US3882716A - Centrifugal apparatus and cell - Google Patents

Centrifugal apparatus and cell Download PDF

Info

Publication number
US3882716A
US3882716A US272563A US27256372A US3882716A US 3882716 A US3882716 A US 3882716A US 272563 A US272563 A US 272563A US 27256372 A US27256372 A US 27256372A US 3882716 A US3882716 A US 3882716A
Authority
US
United States
Prior art keywords
cell
cells
centrifuge
chambers
contents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US272563A
Inventor
Elliott Beiman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US272563A priority Critical patent/US3882716A/en
Application granted granted Critical
Publication of US3882716A publication Critical patent/US3882716A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/02Centrifuges consisting of a plurality of separate bowls rotating round an axis situated between the bowls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0407Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
    • B04B5/0414Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S366/00Agitating
    • Y10S366/601Motor control

Definitions

  • tests for content uniformity are made of samples (such as tablets or capsules) representative of a batch. If done individually such tests impose a heavy workload on the analytical laboratory. Likewise, where tests are made of a number of substances having similar chemistries or involving similar chemical procedures, as in conducting blood chemistries for medical diagnosis, doing such tests on an individual basis is highly inefficient.
  • a general object of the present invention is the provision of an improved centrifuge and an improved cell for use therewith.
  • a further object of the present invention is the provision of improved equipment which enables chemical testing of a number of samples in a single operation, particularly such equipment which lends itself to, and is adapted for, automated operation.
  • a feature of the present invention is the provision of a centrifuge which not only applies centrifugal force to one or more cells but in addition rotates the cell(s) around one of the cells axes for other purposes such as, for example, mixing of the contents of the cell and/or grinding solid samples.
  • a further feature of the present invention is the provision of cells which may have separable chambers and are prepared in advance for specific tests, as for example by having different reagents in different chambers, and which cells or chambers are intended to be discarded after a single use.
  • FIG. 1 is a schematic drawing of an automated centrifugal analytic apparatus and its cells
  • FIG. 2 is a detailed cross-sectional view of one of the cells.
  • FIG. 3 is a similar view of a modified form of said cells.
  • FIG. 1 there is provided within a cylindrical housing 1 a centrally mounted motor 2 having a drive shaft 3 on which is mounted for rotation with the shaft, a rotatable carrier 4.
  • the carrier 4 is roughly shaped like a thick bowl with a flat bottom 5 and a thick inturned rim 6.
  • At the center of the bottom 5 is an annular flange 7 which surrounds and is attached to the drive shaft 3.
  • the carrier 4 is preferably hollow and made of a light weight non-magnetic material such as aluminum or a strong molded plastic.
  • a plurality of spaced openings or collars 8 is provided in the rim within which collars the cells 9 are inserted, the cells 9 generally being tubular in form as shown in FIGS. 2 and 3. While only two collars 8 carrying cells 9 are illustrated in order to simplify the drawing, it is to be understood that the centrifuge may have many collars for carrying many cells and usually carries more than two, for example, a half dozen or a dozen collars and cells.
  • each cell or tube For supporting cells 9 within the collars 8 there is provided for each cell or tube a metal sleeve 10 into which the cell fits so that as the sleeve rotates the cell also rotates.
  • a metal sleeve 10 into which the cell fits so that as the sleeve rotates the cell also rotates.
  • One simple arrangement for accomplishing this consists of a pin or key 10a (FIG. 3) provided on opposite points of the cell slipping into a slot or keyway 10(b) provided in the sleeve.
  • a pinion gear 11 mounteded around each sleeve 10 and fastened thereto by any suitable means is a pinion gear 11 which is used in rotating each of the cells 9 about its own central longitudinal axis by the following mechanism which may be termed a planetary gear arrangement.
  • a large annular toothed gear 12 at the edge of annular flange 13 extending from nonrotatable member 14 is moved into engagement with the pinion gear 11 by spring means (not shown) or raised out of engagement by a solenoid 15 mounted on top of the cover 16 of the housing, the shaft 17 of the solenoid extending through the cover and being nonrotatable.
  • the teeth of the gears may be tapered towards the points at which they meet.
  • a planetary set of beveled gears may be used, tapered for easy engagement.
  • the shaft 17 may be square and pass through a closely-fitting square opening in the cover.
  • the cover 16 is pivoted at one point 18 on the casing l and locked at a diametrically opposite point by a spring release catch 19 so that the cover may be opened or locked in closed position.
  • Each of the cells 9 is provided at its lower end with a cuvette 20 through which radiation, such as light, is passed to a suitable read-out instrument for studying the contents thereof.
  • Instruments for this purpose may include a colorimeter, spectrophotometer, polarimeter, fluorometer and others well known in the art.
  • a spectrophotometer and a recorder 21 having a light source 22, whose light is passed through the cuvette 20 via an adjustable light slit 24 which controls the amount of light passing therethrough. The light then passes through opening 23 and falls on a photocell 25 whose output is then amplified and recorded on a suitable printout or recording device 26 forming part of the spectrophotometer 21.
  • a single read-out instrument is provided for all the cuvettes and each cuvette is brought sequentially into registry with the instrument.
  • the read-out instrument gives a continuous read-out and can provide an adequate reading as the cuvette passes slowly by, the motor 2 rotates the carrier 4 continuously at a very slow pace.
  • a blank cell or its equivalent providing a reading outside of the range of that provided by the other cells, can be used as a marker and the other cell's reading can be then identified by a simple count of the number of intervening cells readings.
  • a solenoid actuated quick. acting brake 27 is provided operating, for example, on the rim 6 of the carrier.
  • timing pins 28 may be provided spaced around the rim, each of which sequentially trips a microswitch 29 which is inserted, by a solenoid 30, into the path of the pins during the readout period.
  • the microswitch 29 upon being tripped, operates a timing circuit 31 (or relay or the like) to operate the brake solenoid 32 for the time necessary and the release. After release the carrier moves forward bringing the next cuvette into registry with the read-out instrument.
  • stops 33 may be provided around the rim of the carrier in the path of the brake so that the brake, adjusted for a slight slippage, strikes each stop 33 and halts the carrier at precise points.
  • the motor may either apply a slight torque or be shut off during the time a cuvette dwells at the read-out instrument.
  • the movement of the carrier to bring thecuvettes sequentially into read-out registry may, of course. be done manually or accomplished by other conventional means.
  • a spring-loaded roller may be inserted by a solenoid into a V-shaped indentation in the rim, a plurality of such indentations being spaced around the rim at suitable points. When the roller enters an indentation it forces the carrier to move slightly until the roller is centered in the bottom of the V. t
  • the operation of the equipment may be manually controlled by controlling the various motor switches or switches activating the solenoids, or any suitable programmer 34 may be employed. While this programmer could be a tape or punched card controlled computer,
  • FIG. 1 a single programmer is illustrated in FIG. 1 and uses a tape player 35 which preferably may employ cassettes,
  • tone signals of selected frequencies which actuate tone selectors 36 (tuned frequency circuits) and amplifiers 37 which in turn are used to control switches 38 which actuate and select the motor controls 38A.
  • the motor controls 38A start in either forward or reverse, stop the motor and control its speed.
  • the output of amplifiers 37 through switches 38 also controls the solenoid to determine when the stationary gear 12 engages the pinion gear wheels 11 and causes them to rotate the cells the drive shaft 3 rotates. It also controls the solenoids controlling the brake. the microswitch insertion, etc.
  • each of the cells 9 is divided into a plurality of chambers or compartments 39, 40 and 41 with adjacent chambers separated by filters 42 and 43.
  • the bottom of each cell comes together and is formed into a neck 44 to which the cuvette may be removably attached by a rubber ring 45 or the like.
  • the cuvette 20 be made of quartz or silica and since quartz and silica are relatively expensive while the rest of the cell is intended to be disposable, the quartz or silica cuvette is removed for subsequentreuse.
  • the three chambers 39, 40 and 41 are also separateunits held separably together by suitable means such as screw threads 46 or by any other suitable connection such as a bayonet and twistlock arrangement.
  • suitable means such as screw threads 46 or by any other suitable connection such as a bayonet and twistlock arrangement.
  • a window 47 (or windows) made of rubber or the like, that permits injecting a fluidinto a I selected chamber may be provided in the envelope of the cell leading into one or more chambers Thefluid' may be injected by syringe and the window should be;
  • the nut is attached to rotate with the shaft 3 so that as the shaft turns the whole assembly including the carrier 4 and the cells 9 mountedin its collars together .
  • balls 55 preferably having an outer layer of material which is inert to the substances in the chamber and may be for i i example made of teflon.
