US3812855A - System for controlling fluid and suction pressure - Google Patents

System for controlling fluid and suction pressure Download PDF

Info

Publication number
US3812855A
US3812855A US00208282A US20828271A US3812855A US 3812855 A US3812855 A US 3812855A US 00208282 A US00208282 A US 00208282A US 20828271 A US20828271 A US 20828271A US 3812855 A US3812855 A US 3812855A
Authority
US
United States
Prior art keywords
fluid
suction pressure
pressure
flow
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00208282A
Inventor
A Banko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surgical Design Corp
Original Assignee
Surgical Design Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surgical Design Corp filed Critical Surgical Design Corp
Priority to US00208282A priority Critical patent/US3812855A/en
Application granted granted Critical
Publication of US3812855A publication Critical patent/US3812855A/en
Priority to US475398A priority patent/US3920014A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/77Suction-irrigation systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/79Filters for solid matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3109Liquid filling by evacuating container

Definitions

  • the present invention relates to a system for providing both pressurized fluid and suction pressure at regulated pressures to a desiredlocation in which the system operator can readily select the application of either or both to the location. This affords the operator a high degree of flexibility in controlling fluid flow to and from the operating field.
  • suction pressure is used for aspiration or retainment of tissue to be removed or otherwise treated.
  • pressure is used for injecting a liquid or providing an irrigating liquid to retain the pressure in the eye above atmospheric pressure to prevent its collapse. This way, all eye components remain in their approximate relative positions of normal use and in such position the operation field will remain constant to the doctor or technician performing the operation.
  • a system which is capable of providing at the selection of the operator a number of fluid flow conditions. These conditions include:
  • the pressurized fluid and suction pressure are supplied over separate conduits to a single instrument which is capable of utilizing both the fluid and suction at the same time. It should be understood, however, that the system is also useful in supplying the various flow configurations to any type of instrument or to conduits which are to be placed in the operating field.
  • Another object is to provide a fluid control system which is capable of selectably providing a number of fluid control conditions such as supplying a pressurized fluid to an operating area and drainage and evacuation, of the area.
  • Still a further object is to provide a system for selectively providing pressurized fluid and/or suction to a desired area under the control of an operator by the operation of several electrical switches.
  • FIG. 1 is a flow diagram, partially in schematic form, of a preferred embodiment of a system according to the present invention
  • FIG. 2 is a flow diagram, partially in schematic form. of a modified version of the system of FIG. 1;
  • FIGS. 3 and 4 are schematic diagrams of the electrical circuits for the systems of FIGS. 1 and 2, respectively;
  • FIG. 5 is an elevational view, partly in cross-section of one type of device for the controller stage
  • FIG. 6 is a top view in cross-section of the device of FIG. 5, taken along lines 6-6 of FIG. 5;
  • FIG. 7 is an elevational view, one taken in crosssection of one form of device used as a filtering stage
  • FIG. 10 is a top view in cross-section along lines l010 of FIG. 9.
  • FIG. I1 is a view similar to that of FIG. 9 showing the device of FIG. 9 in a second operating position.
  • FIG. 1 shows a preferred form of the invention utilized with a surgical instrument 10 of a type, for example, which is more fully described in my copending application Ser. No. 799,476, filed Feb. l4, 1969, which is now US. Pat. No. 3,732,858, granted on May I5, 1973.
  • the system can be used with any type of instrument or instrument set-up which requires pressurized flow of a liquid and/or suction.
  • the instrument is shown as having pierced through a section of the eye, for example after an incision has been made.
  • the t ip of the instrument is shown adjacent the lens of the eye to remove tissue therefrom or to treat the eye.
  • the system can be used with any compatible type of instrument to perform operations or treatment in any portion of the body of a mammal.
  • the instrument 10 of FIG. 1 includes an inner tubular member 12 forming an inner passage 14 through which a suction flow can be provided.
  • the instrument also has an outer tubular member 16 around member 12 defining a passage 17 between the two members 12 and 16 through which a pressurized fluid can be applied.
  • the inner, suction flow, member 14 has an opening 19 at the end thereof through which suction pressure is applied to the operation field.
  • the other, pressure flow. member 16 has an opening 21 in its wall through which fluid is ejected into the operation field.
  • the lower ends of the two members 12 and 16 are shaped so that a cutting surface or edge 23 is formed between the ends 19 and 16a. Pressurized fluid exits only through the wall opening 21 so that it does not interfere with the suction.
  • Cutting of a piece of tissue 25, for example the lens of an eye may be obtained by suitable rotation or reciprocation of the two members 12 and 16 with respect to each other so that the cutting surface 23 is actuated. This is more fully described in my aforesaid copending application.
  • the system of FIG. 1 provides a regulated suction flow and a regulated pressure flow both of which are selectable and controllable by the operator.
  • the system includes a number of servo, or solenoid, valves which are each designated by the reference letters SV and a suffix number. These valves are of conventional construction and are preferably of the type which can be electrically operated between fully closed and fully opened conditions. The electrical circuit is described below. A number of adjustment valves are also used which are designated by the prefix letter A. These are conventional valves, for example, needle type valves, or calibrated bushings, which can be adjusted to vent a desired amount of pressure or suction pressure.
  • this includes a suitable suction source, that is, a source of reduced pressure, which can be of any conventional type, for example, a motor operating a vacuum type pump or other similar pump which can provide the desired volume of suction pressure flow.
  • the suction source 70 has a drain line 70-2 and a working line 70-1.
  • the drain line 70-2 is operated by servo valves SV-l and SV-4 to clear out a controller stage 54 into which waste tissue or other matter may be lodged.
  • the flow path is from the atmosphere, through valve SV-3, the controller stage 54 and valve SV-4 into a waste bottle 56.
  • the latter has a suitable closure 56a to seal it off with the two conduits shown.
  • the working line 70-1 operates through valve SV2 to provide the working suction pressure to the instrument and the operation field.
  • the suction flow path is through SV-2, the controller stage 54, a flow restricting element 52, a valve SV-lland filter and flow detector stages 50 and 49 to a conduit 11 leading to the instrument suction passage 14.
  • the suction pressure is controlled to a desired level by two adjustment valves A-1 and A-2 and the suction pressure is read out on a gauge P-2.
  • the controller stage 54 is a device through which suction is supplied to the instrument and tissue is removed from the active portion of the system.
  • the flow detector 49 measures the suction pressure flow and if it is too high, it closes valve SV-l 1. In essence, it is a pneumatically operated electrical switch.
  • the filtering stage 50 filters particles of removed tissue out of the suction path while the flow restricting element 52 controls the rate of suction flow into the controller stage 54.
  • the pressure portion of the system of FIG. 1 supplies liquid to replace the liquid lost through the incision in the body being operated upon and any liquid removed through the instrument 10 to maintain a relatively constant pressure within the interior of the operating field.
  • the pressure in the field the eye in this case, should always be several millimeters of mercury above atmospheric pressure to maintain the eye formed at all times for better visualization and retainment of all components in their relative position. This is important to be able to maintain a predetermined distance between the active portion of the instrument and portions of the eye and also to prevent delicate tissue from coming into contact with the instrument so that the latter will not be damaged.
  • the pressure on the retina of the eye should be maintained to prevent its separation from the choroid.
  • the pressure source 30 can be of any desired type, for example, an electrically or mechanically operated pump.
  • the pump can directly supply fluid of the desired type, such as benign fluid, inert fluid, medicated treatment fluid or sterile water to the operating field.
  • the fluid can be contained in a suitable container, such as bottle 37, which is pressurized, as
  • a relatively low time constant coupling between the tip of the instrument and the controller 54 is provided. That is, changes in the operating condition of the system which appear at the controller 54 are produced substantially instantaneously at the instrument tip due to the fact that there is a continuous column of liquid between the controller and the instrument tip through the various elements 49, 50, SV-ll and 52.
  • Pressure line 32-2 is used, during the time that suction is not used, to provide a sufi'icient amount of fluid under pressure to the operation field.
  • the operation field When the operation field is located above fluid bottle 37, gravity cannot drain the fluid from the operating field into the bottle. Thus, fluid is supplied to maintain the interior of the operation field at a predetermined pressure level, to prevent collapse and to achieve proper placement of the various components of the body being operated upon. Fluid is also pumped into the operation field to compensate for fluid losses through the incision or instrument.
  • the flow path at this time is through valves SV-lO and SV-6.
  • An adjustment valve A-4 sets the level of pressure supplied at this time.
  • a third pressure line 32-3 is used to supply pressure at the instrument tip to clear out any material which is not to be operated upon but which may have been inadvertently moved into the cutting surface area of the tip by the suction pressure.
  • pressure passes through controller stage 54, flow restricting element 52, SV-ll, filter and flow detector stages 50 and 49 into conduit 11 and the suction passage 14. This pressure is set by valve A-3 and read out on gauge P-3. This pressure flow is not a liquid.
