US3902501A - Endocardial electrode - Google Patents

Endocardial electrode Download PDF

Info

Publication number
US3902501A
US3902501A US372269A US37226973A US3902501A US 3902501 A US3902501 A US 3902501A US 372269 A US372269 A US 372269A US 37226973 A US37226973 A US 37226973A US 3902501 A US3902501 A US 3902501A
Authority
US
United States
Prior art keywords
tine
tip
catheter
lead
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US372269A
Inventor
Paul Citron
Eugene A Dickhudt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34312054&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3902501(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US372269A priority Critical patent/US3902501A/en
Priority to AU77566/75A priority patent/AU490702B2/en
Priority to GB3444/75A priority patent/GB1491942A/en
Priority to NLAANVRAGE7501094,A priority patent/NL172617C/en
Priority to FR7506366A priority patent/FR2302107A1/en
Application granted granted Critical
Publication of US3902501A publication Critical patent/US3902501A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/057Anchoring means; Means for fixing the head inside the heart

Definitions

  • ABSTRACT A medical electrode uniquely adapted for use as an endocardial electrode.
  • An electrical conductor is encased in a material which is generally inert to body fluids and terminates at an exposed electrically conductive tip.
  • a plurality of pliant tines extend from the electrode adjacent the tip and form an acute angle with the electrode body. Provision is made for holding the tines against the electrode body during insertion while allowing their release when the tip is in position. The released tines cooperate with the heart tissue, particularly the trabeculae found in the ventricles and the right atrial appendage, to maintain the electrode tip in position.
  • the atrial trabeculae and shape of the catheter being relied upon to maintain it in location until the heart tissue itself enveloped and fixed the tip.
  • the metal parts of the catheter may be radiopaque to facilitate placement by viewing through fluoroscopy.
  • a sensing atrial endocardial electrode is described in Portsmann et. al., P Wave Synchronous Pacing Using Anchored Atrial Electrode Implanted Without Thoractomy", The American Journal of Cardiology, Volume 30, July 1 l, 1972, pages 74-76.
  • a .I-shaped applicator catheter was used to direct the electrode tip into the right atrial appendage.
  • the electrode however, had two fine wire hooks positioned at its tip each ending in a relieving loop. The hooks were held back by the applicator catheter to spring out and anchor the electrode in the trabeculae of the right atrial appendage whenthe electrode tip left the end of the applicator catheter.
  • the applicator catheter was radiopaque so that it could be viewed as it was inserted into the right atrial appendage. It is imperative with the double hook tip that the electrode be properly placed before the hooks are released. The placement was checked not only through fluoroscopy but also by extending the tip slightly beyond the end of the applicator catheter to take a threshold measurement. The tip had-to be extended sufficiently to take an accurate measurementwhile still I retaining the hooks within the applicator catheter. Be-
  • the present invention provides an electrode uniquely adapted for use as an atrial endocardial electrode.
  • the electrode may be positioned in the right atrial appendage through the use of a .I-shaped catheter known to the prior art.
  • a J-shaped stylet may be employed which is held in a straightened position by thewalls of the vein used to approach the heart, the stylet assuming its J-shape upon entry into the right atrium.
  • a plurality of pliant non-conductive tines are provided at the tip of the electrode to cooperate with the heart tissue, particularly the trabeculae found in the right atrial appendage, to maintain the electrode tip in electrical contact with the heart tissue while allowing a removal of the electrode should that prove necessary.
  • the electrode is discussed inthe context of the right atrial appendage, it is suitable for use in any portion of the heart having the requisite cooperating tissue and may be employed as either a sensing or pacing electrode.
  • FIG. I shows a preferred embodiment of the present invention.
  • FIG. 2 shows a cross section of the preferred embodiment of FIG. Itaken along the line 22 in FIG. 1.
  • FIG. 3 shows a cross section of another preferred embodiment taken-along the line 2-2 in FIG. 1.
  • FIG. 4 illustrates apparatus which may be used with the preferred embodiment of FIG. I.
  • FIG. 5 shows acomponentof another preferred embodiment of the present invention.
  • FIG. 6 shows'a preferred embodiment of the present invention whichutilizes the component of FIG. 5, the tines being in a restrained position.
  • FIG. 7 shows the embodiment. of FIG. 6 with the tines unrestrained.
  • FIG. '8 shows another preferred embodiment of the present invention.
  • FIG. 9 shows still another preferred embodiment of the present invention.
  • FIG. 10 shows a further preferred embodiment of the present invention.
  • FIG. 11 shows a portion of the preferred embodiment of FIG.- 10.
  • FIG. 12 shows a portion of the preferred embodiment of FIG. 10.
  • FIG. 13 shows anadditional preferred embodiment of the present invention.
  • the electrically conductive tip 11 may be of any material suitable for the environment; platinum-iridium, for example.
  • the tines 12 are ofa pliant material which is generally inert to body fluids; silicone rubber or polyurethane, for example.
  • the tines 12 may be attached to the body member 10 in any convenient manner.
  • the tines may extend from, and be unitary with, a disc 13 which disc is held in position between the body member 10 and tip 11.
  • the member 13 may be in the form of a ring which lies over either the body member 10 or tip 11 and is adhered thereto in any convenient manner.
  • the tines 12 may take any angle with the body member 10, their purpose being to cooperate with the body tissue, particularly the trabeculae of the right atrial appendage, to maintain the tip 11 in electrical contact with the body tissue. It can be seen that an acute angle formed by the tines l2 and the body member 10 will have the greatest tendency to push against and become involved with the cooperating trabeculae and maintain the tip 11 in electrical contact. It has been found, that an angle of approximately 45 maintains the necessary electrical contact is a very efficient manner. Further, any number of tines may be used; three having proven to be adequate in most situations.
  • FIG. 2 wherein there is shown a cross section of a preferred embodiment of the body member 10 of FIG. 1 taken along the line 22.
  • an elongated electrical conductor 15 runs substantially the length of the body member 10 and makes electrical contact with the tip 11.
  • the conductor 15 is encased within a catheter 16 of a material which is generally inert to body fluids.
  • the catheter conductor combination be made as flexible as possible.
  • a stylet lumen 19 is provided, the stylet being within the lumen 19 during insertion of the electrode and being withdrawn after placement is accomplished.
  • the stylet which is placed into the lumen 19 has a J configuration similar to that of the prior art applicator catheters.
  • the stylet is maintained in a straightened configuration by the walls of the vessel through which insertion is accomplished.
  • the stylet assumes its J configuration thereby allowing an easy insertion into the appendage.
  • the electrical conductor can be of any known type, one preferred form being a multistrand wire of platinum, for example, commonly referred to as tinsel wire.
  • FIG. 3 A second preferred form for the body member 10 is illustrated in FIG. 3.
  • the electrical conductor is a coiled member 17 which again runs substantially the length of the body member 10.
  • the coil 17 is encased in a catheter 16 substantially identical to that shown in FIG. 2.
  • the central portion of the coil 17 is left at least partially void to forma lumen 18 for the insertion of a stylet, the stylet serving essentially the same function in this embodiment as in the embodiment of FIG. 2.
  • the lumens l9 and 18 may be lined with Teflon or any other appropriate material to facilitate the insertion and removal of the stylet.
  • an electrode body portion 10 this time at the end farthest from the tip 11.
  • the body portion 10 commonly has an enlarged segment 20 from which extends the connecting pin 21.
  • the catheter must be made suffieiently large to slide back over the enlarged portion 20 or, alternatively, some other system for removal of the catheter must be provided.
  • the applicator catheter is shown at 22 of a size not sufficiently large to be withdrawn over the enlarged portion 20.
  • a cutting tool 23 is shown adjacent the enlarged portion 20 and extending forward of the enlarged portion with a wedge 24 and a knife blade 25.
  • the cutting tool 23 may be separate from the electrode body 10 or may be attached thereto in any convenient manner.
  • the wedge portion 24 slips under the edge of the applicator catheter 22 and, as the applicator catheter 22 is drawn toward the cutting tool 23, the wedge will direct the catheter 22 into contact with the knife blade which will then cut and separate it thus allowing the removal of the applicator catheter over the enlarged portion 20.
  • the electrode shown in the embodiment of FIG. 1 may be successfully inserted into the right atrial appendage through a transvenous approach using the stylet technique of either FIGS. 2 or 3 or the .I-shaped applicator catheter technique.
  • the tines 12 are not exposed during insertion.
  • the tines are non-restrained or extended during the entire operation.
  • the electrode may be successfully positioned in this condition, it is found that the blood flow tends to draw the electrode tip into the ventrical. For this reason, some means of restraining the tines during insertion is desirable.
  • the catheter body 10 has a portion 30 which is inflatable from an end 32.
  • the inflation is accomplished through a lumen similar to the stylet lumen 19 and 18 of FIGS. 2 and 3 respectively. Indeed, the inflation can be accomplished through the stylet lumens 19 and 18, the lumens being made sufficiently large to accomodate the stylet while allowing a passage for air to inflate the balloon.
  • the ballooning feature of the electrode body 10 may be accomplished in any known manner.
  • FIG. 6 there is shown an electrode having a body 10 and a tip 11 as described with reference to the embodiment of FIG. 1.
  • the body 10 is composed of a balloon catheter as illustrated in FIG.
  • a hold down shroud 31 is positioned near the tip 11 and is adapted to receive at least the ends of the tines 12 to restrain them in a position wherein they overlie the inflatable portion 30 of the electrode body 10. With the tines in this restrained position, a stylet may be inserted into a lumen such as that illustrated in FIGS. 2 or 3 and the electrode inserted through a transvenous approach without any interference from the extended tines. When the electrode tip is believed to be in an acceptable position as viewed by fluoroscopy, a test measurement can be made.
  • the balloon 30 can be inflated from the end of the electrode still outside the body causing the tines to withdraw from the shroud 31 and extend into their normal unrestrained position as illustrated in FIG. 7. With the tines freed from the shroud 31 the inflating pressure can be released and the balloon 30 will deflate to a normal configuration.
  • the shroud 31 may take any shape which can accept at least the end portions of the tines 12. A ring which is attached to the body by spaced tethers is an example of an obvious modification of the shroud 31.
  • FIG. 8 An alternative shroud to the shroud 31 of FIG. 7 is illustrated at 35 in FIG. 8.
  • This shroud 35 again is adapted to accept at least the end portion of the tines 12 to restrain them in a position wherein they overlie the body of the electrode 10.
  • a line 36 is attached to the shroud 35 at 37, and when the tip is properly positioned, a force on the line 36 will cause the shroud 35 to withdraw thus freeing the tines 12 to assume their extended unrestrained position.
  • FIG. 9 wherein a stylet 40 is shown having a coiled portion 41 which coiled portion is wrapped around the tines causing them to lie flat against the body member 10. Again, when the tip 11 is properly positioned, the stylet will be withdrawn thereby freeing the tines for interaction with the trabeculae of the right atrial appendage, for example.
  • an electrode body 10 composed of a connecting portion 50, a central portion 51 and an end portion 52 which lies between the tip 11 and the shroud 53.
  • the cross section of the central portion 51 may be as illustrated in FIG. 3. That is, the electrical conductor is a coiled member 17 having a void lumen forming central portion 18, the conductor extending from the tip 11 back to the connecting portion 50.
  • the connecting portion 50 is similar to that illustrated in FIG. 4 with the connecting pin 54 making an electrical contact with the electrical conductor 17 and having a lumen coincident with the lumen 18 of the conductor 17.
  • the electrical conductor is a coiled member it can be stretched or elongated by applying a pressure against the tip 11 with the stylet 55. Since the electrical conductor is typically uniform throughout its length, the location at which the elec trode body will give or elongate can be controlled to the durometer or diameter of the electrode body, or both. For reasons to be explained more fully below, it is desired that the portion 52 of the electrode body 10 give before the central portion 51 or the connecting portion 50. Therefore, the portion 52 is illustrated as having a smaller diameter than either the central portion 51 or the connecting portion 50. Alternatively, the material comprising the portion 52 may have a lower durometer than either of the other portions of the electrode body 10 or it may have a lower durometer and diameter, as desired.
  • FIG. 11 illustrates the embodiment of FIG. 10 with the tines 12 having at least their ends restrained by the shroud 53 in a manner substantially identical to that illustrated in FIG. 6.
  • the electrode With the tines in their restrained position, the electrode can be inserted and positioned and, when a proper positioning is obtained as described above, the stylet is forced against the tip 11 causing the portion 52 to stretch as illustrated in FIG. 12 thereby releasing the tines 12 from the shroud 53. With the tines released, the stylet is removed thereby allowing the portion 52 to assume its normal shape as illustrated in phantom at FIG. 12.
  • the shroud 53 of FIGS. 10-12 may take the form of a ring connected to the electrode body by means of a plurality of tethers.
  • a ring shroud is illustrated at in FIG. 13.
  • the shroud 60 has a ring or a doughnut configuration and is held in place by means of tethers 61 which perform essentially as the spokes of a wheel, the tethers 61 being positioned so as not to interfere with the restraining and release of the tines 12.
  • the present invention provides a new medical electrode uniquely adapted for use as an endocardial electrode.
  • the electrode provides means for cooperating with the heart tissue, particularly the trabeculae of the ventricles and right atrial appendage, to provide an artificial fixation until such time as a natural fixation has occurred.
  • the tines are of a pliant material which is sufficiently rigid to accomplish their purpose without having the snapping action and sharp points attendant in the prior art devices.
  • the present invention provides a system for positioning the electrode and making any necessary test measurements prior to its being finally posi tioned, the position of the tip with regard to the inserting devices being much less critical in the present invention than in the prior art devices because the tines may be selectively released independently of the insertion device.
  • an endocardial lead of the type having an electrical conductor encased in a material which is generally inert to body fluids, the conductor terminating at an exposed electrically conductive electrode tip, the improvement which comprises:
  • nonconducting tine means extending from said encasing material and away from said tip from a location adjacent said tip for cooperating with heart tissue, to hold the tip in position, said tine means forming a generally acute angle with said encasing material and being entirely of a pliant material having sufficient rigidity to maintain said angle when said tine means are unrestrained, but sufficiently pliant to prevent penetration of said heart tissue, said pliant material being generally inert to body fluids.
  • said restraining means comprises shroud means for accepting at least the end portion of said tine means.
  • said restraining means further comprise means cooperating with said shroud means for effecting the release of said tine means at a point spaced from said shroud means.
  • inflatable means underlying said tine means when said tine means are in said restrained position; and means spaced from said inflatable means for selectively inflating said inflatable means.
  • An endocardial lead which comprises:
  • nonconducting tine means extending from said catheter means and away from said tip from a point adjacent said tip means for cooperation with heart tissue, to hold the tip in position, said tine means forming a generally acute angle with said catheter means and being entirely of a pliant material having sufficient rigidity to maintain said angle when said tine means are unrestrained, but sufficiently pliant to prevent penetration of said heart tissue, said pliant material being generally inert to body fluids.
  • the lead of claim 7 further comprising means for releasable restraining said tines in a position wherein they overlie said catheter means.
  • said restraining means comprises shroud means for accepting at least the end portion of said tine means.
  • said restraining means further comprises means cooperating with said shroud means for effecting the release of said tine means at a point spaced from said shroud means.
  • said catheter means comprises a balloon catheter, the balloon underlying the tines when the tines are in the restrained position.
  • said elongated electrically conductive means comprises a coiled electrical conductor having a void central portion, said lumen coinciding with said void central portion.
  • nonconducting tine means including a plurality of tines each extending from said catheter and away from said tip from a point adjacent said tip and forming an acute angle with said catheter for cooperating with heart tissue to hold the tip in position, said tine means being entirely of a pliant material having sufficient rigidity to maintain said angle when said tine means are unrestrained, but sufficiently pliant to prevent penetration of said heart tissue; means for releasably restraining said tine means in a position wherein said tine means overlie said catheter; and I means underlying said tine means when said tine means are in said restrained position and inflatable from a point spaced from said restraining means for releasing said tine means from said restraining means upon inflation.
  • said pliant tine means material comprises a material which is relatively inert to body fluids, at least a portion of said material being radiopaque.
  • radiopaque material portion is a material treated with a material selected from the group consisting of carbon, barium sulfate or Tantalum.