  • These balls 55 are held sta-: tionary under the influence of elongated straight magnets 56 (see FIG. 1) which extend from the carrier 4" adjacent each cell 9. When a cell rotates around its own axis, it moves with respect to the stationary balls and thus agitates and mixes the contents of the chamber *in which the balls are placed.
  • FIG. 3 which consists of a spiral 57 formed from and extending from the envelope of the cell so that when the cell rotates the spiral agitates the contents of the compartment and. mixes it. This is in ad-' dition to any turbulence due tothe normal orbiting of, I
  • suchcells may be prepared by the user or purchased in readyform I from a manufacturer.
  • differently prepared individual chambers may be I made by a manufacturer and selected and assembled into cells by the user or provide the characteristics required.
  • end caps at either end or a suitable cover.
  • the prepared cells are inserted into the centrifuge collars.
  • a tablet or oslid dosage form is placed between the two porous stainless steel disks of each cell.
  • the programmed sequence is started with the centrifuge running at slow speed and large gear 12 meshed with small gears 11.
  • Each cell together with its lower stainless steel disk 48 is rotated around its own axis while the upper disk 49 is held stationary.
  • the downward pressure of the upper disk 49 applies pressure to the tablet 50 and grinds the tablet into a powder.
  • Suitable solvents used in the first chamber include such reagents as chloroform water or alcohol and the selection of a particular solvent depends upon the sample to be analyzed.
  • the programmer continues with the rotation of the cell which may be simultaneous with the grinding action.
  • the rotation of the cell will cause a vortex in the upper solution aiding in solubility of the active ingredient.
  • the tablet or its active ingredient will be completely dissolved and the rotation of the cells is terminated by halting rotation of shaft 3 and then disengaging gear 12.
  • the composition of the membrane or filter in the top chamber is of such nature that none of the solution in the top chamber will pass through during the rotational movement.
  • the centrifuge is now started by the programmer causing shaft 3 to rotate and orbit the radially spaced cells and causing centrifugal force to be applied to the first solution in the top chamber 39.
  • the solution is forced through the first filter or membrane 42. Part of the solution that does not pass through the filter 42 is the insoluble residue of the tablet and this remains in the chamber 39 on the filter.
  • the solution which passes into the second chamber 40 is mixed with a second solution which may already be in the compartment, or it may be injected via window 47 just prior to the start of the test.
  • the first and second solutions are now together in chamber 40.
  • the purpose of the second solution is to add a reagent for separating or further purifying the active ingredients originally present in the tablet.
  • the nature of the second solution is determined by the sample being analyzed.
  • An example of the second solution is chloroform.
  • the addition by mixture of the solution increases purification and extraction of the ingredients to be assayed.
  • This treatment of silicone would allow the solvent to pass through the paper and the aqueous phase would remain on top. It is to be understood that extreme centrifugal forces would not be applied.
  • the analyzer would be traveling at a slow to moderate speed. An example of this might be 50 to I00 RPM. Speeds higher than that are not necessary to conduct most assays for which this apparatus is intended.
  • the solution which is driven by centrifugal force out of the second chamber 40 into the third chamber 41 is either processed further or goes directly into the cuvette 20. In the latter case, each cell is then sequentially brought into registry with the read-out instrument as heretofore described.
  • the read-out instrument records the results of each test and possibly provides a printout, depending on the particular instrument employed.
  • salicylates such as a methyl salicylate or Aspirin which is acetylsalicylic acid containing salicylic acid.
  • a colorimetric procedure is here employed.
  • the sample or the tablet is ground down as aforedescribed between the upper and lower stainless steel disks.
  • An example of the first solution which would be in the top chamber 39 would be 0.02 normal Nitric Acid in an equal volume of alcohol (SDA 3A).
  • SDA 3A normal Nitric Acid
  • the next chamber 40 prior to starting the test would be placed a predetermined amount of ferric nitrate crystals. These crystals could be added into the second chamber either during manufacture, or assembly of the cell. After the tablet is ground up.
  • centrifugal force (with gear 12 disengaged) is used to drive the solution of the salicylate through the filter membrane into the second chamber 40.
  • the filter membrane could be a tight porosity filter paper that would not allow the solution to go through without centrifugal forces that would develop at about roughly 50 or 60 RPM within the centrifuge.
  • the programmer next shifts the centrifuge into its mixing mode and a magnetic ball in the second chamber now creates a sufficient degree of turbulence so that the salicylate in 0.02 normal nitric acid and alcohol now reacts with ferric nitrate producing a stable blue colored complex.
  • the centrifuge is then momentarily stopped while it is changing over to go into its centrifugal mode.
  • the solution is driven by centrifugal force through the filter 43 on the bottom portion of the second chamber.
  • the colored blue solution now going into the cuvette.
  • the cuvette fills up with the solution and at this point the cell is ready for the actual read-out by the colorimeter and is brought into registry therewith.
  • the colorimeter is preset at the start of the assay at a wavelength which would be the peak absorption wavelength for this material. At this point, the programmer turns on the colorimeter and the signal is picked up by the photo cell, transferred either onto a recorder or a direct print-out type apparatus.
  • Another example of an analysis would be that using a spectrophotometer rather than a colorimeter readout as in the assay of chlorpheniramine maleate.
  • This test would be generally applicable to an organic nitrogenous base compounds of which chlorpheniramine maleate is one.
  • the tablet would be dissolved in the first chamber between the fixed and movable stainless steel disks as it was in the colorimetric assay.
  • An example of the solution in the first compartment would be diluted sulfuric acid.
  • the ground-up tablet is placed into solution in the top chamber 39 and the centrifuge then starts its centrifugal mode passing the dissolved amine salt into the second chamber 40. In chamber 40 there is chloroform.
  • Laying on top of the filter 4.3 in the second chamber is some sodium hydroxide pellets.
  • the quantity of the pellets should be enough so that they would not only neutralize the diluted sulfuric acid but would make the solution slightly alkaline. This is necessary for the organic nitrogenous base to be released from its salt.
  • the free base is now insoluble in the aqueous phase and soluble in the chloroform which was already in the second chamber.
  • the filter 43 may be silicone treated paper overlayed with a chloroforminsoluble but aqueous-soluble material. An example of this coating is gelatin. The reason for this is that with the chloroform in the second chamber 40 prior to the start of the test, there are centrifugal forces built up within the cell, and to maintain the chloroform in the second chamber the paper would have to be treated with a chloroform-insoluble material.
  • the aqueous portion When the aqueous portion is brought down in the second chamber and mixed with the chloroform the aqueous soluble coating that is on the filter paper is now dissolved and this leaves the filter paper in a condition such that under centrifugal force, the chloroform phase, containing the free base (chlorpheniramine), will be allowed to pass through into the third chamber and cuvette.
  • the cuvette in this case is not permanently fixed to the tube because the tube itself is disposable while the cuvette would be made of quartz glass or silica glass and have t a rubber or plastic ring collar to attach itself to the neck below the third compartment.
  • the cells are now brought sequentially into registry with the spectrophotometer.
  • the absorption readings are taken at a lower wavelength, as opposed to the visible region or the blue color development for the salicylates.
  • the method of print-out could vary from a meter reading, a print-out on a recorder or a direct print-out that would be part of the spectrophotometer.
  • a centrifuge comprising:
  • drive means mounted in said housing and including a rotatable longitudinal shaft having a central axis, a rotatablesupport member mounted on said shaft, a plurality of cells mounted on said support member at an acute angle to said shaft for centrifugal rotation with said support member about said central axis, peripheral means secured around each said cell for rotating each of said cells about its own respective axis on said support member, each said cell having a portion adapted for detecting the contents thereof,
  • annular axially movable non-rotatable member selectively engageable with said peripheral means around said cells to rotate said plurality of cells si- I multaneously about their respective axes
  • read out means disposed within said housing adjacent the path of said cells for detecting the contents of said cells, and v control means for sequentially positioning said cells adjacent said read out means.
  • control I means includes brake means for selectively stopping said cells.
  • control means includes means to selectively move said annular axially movable member into engagement with saidw.
  • peripheral means and said annular member are gears
  • said housing includes a pivotable cover plate, said annular gear member being mounted on the inside of said coverplate, and said control means includes a solenoid mounted on said coverplate to axially move said annu lar gear member.
  • said read out means includes a light source on one side of said cell I,
  • said mixing means includes a magnetic element in each said cell movable about the axis of said cell upon rotation of said cell about its own axis, and a magnetmounted adjacent each said cell.
  • one of said chambers includes a window for insertion of substances there through.