  • pressure line 32-2 operates with drain line -2 during a release" condition when the controller stage 54 is being cleared and a desired liquid pressure is to be maintained in the operation field
  • pressure line 32-] operates to supply fluid at a different pressure level (usually higher) at the same time suction can be supplied over a working line 70-1 so that the operating field (the eye) remain formed
  • pressure line 32-3 operates to clear the instrument tip when no suction pressure is used.
  • SYSTEM OPERATION A General A desired operating condition is produced by controlling the various servo valves. ln so doing, different flow conditions are established at the various conduits connected to the pressure and suction pumps and thereby at the tip of the instrument.
  • the system is energized and a release condition is produced to clear out the controller stage. This condition is also produced to obtain a state of readiness before an actual operation takes place, or between different steps of an operation when the surgeon is relocating the instrument or pausing.
  • injection or irrigation fluid is supplied to the operation field.
  • switch S-l can be operated by the heel of the foot, energizing or de-energizing switch S-2, while the front of the foot can operate switches S-3A, 5-38 and 5-4.
  • S-3A 8-38 and 8-4 When S-3A 8-38 and 8-4 are to be operated, S-l must be released.
  • the electrical circuit of FlG. 3 can be either AC or DC operated. Where an AC source is utilized, it is preferred that suitable transformers and isolation be provided so that the system will be safe. This is in accordance with conventional techniques.
  • the two input voltage lines to the relays are designated +V and -V. When a relay coil is connected across both lines, it has current flowing therethrough, the relay is energized and the respective servo valve is moved to an open flow condition to convey fluid or suction.
  • Relay R11 which operates SV-ll, is connected across lines V and +V at all times. It is energized unless the switch provided by the flow detector opens in response to an excessive flow rate condition.
  • Valve Operating Sequence Table 1 shows the states of the various servo valves for the five operating modes of the system.
  • a 1 signifies that the valves respective relay is energized and that the valve is in an open flow condition.
  • An 0 signifies that the relay is de-energized and the valve is closed.
  • SV-ll is not shown since it is open all the time unless closed by the flow detector.
  • a reverse flow of fluid is supplied to the suction passage of the instrument from the controller stage to clear the tip.
  • the electrical circuit comprises a number of solenoids (sometimes called relays) which operate. and are usually part of the respective servo valves designated SV in FIG. I.
  • the solenoids are designated with the same number as the corresponding servo valves with a prefix letter R, for example, solenoid R2 operates servo valve SV-Z.
  • the electrical circuit includes several switches which are operated by the person utilizing the system.
  • Switch 5-! controls a relay K. which in turn operates a gauged switch 5-2 with two movable contact arms.
  • Switches S-3A and 5-38 are individually operated as is switch 8-4.
  • the switches can be of any suitable type. Preferably, they are operated by foot controls so that the user of the system will have his hands free to perform the D. Mode (l) Released Condition When the system is first turned on, the switches are in the position shown in FIG. 3, resulting in the energization of valves SV-l, SV-3, SV-4, SV-6 and SV-l0.
  • valves SV-l0 and SV-6 open, pressure is supplied over line 32-2 to the fluid container 37 and fluid to the instrument through conduct 40. Fluid is thus being delivered into the operational field, the pressure being set by the adjustment of the valve A-4 and the pressure being read out on the gauge P-l. There is no pressure flow in either of lines 32-1 or 32-3 since valves SV-7 and SV-9 are closed.
  • valves SV-l, SV-3 and SV-4 are open to provide suction from line -2 through controller stage 54 to the atmosphere through SV-3 to empty the stage into the waste bottle 56.
  • the mode (1) condition is usually needed when the instrument is in the operational field and suction at the instrument tip is not used.
  • the pressure in line 32-2 pressurizes the fluid in container 37 to the extent required to maintain a desired quantity of liquid in the operational field.
  • the amount of pressure is adjusted by the valve A-4 and observed on gauge P-l.
  • the liquid pressure inside the eye is maintained high enough to keep the eye formed in its proper shape at all times for better visualization. Without the pressure in line 32-2 in this mode, the eye would be drained through the fluid injection line 40 by gravity.
  • the supply of liquid also compensates for losses of liquid from the eye through the incision or leakage through the instrument due to possible differential pressures between the instrument tip and the controller stage 54.
  • the suction in drain line 70-2 evacuates air from the waste bottle 56.
  • the bottle being connected to the controller stage 54, which in turn communicates with the atmosphere through SV-3, a differential pressure is created which moves residual liquid, if present, from the controller stage to waste bottle 56.
  • switch S-3A is moved from the contact position shown in FIG. 3 to the lower position. With the electrical circuit in this condition, valves SV-l, SV-3, SV-4 and SV-7 are open.
  • the container 37 receives pressure on line 32-] through SV-7 and liquid is supplied through line 40 to the instrument and the operational field.
  • the pressure of liquid in the operational field is proportional to the pressure in the liquid containing bottle 37. In the case ofan eye being operated upon, the pressure should be within limits not harmful to its structure.
  • the pressure in container 37 is set by adjustment valve A- and is observed on pressure gauge P-l.
  • the pressure at the tip of the instrument varies when the two portions of the instrument are either receiprocated or turned to close the opening, such as when tissue is being cut, or when suction is applied to the operational field.
  • a constant fluid pressure in the container 37 is maintained through the line 32-1.
  • mode (2) operation the suction flow of mode (l is maintained, as described above, i.e. the controller stage 54 is being cleared through the drain line 70-2.
  • Mode (3) irrigation or injection of fluid is to take place and a suction force is to be produced at the tip of the instrument 10 for aspiration of the fluid or tissue in the operation field.
  • a differential pressure caused by supplying fluid from container 37 and having suction at the same time, creates a flow from the operation field to the controller stage 54 for tissue removal.
  • Tissue from mass 25 is aspirated into the opening of the instrument tip where it is to be separated by the cutting action of the instrument or emulsification, or where it is to be retained against the instrument for treatment such as, for example, by another instrument (not shown).
  • mode (3) the electrical circuit is conditioned'so that the contacts of switch 8-1, 8-2 and 8-4 are left in the position shown in FIG. 3 and both contacts S-3A and 8-38 are moved downward. This energizes the respective relays to open valves SV-2, SV-7 and SV-l2. With valves SV-7 open, pressurized fluid is produced in the operation field by the pressure in line 32-] as in mode (2).
  • Valve SV-l is now closed and there is no suction in drain line 70-2. However, SV-2 is open and suction is supplied to the instrument over working line 70-1. The path is through container 60, SV-2 controller stage 54 and conduit 11 to the instrument where it is available at the tip opening 19. The suction pressure is read on gauge P-2.
  • Adjustment valve A-2 located in the line sets a high level reference pressure for the suction. Since SV-IZ is also open in mode (3). adjustment valve A-l is also available to set a lower level suction pressure which is used in mode (3) at the instrument tip.
  • the controller stage 54 In mode (3) the controller stage 54 accumulates the liquid and small particles of tissue suspension evacuated from the operation field and not removed by filter 50. When suction at the instrument tip is no longer needed, the operator switches the system back into mode (I) so that the controller stage 54 can be evacuated in the manner previously described. As can be seen, the suction lines 70-1 and 70-2 are operated altemately, 70-1 operated to move tissue from the operation field into the controller stage and 70-2 to clear the controller stage 54. Line 70-1 and its components preferably are of small volume and low resistance to evacuate the controller stage 54 in the shortest possible time.
  • Mode (4) Irrigation With Maximum Suction Pressure
  • SV-l2 This takes adjustment valve A-l out of the system and sets the suction pressure at the reference level set by valve A-2.
  • switches S-1 and 8-2 are as shown, the contacts S-3A and 8-38 are moved down and 8-4 is open. In this configuration only valves SV-2, SV-7 are open.
  • switch 5-] is closed thereby energizing relay K1 and moving the two contact arms of 8-2 to the down position.
  • Switches S-3A, 5-38 and 8-4 are as shown in FIG. 3.
  • SV-l, SV-S, SV-8 and SV-9 are open.
  • the two pressure lines 32-1 and 32-2 are both closed since their respective valves SV-7 and SV-lO are closed. Since SV-9 and SV-8 are open, pressure is supplied to the controller 54, the quantity being adjusted by valve A-3 and read out on gauge Suction line 70-2 is still open, SV-l being open, and SV-S is open to vent this line and waste container 56 to atmospheric pressure.
  • Valves SV-2, SV-3 and SV-4 are closed so that the pressure in line 33-3 does not back up into the suction source or atmosphere through controller 54.
  • the pressure flows over line 32-3, valves SV-9 and SV-8, the controller 54 and the other elements to conduit 11. This provides pressure to instrument passage 11 to clear the tip.
  • a flow detector 49 is located in front of the filtering stage and as close to the instrument 10 as possible.
  • the element 49 stops the flow of removed fluid from the operating field, if it exceeds a given value. This protects the operating field from being over-drained. In the case of an eye, if the outflow of fluid is greater than the inflow, the eye will collapse.
  • the flow detector 49 operates solenoid valve SV-ll located after the filtering stage 50 and also close to the instrument.
  • the fluid removed from the operating field passes through SV-ll after it has been filtered to prevent clogging of SV-Il and the flow-restricting element 52.