Abstract

A medical electrode uniquely adapted for use as an endocardial electrode. An electrical conductor is encased in a material which is generally inert to body fluids and terminates at an exposed electrically conductive tip. A plurality of pliant tines extend from the electrode adjacent the tip and form an acute angle with the electrode body. Provision is made for holding the tines against the electrode body during insertion while allowing their release when the tip is in position. The released tines cooperate with the heart tissue, particularly the trabeculae found in the ventricles and the right atrial appendage, to maintain the electrode tip in position.

Description

United States Patent [191 Citron et al.
[451 Sept. 2, 1975 ENDOCARDIAL ELECTRODE [75] Inventors: Paul Citron, New Brighton; Eugene A. Dickhudt, St. Paul, both of Minn.
[73] Assignee: Medtronic, Inc., Minneapolis, Minn.
[22] Filed: June 21, 1973 [21] Appl. No.: 372,269
[56] References Cited UNITED STATES PATENTS 2,854,983 10/1958 Baskin 128/349 B 3,348,548 10/1967 Chardack..... 128/419 P 3,397,699 8/1968 Kohl 128/243 3,516,410 6/1970 Hakim 128/350 R 3,568,659 3/1971 Karnegis.... 128/243 3,608,555 9/1971 Greyson 128/348 3,717,151 2/1973 Collett 128/350 R 3,719,190 3/1973 Avery.... 128/418 3,815,608 6/1974 Spinosa et al. 128/349 R 3,835,864 9/1974 Rasor et al 128/418 X OTHER PUBLICATIONS Schaldach, New Pacemaker Electrodes, Trans: Am. Society For Artificial Internal Organs, Vol. 17, 1971,
Wende et al., Neve intrakar dicle Schrittmacherelektrode, Deutsche Medizinisch-e Wochenschrift, Nr. 40, 2, Oct. 1970, pp. 2026-2028.
Pieper, Registration of Phesic Changes of Blood Flowby Means of Catheter Type Flowmeter, Review of Sci. Instr., Vol. 29, No. 11, Nov. 1958, pp. 965-967.
Primary ExaminerRichard A. Gaudet Assistant ExaminerLee S. Cohen Attorney, Agent, or Firm-Lew Schwartz; Wayne A. Sivertson [57] ABSTRACT A medical electrode uniquely adapted for use as an endocardial electrode. An electrical conductor is encased in a material which is generally inert to body fluids and terminates at an exposed electrically conductive tip. A plurality of pliant tines extend from the electrode adjacent the tip and form an acute angle with the electrode body. Provision is made for holding the tines against the electrode body during insertion while allowing their release when the tip is in position. The released tines cooperate with the heart tissue, particularly the trabeculae found in the ventricles and the right atrial appendage, to maintain the electrode tip in position.
17 Claims, 13 Drawing Figures PATENTEU 2975 3.902501 SHEET 1 UP 2 1 ENDOCARDIAL ELECTRODE BACKGROUND OF, THE INVENTION Electrical stimulation of heart action is well-known and has been employed to counter a variety of heart dysfunctions. Dependent upon the particular dysfunction, optimal placement of the electrical Contact point or points may vary. However, optimal electrode placement has often been sacrificed to other considerations such as minimization of the surgical risk and reliability of the electrode securement. To date, the greatest number of electrodes have been ventricular electrodes with the transvenous-endocardial approach coming into the fore in recent years.
The advantages of a reliable electrical contact with the atrium are well-known. Such a contact would allow atrial pacing or atrial synchronized pacing thereby preserving the contribution of the atrial contraction in'the overall cardiac output. Additionally, an atrial contact would be advantageously employed for arrhythmia management and other purposes which may not be accomplished through ventricular electrical stimulation.
.For reasons well-known to those skilled in the art, the
greatest advantages can be obtained through an electrical contact with the right atrium, the right atrial appendage providing a suitable site.
An attempt to accomplish transvenous or endocardial atrial pacing is described in Smyth et. al. Permanent Transvenous Atrial Pacing, An Experimental and Clinical Study, The Annals of Thoracic Surgery, Volume II, No. 4, Apr. 19, 1971, pages 360-70. Here, a J-shaped catheter with a flange near the tip was inserted into the right atrial appendage through a transvenous approach. The catheter was straightened by the insertion of a stylet. When the stylet was with drawn, the catheter assumed itspreformed J shape for placement of the electrode tip in the atrial appendage. There was no attempt to artificially secure the electrode tip in position, the atrial trabeculae and shape of the catheter being relied upon to maintain it in location until the heart tissue itself enveloped and fixed the tip. The metal parts of the catheter may be radiopaque to facilitate placement by viewing through fluoroscopy.
A sensing atrial endocardial electrode is described in Portsmann et. al., P Wave Synchronous Pacing Using Anchored Atrial Electrode Implanted Without Thoractomy", The American Journal of Cardiology, Volume 30, July 1 l, 1972, pages 74-76. A .I-shaped applicator catheter was used to direct the electrode tip into the right atrial appendage. The electrode however, had two fine wire hooks positioned at its tip each ending in a relieving loop. The hooks were held back by the applicator catheter to spring out and anchor the electrode in the trabeculae of the right atrial appendage whenthe electrode tip left the end of the applicator catheter.
In the applicator catheter technique described above, the applicator catheter was radiopaque so that it could be viewed as it was inserted into the right atrial appendage. It is imperative with the double hook tip that the electrode be properly placed before the hooks are released. The placement was checked not only through fluoroscopy but also by extending the tip slightly beyond the end of the applicator catheter to take a threshold measurement. The tip had-to be extended sufficiently to take an accurate measurementwhile still I retaining the hooks within the applicator catheter. Be-
SUMMARY OF THE PRESENT INVENTION The present invention provides an electrode uniquely adapted for use as an atrial endocardial electrode. The electrode may be positioned in the right atrial appendage through the use of a .I-shaped catheter known to the prior art. Alternatively, a J-shaped stylet may be employed which is held in a straightened position by thewalls of the vein used to approach the heart, the stylet assuming its J-shape upon entry into the right atrium. A plurality of pliant non-conductive tines are provided at the tip of the electrode to cooperate with the heart tissue, particularly the trabeculae found in the right atrial appendage, to maintain the electrode tip in electrical contact with the heart tissue while allowing a removal of the electrode should that prove necessary. Provision is also made for holding the tines against the electrode body during insertion while allowing their release when the tip is in position and after a test threshold measurement. Although the electrode is discussed inthe context of the right atrial appendage, it is suitable for use in any portion of the heart having the requisite cooperating tissue and may be employed as either a sensing or pacing electrode.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I shows a preferred embodiment of the present invention.
FIG. 2 shows a cross section of the preferred embodiment of FIG. Itaken along the line 22 in FIG. 1.
FIG. 3 shows a cross section of another preferred embodiment taken-along the line 2-2 in FIG. 1.
FIG. 4 illustrates apparatus which may be used with the preferred embodiment of FIG. I.
FIG. 5 shows acomponentof another preferred embodiment of the present invention.
FIG. 6 shows'a preferred embodiment of the present invention whichutilizes the component of FIG. 5, the tines being in a restrained position.
FIG. 7 shows the embodiment. of FIG. 6 with the tines unrestrained.
FIG. '8 shows another preferred embodiment of the present invention.
FIG. 9 shows still another preferred embodiment of the present invention.
FIG. 10 shows a further preferred embodiment of the present invention.
FIG. 11 shows a portion of the preferred embodiment of FIG.- 10.
FIG. 12 shows a portion of the preferred embodiment of FIG. 10.
FIG. 13 shows anadditional preferred embodiment of the present invention.
DETAILED. DESCRIPTION GFTHE DRAWINGS tive tip 11 and a plurality of tines 12 extending at an acute angle from the body member from a position adjacent the tip 11. The electrically conductive tip 11 may be of any material suitable for the environment; platinum-iridium, for example. The tines 12 are ofa pliant material which is generally inert to body fluids; silicone rubber or polyurethane, for example. The tines 12 may be attached to the body member 10 in any convenient manner. For example, the tines may extend from, and be unitary with, a disc 13 which disc is held in position between the body member 10 and tip 11. Alternatively, the member 13 may be in the form of a ring which lies over either the body member 10 or tip 11 and is adhered thereto in any convenient manner. The tines 12 may take any angle with the body member 10, their purpose being to cooperate with the body tissue, particularly the trabeculae of the right atrial appendage, to maintain the tip 11 in electrical contact with the body tissue. It can be seen that an acute angle formed by the tines l2 and the body member 10 will have the greatest tendency to push against and become involved with the cooperating trabeculae and maintain the tip 11 in electrical contact. It has been found, that an angle of approximately 45 maintains the necessary electrical contact is a very efficient manner. Further, any number of tines may be used; three having proven to be adequate in most situations.
Referring now to FIG. 2 wherein there is shown a cross section of a preferred embodiment of the body member 10 of FIG. 1 taken along the line 22. In this embodiment, an elongated electrical conductor 15 runs substantially the length of the body member 10 and makes electrical contact with the tip 11. The conductor 15 is encased within a catheter 16 of a material which is generally inert to body fluids.
It is desirable that the catheter conductor combination be made as flexible as possible. To accomplish this purpose while providing the necessary rigidity for insertion of the electrode, a stylet lumen 19 is provided, the stylet being within the lumen 19 during insertion of the electrode and being withdrawn after placement is accomplished. In a preferred embodiment, the stylet which is placed into the lumen 19 has a J configuration similar to that of the prior art applicator catheters. During insertion, the stylet is maintained in a straightened configuration by the walls of the vessel through which insertion is accomplished. When the electrode tip reaches the atrium, the stylet assumes its J configuration thereby allowing an easy insertion into the appendage. When the placement of the electrode tip is accomplished, the stylet is withdrawn. In this embodiment, the electrical conductor can be of any known type, one preferred form being a multistrand wire of platinum, for example, commonly referred to as tinsel wire. I
A second preferred form for the body member 10 is illustrated in FIG. 3. Here, the electrical conductor is a coiled member 17 which again runs substantially the length of the body member 10. The coil 17 is encased in a catheter 16 substantially identical to that shown in FIG. 2. The central portion of the coil 17 is left at least partially void to forma lumen 18 for the insertion of a stylet, the stylet serving essentially the same function in this embodiment as in the embodiment of FIG. 2. Further, in both the embodiments of FIG. 2 and FIG. 3, the lumens l9 and 18 may be lined with Teflon or any other appropriate material to facilitate the insertion and removal of the stylet.
Referring now to FIG. 4, there is again shown an electrode body portion 10 this time at the end farthest from the tip 11. In some applications, a pin type connection to an external stimulator or sensing device is desired. For this purpose, the body portion 10 commonly has an enlarged segment 20 from which extends the connecting pin 21. If it is desired to insert the electrode through the use of the J-shaped applicator catheter known to the prior art, the catheter must be made suffieiently large to slide back over the enlarged portion 20 or, alternatively, some other system for removal of the catheter must be provided. Here, the applicator catheter is shown at 22 of a size not sufficiently large to be withdrawn over the enlarged portion 20. A cutting tool 23 is shown adjacent the enlarged portion 20 and extending forward of the enlarged portion with a wedge 24 and a knife blade 25. The cutting tool 23 may be separate from the electrode body 10 or may be attached thereto in any convenient manner. In operation, the wedge portion 24 slips under the edge of the applicator catheter 22 and, as the applicator catheter 22 is drawn toward the cutting tool 23, the wedge will direct the catheter 22 into contact with the knife blade which will then cut and separate it thus allowing the removal of the applicator catheter over the enlarged portion 20.
The electrode shown in the embodiment of FIG. 1 may be successfully inserted into the right atrial appendage through a transvenous approach using the stylet technique of either FIGS. 2 or 3 or the .I-shaped applicator catheter technique. In the applicator catheter technique, the tines 12 are not exposed during insertion. In the stylet technique of either FIGS. 2 or 3, however, the tines are non-restrained or extended during the entire operation. Although the electrode may be successfully positioned in this condition, it is found that the blood flow tends to draw the electrode tip into the ventrical. For this reason, some means of restraining the tines during insertion is desirable.
Referring now to FIG. 5, there is shown a balloon catheter similar to the balloon catheters used for other applications. Specifically, the catheter body 10 has a portion 30 which is inflatable from an end 32. The inflation is accomplished through a lumen similar to the stylet lumen 19 and 18 of FIGS. 2 and 3 respectively. Indeed, the inflation can be accomplished through the stylet lumens 19 and 18, the lumens being made sufficiently large to accomodate the stylet while allowing a passage for air to inflate the balloon. The ballooning feature of the electrode body 10 may be accomplished in any known manner. Referring now to FIG. 6, there is shown an electrode having a body 10 and a tip 11 as described with reference to the embodiment of FIG. 1. The body 10 is composed of a balloon catheter as illustrated in FIG. 5 with the ballooning or inflatable part lying adjacent the tip 1 l. A hold down shroud 31 is positioned near the tip 11 and is adapted to receive at least the ends of the tines 12 to restrain them in a position wherein they overlie the inflatable portion 30 of the electrode body 10. With the tines in this restrained position, a stylet may be inserted into a lumen such as that illustrated in FIGS. 2 or 3 and the electrode inserted through a transvenous approach without any interference from the extended tines. When the electrode tip is believed to be in an acceptable position as viewed by fluoroscopy, a test measurement can be made. If the site of the electrode tip proves satisfactory, the balloon 30 can be inflated from the end of the electrode still outside the body causing the tines to withdraw from the shroud 31 and extend into their normal unrestrained position as illustrated in FIG. 7. With the tines freed from the shroud 31 the inflating pressure can be released and the balloon 30 will deflate to a normal configuration. The shroud 31 may take any shape which can accept at least the end portions of the tines 12. A ring which is attached to the body by spaced tethers is an example of an obvious modification of the shroud 31.
An alternative shroud to the shroud 31 of FIG. 7 is illustrated at 35 in FIG. 8. This shroud 35 again is adapted to accept at least the end portion of the tines 12 to restrain them in a position wherein they overlie the body of the electrode 10. A line 36 is attached to the shroud 35 at 37, and when the tip is properly positioned, a force on the line 36 will cause the shroud 35 to withdraw thus freeing the tines 12 to assume their extended unrestrained position. A similar approach is illustrated in FIG. 9 wherein a stylet 40 is shown having a coiled portion 41 which coiled portion is wrapped around the tines causing them to lie flat against the body member 10. Again, when the tip 11 is properly positioned, the stylet will be withdrawn thereby freeing the tines for interaction with the trabeculae of the right atrial appendage, for example.
Referring now to FIG. 10, there is shown another preferred embodiment of the present invention. Specifically, there is shown an electrode body 10 composed of a connecting portion 50, a central portion 51 and an end portion 52 which lies between the tip 11 and the shroud 53. The cross section of the central portion 51 may be as illustrated in FIG. 3. That is, the electrical conductor is a coiled member 17 having a void lumen forming central portion 18, the conductor extending from the tip 11 back to the connecting portion 50. The connecting portion 50 is similar to that illustrated in FIG. 4 with the connecting pin 54 making an electrical contact with the electrical conductor 17 and having a lumen coincident with the lumen 18 of the conductor 17. With this configuration, it is possible to insert a stylet 55 through the end of the connecting pin 54 to abut the tip 11. Inasmuch as the electrical conductor is a coiled member it can be stretched or elongated by applying a pressure against the tip 11 with the stylet 55. Since the electrical conductor is typically uniform throughout its length, the location at which the elec trode body will give or elongate can be controlled to the durometer or diameter of the electrode body, or both. For reasons to be explained more fully below, it is desired that the portion 52 of the electrode body 10 give before the central portion 51 or the connecting portion 50. Therefore, the portion 52 is illustrated as having a smaller diameter than either the central portion 51 or the connecting portion 50. Alternatively, the material comprising the portion 52 may have a lower durometer than either of the other portions of the electrode body 10 or it may have a lower durometer and diameter, as desired.
FIG. 11 illustrates the embodiment of FIG. 10 with the tines 12 having at least their ends restrained by the shroud 53 in a manner substantially identical to that illustrated in FIG. 6. With the tines in their restrained position, the electrode can be inserted and positioned and, when a proper positioning is obtained as described above, the stylet is forced against the tip 11 causing the portion 52 to stretch as illustrated in FIG. 12 thereby releasing the tines 12 from the shroud 53. With the tines released, the stylet is removed thereby allowing the portion 52 to assume its normal shape as illustrated in phantom at FIG. 12.
As stated with regard to the shroud 31 of FIGS. 6 and 7, the shroud 53 of FIGS. 10-12 may take the form of a ring connected to the electrode body by means of a plurality of tethers. Such a ring shroud is illustrated at in FIG. 13. As can be seen, the shroud 60 has a ring or a doughnut configuration and is held in place by means of tethers 61 which perform essentially as the spokes of a wheel, the tethers 61 being positioned so as not to interfere with the restraining and release of the tines 12.
From the above, it can be seen that the present invention provides a new medical electrode uniquely adapted for use as an endocardial electrode. The electrode provides means for cooperating with the heart tissue, particularly the trabeculae of the ventricles and right atrial appendage, to provide an artificial fixation until such time as a natural fixation has occurred. The tines are of a pliant material which is sufficiently rigid to accomplish their purpose without having the snapping action and sharp points attendant in the prior art devices. Further, the present invention provides a system for positioning the electrode and making any necessary test measurements prior to its being finally posi tioned, the position of the tip with regard to the inserting devices being much less critical in the present invention than in the prior art devices because the tines may be selectively released independently of the insertion device.
Obviously, many modifications and variations of the present invention are possible in light of the above teaching. An example of such a modification would be to make the body member 10 or the tines 12, or both, radiopaque to facilitate the positioning by observation of the electrode through Xray., fluoroscopy, etc. We have found that this can be accomplished through impregnation with carbon, barium sulfate or Tantalum. Of course, any suitable substance and method will be acceptable for this purpose. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
What is claimed is:
1. In an endocardial lead of the type having an electrical conductor encased in a material which is generally inert to body fluids, the conductor terminating at an exposed electrically conductive electrode tip, the improvement which comprises:
nonconducting tine means extending from said encasing material and away from said tip from a location adjacent said tip for cooperating with heart tissue, to hold the tip in position, said tine means forming a generally acute angle with said encasing material and being entirely of a pliant material having sufficient rigidity to maintain said angle when said tine means are unrestrained, but sufficiently pliant to prevent penetration of said heart tissue, said pliant material being generally inert to body fluids.
2. The lead of claim 1 wherein the improvement fur ther comprises means external to said encasing mate- 7 rial for releasably restraining said tinc means in a position overlying said encasing material.
3. The lead of claim 2 wherein said restraining means comprises shroud means for accepting at least the end portion of said tine means.
4. The lead of claim 3 wherein said restraining means further comprise means cooperating with said shroud means for effecting the release of said tine means at a point spaced from said shroud means.
5. The lead of claim 3 wherein the improvement further comprises:
inflatable means underlying said tine means when said tine means are in said restrained position; and means spaced from said inflatable means for selectively inflating said inflatable means.
6. The lead of claim 4 wherein said tine means are non-metallic.
7. An endocardial lead which comprises:
elongated electrically conductive means;
flexible catheter means surrounding said electrically conductive means and having a lumen substantially parallel to and coextensive with said electrically conductive means;
electrically conductive tip means at one end of said catheter means and electrically connected to said electrically conductive means; and
nonconducting tine means extending from said catheter means and away from said tip from a point adjacent said tip means for cooperation with heart tissue, to hold the tip in position, said tine means forming a generally acute angle with said catheter means and being entirely of a pliant material having sufficient rigidity to maintain said angle when said tine means are unrestrained, but sufficiently pliant to prevent penetration of said heart tissue, said pliant material being generally inert to body fluids.
8. The lead of claim 7 further comprising means for releasable restraining said tines in a position wherein they overlie said catheter means.
9. The lead of claim 8 wherein said restraining means comprises shroud means for accepting at least the end portion of said tine means. 7
10. The lead of claim 9 wherein said restraining means further comprises means cooperating with said shroud means for effecting the release of said tine means at a point spaced from said shroud means.
1 l. The lead of claim 9 wherein said catheter means comprises a balloon catheter, the balloon underlying the tines when the tines are in the restrained position.
12. The lead of claim 11 wherein said elongated electrically conductive means comprises a coiled electrical conductor having a void central portion, said lumen coinciding with said void central portion.
13. The lead of claim 11 wherein said elongated electrically conductive means is positioned substantially at the center of the cross section of said catheter means and said lumen lies off the center of said cross section.
14. In a medical lead of the type in which an electrical conductor is positioned within a catheter and terminates at an exposed electrically conductive electrode tip, the improvement which comprises:
nonconducting tine means including a plurality of tines each extending from said catheter and away from said tip from a point adjacent said tip and forming an acute angle with said catheter for cooperating with heart tissue to hold the tip in position, said tine means being entirely of a pliant material having sufficient rigidity to maintain said angle when said tine means are unrestrained, but sufficiently pliant to prevent penetration of said heart tissue; means for releasably restraining said tine means in a position wherein said tine means overlie said catheter; and I means underlying said tine means when said tine means are in said restrained position and inflatable from a point spaced from said restraining means for releasing said tine means from said restraining means upon inflation.
15. The medical lead of-claim 14 wherein the angle formed by said tine means and said catheter is approximately 45.
16. The medical lead of claim 14 wherein said pliant tine means material comprises a material which is relatively inert to body fluids, at least a portion of said material being radiopaque.
17. The medical lead of claim 16 wherein the radiopaque material portion is a material treated with a material selected from the group consisting of carbon, barium sulfate or Tantalum.