Abstract

Centrifuge cells, mounted at an acute angle to the drive shaft, orbit therearound, the resulting centrifugal force driving some of the contents of each cell through successive filters dividing the cell into separate chambers and into a cell cuvette. Each cell also rotates around its own axis when a gear arrangement is engaged, to grind tablets or mix the contents of the chambers. The cuvettes are sequentially examined by a read-out instrument such as a spectrophotometer, colorimeter, etc. A programmer controls successive operations. In one embodiment the chambers, which are separable, are selected for the test or other intended use according to their previously prepared contents, filter or other characteristic and then joined together to form the cell.

Description

United States Patent 1 Beiman l l CENTRIFUGAL APPARATUS AND CELL Elliott Beiman, 305-A White Ave., Northvale, NJ. 07647 [22] Filed: July 17, 1972 [21] Appl, No.: 272,563
[76] Inventor:
[52] US. Cl. 73/614; 23/259; 210/206;
210/325; 233/25; 241/D1G. 27; 259/D1G. 46 [51] Int. Cl. GOln 31/02 [58] Field of Search 233/2, 23 R, 12, 25, 26,
233/3; 210/206, 380, 325; 23/230 R, 253 R, 259, 230 B; 73/614; 259/DIG. 46, 72, 57, 58;241/D1G. 27, 199.7, 199.8
[56] References Cited UNITED STATES PATENTS 3,199,775 8/1965 Drucker 233/25 3,235,173 2/1966 Unger 233/26 X 3,439,871 4/1969 Unger 233/3 3,583,627 6/1971 Wilson 233/2 3,591,098 7/1971 McShirley.. 241/199.7 X
3,635,678 l/1972 Seitz 23/259 3,645,506 2/1972 Selesnick 259/58 BRAKE];
L PROGRAM/1 T0 SOLENOID I5 SOURCE 3,684,450 8/1972 Adler et al 233/26 X Primary ExuminerGe0rge H, Krizmanich Attorney, Agent, or FirmPhilip Bolton; Edward Goldberg [57] ABSTRACT Centrifuge cells, mounted at an acute angle to the drive shaft, orbit therearound, the resulting centrifugal force driving some of the contents of each cell through successive filters dividing the cell into separate chambers and into a cell cuvette. Each cell also rotates around its own axis when a gear arrangement is engaged, to grind tablets or mix the contents of the chambers. The cuvettes are sequentially examined by a read-out instrument such as a spectrophotometer, colorimeter, etc. A programmer controls successive operations. In one embodiment the chambers, which are separable, are selected for the test or other intended use according to their previously prepared contents, filter or other characteristic and then joined together to form the cell.
11 Claims, 3 Drawing Figures T0 PROGRAMMER 34 s ec molF/ER RECORDER OR FRI/V 7'- O0 7' CENTRIFUGAL APPARATUS AND CELL This invention relates generally to centrifugal apparatus and to cells adapted for use therewith and particularly relates to automated centrifugal analytic apparatus and to multi-chambered cells which are adapted to be associated therewith.
In making tests for content uniformity" as is required of the pharmaceutical industry, multiple assays are made of samples (such as tablets or capsules) representative of a batch. If done individually such tests impose a heavy workload on the analytical laboratory. Likewise, where tests are made of a number of substances having similar chemistries or involving similar chemical procedures, as in conducting blood chemistries for medical diagnosis, doing such tests on an individual basis is highly inefficient.
However, while it seems desirable to test a number of samples simultaneously and to automate these tests, suitable equipment for this purpose which is not too expensive, which is versatile and can be employed for different tests, which is adapted to utilize disposable cells, and which is convenient for use, is not readily available The use of a centrifuge in association with a number of cells each having a number of compartments or chambers has already been suggested for simplifying simultaneous analysis of a number of samples. as for example in separating particles as a step in blood chemistry. However, the range of uses of such centrifugal apparatus has been limited by the limitations of the equipment itself and the cells employed therewith and has not lent itself readily to simplified and automated procedures.
A general object of the present invention is the provision of an improved centrifuge and an improved cell for use therewith.
A further object of the present invention is the provision of improved equipment which enables chemical testing of a number of samples in a single operation, particularly such equipment which lends itself to, and is adapted for, automated operation.
A feature of the present invention is the provision of a centrifuge which not only applies centrifugal force to one or more cells but in addition rotates the cell(s) around one of the cells axes for other purposes such as, for example, mixing of the contents of the cell and/or grinding solid samples.
A further feature of the present invention is the provision of cells which may have separable chambers and are prepared in advance for specific tests, as for example by having different reagents in different chambers, and which cells or chambers are intended to be discarded after a single use.
Other and further objects of the present invention will become apparent and the foregoing will be better understood with reference to the following description of embodiments of the present invention taken in conjunction with the drawings in which:
FIG. 1 is a schematic drawing of an automated centrifugal analytic apparatus and its cells;
FIG. 2 is a detailed cross-sectional view of one of the cells; and
FIG. 3 is a similar view of a modified form of said cells.
Referring now to FIG. 1 there is provided within a cylindrical housing 1 a centrally mounted motor 2 having a drive shaft 3 on which is mounted for rotation with the shaft, a rotatable carrier 4. The carrier 4 is roughly shaped like a thick bowl with a flat bottom 5 and a thick inturned rim 6. At the center of the bottom 5 is an annular flange 7 which surrounds and is attached to the drive shaft 3. The carrier 4 is preferably hollow and made of a light weight non-magnetic material such as aluminum or a strong molded plastic. A plurality of spaced openings or collars 8 is provided in the rim within which collars the cells 9 are inserted, the cells 9 generally being tubular in form as shown in FIGS. 2 and 3. While only two collars 8 carrying cells 9 are illustrated in order to simplify the drawing, it is to be understood that the centrifuge may have many collars for carrying many cells and usually carries more than two, for example, a half dozen or a dozen collars and cells.
For supporting cells 9 within the collars 8 there is provided for each cell or tube a metal sleeve 10 into which the cell fits so that as the sleeve rotates the cell also rotates. One simple arrangement for accomplishing this consists of a pin or key 10a (FIG. 3) provided on opposite points of the cell slipping into a slot or keyway 10(b) provided in the sleeve. Mounted around each sleeve 10 and fastened thereto by any suitable means is a pinion gear 11 which is used in rotating each of the cells 9 about its own central longitudinal axis by the following mechanism which may be termed a planetary gear arrangement. A large annular toothed gear 12 at the edge of annular flange 13 extending from nonrotatable member 14 is moved into engagement with the pinion gear 11 by spring means (not shown) or raised out of engagement by a solenoid 15 mounted on top of the cover 16 of the housing, the shaft 17 of the solenoid extending through the cover and being nonrotatable. To facilitate the engagement of the gear 12 and the pinion gears 11, the teeth of the gears may be tapered towards the points at which they meet. Alternatively a planetary set of beveled gears may be used, tapered for easy engagement. The shaft 17 may be square and pass through a closely-fitting square opening in the cover. The cover 16 is pivoted at one point 18 on the casing l and locked at a diametrically opposite point by a spring release catch 19 so that the cover may be opened or locked in closed position.
Each of the cells 9 is provided at its lower end with a cuvette 20 through which radiation, such as light, is passed to a suitable read-out instrument for studying the contents thereof. Instruments for this purpose may include a colorimeter, spectrophotometer, polarimeter, fluorometer and others well known in the art. For this purpose there is shown in FIG. 1 a spectrophotometer and a recorder 21 having a light source 22, whose light is passed through the cuvette 20 via an adjustable light slit 24 which controls the amount of light passing therethrough. The light then passes through opening 23 and falls on a photocell 25 whose output is then amplified and recorded on a suitable printout or recording device 26 forming part of the spectrophotometer 21.
A single read-out instrument is provided for all the cuvettes and each cuvette is brought sequentially into registry with the instrument. Where the read-out instrument gives a continuous read-out and can provide an adequate reading as the cuvette passes slowly by, the motor 2 rotates the carrier 4 continuously at a very slow pace. To enable identification of each cells output reading, a blank cell or its equivalent, providing a reading outside of the range of that provided by the other cells, can be used as a marker and the other cell's reading can be then identified by a simple count of the number of intervening cells readings.