  • Valve SV-ll is wired in the electrical circuit to be normally open. If the flow exceeds a certain rate, a switch is actuated to close SV-l 1. Due to the wiring of SV-l 1, if power fails, valve SV-II will close, blocking flow of the suction lines. This is a fail safe type of arrangement.
  • Flow detector 49 is basically a pressure operated switch and any suitable switch of this type can be used.
  • One such type includes a membrane, or diaphragm, which is moved in response to the differential pressure caused by the liquid flowing through the switch. The diaphragm in turn actuates a switch to the open position when the flow rate is excessive.
  • Another type of switch is a differential pressure transducer which measures the pressure at inlet and outlet ports by strain gauges and produces an electrical signal when the difference exceeds a predetermined value corresponding to an excessive flow rate. This signal in turn actuates a solid state switching device which is in circuit with the relay coil Rll.
  • the line, or conduit, 11 connecting the central member 12 of the instrument to the flow detector and filtering stage is preferably of an uncollapsible material
  • a heavy walled plastic having a small internal bore diameter.
  • the volume of liquid carried by this line should be small to prevent changes in its shape due to elasticity caused by the storage of energy which is released or accumulated when the flow rate is changed. This would add a time delay between controller 54 and the tip opening.
  • FIGS. 7 and 8 One form of device for the filtering stage 50 is shown in FIGS. 7 and 8.
  • the filter is used to prevent small particles of tissue from entering the flow-restricting element 52 and clogging its orifices, thus changing the rate of flow, or stopping it entirely. Slowing down the flow rate at a given suction pressure increases the time needed to achieve a desired suction force at the instrument tip while stopping the suction flow prevents a force from being built up at-the instrument tip and thereby prevents particles from being removed from the operating field.
  • the filter stage shown' in FIGS. 7 and 8 includes a cylindrical sleeve 110 having upper and lower covers 110 and 11b each with a respective O-ring 113 to provide a seal.
  • Sleeve 110 is preferably made of glass and is removable from covers 111 for easy cleaning.
  • An inlet passage 112 is formed in the bottom cover member lllb and has an extension 1120 which extends up wardly part way within the housing 110. Fluid from the flow detector 52 flowing into the housing 110 passes upwardly through a coarse mesh screen 114 and a finer mesh screen 116 which are spaced apart in the upper portion of housing 110.
  • the two screens 114 and 116 are held in a jig or fixture 118 having flow passages 119 in its central portion to provide a fluid flow path between screens 114 and 116.
  • the fixture 118 fits around a central conduit 120 and rests on a shoulder 120a.
  • the conduit 120 extends for substantially the entire length of the housing and its ends are held in respective recesses 113a and ll3b in the top and bottom covers 1114' and lllb.
  • Conduit 120 has a plurality of openings 122 located above the fine mesh screen 116 in a conical depression 123 in the upper cover 111a to prevent an air cushion from building up, which would introduce a time delay.
  • the lower portion of conduit 120 fits into an outlet passage 124 in the bottom cover lllb.
  • Fluid enters through passage 112 from flow detector 52. After passing through filter screens 114 and 116, the fluid enters the conduit openings 122, flows down its length and leaves the filter through the outlet 124 to valve SV-l 1.
  • the two different size mesh screens are used so that the lower, coarse mesh one, 114 retains only large pieces of removed tissue and the upper, fine mesh one, 116 retains smaller pieces.
  • the mesh size of screen 116 is smaller than the diameter of the smallest orifice 0f the flow-restricting element 52, to be described.
  • the two filter screens shear coagulated tissue loose from the liquid to decrease the possibility of clogging of the remainder of the suction system.
  • the filter element 50 is preferably used in a vertical position as shown in FIGS. 7 and 8 so that the flow of liquid is upwardly. Therefore, particles with density larger than the liquid solution and which cannot be moved upward by the differential pressure causing the flow are suspended close to the bottom of the housing 110 or rest on the lower cover lllb and do not load the filter screens.
  • ControllerStage H i The controller stage 54 is the portion of the system where operational conditions produced by the suction source 70 or pressure source 30 during a return flow are presented at the desired pressure level. One suitable device for performing this is shown in FIG. 5.
  • the controller stage 54 is small in volume so that conditions inside can change substantially instantaneously, that is, pressure can be released and vacuum obtained, and vice versa, in a relatively short time and also so that the desired pressure or vacuum equilibrium level can be reached in a short time. Controller stage 54 is located as close as possible to the instrument 10, in terms of the volume of liquid between the instrument and controller stage 54. This minimizes time delays between activating a control of the system and obtaining a desired condition in stage 54 and at the instrument tip.
  • the controller stage 54 has a cylindrical sleeve 130, which is also preferably made of glass, whose top and bottom are sealed by covers 133a and 133b having O-rings 134.
  • the lower cover 133b is formed with an inlet coupling and passage 135 which is coupled to receive fluid flow from the flow restrictor 52.
  • a central conduit 137 has its bottom end fastened to cover 1331) and its top end in cover 1330 where it communicates with an outlet coupling and passage 139 which continues through 1330.
  • a number of openings 140 are formed near the upper end of conduit 137 adjacent a conical recess 142 in upper cover 1330 to allow a maximum amount of fluid to enter.
  • the outlet 139 is connected to SV-2, SV-3 and SV-S. Here, a suitable coupling member is used.
  • Another outlet passage and coupler 144 is formed in the lower cover 1331; to communicate with the interrior of housing 130 and with SV-4.
  • SV-2 In operation, when there is no suction on the working line 70-1, such as in modes l and (2), SV-2 is closed closing off the working line 70-1. Since SV-3 is open and vented to the atmosphere and SV-4 is also open, a flow path is created between the atmosphere and suction pressure line 70-2 through SV-3, coupling 139, openings 140 in central conduit 137 and out coupling 144. This evacuates and drains out the interior of the controller housing 130 into the waste bottle 56.
  • the flow-restriction element 52 located between the valve SV-ll and the controller stage 54, determines the maximum flow rate from the operating field to the controller stage 54 at a selected suction pressure.
  • the flow restricting element can be a simple needle valve where the flow is regulated by the position of the needle.
  • two flow-regulating orifices of different diameters and an arrangement to switch between the two is utilized. This is shown, in FIGS. 9-11 where the element 52 includes a housing 152 having a central bore 154 in which a shaft 155 is slidable and rotatable. Shaft 155 has a central passage 156 through the upper portion thereof which communicates with a pair of annular orifices 157 and 158 which have respectively different sized diameter flow passages to the central passage 156.
  • the shaft has a lug 159 (FIG. 10) fastened thereto which rides in one or the other of upper and lower arcuate tracks, or grooves 160a and 16012 which are formed in the bonnet 162 of the housing.
  • the two tracks 160a and 160! are joined by a vertical track 1600.
  • the bonnet 162 is held to housing 152 by a member of screws 163.
  • the shaft control knob 155a is turned to bring shaft lug 159 into the vertical track 1600 and the knob is then pulled down to bring the lug into bottom arcuate track 16Gb.
  • Knob 155a is then turned to move the lug 159 away from vertical track 160a.
  • the maximum flow rate is set by setting the position of the shaft.
  • Housing 152 has an inlet coupling and passage 165 which receives fluid from valve SV-11. The fluid goes through one of the orifices 157 or 158 on shaft 155, the shaft central passage 156 and out of the housing through a passage 166 formed in the upper part of the housing and an outlet passage and coupling 167. The latter is connected to the inlet of the controller stage 54.
  • the device shown in FIGS. 9-11 is preferred as the restricting element instead of a needle valve since a plurality of orifices have a better chance of permitting passage of particles to the waste bottle more than twice the size of particles which would pass through a needle valve having the same passage cross-section.
  • the various bottles are preferably made of glass and are commercially available with sterile contents to be pressurized.
  • the stoppers for the bottles preferably are stainless steel caps, which can be sterilized, and which are screwed on. Any other suitable material can be used.
  • the various couplings or tubes which extend into the bottle can be of plastic or metal.
  • the pressure gauges P-1, P2 and P-3 are of any suitable conventional type.
  • FIG. 2 shows a system capable of providing clean fluid through opening 23.
  • FIG. 2 The system of FIG. 2 is similar to that of FIG. 1 with the exception of the pressure line 32-3.
  • the same reference numbers have been used where applicable.
  • pressure line 32-3 pressurizes a fluid bottle 200 through SV-9 and SV-8.
  • the bottle contains fluid of any desired type.
  • Adjustment valve A-3 sets the pressure in the bottle which is read out on gauge P-3.
  • the output of bottle 200 is applied through a conduit 201 to a coupling (not shown) in line 11 to the suction member 14 of the instrument.
  • the coupling is preferably located as close to the inlet of the instrument as possible.
  • a suitable shut-off arrangement (not shown) is utilized between the coupling for lines 11 and 201 and the flow detector 52 and bottle 200.
  • This arrangement can be a clamp in each line which is actuated manually or electrically to close off one line when the other is left open.
  • a simple arrangement is a pressure type clamp which operates selectively to close off one of the lines 11 or 200 while at the same time opening the other.
