criteria derived from the history of communication between the local node and its neighbors. The criteria include distance, power requirements, retry history (reliability), throughput history, speed of transfer (net data rate), network delay, and data priority. Typically, there is an initialization procedure which is executed to determine the latitude and longitude of neighbors within a destination quadrant, and the criteria are weighted in accordance with preselected preferences to establish, at each subject node, a link quality (LQ) factor for each possible destination local to the subject node. The link quality factor may be used as, or otherwise be used to establish, a metric.
In a preferred form, the metric may be used in to establish a hierarchy among possible local destinations based on the maximum forward progress attainable using the minimum amount of power, herein termed optimum forward progress or OFP. This routing protocol has been found to be superior in very large networks in applications requiring a high rate of packet throughput.
The invention will be better understood by reference to the following detailed description in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram illustrating a generalized data network topology;
FIG. 2 is a flow chart describing the basic steps of the invention for use with specific routing algorithms;
FIG. 3 is a block diagram illustrating a general node according to the present invention; and
FIG. 4 is a flow chart of a specific routine according to the present invention.
DESCRIPTION OF SPECIFIC EMBODIMENTS
In accordance with the invention, each node in a network is identifiable by location. Each packet is thereby able to be directed to a destination based primarily on location information contained in a header at the proper level of its data packet. A packet is organized as follows: ##STR1## where: L indicates "layer";
H indicates "header";
T indicates "tailer."
Layer 1, is the "physical layer," which is responsible for transferring data in a packet in error-free form. If a packet is received which contains an indication of error, the packet is discarded and not acknowledged by the receiver. When sending data, the physical layer performs no error checking, it is not responsible for resending failed packets, and it is not responsible for any form of packet routing. A suitable Layer 1 is organized as follows: ##STR2## where Start Flag is a unique one-byte word signalling the start of a packet;
DL is the Data Length in two bytes;
CRC is a two-byte long cyclic redundancy check word field calculated from the beginning of the data length field through the CRC field;
End Flag is a unique one-byte word signalling termination of the packet.
Nonflag pad characters which convey no information may precede or trail a packet for timing delay and synchronization without affecting the protocol.
A complete header must contain at least the following information: the address of the ultimate destination in geographic coordinates and the address of the best next hop in geographic coordinates. Only the address of the best next hop is changed when a packet is forwarded. At least part of this information is contained in the Layer 2 header.
The Layer 2 header or ISO link layer header comprises the destination address, the source address, a protype field (packet protocol and type) and a frame identification. A suitable Layer 2 header is organized as follows: ##STR3## where DA is Destination Address (5 bytes);
SA is Source Address (5 bytes);
PT is packet protocol or packet type (1 byte);
FID is the frame identifier (FID) field.
In accordance with the invention, the destination address is the geographic coordinates of the next local destination and the source address is the geographic coordinates of the local node. Further in accordance with the invention, the destination address of a received packet becomes the source address of the same packet on its retransmission, and the destination address for retransmission is selected by the local node based on analysis of the metrics used to establish optimum forward progress.
The field designated Destination Address is a five-byte address of the desired destination of the local specific packet at the current time in its current form, that is, the Layer 2 destination. It is not the ultimate destination of the packet. Similarly, the field designated Source Address is a five-byte address of the layer 2 source node, the address to which an immediate acknowledgment of receipt is directed. The protype is an eight bit field further broken down into two parts: a four bit protocol designation field and a four bit packet type designation field. The frame identifier field is used to uniquely identify the data frame (DATA) and its related acknowledgment field (ACK) as well as its related acknowledgment of acknowledgment field (ACK-ACK). Packets containing ACK and ACK-ACK are short, since the full data information need not be employed. What is needed are the protype, frame identifier, destination address and source address.
According to the invention, the wide area network (WAN) destination address and source address are also express in terms of geographic coordinates. In a specific embodiment of the invention, the ultimate destination address is contained in a Layer 3 header, which is used for routing a packet between any source and any destination within a wide area net or between wide area nets.
A suitable Layer 3 header is organized as follows: ##STR4## where: WANDA is the Wide Area Net Destination Address (5 bytes);
WANSA is Wide Area Net Source Address (5 bytes);
PT is packet protocol or packet type (1 byte);
WANFID is the frame identifier field (2 bytes)
LUCK is 1 byte for indicating luck status.
According to the invention, upon receipt of a packet at any node, the Layer 3 header is examined to determine if the WANDA in the header corresponds to the WANDA of the node. If the WANDAs are not identical, the node routes the packet by forwarding it to a next hop in the network in accordance with the protocol supported by the node which is requested by the packet. Several routing protocols are contemplated. The "CROW" protocol is a protocol calling for forwarding in the most direct route, i.e., "as the crow flies." The "WILDFIRE" protocol is a protocol calling for broadcasting the packet to virtually all addressable nodes from the local node, i.e., to spread a packet "like a wildfire." In the wildfire protocol, where several identical packets may be circulating simultaneously, it is helpful to uniquely identify each packet via the WANFID so that a receiving node can identify whether the packet has been heard before and hence need not be forwarded. Other protocols may be defined as need arises or as technology develops for use in an installed system.
The luck byte is analogous to a "time-to-live" field in other protocols. It is set by the originator and algorithmically decremented by each transferring repeater until it reaches zero and is "out of luck." It is then treated in accordance with any predefined error handling mechanism. The luck concept prevents wayward packets from endlessly propagating around a network.
The Layer 4 header for data packets contains information needed for delivery of a packet within a local area net (LAN). Within the Layer 4 header is the device identifier, that is, the LAN destination address. A suitable Layer 4 header is organized as follows: ##STR5## where: DA is Destination Address (5 bytes);
SA is Source Address (5 bytes);
PT is packet protocol or packet type (1 byte).
The LAN Destination Address is the identifier of the exact device, e.g., meter, within the LAN. The LAN Source Address is the device identifier of the originating device. It is used by the destination device for formatting a response packet. The packet protocol is as above and may be optionally implemented as needed.
Routing a response back to the source merely involves swapping the LAN Destination Address for the LAN Source Address, assuming the Layer 3 header has been properly rebuilt for the return.
Each device in a network thus has a primary address, namely, the WAN Address, and a secondary address, namely, the LAN Address. The WAN address is the unique latitude and longitude designation of each repeater node, within one second (20 meters) of geographic accuracy. All devices within the LAN of the repeater node use the WAN Address of the repeater node as their WAN Address.
The advantage of use of encoded geographic coordinates is the complete elimination of any requirement for creation and maintenance of routing tables, i.e., a table which contains information on the best path to any destination in the network. The overhead for maintaining a routing table, which increases as the square of the number of nodes, is thereby eliminated. Since direction is inherent in the addressing scheme according to the invention, routing tables are eliminated in favor of decision making at each repeater node on routing in accordance with the requested protocol embedded in the received packets.
It is recognized that multiple use of the same undifferentiated WAN address raises questions about uniqueness of topological designation. It is therefore assumed that the WAN addresses are all unique, and assignments of WAN addresses are so chosen. The LAN addresses provide the device names reachable at each WAN address, and they are also assumed and defined to be unique for each WAN address.
Referring now to FIG. 1, there is shown a data network 10 in a topology in accordance with the invention. The network 10 consists of repeater nodes labelled A through Z interconnected by paths 12 representing allowable communication links between nodes. Consider for example data arriving at a local node J with a destination of node Y. Routing to node Y according to the invention would be most directly routed via node P and node V. Each node would consult its internal neighbor list and route data in turn to the next neighbor node on the path to destination Y.
Alternatively, consider data arriving or originating at local node Q with a destination W. While the geographic location of W is close, since each node is identifiable as according to its latitude and longitude or other geographic location, a more tortuous path is required to route the data, namely via R to X to Z to W.
FIG. 2 is a flow chart illustrating the basic routing method at each node. At each node, the data is first received (Step S1), and then it is determined whether the data is intended for this node (Step S2). If it is, the data is processed at the local node (Step S3). If the packet is not for this node, it is determined if the packet is for the LAN or the WAN subnet (S4). If for the LAN (i.e., the WAN address is the same as the node performing the routing), the packet is re-built (S5) and queued for transmission on the LAN (S6). If the WAN address in the packet is not the same as the node doing the routing, the packet is re-built for a WAN routing (S7), enqueued (S8) and passed to the `scan for link` algorithm (S9 and FIG. 4)When the link is found that will accept the packet, the packet is sent (S10). Should the packet not be able to be routed in a forward manner an error process is initiated. For example, the local node may inform the source, namely the previous node in the path, to resend the packet via another node. Alternatively, the local node may return the received packet to the source node for rerouting using an entirely different routing protocol.
As a part of the forwarding decision, a local table maintained by the local node is examined to determine the best next hop. The best next hop may be based on various criteria including distance, output power required to establish communication, retry history (reliability), throughput history, speed of transfer (net data rate), network delay, data priority, link utilization percentage, closeness to desired destination, closeness to desired bearing, randomness, closeness to local bearing, a link quality factor and the like. In a specific embodiment, optimum forward progress is the primary criterion, that is, maximum forward progress attainable using the least amount of power and taking into account characteristics of the system. This is determined by calculating the metric between the destination coordinate and the neighbor node and selecting the optimum metric among all neighboring nodes of the subject node. The power requirement may be observed by simply noting whether a "sent" packet reaches the next node; if not, there was not enough power. The packet is then sent to the best node based on this power limitation, or the system automatically increases power so the packet will reach the best node. Typically, there is an initialization procedure which is executed to determine the latitude and longitude of neighbors within a destination quadrant, and the criteria are weighted in accordance with preselected protocol criteria. The criteria may be adjusted from time to time or automatically based on experience with the network.
History of communication is an important factor in developing and maintaining a local table. For example, history of communication with a dead end node would provide an indication to the local node that such a dead end node is not useful for forwarding packets.
Routing errors are identified by type and processed accordingly. There are for example three types of routing errors, Bad Destination, Can't Get There, Retried Out. Bad Destination errors are errors where the destination node is incorrectly specified. A packet containing a Bad Destination designator will have searched for the destination until it is discarded by the network.
Can't Get There errors are similar to Bad Destination errors, except that a proper destination address has been specified. For example, if no provision is provided to get around a topological obstacle, such an error would be generated. The packet would require retransmission via a more robust protocol if delivery of the packet is to be achieved.
Retry Out errors occur when the network is too busy to handle all packets. Undelivered packets require retransmission at a later time.
Once a decision is made as to which neighbor node is to receive the packet, the local node changes the packet header address by putting the address of the best next hop into an appropriate field of the header and then sending it to the interim destination or neighbor node.
The process is repeated for each hop as the receiving neighbor node becomes the local node for the subject packet. The process continues until the packet finds its ultimate destination.
The process of error handling is much simplified because the header inherently carries with it sufficient information to compute distance metrics between a packet and its destination.
The method according to the invention can be used with a variety of routing algorithms and protocols. For example, a maximum forward progress (MFP) routing algorithm may be used. According to the MFP algorithm, a node attempts to send data to its neighbor closest to the final destination. In this algorithm, the transmitter power is selected to be whatever is required to establish the link. This technique has particular advantage where transit time is critical.
Alternatively, and preferably in packet applications, a nearest forward progress (NFP) algorithm may be used. In a nearest forward progress algorithm, the local node utilizes the minimum power necessary to link with a neighbor and still make some forward progress. This technique has particular advantage in dense and complex networks where transit time is less critical. It has been found that overall network throughput improves in a very active network when the nearest forward progress technique is employed, as compared to conventional techniques which create large numbers of collisions due to large numbers of active packets in the same broadcast area. This represents a departure from conventional theory which preferred to cause data to be moved as far as possible with each hop on grounds that minimizes relays would avoid delay. A nearest forward progress algorithm uses a channel more efficiently in packet radio communications because transmitters can use lower power and are less likely to be heard by unaddressed stations and therefore are less likely to cause interference due to collisions.
Another useable algorithm is the flooding sink or "Wildfire" algorithm, mentioned hereinabove. In the flooding sink algorithm, the local node routes data to all neighbors (other than the source node). Some directional bias may be applied in order to limit the range within a destination quadrant or hemisphere to which data packets are sent. To prevent packets from circulating indefinitely and to eliminate redundant rebroadcast, a packet is only rebroadcast when heard for the first time.
Finally, a biased random routing algorithm may be employed. The biased random routing algorithm is the simplest routing algorithm. It distributes data relatively quickly and preferably it is biased to deliver data to only one hemisphere so that data is sent to anyone in the correct general direction of the destination.
In a more detailed embodiment, the present invention can be viewed in the context of the seven-layer OSI (Open Systems Interconnection) architecture and protocols in connection with HDLC, the standard bit-transparent data link control for point-to-point and point-to-multipoint connections. The invention is intentionally designed to be independent of any specific apparatus so long as it operates within the standard. In an exemplary implementation as shown in FIG. 3, a network could comprise a plurality of nodes 20, each consisting of a standard terminal node controller (TNC) (such as a TAPR TNC-2) implemented as an ordinary AX.25 digipeater node broadcasting through an ordinary VHF transceiver 24 (such as a Kenwood Model 7930) and using an optional personal computer 26 (such as an IBM PC-XT) as a terminal emulator and running appropriate software in the TNC 22 and/or the computer 26 according to the invention. The transceiver 24 typically includes means for measuring, directly or indirectly, the strength of a received signal, and imbedded in the structure of the packet according to the invention is sufficient information to identify location from which distances can be computed.
Four source code modules are provided herewith (see Microfiche Appendix) as samples of an implementation of various aspects of the disclosed invention: L2SCAN.C; L2WAN.C; L2NODE.C; and L2MAINT.C. Other implementations could be implemented readily by one of ordinary skill in the art. This implementation is written in C, a widely-used computer language.
The module L2SCAN.C contains routines that determine which "link" (W1) on which the packet would be "best" routed out (W2). The routine "ScanForLink(. . . )" is the central decision making module. It is passed the destination WAN address and selects from the set of links it has available (W3) the ones most likely to provide forward progress of the packet (as determined by the routine "ProbableProgress(. . . )". These are placed in a list by the routine "insert-- in-- poll-- list( . . . )." This list is then tested for viability (W4) in decreasing order of desirability (W5), if the link responds (W6), the packet is sent. Should the best "link" fail, the system exists (W7).
The module L2WAN.C contains routines that manage the WAN links. This includes determining if any of the packets queued for transmit require the `ScanForLink(. . . )` routine to provide routing. Packets that do not require routing (i.e., whose WAN destination is directly reachable) are sent directly, all others are passed through to the `ScanForLink(. . . )` routine, Most of the functionality of the routines in L2WAN.C consists of the implementation of the WAN link layer protocol and as such is not directly germane to this application.
The module L2NODE.C is a utility module providing various support routines to manage the NODE data structure. The node table used for all routing decisions is constructed using the NODE structure. These routines keep current and valid all the data required to be able to predict the link quality before attempting transmission. Major data are the tries/retries ratio and the Received Signal Strength Indicator (RSSI).
The module L2MAINT.C contains routines that perform the maintenance of the link. A great variety of information is passed between links: connectivity, age of the node (amount of time that the node has been operational), tine-of-day information, etc. This information has to be kept current. The L2MAINT,C routines rely on several timers to initiate the transmittal of maintenance packets.
The present invention is presently undergoing field testing in select regions. The testing and use of the present invention is but a simulation of the present invention. A simulation of limited scope is being done because it is estimated that nearly 20,000 nodal positions would be needed to fully evaluate the principles disclosed herein, and such a full-scale test would be extremely difficult to evaluate without significant commercial overtones. Furthermore, beta testing is nearly completed and FCC certification very likely, if not actually issued, before the date of this filing.
The invention has now been explained with reference to specific embodiments. Other embodiments will be apparent to those of ordinary skill in the art. It is therefore not intended that this invention be limited except as indicated by the appended claims.