Where the read-out instrument requires that the euvette be stopped for a time in order to obtain a satisfactory read-out, a solenoid actuated quick. acting brake 27 is provided operating, for example, on the rim 6 of the carrier. To actuate the brake, timing pins 28 may be provided spaced around the rim, each of which sequentially trips a microswitch 29 which is inserted, by a solenoid 30, into the path of the pins during the readout period. The microswitch 29 upon being tripped, operates a timing circuit 31 (or relay or the like) to operate the brake solenoid 32 for the time necessary and the release. After release the carrier moves forward bringing the next cuvette into registry with the read-out instrument. The next actuating pin causes the brake to stop the carrier at this point. To provide for more precise registry, stops 33 may be provided around the rim of the carrier in the path of the brake so that the brake, adjusted for a slight slippage, strikes each stop 33 and halts the carrier at precise points. The motor may either apply a slight torque or be shut off during the time a cuvette dwells at the read-out instrument. The movement of the carrier to bring thecuvettes sequentially into read-out registry may, of course. be done manually or accomplished by other conventional means. For example, a spring-loaded roller may be inserted by a solenoid into a V-shaped indentation in the rim, a plurality of such indentations being spaced around the rim at suitable points. When the roller enters an indentation it forces the carrier to move slightly until the roller is centered in the bottom of the V. t
The operation of the equipment may be manually controlled by controlling the various motor switches or switches activating the solenoids, or any suitable programmer 34 may be employed. While this programmer could be a tape or punched card controlled computer,
a single programmer is illustrated in FIG. 1 and uses a tape player 35 which preferably may employ cassettes,
each having magnetically printed thereon at selected points, tone signals of selected frequencies which actuate tone selectors 36 (tuned frequency circuits) and amplifiers 37 which in turn are used to control switches 38 which actuate and select the motor controls 38A. The motor controls 38A start in either forward or reverse, stop the motor and control its speed. The output of amplifiers 37 through switches 38 also controls the solenoid to determine when the stationary gear 12 engages the pinion gear wheels 11 and causes them to rotate the cells the drive shaft 3 rotates. It also controls the solenoids controlling the brake. the microswitch insertion, etc.
Referring now to FIG. 2, each of the cells 9 is divided into a plurality of chambers or compartments 39, 40 and 41 with adjacent chambers separated by filters 42 and 43. The bottom of each cell comes together and is formed into a neck 44 to which the cuvette may be removably attached by a rubber ring 45 or the like. In certain types of chemical analysis it is desirable that the cuvette 20 be made of quartz or silica and since quartz and silica are relatively expensive while the rest of the cell is intended to be disposable, the quartz or silica cuvette is removed for subsequentreuse.
In the FIG. 2 embodiment, the three chambers 39, 40 and 41 are also separateunits held separably together by suitable means such as screw threads 46 or by any other suitable connection such as a bayonet and twistlock arrangement. A window 47 (or windows) made of rubber or the like, that permits injecting a fluidinto a I selected chamber may be provided in the envelope of the cell leading into one or more chambers Thefluid' may be injected by syringe and the window should be;
the wall of the cell envelope and a second coarse mesh stainless steel screen or porous stainless steel disk49 attached to bear down upon a tablet 50. The. upper: A
screen 49 is forced down against the tablet or'capsule by stiff spring arms 51 which in turn are held together i i by a ring 52, the ring 52 in turn ,being pushed down shown in FIG. 2 by a spring arm 53' held and supported in a nut 54 removably mounted on shaft 3 (see FIG. 11).
The nut is attached to rotate with the shaft 3 so that as the shaft turns the whole assembly including the carrier 4 and the cells 9 mountedin its collars together .with
the nut 54 and spring armsSl and 53, all rotateyaroundf I the central shaft 3 simultaneously. However, when large gear wheel 12 engages the small gear wheels. 11,
ball preferably having an outer layer of material which is inert to the substances in the chamber and may be for i i example made of teflon. These balls 55 are held sta-: tionary under the influence of elongated straight magnets 56 (see FIG. 1) which extend from the carrier 4" adjacent each cell 9. When a cell rotates around its own axis, it moves with respect to the stationary balls and thus agitates and mixes the contents of the chamber *in which the balls are placed.
Another way of mixing the contents of each-compart-,
ment is shown in FIG. 3 which consists of a spiral 57 formed from and extending from the envelope of the cell so that when the cell rotates the spiral agitates the contents of the compartment and. mixes it. This is in ad-' dition to any turbulence due tothe normal orbiting of, I
the centrifuge cells around shaft 3.
The following is a general description of .how the aforedescribed apparatus may be used. To perform any tests, suitably prepared cells'musltbe obtained having the proper reagents, filters, etc. As.
contemplated by the present invention suchcells may be prepared by the user or purchased in readyform I from a manufacturer. To increase the versatilityof the cells, differently prepared individual chambers may be I made by a manufacturer and selected and assembled into cells by the user or provide the characteristics required. Of course, such previously prepared chambers should be protected during transport from loss of mate-' rial or from contamination, forexample, by end caps at either end or a suitable cover. t
The prepared cells are inserted into the centrifuge collars. A tablet or oslid dosage form is placed between the two porous stainless steel disks of each cell. The programmed sequence is started with the centrifuge running at slow speed and large gear 12 meshed with small gears 11. Each cell together with its lower stainless steel disk 48 is rotated around its own axis while the upper disk 49 is held stationary. The downward pressure of the upper disk 49 applies pressure to the tablet 50 and grinds the tablet into a powder. placing the active ingredients into solution in the first or upper chamber 39. Suitable solvents used in the first chamber include such reagents as chloroform water or alcohol and the selection of a particular solvent depends upon the sample to be analyzed.
In order to aid the dissolution of the active ingredient into the first solution, the programmer continues with the rotation of the cell which may be simultaneous with the grinding action. The rotation of the cell will cause a vortex in the upper solution aiding in solubility of the active ingredient. At a predetermined time the tablet or its active ingredient will be completely dissolved and the rotation of the cells is terminated by halting rotation of shaft 3 and then disengaging gear 12. The composition of the membrane or filter in the top chamber is of such nature that none of the solution in the top chamber will pass through during the rotational movement. Following termination of the cell rotation the centrifuge is now started by the programmer causing shaft 3 to rotate and orbit the radially spaced cells and causing centrifugal force to be applied to the first solution in the top chamber 39. The solution is forced through the first filter or membrane 42. Part of the solution that does not pass through the filter 42 is the insoluble residue of the tablet and this remains in the chamber 39 on the filter. The solution which passes into the second chamber 40 is mixed with a second solution which may already be in the compartment, or it may be injected via window 47 just prior to the start of the test. The first and second solutions are now together in chamber 40. The purpose of the second solution is to add a reagent for separating or further purifying the active ingredients originally present in the tablet. The nature of the second solution is determined by the sample being analyzed. An example of the second solution is chloroform. The addition by mixture of the solution increases purification and extraction of the ingredients to be assayed. Once the two solutions are together in the second chamber 40, rotation of the cell is then begun causing the blending or mixing of the first and second solutions in chamber 40. The rotation of the cell is terminated after a predetermined time sufficient to ensure that there is proper mixing, for example, of aqueous and non-aqueous solutions. The sample has now been blended or dissolved in the reagent in the second chamber, with the rotating motion of the cell terminated. The centrifuge unit is again started up by the programmer so that the combined solutions in the second compartment are subject to centrifugal force. Filter 43 is of a nature that it would allow only a desired phase, such as the chloroform phase to go through the filter. An example of such a filter would be one that is treated with silicone. This treatment of silicone would allow the solvent to pass through the paper and the aqueous phase would remain on top. It is to be understood that extreme centrifugal forces would not be applied. The analyzer would be traveling at a slow to moderate speed. An example of this might be 50 to I00 RPM. Speeds higher than that are not necessary to conduct most assays for which this apparatus is intended. The solution which is driven by centrifugal force out of the second chamber 40 into the third chamber 41 is either processed further or goes directly into the cuvette 20. In the latter case, each cell is then sequentially brought into registry with the read-out instrument as heretofore described. The read-out instrument records the results of each test and possibly provides a printout, depending on the particular instrument employed.