Claims (17)

1. In an endocardial lead of the type having an electrical conductor encased in a material which is generally inert to body fluids, the conductor terminating at an exposed electrically conductive electrode tip, the improvement which comprises: nonconducting tine means extending from said encasing material and away from said tip from a location adjacent said tip for cooperating with heart tissue, to hold the tip in position, said tine means forming a generally acute angle with said encasing material and being entirely of a pliant material having sufficient rigidity to maintain said angle when said tine means are unrestrained, but sufficiently pliant to prevent penetration of said heart tissue, said pliant material being generally inert to body fluids.
2. The lead of claim 1 wherein the improvement further comprises means external to said encasing material for releasably restraining said tine means in a position overlying said encasing material.
3. The lead of claim 2 wherein said restraining means comprises shroud means for accepting at least the end portion of said tine means.
4. The lead of claim 3 wherein said restraining means further comprise means cooperating with said shroud means for effecting the release of said tine means at a point spaced from said shroud means.
5. The lead of claim 3 wherein the improvement further comprises: inflatable means underlying said tine means when said tine means are in said restrained position; and means spaced from said inflatable means for selectively inflating said inflatable means.
6. The lead of claim 4 wherein said tine means are non-metallic.
7. An endocardial lead which comprises: elongated electrically conductive means; flexible catheter means surrounding said electrically conductive means and having a lumen substantially parallel to and coextensive with said electrically conductive means; electrically conductive tip means at one end of said catheter means and electrically connected to said electrically conductive means; and nonconducting tine means extending from said catheter means And away from said tip from a point adjacent said tip means for cooperation with heart tissue, to hold the tip in position, said tine means forming a generally acute angle with said catheter means and being entirely of a pliant material having sufficient rigidity to maintain said angle when said tine means are unrestrained, but sufficiently pliant to prevent penetration of said heart tissue, said pliant material being generally inert to body fluids.
8. The lead of claim 7 further comprising means for releasable restraining said tines in a position wherein they overlie said catheter means.
9. The lead of claim 8 wherein said restraining means comprises shroud means for accepting at least the end portion of said tine means.
10. The lead of claim 9 wherein said restraining means further comprises means cooperating with said shroud means for effecting the release of said tine means at a point spaced from said shroud means.
11. The lead of claim 9 wherein said catheter means comprises a balloon catheter, the balloon underlying the tines when the tines are in the restrained position.
12. The lead of claim 11 wherein said elongated electrically conductive means comprises a coiled electrical conductor having a void central portion, said lumen coinciding with said void central portion.
13. The lead of claim 11 wherein said elongated electrically conductive means is positioned substantially at the center of the cross section of said catheter means and said lumen lies off the center of said cross section.
14. In a medical lead of the type in which an electrical conductor is positioned within a catheter and terminates at an exposed electrically conductive electrode tip, the improvement which comprises: nonconducting tine means including a plurality of tines each extending from said catheter and away from said tip from a point adjacent said tip and forming an acute angle with said catheter for cooperating with heart tissue to hold the tip in position, said tine means being entirely of a pliant material having sufficient rigidity to maintain said angle when said tine means are unrestrained, but sufficiently pliant to prevent penetration of said heart tissue; means for releasably restraining said tine means in a position wherein said tine means overlie said catheter; and means underlying said tine means when said tine means are in said restrained position and inflatable from a point spaced from said restraining means for releasing said tine means from said restraining means upon inflation.
15. The medical lead of claim 14 wherein the angle formed by said tine means and said catheter is approximately 45*.
16. The medical lead of claim 14 wherein said pliant tine means material comprises a material which is relatively inert to body fluids, at least a portion of said material being radiopaque.
17. The medical lead of claim 16 wherein the radiopaque material portion is a material treated with a material selected from the group consisting of carbon, barium sulfate or Tantalum.
US372269A 1973-06-21 1973-06-21 Endocardial electrode Expired - Lifetime US3902501A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US372269A US3902501A (en) 1973-06-21 1973-06-21 Endocardial electrode
AU77566/75A AU490702B2 (en) 1973-06-21 1975-01-23 Endocardial electrode
GB3444/75A GB1491942A (en) 1973-06-21 1975-01-27 Electromedical lead assembly
NLAANVRAGE7501094,A NL172617C (en) 1973-06-21 1975-01-30 HEART ELECTRODE.
FR7506366A FR2302107A1 (en) 1973-06-21 1975-02-28 INTRACARDIAC ELECTRODE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US372269A US3902501A (en) 1973-06-21 1973-06-21 Endocardial electrode

Publications (1)

Publication Number Publication Date
US3902501A true US3902501A (en) 1975-09-02

Family

ID=34312054

Family Applications (1)

Application Number Title Priority Date Filing Date
US372269A Expired - Lifetime US3902501A (en) 1973-06-21 1973-06-21 Endocardial electrode

Country Status (4)

Country Link
US (1) US3902501A (en)
FR (1) FR2302107A1 (en)
GB (1) GB1491942A (en)
NL (1) NL172617C (en)