Claims (12)

We claim:
1. A method for routing packets of data without a network director comprising the steps of:
assigning to each node in a network an identifier indicative of geographic location, said identifier including a coordinate value referenced to a terrestrial grid;
addressing a packet to an ultimate destination node by designating in a packet header said ultimate destination node only by said coordinate value of said ultimate destination node and without designating a complete intermediate path to said ultimate destination node such that the network is free to route the packet via any intermediate path to said ultimate destination node;
at a lock node, selecting at least one of a plurality of neighboring nodes by using said packet header and other information specific to said lock node according to preselected criteria;
forwarding said packet to said selected neighboring node for eventual delivery to said ultimate destination node; and
selecting one neighboring node requiring the least amount of power for forwarding said packet.
2. The method according to claim 1 wherein said selecting step includes using said packet header to determine distance of said plurality of neighboring nodes relative to said ultimate destination node.
3. The method according to claim 1 wherein said selecting step includes developing a local table for maintaining communication history between said lock node and said plurality of neighboring nodes.
4. The method according to claim 3 wherein said lock table maintains information about said neighboring nodes on at least one of the following criteria: distance, output power required to establish communication, retry history, throughput history, speed of transfer, network delay, data priority, link utilization percentage, closeness to desired destination closeness to desired bearing, randomness, and closeness to local bearing.
5. The method according to claim 3 wherein a link quality factor is employed to define preferred communication paths.
6. A system for routing packets of data in a packet data communication network without a network director comprising:
a plurality of nodes in a network, each node including an identifier indicative of geographic location, said identifier including a coordinate value referenced to a terrestrial grid; and
means for addressing a packet to an ultimate destination node by designating in a packet header said ultimate destination node only by said coordinate value of said ultimate destination node and without designating a complete intermediate path to said ultimate destination node such that the network is free to route the packet via any intermediate path to said ultimate destination node.
7. A system for routing packets of data without a network director comprising:
a plurality of nodes in a network, each node including an identifier indicative of geographic location, said identifier including a coordinate value referenced to a terrestrial grid;
means for addressing a packet to an ultimate destination node by designating in a packet header said ultimate destination node only by said coordinate value of said ultimate destination node and without designating a complete intermediate path to said ultimate destination node such that the network is free to route the packet via any intermediate path to said ultimate destination node;
at a lock node, means for selecting at least one of a plurality of neighboring nodes by using said packet header and other information specific to said lock node according to preselected criteria; and
means for forwarding said packet to said selected neighboring node for eventual delivery to said ultimate destination node.
8. The system according to claim 7 wherein said selecting means comprises means for selecting one neighboring node requiring the least amount of power for forwarding said packet.
9. The system according to claim 7 wherein said selecting means includes means for using said packet header to determine distance of said plurality of neighboring nodes relative to said ultimate destination node.
10. The system according to claim 7 wherein said selecting means includes means for developing a local table for maintaining communication history between said local node and said neighboring nodes.
11. The system according to claim 10 wherein said local table maintains information about said neighboring nodes on at least one of the following criteria: distance, output power required to establish communication, retry history, throughput history, speed of transfer, network delay, data priority, link utilization percentage, closeness to desired destination, closeness to desired bearing, randomness, and closeness to local bearing.
12. The system according to claim 10 wherein a link quality factor is employed to define preferred communication paths.
US07/513,364 1989-07-18 1990-04-20 Method and system for routing packets in a packet communication network Expired - Lifetime US5115433A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/513,364 US5115433A (en) 1989-07-18 1990-04-20 Method and system for routing packets in a packet communication network
DE69131240T DE69131240T2 (en) 1990-04-20 1991-03-15 Method and system for routing packets in a packet transmission network
EP91104042A EP0455959B1 (en) 1990-04-20 1991-03-15 Method and system for routing packets in a packet communication network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/383,273 US4939726A (en) 1989-07-18 1989-07-18 Method for routing packets in a packet communication network
US07/513,364 US5115433A (en) 1989-07-18 1990-04-20 Method and system for routing packets in a packet communication network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/383,273 Continuation-In-Part US4939726A (en) 1989-07-18 1989-07-18 Method for routing packets in a packet communication network

Publications (1)

Publication Number Publication Date
US5115433A true US5115433A (en) 1992-05-19

Family

ID=24042952

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/513,364 Expired - Lifetime US5115433A (en) 1989-07-18 1990-04-20 Method and system for routing packets in a packet communication network

Country Status (3)

Country Link
US (1) US5115433A (en)
EP (1) EP0455959B1 (en)
DE (1) DE69131240T2 (en)