Having described hereinabove a general procedure for using the analytic centrifuge apparatus, a more specific one is next described for salicylates. such a methyl salicylate or Aspirin which is acetylsalicylic acid containing salicylic acid. A colorimetric procedure is here employed. The sample or the tablet is ground down as aforedescribed between the upper and lower stainless steel disks. An example of the first solution which would be in the top chamber 39 would be 0.02 normal Nitric Acid in an equal volume of alcohol (SDA 3A). In the next chamber 40, prior to starting the test would be placed a predetermined amount of ferric nitrate crystals. These crystals could be added into the second chamber either during manufacture, or assembly of the cell. After the tablet is ground up. it is dissolved in the 0.02 normal nitric acid and alcohol. Next centrifugal force (with gear 12 disengaged) is used to drive the solution of the salicylate through the filter membrane into the second chamber 40. The filter membrane could be a tight porosity filter paper that would not allow the solution to go through without centrifugal forces that would develop at about roughly 50 or 60 RPM within the centrifuge. After the solution is transferredinto the second chamber, the programmer next shifts the centrifuge into its mixing mode and a magnetic ball in the second chamber now creates a sufficient degree of turbulence so that the salicylate in 0.02 normal nitric acid and alcohol now reacts with ferric nitrate producing a stable blue colored complex. the color development that is generated in this test for salicylates. The centrifuge is then momentarily stopped while it is changing over to go into its centrifugal mode. The solution is driven by centrifugal force through the filter 43 on the bottom portion of the second chamber. the colored blue solution now going into the cuvette. The cuvette fills up with the solution and at this point the cell is ready for the actual read-out by the colorimeter and is brought into registry therewith. The colorimeter is preset at the start of the assay at a wavelength which would be the peak absorption wavelength for this material. At this point, the programmer turns on the colorimeter and the signal is picked up by the photo cell, transferred either onto a recorder or a direct print-out type apparatus.
Another example of an analysis would be that using a spectrophotometer rather than a colorimeter readout as in the assay of chlorpheniramine maleate. This test would be generally applicable to an organic nitrogenous base compounds of which chlorpheniramine maleate is one. The tablet would be dissolved in the first chamber between the fixed and movable stainless steel disks as it was in the colorimetric assay. An example of the solution in the first compartment would be diluted sulfuric acid. The ground-up tablet is placed into solution in the top chamber 39 and the centrifuge then starts its centrifugal mode passing the dissolved amine salt into the second chamber 40. In chamber 40 there is chloroform. Laying on top of the filter 4.3 in the second chamber is some sodium hydroxide pellets. The quantity of the pellets should be enough so that they would not only neutralize the diluted sulfuric acid but would make the solution slightly alkaline. This is necessary for the organic nitrogenous base to be released from its salt. The free base is now insoluble in the aqueous phase and soluble in the chloroform which was already in the second chamber. The filter 43 may be silicone treated paper overlayed with a chloroforminsoluble but aqueous-soluble material. An example of this coating is gelatin. The reason for this is that with the chloroform in the second chamber 40 prior to the start of the test, there are centrifugal forces built up within the cell, and to maintain the chloroform in the second chamber the paper would have to be treated with a chloroform-insoluble material. When the aqueous portion is brought down in the second chamber and mixed with the chloroform the aqueous soluble coating that is on the filter paper is now dissolved and this leaves the filter paper in a condition such that under centrifugal force, the chloroform phase, containing the free base (chlorpheniramine), will be allowed to pass through into the third chamber and cuvette. The cuvette in this case is not permanently fixed to the tube because the tube itself is disposable while the cuvette would be made of quartz glass or silica glass and have t a rubber or plastic ring collar to attach itself to the neck below the third compartment.
The cells are now brought sequentially into registry with the spectrophotometer. The absorption readings are taken at a lower wavelength, as opposed to the visible region or the blue color development for the salicylates. The method of print-out could vary from a meter reading, a print-out on a recorder or a direct print-out that would be part of the spectrophotometer.
It is to be understood that the foregoing description of specific examples of this invention is made by way of example only and is not to be considered as a limitation on its scope.
Whatis claimed is:
l. A centrifuge comprising:
a housing,
drive means mounted in said housing and including a rotatable longitudinal shaft having a central axis, a rotatablesupport member mounted on said shaft, a plurality of cells mounted on said support member at an acute angle to said shaft for centrifugal rotation with said support member about said central axis, peripheral means secured around each said cell for rotating each of said cells about its own respective axis on said support member, each said cell having a portion adapted for detecting the contents thereof,
an annular axially movable non-rotatable member selectively engageable with said peripheral means around said cells to rotate said plurality of cells si- I multaneously about their respective axes,
read out means disposed within said housing adjacent the path of said cells for detecting the contents of said cells, and v control means for sequentially positioning said cells adjacent said read out means.
2. The centrifuge ofclaim 1 wherein said control I means includes brake means for selectively stopping said cells.
3. The centrifuge of claim 2 wherein said control means includes means to selectively move said annular axially movable member into engagement with saidw.
cells.
4. The centrifuge of claim 3 wherein said peripheral means and said annular member are gears, and said housing includes a pivotable cover plate, said annular gear member being mounted on the inside of said coverplate, and said control means includes a solenoid mounted on said coverplate to axially move said annu lar gear member. I i I 5. The centrifuge of claim 3 wherein said read out means includes a light source on one side of said cell I,
and a photocell on the other side within said housing to detect light passing through said cell. 6. Thecentrifuge ofclaim 3 whereinsaid cell portio adapted for detecting said contents is removable. i
7. The centrifuge according to claim 3 wherein said cell includes I an envelope;
a filter in said envelope barring the passage of given 9. The centrifuge according to claim 8'in which said mixing means includes a magnetic element in each said cell movable about the axis of said cell upon rotation of said cell about its own axis, and a magnetmounted adjacent each said cell.
10. The centrifuge according to claim 8 further including spring biased grinding means responsive to @rotation of the cell about its own axis for grindingsolid substances. v I
11. The centrifuge of claim 8 wherein one of said chambers includes a window for insertion of substances there through.
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION May 13, 1975 Elliott Beiman It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
PATENT NO.
DATED 9 INVENTOR(S) 0n the cover sheet, Item L77,"305-A White Ave. Northvale, NJ. 07646" should read l2 Dorotockeys Lane, 01d Tappan, New Jersey 07675 Signed and Scaled this Twenty-fifth Day Of September I 979 [SEAL] A nest:
% LUTRELLE F. PARKER Arresting Officer Acting Commissioner of Patents and Trademarks