Cited By (263)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007732A (en) * 1975-09-02 1977-02-15 Robert Carl Kvavle Method for location and removal of soft tissue in human biopsy operations
US4030508A (en) * 1976-02-04 1977-06-21 Vitatron Medical B.V. Low output electrode for cardiac pacing
US4033357A (en) * 1975-02-07 1977-07-05 Medtronic, Inc. Non-fibrosing cardiac electrode
US4106512A (en) * 1976-12-16 1978-08-15 Medtronic, Inc. Transvenously implantable lead
US4135518A (en) * 1976-05-21 1979-01-23 Medtronic, Inc. Body implantable lead and electrode
US4136703A (en) * 1978-03-09 1979-01-30 Vitatron Medical B.V. Atrial lead and method of inserting same
US4141365A (en) * 1977-02-24 1979-02-27 The Johns Hopkins University Epidural lead electrode and insertion needle
US4144890A (en) * 1975-01-14 1979-03-20 Cordis Corporation Contact device for muscle stimulation
US4166469A (en) * 1977-12-13 1979-09-04 Littleford Philip O Apparatus and method for inserting an electrode
EP0004967A2 (en) * 1978-04-17 1979-10-31 Mohl, Werner, Prof. DDr. Anchoring means for a probe head, particularly a cardiac probe
US4257428A (en) * 1977-12-09 1981-03-24 Barton Steven A Retractable stimulation electrode apparatus and method
US4269198A (en) * 1979-12-26 1981-05-26 Medtronic, Inc. Body implantable lead
US4289144A (en) * 1980-01-10 1981-09-15 Medtronic, Inc. A-V Sidearm lead
US4402328A (en) * 1981-04-28 1983-09-06 Telectronics Pty. Limited Crista terminalis atrial electrode lead
US4407303A (en) * 1980-04-21 1983-10-04 Siemens Aktiengesellschaft Endocardial electrode arrangement
DE3300050A1 (en) * 1983-01-03 1984-07-05 Siemens AG, 1000 Berlin und 8000 München Intravenous pacemaker electrode
US4465079A (en) * 1982-10-13 1984-08-14 Medtronic, Inc. Biomedical lead with fibrosis-inducing anchoring strand
US4467817A (en) * 1981-04-20 1984-08-28 Cordis Corporation Small diameter lead with introducing assembly
US4473067A (en) * 1982-04-28 1984-09-25 Peter Schiff Introducer assembly for intra-aortic balloons and the like incorporating a sliding, blood-tight seal
US4475560A (en) * 1982-04-29 1984-10-09 Cordis Corporation Temporary pacing lead assembly
FR2558376A1 (en) * 1984-01-20 1985-07-26 Buffet Jacques Conductor implantable in the body comprising a conducting body, an electrode, and means of interaction of the electrode with the cardiac wall constituted by a helical element
GB2157178A (en) * 1984-03-27 1985-10-23 Atesys Apparatus for treating disorders of cardiac rhythm
US4549557A (en) * 1983-11-01 1985-10-29 Hakki A Hadi I Pacemaker electrode
US4564023A (en) * 1983-03-28 1986-01-14 Cordis Corporation Retention skirt for pacing electrode assembly
US4581019A (en) * 1981-04-23 1986-04-08 Curelaru Johan Device for introducing a catheter-cannula into a blood vessel
US4590949A (en) * 1984-11-01 1986-05-27 Cordis Corporation Neural stimulating lead with stabilizing mechanism and method for using same
US4631059A (en) * 1985-03-26 1986-12-23 Datascope Corp. Sheath remover
US4641656A (en) * 1985-06-20 1987-02-10 Medtronic, Inc. Cardioversion and defibrillation lead method
US4641664A (en) * 1984-04-13 1987-02-10 Siemens Aktiengesellschaft Endocardial electrode arrangement
US4669488A (en) * 1983-03-28 1987-06-02 Cordis Corporation Retention skirt for pacing electrode assembly
US4687469A (en) * 1984-06-01 1987-08-18 Peter Osypka Device for slitting introducers for pacemaker electrodes
US4722353A (en) * 1985-09-16 1988-02-02 Intermedics, Inc. Stabilizer for implantable electrode
US4730389A (en) * 1986-08-15 1988-03-15 Medtronic, Inc. Method for fabrication of an implantable hermetic transparent container
US4791935A (en) * 1986-08-15 1988-12-20 Medtronic, Inc. Oxygen sensing pacemaker
US4807629A (en) * 1986-08-15 1989-02-28 Medtronic, Inc. Oxygen sensing pacemaker
US4841971A (en) * 1987-05-26 1989-06-27 Cordis Leads, Inc. Endocardial lead with projections having saw tooth formation
US4892102A (en) * 1984-04-16 1990-01-09 Astrinsky Eliezer A Cardiac pacing and/or sensing lead and method of use
US4913147A (en) * 1986-09-23 1990-04-03 Siemens Aktiengesellschaft Heart pacemaker system with shape-memory metal components
US4913164A (en) * 1988-09-27 1990-04-03 Intermedics, Inc. Extensible passive fixation mechanism for lead assembly of an implantable cardiac stimulator
US4945922A (en) * 1989-03-13 1990-08-07 Vitatron Medical B.V. Pacing lead
US4997424A (en) * 1989-04-05 1991-03-05 Medamicus, Inc. Catheter introducer and introducer slitter
US5111828A (en) * 1990-09-18 1992-05-12 Peb Biopsy Corporation Device for percutaneous excisional breast biopsy
WO1992012668A1 (en) * 1991-01-25 1992-08-06 Regents Of The University Of Minnesota Device and method for measurement of blood flow
US5179962A (en) * 1991-06-20 1993-01-19 Possis Medical, Inc. Cardiac lead with retractible fixators
US5231996A (en) * 1992-01-28 1993-08-03 Medtronic, Inc. Removable endocardial lead
US5238007A (en) * 1991-12-12 1993-08-24 Vitatron Medical B.V. Pacing lead with improved anchor mechanism
US5300107A (en) * 1992-10-22 1994-04-05 Medtronic, Inc. Universal tined myocardial pacing lead
US5344439A (en) * 1992-10-30 1994-09-06 Medtronic, Inc. Catheter with retractable anchor mechanism
EP0617978A2 (en) * 1993-03-31 1994-10-05 Medtronic, Inc. Torque indicator for fixed screw leads
US5354327A (en) * 1993-04-07 1994-10-11 Medtronic, Inc. Conductor coil with specific ratio of torque to bending stiffness
US5353804A (en) * 1990-09-18 1994-10-11 Peb Biopsy Corporation Method and device for percutaneous exisional breast biopsy
US5360441A (en) * 1992-10-30 1994-11-01 Medtronic, Inc. Lead with stylet capture member
US5364337A (en) * 1990-10-15 1994-11-15 Medtronic, Inc. Muscle powered cardiac assist system
US5383922A (en) * 1993-03-15 1995-01-24 Medtronic, Inc. RF lead fixation and implantable lead
US5476500A (en) * 1993-12-20 1995-12-19 Ventritex, Inc. Endocardial lead system with defibrillation electrode fixation
US5480421A (en) * 1992-10-30 1996-01-02 Medtronic, Inc. Lead with stylet capture member
US5545206A (en) * 1994-12-22 1996-08-13 Ventritex, Inc. Low profile lead with automatic tine activation
US5571162A (en) * 1995-06-07 1996-11-05 Intermedics, Inc. Transvenous defibrillation lead with side hooks
US5683447A (en) * 1995-12-19 1997-11-04 Ventritex, Inc. Lead with septal defibrillation and pacing electrodes
US5713945A (en) * 1996-06-13 1998-02-03 Pacesetter, Inc. Implantable lead modified to reduce tissue ingrowth
US5755761A (en) * 1996-04-26 1998-05-26 Pharmatarget, Inc. Atrial pacing catheter and method having multiple electrodes in the right atrium and coronary sinus
US5755767A (en) * 1996-08-02 1998-05-26 Pacesetter, Inc. Anti-dislodgment and anti-perforation distal tip design for transvenous lead
US5759202A (en) * 1997-04-28 1998-06-02 Sulzer Intermedics Inc. Endocardial lead with lateral active fixation
US5769881A (en) * 1997-05-22 1998-06-23 Sulzer Intermedics Inc. Endocardial lead with multiple branches
US5807399A (en) * 1996-10-23 1998-09-15 Medtronic, Inc. Method for removal of chronically implanted leads and leads optimized for use therewith
US5871532A (en) * 1997-05-22 1999-02-16 Sulzer Intermedics Inc. Epicardial lead for minimally invasive implantation
WO1999008741A1 (en) * 1997-08-19 1999-02-25 Abbeymoor Medical, Inc. Urethral device with anchoring system
US5897585A (en) * 1997-12-18 1999-04-27 Medtronic, Inc. Stretchable pacing lead
US5931864A (en) * 1998-02-20 1999-08-03 Cardiac Pacemakers, Inc. Coronary venous lead having fixation mechanism
US6026567A (en) * 1995-05-11 2000-02-22 Medtronic, Inc. Medical lead with stranded conductors
EP1034752A1 (en) 1999-03-11 2000-09-13 Medtronic, Inc. Method of stent retention to a delivery catheter balloon - braided retainers
USH1905H (en) * 1997-03-21 2000-10-03 Medtronic, Inc. Mechanism for adjusting the exposed surface area and position of an electrode along a lead body
WO2000067836A1 (en) 1999-05-07 2000-11-16 Ethicon, Inc. Temporary pacing wire anchor
US6181973B1 (en) 1999-04-02 2001-01-30 Claudio Ceron Anchoring structure for implantable electrodes
US6258060B1 (en) 1997-02-07 2001-07-10 Abbeymoon Medical, Inc. Urethral apparatus with position indicator and methods of use thereof
WO2001080941A2 (en) 2000-04-26 2001-11-01 Medtronics, Inc. Medical electrical lead with fiber core
US6315778B1 (en) 1999-09-10 2001-11-13 C. R. Bard, Inc. Apparatus for creating a continuous annular lesion
US6331189B1 (en) 1999-10-18 2001-12-18 Medtronic, Inc. Flexible medical stent
US6334871B1 (en) 1996-03-13 2002-01-01 Medtronic, Inc. Radiopaque stent markers
US6405091B1 (en) 1999-07-20 2002-06-11 Pacesetter, Inc. Lead assembly with masked microdisk tip electrode and monolithic controlled release device
US6402777B1 (en) 1996-03-13 2002-06-11 Medtronic, Inc. Radiopaque stent markers
US20020177888A1 (en) * 2000-04-26 2002-11-28 Medtronic, Inc. Helix rotation by traction
US6489562B1 (en) 1997-04-01 2002-12-03 Medtronic, Inc Medical electrical lead having variable stiffness tip-ring spacer
US20030045920A1 (en) * 2000-10-17 2003-03-06 Medtronic, Inc. Radiopaque marking of lead electrode zone in a continuous conductor construction
US20030149469A1 (en) * 1999-04-16 2003-08-07 Lone Wolinsky Medical device for intraluminal endovascular stenting
US20030158565A1 (en) * 2002-02-15 2003-08-21 Medtronic, Inc. Slitting tool
US20030199915A1 (en) * 2002-04-19 2003-10-23 Peter Shimm Laparoscopic specimen extraction port
US20030216773A1 (en) * 2002-04-19 2003-11-20 Peter Shimm Laparoscopic specimen retrieval shoehorn
US20040064175A1 (en) * 2002-09-30 2004-04-01 Lessar Joseph F. Implantable medical device lead conductor having integral biostable in-situ grown oxide insulation and process for forming
US20040087900A1 (en) * 2002-11-01 2004-05-06 Thompson Paul J. Implant delivery system with marker interlock
US20040138531A1 (en) * 2003-01-15 2004-07-15 Bonner Matthew D. Methods and apparatus for accessing and stabilizing an area of the heart
US6792318B2 (en) 2002-06-13 2004-09-14 Pacesetter, Inc. Technique for fixating a lead
US20040193229A1 (en) * 2002-05-17 2004-09-30 Medtronic, Inc. Gastric electrical stimulation for treatment of gastro-esophageal reflux disease
WO2004091717A2 (en) * 2003-04-11 2004-10-28 Cardiac Pacemakers, Inc. Subcutaneous cardiac lead with fixation
US20040230282A1 (en) * 2003-04-11 2004-11-18 Cates Adam W. Acute and chronic fixation for subcutaneous electrodes
US20040230279A1 (en) * 2003-04-11 2004-11-18 Cates Adam W. Subcutaneous lead with tined fixation
US20040230281A1 (en) * 2003-04-11 2004-11-18 Ron Heil Expandable fixation elements for subcutaneous electrodes
US20040230280A1 (en) * 2003-04-11 2004-11-18 Cates Adam W. Helical fixation elements for subcutaneous electrodes
US20040236382A1 (en) * 2003-05-19 2004-11-25 Medtronic, Inc. Gastro-electric stimulation for increasing the acidity of gastric secretions or increasing the amounts thereof
US20040236381A1 (en) * 2003-05-19 2004-11-25 Medtronic, Inc. Gastro-electric stimulation for reducing the acidity of gastric secretions or reducing the amounts thereof
US20050015117A1 (en) * 2002-09-06 2005-01-20 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves
US20050021008A1 (en) * 2002-09-06 2005-01-27 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by drug delivery to the pudendal and sacral nerves
US20050033372A1 (en) * 2002-09-06 2005-02-10 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the left and the right sacral nerves
US20050060014A1 (en) * 2001-08-31 2005-03-17 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
US20050075702A1 (en) * 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for inhibiting release of pro-inflammatory mediator
US20050075701A1 (en) * 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for attenuating an immune response
US20050113877A1 (en) * 2003-03-31 2005-05-26 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudenal and associated nerves, and the optional delivery of drugs in association therewith
US20050182435A1 (en) * 2004-02-12 2005-08-18 Cardiac Pacemakers, Inc. Notched cutter for guide catheter removal from lead
US20050240123A1 (en) * 2004-04-14 2005-10-27 Mast T D Ultrasound medical treatment system and method
US20050261610A1 (en) * 2004-05-21 2005-11-24 Mast T D Transmit apodization of an ultrasound transducer array
US20060095078A1 (en) * 2004-10-29 2006-05-04 Tronnes Carole A Expandable fixation mechanism
US20060095077A1 (en) * 2004-10-29 2006-05-04 Tronnes Carole A Expandable fixation structures
US20060100683A1 (en) * 2002-11-07 2006-05-11 Yacoubian Vahe S Epicardial heartwire, chest tube with epicardial heartwire, and method of use
US20060157511A1 (en) * 2002-11-06 2006-07-20 Innovation Packaging Device for packaging and dispensing a liquid or semi-liquid product
US20060173507A1 (en) * 2004-06-10 2006-08-03 Ndi Medical, Llc Systems for electrical stimulation of nerves in adipose tissue regions
US20070049846A1 (en) * 2005-08-24 2007-03-01 C.R.Bard, Inc. Stylet Apparatuses and Methods of Manufacture
US20070066995A1 (en) * 2004-06-10 2007-03-22 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20070073370A1 (en) * 2005-09-27 2007-03-29 Zielinski Todd M Trans-septal anchoring system and method
US20070100411A1 (en) * 2005-10-27 2007-05-03 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
WO2007027506A3 (en) * 2005-08-30 2007-05-10 Medtronic Inc Trans-septal pressure sensor
US20070135882A1 (en) * 2005-12-09 2007-06-14 Drasler William J Cardiac stimulation system
US20070255370A1 (en) * 2006-04-28 2007-11-01 Bonde Eric H Implantable medical electrical stimulation lead, such as a PNE lead, and method of use
US20070255368A1 (en) * 2006-04-28 2007-11-01 Bonde Eric H Implantable medical electrical stimulation lead with distal fixation and method
US20070255333A1 (en) * 2006-04-28 2007-11-01 Medtronic, Inc. Neuromodulation therapy for perineal or dorsal branch of pudendal nerve
US20080046061A1 (en) * 2006-08-16 2008-02-21 Yacoubian Vahe S Heart wire
US20080109054A1 (en) * 2004-10-20 2008-05-08 Scimed Life Systems, Inc. Leadless Cardiac Stimulation Systems
US20080108972A1 (en) * 2006-11-08 2008-05-08 Cardiac Pacemakers, Inc. Universal cutter for guide catheters
US20080208248A1 (en) * 2007-02-28 2008-08-28 Rutten Jean J G Implantable medical device system with fixation member
US20080228235A1 (en) * 2007-03-12 2008-09-18 Gil Vardi Device and method for fixing an electrical lead
US7427280B2 (en) 2002-09-06 2008-09-23 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by delivering drugs to various nerves or tissues
US7473224B2 (en) 2001-05-29 2009-01-06 Ethicon Endo-Surgery, Inc. Deployable ultrasound medical transducers
US7473250B2 (en) 2004-05-21 2009-01-06 Ethicon Endo-Surgery, Inc. Ultrasound medical system and method
US7494467B2 (en) 2004-04-16 2009-02-24 Ethicon Endo-Surgery, Inc. Medical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode
US20090192576A1 (en) * 2008-01-25 2009-07-30 Seifert Kevin R Medical electrical lead
US7628780B2 (en) 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20100022899A1 (en) * 2008-07-28 2010-01-28 Gernot Kolberg Device for determining the flow rate of a blood flow, and cardiovascular assist device
US20100036227A1 (en) * 2007-11-26 2010-02-11 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US20100094116A1 (en) * 2008-10-07 2010-04-15 Lucent Medical Systems, Inc. Percutaneous magnetic gastrostomy
US7740623B2 (en) 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7744562B2 (en) 2003-01-14 2010-06-29 Medtronics, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US20100198327A1 (en) * 2009-02-04 2010-08-05 Pacesetter, Inc. Active Fixation Implantable Medical Lead Configured to Indicate via Fluoroscopy Embedment of Helical Anchor in Cardiac Tissue
US20100204569A1 (en) * 2007-11-26 2010-08-12 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US20100217346A1 (en) * 2006-06-06 2010-08-26 Shuros Allan C Method and apparatus for gastrointestinal stimulation via the lymphatic system
US7801624B1 (en) * 2007-01-16 2010-09-21 Pacesetter, Inc. Reduced perforation distal tip for an implantable cardiac electrotherapy lead
US7806839B2 (en) 2004-06-14 2010-10-05 Ethicon Endo-Surgery, Inc. System and method for ultrasound therapy using grating lobes
US20100256490A1 (en) * 2004-05-18 2010-10-07 Makin Inder Raj S Medical system having an ultrasound source and an acoustic coupling medium
US7813809B2 (en) 2004-06-10 2010-10-12 Medtronic, Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US7840281B2 (en) 2006-07-21 2010-11-23 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US7848821B1 (en) 2006-07-11 2010-12-07 Pacesetter, Inc. Apparatus and method for electrode insertion in heart tissue
US7846096B2 (en) 2001-05-29 2010-12-07 Ethicon Endo-Surgery, Inc. Method for monitoring of medical treatment using pulse-echo ultrasound
US20100317981A1 (en) * 2009-06-12 2010-12-16 Romedex International Srl Catheter Tip Positioning Method
US20100318026A1 (en) * 2009-06-12 2010-12-16 Romedex International Srl Devices and Methods for Endovascular Electrography
US20100331712A1 (en) * 2006-10-23 2010-12-30 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US20110015533A1 (en) * 2007-11-26 2011-01-20 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US7951095B2 (en) 2004-05-20 2011-05-31 Ethicon Endo-Surgery, Inc. Ultrasound medical system
US20110190786A1 (en) * 2010-01-29 2011-08-04 Medtronic, Inc. Introduction of medical lead into patient
US20110196248A1 (en) * 2009-06-12 2011-08-11 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US8050774B2 (en) 2005-12-22 2011-11-01 Boston Scientific Scimed, Inc. Electrode apparatus, systems and methods
US20110301543A1 (en) * 2006-03-09 2011-12-08 Interrad Medical, Inc. Anchor Device and Method
US20120029335A1 (en) * 2010-07-29 2012-02-02 Cameron Health, Inc. Subcutaneous Leads and Methods of Implant and Explant
US8165692B2 (en) 2004-06-10 2012-04-24 Medtronic Urinary Solutions, Inc. Implantable pulse generator power management
US8195304B2 (en) 2004-06-10 2012-06-05 Medtronic Urinary Solutions, Inc. Implantable systems and methods for acquisition and processing of electrical signals
US8204605B2 (en) 2008-02-07 2012-06-19 Cardiac Pacemakers, Inc. Multi-site atrial electrostimulation
US8290600B2 (en) 2006-07-21 2012-10-16 Boston Scientific Scimed, Inc. Electrical stimulation of body tissue using interconnected electrode assemblies
US8332036B2 (en) 2004-10-20 2012-12-11 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388541B2 (en) 2007-11-26 2013-03-05 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8644953B1 (en) 2012-08-10 2014-02-04 Greatbatch Ltd. Lead with braided reinforcement
US8644934B2 (en) 2006-09-13 2014-02-04 Boston Scientific Scimed Inc. Cardiac stimulation using leadless electrode assemblies
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
US8715295B2 (en) 2002-09-20 2014-05-06 Interrad Medical, Inc. Temporary retention device
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US8974434B2 (en) 2009-02-06 2015-03-10 Interrad Medical, Inc. System for anchoring medical devices
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
US9056187B2 (en) 2008-07-16 2015-06-16 Interrad Medical, Inc. Anchor systems and methods
US9205255B2 (en) 2004-06-10 2015-12-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
US20160059003A1 (en) * 2014-08-26 2016-03-03 Medtronic, Inc. Interventional medical systems, devices, and methods of use
US20160081735A1 (en) * 2011-05-12 2016-03-24 Cvdevices, Llc Systems and methods for cryoablation of a tissue
US9308382B2 (en) 2004-06-10 2016-04-12 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9393427B2 (en) 2013-08-16 2016-07-19 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9480850B2 (en) 2013-08-16 2016-11-01 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US9480846B2 (en) 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
US9492674B2 (en) 2013-08-16 2016-11-15 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US9492097B2 (en) 2007-11-26 2016-11-15 C. R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US9498595B2 (en) 2013-09-17 2016-11-22 Custom Medical Applications, Inc. Methods for placing a sympathetic block, catheters, catheter assemblies and related methods
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9554716B2 (en) 2007-11-26 2017-01-31 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US20170100160A1 (en) * 2015-10-08 2017-04-13 Karl Storz Gmbh & Co. Kg Access system for endoscopic operations
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9700732B2 (en) 2013-08-16 2017-07-11 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US9795781B2 (en) 2014-04-29 2017-10-24 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with retrieval features
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US10046139B2 (en) 2010-08-20 2018-08-14 C. R. Bard, Inc. Reconfirmation of ECG-assisted catheter tip placement
US10080887B2 (en) 2014-04-29 2018-09-25 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices including tissue engagement verification
US10118034B2 (en) * 2015-08-18 2018-11-06 Boston Scientific Scimed, Inc. Methods for producing cardiomyocyte cells
US10179236B2 (en) 2013-08-16 2019-01-15 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US10195419B2 (en) 2012-06-13 2019-02-05 Mainstay Medical Limited Electrode leads for use with implantable neuromuscular electrical stimulator
US10226617B2 (en) 2014-08-01 2019-03-12 Nuvectra Corporation Apparatus with unencapsulated reinforcement
US10265503B2 (en) 2013-08-16 2019-04-23 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US10327810B2 (en) 2016-07-05 2019-06-25 Mainstay Medical Limited Systems and methods for enhanced implantation of electrode leads between tissue layers
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10369355B2 (en) 2015-02-24 2019-08-06 Med-El Elektromedizinische Geraete Gmbh Active fixation of neural tissue electrodes
US10376690B2 (en) 2014-08-26 2019-08-13 Medtronic, Inc. Interventional medical systems, devices, and components thereof
US10434329B2 (en) 2014-05-09 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Autofocus wireless power transfer to implantable devices in freely moving animals
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US10449355B2 (en) 2012-06-13 2019-10-22 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US10463853B2 (en) 2016-01-21 2019-11-05 Medtronic, Inc. Interventional medical systems
US10471268B2 (en) 2014-10-16 2019-11-12 Mainstay Medical Limited Systems and methods for monitoring muscle rehabilitation
US10518084B2 (en) 2013-07-31 2019-12-31 Medtronic, Inc. Fixation for implantable medical devices
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US10583301B2 (en) 2016-11-08 2020-03-10 Cardiac Pacemakers, Inc. Implantable medical device for atrial deployment
US10596358B2 (en) * 2013-01-15 2020-03-24 Palo Alto Research Center Incorporated Devices and methods for intraluminal retention and drug delivery
US10617402B2 (en) 2015-07-22 2020-04-14 Cameron Health, Inc. Minimally invasive method to implant a subcutaneous electrode
US10639008B2 (en) 2009-10-08 2020-05-05 C. R. Bard, Inc. Support and cover structures for an ultrasound probe head
US10661078B2 (en) 2010-03-11 2020-05-26 Mainstay Medical Limited Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use
US10722723B2 (en) 2013-08-16 2020-07-28 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10820885B2 (en) 2012-06-15 2020-11-03 C. R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
US10828490B2 (en) 2007-03-09 2020-11-10 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US10828502B2 (en) 2014-03-03 2020-11-10 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatus for power conversion and data transmission in implantable sensors, stimulators, and actuators
US10842993B2 (en) 2013-08-16 2020-11-24 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US10850104B2 (en) 2015-07-10 2020-12-01 Axonics Modulation Technologies, Inc. Implantable nerve stimulator having internal electronics without ASIC and methods of use
US10925637B2 (en) 2010-03-11 2021-02-23 Mainstay Medical Limited Methods of implanting electrode leads for use with implantable neuromuscular electrical stimulator
US10971950B2 (en) 2013-07-29 2021-04-06 The Alfred E. Mann Foundation For Scientific Research Microprocessor controlled class E driver
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US11027125B2 (en) 2016-01-21 2021-06-08 Medtronic, Inc. Interventional medical devices, device systems, and fixation components thereof
US11083903B2 (en) 2016-01-29 2021-08-10 Axonics, Inc. Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator
US11097096B2 (en) 2017-05-09 2021-08-24 Nalu Medical, Inc. Stimulation apparatus
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US11103706B2 (en) 2007-03-09 2021-08-31 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11110283B2 (en) 2018-02-22 2021-09-07 Axonics, Inc. Neurostimulation leads for trial nerve stimulation and methods of use
US11116985B2 (en) 2014-08-15 2021-09-14 Axonics, Inc. Clinician programmer for use with an implantable neurostimulation lead
US11123569B2 (en) 2015-01-09 2021-09-21 Axonics, Inc. Patient remote and associated methods of use with a nerve stimulation system
US11160980B2 (en) 2017-02-24 2021-11-02 Nalu Medical, Inc. Apparatus with sequentially implanted stimulators
US11213675B2 (en) 2014-08-15 2022-01-04 Axonics, Inc. Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication
US11260236B2 (en) 2016-02-12 2022-03-01 Axonics, Inc. External pulse generator device and affixation device for trial nerve stimulation and methods of use
US11331488B2 (en) 2007-03-09 2022-05-17 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11338144B2 (en) 2013-03-15 2022-05-24 Alfred E. Mann Foundation For Scientific Research Current sensing multiple output current stimulators
US11389659B2 (en) 2014-08-15 2022-07-19 Axonics, Inc. External pulse generator device and associated methods for trial nerve stimulation
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
US11478648B2 (en) 2015-01-09 2022-10-25 Axonics, Inc. Antenna and methods of use for an implantable nerve stimulator
US11484723B2 (en) 2015-01-09 2022-11-01 Axonics, Inc. Attachment devices and associated methods of use with a nerve stimulation charging device
US11497916B2 (en) 2014-08-15 2022-11-15 Axonics, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US11642537B2 (en) 2019-03-11 2023-05-09 Axonics, Inc. Charging device with off-center coil
US11679262B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US11679261B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11684774B2 (en) 2010-03-11 2023-06-27 Mainstay Medical Limited Electrical stimulator for treatment of back pain and methods of use
US11730411B2 (en) 2014-08-15 2023-08-22 Axonics, Inc. Methods for determining neurostimulation electrode configurations based on neural localization
US11759632B2 (en) 2019-03-28 2023-09-19 Medtronic, Inc. Fixation components for implantable medical devices
US11766561B2 (en) 2016-07-18 2023-09-26 Nalu Medical, Inc. Methods and systems for treating pelvic disorders and pain conditions
US11786725B2 (en) 2012-06-13 2023-10-17 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11938327B2 (en) 2016-03-21 2024-03-26 Nalu Medical, Inc. Devices and methods for positioning external devices in relation to implanted devices
US11951310B2 (en) 2020-11-06 2024-04-09 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026301A (en) * 1975-04-21 1977-05-31 Medtronic, Inc. Apparatus and method for optimum electrode placement in the treatment of disease syndromes such as spinal curvature
DE2533766C2 (en) * 1975-07-29 1986-01-23 Hans-Jürgen Dipl.-Ing. 5100 Aachen Bisping Implantable transvenous pacemaker lead
DE2732547A1 (en) * 1977-07-19 1979-02-01 Bisping Hans Juergen IMPLANTABLE ELECTRODE
DE2736737A1 (en) * 1977-08-16 1979-03-01 Bisping Hans Juergen IMPLANTABLE ELECTRODE
FR2423231A1 (en) * 1978-04-19 1979-11-16 Synthelabo ENDOCAVITY CARDIAC STIMULATION PROBE
US4262678A (en) * 1979-06-28 1981-04-21 Medtronic, Inc. Pacing lead with tine protector
US4285347A (en) * 1979-07-25 1981-08-25 Cordis Corporation Stabilized directional neural electrode lead
US4301815A (en) * 1980-01-23 1981-11-24 Telectronics Pty. Limited Trailing tine electrode lead
FR2564322B1 (en) * 1984-05-18 1988-06-17 Lefebvre Jean Marie INTRACARDIAC ELECTRODE