Cited By (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233604A (en) * 1992-04-28 1993-08-03 International Business Machines Corporation Methods and apparatus for optimum path selection in packet transmission networks
US5253248A (en) * 1990-07-03 1993-10-12 At&T Bell Laboratories Congestion control for connectionless traffic in data networks via alternate routing
US5355364A (en) * 1992-10-30 1994-10-11 International Business Machines Corporation Method of routing electronic messages
US5377182A (en) * 1993-08-18 1994-12-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-blocking crossbar permutation engine with constant routing latency
WO1995010142A1 (en) * 1993-10-07 1995-04-13 Metricom, Inc. Automatic power level control of a packet communication link
EP0669741A2 (en) * 1994-02-23 1995-08-30 International Business Machines Corporation Method and apparatus for encrypted communication in data networks
WO1995028780A1 (en) * 1994-04-14 1995-10-26 Metricom, Inc. Method and system for routing packets in a packet communication network using locally constructed routine tables
US5469446A (en) * 1994-01-26 1995-11-21 International Business Machines Corporation Retry filter and circulating echo method and apparatus
US5477536A (en) * 1993-01-26 1995-12-19 Picard; Jean L. Method and system for routing information between nodes in a communication network
US5481735A (en) * 1992-12-28 1996-01-02 Apple Computer, Inc. Method for modifying packets that meet a particular criteria as the packets pass between two layers in a network
US5491690A (en) * 1993-07-30 1996-02-13 International Business Machines Corporation Method and apparatus to speed up the path selection in a packet switching network
US5495475A (en) * 1993-10-15 1996-02-27 International Business Machines Corporation Resolution of race conditions in cascaded switches
US5515369A (en) * 1994-06-24 1996-05-07 Metricom, Inc. Method for frequency sharing and frequency punchout in frequency hopping communications network
US5572512A (en) * 1995-07-05 1996-11-05 Motorola, Inc. Data routing method and apparatus for communication systems having multiple nodes
US5577028A (en) * 1990-08-31 1996-11-19 Fujitsu Limited Routing system using a neural network
US5636216A (en) * 1994-04-08 1997-06-03 Metricom, Inc. Method for translating internet protocol addresses to other distributed network addressing schemes
US5729549A (en) * 1995-03-16 1998-03-17 Bell Atlantic Network Services, Inc. Simulcasting digital video programs for broadcast and interactive services
US5742588A (en) * 1995-09-18 1998-04-21 Telefonaktiebolaget Lm Ericsson Packet switched traffic management in a cellular telecommunications system
US5751707A (en) * 1995-06-19 1998-05-12 Bell Atlantic Network Services, Inc. AIN interaction through wireless digital video network
US5822324A (en) * 1995-03-16 1998-10-13 Bell Atlantic Network Services, Inc. Simulcasting digital video programs for broadcast and interactive services
US5835005A (en) * 1994-07-13 1998-11-10 Omron Corporation Power-line data transmission method and system utilizing relay stations
WO1999007115A1 (en) * 1997-08-02 1999-02-11 Dirc Technologie Gmbh & Co.Kg Telecommunications system
US5896382A (en) * 1996-11-19 1999-04-20 Scientific-Atlanta, Inc. Method and apparatus for communicating information between a headend and subscriber over a wide area network
US5903566A (en) * 1994-06-24 1999-05-11 Metricom, Inc. Method for distributing program code to intelligent nodes in a wireless mesh data communication network
US5907540A (en) * 1994-09-21 1999-05-25 Hitachi, Ltd. Radio data communication apparatus having a relay function and radio data communication method and system using the same
US5959995A (en) * 1996-02-22 1999-09-28 Fujitsu, Ltd. Asynchronous packet switching
WO2000039967A2 (en) * 1998-12-23 2000-07-06 Nokia Wireless Routers, Inc. A unified routing scheme for ad-hoc internetworking
US6091732A (en) * 1997-11-20 2000-07-18 Cisco Systems, Inc. Method for configuring distributed internet protocol gateways with lan emulation
US6097700A (en) * 1995-09-18 2000-08-01 Telefonaktiebolaget L M Ericsson (Publ) Packet switched radio channel congestion control
US6173176B1 (en) * 1998-03-27 2001-01-09 Motorola, Inc. Method for sector-based routing
US20010002210A1 (en) * 1997-02-14 2001-05-31 Petite Thomas D. Multi-function general purpose transceiver
US6246669B1 (en) 1997-11-28 2001-06-12 Cisco Technology, Inc. Method and system for optimizing connection set-up operations in a high speed digital network
EP1137233A1 (en) * 2000-03-17 2001-09-26 Joachim Gehrke System and method for the identification of data packets
US20010041576A1 (en) * 2000-04-06 2001-11-15 I'anson Colin Deriving location information about a communicating entity
US6329902B1 (en) 1994-04-20 2001-12-11 Cellco Partnership Wide area two-way paging using a mesh network with paging receivers
US6381227B1 (en) 1993-06-17 2002-04-30 Gilat Florida Inc. Frame relay protocol-based multiplex switching scheme for satellite mesh network
US6400681B1 (en) 1996-06-20 2002-06-04 Cisco Technology, Inc. Method and system for minimizing the connection set up time in high speed packet switching networks
US20020087789A1 (en) * 1998-12-30 2002-07-04 Walton John K. Data storage system
US20020117761A1 (en) * 2000-03-08 2002-08-29 Wael Zohni Off-center solder ball attach assembly
US6456594B1 (en) 1996-10-31 2002-09-24 Connect One, Llp Multi-protocol communications routing optimization
US20020159442A1 (en) * 2000-05-08 2002-10-31 Vincent Quigley Method of indicating the origin of a mobile user in a data network
US20020183923A1 (en) * 2000-05-15 2002-12-05 Matthias Hessling Method, data format, encoding device, decoding device and system
US20020199015A1 (en) * 2001-05-30 2002-12-26 Mitsubishi Materials Corporation Communications system managing server, routing server, mobile unit managing server, and area managing server
US20030009594A1 (en) * 2000-02-04 2003-01-09 Mcelligott Adrian Method and apparatus for identifying locale of internet users
US20030072270A1 (en) * 2001-11-29 2003-04-17 Roch Guerin Method and system for topology construction and path identification in a two-level routing domain operated according to a simple link state routing protocol
US20030072485A1 (en) * 2001-11-29 2003-04-17 Roch Guerin Method and system for topology construction and path identification in a routing domain operated according to a link state routing protocol
US6553355B1 (en) 1998-05-29 2003-04-22 Indranet Technologies Limited Autopoietic network system endowed with distributed artificial intelligence for the supply of high volume high-speed multimedia telesthesia telemetry, telekinesis, telepresence, telemanagement, telecommunications, and data processing services
WO2003034669A1 (en) * 2001-10-17 2003-04-24 British Telecommunications Public Limited Company Network location management system
US20030078029A1 (en) * 2001-10-24 2003-04-24 Statsignal Systems, Inc. System and method for transmitting an emergency message over an integrated wireless network
US6560450B1 (en) * 1999-01-11 2003-05-06 Nortel Networks Limited Satellite communications routing and addressing method
US6577613B1 (en) 1999-03-02 2003-06-10 Verizon Corporate Services Group Inc. Method and apparatus for asynchronous reservation-oriented multiple access for wireless networks
US6631136B1 (en) 1998-08-26 2003-10-07 Hypercom Corporation Methods and apparatus for data communication using a hybrid transport switching protocol
US20030198190A1 (en) * 2002-04-19 2003-10-23 Rajendran Rajan Method and system for traffic monitoring in a packet communication network
US20040001008A1 (en) * 2002-06-27 2004-01-01 Shuey Kenneth C. Dynamic self-configuring metering network
US20040001442A1 (en) * 2002-06-28 2004-01-01 Rayment Stephen G. Integrated wireless distribution and mesh backhaul networks
US6678241B1 (en) 1999-11-30 2004-01-13 Cisc Technology, Inc. Fast convergence with topology switching
US6684250B2 (en) 2000-04-03 2004-01-27 Quova, Inc. Method and apparatus for estimating a geographic location of a networked entity
US6683865B1 (en) 1999-10-15 2004-01-27 Nokia Wireless Routers, Inc. System for routing and switching in computer networks
US20040048613A1 (en) * 2002-08-14 2004-03-11 Kataname, Inc. System for mobile broadband networking using dynamic quality of service provisioning
US20040062224A1 (en) * 1996-12-06 2004-04-01 Brownrigg Edwin B. Wireless network system and method for providing same
US20040109417A1 (en) * 2002-12-06 2004-06-10 Microsoft Corporation Practical network node coordinate estimation
US20040113810A1 (en) * 2002-06-28 2004-06-17 Mason Robert T. Data collector for an automated meter reading system
US6757740B1 (en) 1999-05-03 2004-06-29 Digital Envoy, Inc. Systems and methods for determining collecting and using geographic locations of internet users
US6771617B1 (en) 1993-06-17 2004-08-03 Gilat Satellite Networks, Ltd. Frame relay protocol-based multiplex switching scheme for satellite mesh network
AU2001253189B2 (en) * 2000-04-03 2004-08-19 Quova, Inc. Geographic location estimation method for network addresses entities
US6785277B1 (en) 1998-08-06 2004-08-31 Telefonaktiebolget Lm Ericsson (Publ) System and method for internodal information routing within a communications network
US20040174900A1 (en) * 2003-03-06 2004-09-09 Incucomm, Inc. A Delaware Corporation Method and system for providing broadband multimedia services
US6801534B1 (en) * 1995-07-10 2004-10-05 International Business Machines Corporation Management of path routing in packet communications networks
US20040213167A1 (en) * 1999-10-15 2004-10-28 Nokia Wireless Routers, Inc. System for communicating labeled routing trees to establish preferred paths and source routes with local identifiers in wireless computer networks
US20040260833A1 (en) * 2003-06-18 2004-12-23 Rachlin Elliott H. Method and apparatus for storing and retrieving data related to paths of a multi-path, multi-tier network
US20040257243A1 (en) * 2003-06-18 2004-12-23 Rachlin Elliott H. Method and apparatus for converting a network description into a computer program for disambiguating transmit-by-exception telemetry from a multi-path, multi-tier network
US6836465B2 (en) 2001-11-29 2004-12-28 Ipsum Networks, Inc. Method and system for path identification in packet networks
US20040264451A1 (en) * 2001-12-03 2004-12-30 Jouni Kujala Addressing and routing in wireless mesh networks
US6847611B1 (en) 1990-12-10 2005-01-25 At&T Corp. Traffic management for frame relay switched data service
US20050021632A1 (en) * 2003-06-18 2005-01-27 Rachlin Elliott H. Method and apparatus for disambiguating transmit-by-exception telemetry from a multi-path, multi-tier network
US6857026B1 (en) * 1999-12-14 2005-02-15 Nortel Networks Limited Using alternate routes for fail-over in a communication network
US6870816B1 (en) * 2000-03-01 2005-03-22 Motorola, Inc. Self-organizing network with decision engine and method
US20050138049A1 (en) * 2003-12-22 2005-06-23 Greg Linden Method for personalized news
US20050180399A1 (en) * 2004-02-13 2005-08-18 Samsung Electronics Co., Ltd. Broadcast method in wireless network and communication apparatus using the same
US6934249B1 (en) 1997-04-01 2005-08-23 Cisco Technology, Inc. Method and system for minimizing the connection set up time in high speed packet switching networks
US20050201274A1 (en) * 2004-03-15 2005-09-15 Roch Guerin Method and system for path change root-cause identification in packet networks
US20050201397A1 (en) * 1998-06-22 2005-09-15 Statsignal Ipc, Llc Systems and methods for monitoring conditions
US20050213612A1 (en) * 2004-03-27 2005-09-29 Dust Networks Low-powered autonomous radio node with temperature sensor and crystal
US20050272421A1 (en) * 2004-06-07 2005-12-08 Nokia Corporation Determining geographical position in IPV6 networks
US20050270173A1 (en) * 2003-02-14 2005-12-08 Boaz Jon A Automated meter reading system, communication and control network for automated meter reading, meter data collector program product, and associated methods
US20060010252A1 (en) * 2004-03-04 2006-01-12 Miltonberger Thomas W Geo-location and geo-compliance utilizing a client agent
US20060029061A1 (en) * 2004-03-27 2006-02-09 Dust Networks Low-power autonomous node for mesh communication network
US20060029060A1 (en) * 2004-08-05 2006-02-09 Dust Networks Digraph based mesh communication network
US7003601B1 (en) 2000-03-31 2006-02-21 Emc Corporation Data storage system having separate data transfer section and message network with plural directions on a common printed circuit board
US7007194B1 (en) 2000-06-29 2006-02-28 Emc Corporation Data storage system having point-to-point configuration
US20060056418A1 (en) * 2004-09-10 2006-03-16 Rizzuto Joseph J Methods and systems for determining reverse DNS entries
US7015809B1 (en) 2002-08-14 2006-03-21 Skipper Wireless Inc. Method and system for providing an active routing antenna
US20060064374A1 (en) * 2004-09-17 2006-03-23 David Helsper Fraud risk advisor
US20060071853A1 (en) * 2002-08-14 2006-04-06 Kataname, Inc. Method and system for determining direction of transmission using multi-facet antenna
US20060104273A1 (en) * 1997-07-03 2006-05-18 At&T Corp. Frame relay switched data service
US20060149580A1 (en) * 2004-09-17 2006-07-06 David Helsper Fraud risk advisor
US7079810B2 (en) 1997-02-14 2006-07-18 Statsignal Ipc, Llc System and method for communicating with a remote communication unit via the public switched telephone network (PSTN)
US20060168066A1 (en) * 2004-11-10 2006-07-27 David Helsper Email anti-phishing inspector
US20060171402A1 (en) * 2003-03-06 2006-08-03 Moore John A Method and system for providing broadband multimedia services
US20060176863A1 (en) * 2003-09-09 2006-08-10 David Robinson Hierarchical routing in ad-hoc networks
US7103511B2 (en) 1998-10-14 2006-09-05 Statsignal Ipc, Llc Wireless communication networks for providing remote monitoring of devices
US20060209819A1 (en) * 2005-03-21 2006-09-21 Jennings Raymond B Iii Method and apparatus for efficiently expanding a P2P network
US7117275B1 (en) 1999-01-04 2006-10-03 Emc Corporation Data storage system having separate data transfer section and message network
US7126494B2 (en) 1997-02-12 2006-10-24 Elster Electricity, Llc Remote access to electronic meters using a TCP/IP protocol suite
US7137550B1 (en) 1997-02-14 2006-11-21 Statsignal Ipc, Llc Transmitter for accessing automated financial transaction machines
US7142106B2 (en) 2004-06-15 2006-11-28 Elster Electricity, Llc System and method of visualizing network layout and performance characteristics in a wireless network
US20070001868A1 (en) * 2003-02-14 2007-01-04 Boaz Jon A Automated meter reading system, communication and control network for automated meter reading, meter data collector, and associated methods
US20070013547A1 (en) * 2003-02-14 2007-01-18 Boaz Jon A Automated meter reading system, communication and control network from automated meter reading, meter data collector, and associated methods
US7170425B2 (en) 2004-09-24 2007-01-30 Elster Electricity, Llc System and method for creating multiple operating territories within a meter reading system
US20070025353A1 (en) * 2005-07-14 2007-02-01 Skipper Wireless, Inc. Method and system for providing location-based addressing
US7176807B2 (en) 2004-09-24 2007-02-13 Elster Electricity, Llc System for automatically enforcing a demand reset in a fixed network of electricity meters
US20070038568A1 (en) * 2004-09-17 2007-02-15 Todd Greene Fraud analyst smart cookie
US7187906B2 (en) 2004-04-26 2007-03-06 Elster Electricity, Llc Method and system for configurable qualification and registration in a fixed network automated meter reading system
WO2007041826A1 (en) * 2005-10-11 2007-04-19 Xfeer Corporation A system and method for operating a large-scale wireless network
US7239250B2 (en) 2004-04-26 2007-07-03 Elster Electricity, Llc System and method for improved transmission of meter data
US7262709B2 (en) 2004-04-26 2007-08-28 Elster Electricity, Llc System and method for efficient configuration in a fixed network automated meter reading system
US7263073B2 (en) 1999-03-18 2007-08-28 Statsignal Ipc, Llc Systems and methods for enabling a mobile user to notify an automated monitoring system of an emergency situation
US20070209059A1 (en) * 2006-03-03 2007-09-06 Moore John A Communication system employing a control layer architecture
US7295128B2 (en) 1998-06-22 2007-11-13 Sipco, Llc Smoke detection methods, devices, and systems
US20070268829A1 (en) * 2006-05-18 2007-11-22 Michael Corwin Congestion management groups
US7308369B2 (en) 2005-09-28 2007-12-11 Elster Electricity Llc Ensuring automatic season change demand resets in a mesh type network of telemetry devices
US7307956B2 (en) 1996-10-31 2007-12-11 Connectel, Llc Multi-protocol telecommunications routing optimization
US7308370B2 (en) 2005-03-22 2007-12-11 Elster Electricity Llc Using a fixed network wireless data collection system to improve utility responsiveness to power outages
US20080002599A1 (en) * 2004-08-09 2008-01-03 Johnny Yau Method and Apparatus for Ad Hoc Mesh Routing
US7327998B2 (en) 2004-12-22 2008-02-05 Elster Electricity, Llc System and method of providing a geographic view of nodes in a wireless network
US20080051036A1 (en) * 2005-11-17 2008-02-28 Raj Vaswani Method and system for providing a routing protcol for wireless networks
US20080132185A1 (en) * 2002-01-02 2008-06-05 Elliott Karl E Wireless communication enabled meter and network
US20080159277A1 (en) * 2006-12-15 2008-07-03 Brocade Communications Systems, Inc. Ethernet over fibre channel
US20080159260A1 (en) * 2006-12-15 2008-07-03 Brocade Communications Systems, Inc. Fibre channel over ethernet frame
US20080181243A1 (en) * 2006-12-15 2008-07-31 Brocade Communications Systems, Inc. Ethernet forwarding in high performance fabrics
US7424527B2 (en) 2001-10-30 2008-09-09 Sipco, Llc System and method for transmitting pollution information over an integrated wireless network
US7427927B2 (en) 2006-02-16 2008-09-23 Elster Electricity, Llc In-home display communicates with a fixed network meter reading system
US20080285582A1 (en) * 2004-03-27 2008-11-20 Dust Networks, Inc. Digraph network superframes
US20080310346A1 (en) * 2003-08-07 2008-12-18 Skypilot Networks, Inc. Communication protocol for a wireless mesh architecture
US20090028177A1 (en) * 2007-06-22 2009-01-29 Vubiq Incorporated System and method for wireless communication in a backplane fabric architecture
US7495578B2 (en) 2005-09-02 2009-02-24 Elster Electricity, Llc Multipurpose interface for an automated meter reading device
US20090132701A1 (en) * 2007-11-20 2009-05-21 Robert Snively Duplicate address discovery and action
US7545285B2 (en) 2006-02-16 2009-06-09 Elster Electricity, Llc Load control unit in communication with a fixed network meter reading system
CN100534062C (en) * 2003-04-11 2009-08-26 艾利森电话股份有限公司 Multi-user diversity forwarding
US20090292813A1 (en) * 2007-12-17 2009-11-26 Brocade Communications Systems, Inc. Address Assignment in Fibre Channel Over Ethernet Environments
US20090296726A1 (en) * 2008-06-03 2009-12-03 Brocade Communications Systems, Inc. ACCESS CONTROL LIST MANAGEMENT IN AN FCoE ENVIRONMENT
US7650425B2 (en) 1999-03-18 2010-01-19 Sipco, Llc System and method for controlling communication between a host computer and communication devices associated with remote devices in an automated monitoring system
US7685311B2 (en) 1999-05-03 2010-03-23 Digital Envoy, Inc. Geo-intelligent traffic reporter
US7697492B2 (en) 1998-06-22 2010-04-13 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US7702594B2 (en) 2004-09-24 2010-04-20 Elster Electricity, Llc System and method for automated configuration of meters
US7720006B1 (en) * 2003-08-06 2010-05-18 Cisco Technology, Inc. System for determining reachablity of a neighboring node in a network
US20100128653A1 (en) * 2007-03-30 2010-05-27 British Telecommunications Pulbic Limited Ad hoc communication system
US7742430B2 (en) 2004-09-24 2010-06-22 Elster Electricity, Llc System for automated management of spontaneous node migration in a distributed fixed wireless network
US7756086B2 (en) 2004-03-03 2010-07-13 Sipco, Llc Method for communicating in dual-modes
US20100202298A1 (en) * 2009-02-10 2010-08-12 Microsoft Corporation Network coordinate systems using ip information
US7778149B1 (en) 2006-07-27 2010-08-17 Tadaaki Chigusa Method and system to providing fast access channel
US7844729B1 (en) 1999-05-03 2010-11-30 Digital Envoy, Inc. Geo-intelligent traffic manager
US20110113116A1 (en) * 2009-11-11 2011-05-12 Jeff Burdette Method, computer program product and electronic device for hyper-local geo-targeting
US7961664B1 (en) 2004-03-27 2011-06-14 Dust Networks, Inc. Digraph network subnetworks
US8013732B2 (en) 1998-06-22 2011-09-06 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US8031650B2 (en) 2004-03-03 2011-10-04 Sipco, Llc System and method for monitoring remote devices with a dual-mode wireless communication protocol
US8032594B2 (en) 2004-11-10 2011-10-04 Digital Envoy, Inc. Email anti-phishing inspector
US8059629B1 (en) 2004-03-27 2011-11-15 Dust Networks, Inc. Digraph network timing synchronization
US8073384B2 (en) 2006-12-14 2011-12-06 Elster Electricity, Llc Optimization of redundancy and throughput in an automated meter data collection system using a wireless network
US8138934B2 (en) 2007-11-25 2012-03-20 Trilliant Networks, Inc. System and method for false alert filtering of event messages within a network
US8144596B2 (en) 2007-11-25 2012-03-27 Trilliant Networks, Inc. Communication and message route optimization and messaging in a mesh network
US8160096B1 (en) 2006-12-06 2012-04-17 Tadaaki Chigusa Method and system for reserving bandwidth in time-division multiplexed networks
US8171364B2 (en) 2007-11-25 2012-05-01 Trilliant Networks, Inc. System and method for power outage and restoration notification in an advanced metering infrastructure network
US8203463B2 (en) 2009-02-13 2012-06-19 Elster Electricity Llc Wakeup and interrogation of meter-reading devices using licensed narrowband and unlicensed wideband radio communication
US8289182B2 (en) 2008-11-21 2012-10-16 Trilliant Networks, Inc. Methods and systems for virtual energy management display
US8319658B2 (en) 2009-03-11 2012-11-27 Trilliant Networks, Inc. Process, device and system for mapping transformers to meters and locating non-technical line losses
US8320302B2 (en) 2007-04-20 2012-11-27 Elster Electricity, Llc Over the air microcontroller flash memory updates
US8332055B2 (en) 2007-11-25 2012-12-11 Trilliant Networks, Inc. Energy use control system and method
US8334787B2 (en) 2007-10-25 2012-12-18 Trilliant Networks, Inc. Gas meter having ultra-sensitive magnetic material retrofitted onto meter dial and method for performing meter retrofit
US8410931B2 (en) 1998-06-22 2013-04-02 Sipco, Llc Mobile inventory unit monitoring systems and methods
US8489063B2 (en) 2001-10-24 2013-07-16 Sipco, Llc Systems and methods for providing emergency messages to a mobile device
US8510468B2 (en) 2000-04-17 2013-08-13 Ciradence Corporation Route aware network link acceleration
US8525692B2 (en) 2008-06-13 2013-09-03 Elster Solutions, Llc Techniques for limiting demand from an electricity meter with an installed relay
US20130304859A1 (en) * 2011-02-28 2013-11-14 Schneider Electric Industries Sas Method and system for communicating between a first item of equipment and one or more other items of equipment
US8699377B2 (en) 2008-09-04 2014-04-15 Trilliant Networks, Inc. System and method for implementing mesh network communications using a mesh network protocol
US8787246B2 (en) 2009-02-03 2014-07-22 Ipco, Llc Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods
US8832428B2 (en) 2010-11-15 2014-09-09 Trilliant Holdings Inc. System and method for securely communicating across multiple networks using a single radio
US8848575B2 (en) 2009-02-23 2014-09-30 Brocade Communications Systems, Inc. High availability and multipathing for fibre channel over ethernet
US8856323B2 (en) 2011-02-10 2014-10-07 Trilliant Holdings, Inc. Device and method for facilitating secure communications over a cellular network
US8970394B2 (en) 2011-01-25 2015-03-03 Trilliant Holdings Inc. Aggregated real-time power outages/restoration reporting (RTPOR) in a secure mesh network
US9001787B1 (en) 2011-09-20 2015-04-07 Trilliant Networks Inc. System and method for implementing handover of a hybrid communications module
US9013173B2 (en) 2010-09-13 2015-04-21 Trilliant Networks, Inc. Process for detecting energy theft
US9015471B2 (en) 2000-07-10 2015-04-21 Alterwan, Inc. Inter-autonomous networking involving multiple service providers
US9041349B2 (en) 2011-03-08 2015-05-26 Trilliant Networks, Inc. System and method for managing load distribution across a power grid
US9084120B2 (en) 2010-08-27 2015-07-14 Trilliant Networks Inc. System and method for interference free operation of co-located transceivers
US9088058B2 (en) 2009-08-19 2015-07-21 Vubiq Networks, Inc. Waveguide interface with a launch transducer and a circular interface plate
DE102014008255A1 (en) * 2014-06-05 2015-12-17 Diehl Metering Systems Gmbh Radio transmission system for data in localized systems and method for its operation
US9282383B2 (en) 2011-01-14 2016-03-08 Trilliant Incorporated Process, device and system for volt/VAR optimization
US9320080B2 (en) 2001-05-17 2016-04-19 Koninklijke Philips N.V. Wireless master-slave distributed communications network
US9356899B2 (en) 1996-01-26 2016-05-31 Simpleair, Inc. System and method for transmission of data
US9439126B2 (en) 2005-01-25 2016-09-06 Sipco, Llc Wireless network protocol system and methods
US9612132B2 (en) 2007-12-26 2017-04-04 Elster Solutions, Llc Optimized data collection in a wireless fixed network metering system
US10149226B2 (en) 2016-03-15 2018-12-04 King Fahd University Of Petroleum And Minerals ID-based routing protocol for wireless network with a grid topology
US10320047B2 (en) 2009-08-19 2019-06-11 Vubiq Networks, Inc. Waveguide assembly comprising a molded waveguide interface having a support block for a launch transducer that is coupled to a communication device through a flange attached to the interface
WO2019165330A1 (en) * 2018-02-24 2019-08-29 Neji, Inc. System and methods for proof of network element
US10587509B2 (en) 2014-02-04 2020-03-10 Architecture Technology Corporation Low-overhead routing
US10728149B1 (en) * 2014-02-04 2020-07-28 Architecture Technology Corporation Packet replication routing with destination address swap
US10818997B2 (en) 2017-12-29 2020-10-27 Vubiq Networks, Inc. Waveguide interface and printed circuit board launch transducer assembly and methods of use thereof
US11128654B1 (en) 2019-02-04 2021-09-21 Architecture Technology Corporation Systems and methods for unified hierarchical cybersecurity
US11403405B1 (en) 2019-06-27 2022-08-02 Architecture Technology Corporation Portable vulnerability identification tool for embedded non-IP devices
US11429713B1 (en) 2019-01-24 2022-08-30 Architecture Technology Corporation Artificial intelligence modeling for cyber-attack simulation protocols
US11444974B1 (en) 2019-10-23 2022-09-13 Architecture Technology Corporation Systems and methods for cyber-physical threat modeling
US11503064B1 (en) 2018-06-19 2022-11-15 Architecture Technology Corporation Alert systems and methods for attack-related events
US11503075B1 (en) 2020-01-14 2022-11-15 Architecture Technology Corporation Systems and methods for continuous compliance of nodes
US11538562B1 (en) 2020-02-04 2022-12-27 Architecture Technology Corporation Transmission of medical information in disrupted communication networks
US11645388B1 (en) 2018-06-19 2023-05-09 Architecture Technology Corporation Systems and methods for detecting non-malicious faults when processing source codes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143228B4 (en) * 2001-09-04 2006-05-18 Siemens Ag A method for routing connections in a radio-based ad hoc network and network station for carrying out such a method
US7545765B2 (en) * 2003-04-11 2009-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Multi-user diversity forwarding