Claims (11)

1. A centrifuge comprising: a housing, drive means mounted in said housing and including a rotatable longitudinal shaft having a central axis, a rotatable support member mounted on said shaft, a plurality of cells mounted on said support member at an acute angle to said shaft for centrifugal rotation with said support member about said central axis, peripheral means secured around each said cell for rotating each of said cells about its own respective axis on said support member, each said cell having a portion adapted for detecting the contents thereof, an annular axially movable non-rotatable member selectively engageable with said peripheral means around said cells to rotate said plurality of cells simultaneously about their respective axes, read out means disposed within said housing adjacent the path of said cells for detecting the contents of said cells, and control means for sequentially positioning said cells adjacent said read out means.
2. The centrifuge of claim 1 wherein said control means includes brake means for selectively stopping said cells.
3. The centrifuge of claim 2 wherein said control means includes means to selectively move said annular axially movable member into engagement with said cells.
4. The centrifuge of claim 3 wherein said peripheral means and said annular member are gears, and said housing includes a pivotable cover plate, said annular gear member being mounted on the inside of said coverplate, and said control means includes a solenoid mounted on said coverplate to axially move said annular gear member.
5. The centrifuge of claim 3 wherein said read out means includes a light source on one side of said cell and a photocell on the other side within said housing to detect light passing through said cell.
6. The centrifuge of claim 3 wherein said cell portion adapted for detecting said contents is removable.
7. The centrifuge according to claim 3 wherein said cell includes an envelope; a filter in said envelope barring the passage of given substances therethrough except under centrifugal force; and means in said cell for mixing substances therein independently of centrifugal force.
8. The centrifuge according to claim 7 wherein said cell comprises a plurality of aligned separable connected chambers with a filter in at least one of said chambers.
9. The centrifuge according to claim 8 in which said mixing means includes a magnetic element in each said cell movable about the axis of said cell upon rotation of said cell about its own axis, and a magnet mounted adjacent each said cell.
10. The centrifuge according to claim 8 further including spring biased grinding means responsive to rotation of the cell about its own axis for grinding solid substances.
11. The centrifuge of claim 8 wherein one of said chambers includes a window for insertion of substances there through.
US272563A 1972-07-17 1972-07-17 Centrifugal apparatus and cell Expired - Lifetime US3882716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US272563A US3882716A (en) 1972-07-17 1972-07-17 Centrifugal apparatus and cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US272563A US3882716A (en) 1972-07-17 1972-07-17 Centrifugal apparatus and cell

Publications (1)

Publication Number Publication Date
US3882716A true US3882716A (en) 1975-05-13

Family

ID=23040337

Family Applications (1)

Application Number Title Priority Date Filing Date
US272563A Expired - Lifetime US3882716A (en) 1972-07-17 1972-07-17 Centrifugal apparatus and cell

Country Status (1)

Country Link
US (1) US3882716A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2292972A1 (en) * 1974-11-29 1976-06-25 Hoffmann La Roche LOADING AND OPTICAL ANALYSIS UNIT OF A SOLUTION
US3966333A (en) * 1975-02-03 1976-06-29 Baxter Laboratories, Inc. Magnetic stirrer noise cancellation system
DE2734488A1 (en) * 1976-08-06 1978-02-09 Manfred Gordon CENTRIFUGAL HOMOGENIZING DEVICE
US4162761A (en) * 1977-11-30 1979-07-31 The United States Of America As Represented By The Department Of Health, Education And Welfare Flow-through coil planet centrifuges with adjustable rotation/revolution of column
US4234317A (en) * 1979-05-24 1980-11-18 Analytical Products, Inc. Apparatus and method for fractionation of lipoproteins
US4244916A (en) * 1977-08-18 1981-01-13 Jean Guigan Device for conditioning a sample of liquid for analyzing with internal filter
EP0106398A2 (en) * 1982-10-20 1984-04-25 Shell Internationale Researchmaatschappij B.V. Centrifugal analyzer
US4479720A (en) * 1981-10-08 1984-10-30 Mochida Pharmaceutical Co., Ltd. Apparatus for rotating reaction vessels in inclined posture
US4547340A (en) * 1982-07-26 1985-10-15 Kabushiki Kaisha Daini Seikosha Automatic extractor
FR2589085A1 (en) * 1985-10-29 1987-04-30 Kis Photo Ind CENTRIFUGATION DEVICE FOR ANALYTICAL CASES
US4812294A (en) * 1986-02-28 1989-03-14 Automated Diagnostic Systems, Inc. Specimen processing system
US4865810A (en) * 1986-09-25 1989-09-12 Kis Photo Industrie Centrifuge for performing medical analyses
US4883644A (en) * 1987-12-09 1989-11-28 Brandeis University Microtube vortexer adapter and method of its use
US4894345A (en) * 1986-12-16 1990-01-16 Ciba-Geigy Corporation Process for preparation of samples for analysis
WO1990003834A1 (en) * 1988-10-06 1990-04-19 Medical Automation Specialties, Inc. Method and apparatus for automatic processing and analyzing of blood serum
US4933291A (en) * 1986-12-22 1990-06-12 Eastman Kodak Company Centrifugable pipette tip and pipette therefor
DE8907335U1 (en) * 1989-06-15 1990-10-18 Espe Stiftung & Co Produktions- Und Vertriebs Kg, 8031 Seefeld, De
US5104807A (en) * 1988-02-19 1992-04-14 Hitachi, Ltd. Analyzing apparatus in which liquid can be stirred and analyzing method thereof
US5133208A (en) * 1989-04-05 1992-07-28 Diesse Diagnostica Senese S.R.L. Apparatus for the preparation and execution of tests on the sedimentation rate of organic liquids and other
US5154896A (en) * 1989-09-05 1992-10-13 Mochida Pharmaceutical Co., Ltd. Apparatus for promoting reaction between solid and liquid phases
US5171539A (en) * 1986-06-26 1992-12-15 Coombs David H Apparatus for forming a continuous solution gradient
US5266273A (en) * 1986-06-26 1993-11-30 Coombs David H Process and apparatus for forming a solution gradient and for conducting a blotting process
DE4230861A1 (en) * 1992-09-15 1994-03-17 Desaga Gmbh C Process for mixing media with different specific weights
US5578201A (en) * 1993-07-30 1996-11-26 E. I. Du Pont De Nemours And Company Apparatus for mixing liquids used in countercurrent multiphase liquid separation
EP0940186A2 (en) * 1998-03-02 1999-09-08 Becton, Dickinson and Company Inertial tube indexer
EP0940188A2 (en) * 1998-03-02 1999-09-08 Becton, Dickinson and Company Method of using inertial tube indexer
EP0940187A1 (en) * 1998-03-02 1999-09-08 Becton, Dickinson and Company Method for using disposable blood tube holder
EP0940182A1 (en) * 1998-03-02 1999-09-08 Becton, Dickinson and Company Disposable blood tube holder
US6135940A (en) * 1996-09-25 2000-10-24 Becton, Dickinson And Company Centrifugally activated tube rotator mechanism and method for using the same
US6302836B1 (en) * 1998-10-01 2001-10-16 Howard L. North, Jr. Method for partitioning blood and delivering clean serum
US6391264B2 (en) * 1999-02-11 2002-05-21 Careside, Inc. Cartridge-based analytical instrument with rotor balance and cartridge lock/eject system
US20020085959A1 (en) * 1991-03-04 2002-07-04 Glen Carey Cuvette for an automated analyzer
US6436349B1 (en) 1991-03-04 2002-08-20 Bayer Corporation Fluid handling apparatus for an automated analyzer
US6531095B2 (en) * 1999-02-11 2003-03-11 Careside, Inc. Cartridge-based analytical instrument with optical detector
US20040000514A1 (en) * 2002-06-19 2004-01-01 Helmuth Gabl Filter/screening disc and process for manufacturing this kind of disc
EP1480751A2 (en) * 2002-03-01 2004-12-01 Cognis Corporation Method and sampling device for detection of low levels of a property/quality trait present in an inhomogeneously distributed sample substrate
US6854348B2 (en) * 2001-08-30 2005-02-15 Shin-Etsu Chemical Co., Ltd. Method for counting foreign matter particles in vinyl chloride-based resin powder and apparatus system therefor
US20060013729A1 (en) * 1991-02-14 2006-01-19 Glen Carey Fluid handling apparatus for an automated analyzer
US20060013733A1 (en) * 2004-07-13 2006-01-19 Meeks James E Apparatus and method for obtaining rapid creamatocrit and caloric content values of milk
US20060093519A1 (en) * 2004-10-29 2006-05-04 East Richard C Apparatus for providing homogeneous dispersions
US20100062922A1 (en) * 2008-09-09 2010-03-11 Hoffmann Jeffrey R Centrifuge comprising magnetically coupled rotating basket
US20100317099A1 (en) * 2009-06-16 2010-12-16 Biomet Biologics, Llc Liquid Separation from Adipose Tissue
US20100314334A1 (en) * 2009-06-16 2010-12-16 Blomet Biologics, LLC Liquid Separation From Adipose Tissue
US20130042704A1 (en) * 2011-08-17 2013-02-21 Donald Van Duyne Sample Processing Apparatus
CN113337381A (en) * 2021-06-30 2021-09-03 成都导胜生物技术有限公司 Automatic grinding device and application thereof in obtaining single cells