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2854983A (en) * 1957-10-31 1958-10-07 Arnold M Baskin Inflatable catheter
US3348548A (en) * 1965-04-26 1967-10-24 William M Chardack Implantable electrode with stiffening stylet
US3397699A (en) * 1966-05-05 1968-08-20 Gerald C. Kohl Retaining catheter having resiliently biased wing flanges
US3516410A (en) * 1968-01-03 1970-06-23 Salomon Hakim Cerebro-ventricular catheter
US3568659A (en) * 1968-09-24 1971-03-09 James N Karnegis Disposable percutaneous intracardiac pump and method of pumping blood
US3608555A (en) * 1968-12-31 1971-09-28 Chemplast Inc Radio opaque and optically transparent tubing
US3717151A (en) * 1971-03-11 1973-02-20 R Collett Flesh penetrating apparatus
US3719190A (en) * 1971-03-09 1973-03-06 Avery Lab Inc Heart stimulation electrode with a conical positioning parachute
US3815608A (en) * 1972-03-10 1974-06-11 East West Med Prod Retaining catheter
US3835864A (en) * 1970-09-21 1974-09-17 Rasor Ass Inc Intra-cardiac stimulator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1557087A (en) * 1967-12-15 1969-02-14
US3814104A (en) * 1971-07-05 1974-06-04 W Irnich Pacemaker-electrode
US3754555A (en) * 1971-10-05 1973-08-28 G Schmitt Controllable barbed intracardial electrode
SE380176B (en) * 1972-11-24 1975-11-03 Astra Sjuco Ab CATHETER FOR SUBMUCOS APPLICATION
IT1007176B (en) * 1973-02-02 1976-10-30 Siemens Ag USEFUL ELECTRODE FOR GRAFTING FOR HEART STIMULATION

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2854983A (en) * 1957-10-31 1958-10-07 Arnold M Baskin Inflatable catheter
US3348548A (en) * 1965-04-26 1967-10-24 William M Chardack Implantable electrode with stiffening stylet
US3397699A (en) * 1966-05-05 1968-08-20 Gerald C. Kohl Retaining catheter having resiliently biased wing flanges
US3516410A (en) * 1968-01-03 1970-06-23 Salomon Hakim Cerebro-ventricular catheter
US3568659A (en) * 1968-09-24 1971-03-09 James N Karnegis Disposable percutaneous intracardiac pump and method of pumping blood
US3608555A (en) * 1968-12-31 1971-09-28 Chemplast Inc Radio opaque and optically transparent tubing
US3835864A (en) * 1970-09-21 1974-09-17 Rasor Ass Inc Intra-cardiac stimulator
US3719190A (en) * 1971-03-09 1973-03-06 Avery Lab Inc Heart stimulation electrode with a conical positioning parachute
US3717151A (en) * 1971-03-11 1973-02-20 R Collett Flesh penetrating apparatus
US3815608A (en) * 1972-03-10 1974-06-11 East West Med Prod Retaining catheter