  • This can be a rotatable member operating to deform the wall of the line, which is of plastic material, to a sufficient extent to close it.
  • FIG. 4 Electrical Circuit
  • the same reference characters for the components of the circuit of FIG. 2 are used.
  • R11 to operate SV-ll is wired as in FIG. 2 and operates in the same manner when power is supplied to the system.
  • the circuit of FIG. 4 has a switch 8-5 which controls a relay K5 and its three sets of contacts S-5A, 8-53 and S-SC.
  • Another switch S-6 controls a relay K-6 and its contacts S-6A, 8-68 and S-6C.
  • 8-4 is again provided.
  • the switches 8-4, 8-5 and 8-6 can be located on a foot controlled switch.
  • Mode (2) of FIG. I irrigation only, is not available.
  • switch 5-4 is closed and switches S-5 and 8-6 are open so that the two relays K-S and K-6 are de-energized and the relay contacts are as shown in FIG. 4. Therefore, valves SV-I, SV-3, SV-4, SV-6 and SV-l are open.
  • the operation of the system is as described with respect to FIGS. 1 and 2 for mode (I).
  • switches S-4 and 5-5 are closed and switch S-6 open.
  • the operation of the system in this mode is as described with respect to FIGS. 1 and 2 for mode (2).
  • switch 8-5 is left closed. as in mode (3 and switch 8-4 is opened in addition to switch S-6.
  • Valve SV-l2 is now closed leaving only SV-2 and SV-7 opened so that irrigation and maximum suction are applied.
  • the operation is the same as mode (3) of FIGS. 1 and 2.
  • switch 8-4 is again closed, switch 8-5 is opened and switch 8-6 is now closed.
  • This energizes relay K-6 and moves contacts S-6A, 8-68 and S-6C down while relay K-5 is de-energized so that contacts S-SA, 8-53 and S-5C are in the up position. Valves SV-l, SV-S, SV-8 and SV-9 are now open.
  • pressure lines 32-1 and 32-2 are closed. Pressure is applied over line 32-3 through SV-9 and SV-8 to the container of clear fluid 200 and applied over line 201 to the suction conduit 11 of the instrument. This fluid can be used to clear tissue from the opening 23 of the instrument and/or provide additional fluid to the operating area. Valves SV-l and SV-5 operate as previously described with respect to FIGS. 1 and 2 for mode (5).
  • Apparatus for aspirating fluid and any solid material entrained therein from an operating field comprising a source of suction pressure, controller means having an inlet and an outlet, first conduit means connected between said controller inlet and the source of suction pressure, second conduit means connected to the controller outlet and having an end through which the fluid to be aspirated from the operating field enters, means for selectively controlling the flow of the suction pressure from the source to said controller means 'to produce suction pressure at the end of said second conduit means, and means connected between said source of suction pressure and said controller means for removing the fluid aspirated from the operating field from said controller means while removing the suction pressure from said second conduit means.
  • Apparatus as in claim 1 wherein said means for selectively controlling the flow of the suction pressure includes means for selectively producing two different rates of suction flow.
  • Apparatus as in claim 1 further comprising means connected in said second conduit means for filtering particulate material from the aspirated flu id 4. Apparatus as in claim 1 further comprising means connected in said second conduit means for selectively restricting the flow rate of the aspirated fluid to said controller rneans.
  • said flow rate restricting means includes means having two different sized orifice openings, and means for selecting one of said orifice openings to achieve the desired flow rate.
  • Apparatus as in claim 1 further comprising means connected in said second conduit means for sensing the pressure differential of the fluid between said one end of said second conduit means and said controller means and for closing the suction pressure flow in said second conduit means when the pressure differential sensed exceeds a predetermined value
  • Apparatus as in claim 1 further comprising means for supplying fluid under pressure including a third conduit means having an outlet end at which the pressurized fluid is produced, said means for selectively controlling the flow of suction pressure to said controller means also selectively controlling the flow of pressurized fluid at the outlet end of said third conduit means.
  • Apparatus for aspirating fluid and any solid material entrained therein from an operating field comprising a source of suction pressure, controller means having an inlet and an outlet, first conduit means connected between said controller inlet and the source of suction pressure, second conduit means connected to the controller outlet and having an end through which the fluid to be aspirated from the operating field enters, means for selectively controlling the flow of the suction pressure from the source to said controller means to produce suction pressure at the end of said second conduit means, and means for supplying fluid under pressure including a third conduit means having an outlet end at which the pressurized fluid is produced, said means for selectively controlling the flow of suction pressure to said controller means also selectively controlling the flow of pressurized fluid at the outlet end of said third conduit means to provide suction pressure at said end of said second conduit and pressurized fluid at said outlet end of said third conduit means at a first pressure level at the same time and also operates in another mode to provide pressurized fluid from said out-.
  • Apparatus as in claim 10 wherein said means to selectively control the flow of suction pressure operates to remove the contents from the controller means while removing the suction pressure from said second conduit means.
  • Apparatus for supplying fluid to and aspirating fluid and solid material entrained therein from an operating field comprising in combination an instrument for removing material from a larger mass, an aspirating passage and a fluid supply passage formed in said instrument, suction pressure fluid supply means, pressurized fluid supply means, first conduit means connected between said source of suction pressure fluid and said aspirating passage of said instrument, second conduit means connected between said pressurized fluid supply means and said fluid supply passage, means for selectively controlling the flow in said first and second conduit means to selectively provide suction pressure fluid in said aspirating passage and pressurized fluid in said fluid supply passage, means located in the flow path of said first conduit means for sensing the differential pressure between the outlet of the aspirating passage and the suction pressure of the source, means operated by said sensing means for closing said first conduit means when said differential pressure exceeds a predetermined amount, and means for clearing material from said first conduit means without losing the suction pressure in said aspirating passage.
  • Apparatus as in claim 12 further comprising first container means in the path of said second conduit means between said pressurized fluid supply means and said fluid supply passage into which the pressurized fluid is applied, and respective means in said first and said second conduit means to adjust the suction pressure and the pressure of the fluid in said first container means respectively.
  • Apparatus as in claim 13 further comprising means for also operating said selective controlling means to apply pressurized fluid from the outlet of said first container means at the same time that suction pressure is removed from said first conduit means.
  • Apparatus as in claim 12 further comprising means located in the flow path of said first conduit means for selectively restricting the flow of the suction pressure.
  • Apparatus for supplying fluid to and aspirating fluid and solid material entrained therein from an operating field comprising in combination an instrument for removing material from a larger mass, an aspirating passage and a fluid supply passage formed in said instrument, suction pressure fluid supply means, pressurized fluid supply means, first conduit means connected between said source of suction pressure fluid and said aspirating passage of said instrument, means for applying fluid under pressure to said first conduit means including third conduit means connected between said pressurized fluid supply means and said first conduit means, second conduit means connected between said pressurized fluid supply means and said fluid supply passage, means for selectively controlling the flow in said first and second conduit means to selectively provide suction pressure fluid in said aspirating passage and pressurized fluid in said fluid supply passage and means for clearing material from said first conduit means without losing the suction pressure in said aspirating passage.
  • Apparatus as in claim 16 wherein said means for applying fluid under pressure to said first conduit means includes means for supplying a liquid.

Abstract

A system for controlling pressurized fluid and suction pressure to be supplied to an instrument, such as an instrument for performing surgical operations. The system permits a variety of flow configurations to the instrument including either pressurized fluid or suction pressure alone or combinations of the two at adjustable pressures. The flow configurations are readily selectable by an operator under the control of an electrical operating system.

Description

United States Patent [1 1 Banko 51 May28, 1974 3,429,313 2/1969 Romanelli i 128/276 3,513,846 5/1971) Gallo 128/276 3,517,665 6/1970 Sheldon i 128/276 3,572,319 3/1971 Bittner ct a1. 128/2 T 3,693,613 9/1972 Kelman 128/278 Primary Examiner-Charles F. Rosenbaum Attorney, Agent, or Firm-Harvey W. Mortimer [57] ABSTRACT 19 Claims, 11 Drawing Figures PRES SURE SOURCE 1 SYSTEM FOR CONTROLLING FLUID AND SUCTION PRESSURE [75] Inventor: Anton Banko, Bronx, NY.
[73] Assignee: Surgical Design C0rp., Long Island City, NY.
[22] Filed: Dec. 15,1971
[21] Appl. No.: 208,282
[52] US. Cl 128/276, 128/2 A, 128/24 A, 137/205 [51] Int. Cl A6lm l/00 [458] Field of Search 128/2 A, 2 V, 24 A, 276, 128/277, 278; 137/205 [56] References Cited UNITED STATES PATENTS 2,564,809 8/1951 Levene 128/2 A 2,646,042 7/1953 Quang 128/276 SUCTION SOURCE -1o SV-l {v sv-lz l 1 1 x re A-2 A-I n-lz CONTROLLER STAGE i 1 sv-s i m 5 t sv RESTRICTING 1 ELEMENT FILTERING STAGE SV-Il so PATENTEDIAY 28 1914 v3; 8 1 2 5 5 sum 5 or 5 FIG. H
INVENTOR. ANTO N BANKO SYSTEM FOR CONTROLLING FLUID AND SUCTION PRESSURE In many applications in the field of surgery where operations are performed, it is necessary to be able to supply fluid to an operating field and to remove fluid from the same location. The former task is usually accomplished by supplying the fluid under pressure to the desired location and the latter by providing suction pressure.