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074232A (en) * 1975-03-03 1978-02-14 Hitachi, Ltd. Data sending and receiving system for packet switching network
US4135156A (en) * 1974-06-20 1979-01-16 Sanders Associates, Inc. Satellite communications system incorporating ground relay station through which messages between terminal stations are routed
US4168400A (en) * 1977-03-31 1979-09-18 Compagnie Europeenne De Teletransmission (C.E.T.T.) Digital communication system
US4320500A (en) * 1978-04-10 1982-03-16 Cselt - Centro Studi E Laboratori Telecomunicazioni S.P.A. Method of and system for routing in a packet-switched communication network
US4516239A (en) * 1982-03-15 1985-05-07 At&T Bell Laboratories System, apparatus and method for controlling a multiple access data communications system including variable length data packets and fixed length collision-free voice packets
US4525830A (en) * 1983-10-25 1985-06-25 Databit, Inc. Advanced network processor
US4534024A (en) * 1982-12-02 1985-08-06 At&T Bell Laboratories System and method for controlling a multiple access data communications system including both data packets and voice packets being communicated over a cable television system
US4550402A (en) * 1983-12-22 1985-10-29 Ford Motor Company Data communication system
US4598400A (en) * 1983-05-31 1986-07-01 Thinking Machines Corporation Method and apparatus for routing message packets
US4644532A (en) * 1985-06-10 1987-02-17 International Business Machines Corporation Automatic update of topology in a hybrid network
US4661947A (en) * 1984-09-26 1987-04-28 American Telephone And Telegraph Company At&T Bell Laboratories Self-routing packet switching network with intrastage packet communication
US4663758A (en) * 1984-08-28 1987-05-05 Cselt-Centro Studi E Laboratori Telecomunicazioni Spa Wideband integrated services local communication system
US4679189A (en) * 1985-11-27 1987-07-07 American Telephone And Telegraph Company Alternate routing arrangement
US4894822A (en) * 1987-11-24 1990-01-16 AT&T Information Systems American Telephone and Telegraph Company Fast packetized data delivery for digital networks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718081A (en) * 1986-11-13 1988-01-05 General Electric Company Method and apparatus for reducing handoff errors in a cellular radio telephone communications system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135156A (en) * 1974-06-20 1979-01-16 Sanders Associates, Inc. Satellite communications system incorporating ground relay station through which messages between terminal stations are routed
US4074232A (en) * 1975-03-03 1978-02-14 Hitachi, Ltd. Data sending and receiving system for packet switching network
US4168400A (en) * 1977-03-31 1979-09-18 Compagnie Europeenne De Teletransmission (C.E.T.T.) Digital communication system
US4320500A (en) * 1978-04-10 1982-03-16 Cselt - Centro Studi E Laboratori Telecomunicazioni S.P.A. Method of and system for routing in a packet-switched communication network
US4516239A (en) * 1982-03-15 1985-05-07 At&T Bell Laboratories System, apparatus and method for controlling a multiple access data communications system including variable length data packets and fixed length collision-free voice packets
US4534024A (en) * 1982-12-02 1985-08-06 At&T Bell Laboratories System and method for controlling a multiple access data communications system including both data packets and voice packets being communicated over a cable television system
US4598400A (en) * 1983-05-31 1986-07-01 Thinking Machines Corporation Method and apparatus for routing message packets
US4525830A (en) * 1983-10-25 1985-06-25 Databit, Inc. Advanced network processor
US4550402A (en) * 1983-12-22 1985-10-29 Ford Motor Company Data communication system
US4663758A (en) * 1984-08-28 1987-05-05 Cselt-Centro Studi E Laboratori Telecomunicazioni Spa Wideband integrated services local communication system
US4661947A (en) * 1984-09-26 1987-04-28 American Telephone And Telegraph Company At&T Bell Laboratories Self-routing packet switching network with intrastage packet communication
US4644532A (en) * 1985-06-10 1987-02-17 International Business Machines Corporation Automatic update of topology in a hybrid network
US4679189A (en) * 1985-11-27 1987-07-07 American Telephone And Telegraph Company Alternate routing arrangement
US4894822A (en) * 1987-11-24 1990-01-16 AT&T Information Systems American Telephone and Telegraph Company Fast packetized data delivery for digital networks

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Gregory G. Finn, ISI Research Report ISI/R 87 180, Mar. 1987, (Marina del Rey, California), Routing and Addressing Problems in Large Metropolitan scale Internetworks. *
Gregory G. Finn, ISI Research Report ISI/R-87-180, Mar. 1987, (Marina del Rey, California), "Routing and Addressing Problems in Large Metropolitan-scale Internetworks."
Hou et al., "Performance Analysis of Routing Strategies in Multihop Packet Radio Network," (Conference Paper CH2064-4/84/0000-0487), IEEE, 1984.
Hou et al., Performance Analysis of Routing Strategies in Multihop Packet Radio Network, (Conference Paper CH2064 4/84/0000 0487), IEEE, 1984. *
M. D. Busch, "NET/ROM for the TNC-2, Amateur Radio Version 1," May 1987.
M. D. Busch, NET/ROM for the TNC 2, Amateur Radio Version 1, May 1987. *
M. Schwartz, Telecommunication Network: Protocols, Modeling and Analysis, New York: Addison Wesley, 1987, Chapter 6. *
M. Schwartz, Telecommunication Network: Protocols, Modeling and Analysis, New York: Addison-Wesley, 1987, Chapter 6.
Takagi et al., "Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals," IEEE Transactions on Communications, Com.-32, No. 3, Mar. 1984, pp. 246-257.
Takagi et al., Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals, IEEE Transactions on Communications, Com. 32, No. 3, Mar. 1984, pp. 246 257. *
Terry L. Fox, "AX.25 Amateur Packet Radio Link-Layer Protocol," Version 2.0, Oct. 1984.
Terry L. Fox, AX.25 Amateur Packet Radio Link Layer Protocol, Version 2.0, Oct. 1984. *