Cited By (478)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144890A (en) * 1975-01-14 1979-03-20 Cordis Corporation Contact device for muscle stimulation
US4033357A (en) * 1975-02-07 1977-07-05 Medtronic, Inc. Non-fibrosing cardiac electrode
US4007732A (en) * 1975-09-02 1977-02-15 Robert Carl Kvavle Method for location and removal of soft tissue in human biopsy operations
US4030508A (en) * 1976-02-04 1977-06-21 Vitatron Medical B.V. Low output electrode for cardiac pacing
US4135518A (en) * 1976-05-21 1979-01-23 Medtronic, Inc. Body implantable lead and electrode
US4106512A (en) * 1976-12-16 1978-08-15 Medtronic, Inc. Transvenously implantable lead
US4141365A (en) * 1977-02-24 1979-02-27 The Johns Hopkins University Epidural lead electrode and insertion needle
US4257428A (en) * 1977-12-09 1981-03-24 Barton Steven A Retractable stimulation electrode apparatus and method
US4166469A (en) * 1977-12-13 1979-09-04 Littleford Philip O Apparatus and method for inserting an electrode
US4136703A (en) * 1978-03-09 1979-01-30 Vitatron Medical B.V. Atrial lead and method of inserting same
EP0009530A1 (en) * 1978-03-09 1980-04-16 Vitatron Medical B.V. Atrial lead
EP0004967A2 (en) * 1978-04-17 1979-10-31 Mohl, Werner, Prof. DDr. Anchoring means for a probe head, particularly a cardiac probe
EP0004967A3 (en) * 1978-04-17 1979-11-14 Mohl, Werner, Prof. DDr. Anchoring means for a probe head, particularly a cardiac probe
FR2472394A1 (en) * 1979-12-26 1981-07-03 Medtronic Inc CONDUCTIVE IMPLANTABLE IN THE BODY, IN PARTICULAR FOR CARDIAC STIMULATOR
DE3048805A1 (en) * 1979-12-26 1981-09-17 Medtronic, Inc., 55440 Minneapolis, Minn. IMPLANTABLE LINE
US4269198A (en) * 1979-12-26 1981-05-26 Medtronic, Inc. Body implantable lead
US4289144A (en) * 1980-01-10 1981-09-15 Medtronic, Inc. A-V Sidearm lead
US4407303A (en) * 1980-04-21 1983-10-04 Siemens Aktiengesellschaft Endocardial electrode arrangement
US4467817A (en) * 1981-04-20 1984-08-28 Cordis Corporation Small diameter lead with introducing assembly
US4581019A (en) * 1981-04-23 1986-04-08 Curelaru Johan Device for introducing a catheter-cannula into a blood vessel
US4402328A (en) * 1981-04-28 1983-09-06 Telectronics Pty. Limited Crista terminalis atrial electrode lead
US4473067A (en) * 1982-04-28 1984-09-25 Peter Schiff Introducer assembly for intra-aortic balloons and the like incorporating a sliding, blood-tight seal
US4475560A (en) * 1982-04-29 1984-10-09 Cordis Corporation Temporary pacing lead assembly
US4465079A (en) * 1982-10-13 1984-08-14 Medtronic, Inc. Biomedical lead with fibrosis-inducing anchoring strand
DE3300050A1 (en) * 1983-01-03 1984-07-05 Siemens AG, 1000 Berlin und 8000 München Intravenous pacemaker electrode
US4669488A (en) * 1983-03-28 1987-06-02 Cordis Corporation Retention skirt for pacing electrode assembly
US4564023A (en) * 1983-03-28 1986-01-14 Cordis Corporation Retention skirt for pacing electrode assembly
US4549557A (en) * 1983-11-01 1985-10-29 Hakki A Hadi I Pacemaker electrode
FR2558376A1 (en) * 1984-01-20 1985-07-26 Buffet Jacques Conductor implantable in the body comprising a conducting body, an electrode, and means of interaction of the electrode with the cardiac wall constituted by a helical element
GB2157178A (en) * 1984-03-27 1985-10-23 Atesys Apparatus for treating disorders of cardiac rhythm
AU581648B2 (en) * 1984-03-27 1989-03-02 Atesys Electrodes
US4641664A (en) * 1984-04-13 1987-02-10 Siemens Aktiengesellschaft Endocardial electrode arrangement
US4892102A (en) * 1984-04-16 1990-01-09 Astrinsky Eliezer A Cardiac pacing and/or sensing lead and method of use
US4687469A (en) * 1984-06-01 1987-08-18 Peter Osypka Device for slitting introducers for pacemaker electrodes
US4590949A (en) * 1984-11-01 1986-05-27 Cordis Corporation Neural stimulating lead with stabilizing mechanism and method for using same
US4631059A (en) * 1985-03-26 1986-12-23 Datascope Corp. Sheath remover
US4641656A (en) * 1985-06-20 1987-02-10 Medtronic, Inc. Cardioversion and defibrillation lead method
US4722353A (en) * 1985-09-16 1988-02-02 Intermedics, Inc. Stabilizer for implantable electrode
US4730389A (en) * 1986-08-15 1988-03-15 Medtronic, Inc. Method for fabrication of an implantable hermetic transparent container
US4791935A (en) * 1986-08-15 1988-12-20 Medtronic, Inc. Oxygen sensing pacemaker
US4807629A (en) * 1986-08-15 1989-02-28 Medtronic, Inc. Oxygen sensing pacemaker
US4913147A (en) * 1986-09-23 1990-04-03 Siemens Aktiengesellschaft Heart pacemaker system with shape-memory metal components
US4841971A (en) * 1987-05-26 1989-06-27 Cordis Leads, Inc. Endocardial lead with projections having saw tooth formation
US4913164A (en) * 1988-09-27 1990-04-03 Intermedics, Inc. Extensible passive fixation mechanism for lead assembly of an implantable cardiac stimulator
US4945922A (en) * 1989-03-13 1990-08-07 Vitatron Medical B.V. Pacing lead
US4997424A (en) * 1989-04-05 1991-03-05 Medamicus, Inc. Catheter introducer and introducer slitter
US5111828A (en) * 1990-09-18 1992-05-12 Peb Biopsy Corporation Device for percutaneous excisional breast biopsy
US5353804A (en) * 1990-09-18 1994-10-11 Peb Biopsy Corporation Method and device for percutaneous exisional breast biopsy
US5197484A (en) * 1990-09-18 1993-03-30 Peb Biopsy Corporation Method and device for precutaneous excisional breast biopsy
US5364337A (en) * 1990-10-15 1994-11-15 Medtronic, Inc. Muscle powered cardiac assist system
WO1992012668A1 (en) * 1991-01-25 1992-08-06 Regents Of The University Of Minnesota Device and method for measurement of blood flow
US5207226A (en) * 1991-01-25 1993-05-04 Regents Of The University Of Minnesota Device and method for measurement of blood flow
US5179962A (en) * 1991-06-20 1993-01-19 Possis Medical, Inc. Cardiac lead with retractible fixators
US5238007A (en) * 1991-12-12 1993-08-24 Vitatron Medical B.V. Pacing lead with improved anchor mechanism
US5231996A (en) * 1992-01-28 1993-08-03 Medtronic, Inc. Removable endocardial lead
US5300107A (en) * 1992-10-22 1994-04-05 Medtronic, Inc. Universal tined myocardial pacing lead
US5480421A (en) * 1992-10-30 1996-01-02 Medtronic, Inc. Lead with stylet capture member
US5360441A (en) * 1992-10-30 1994-11-01 Medtronic, Inc. Lead with stylet capture member
US5344439A (en) * 1992-10-30 1994-09-06 Medtronic, Inc. Catheter with retractable anchor mechanism
US5383922A (en) * 1993-03-15 1995-01-24 Medtronic, Inc. RF lead fixation and implantable lead
EP0617978A2 (en) * 1993-03-31 1994-10-05 Medtronic, Inc. Torque indicator for fixed screw leads
EP0617978A3 (en) * 1993-03-31 1995-02-15 Medtronic Inc Torque indicator for fixed screw leads.
US5354327A (en) * 1993-04-07 1994-10-11 Medtronic, Inc. Conductor coil with specific ratio of torque to bending stiffness
US5476500A (en) * 1993-12-20 1995-12-19 Ventritex, Inc. Endocardial lead system with defibrillation electrode fixation
US5693081A (en) * 1993-12-20 1997-12-02 Pacesetter, Inc. Endocardial lead system with defibrillation electrode fixation
US5545206A (en) * 1994-12-22 1996-08-13 Ventritex, Inc. Low profile lead with automatic tine activation
US6026567A (en) * 1995-05-11 2000-02-22 Medtronic, Inc. Medical lead with stranded conductors
US5571162A (en) * 1995-06-07 1996-11-05 Intermedics, Inc. Transvenous defibrillation lead with side hooks
US5683447A (en) * 1995-12-19 1997-11-04 Ventritex, Inc. Lead with septal defibrillation and pacing electrodes
US6334871B1 (en) 1996-03-13 2002-01-01 Medtronic, Inc. Radiopaque stent markers
US6402777B1 (en) 1996-03-13 2002-06-11 Medtronic, Inc. Radiopaque stent markers
US5755761A (en) * 1996-04-26 1998-05-26 Pharmatarget, Inc. Atrial pacing catheter and method having multiple electrodes in the right atrium and coronary sinus
US5713945A (en) * 1996-06-13 1998-02-03 Pacesetter, Inc. Implantable lead modified to reduce tissue ingrowth
US5755767A (en) * 1996-08-02 1998-05-26 Pacesetter, Inc. Anti-dislodgment and anti-perforation distal tip design for transvenous lead
US5807399A (en) * 1996-10-23 1998-09-15 Medtronic, Inc. Method for removal of chronically implanted leads and leads optimized for use therewith
US6258060B1 (en) 1997-02-07 2001-07-10 Abbeymoon Medical, Inc. Urethral apparatus with position indicator and methods of use thereof
USH1905H (en) * 1997-03-21 2000-10-03 Medtronic, Inc. Mechanism for adjusting the exposed surface area and position of an electrode along a lead body
US6489562B1 (en) 1997-04-01 2002-12-03 Medtronic, Inc Medical electrical lead having variable stiffness tip-ring spacer
US5759202A (en) * 1997-04-28 1998-06-02 Sulzer Intermedics Inc. Endocardial lead with lateral active fixation
US5871532A (en) * 1997-05-22 1999-02-16 Sulzer Intermedics Inc. Epicardial lead for minimally invasive implantation
US5769881A (en) * 1997-05-22 1998-06-23 Sulzer Intermedics Inc. Endocardial lead with multiple branches
WO1999008741A1 (en) * 1997-08-19 1999-02-25 Abbeymoor Medical, Inc. Urethral device with anchoring system
US6221060B1 (en) 1997-08-19 2001-04-24 Abbeymoor Medical, Inc. Urethral device with anchoring system
US5971967A (en) * 1997-08-19 1999-10-26 Abbeymoor Medical, Inc. Urethral device with anchoring system
US5897585A (en) * 1997-12-18 1999-04-27 Medtronic, Inc. Stretchable pacing lead
WO1999042171A1 (en) * 1998-02-20 1999-08-26 Cardiac Pacemakers, Inc. Coronary venous lead having fixation mechanism
US5931864A (en) * 1998-02-20 1999-08-03 Cardiac Pacemakers, Inc. Coronary venous lead having fixation mechanism
US6178356B1 (en) 1998-02-20 2001-01-23 Cardiac Pacemakers, Inc. Coronary venous lead having fixation mechanism
US6183505B1 (en) 1999-03-11 2001-02-06 Medtronic Ave, Inc. Method of stent retention to a delivery catheter balloon-braided retainers
EP1034752A1 (en) 1999-03-11 2000-09-13 Medtronic, Inc. Method of stent retention to a delivery catheter balloon - braided retainers
US6181973B1 (en) 1999-04-02 2001-01-30 Claudio Ceron Anchoring structure for implantable electrodes
US20030149469A1 (en) * 1999-04-16 2003-08-07 Lone Wolinsky Medical device for intraluminal endovascular stenting
US6918928B2 (en) 1999-04-16 2005-07-19 Medtronic, Inc. Medical device for intraluminal endovascular stenting
US6730116B1 (en) 1999-04-16 2004-05-04 Medtronic, Inc. Medical device for intraluminal endovascular stenting
US6173206B1 (en) 1999-05-07 2001-01-09 Ethicon, Inc. Temporary pacing wire anchor
WO2000067836A1 (en) 1999-05-07 2000-11-16 Ethicon, Inc. Temporary pacing wire anchor
US6405091B1 (en) 1999-07-20 2002-06-11 Pacesetter, Inc. Lead assembly with masked microdisk tip electrode and monolithic controlled release device
US6315778B1 (en) 1999-09-10 2001-11-13 C. R. Bard, Inc. Apparatus for creating a continuous annular lesion
US6331189B1 (en) 1999-10-18 2001-12-18 Medtronic, Inc. Flexible medical stent
US6516230B2 (en) 2000-04-26 2003-02-04 Medtronic, Inc. Medical electrical lead with fiber core
US7092764B2 (en) 2000-04-26 2006-08-15 Medtronic, Inc. Helix rotation by traction
US20020177888A1 (en) * 2000-04-26 2002-11-28 Medtronic, Inc. Helix rotation by traction
WO2001080941A2 (en) 2000-04-26 2001-11-01 Medtronics, Inc. Medical electrical lead with fiber core
US7925358B2 (en) 2000-10-17 2011-04-12 Medtronic, Inc. Radiopaque marking of lead electrode zone in a continuous conductor construction
US7277762B2 (en) * 2000-10-17 2007-10-02 Belden Elisabeth L Radiopague marking of lead electrode zone in a continuous conductor construction
US20030045920A1 (en) * 2000-10-17 2003-03-06 Medtronic, Inc. Radiopaque marking of lead electrode zone in a continuous conductor construction
US20070293924A1 (en) * 2000-10-17 2007-12-20 Belden Elisabeth L Radiopaque marking of lead electrode zone in a continuous conductor construction
US20110160573A1 (en) * 2000-10-17 2011-06-30 Medtronic Inc. Radiopaque Marking of Lead Electrode Zone in a Continuous Conductor Construction
US7628780B2 (en) 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7740623B2 (en) 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7846096B2 (en) 2001-05-29 2010-12-07 Ethicon Endo-Surgery, Inc. Method for monitoring of medical treatment using pulse-echo ultrasound
US9261596B2 (en) 2001-05-29 2016-02-16 T. Douglas Mast Method for monitoring of medical treatment using pulse-echo ultrasound
US9005144B2 (en) 2001-05-29 2015-04-14 Michael H. Slayton Tissue-retaining systems for ultrasound medical treatment
US20110040184A1 (en) * 2001-05-29 2011-02-17 Mast T Douglas Method for monitoring of medical treatment using pulse-echo ultrasound
US7473224B2 (en) 2001-05-29 2009-01-06 Ethicon Endo-Surgery, Inc. Deployable ultrasound medical transducers
US7806892B2 (en) 2001-05-29 2010-10-05 Ethicon Endo-Surgery, Inc. Tissue-retaining system for ultrasound medical treatment
US6999819B2 (en) 2001-08-31 2006-02-14 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
US20050060014A1 (en) * 2001-08-31 2005-03-17 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
US8036756B2 (en) 2001-08-31 2011-10-11 Medtronics Inc Implantable medical electrical stimulation lead fixation method and apparatus
US20060129218A1 (en) * 2001-08-31 2006-06-15 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
US20070050004A1 (en) * 2001-08-31 2007-03-01 Medtronic, Inc. Implantable medical lead including tine markers
US7330764B2 (en) 2001-08-31 2008-02-12 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
US7912555B2 (en) 2001-08-31 2011-03-22 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
US8000805B2 (en) 2001-08-31 2011-08-16 Medtronic, Inc. Implantable medical lead including tine markers
US8626314B2 (en) 2001-08-31 2014-01-07 Medtronic, Inc. Implantable medical lead including a plurality of tine elements
US20030181935A1 (en) * 2002-02-15 2003-09-25 Medtronic, Inc. Slitting tool
US20030158565A1 (en) * 2002-02-15 2003-08-21 Medtronic, Inc. Slitting tool
US7338481B2 (en) 2002-02-15 2008-03-04 Medtronic, Inc. Slitting tool
US7029460B2 (en) 2002-02-15 2006-04-18 Medtronic, Inc. Slitting tool
US20030216773A1 (en) * 2002-04-19 2003-11-20 Peter Shimm Laparoscopic specimen retrieval shoehorn
US20030199915A1 (en) * 2002-04-19 2003-10-23 Peter Shimm Laparoscopic specimen extraction port
US6805699B2 (en) * 2002-04-19 2004-10-19 Peter Shimm Laparoscopic specimen retrieval shoehorn
US6887255B2 (en) * 2002-04-19 2005-05-03 Peter Shimm Laparoscopic specimen extraction port
US20040193229A1 (en) * 2002-05-17 2004-09-30 Medtronic, Inc. Gastric electrical stimulation for treatment of gastro-esophageal reflux disease
US6792318B2 (en) 2002-06-13 2004-09-14 Pacesetter, Inc. Technique for fixating a lead
US20050021008A1 (en) * 2002-09-06 2005-01-27 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by drug delivery to the pudendal and sacral nerves
US20080183236A1 (en) * 2002-09-06 2008-07-31 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
US7328069B2 (en) 2002-09-06 2008-02-05 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves
US7427280B2 (en) 2002-09-06 2008-09-23 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by delivering drugs to various nerves or tissues
US20050015117A1 (en) * 2002-09-06 2005-01-20 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves
US20060122659A9 (en) * 2002-09-06 2006-06-08 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves
US9272140B2 (en) 2002-09-06 2016-03-01 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
US7369894B2 (en) 2002-09-06 2008-05-06 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
US7276057B2 (en) 2002-09-06 2007-10-02 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by drug delivery to the pudendal and sacral nerves
US20050033372A1 (en) * 2002-09-06 2005-02-10 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the left and the right sacral nerves
US20060190046A9 (en) * 2002-09-06 2006-08-24 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the left and the right sacral nerves
US8715295B2 (en) 2002-09-20 2014-05-06 Interrad Medical, Inc. Temporary retention device
US9884168B2 (en) 2002-09-20 2018-02-06 Interrad Medical, Inc. Temporary retention device
US10737068B2 (en) 2002-09-20 2020-08-11 Interrad Medical, Inc. Temporary retention device
US9227040B2 (en) 2002-09-20 2016-01-05 Interrad Medical, Inc. Temporary retention device
US11439793B2 (en) 2002-09-20 2022-09-13 Interrad Medical, Inc. Temporary retention device
EP2044972A1 (en) 2002-09-30 2009-04-08 Medtronic, Inc. Implantable medical device lead conductor
US20040064175A1 (en) * 2002-09-30 2004-04-01 Lessar Joseph F. Implantable medical device lead conductor having integral biostable in-situ grown oxide insulation and process for forming
US8696729B2 (en) 2002-11-01 2014-04-15 Covidien Lp Implant delivery system with marker interlock
US6814746B2 (en) 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US9597212B2 (en) 2002-11-01 2017-03-21 Covidien Lp Implant delivery system with marker interlock
US20040087900A1 (en) * 2002-11-01 2004-05-06 Thompson Paul J. Implant delivery system with marker interlock
US20090069879A1 (en) * 2002-11-01 2009-03-12 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US20060157511A1 (en) * 2002-11-06 2006-07-20 Innovation Packaging Device for packaging and dispensing a liquid or semi-liquid product
US7610106B2 (en) 2002-11-07 2009-10-27 Yacoubian Vahe S Epicardial heartwire with chest tube
US20060100683A1 (en) * 2002-11-07 2006-05-11 Yacoubian Vahe S Epicardial heartwire, chest tube with epicardial heartwire, and method of use
US7744562B2 (en) 2003-01-14 2010-06-29 Medtronics, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US8273072B2 (en) 2003-01-14 2012-09-25 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US6837848B2 (en) 2003-01-15 2005-01-04 Medtronic, Inc. Methods and apparatus for accessing and stabilizing an area of the heart
US20040138531A1 (en) * 2003-01-15 2004-07-15 Bonner Matthew D. Methods and apparatus for accessing and stabilizing an area of the heart
US6918908B2 (en) 2003-01-15 2005-07-19 Medtronic, Inc. Methods and apparatus for accessing and stabilizing an area of the heart
US7328068B2 (en) 2003-03-31 2008-02-05 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith
US20050113877A1 (en) * 2003-03-31 2005-05-26 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudenal and associated nerves, and the optional delivery of drugs in association therewith
US7349742B2 (en) 2003-04-11 2008-03-25 Cardiac Pacemakers, Inc. Expandable fixation elements for subcutaneous electrodes
WO2004091717A3 (en) * 2003-04-11 2004-12-23 Cardiac Pacemakers Inc Subcutaneous cardiac lead with fixation
WO2004091717A2 (en) * 2003-04-11 2004-10-28 Cardiac Pacemakers, Inc. Subcutaneous cardiac lead with fixation
US7499758B2 (en) 2003-04-11 2009-03-03 Cardiac Pacemakers, Inc. Helical fixation elements for subcutaneous electrodes
US20040230280A1 (en) * 2003-04-11 2004-11-18 Cates Adam W. Helical fixation elements for subcutaneous electrodes
US20040230281A1 (en) * 2003-04-11 2004-11-18 Ron Heil Expandable fixation elements for subcutaneous electrodes
US7493175B2 (en) 2003-04-11 2009-02-17 Cardiac Pacemakers, Inc. Subcutaneous lead with tined fixation
US20040230279A1 (en) * 2003-04-11 2004-11-18 Cates Adam W. Subcutaneous lead with tined fixation
US20040230282A1 (en) * 2003-04-11 2004-11-18 Cates Adam W. Acute and chronic fixation for subcutaneous electrodes
US20040236381A1 (en) * 2003-05-19 2004-11-25 Medtronic, Inc. Gastro-electric stimulation for reducing the acidity of gastric secretions or reducing the amounts thereof
US7742818B2 (en) 2003-05-19 2010-06-22 Medtronic, Inc. Gastro-electric stimulation for increasing the acidity of gastric secretions or increasing the amounts thereof
US7620454B2 (en) 2003-05-19 2009-11-17 Medtronic, Inc. Gastro-electric stimulation for reducing the acidity of gastric secretions or reducing the amounts thereof
US20040236382A1 (en) * 2003-05-19 2004-11-25 Medtronic, Inc. Gastro-electric stimulation for increasing the acidity of gastric secretions or increasing the amounts thereof
US20050075702A1 (en) * 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for inhibiting release of pro-inflammatory mediator
US7769442B2 (en) 2003-10-01 2010-08-03 Medtronic, Inc. Device and method for inhibiting release of pro-inflammatory mediator
US20060287678A1 (en) * 2003-10-01 2006-12-21 Medtronic, Inc. Device and method for inhibiting release of pro-inflammatory mediator
US7418292B2 (en) 2003-10-01 2008-08-26 Medtronic, Inc. Device and method for attenuating an immune response
US20050075701A1 (en) * 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for attenuating an immune response
US7615057B2 (en) 2004-02-12 2009-11-10 Cardiac Pacemakers, Inc. Notched cutter for guide catheter removal from lead
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US20050182435A1 (en) * 2004-02-12 2005-08-18 Cardiac Pacemakers, Inc. Notched cutter for guide catheter removal from lead
US20050240123A1 (en) * 2004-04-14 2005-10-27 Mast T D Ultrasound medical treatment system and method
US7494467B2 (en) 2004-04-16 2009-02-24 Ethicon Endo-Surgery, Inc. Medical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode
US7883468B2 (en) 2004-05-18 2011-02-08 Ethicon Endo-Surgery, Inc. Medical system having an ultrasound source and an acoustic coupling medium
US20100256490A1 (en) * 2004-05-18 2010-10-07 Makin Inder Raj S Medical system having an ultrasound source and an acoustic coupling medium
US20110201975A1 (en) * 2004-05-20 2011-08-18 Makin Inder Raj S Ultrasound medical system
US7951095B2 (en) 2004-05-20 2011-05-31 Ethicon Endo-Surgery, Inc. Ultrasound medical system
US20050261610A1 (en) * 2004-05-21 2005-11-24 Mast T D Transmit apodization of an ultrasound transducer array
US7695436B2 (en) 2004-05-21 2010-04-13 Ethicon Endo-Surgery, Inc. Transmit apodization of an ultrasound transducer array
US7473250B2 (en) 2004-05-21 2009-01-06 Ethicon Endo-Surgery, Inc. Ultrasound medical system and method
US8195304B2 (en) 2004-06-10 2012-06-05 Medtronic Urinary Solutions, Inc. Implantable systems and methods for acquisition and processing of electrical signals
US8706252B2 (en) 2004-06-10 2014-04-22 Medtronic, Inc. Systems and methods for clinician control of stimulation system
US9308382B2 (en) 2004-06-10 2016-04-12 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US10434320B2 (en) 2004-06-10 2019-10-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20070066995A1 (en) * 2004-06-10 2007-03-22 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US10293168B2 (en) 2004-06-10 2019-05-21 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US8165692B2 (en) 2004-06-10 2012-04-24 Medtronic Urinary Solutions, Inc. Implantable pulse generator power management
US7813809B2 (en) 2004-06-10 2010-10-12 Medtronic, Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20060173507A1 (en) * 2004-06-10 2006-08-03 Ndi Medical, Llc Systems for electrical stimulation of nerves in adipose tissue regions
US9216294B2 (en) 2004-06-10 2015-12-22 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US7865250B2 (en) * 2004-06-10 2011-01-04 Medtronic Urinary Solutions, Inc. Methods for electrical stimulation of nerves in adipose tissue regions
US9205255B2 (en) 2004-06-10 2015-12-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9724526B2 (en) 2004-06-10 2017-08-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for operating the same
US9132287B2 (en) 2004-06-14 2015-09-15 T. Douglas Mast System and method for ultrasound treatment using grating lobes
US20100312150A1 (en) * 2004-06-14 2010-12-09 Mast T Douglas System and method for medical treatment using ultrasound
US7806839B2 (en) 2004-06-14 2010-10-05 Ethicon Endo-Surgery, Inc. System and method for ultrasound therapy using grating lobes
US8478408B2 (en) 2004-10-20 2013-07-02 Boston Scientific Scimed Inc. Leadless cardiac stimulation systems
US20080109054A1 (en) * 2004-10-20 2008-05-08 Scimed Life Systems, Inc. Leadless Cardiac Stimulation Systems
US10850092B2 (en) 2004-10-20 2020-12-01 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US8332036B2 (en) 2004-10-20 2012-12-11 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US9925386B2 (en) 2004-10-20 2018-03-27 Cardiac Pacemakers, Inc. Leadless cardiac stimulation systems
US8340780B2 (en) * 2004-10-20 2012-12-25 Scimed Life Systems, Inc. Leadless cardiac stimulation systems
US9072911B2 (en) 2004-10-20 2015-07-07 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US9545513B2 (en) 2004-10-20 2017-01-17 Cardiac Pacemakers, Inc. Leadless cardiac stimulation systems
US10029092B2 (en) 2004-10-20 2018-07-24 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US10076658B2 (en) 2004-10-20 2018-09-18 Cardiac Pacemakers, Inc. Leadless cardiac stimulation systems
US10493288B2 (en) 2004-10-20 2019-12-03 Boston Scientific Scimed Inc. Leadless cardiac stimulation systems
US20060095077A1 (en) * 2004-10-29 2006-05-04 Tronnes Carole A Expandable fixation structures