The present invention relates to a system for providing both pressurized fluid and suction pressure at regulated pressures to a desiredlocation in which the system operator can readily select the application of either or both to the location. This affords the operator a high degree of flexibility in controlling fluid flow to and from the operating field.
As a typical application in which the system of the present invention can be utilized, when operating in the eyes anterior or posterior chamber, suction pressure is used for aspiration or retainment of tissue to be removed or otherwise treated. During the course of the same operation, pressure is used for injecting a liquid or providing an irrigating liquid to retain the pressure in the eye above atmospheric pressure to prevent its collapse. This way, all eye components remain in their approximate relative positions of normal use and in such position the operation field will remain constant to the doctor or technician performing the operation.
In accordance with the invention, a system is provided which is capable of providing at the selection of the operator a number of fluid flow conditions. These conditions include:
1. Providing a pressurized fluid to the operating area to maintain it in a predetermined shape without any suction pressure being applied.
2. Providing a pressurized fluid to the operating area for irrigation or injection purposes in the absence of suction pressure to compensate for fluid loss from the operating area.
3. Providing pressurized fluid to the operating area for injection or irrigation purposes while at the same time removing fluid from the area by suction pressure at several different levels.
4. Providing a reverse pressure flow to the instrument to eject unwanted material which may inadvertently have been drawn into it.
The foregoing functions are accomplished according to the present invention by a system including a number of valves which are interconnected and operated in a novel manner by an electrical circuit, the latter being controllable by the operator.
In the preferred embodiment of the invention to be described, the pressurized fluid and suction pressure are supplied over separate conduits to a single instrument which is capable of utilizing both the fluid and suction at the same time. It should be understood, however, that the system is also useful in supplying the various flow configurations to any type of instrument or to conduits which are to be placed in the operating field.
It is therefore an object of the present invention to provide a fluid pressure control system for providing suction and/or pressurized fluid to a particular location.
Another object is to provide a fluid control system which is capable of selectably providing a number of fluid control conditions such as supplying a pressurized fluid to an operating area and drainage and evacuation, of the area.
Still a further object is to provide a system for selectively providing pressurized fluid and/or suction to a desired area under the control of an operator by the operation of several electrical switches.
Other objects and advantages of the present invention will become more apparent upon reference to the following specification and annexed drawings, in which:
FIG. 1 is a flow diagram, partially in schematic form, of a preferred embodiment of a system according to the present invention;
FIG. 2 is a flow diagram, partially in schematic form. of a modified version of the system of FIG. 1;
FIGS. 3 and 4 are schematic diagrams of the electrical circuits for the systems of FIGS. 1 and 2, respectively;
FIG. 5 is an elevational view, partly in cross-section of one type of device for the controller stage;
FIG. 6 is a top view in cross-section of the device of FIG. 5, taken along lines 6-6 of FIG. 5;
FIG. 7 is an elevational view, one taken in crosssection of one form of device used as a filtering stage;
ment and shown in a first operating position;
FIG. 10 is a top view in cross-section along lines l010 of FIG. 9; and
FIG. I1 is a view similar to that of FIG. 9 showing the device of FIG. 9 in a second operating position.
SYSTEM CONSTRUCTION A. General Description FIG. 1 shows a preferred form of the invention utilized with a surgical instrument 10 of a type, for example, which is more fully described in my copending application Ser. No. 799,476, filed Feb. l4, 1969, which is now US. Pat. No. 3,732,858, granted on May I5, 1973. It should be understood, however, that the system can be used with any type of instrument or instrument set-up which requires pressurized flow of a liquid and/or suction. In the embodiment of the invention being described, the instrument is shown as having pierced through a section of the eye, for example after an incision has been made. The t ip of the instrument is shown adjacent the lens of the eye to remove tissue therefrom or to treat the eye. It should be understood that the system can be used with any compatible type of instrument to perform operations or treatment in any portion of the body of a mammal.
The instrument 10 of FIG. 1 includes an inner tubular member 12 forming an inner passage 14 through which a suction flow can be provided. The instrument also has an outer tubular member 16 around member 12 defining a passage 17 between the two members 12 and 16 through which a pressurized fluid can be applied.
The inner, suction flow, member 14 has an opening 19 at the end thereof through which suction pressure is applied to the operation field. The other, pressure flow. member 16 has an opening 21 in its wall through which fluid is ejected into the operation field. The lower ends of the two members 12 and 16 are shaped so that a cutting surface or edge 23 is formed between the ends 19 and 16a. Pressurized fluid exits only through the wall opening 21 so that it does not interfere with the suction. Cutting of a piece of tissue 25, for example the lens of an eye, may be obtained by suitable rotation or reciprocation of the two members 12 and 16 with respect to each other so that the cutting surface 23 is actuated. This is more fully described in my aforesaid copending application.
The system of FIG. 1 provides a regulated suction flow and a regulated pressure flow both of which are selectable and controllable by the operator. The system includes a number of servo, or solenoid, valves which are each designated by the reference letters SV and a suffix number. These valves are of conventional construction and are preferably of the type which can be electrically operated between fully closed and fully opened conditions. The electrical circuit is described below. A number of adjustment valves are also used which are designated by the prefix letter A. These are conventional valves, for example, needle type valves, or calibrated bushings, which can be adjusted to vent a desired amount of pressure or suction pressure.
Considering first the suction portion of the system, this includes a suitable suction source, that is, a source of reduced pressure, which can be of any conventional type, for example, a motor operating a vacuum type pump or other similar pump which can provide the desired volume of suction pressure flow. The suction source 70 has a drain line 70-2 and a working line 70-1. The drain line 70-2 is operated by servo valves SV-l and SV-4 to clear out a controller stage 54 into which waste tissue or other matter may be lodged. The flow path is from the atmosphere, through valve SV-3, the controller stage 54 and valve SV-4 into a waste bottle 56. The latter has a suitable closure 56a to seal it off with the two conduits shown.
The working line 70-1 operates through valve SV2 to provide the working suction pressure to the instrument and the operation field. The suction flow path is through SV-2, the controller stage 54, a flow restricting element 52, a valve SV-lland filter and flow detector stages 50 and 49 to a conduit 11 leading to the instrument suction passage 14. The suction pressure is controlled to a desired level by two adjustment valves A-1 and A-2 and the suction pressure is read out on a gauge P-2.
As is described in detail below, the controller stage 54 is a device through which suction is supplied to the instrument and tissue is removed from the active portion of the system. The flow detector 49 measures the suction pressure flow and if it is too high, it closes valve SV-l 1. In essence, it is a pneumatically operated electrical switch. The filtering stage 50 filters particles of removed tissue out of the suction path while the flow restricting element 52 controls the rate of suction flow into the controller stage 54.
The pressure portion of the system of FIG. 1 supplies liquid to replace the liquid lost through the incision in the body being operated upon and any liquid removed through the instrument 10 to maintain a relatively constant pressure within the interior of the operating field. in general, the pressure in the field, the eye in this case, should always be several millimeters of mercury above atmospheric pressure to maintain the eye formed at all times for better visualization and retainment of all components in their relative position. This is important to be able to maintain a predetermined distance between the active portion of the instrument and portions of the eye and also to prevent delicate tissue from coming into contact with the instrument so that the latter will not be damaged. Further, in the case of operating in the eye, the pressure on the retina of the eye should be maintained to prevent its separation from the choroid.
The pressure source 30 can be of any desired type, for example, an electrically or mechanically operated pump. The pump can directly supply fluid of the desired type, such as benign fluid, inert fluid, medicated treatment fluid or sterile water to the operating field. Alte mativly, the fluid can be contained in a suitable container, such as bottle 37, which is pressurized, as
described below, to supply fluid to a conduit 40 and thence to the fluid passage 17.
When suction pressure is being supplied to instrument l0, pressure is applied from source 30 over line 32-1 through valve SV-7 into bottle 37. The pressure in the bottle 37 is read out on a pressure gauge P-l. Adjustment valve A-S, located in line 32-1, controls the pressure in bottle 37 which supplies fluid to the instrument 10 over line 40.
ln supplying pressurized fluid, by pressure in line 32-l, during the time that suction is also being used, a sufficient amount of liquid solution is pumped into the operating field to provide a fluid-flow path through the instrument and into the suction portion of the system, thus maintaining pressure in the operating fluid.
A relatively low time constant coupling between the tip of the instrument and the controller 54 is provided. That is, changes in the operating condition of the system which appear at the controller 54 are produced substantially instantaneously at the instrument tip due to the fact that there is a continuous column of liquid between the controller and the instrument tip through the various elements 49, 50, SV-ll and 52.