Cited By (366)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253248A (en) * 1990-07-03 1993-10-12 At&T Bell Laboratories Congestion control for connectionless traffic in data networks via alternate routing
US5577028A (en) * 1990-08-31 1996-11-19 Fujitsu Limited Routing system using a neural network
US6847611B1 (en) 1990-12-10 2005-01-25 At&T Corp. Traffic management for frame relay switched data service
US5233604A (en) * 1992-04-28 1993-08-03 International Business Machines Corporation Methods and apparatus for optimum path selection in packet transmission networks
US5355364A (en) * 1992-10-30 1994-10-11 International Business Machines Corporation Method of routing electronic messages
US5481735A (en) * 1992-12-28 1996-01-02 Apple Computer, Inc. Method for modifying packets that meet a particular criteria as the packets pass between two layers in a network
US5477536A (en) * 1993-01-26 1995-12-19 Picard; Jean L. Method and system for routing information between nodes in a communication network
US6625130B2 (en) 1993-06-17 2003-09-23 Gilat Satellite Networks, Ltd. Frame relay protocol-based multiplex switching scheme for satellite mesh network
US6381227B1 (en) 1993-06-17 2002-04-30 Gilat Florida Inc. Frame relay protocol-based multiplex switching scheme for satellite mesh network
US6771617B1 (en) 1993-06-17 2004-08-03 Gilat Satellite Networks, Ltd. Frame relay protocol-based multiplex switching scheme for satellite mesh network
US8068472B2 (en) 1993-06-17 2011-11-29 Gilat Satellite Networks, Ltd Multiplex switching scheme for communications network
US5491690A (en) * 1993-07-30 1996-02-13 International Business Machines Corporation Method and apparatus to speed up the path selection in a packet switching network
US5377182A (en) * 1993-08-18 1994-12-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-blocking crossbar permutation engine with constant routing latency
US5465398A (en) * 1993-10-07 1995-11-07 Metricom, Inc. Automatic power level control of a packet communication link
WO1995010142A1 (en) * 1993-10-07 1995-04-13 Metricom, Inc. Automatic power level control of a packet communication link
US5495475A (en) * 1993-10-15 1996-02-27 International Business Machines Corporation Resolution of race conditions in cascaded switches
US5469446A (en) * 1994-01-26 1995-11-21 International Business Machines Corporation Retry filter and circulating echo method and apparatus
EP0669741A2 (en) * 1994-02-23 1995-08-30 International Business Machines Corporation Method and apparatus for encrypted communication in data networks
EP0669741A3 (en) * 1994-02-23 1999-10-13 International Business Machines Corporation Method and apparatus for encrypted communication in data networks
US5636216A (en) * 1994-04-08 1997-06-03 Metricom, Inc. Method for translating internet protocol addresses to other distributed network addressing schemes
US5488608A (en) * 1994-04-14 1996-01-30 Metricom, Inc. Method and system for routing packets in a packet communication network using locally constructed routing tables
WO1995028780A1 (en) * 1994-04-14 1995-10-26 Metricom, Inc. Method and system for routing packets in a packet communication network using locally constructed routine tables
US6329902B1 (en) 1994-04-20 2001-12-11 Cellco Partnership Wide area two-way paging using a mesh network with paging receivers
US5903566A (en) * 1994-06-24 1999-05-11 Metricom, Inc. Method for distributing program code to intelligent nodes in a wireless mesh data communication network
US5515369A (en) * 1994-06-24 1996-05-07 Metricom, Inc. Method for frequency sharing and frequency punchout in frequency hopping communications network
US5835005A (en) * 1994-07-13 1998-11-10 Omron Corporation Power-line data transmission method and system utilizing relay stations
US5907540A (en) * 1994-09-21 1999-05-25 Hitachi, Ltd. Radio data communication apparatus having a relay function and radio data communication method and system using the same
US5729549A (en) * 1995-03-16 1998-03-17 Bell Atlantic Network Services, Inc. Simulcasting digital video programs for broadcast and interactive services
US5822324A (en) * 1995-03-16 1998-10-13 Bell Atlantic Network Services, Inc. Simulcasting digital video programs for broadcast and interactive services
US6130898A (en) * 1995-03-16 2000-10-10 Bell Atlantic Network Services, Inc. Simulcasting digital video programs for broadcast and interactive services
US5751707A (en) * 1995-06-19 1998-05-12 Bell Atlantic Network Services, Inc. AIN interaction through wireless digital video network
US5572512A (en) * 1995-07-05 1996-11-05 Motorola, Inc. Data routing method and apparatus for communication systems having multiple nodes
US6801534B1 (en) * 1995-07-10 2004-10-05 International Business Machines Corporation Management of path routing in packet communications networks
US6097700A (en) * 1995-09-18 2000-08-01 Telefonaktiebolaget L M Ericsson (Publ) Packet switched radio channel congestion control
US5742588A (en) * 1995-09-18 1998-04-21 Telefonaktiebolaget Lm Ericsson Packet switched traffic management in a cellular telecommunications system
US9380106B2 (en) 1996-01-26 2016-06-28 Simpleair, Inc. System and method for transmission of data
US9356899B2 (en) 1996-01-26 2016-05-31 Simpleair, Inc. System and method for transmission of data
US5959995A (en) * 1996-02-22 1999-09-28 Fujitsu, Ltd. Asynchronous packet switching
US6400681B1 (en) 1996-06-20 2002-06-04 Cisco Technology, Inc. Method and system for minimizing the connection set up time in high speed packet switching networks
US9806988B2 (en) 1996-10-31 2017-10-31 Patentmarks Communications, Llc Multi-protocol telecommunications routing optimization
US6456594B1 (en) 1996-10-31 2002-09-24 Connect One, Llp Multi-protocol communications routing optimization
US7307956B2 (en) 1996-10-31 2007-12-11 Connectel, Llc Multi-protocol telecommunications routing optimization
US9036499B2 (en) 1996-10-31 2015-05-19 Patentmarks Communications, Llc Multi-protocol telecommunications routing optimization
US5896382A (en) * 1996-11-19 1999-04-20 Scientific-Atlanta, Inc. Method and apparatus for communicating information between a headend and subscriber over a wide area network
US8233471B2 (en) 1996-12-06 2012-07-31 Ipco, Llc Wireless network system and method for providing same
US8625496B2 (en) 1996-12-06 2014-01-07 Ipco, Llc Wireless network system and method for providing same
US8000314B2 (en) 1996-12-06 2011-08-16 Ipco, Llc Wireless network system and method for providing same
US20040062224A1 (en) * 1996-12-06 2004-04-01 Brownrigg Edwin B. Wireless network system and method for providing same
US7054271B2 (en) 1996-12-06 2006-05-30 Ipco, Llc Wireless network system and method for providing same
US8982856B2 (en) 1996-12-06 2015-03-17 Ipco, Llc Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods
US7126494B2 (en) 1997-02-12 2006-10-24 Elster Electricity, Llc Remote access to electronic meters using a TCP/IP protocol suite
US20010002210A1 (en) * 1997-02-14 2001-05-31 Petite Thomas D. Multi-function general purpose transceiver
US7079810B2 (en) 1997-02-14 2006-07-18 Statsignal Ipc, Llc System and method for communicating with a remote communication unit via the public switched telephone network (PSTN)
US7397907B2 (en) 1997-02-14 2008-07-08 Sipco, Llc Multi-function general purpose transceiver
US7137550B1 (en) 1997-02-14 2006-11-21 Statsignal Ipc, Llc Transmitter for accessing automated financial transaction machines
US6934249B1 (en) 1997-04-01 2005-08-23 Cisco Technology, Inc. Method and system for minimizing the connection set up time in high speed packet switching networks
US7668168B2 (en) 1997-07-03 2010-02-23 At&T Corp. Frame relay switched data service
US8717896B2 (en) 1997-07-03 2014-05-06 At&T Intellectual Property Ii, L.P. Frame relay switched data service
US7463627B1 (en) 1997-07-03 2008-12-09 At&T Corp. Frame relay switched data service
US8027257B2 (en) 1997-07-03 2011-09-27 At&T Intellectual Property Ii, L.P. Traffic management for frame relay switched data service
US8014286B2 (en) 1997-07-03 2011-09-06 At&T Intellectual Property Ii, L.P. Frame relay switched data service
US20060104273A1 (en) * 1997-07-03 2006-05-18 At&T Corp. Frame relay switched data service
US7257118B2 (en) 1997-07-03 2007-08-14 At&T Corp. Frame relay switched data service
US9276849B2 (en) 1997-07-03 2016-03-01 At&T Intellectual Property Ii, L.P. Frame relay switched data service
US7668095B2 (en) 1997-07-03 2010-02-23 At&T Corp. Traffic management for frame relay switched data service
WO1999007115A1 (en) * 1997-08-02 1999-02-11 Dirc Technologie Gmbh & Co.Kg Telecommunications system
US6091732A (en) * 1997-11-20 2000-07-18 Cisco Systems, Inc. Method for configuring distributed internet protocol gateways with lan emulation
US6282201B1 (en) 1997-11-20 2001-08-28 Cisco Technology, Inc. Method for configuring distributed internet protocol gateways with LAN emulation
US6246669B1 (en) 1997-11-28 2001-06-12 Cisco Technology, Inc. Method and system for optimizing connection set-up operations in a high speed digital network
US6173176B1 (en) * 1998-03-27 2001-01-09 Motorola, Inc. Method for sector-based routing
GB2342540B (en) * 1998-03-27 2003-03-12 Motorola Inc System and method for sector-based routing
US6553355B1 (en) 1998-05-29 2003-04-22 Indranet Technologies Limited Autopoietic network system endowed with distributed artificial intelligence for the supply of high volume high-speed multimedia telesthesia telemetry, telekinesis, telepresence, telemanagement, telecommunications, and data processing services
US8223010B2 (en) 1998-06-22 2012-07-17 Sipco Llc Systems and methods for monitoring vehicle parking
US7697492B2 (en) 1998-06-22 2010-04-13 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US8013732B2 (en) 1998-06-22 2011-09-06 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US8964708B2 (en) 1998-06-22 2015-02-24 Sipco Llc Systems and methods for monitoring and controlling remote devices
US9691263B2 (en) 1998-06-22 2017-06-27 Sipco, Llc Systems and methods for monitoring conditions
US8410931B2 (en) 1998-06-22 2013-04-02 Sipco, Llc Mobile inventory unit monitoring systems and methods
US20050201397A1 (en) * 1998-06-22 2005-09-15 Statsignal Ipc, Llc Systems and methods for monitoring conditions
US9430936B2 (en) 1998-06-22 2016-08-30 Sipco Llc Systems and methods for monitoring and controlling remote devices
US8064412B2 (en) 1998-06-22 2011-11-22 Sipco, Llc Systems and methods for monitoring conditions
US9129497B2 (en) 1998-06-22 2015-09-08 Statsignal Systems, Inc. Systems and methods for monitoring conditions
US9571582B2 (en) 1998-06-22 2017-02-14 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US7295128B2 (en) 1998-06-22 2007-11-13 Sipco, Llc Smoke detection methods, devices, and systems
US8212667B2 (en) 1998-06-22 2012-07-03 Sipco, Llc Automotive diagnostic data monitoring systems and methods
US6785277B1 (en) 1998-08-06 2004-08-31 Telefonaktiebolget Lm Ericsson (Publ) System and method for internodal information routing within a communications network
US6631136B1 (en) 1998-08-26 2003-10-07 Hypercom Corporation Methods and apparatus for data communication using a hybrid transport switching protocol
US7103511B2 (en) 1998-10-14 2006-09-05 Statsignal Ipc, Llc Wireless communication networks for providing remote monitoring of devices
WO2000039967A3 (en) * 1998-12-23 2001-01-11 Nokia Wireless Routers Inc A unified routing scheme for ad-hoc internetworking
WO2000039967A2 (en) * 1998-12-23 2000-07-06 Nokia Wireless Routers, Inc. A unified routing scheme for ad-hoc internetworking
US7159035B2 (en) 1998-12-23 2007-01-02 Nokia Corporation Unified routing scheme for ad-hoc internetworking
US20030037167A1 (en) * 1998-12-23 2003-02-20 Nokia Wireless Routers Inc. Unified routing scheme for ad-hoc internetworking
US6988152B2 (en) 1998-12-30 2006-01-17 Emc Corporation Data storage system
US20020087789A1 (en) * 1998-12-30 2002-07-04 Walton John K. Data storage system
US20020156976A1 (en) * 1998-12-30 2002-10-24 Walton John K. Data storage system
US6957285B2 (en) 1998-12-30 2005-10-18 Emc Corporation Data storage system
US7117275B1 (en) 1999-01-04 2006-10-03 Emc Corporation Data storage system having separate data transfer section and message network
US6560450B1 (en) * 1999-01-11 2003-05-06 Nortel Networks Limited Satellite communications routing and addressing method
US6577613B1 (en) 1999-03-02 2003-06-10 Verizon Corporate Services Group Inc. Method and apparatus for asynchronous reservation-oriented multiple access for wireless networks
US7263073B2 (en) 1999-03-18 2007-08-28 Statsignal Ipc, Llc Systems and methods for enabling a mobile user to notify an automated monitoring system of an emergency situation
US8924587B2 (en) 1999-03-18 2014-12-30 Sipco, Llc Systems and methods for controlling communication between a host computer and communication devices
US8924588B2 (en) 1999-03-18 2014-12-30 Sipco, Llc Systems and methods for controlling communication between a host computer and communication devices
US8930571B2 (en) 1999-03-18 2015-01-06 Sipco, LLP Systems and methods for controlling communication between a host computer and communication devices
US7650425B2 (en) 1999-03-18 2010-01-19 Sipco, Llc System and method for controlling communication between a host computer and communication devices associated with remote devices in an automated monitoring system
US7685311B2 (en) 1999-05-03 2010-03-23 Digital Envoy, Inc. Geo-intelligent traffic reporter
US7451233B2 (en) 1999-05-03 2008-11-11 Digital Envoy, Inc. Systems and methods for determining, collecting, and using geographic locations of internet users
US8463942B2 (en) 1999-05-03 2013-06-11 Digital Envoy, Inc. Method and system for geo-targeted content delivery
US6757740B1 (en) 1999-05-03 2004-06-29 Digital Envoy, Inc. Systems and methods for determining collecting and using geographic locations of internet users
US20050251539A1 (en) * 1999-05-03 2005-11-10 Parekh Sanjay M Systems and methods for determining, collecting, and using geographic locations of internet users
US7844729B1 (en) 1999-05-03 2010-11-30 Digital Envoy, Inc. Geo-intelligent traffic manager
US7403978B2 (en) 1999-05-03 2008-07-22 Digital Envoy, Inc. Systems and methods for determining, collecting, and using geographic locations of internet users
US20100153552A1 (en) * 1999-05-03 2010-06-17 Parekh Sanjay M Method and system for geo-targeted content delivery
US9900284B2 (en) 1999-05-03 2018-02-20 Digital Envoy, Inc. Method and system for generating IP address profiles
US8060606B2 (en) 1999-05-03 2011-11-15 Digital Envoy, Inc. Geo-intelligent traffic reporter
US7698377B2 (en) 1999-05-03 2010-04-13 Digital Envoy, Inc. Systems and methods for determining, collecting, and using geographic locations of internet users
US20040213167A1 (en) * 1999-10-15 2004-10-28 Nokia Wireless Routers, Inc. System for communicating labeled routing trees to establish preferred paths and source routes with local identifiers in wireless computer networks
US6683865B1 (en) 1999-10-15 2004-01-27 Nokia Wireless Routers, Inc. System for routing and switching in computer networks
US6836463B2 (en) 1999-10-15 2004-12-28 Nokia Corporation System for communicating labeled routing trees to establish preferred paths and source routes with local identifiers in wireless computer networks
US6678241B1 (en) 1999-11-30 2004-01-13 Cisc Technology, Inc. Fast convergence with topology switching
US7428237B1 (en) 1999-11-30 2008-09-23 Cisco Technology, Inc. Fast convergence with topology switching
US6857026B1 (en) * 1999-12-14 2005-02-15 Nortel Networks Limited Using alternate routes for fail-over in a communication network
US8700749B2 (en) 2000-01-31 2014-04-15 Endeavor Ip, Inc. Wireless communication enabled meter and network
US8855019B2 (en) 2000-01-31 2014-10-07 Endeavor Meshtech, Inc. Wireless communication enabled meter and network
US20030009594A1 (en) * 2000-02-04 2003-01-09 Mcelligott Adrian Method and apparatus for identifying locale of internet users