US20060095078A1 (en) * 2004-10-29 2006-05-04 Tronnes Carole A Expandable fixation mechanism
US8489189B2 (en) * 2004-10-29 2013-07-16 Medtronic, Inc. Expandable fixation mechanism
US11207496B2 (en) 2005-08-24 2021-12-28 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US20070049846A1 (en) * 2005-08-24 2007-03-01 C.R.Bard, Inc. Stylet Apparatuses and Methods of Manufacture
US10004875B2 (en) 2005-08-24 2018-06-26 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
WO2007027506A3 (en) * 2005-08-30 2007-05-10 Medtronic Inc Trans-septal pressure sensor
US20070073370A1 (en) * 2005-09-27 2007-03-29 Zielinski Todd M Trans-septal anchoring system and method
WO2007038646A1 (en) * 2005-09-27 2007-04-05 Medtronic, Inc. Trans-septal anchoring system and method
US20070100411A1 (en) * 2005-10-27 2007-05-03 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
US10022538B2 (en) 2005-12-09 2018-07-17 Boston Scientific Scimed, Inc. Cardiac stimulation system
US11766219B2 (en) 2005-12-09 2023-09-26 Boston Scientific Scimed, Inc. Cardiac stimulation system
US7848823B2 (en) 2005-12-09 2010-12-07 Boston Scientific Scimed, Inc. Cardiac stimulation system
US20070135882A1 (en) * 2005-12-09 2007-06-14 Drasler William J Cardiac stimulation system
US11154247B2 (en) 2005-12-09 2021-10-26 Boston Scientific Scimed, Inc. Cardiac stimulation system
US8050774B2 (en) 2005-12-22 2011-11-01 Boston Scientific Scimed, Inc. Electrode apparatus, systems and methods
US20110301543A1 (en) * 2006-03-09 2011-12-08 Interrad Medical, Inc. Anchor Device and Method
US8771232B2 (en) * 2006-03-09 2014-07-08 Interrad Medical, Inc. Anchor device and method
US10293140B2 (en) 2006-03-09 2019-05-21 Interrad Medical, Inc. Anchor device and method
US11058853B2 (en) 2006-03-09 2021-07-13 Interrad Medical, Inc. Anchor device and method
US9381323B2 (en) 2006-03-09 2016-07-05 Interrad Medical, Inc. Anchor device and method
US11738177B2 (en) 2006-03-09 2023-08-29 Interrad Medical, Inc. Anchor device and method
US20100268310A1 (en) * 2006-04-28 2010-10-21 Medtronic, Inc. Implantable medical electrical stimulation lead, such as pne lead, and method of use
US7881783B2 (en) * 2006-04-28 2011-02-01 Medtronics, Inc. Implantable medical electrical stimulation lead, such as a PNE lead, and method of use
US20070255368A1 (en) * 2006-04-28 2007-11-01 Bonde Eric H Implantable medical electrical stimulation lead with distal fixation and method
US20070255333A1 (en) * 2006-04-28 2007-11-01 Medtronic, Inc. Neuromodulation therapy for perineal or dorsal branch of pudendal nerve
US20070255370A1 (en) * 2006-04-28 2007-11-01 Bonde Eric H Implantable medical electrical stimulation lead, such as a PNE lead, and method of use
US9480846B2 (en) 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
US10322287B2 (en) 2006-05-17 2019-06-18 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
US8897878B2 (en) * 2006-06-06 2014-11-25 Cardiac Pacemakers, Inc. Method and apparatus for gastrointestinal stimulation via the lymphatic system
US20100217346A1 (en) * 2006-06-06 2010-08-26 Shuros Allan C Method and apparatus for gastrointestinal stimulation via the lymphatic system
US7848821B1 (en) 2006-07-11 2010-12-07 Pacesetter, Inc. Apparatus and method for electrode insertion in heart tissue
US8290600B2 (en) 2006-07-21 2012-10-16 Boston Scientific Scimed, Inc. Electrical stimulation of body tissue using interconnected electrode assemblies
US7840281B2 (en) 2006-07-21 2010-11-23 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US10426952B2 (en) 2006-07-21 2019-10-01 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US8185213B2 (en) 2006-07-21 2012-05-22 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US9662487B2 (en) 2006-07-21 2017-05-30 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US11338130B2 (en) 2006-07-21 2022-05-24 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US9308374B2 (en) 2006-07-21 2016-04-12 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US20080046061A1 (en) * 2006-08-16 2008-02-21 Yacoubian Vahe S Heart wire
US8918193B2 (en) 2006-08-16 2014-12-23 Vahe S. Yacoubian Heart wire
US8644934B2 (en) 2006-09-13 2014-02-04 Boston Scientific Scimed Inc. Cardiac stimulation using leadless electrode assemblies
US9956401B2 (en) 2006-09-13 2018-05-01 Boston Scientific Scimed, Inc. Cardiac stimulation using intravascularly-deliverable electrode assemblies
US8774907B2 (en) 2006-10-23 2014-07-08 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8512256B2 (en) 2006-10-23 2013-08-20 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9345422B2 (en) 2006-10-23 2016-05-24 Bard Acess Systems, Inc. Method of locating the tip of a central venous catheter
US9833169B2 (en) 2006-10-23 2017-12-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8858455B2 (en) 2006-10-23 2014-10-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US20100331712A1 (en) * 2006-10-23 2010-12-30 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9265443B2 (en) 2006-10-23 2016-02-23 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US20080108972A1 (en) * 2006-11-08 2008-05-08 Cardiac Pacemakers, Inc. Universal cutter for guide catheters
US7801624B1 (en) * 2007-01-16 2010-09-21 Pacesetter, Inc. Reduced perforation distal tip for an implantable cardiac electrotherapy lead
US7904179B2 (en) 2007-02-28 2011-03-08 Medtronic, Inc. Implantable medical device system with fixation member
US20080208303A1 (en) * 2007-02-28 2008-08-28 Rutten Jean J G Implantable medical device system with fixation member
US20110125163A1 (en) * 2007-02-28 2011-05-26 Medtronic, Inc. Implantable medical device system with fixation member
US20080208247A1 (en) * 2007-02-28 2008-08-28 Rutten Jean J G Implantable medical device system with fixation member
US20080208339A1 (en) * 2007-02-28 2008-08-28 Rutten Jean J G Implantable medical device system with fixation member
US20080208248A1 (en) * 2007-02-28 2008-08-28 Rutten Jean J G Implantable medical device system with fixation member
US7890191B2 (en) 2007-02-28 2011-02-15 Medtronic, Inc. Implantable medical device system with fixation member
US11679261B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11679262B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US11103706B2 (en) 2007-03-09 2021-08-31 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11331488B2 (en) 2007-03-09 2022-05-17 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US10828490B2 (en) 2007-03-09 2020-11-10 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US20080228235A1 (en) * 2007-03-12 2008-09-18 Gil Vardi Device and method for fixing an electrical lead
US9999371B2 (en) 2007-11-26 2018-06-19 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US10966630B2 (en) 2007-11-26 2021-04-06 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10165962B2 (en) 2007-11-26 2019-01-01 C. R. Bard, Inc. Integrated systems for intravascular placement of a catheter
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US8388541B2 (en) 2007-11-26 2013-03-05 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US11529070B2 (en) 2007-11-26 2022-12-20 C. R. Bard, Inc. System and methods for guiding a medical instrument
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10849695B2 (en) 2007-11-26 2020-12-01 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US10602958B2 (en) 2007-11-26 2020-03-31 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US11779240B2 (en) 2007-11-26 2023-10-10 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9492097B2 (en) 2007-11-26 2016-11-15 C. R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US20100204569A1 (en) * 2007-11-26 2010-08-12 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9526440B2 (en) 2007-11-26 2016-12-27 C.R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US10105121B2 (en) 2007-11-26 2018-10-23 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9549685B2 (en) 2007-11-26 2017-01-24 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9554716B2 (en) 2007-11-26 2017-01-31 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US11134915B2 (en) 2007-11-26 2021-10-05 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US20100036227A1 (en) * 2007-11-26 2010-02-11 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US11707205B2 (en) 2007-11-26 2023-07-25 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US20110015533A1 (en) * 2007-11-26 2011-01-20 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US9681823B2 (en) 2007-11-26 2017-06-20 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US10231753B2 (en) 2007-11-26 2019-03-19 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US11123099B2 (en) 2007-11-26 2021-09-21 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10238418B2 (en) 2007-11-26 2019-03-26 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10342575B2 (en) 2007-11-26 2019-07-09 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US20090192576A1 (en) * 2008-01-25 2009-07-30 Seifert Kevin R Medical electrical lead
US8694128B2 (en) 2008-01-25 2014-04-08 Medtronic, Inc. Medical electrical lead
US8738147B2 (en) 2008-02-07 2014-05-27 Cardiac Pacemakers, Inc. Wireless tissue electrostimulation
US9795797B2 (en) 2008-02-07 2017-10-24 Cardiac Pacemakers, Inc. Wireless tissue electrostimulation
US10307604B2 (en) 2008-02-07 2019-06-04 Cardiac Pacemakers, Inc. Wireless tissue electrostimulation
US8204605B2 (en) 2008-02-07 2012-06-19 Cardiac Pacemakers, Inc. Multi-site atrial electrostimulation
US9393405B2 (en) 2008-02-07 2016-07-19 Cardiac Pacemakers, Inc. Wireless tissue electrostimulation
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8971994B2 (en) 2008-02-11 2015-03-03 C. R. Bard, Inc. Systems and methods for positioning a catheter
US11147951B2 (en) 2008-07-16 2021-10-19 Interrad Medical, Inc. Subcutaneous anchor device for securing a catheter
US9937327B2 (en) 2008-07-16 2018-04-10 Interrad Medical, Inc. Anchor systems and methods
US10335576B2 (en) 2008-07-16 2019-07-02 Interrad Medical, Inc. Anchor systems and methods
US9056187B2 (en) 2008-07-16 2015-06-16 Interrad Medical, Inc. Anchor systems and methods
US11839726B2 (en) 2008-07-16 2023-12-12 Interrad Medical, Inc. Subcutaneous anchor device for securing a catheter
US8721558B2 (en) * 2008-07-28 2014-05-13 Biotronik Crm Patent Ag Device for determining the flow rate of a blood flow, and cardiovascular assist device
US20100022899A1 (en) * 2008-07-28 2010-01-28 Gernot Kolberg Device for determining the flow rate of a blood flow, and cardiovascular assist device
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US11027101B2 (en) 2008-08-22 2021-06-08 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9907513B2 (en) 2008-10-07 2018-03-06 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US20100094116A1 (en) * 2008-10-07 2010-04-15 Lucent Medical Systems, Inc. Percutaneous magnetic gastrostomy
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US20100198327A1 (en) * 2009-02-04 2010-08-05 Pacesetter, Inc. Active Fixation Implantable Medical Lead Configured to Indicate via Fluoroscopy Embedment of Helical Anchor in Cardiac Tissue
US8108054B2 (en) * 2009-02-04 2012-01-31 Pacesetter, Inc. Active fixation implantable medical lead configured to indicate via fluoroscopy embedment of helical anchor in cardiac tissue
US9656045B2 (en) 2009-02-06 2017-05-23 Interrad Medical, Inc. System for anchoring medical devices
US10384037B2 (en) 2009-02-06 2019-08-20 Interrad Medical, Inc. System for anchoring medical devices
US11045629B2 (en) 2009-02-06 2021-06-29 Interrad Medical, Inc. System for anchoring medical devices
US8986257B2 (en) 2009-02-06 2015-03-24 Interrad Medical, Inc. System for anchoring medical devices
US11744996B2 (en) 2009-02-06 2023-09-05 Interrad Medical, Inc. System for anchoring medical devices
US8974434B2 (en) 2009-02-06 2015-03-10 Interrad Medical, Inc. System for anchoring medical devices
US10231643B2 (en) 2009-06-12 2019-03-19 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US20100318026A1 (en) * 2009-06-12 2010-12-16 Romedex International Srl Devices and Methods for Endovascular Electrography
US20110196248A1 (en) * 2009-06-12 2011-08-11 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US10271762B2 (en) 2009-06-12 2019-04-30 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US10912488B2 (en) 2009-06-12 2021-02-09 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US10349857B2 (en) 2009-06-12 2019-07-16 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US9339206B2 (en) 2009-06-12 2016-05-17 Bard Access Systems, Inc. Adaptor for endovascular electrocardiography
US9125578B2 (en) 2009-06-12 2015-09-08 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US20100317981A1 (en) * 2009-06-12 2010-12-16 Romedex International Srl Catheter Tip Positioning Method
US11419517B2 (en) 2009-06-12 2022-08-23 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US10639008B2 (en) 2009-10-08 2020-05-05 C. R. Bard, Inc. Support and cover structures for an ultrasound probe head
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US9724126B2 (en) * 2010-01-29 2017-08-08 Medtronic, Inc. Introduction of medical lead into patient
US20110190786A1 (en) * 2010-01-29 2011-08-04 Medtronic, Inc. Introduction of medical lead into patient
US11684774B2 (en) 2010-03-11 2023-06-27 Mainstay Medical Limited Electrical stimulator for treatment of back pain and methods of use
US10661078B2 (en) 2010-03-11 2020-05-26 Mainstay Medical Limited Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use
US11471670B2 (en) 2010-03-11 2022-10-18 Mainstay Medical Limited Electrical stimulator for treatment of back pain and methods of use
US10926083B2 (en) 2010-03-11 2021-02-23 Mainstay Medical Limited Stimulator for treatment of back pain utilizing feedback
US10925637B2 (en) 2010-03-11 2021-02-23 Mainstay Medical Limited Methods of implanting electrode leads for use with implantable neuromuscular electrical stimulator
US9974944B2 (en) * 2010-07-29 2018-05-22 Cameron Health, Inc. Subcutaneous leads and methods of implant and explant
US20120029335A1 (en) * 2010-07-29 2012-02-02 Cameron Health, Inc. Subcutaneous Leads and Methods of Implant and Explant
US10046139B2 (en) 2010-08-20 2018-08-14 C. R. Bard, Inc. Reconfirmation of ECG-assisted catheter tip placement
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US9415188B2 (en) 2010-10-29 2016-08-16 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US9730747B2 (en) * 2011-05-12 2017-08-15 Cvdevices, Llc Systems and methods for cryoablation of a tissue
US10543033B2 (en) 2011-05-12 2020-01-28 Cvdevices, Llc Systems and methods for cryoablation of a tissue
US20160081735A1 (en) * 2011-05-12 2016-03-24 Cvdevices, Llc Systems and methods for cryoablation of a tissue
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD754357S1 (en) 2011-08-09 2016-04-19 C. R. Bard, Inc. Ultrasound probe head
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
US11786725B2 (en) 2012-06-13 2023-10-17 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US11376427B2 (en) 2012-06-13 2022-07-05 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US10449355B2 (en) 2012-06-13 2019-10-22 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US10195419B2 (en) 2012-06-13 2019-02-05 Mainstay Medical Limited Electrode leads for use with implantable neuromuscular electrical stimulator
US10820885B2 (en) 2012-06-15 2020-11-03 C. R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
US10518083B2 (en) 2012-08-10 2019-12-31 Nuvectra Corporation Lead with braided reinforcement
US9597492B2 (en) 2012-08-10 2017-03-21 Nuvectra Corporation Lead with braided reinforcement
US8644953B1 (en) 2012-08-10 2014-02-04 Greatbatch Ltd. Lead with braided reinforcement
US10596358B2 (en) * 2013-01-15 2020-03-24 Palo Alto Research Center Incorporated Devices and methods for intraluminal retention and drug delivery
US11338144B2 (en) 2013-03-15 2022-05-24 Alfred E. Mann Foundation For Scientific Research Current sensing multiple output current stimulators
US11722007B2 (en) 2013-07-29 2023-08-08 The Alfred E. Mann Foundation For Scientific Rsrch Microprocessor controlled class E driver
US10971950B2 (en) 2013-07-29 2021-04-06 The Alfred E. Mann Foundation For Scientific Research Microprocessor controlled class E driver
US11400281B2 (en) 2013-07-31 2022-08-02 Medtronic, Inc. Fixation for implantable medical devices
US10518084B2 (en) 2013-07-31 2019-12-31 Medtronic, Inc. Fixation for implantable medical devices
US9700732B2 (en) 2013-08-16 2017-07-11 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US11666752B2 (en) 2013-08-16 2023-06-06 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US10265503B2 (en) 2013-08-16 2019-04-23 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US9492674B2 (en) 2013-08-16 2016-11-15 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US9480850B2 (en) 2013-08-16 2016-11-01 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US10286220B2 (en) 2013-08-16 2019-05-14 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US10722723B2 (en) 2013-08-16 2020-07-28 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US10857353B2 (en) 2013-08-16 2020-12-08 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US10625085B2 (en) 2013-08-16 2020-04-21 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US11446511B2 (en) 2013-08-16 2022-09-20 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US10981008B2 (en) 2013-08-16 2021-04-20 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US10842993B2 (en) 2013-08-16 2020-11-24 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US10179236B2 (en) 2013-08-16 2019-01-15 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US9393427B2 (en) 2013-08-16 2016-07-19 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US10188421B2 (en) 2013-09-17 2019-01-29 Custom Medical Applications, Inc. Methods for placing a sympathetic block, catheters, catheter assemblies and related methods
US9498595B2 (en) 2013-09-17 2016-11-22 Custom Medical Applications, Inc. Methods for placing a sympathetic block, catheters, catheter assemblies and related methods
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US10863920B2 (en) 2014-02-06 2020-12-15 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US10828502B2 (en) 2014-03-03 2020-11-10 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatus for power conversion and data transmission in implantable sensors, stimulators, and actuators
US10420932B2 (en) 2014-04-29 2019-09-24 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with retrieval features
US11717677B2 (en) 2014-04-29 2023-08-08 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with retrieval features
US9795781B2 (en) 2014-04-29 2017-10-24 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with retrieval features
US10080887B2 (en) 2014-04-29 2018-09-25 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices including tissue engagement verification
US10434329B2 (en) 2014-05-09 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Autofocus wireless power transfer to implantable devices in freely moving animals
US10226617B2 (en) 2014-08-01 2019-03-12 Nuvectra Corporation Apparatus with unencapsulated reinforcement
US11730411B2 (en) 2014-08-15 2023-08-22 Axonics, Inc. Methods for determining neurostimulation electrode configurations based on neural localization
US11213675B2 (en) 2014-08-15 2022-01-04 Axonics, Inc. Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication
US11116985B2 (en) 2014-08-15 2021-09-14 Axonics, Inc. Clinician programmer for use with an implantable neurostimulation lead
US11389659B2 (en) 2014-08-15 2022-07-19 Axonics, Inc. External pulse generator device and associated methods for trial nerve stimulation
US11497916B2 (en) 2014-08-15 2022-11-15 Axonics, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US11684775B2 (en) 2014-08-26 2023-06-27 Medtronic, Inc. Interventional medical device and method of use
US10478620B2 (en) * 2014-08-26 2019-11-19 Medtronic, Inc. Interventional medical systems, devices, and methods of use
US10376690B2 (en) 2014-08-26 2019-08-13 Medtronic, Inc. Interventional medical systems, devices, and components thereof
CN106659898A (en) * 2014-08-26 2017-05-10 美敦力公司 Interventional medical systems, devices, and methods of use
CN106659898B (en) * 2014-08-26 2019-03-12 美敦力公司 Insertion type medical system and implantable medical device
US20160059003A1 (en) * 2014-08-26 2016-03-03 Medtronic, Inc. Interventional medical systems, devices, and methods of use
US10471268B2 (en) 2014-10-16 2019-11-12 Mainstay Medical Limited Systems and methods for monitoring muscle rehabilitation
US11123569B2 (en) 2015-01-09 2021-09-21 Axonics, Inc. Patient remote and associated methods of use with a nerve stimulation system
US11484723B2 (en) 2015-01-09 2022-11-01 Axonics, Inc. Attachment devices and associated methods of use with a nerve stimulation charging device
US11478648B2 (en) 2015-01-09 2022-10-25 Axonics, Inc. Antenna and methods of use for an implantable nerve stimulator
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10369355B2 (en) 2015-02-24 2019-08-06 Med-El Elektromedizinische Geraete Gmbh Active fixation of neural tissue electrodes
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US11026630B2 (en) 2015-06-26 2021-06-08 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US11766568B2 (en) 2015-07-10 2023-09-26 Axonics, Inc. Implantable nerve stimulator having internal electronics without ASIC and methods of use
US10850104B2 (en) 2015-07-10 2020-12-01 Axonics Modulation Technologies, Inc. Implantable nerve stimulator having internal electronics without ASIC and methods of use
US10617402B2 (en) 2015-07-22 2020-04-14 Cameron Health, Inc. Minimally invasive method to implant a subcutaneous electrode
US10118034B2 (en) * 2015-08-18 2018-11-06 Boston Scientific Scimed, Inc. Methods for producing cardiomyocyte cells
US11116969B2 (en) 2015-08-18 2021-09-14 Boston Scientific Scimed Inc Methods for producing cardiomyocyte cells
US20180235656A1 (en) * 2015-10-08 2018-08-23 Karl Storz Se & Co. Kg Access System For Endoscopic Operations
US20170100160A1 (en) * 2015-10-08 2017-04-13 Karl Storz Gmbh & Co. Kg Access system for endoscopic operations
US10016214B2 (en) * 2015-10-08 2018-07-10 Karl Storz Se & Co. Kg Access system for endoscopic operations
US10959754B2 (en) * 2015-10-08 2021-03-30 Karl Storz Se & Co. Kg Access system for endoscopic operations
US10463853B2 (en) 2016-01-21 2019-11-05 Medtronic, Inc. Interventional medical systems
US11027125B2 (en) 2016-01-21 2021-06-08 Medtronic, Inc. Interventional medical devices, device systems, and fixation components thereof
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US11602638B2 (en) 2016-01-29 2023-03-14 Axonics, Inc. Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator
US11083903B2 (en) 2016-01-29 2021-08-10 Axonics, Inc. Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator
US11260236B2 (en) 2016-02-12 2022-03-01 Axonics, Inc. External pulse generator device and affixation device for trial nerve stimulation and methods of use
US11938327B2 (en) 2016-03-21 2024-03-26 Nalu Medical, Inc. Devices and methods for positioning external devices in relation to implanted devices
US11937847B2 (en) 2016-07-05 2024-03-26 Mainstay Medical Limited Systems and methods for enhanced implantation of electrode leads between tissue layers
US10327810B2 (en) 2016-07-05 2019-06-25 Mainstay Medical Limited Systems and methods for enhanced implantation of electrode leads between tissue layers
US11406421B2 (en) 2016-07-05 2022-08-09 Mainstay Medical Limited Systems and methods for enhanced implantation of electrode leads between tissue layers
US11766561B2 (en) 2016-07-18 2023-09-26 Nalu Medical, Inc. Methods and systems for treating pelvic disorders and pain conditions
US10583301B2 (en) 2016-11-08 2020-03-10 Cardiac Pacemakers, Inc. Implantable medical device for atrial deployment
US11826569B2 (en) 2017-02-24 2023-11-28 Nalu Medical, Inc. Apparatus with sequentially implanted stimulators
US11160980B2 (en) 2017-02-24 2021-11-02 Nalu Medical, Inc. Apparatus with sequentially implanted stimulators
US11097096B2 (en) 2017-05-09 2021-08-24 Nalu Medical, Inc. Stimulation apparatus
US11110283B2 (en) 2018-02-22 2021-09-07 Axonics, Inc. Neurostimulation leads for trial nerve stimulation and methods of use
US11511122B2 (en) 2018-02-22 2022-11-29 Axonics, Inc. Neurostimulation leads for trial nerve stimulation and methods of use
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11621518B2 (en) 2018-10-16 2023-04-04 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11642537B2 (en) 2019-03-11 2023-05-09 Axonics, Inc. Charging device with off-center coil
US11759632B2 (en) 2019-03-28 2023-09-19 Medtronic, Inc. Fixation components for implantable medical devices
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11951310B2 (en) 2020-11-06 2024-04-09 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine