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3199775A (en) * 1963-11-26 1965-08-10 Kenneth G Drucker Sedimentation rate centrifuge and method determining sedimentation rate
US3235173A (en) * 1960-07-28 1966-02-15 Unger Hans Peter Olof Agitating and/or fractioning centrifuge
US3439871A (en) * 1966-08-22 1969-04-22 Hans Peter Olof Unger Centrifuge for treating liquid and/or solid materials
US3583627A (en) * 1969-09-04 1971-06-08 Onslow H Wilson Apparatus for the concentration of macromolecules and subcellular particles from dilute solutions
US3591098A (en) * 1969-02-11 1971-07-06 Robert C Mcshirley Dental amalgam preparing apparatus
US3635678A (en) * 1969-06-13 1972-01-18 Baxter Laboratories Inc Clot-timing system and method
US3645506A (en) * 1969-07-30 1972-02-29 Micro Metric Instr Co Sampling supply device having magnetic mixing
US3684450A (en) * 1970-09-14 1972-08-15 Stanford L Adler Automatic apparatus and method for determining the packed cell volume of whole blood

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235173A (en) * 1960-07-28 1966-02-15 Unger Hans Peter Olof Agitating and/or fractioning centrifuge
US3199775A (en) * 1963-11-26 1965-08-10 Kenneth G Drucker Sedimentation rate centrifuge and method determining sedimentation rate
US3439871A (en) * 1966-08-22 1969-04-22 Hans Peter Olof Unger Centrifuge for treating liquid and/or solid materials
US3591098A (en) * 1969-02-11 1971-07-06 Robert C Mcshirley Dental amalgam preparing apparatus
US3635678A (en) * 1969-06-13 1972-01-18 Baxter Laboratories Inc Clot-timing system and method
US3645506A (en) * 1969-07-30 1972-02-29 Micro Metric Instr Co Sampling supply device having magnetic mixing
US3583627A (en) * 1969-09-04 1971-06-08 Onslow H Wilson Apparatus for the concentration of macromolecules and subcellular particles from dilute solutions
US3684450A (en) * 1970-09-14 1972-08-15 Stanford L Adler Automatic apparatus and method for determining the packed cell volume of whole blood