US6870816B1 (en) * 2000-03-01 2005-03-22 Motorola, Inc. Self-organizing network with decision engine and method
US20020117761A1 (en) * 2000-03-08 2002-08-29 Wael Zohni Off-center solder ball attach assembly
EP1137233A1 (en) * 2000-03-17 2001-09-26 Joachim Gehrke System and method for the identification of data packets
US7003601B1 (en) 2000-03-31 2006-02-21 Emc Corporation Data storage system having separate data transfer section and message network with plural directions on a common printed circuit board
US9021080B2 (en) 2000-04-03 2015-04-28 Ebay Inc. Method and system to associate geographic location information with a network address using a combination of automated and manual processes
US20040078367A1 (en) * 2000-04-03 2004-04-22 Mark Anderson Method and system to modify geolocation activities based on logged query information
AU2001253189B2 (en) * 2000-04-03 2004-08-19 Quova, Inc. Geographic location estimation method for network addresses entities
US7809857B2 (en) 2000-04-03 2010-10-05 Quova, Inc. Method and system to collect geographic location information for a network address utilizing geographically dispersed data collection agents
US6684250B2 (en) 2000-04-03 2004-01-27 Quova, Inc. Method and apparatus for estimating a geographic location of a networked entity
US20040068582A1 (en) * 2000-04-03 2004-04-08 Mark Anderson Method and system to initiate geolocation activities on demand and responsive to receipt of a query
US7472172B2 (en) 2000-04-03 2008-12-30 Quova, Inc. Method and system to initiate geolocation activities on demand and responsive to receipt of a query
US7072963B2 (en) 2000-04-03 2006-07-04 Quova, Inc. Method and system to modify geolocation activities based on logged query information
US20040078489A1 (en) * 2000-04-03 2004-04-22 Mark Anderson Method and system to associate a geographic location information with a network address using a combination of automated and manual process
US20010041576A1 (en) * 2000-04-06 2001-11-15 I'anson Colin Deriving location information about a communicating entity
US7050815B2 (en) 2000-04-06 2006-05-23 Hewlett-Packard Company Deriving location information about a communicating entity
US8510468B2 (en) 2000-04-17 2013-08-13 Ciradence Corporation Route aware network link acceleration
US20020159442A1 (en) * 2000-05-08 2002-10-31 Vincent Quigley Method of indicating the origin of a mobile user in a data network
US7925667B2 (en) * 2000-05-15 2011-04-12 Robert Bosch Gmbh Method, data format, encoding device, decoding device and system
US20020183923A1 (en) * 2000-05-15 2002-12-05 Matthias Hessling Method, data format, encoding device, decoding device and system
US7007194B1 (en) 2000-06-29 2006-02-28 Emc Corporation Data storage system having point-to-point configuration
US9667534B2 (en) 2000-07-10 2017-05-30 Alterwan, Inc. VPN usage to create wide area network backbone over the internet
US9525620B2 (en) 2000-07-10 2016-12-20 Alterwan, Inc. Private tunnel usage to create wide area network backbone over the internet
US9015471B2 (en) 2000-07-10 2015-04-21 Alterwan, Inc. Inter-autonomous networking involving multiple service providers
US9985800B2 (en) 2000-07-10 2018-05-29 Alterwan, Inc. VPN usage to create wide area network backbone over the internet
US9320080B2 (en) 2001-05-17 2016-04-19 Koninklijke Philips N.V. Wireless master-slave distributed communications network
US20020199015A1 (en) * 2001-05-30 2002-12-26 Mitsubishi Materials Corporation Communications system managing server, routing server, mobile unit managing server, and area managing server
US20040246911A1 (en) * 2001-10-17 2004-12-09 Bonsma Erwin R Network location management system
WO2003034669A1 (en) * 2001-10-17 2003-04-24 British Telecommunications Public Limited Company Network location management system
US7586853B2 (en) 2001-10-17 2009-09-08 British Telecommunications Plc Network location management system
US9282029B2 (en) 2001-10-24 2016-03-08 Sipco, Llc. System and method for transmitting an emergency message over an integrated wireless network
US10687194B2 (en) 2001-10-24 2020-06-16 Sipco, Llc Systems and methods for providing emergency messages to a mobile device
US10149129B2 (en) 2001-10-24 2018-12-04 Sipco, Llc Systems and methods for providing emergency messages to a mobile device
US20030078029A1 (en) * 2001-10-24 2003-04-24 Statsignal Systems, Inc. System and method for transmitting an emergency message over an integrated wireless network
US7480501B2 (en) 2001-10-24 2009-01-20 Statsignal Ipc, Llc System and method for transmitting an emergency message over an integrated wireless network
US9615226B2 (en) 2001-10-24 2017-04-04 Sipco, Llc System and method for transmitting an emergency message over an integrated wireless network
US8666357B2 (en) 2001-10-24 2014-03-04 Sipco, Llc System and method for transmitting an emergency message over an integrated wireless network
US8489063B2 (en) 2001-10-24 2013-07-16 Sipco, Llc Systems and methods for providing emergency messages to a mobile device
US8171136B2 (en) 2001-10-30 2012-05-01 Sipco, Llc System and method for transmitting pollution information over an integrated wireless network
US9515691B2 (en) 2001-10-30 2016-12-06 Sipco, Llc. System and method for transmitting pollution information over an integrated wireless network
US9111240B2 (en) 2001-10-30 2015-08-18 Sipco, Llc. System and method for transmitting pollution information over an integrated wireless network
US7424527B2 (en) 2001-10-30 2008-09-09 Sipco, Llc System and method for transmitting pollution information over an integrated wireless network
US20050025059A1 (en) * 2001-11-29 2005-02-03 Rajendran Rajan Method and system for path identification in packet networks
US20090196184A1 (en) * 2001-11-29 2009-08-06 Iptivia, Inc. Method and system for path identification in packet networks
US7120120B2 (en) 2001-11-29 2006-10-10 Ipsum Networks, Inc. Method and system for topology construction and path identification in a two-level routing domain operated according to a simple link state routing protocol
US20030072270A1 (en) * 2001-11-29 2003-04-17 Roch Guerin Method and system for topology construction and path identification in a two-level routing domain operated according to a simple link state routing protocol
US6836465B2 (en) 2001-11-29 2004-12-28 Ipsum Networks, Inc. Method and system for path identification in packet networks
US7525920B2 (en) 2001-11-29 2009-04-28 Coactive Technologies, Inc. Method and system for path identification in packet networks
US7330435B2 (en) 2001-11-29 2008-02-12 Iptivia, Inc. Method and system for topology construction and path identification in a routing domain operated according to a link state routing protocol
US8218447B2 (en) 2001-11-29 2012-07-10 Circadence Corporation Method and system for path identification in packet networks
US20030072485A1 (en) * 2001-11-29 2003-04-17 Roch Guerin Method and system for topology construction and path identification in a routing domain operated according to a link state routing protocol
US20040264451A1 (en) * 2001-12-03 2004-12-30 Jouni Kujala Addressing and routing in wireless mesh networks
US7822001B2 (en) * 2001-12-03 2010-10-26 Nokia Corporation Addressing and routing in wireless mesh networks
US20080132185A1 (en) * 2002-01-02 2008-06-05 Elliott Karl E Wireless communication enabled meter and network
US8019836B2 (en) 2002-01-02 2011-09-13 Mesh Comm, Llc Wireless communication enabled meter and network
US20030198190A1 (en) * 2002-04-19 2003-10-23 Rajendran Rajan Method and system for traffic monitoring in a packet communication network
US7257081B2 (en) 2002-04-19 2007-08-14 Iptivia, Inc. Method and system for traffic monitoring in a packet communication network
US20040001008A1 (en) * 2002-06-27 2004-01-01 Shuey Kenneth C. Dynamic self-configuring metering network
US7301476B2 (en) 2002-06-27 2007-11-27 Elster Electricity, Llc Dynamic self-configuring metering network
US7119713B2 (en) 2002-06-27 2006-10-10 Elster Electricity, Llc Dynamic self-configuring metering network
US7145474B2 (en) 2002-06-27 2006-12-05 Elster Electricity, Llc Dynamic self-configuring metering network
US8520578B2 (en) 2002-06-28 2013-08-27 Belair Networks Inc. Integrated wireless distribution and mesh backhaul networks
US20040001442A1 (en) * 2002-06-28 2004-01-01 Rayment Stephen G. Integrated wireless distribution and mesh backhaul networks
US20110075627A1 (en) * 2002-06-28 2011-03-31 Belair Networks Inc. Integrated wireless distribution and mesh backhaul networks
US7164667B2 (en) 2002-06-28 2007-01-16 Belair Networks Inc. Integrated wireless distribution and mesh backhaul networks
US20070047514A1 (en) * 2002-06-28 2007-03-01 Belair Networks Inc. Integrated wireless distribution and mesh backhaul networks
US20100208683A1 (en) * 2002-06-28 2010-08-19 Belair Networks Inc. Integrated Wireless Distribution and Mesh Backhaul Networks
US8483066B2 (en) 2002-06-28 2013-07-09 Belair Networks Inc. Integrated wireless distribution and mesh backhaul networks
US7312721B2 (en) 2002-06-28 2007-12-25 Elster Electricity, Llc Data collector for an automated meter reading system
US8009562B2 (en) 2002-06-28 2011-08-30 Belair Networks Inc. Integrated wireless distribution and mesh backhaul networks
US7693105B2 (en) 2002-06-28 2010-04-06 Belair Networks Inc. Integrated wireless distribution and mesh backhaul networks
US20040113810A1 (en) * 2002-06-28 2004-06-17 Mason Robert T. Data collector for an automated meter reading system
US7042394B2 (en) 2002-08-14 2006-05-09 Skipper Wireless Inc. Method and system for determining direction of transmission using multi-facet antenna
US20060071794A1 (en) * 2002-08-14 2006-04-06 Kataname, Inc. Method and system for providing an active routing antenna
US20060071853A1 (en) * 2002-08-14 2006-04-06 Kataname, Inc. Method and system for determining direction of transmission using multi-facet antenna
US7015809B1 (en) 2002-08-14 2006-03-21 Skipper Wireless Inc. Method and system for providing an active routing antenna
US20040048613A1 (en) * 2002-08-14 2004-03-11 Kataname, Inc. System for mobile broadband networking using dynamic quality of service provisioning
US7610050B2 (en) 2002-08-14 2009-10-27 Tadaaki Chigusa System for mobile broadband networking using dynamic quality of service provisioning
US20040109417A1 (en) * 2002-12-06 2004-06-10 Microsoft Corporation Practical network node coordinate estimation
WO2004054163A1 (en) * 2002-12-06 2004-06-24 Microsoft Corporation Practical network node coordinate estimation
US6947386B2 (en) * 2002-12-06 2005-09-20 Microsoft Corporation Practical network node coordinate estimation
US20050270173A1 (en) * 2003-02-14 2005-12-08 Boaz Jon A Automated meter reading system, communication and control network for automated meter reading, meter data collector program product, and associated methods
US7304587B2 (en) 2003-02-14 2007-12-04 Energy Technology Group, Inc. Automated meter reading system, communication and control network for automated meter reading, meter data collector program product, and associated methods
US20070013547A1 (en) * 2003-02-14 2007-01-18 Boaz Jon A Automated meter reading system, communication and control network from automated meter reading, meter data collector, and associated methods
US20070001868A1 (en) * 2003-02-14 2007-01-04 Boaz Jon A Automated meter reading system, communication and control network for automated meter reading, meter data collector, and associated methods
US7400264B2 (en) 2003-02-14 2008-07-15 Energy Technology Group, Inc. Automated meter reading system, communication and control network for automated meter reading, meter data collector, and associated methods
US20060171402A1 (en) * 2003-03-06 2006-08-03 Moore John A Method and system for providing broadband multimedia services
US20090046688A1 (en) * 2003-03-06 2009-02-19 Volpi John P Method and System for Providing Broadband Multimedia Services
US20040174900A1 (en) * 2003-03-06 2004-09-09 Incucomm, Inc. A Delaware Corporation Method and system for providing broadband multimedia services
CN100534062C (en) * 2003-04-11 2009-08-26 艾利森电话股份有限公司 Multi-user diversity forwarding
US20040260833A1 (en) * 2003-06-18 2004-12-23 Rachlin Elliott H. Method and apparatus for storing and retrieving data related to paths of a multi-path, multi-tier network
US20040257243A1 (en) * 2003-06-18 2004-12-23 Rachlin Elliott H. Method and apparatus for converting a network description into a computer program for disambiguating transmit-by-exception telemetry from a multi-path, multi-tier network
US7386612B2 (en) 2003-06-18 2008-06-10 Honeywell International Inc. Method and apparatus for disambiguating transmit-by-exception telemetry from a multi-path, multi-tier network
US20050021632A1 (en) * 2003-06-18 2005-01-27 Rachlin Elliott H. Method and apparatus for disambiguating transmit-by-exception telemetry from a multi-path, multi-tier network
US7366988B2 (en) 2003-06-18 2008-04-29 Honeywell International Inc. Method and apparatus for converting a network description into a computer program for disambiguating transmit-by-exception telemetry from a multi-path, multi-tier network
US7356612B2 (en) * 2003-06-18 2008-04-08 Honeywell International Inc. Method and apparatus for storing and retrieving data related to paths of a multi-path, multi-tier network
US7720006B1 (en) * 2003-08-06 2010-05-18 Cisco Technology, Inc. System for determining reachablity of a neighboring node in a network
US8644271B2 (en) 2003-08-07 2014-02-04 Trilliant Networks, Inc. Communication protocol for a wireless mesh architecture
US20080310346A1 (en) * 2003-08-07 2008-12-18 Skypilot Networks, Inc. Communication protocol for a wireless mesh architecture
US20060176863A1 (en) * 2003-09-09 2006-08-10 David Robinson Hierarchical routing in ad-hoc networks
US20050138049A1 (en) * 2003-12-22 2005-06-23 Greg Linden Method for personalized news
US20050180399A1 (en) * 2004-02-13 2005-08-18 Samsung Electronics Co., Ltd. Broadcast method in wireless network and communication apparatus using the same
US7428232B2 (en) * 2004-02-13 2008-09-23 Samsung Electronics Co., Ltd. Broadcast method in wireless network and communication apparatus using the same
US8379564B2 (en) 2004-03-03 2013-02-19 Sipco, Llc System and method for monitoring remote devices with a dual-mode wireless communication protocol
US8031650B2 (en) 2004-03-03 2011-10-04 Sipco, Llc System and method for monitoring remote devices with a dual-mode wireless communication protocol
US8446884B2 (en) 2004-03-03 2013-05-21 Sipco, Llc Dual-mode communication devices, methods and systems
US7756086B2 (en) 2004-03-03 2010-07-13 Sipco, Llc Method for communicating in dual-modes
US7685279B2 (en) 2004-03-04 2010-03-23 Quova, Inc. Geo-location and geo-compliance utilizing a client agent
US20060010252A1 (en) * 2004-03-04 2006-01-12 Miltonberger Thomas W Geo-location and geo-compliance utilizing a client agent
US7450495B2 (en) 2004-03-15 2008-11-11 Iptivia, Inc. Method and system for path change root-cause identification in packet networks
US20050201274A1 (en) * 2004-03-15 2005-09-15 Roch Guerin Method and system for path change root-cause identification in packet networks
US7961664B1 (en) 2004-03-27 2011-06-14 Dust Networks, Inc. Digraph network subnetworks
US8059629B1 (en) 2004-03-27 2011-11-15 Dust Networks, Inc. Digraph network timing synchronization
US20050213612A1 (en) * 2004-03-27 2005-09-29 Dust Networks Low-powered autonomous radio node with temperature sensor and crystal
US7529217B2 (en) 2004-03-27 2009-05-05 Dust Networks, Inc. Low-power autonomous node for mesh communication network
US20080285582A1 (en) * 2004-03-27 2008-11-20 Dust Networks, Inc. Digraph network superframes
US7873043B2 (en) 2004-03-27 2011-01-18 Dust Networks, Inc. Digraph network superframes
US20060029061A1 (en) * 2004-03-27 2006-02-09 Dust Networks Low-power autonomous node for mesh communication network
US7881239B2 (en) 2004-03-27 2011-02-01 Dust Networks, Inc. Low-powered autonomous radio node with temperature sensor and crystal oscillator