Pressure line 32-2 is used, during the time that suction is not used, to provide a sufi'icient amount of fluid under pressure to the operation field. When the operation field is located above fluid bottle 37, gravity cannot drain the fluid from the operating field into the bottle. Thus, fluid is supplied to maintain the interior of the operation field at a predetermined pressure level, to prevent collapse and to achieve proper placement of the various components of the body being operated upon. Fluid is also pumped into the operation field to compensate for fluid losses through the incision or instrument. The flow path at this time is through valves SV-lO and SV-6. An adjustment valve A-4 sets the level of pressure supplied at this time.
A third pressure line 32-3 is used to supply pressure at the instrument tip to clear out any material which is not to be operated upon but which may have been inadvertently moved into the cutting surface area of the tip by the suction pressure. With valves SV-9 and SV-8 open, pressure passes through controller stage 54, flow restricting element 52, SV-ll, filter and flow detector stages 50 and 49 into conduit 11 and the suction passage 14. This pressure is set by valve A-3 and read out on gauge P-3. This pressure flow is not a liquid.
The three pressure lines 32-1, 32-2 and 32-3 operate alternately. As described below, pressure line 32-2 operates with drain line -2 during a release" condition when the controller stage 54 is being cleared and a desired liquid pressure is to be maintained in the operation field; pressure line 32-] operates to supply fluid at a different pressure level (usually higher) at the same time suction can be supplied over a working line 70-1 so that the operating field (the eye) remain formed; and pressure line 32-3 operates to clear the instrument tip when no suction pressure is used.
SYSTEM OPERATION A. General A desired operating condition is produced by controlling the various servo valves. ln so doing, different flow conditions are established at the various conduits connected to the pressure and suction pumps and thereby at the tip of the instrument.
During the course of an operation, the usual sequence of flow conditions needed at the instrument tip is as follows:
l. The system is energized and a release condition is produced to clear out the controller stage. This condition is also produced to obtain a state of readiness before an actual operation takes place, or between different steps of an operation when the surgeon is relocating the instrument or pausing.
2. injection or irrigation fluid is supplied to the operation field.
operation. For example, switch S-l can be operated by the heel of the foot, energizing or de-energizing switch S-2, while the front of the foot can operate switches S-3A, 5-38 and 5-4. When S-3A 8-38 and 8-4 are to be operated, S-l must be released.
The electrical circuit of FlG. 3 can be either AC or DC operated. Where an AC source is utilized, it is preferred that suitable transformers and isolation be provided so that the system will be safe. This is in accordance with conventional techniques. The two input voltage lines to the relays are designated +V and -V. When a relay coil is connected across both lines, it has current flowing therethrough, the relay is energized and the respective servo valve is moved to an open flow condition to convey fluid or suction.
Relay R11, which operates SV-ll, is connected across lines V and +V at all times. It is energized unless the switch provided by the flow detector opens in response to an excessive flow rate condition.
C. Valve Operating Sequence Table 1 below shows the states of the various servo valves for the five operating modes of the system. A 1" signifies that the valves respective relay is energized and that the valve is in an open flow condition. An 0 signifies that the relay is de-energized and the valve is closed. SV-ll is not shown since it is open all the time unless closed by the flow detector.
TABLE I Mode Solenoid valve 1 2 3 4 s s 7 s 9 10 12 Released l 0 l l 0 l 0 0 0 l 0 irrigation l 0 l l 0 0 l 0 0 O 0 lrr+SLlction 0 l 0 0 0 0 l 0 0 0 l lrr+ Max Suction.... 0 l 0 0 0 0 l 0 0 0 0 Rel. Reversed Flo l 0 0 0 l 0 0 l l 0 0 3. injection or irrigation fluid is supplied and aspiration (suction) is utilized at the same time.
4. lnjection or irrigation fluid is supplied and aspiration with suction at a different level (usually higher) than in mode (3) is utilized.
5. A reverse flow of fluid is supplied to the suction passage of the instrument from the controller stage to clear the tip. a
The five operating modes and the manner in which they are produced by the various valves are described below.
B. Electrical System An electrical circuit for operating the pressure and suction system of FIG. 1 is schematically shown in H6. 3. The electrical circuit comprises a number of solenoids (sometimes called relays) which operate. and are usually part of the respective servo valves designated SV in FIG. I. The solenoids are designated with the same number as the corresponding servo valves with a prefix letter R, for example, solenoid R2 operates servo valve SV-Z.
The electrical circuit includes several switches which are operated by the person utilizing the system. Switch 5-! controls a relay K. which in turn operates a gauged switch 5-2 with two movable contact arms. Switches S-3A and 5-38 are individually operated as is switch 8-4. The switches can be of any suitable type. Preferably, they are operated by foot controls so that the user of the system will have his hands free to perform the D. Mode (l) Released Condition When the system is first turned on, the switches are in the position shown in FIG. 3, resulting in the energization of valves SV-l, SV-3, SV-4, SV-6 and SV-l0.
This is shown with respect to Table I.
With valves SV-l0 and SV-6 open, pressure is supplied over line 32-2 to the fluid container 37 and fluid to the instrument through conduct 40. Fluid is thus being delivered into the operational field, the pressure being set by the adjustment of the valve A-4 and the pressure being read out on the gauge P-l. There is no pressure flow in either of lines 32-1 or 32-3 since valves SV-7 and SV-9 are closed.
In the suction portion of the system, valves SV-l, SV-3 and SV-4 are open to provide suction from line -2 through controller stage 54 to the atmosphere through SV-3 to empty the stage into the waste bottle 56.
The mode (1) condition is usually needed when the instrument is in the operational field and suction at the instrument tip is not used. The pressure in line 32-2 pressurizes the fluid in container 37 to the extent required to maintain a desired quantity of liquid in the operational field. The amount of pressure is adjusted by the valve A-4 and observed on gauge P-l. In the case of an operation performed in the eye or other closed member, the liquid pressure inside the eye is maintained high enough to keep the eye formed in its proper shape at all times for better visualization. Without the pressure in line 32-2 in this mode, the eye would be drained through the fluid injection line 40 by gravity. The supply of liquid also compensates for losses of liquid from the eye through the incision or leakage through the instrument due to possible differential pressures between the instrument tip and the controller stage 54.
The suction in drain line 70-2 evacuates air from the waste bottle 56. The bottle being connected to the controller stage 54, which in turn communicates with the atmosphere through SV-3, a differential pressure is created which moves residual liquid, if present, from the controller stage to waste bottle 56.
E. Mode (2) Injection or Irrigation To place the system in mode (2), switch S-3A is moved from the contact position shown in FIG. 3 to the lower position. With the electrical circuit in this condition, valves SV-l, SV-3, SV-4 and SV-7 are open. The difference between mode (I and mode (2), insofar as the pressure portion of the system is concerned, is that pressure line 32-2 is closed and line 32-1 is open. The container 37 receives pressure on line 32-] through SV-7 and liquid is supplied through line 40 to the instrument and the operational field. The pressure of liquid in the operational field is proportional to the pressure in the liquid containing bottle 37. In the case ofan eye being operated upon, the pressure should be within limits not harmful to its structure.
The pressure in container 37 is set by adjustment valve A- and is observed on pressure gauge P-l. The pressure at the tip of the instrument varies when the two portions of the instrument are either receiprocated or turned to close the opening, such as when tissue is being cut, or when suction is applied to the operational field. A constant fluid pressure in the container 37 is maintained through the line 32-1.
During mode (2) operation, the suction flow of mode (l is maintained, as described above, i.e. the controller stage 54 is being cleared through the drain line 70-2.
F. Mode (3) Irrigation and Suction In mode (3), irrigation or injection of fluid is to take place and a suction force is to be produced at the tip of the instrument 10 for aspiration of the fluid or tissue in the operation field. A differential pressure, caused by supplying fluid from container 37 and having suction at the same time, creates a flow from the operation field to the controller stage 54 for tissue removal. Tissue from mass 25 is aspirated into the opening of the instrument tip where it is to be separated by the cutting action of the instrument or emulsification, or where it is to be retained against the instrument for treatment such as, for example, by another instrument (not shown).
In mode (3), the electrical circuit is conditioned'so that the contacts of switch 8-1, 8-2 and 8-4 are left in the position shown in FIG. 3 and both contacts S-3A and 8-38 are moved downward. This energizes the respective relays to open valves SV-2, SV-7 and SV-l2. With valves SV-7 open, pressurized fluid is produced in the operation field by the pressure in line 32-] as in mode (2).
Valve SV-l is now closed and there is no suction in drain line 70-2. However, SV-2 is open and suction is supplied to the instrument over working line 70-1. The path is through container 60, SV-2 controller stage 54 and conduit 11 to the instrument where it is available at the tip opening 19. The suction pressure is read on gauge P-2.
Adjustment valve A-2 located in the line sets a high level reference pressure for the suction. Since SV-IZ is also open in mode (3). adjustment valve A-l is also available to set a lower level suction pressure which is used in mode (3) at the instrument tip.