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2292972A1 (en) * 1974-11-29 1976-06-25 Hoffmann La Roche LOADING AND OPTICAL ANALYSIS UNIT OF A SOLUTION
US3966333A (en) * 1975-02-03 1976-06-29 Baxter Laboratories, Inc. Magnetic stirrer noise cancellation system
DE2734488A1 (en) * 1976-08-06 1978-02-09 Manfred Gordon CENTRIFUGAL HOMOGENIZING DEVICE
US4131369A (en) * 1976-08-06 1978-12-26 Manfred Gordon Centrifugal homogenizer
US4244916A (en) * 1977-08-18 1981-01-13 Jean Guigan Device for conditioning a sample of liquid for analyzing with internal filter
US4162761A (en) * 1977-11-30 1979-07-31 The United States Of America As Represented By The Department Of Health, Education And Welfare Flow-through coil planet centrifuges with adjustable rotation/revolution of column
US4234317A (en) * 1979-05-24 1980-11-18 Analytical Products, Inc. Apparatus and method for fractionation of lipoproteins
US4479720A (en) * 1981-10-08 1984-10-30 Mochida Pharmaceutical Co., Ltd. Apparatus for rotating reaction vessels in inclined posture
US4547340A (en) * 1982-07-26 1985-10-15 Kabushiki Kaisha Daini Seikosha Automatic extractor
JPS5992330A (en) * 1982-10-20 1984-05-28 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− Centrifugal analyzer
EP0106398A3 (en) * 1982-10-20 1984-11-28 Shell Internationale Research Maatschappij B.V. Centrifugal analyzer
EP0106398A2 (en) * 1982-10-20 1984-04-25 Shell Internationale Researchmaatschappij B.V. Centrifugal analyzer
FR2589085A1 (en) * 1985-10-29 1987-04-30 Kis Photo Ind CENTRIFUGATION DEVICE FOR ANALYTICAL CASES
EP0226518A2 (en) * 1985-10-29 1987-06-24 KIS PHOTO INDUSTRIE (société anonyme) Centrifugal device for analysing boxes
EP0226518A3 (en) * 1985-10-29 1988-10-05 KIS PHOTO INDUSTRIE (société anonyme) Centrifugal device for analysing boxes
US4812294A (en) * 1986-02-28 1989-03-14 Automated Diagnostic Systems, Inc. Specimen processing system
US5171539A (en) * 1986-06-26 1992-12-15 Coombs David H Apparatus for forming a continuous solution gradient
US5266273A (en) * 1986-06-26 1993-11-30 Coombs David H Process and apparatus for forming a solution gradient and for conducting a blotting process
US4865810A (en) * 1986-09-25 1989-09-12 Kis Photo Industrie Centrifuge for performing medical analyses
US4894345A (en) * 1986-12-16 1990-01-16 Ciba-Geigy Corporation Process for preparation of samples for analysis
US4933291A (en) * 1986-12-22 1990-06-12 Eastman Kodak Company Centrifugable pipette tip and pipette therefor
US4883644A (en) * 1987-12-09 1989-11-28 Brandeis University Microtube vortexer adapter and method of its use
US5104807A (en) * 1988-02-19 1992-04-14 Hitachi, Ltd. Analyzing apparatus in which liquid can be stirred and analyzing method thereof
WO1990003834A1 (en) * 1988-10-06 1990-04-19 Medical Automation Specialties, Inc. Method and apparatus for automatic processing and analyzing of blood serum
US4927545A (en) * 1988-10-06 1990-05-22 Medical Automation Specialties, Inc. Method and apparatus for automatic processing and analyzing of blood serum
US5133208A (en) * 1989-04-05 1992-07-28 Diesse Diagnostica Senese S.R.L. Apparatus for the preparation and execution of tests on the sedimentation rate of organic liquids and other
DE8907335U1 (en) * 1989-06-15 1990-10-18 Espe Stiftung & Co Produktions- Und Vertriebs Kg, 8031 Seefeld, De
US5167448A (en) * 1989-06-15 1992-12-01 Thera Patent Gmbh & Co. Mixing apparatus for pastes
US5154896A (en) * 1989-09-05 1992-10-13 Mochida Pharmaceutical Co., Ltd. Apparatus for promoting reaction between solid and liquid phases
US20060013729A1 (en) * 1991-02-14 2006-01-19 Glen Carey Fluid handling apparatus for an automated analyzer
US20020085959A1 (en) * 1991-03-04 2002-07-04 Glen Carey Cuvette for an automated analyzer
US7182912B2 (en) 1991-03-04 2007-02-27 Bayer Corporation Fluid handling apparatus for an automated analyzer
US20050266570A1 (en) * 1991-03-04 2005-12-01 Bayer Corporation Cuvette for an automated analyzer
US20030194349A1 (en) * 1991-03-04 2003-10-16 Glen Carey Fluid handling apparatus for an automated analyzer
US6436349B1 (en) 1991-03-04 2002-08-20 Bayer Corporation Fluid handling apparatus for an automated analyzer
DE4230861A1 (en) * 1992-09-15 1994-03-17 Desaga Gmbh C Process for mixing media with different specific weights
US5578201A (en) * 1993-07-30 1996-11-26 E. I. Du Pont De Nemours And Company Apparatus for mixing liquids used in countercurrent multiphase liquid separation
US6135940A (en) * 1996-09-25 2000-10-24 Becton, Dickinson And Company Centrifugally activated tube rotator mechanism and method for using the same
EP0940188A2 (en) * 1998-03-02 1999-09-08 Becton, Dickinson and Company Method of using inertial tube indexer
EP0940187A1 (en) * 1998-03-02 1999-09-08 Becton, Dickinson and Company Method for using disposable blood tube holder
US6152868A (en) * 1998-03-02 2000-11-28 Becton, Dickinson And Company Inertial tube indexer
EP0940186A2 (en) * 1998-03-02 1999-09-08 Becton, Dickinson and Company Inertial tube indexer
EP0940188A3 (en) * 1998-03-02 2000-11-02 Becton, Dickinson and Company Method of using inertial tube indexer
EP0940186A3 (en) * 1998-03-02 2000-11-02 Becton, Dickinson and Company Inertial tube indexer
US6120429A (en) * 1998-03-02 2000-09-19 Becton, Dickinson And Company Method of using inertial tube indexer
EP0940182A1 (en) * 1998-03-02 1999-09-08 Becton, Dickinson and Company Disposable blood tube holder
US6074883A (en) * 1998-03-02 2000-06-13 Becton, Dickinson And Company Method for using disposable blood tube holder
US6302836B1 (en) * 1998-10-01 2001-10-16 Howard L. North, Jr. Method for partitioning blood and delivering clean serum
US6531095B2 (en) * 1999-02-11 2003-03-11 Careside, Inc. Cartridge-based analytical instrument with optical detector
US6391264B2 (en) * 1999-02-11 2002-05-21 Careside, Inc. Cartridge-based analytical instrument with rotor balance and cartridge lock/eject system
US6854348B2 (en) * 2001-08-30 2005-02-15 Shin-Etsu Chemical Co., Ltd. Method for counting foreign matter particles in vinyl chloride-based resin powder and apparatus system therefor
EP1480751A2 (en) * 2002-03-01 2004-12-01 Cognis Corporation Method and sampling device for detection of low levels of a property/quality trait present in an inhomogeneously distributed sample substrate
EP1480751A4 (en) * 2002-03-01 2008-12-10 Cognis Ip Man Gmbh Method and sampling device for detection of low levels of a property/quality trait present in an inhomogeneously distributed sample substrate
US20040000514A1 (en) * 2002-06-19 2004-01-01 Helmuth Gabl Filter/screening disc and process for manufacturing this kind of disc
US7494814B2 (en) * 2004-07-13 2009-02-24 Separation Technology, Inc. Apparatus and method for obtaining rapid creamatocrit and caloric content values of milk
US20060013733A1 (en) * 2004-07-13 2006-01-19 Meeks James E Apparatus and method for obtaining rapid creamatocrit and caloric content values of milk
US20060093519A1 (en) * 2004-10-29 2006-05-04 East Richard C Apparatus for providing homogeneous dispersions
US7776263B2 (en) 2004-10-29 2010-08-17 Abbott Laboratories Inc. Apparatus for providing homogeneous dispersions
US20100062922A1 (en) * 2008-09-09 2010-03-11 Hoffmann Jeffrey R Centrifuge comprising magnetically coupled rotating basket
US8182409B2 (en) 2008-09-09 2012-05-22 The Western States Machine Company Centrifuge comprising magnetically coupled rotating basket
US20100317099A1 (en) * 2009-06-16 2010-12-16 Biomet Biologics, Llc Liquid Separation from Adipose Tissue
US20100314334A1 (en) * 2009-06-16 2010-12-16 Blomet Biologics, LLC Liquid Separation From Adipose Tissue
US8540078B2 (en) 2009-06-16 2013-09-24 Biomet Biologics, Llc Liquid separation from adipose tissue
US8790519B2 (en) * 2009-06-16 2014-07-29 Biomet Biologics, Llc Liquid separation from adipose tissue
US9604159B2 (en) 2009-06-16 2017-03-28 Biomet Biologics, Llc Liquid separation from adipose tissue
US20130042704A1 (en) * 2011-08-17 2013-02-21 Donald Van Duyne Sample Processing Apparatus
CN113337381A (en) * 2021-06-30 2021-09-03 成都导胜生物技术有限公司 Automatic grinding device and application thereof in obtaining single cells

Similar Documents

Publication Publication Date Title
US3882716A (en) Centrifugal apparatus and cell
CA1050867A (en) Method and apparatus for assaying liquid materials
US3586484A (en) Multistation analytical photometer and method of use
US3555284A (en) Multistation, single channel analytical photometer and method of use
JPH0690212B2 (en) Automatic chemical analyzer
US4346056A (en) Automatic analyzing apparatus
US4390499A (en) Chemical analysis system including a test package and rotor combination
US3759666A (en) Analytical process
US4814282A (en) Centrifuge for two-dimensional centrifugation
US4475411A (en) Sampling apparatus
US4769333A (en) Personal diagnostic kit
CA1167437A (en) Apparatus and method for the controlled, non-invasive mixing of substances
CA1298820C (en) Centifuge for two-bimensional centrifugation
US3681029A (en) Sample holder and transferring device for a centrifuge
US4227815A (en) Magnetic stirrer for sample container of photometric analyzer
US4201470A (en) Method and apparatus for measurement and registration of the aggregation rate of particles suspended in a liquid
CA1321374C (en) Rotor for processing liquids using movable capillary tubes
US5367157A (en) Device for rapidly performing a sedimentation-rate test
US3707354A (en) Means for mixing and centrifugation
JPH0619359B2 (en) Liquid sample analyzer
EP0749572B1 (en) Test tube and apparatus for carrying out immunohaematological analysis of blood and other biological liquids
EP0320752A1 (en) Analytical reagent mixing apparatus for performing sequential analytical reactions
JPH02120665A (en) Analyzer/reader
JPS6252468A (en) Centrifugal type automatic chemical analyser
CN110160854A (en) It is a kind of to keep the device of bead suspension uniformity, method and application thereof