US7262709B2 (en) 2004-04-26 2007-08-28 Elster Electricity, Llc System and method for efficient configuration in a fixed network automated meter reading system
US7187906B2 (en) 2004-04-26 2007-03-06 Elster Electricity, Llc Method and system for configurable qualification and registration in a fixed network automated meter reading system
US7239250B2 (en) 2004-04-26 2007-07-03 Elster Electricity, Llc System and method for improved transmission of meter data
US20080200186A1 (en) * 2004-06-07 2008-08-21 Spyder Navigations L.L.C. Determining geographical position in ipv6 networks
US7995997B2 (en) 2004-06-07 2011-08-09 Spyder Navigations, L.L.C. Determining geographical position in IPV6 networks
US20050272421A1 (en) * 2004-06-07 2005-12-08 Nokia Corporation Determining geographical position in IPV6 networks
US7330726B2 (en) 2004-06-07 2008-02-12 Spyder Navigation Llc Determining geographical position in IPv6 networks
US7142106B2 (en) 2004-06-15 2006-11-28 Elster Electricity, Llc System and method of visualizing network layout and performance characteristics in a wireless network
US8194655B2 (en) 2004-08-05 2012-06-05 Dust Networks, Inc. Digraph based mesh communication network
US20060029060A1 (en) * 2004-08-05 2006-02-09 Dust Networks Digraph based mesh communication network
US8185653B2 (en) 2004-08-09 2012-05-22 Johnny Yau Method and apparatus for ad hoc mesh routing
US20080002599A1 (en) * 2004-08-09 2008-01-03 Johnny Yau Method and Apparatus for Ad Hoc Mesh Routing
US7808925B2 (en) 2004-09-10 2010-10-05 Digital Envoy, Inc. Methods and systems for determining reverse DNS entries
US20060056418A1 (en) * 2004-09-10 2006-03-16 Rizzuto Joseph J Methods and systems for determining reverse DNS entries
US20070061273A1 (en) * 2004-09-17 2007-03-15 Todd Greene Fraud analyst smart cookie
US20070073630A1 (en) * 2004-09-17 2007-03-29 Todd Greene Fraud analyst smart cookie
US7543740B2 (en) 2004-09-17 2009-06-09 Digital Envoy, Inc. Fraud analyst smart cookie
US20060149580A1 (en) * 2004-09-17 2006-07-06 David Helsper Fraud risk advisor
US20060282285A1 (en) * 2004-09-17 2006-12-14 David Helsper Fraud risk advisor
US7673793B2 (en) 2004-09-17 2010-03-09 Digital Envoy, Inc. Fraud analyst smart cookie
US7438226B2 (en) 2004-09-17 2008-10-21 Digital Envoy, Inc. Fraud risk advisor
US7708200B2 (en) 2004-09-17 2010-05-04 Digital Envoy, Inc. Fraud risk advisor
US20060287902A1 (en) * 2004-09-17 2006-12-21 David Helsper Fraud risk advisor
US20070038568A1 (en) * 2004-09-17 2007-02-15 Todd Greene Fraud analyst smart cookie
US20060064374A1 (en) * 2004-09-17 2006-03-23 David Helsper Fraud risk advisor
US7497374B2 (en) 2004-09-17 2009-03-03 Digital Envoy, Inc. Fraud risk advisor
US7742430B2 (en) 2004-09-24 2010-06-22 Elster Electricity, Llc System for automated management of spontaneous node migration in a distributed fixed wireless network
US7170425B2 (en) 2004-09-24 2007-01-30 Elster Electricity, Llc System and method for creating multiple operating territories within a meter reading system
US7176807B2 (en) 2004-09-24 2007-02-13 Elster Electricity, Llc System for automatically enforcing a demand reset in a fixed network of electricity meters
US7702594B2 (en) 2004-09-24 2010-04-20 Elster Electricity, Llc System and method for automated configuration of meters
US8032594B2 (en) 2004-11-10 2011-10-04 Digital Envoy, Inc. Email anti-phishing inspector
US20060168066A1 (en) * 2004-11-10 2006-07-27 David Helsper Email anti-phishing inspector
US7327998B2 (en) 2004-12-22 2008-02-05 Elster Electricity, Llc System and method of providing a geographic view of nodes in a wireless network
US9860820B2 (en) 2005-01-25 2018-01-02 Sipco, Llc Wireless network protocol systems and methods
US11039371B2 (en) 2005-01-25 2021-06-15 Sipco, Llc Wireless network protocol systems and methods
US10356687B2 (en) 2005-01-25 2019-07-16 Sipco, Llc Wireless network protocol systems and methods
US9439126B2 (en) 2005-01-25 2016-09-06 Sipco, Llc Wireless network protocol system and methods
US8788573B2 (en) 2005-03-21 2014-07-22 International Business Machines Corporation Method and apparatus for efficiently expanding a P2P network
US20080270539A1 (en) * 2005-03-21 2008-10-30 Jennings Raymond B Method and apparatus for efficiently expanding a p2p network
US20060209819A1 (en) * 2005-03-21 2006-09-21 Jennings Raymond B Iii Method and apparatus for efficiently expanding a P2P network
US7308370B2 (en) 2005-03-22 2007-12-11 Elster Electricity Llc Using a fixed network wireless data collection system to improve utility responsiveness to power outages
US7515544B2 (en) 2005-07-14 2009-04-07 Tadaaki Chigusa Method and system for providing location-based addressing
US20070025353A1 (en) * 2005-07-14 2007-02-01 Skipper Wireless, Inc. Method and system for providing location-based addressing
US7495578B2 (en) 2005-09-02 2009-02-24 Elster Electricity, Llc Multipurpose interface for an automated meter reading device
US7308369B2 (en) 2005-09-28 2007-12-11 Elster Electricity Llc Ensuring automatic season change demand resets in a mesh type network of telemetry devices
US8391183B2 (en) 2005-10-11 2013-03-05 Xfeer Corporation System and method for operating a large-scale wireless network
US20080186902A1 (en) * 2005-10-11 2008-08-07 Akinori Furukoshi System and method for operating a large-scale wireless network
WO2007041826A1 (en) * 2005-10-11 2007-04-19 Xfeer Corporation A system and method for operating a large-scale wireless network
US20080051036A1 (en) * 2005-11-17 2008-02-28 Raj Vaswani Method and system for providing a routing protcol for wireless networks
US7962101B2 (en) 2005-11-17 2011-06-14 Silver Spring Networks, Inc. Method and system for providing a routing protocol for wireless networks
US7545285B2 (en) 2006-02-16 2009-06-09 Elster Electricity, Llc Load control unit in communication with a fixed network meter reading system
US7427927B2 (en) 2006-02-16 2008-09-23 Elster Electricity, Llc In-home display communicates with a fixed network meter reading system
US20070209059A1 (en) * 2006-03-03 2007-09-06 Moore John A Communication system employing a control layer architecture
US7952997B2 (en) 2006-05-18 2011-05-31 Mcdata Corporation Congestion management groups
US20070268829A1 (en) * 2006-05-18 2007-11-22 Michael Corwin Congestion management groups
US7778149B1 (en) 2006-07-27 2010-08-17 Tadaaki Chigusa Method and system to providing fast access channel
US8160096B1 (en) 2006-12-06 2012-04-17 Tadaaki Chigusa Method and system for reserving bandwidth in time-division multiplexed networks
US8073384B2 (en) 2006-12-14 2011-12-06 Elster Electricity, Llc Optimization of redundancy and throughput in an automated meter data collection system using a wireless network
US20080159277A1 (en) * 2006-12-15 2008-07-03 Brocade Communications Systems, Inc. Ethernet over fibre channel
US20080181243A1 (en) * 2006-12-15 2008-07-31 Brocade Communications Systems, Inc. Ethernet forwarding in high performance fabrics
US20080159260A1 (en) * 2006-12-15 2008-07-03 Brocade Communications Systems, Inc. Fibre channel over ethernet frame
US20100128653A1 (en) * 2007-03-30 2010-05-27 British Telecommunications Pulbic Limited Ad hoc communication system
US8462691B2 (en) 2007-03-30 2013-06-11 British Telecommunications Plc Ad hoc communication system
US8320302B2 (en) 2007-04-20 2012-11-27 Elster Electricity, Llc Over the air microcontroller flash memory updates
US8422414B2 (en) * 2007-06-22 2013-04-16 Vubiq Incorporated System and method for wireless communication in a backplane fabric architecture
US20090028177A1 (en) * 2007-06-22 2009-01-29 Vubiq Incorporated System and method for wireless communication in a backplane fabric architecture
US7929474B2 (en) 2007-06-22 2011-04-19 Vubiq Incorporated System and method for wireless communication in a backplane fabric architecture
US20110188417A1 (en) * 2007-06-22 2011-08-04 Vubiq Incorporated System And Method For Wireless Communication In A Backplane Fabric Architecture
US8334787B2 (en) 2007-10-25 2012-12-18 Trilliant Networks, Inc. Gas meter having ultra-sensitive magnetic material retrofitted onto meter dial and method for performing meter retrofit
US8583780B2 (en) 2007-11-20 2013-11-12 Brocade Communications Systems, Inc. Discovery of duplicate address in a network by reviewing discovery frames received at a port
US20090132701A1 (en) * 2007-11-20 2009-05-21 Robert Snively Duplicate address discovery and action
US8332055B2 (en) 2007-11-25 2012-12-11 Trilliant Networks, Inc. Energy use control system and method
US8725274B2 (en) 2007-11-25 2014-05-13 Trilliant Networks, Inc. Energy use control system and method
US8138934B2 (en) 2007-11-25 2012-03-20 Trilliant Networks, Inc. System and method for false alert filtering of event messages within a network
US8171364B2 (en) 2007-11-25 2012-05-01 Trilliant Networks, Inc. System and method for power outage and restoration notification in an advanced metering infrastructure network
US8370697B2 (en) 2007-11-25 2013-02-05 Trilliant Networks, Inc. System and method for power outage and restoration notification in an advanced metering infrastructure network
US8144596B2 (en) 2007-11-25 2012-03-27 Trilliant Networks, Inc. Communication and message route optimization and messaging in a mesh network
US8108454B2 (en) 2007-12-17 2012-01-31 Brocade Communications Systems, Inc. Address assignment in Fibre Channel over Ethernet environments
US20090292813A1 (en) * 2007-12-17 2009-11-26 Brocade Communications Systems, Inc. Address Assignment in Fibre Channel Over Ethernet Environments
US9612132B2 (en) 2007-12-26 2017-04-04 Elster Solutions, Llc Optimized data collection in a wireless fixed network metering system
US20090296726A1 (en) * 2008-06-03 2009-12-03 Brocade Communications Systems, Inc. ACCESS CONTROL LIST MANAGEMENT IN AN FCoE ENVIRONMENT
US8525692B2 (en) 2008-06-13 2013-09-03 Elster Solutions, Llc Techniques for limiting demand from an electricity meter with an installed relay
US8699377B2 (en) 2008-09-04 2014-04-15 Trilliant Networks, Inc. System and method for implementing mesh network communications using a mesh network protocol
US9621457B2 (en) 2008-09-04 2017-04-11 Trilliant Networks, Inc. System and method for implementing mesh network communications using a mesh network protocol
US8289182B2 (en) 2008-11-21 2012-10-16 Trilliant Networks, Inc. Methods and systems for virtual energy management display
US8787246B2 (en) 2009-02-03 2014-07-22 Ipco, Llc Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods
US20100202298A1 (en) * 2009-02-10 2010-08-12 Microsoft Corporation Network coordinate systems using ip information
US8144611B2 (en) 2009-02-10 2012-03-27 Microsoft Corporation Network coordinate systems using IP information
US8203463B2 (en) 2009-02-13 2012-06-19 Elster Electricity Llc Wakeup and interrogation of meter-reading devices using licensed narrowband and unlicensed wideband radio communication
US8848575B2 (en) 2009-02-23 2014-09-30 Brocade Communications Systems, Inc. High availability and multipathing for fibre channel over ethernet
US9189822B2 (en) 2009-03-11 2015-11-17 Trilliant Networks, Inc. Process, device and system for mapping transformers to meters and locating non-technical line losses
US8319658B2 (en) 2009-03-11 2012-11-27 Trilliant Networks, Inc. Process, device and system for mapping transformers to meters and locating non-technical line losses
US10320047B2 (en) 2009-08-19 2019-06-11 Vubiq Networks, Inc. Waveguide assembly comprising a molded waveguide interface having a support block for a launch transducer that is coupled to a communication device through a flange attached to the interface
US9088058B2 (en) 2009-08-19 2015-07-21 Vubiq Networks, Inc. Waveguide interface with a launch transducer and a circular interface plate
US20110113116A1 (en) * 2009-11-11 2011-05-12 Jeff Burdette Method, computer program product and electronic device for hyper-local geo-targeting
US8443107B2 (en) 2009-11-11 2013-05-14 Digital Envoy, Inc. Method, computer program product and electronic device for hyper-local geo-targeting
US10691730B2 (en) 2009-11-11 2020-06-23 Digital Envoy, Inc. Method, computer program product and electronic device for hyper-local geo-targeting
US9084120B2 (en) 2010-08-27 2015-07-14 Trilliant Networks Inc. System and method for interference free operation of co-located transceivers
US9013173B2 (en) 2010-09-13 2015-04-21 Trilliant Networks, Inc. Process for detecting energy theft
US8832428B2 (en) 2010-11-15 2014-09-09 Trilliant Holdings Inc. System and method for securely communicating across multiple networks using a single radio
US9282383B2 (en) 2011-01-14 2016-03-08 Trilliant Incorporated Process, device and system for volt/VAR optimization
US8970394B2 (en) 2011-01-25 2015-03-03 Trilliant Holdings Inc. Aggregated real-time power outages/restoration reporting (RTPOR) in a secure mesh network
US8856323B2 (en) 2011-02-10 2014-10-07 Trilliant Holdings, Inc. Device and method for facilitating secure communications over a cellular network
US20130304859A1 (en) * 2011-02-28 2013-11-14 Schneider Electric Industries Sas Method and system for communicating between a first item of equipment and one or more other items of equipment
US9642111B2 (en) * 2011-02-28 2017-05-02 Schneider Electric Industries Sas Method and system for communicating between a first item of equipment and one or more other items of equipment
US9041349B2 (en) 2011-03-08 2015-05-26 Trilliant Networks, Inc. System and method for managing load distribution across a power grid
US9001787B1 (en) 2011-09-20 2015-04-07 Trilliant Networks Inc. System and method for implementing handover of a hybrid communications module
US10728149B1 (en) * 2014-02-04 2020-07-28 Architecture Technology Corporation Packet replication routing with destination address swap
US10587509B2 (en) 2014-02-04 2020-03-10 Architecture Technology Corporation Low-overhead routing
DE102014008255A1 (en) * 2014-06-05 2015-12-17 Diehl Metering Systems Gmbh Radio transmission system for data in localized systems and method for its operation
US10499309B2 (en) 2016-03-15 2019-12-03 King Fahd University Of Petroleum And Minerals Method for routing a message at a wireless node in a wireless network
US10499310B2 (en) 2016-03-15 2019-12-03 King Fahd University Of Petroleum And Minerals Wireless node/wireless network system
US10149226B2 (en) 2016-03-15 2018-12-04 King Fahd University Of Petroleum And Minerals ID-based routing protocol for wireless network with a grid topology
US10818997B2 (en) 2017-12-29 2020-10-27 Vubiq Networks, Inc. Waveguide interface and printed circuit board launch transducer assembly and methods of use thereof
WO2019165330A1 (en) * 2018-02-24 2019-08-29 Neji, Inc. System and methods for proof of network element
US11645388B1 (en) 2018-06-19 2023-05-09 Architecture Technology Corporation Systems and methods for detecting non-malicious faults when processing source codes
US11503064B1 (en) 2018-06-19 2022-11-15 Architecture Technology Corporation Alert systems and methods for attack-related events
US11429713B1 (en) 2019-01-24 2022-08-30 Architecture Technology Corporation Artificial intelligence modeling for cyber-attack simulation protocols
US11128654B1 (en) 2019-02-04 2021-09-21 Architecture Technology Corporation Systems and methods for unified hierarchical cybersecurity
US11722515B1 (en) 2019-02-04 2023-08-08 Architecture Technology Corporation Implementing hierarchical cybersecurity systems and methods
US11403405B1 (en) 2019-06-27 2022-08-02 Architecture Technology Corporation Portable vulnerability identification tool for embedded non-IP devices
US11444974B1 (en) 2019-10-23 2022-09-13 Architecture Technology Corporation Systems and methods for cyber-physical threat modeling
US11503075B1 (en) 2020-01-14 2022-11-15 Architecture Technology Corporation Systems and methods for continuous compliance of nodes
US11538562B1 (en) 2020-02-04 2022-12-27 Architecture Technology Corporation Transmission of medical information in disrupted communication networks