Also Published As

Publication number Publication date
FR2302107B1 (en) 1979-04-27
GB1491942A (en) 1977-11-16
NL172617C (en) 1983-10-03
NL7501094A (en) 1976-08-03
FR2302107A1 (en) 1976-09-24

Similar Documents

Publication Publication Date Title
US3902501A (en) Endocardial electrode
US4998975A (en) Travenously placed defibrillation leads
US9039594B2 (en) Signal transmitting and lesion excluding heart implants for pacing, defibrillating, and/or sensing of heart beat
US6178356B1 (en) Coronary venous lead having fixation mechanism
US5653734A (en) Method of atrial defibrillation employing a temporary implanted catheter
US5476499A (en) Medical electrode lead with atrial electrode at the distal and ventricular electrode between the distal and proximal ends
JP3649733B2 (en) Medical temporary lead
US5693081A (en) Endocardial lead system with defibrillation electrode fixation
EP1056507B1 (en) Intravenous cardiac lead with positive fixation segment
US4030509A (en) Implantable electrodes for accomplishing ventricular defibrillation and pacing and method of electrode implantation and utilization
US5951597A (en) Coronary sinus lead having expandable matrix anchor
US5954761A (en) Implantable endocardial lead assembly having a stent
JPH0571269B2 (en)
US20060089694A1 (en) Delivery system and method for pulmonary artery leads
US5964793A (en) Lead introducer with defibrillation electrode and method of atrial defibrillation
US4972833A (en) Epicardiac pacing lead
US7308319B2 (en) Delivery system and method using pulmonary artery for placement of RV leads
JP7059463B2 (en) Sark Large Pacemaker Lead
WO2023173092A1 (en) Implantable medical lead with shield
Hepburn et al. Unusual fracture of cardiac pacing electrode.
Chiariello MODIFIED LEAD FOR PERMANENT TRANSVENOUS CARDIAC PACING
JPS63502324A (en) Epicardial pacing lead