In mode (3) the controller stage 54 accumulates the liquid and small particles of tissue suspension evacuated from the operation field and not removed by filter 50. When suction at the instrument tip is no longer needed, the operator switches the system back into mode (I) so that the controller stage 54 can be evacuated in the manner previously described. As can be seen, the suction lines 70-1 and 70-2 are operated altemately, 70-1 operated to move tissue from the operation field into the controller stage and 70-2 to clear the controller stage 54. Line 70-1 and its components preferably are of small volume and low resistance to evacuate the controller stage 54 in the shortest possible time.
G. Mode (4) Irrigation With Maximum Suction Pressure When a higher suction force is required at the end of the instrument tip than is provided in mode (3), this is accomplished by closing SV-l2. This takes adjustment valve A-l out of the system and sets the suction pressure at the reference level set by valve A-2. To obtain the mode (4) condition, the switches of the circuit of FIG. 3 are operated in the same manner as in mode (3) with the exception of switch S-4. That is, switches S-1 and 8-2 are as shown, the contacts S-3A and 8-38 are moved down and 8-4 is open. In this configuration only valves SV-2, SV-7 are open.
The difference between modes (3) and 4) is that in the former, both adjustment valves A-l, A-2 are available, A-l setting a lower reference level suction pressure than A-2. With SV-12 closed, only valve A-2 is in the system. If A-2 is adjusted to be closed, the maximum suction pressure of the source 70 is available.
H. Mode (5) Released Condition Plus Reverse Flow In some instances, tissue is inadvertently aspirated into the instrument l0 and has to be ejected. Here, a flow reverse to the one generated by suction is to be created in conduit 11 and in the passage 14 of instrument l0 normally receiving suction. To accomplish this, pressure is supplied over line 33-3 to controller stage 54 to send pressure through conduit 11 and passage 14 of the instrument l0 and out through the tip opening 19.
In mode (5) switch 5-] is closed thereby energizing relay K1 and moving the two contact arms of 8-2 to the down position. Switches S-3A, 5-38 and 8-4 are as shown in FIG. 3. With this circuit, SV-l, SV-S, SV-8 and SV-9 are open. The two pressure lines 32-1 and 32-2 are both closed since their respective valves SV-7 and SV-lO are closed. Since SV-9 and SV-8 are open, pressure is supplied to the controller 54, the quantity being adjusted by valve A-3 and read out on gauge Suction line 70-2 is still open, SV-l being open, and SV-S is open to vent this line and waste container 56 to atmospheric pressure. Valves SV-2, SV-3 and SV-4 are closed so that the pressure in line 33-3 does not back up into the suction source or atmosphere through controller 54. The pressure flows over line 32-3, valves SV-9 and SV-8, the controller 54 and the other elements to conduit 11. This provides pressure to instrument passage 11 to clear the tip.
SYSTEM COMPONENTS A brief description of the various components of the system, not already described, is given below.
A. Flow Detector A flow detector 49 is located in front of the filtering stage and as close to the instrument 10 as possible. The element 49 stops the flow of removed fluid from the operating field, if it exceeds a given value. This protects the operating field from being over-drained. In the case of an eye, if the outflow of fluid is greater than the inflow, the eye will collapse.
The flow detector 49 operates solenoid valve SV-ll located after the filtering stage 50 and also close to the instrument. The fluid removed from the operating field passes through SV-ll after it has been filtered to prevent clogging of SV-Il and the flow-restricting element 52. Valve SV-ll is wired in the electrical circuit to be normally open. If the flow exceeds a certain rate, a switch is actuated to close SV-l 1. Due to the wiring of SV-l 1, if power fails, valve SV-II will close, blocking flow of the suction lines. This is a fail safe type of arrangement.
' Flow detector 49 is basically a pressure operated switch and any suitable switch of this type can be used. One such type includes a membrane, or diaphragm, which is moved in response to the differential pressure caused by the liquid flowing through the switch. The diaphragm in turn actuates a switch to the open position when the flow rate is excessive. Another type of switch is a differential pressure transducer which measures the pressure at inlet and outlet ports by strain gauges and produces an electrical signal when the difference exceeds a predetermined value corresponding to an excessive flow rate. This signal in turn actuates a solid state switching device which is in circuit with the relay coil Rll.
The line, or conduit, 11 connecting the central member 12 of the instrument to the flow detector and filtering stage is preferably of an uncollapsible material,
for example, a heavy walled plastic, having a small internal bore diameter. The volume of liquid carried by this line should be small to prevent changes in its shape due to elasticity caused by the storage of energy which is released or accumulated when the flow rate is changed. This would add a time delay between controller 54 and the tip opening.
B. Filter Stage One form of device for the filtering stage 50 is shown in FIGS. 7 and 8. The filter is used to prevent small particles of tissue from entering the flow-restricting element 52 and clogging its orifices, thus changing the rate of flow, or stopping it entirely. Slowing down the flow rate at a given suction pressure increases the time needed to achieve a desired suction force at the instrument tip while stopping the suction flow prevents a force from being built up at-the instrument tip and thereby prevents particles from being removed from the operating field.
The filter stage shown' in FIGS. 7 and 8 includes a cylindrical sleeve 110 having upper and lower covers 110 and 11b each with a respective O-ring 113 to provide a seal. Sleeve 110 is preferably made of glass and is removable from covers 111 for easy cleaning. An inlet passage 112 is formed in the bottom cover member lllb and has an extension 1120 which extends up wardly part way within the housing 110. Fluid from the flow detector 52 flowing into the housing 110 passes upwardly through a coarse mesh screen 114 and a finer mesh screen 116 which are spaced apart in the upper portion of housing 110. The two screens 114 and 116 are held in a jig or fixture 118 having flow passages 119 in its central portion to provide a fluid flow path between screens 114 and 116.
The fixture 118 fits around a central conduit 120 and rests on a shoulder 120a. The conduit 120 extends for substantially the entire length of the housing and its ends are held in respective recesses 113a and ll3b in the top and bottom covers 1114' and lllb. Conduit 120 has a plurality of openings 122 located above the fine mesh screen 116 in a conical depression 123 in the upper cover 111a to prevent an air cushion from building up, which would introduce a time delay. The lower portion of conduit 120 fits into an outlet passage 124 in the bottom cover lllb.
Fluid enters through passage 112 from flow detector 52. After passing through filter screens 114 and 116, the fluid enters the conduit openings 122, flows down its length and leaves the filter through the outlet 124 to valve SV-l 1.
The two different size mesh screens are used so that the lower, coarse mesh one, 114 retains only large pieces of removed tissue and the upper, fine mesh one, 116 retains smaller pieces. The mesh size of screen 116 is smaller than the diameter of the smallest orifice 0f the flow-restricting element 52, to be described. The two filter screens shear coagulated tissue loose from the liquid to decrease the possibility of clogging of the remainder of the suction system.
The filter element 50 is preferably used in a vertical position as shown in FIGS. 7 and 8 so that the flow of liquid is upwardly. Therefore, particles with density larger than the liquid solution and which cannot be moved upward by the differential pressure causing the flow are suspended close to the bottom of the housing 110 or rest on the lower cover lllb and do not load the filter screens.
C. ControllerStage H i The controller stage 54 is the portion of the system where operational conditions produced by the suction source 70 or pressure source 30 during a return flow are presented at the desired pressure level. One suitable device for performing this is shown in FIG. 5.
During an operation, conditions in the controller stage 54 are transmitted through a non-interrupted column of liquid to the tip of the instrument 10 through the flow-restricting element 52, SV-ll, filtering stage 50 and flow detector 49. Any air bubbles which accumulate and release energy, change the flow rate of fluid through the instrument. In the case of an eye operation, if the outflow of liquid from the eye cannot be controlled, the eye may collapse and the operation be unsuccessful. W
The controller stage 54 is small in volume so that conditions inside can change substantially instantaneously, that is, pressure can be released and vacuum obtained, and vice versa, in a relatively short time and also so that the desired pressure or vacuum equilibrium level can be reached in a short time. Controller stage 54 is located as close as possible to the instrument 10, in terms of the volume of liquid between the instrument and controller stage 54. This minimizes time delays between activating a control of the system and obtaining a desired condition in stage 54 and at the instrument tip.
Referring to FIGS. and 6, the controller stage 54 has a cylindrical sleeve 130, which is also preferably made of glass, whose top and bottom are sealed by covers 133a and 133b having O-rings 134. The lower cover 133b is formed with an inlet coupling and passage 135 which is coupled to receive fluid flow from the flow restrictor 52.
A central conduit 137 has its bottom end fastened to cover 1331) and its top end in cover 1330 where it communicates with an outlet coupling and passage 139 which continues through 1330. A number of openings 140 are formed near the upper end of conduit 137 adjacent a conical recess 142 in upper cover 1330 to allow a maximum amount of fluid to enter. The outlet 139 is connected to SV-2, SV-3 and SV-S. Here, a suitable coupling member is used.
Another outlet passage and coupler 144 is formed in the lower cover 1331; to communicate with the interrior of housing 130 and with SV-4.
In operation, when there is no suction on the working line 70-1, such as in modes l and (2), SV-2 is closed closing off the working line 70-1. Since SV-3 is open and vented to the atmosphere and SV-4 is also open, a flow path is created between the atmosphere and suction pressure line 70-2 through SV-3, coupling 139, openings 140 in central conduit 137 and out coupling 144. This evacuates and drains out the interior of the controller housing 130 into the waste bottle 56.