Also Published As

Publication number Publication date
EP0455959A2 (en) 1991-11-13
DE69131240D1 (en) 1999-06-24
EP0455959A3 (en) 1994-03-16
EP0455959B1 (en) 1999-05-19
DE69131240T2 (en) 1999-11-04

Similar Documents

Publication Publication Date Title
US5115433A (en) Method and system for routing packets in a packet communication network
US4939726A (en) Method for routing packets in a packet communication network
US5400338A (en) Parasitic adoption of coordinate-based addressing by roaming node
US5453977A (en) Method for network configuration via third party query
EP1064760B1 (en) Routing method for wireless and distributed systems
US6704283B1 (en) Traffic routing in small wireless data networks
Schwartz et al. Routing techniques used in computer communication networks
US5488608A (en) Method and system for routing packets in a packet communication network using locally constructed routing tables
US5383187A (en) Adaptive protocol for packet communications network and method
US6028857A (en) Self-organizing network
US6735177B1 (en) Multicast communication device and method
US8194655B2 (en) Digraph based mesh communication network
CA2235568C (en) Method and apparatus in a radio messaging system for forming a current frame of data while maintaining a correct transmission order for numbered messages
Basagni et al. Dynamic source routing for ad hoc networks using the global positioning system
US4864563A (en) Method for establishing and maintaining a nodal network in a communication system
US20130235730A1 (en) Path selection for routing traffic in a network
US20020137459A1 (en) Network and method for transmitting messages on a common wireless resource without causing broadcast storm
EP1471696B1 (en) Apparatus and method for retransmitting data packets in mobile ad hoc network environment
WO1999066662A1 (en) Method and system for connectionless communication in a cell relay satellite network
JPH09130407A (en) Data format used for transmission of atm cell of communication network
US7158791B2 (en) Route updating method for micromobility network
KR930005389A (en) Method and apparatus for distributing uplink network control and minimizing terminal power level control overhead in radio frequency (RF) data communication network
JPH11239154A (en) Route specifying method for radio base station
JPH10108252A (en) Self adaptive-type intercommunication protocol between fixed radio stations of cellular telephone network
US20010002190A1 (en) Priority auto-control method of signal routes in No.7 signaling network

Legal Events

Date Code Title Description
AS Assignment

Owner name: METRICOM, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BARAN, PAUL;FLAMMER, GEORGE H. III;KALKWARF, ROBERT L.;REEL/FRAME:005288/0314

Effective date: 19900418

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: METRICOM, INC., A DE CORP., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:METRICOM, INC., A CORP. OF CA;REEL/FRAME:006364/0488

Effective date: 19921214

AS Assignment

Owner name: SOUTHERN CALIFORNIA EDISON COMPANY, CALIFORNIA

Free format text: NON-EXCLUSIVE LICENSE;ASSIGNOR:METRICOM, INC.;REEL/FRAME:006498/0886

Effective date: 19921215

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: VULCAN VENTURES INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:METRICOM, INC.;REEL/FRAME:010070/0462

Effective date: 19990630

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: METRICOM, INC., CALIFORNIA

Free format text: RELEASE & REASSIGNMENT;ASSIGNOR:VULCAN VENTURES INCORPORATED;REEL/FRAME:010452/0116

Effective date: 19991129

AS Assignment

Owner name: RICOCHET NETWORKS, INC., COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:METRICOM, INC.;REEL/FRAME:012581/0255

Effective date: 20011107

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: TERABEAM, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RICOCHET NETWORKS, INC.;REEL/FRAME:019111/0254

Effective date: 20061208

AS Assignment

Owner name: PROXIM WIRELESS CORPORATION, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:TERABEAM, INC.;REEL/FRAME:020243/0352

Effective date: 20070910

Owner name: PROXIM WIRELESS CORPORATION,CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:TERABEAM, INC.;REEL/FRAME:020243/0352

Effective date: 20070910