When suction is being applied to the instrument tip, such as in modes (3) and (4), SV4 is closed closing off controller outlet 144. The flow path is now from instrument through the flow restricting element 52 and into controller housing 130 through inlet coupling 135. Air is evacuated through the openings 140 conduit 137 and passes to the small safe bottle 60 through outlet coupling 139 and SV-2. Liquid is allowed to collect in the controller stage. During this time, SV-4 closes off suction line 70-2; SV-3 closes off the vent; and SV-8 closes off line 32-3.
In mode (5), pressure enters from line 32-3 and through SV-8 into the housing 130 through coupling 139. Since SV-2, SV-3 and SV-4 are all closed, the pressure can only go to the flow restrictor 52 and thence to the instrument 10 over the suction line conduit 11.
D. Flow Restrictor The flow-restriction element 52, located between the valve SV-ll and the controller stage 54, determines the maximum flow rate from the operating field to the controller stage 54 at a selected suction pressure. The flow restricting element can be a simple needle valve where the flow is regulated by the position of the needle. In a preferred embodiment of the invention, two flow-regulating orifices of different diameters and an arrangement to switch between the two is utilized. This is shown, in FIGS. 9-11 where the element 52 includes a housing 152 having a central bore 154 in which a shaft 155 is slidable and rotatable. Shaft 155 has a central passage 156 through the upper portion thereof which communicates with a pair of annular orifices 157 and 158 which have respectively different sized diameter flow passages to the central passage 156.
The shaft has a lug 159 (FIG. 10) fastened thereto which rides in one or the other of upper and lower arcuate tracks, or grooves 160a and 16012 which are formed in the bonnet 162 of the housing. The two tracks 160a and 160!) are joined by a vertical track 1600. The bonnet 162 is held to housing 152 by a member of screws 163. To move the shaft 155 from the position of FIG. 9 to that of FIG. 11, the shaft control knob 155a is turned to bring shaft lug 159 into the vertical track 1600 and the knob is then pulled down to bring the lug into bottom arcuate track 16Gb. Knob 155a is then turned to move the lug 159 away from vertical track 160a. To move from the position of FIG. 11 to that of FIG. 9, the reverse procedure is followed. The maximum flow rate is set by setting the position of the shaft.
Housing 152 has an inlet coupling and passage 165 which receives fluid from valve SV-11. The fluid goes through one of the orifices 157 or 158 on shaft 155, the shaft central passage 156 and out of the housing through a passage 166 formed in the upper part of the housing and an outlet passage and coupling 167. The latter is connected to the inlet of the controller stage 54.
In the position shown in FIG. 9, the shaft furthest into the housing, flow communication is made between the inlet 165 and the orifice 157 having the smallest diameter passage into the shaft central passage 156. In the position shown in FIG. 11, shaft 155 aligns the inlet 165 with the orifice 158 having the maximum diameter flow passage.
The device shown in FIGS. 9-11 is preferred as the restricting element instead of a needle valve since a plurality of orifices have a better chance of permitting passage of particles to the waste bottle more than twice the size of particles which would pass through a needle valve having the same passage cross-section.
E. Miscellaneous Components It is preferred that flexible plastic tubes be used for the conduits 11 and 40 connected to the instrument and in the other portions of the system where possible. Where these tubes are to be connected to metal couplings, for example at the stoppers of the various bottles 37, 56 and 60, and between the various stages 49, 50, 52 and 54, for easy plug-in attachment springloaded connectors are preferably used.
The various bottles are preferably made of glass and are commercially available with sterile contents to be pressurized. The stoppers for the bottles preferably are stainless steel caps, which can be sterilized, and which are screwed on. Any other suitable material can be used. The various couplings or tubes which extend into the bottle can be of plastic or metal.
The pressure gauges P-1, P2 and P-3 are of any suitable conventional type.
SYSTEM OF FIG. 2
A. General Operation In some cases it is desired to introduce liquid into the operating field through the opening 23 of the instrument. In the system of FIG. 1, the suspension of liquid and tissue previously aspirated would be conveyed back into the operating field. FIG. 2 shows a system capable of providing clean fluid through opening 23.
The system of FIG. 2 is similar to that of FIG. 1 with the exception of the pressure line 32-3. The same reference numbers have been used where applicable.
In FIG. 2, pressure line 32-3 pressurizes a fluid bottle 200 through SV-9 and SV-8. The bottle contains fluid of any desired type. Adjustment valve A-3 sets the pressure in the bottle which is read out on gauge P-3. The output of bottle 200 is applied through a conduit 201 to a coupling (not shown) in line 11 to the suction member 14 of the instrument. The coupling is preferably located as close to the inlet of the instrument as possible.
As is described below, the fluid from bottle 200 is provided in mode (5) operation only. To prevent the fluid from bottle 200 in conduit 201 from flowing back into the flow detector and controller stage 54 over line 11 during mode (5) and also to preclude suction from reaching conduit 201 during the other modes of operation, a suitable shut-off arrangement (not shown) is utilized between the coupling for lines 11 and 201 and the flow detector 52 and bottle 200. This arrangement can be a clamp in each line which is actuated manually or electrically to close off one line when the other is left open. A simple arrangement is a pressure type clamp which operates selectively to close off one of the lines 11 or 200 while at the same time opening the other. This can be a rotatable member operating to deform the wall of the line, which is of plastic material, to a sufficient extent to close it.
B. Electrical Circuit The electrical circuit for the system of FIG. 2 is shown in FIG. 4. The same reference characters for the components of the circuit of FIG. 2 are used.
As seen, R11 to operate SV-ll is wired as in FIG. 2 and operates in the same manner when power is supplied to the system. The circuit of FIG. 4 has a switch 8-5 which controls a relay K5 and its three sets of contacts S-5A, 8-53 and S-SC. Another switch S-6 controls a relay K-6 and its contacts S-6A, 8-68 and S-6C. 8-4 is again provided. As before, the switches 8-4, 8-5 and 8-6 can be located on a foot controlled switch.
The various operating modes of the system of FIG. 2, which are produced by the circuit of FIG. 4, are the same as that previously described for the system of FIG. I with the exception that mode (2) is not available. The valve operating table for the circuit of FIG. 2 also applies here.
C. System Operation for FIG. 2
The four operating modes are described below. Mode (2) of FIG. I, irrigation only, is not available.
I. Released In this mode, switch 5-4 is closed and switches S-5 and 8-6 are open so that the two relays K-S and K-6 are de-energized and the relay contacts are as shown in FIG. 4. Therefore, valves SV-I, SV-3, SV-4, SV-6 and SV-l are open. The operation of the system is as described with respect to FIGS. 1 and 2 for mode (I).
2. Irrigation and Suction In this mode, switches S-4 and 5-5 are closed and switch S-6 open. This energizes relay K-S so that the contacts S-SA, 8-58 and S-SC are moved down. This opens valves SV-2, SV-7, and SV-l2. The operation of the system in this mode is as described with respect to FIGS. 1 and 2 for mode (2).
3. Irrigation and Maximum Suction In this mode switch 8-5 is left closed. as in mode (3 and switch 8-4 is opened in addition to switch S-6.
Valve SV-l2 is now closed leaving only SV-2 and SV-7 opened so that irrigation and maximum suction are applied. The operation is the same as mode (3) of FIGS. 1 and 2.
4. Reverse Flow In this mode, switch 8-4 is again closed, switch 8-5 is opened and switch 8-6 is now closed. This energizes relay K-6 and moves contacts S-6A, 8-68 and S-6C down while relay K-5 is de-energized so that contacts S-SA, 8-53 and S-5C are in the up position. Valves SV-l, SV-S, SV-8 and SV-9 are now open.
In this configuration, pressure lines 32-1 and 32-2 are closed. Pressure is applied over line 32-3 through SV-9 and SV-8 to the container of clear fluid 200 and applied over line 201 to the suction conduit 11 of the instrument. This fluid can be used to clear tissue from the opening 23 of the instrument and/or provide additional fluid to the operating area. Valves SV-l and SV-5 operate as previously described with respect to FIGS. 1 and 2 for mode (5).
As should be apparent, a novel system has been described for providing suction and/or pressure to an operating field under the selective control of the operator.
What is claimed is:
1. Apparatus for aspirating fluid and any solid material entrained therein from an operating field comprising a source of suction pressure, controller means having an inlet and an outlet, first conduit means connected between said controller inlet and the source of suction pressure, second conduit means connected to the controller outlet and having an end through which the fluid to be aspirated from the operating field enters, means for selectively controlling the flow of the suction pressure from the source to said controller means 'to produce suction pressure at the end of said second conduit means, and means connected between said source of suction pressure and said controller means for removing the fluid aspirated from the operating field from said controller means while removing the suction pressure from said second conduit means.
2. Apparatus as in claim 1 wherein said means for selectively controlling the flow of the suction pressure includes means for selectively producing two different rates of suction flow.
3. Apparatus as in claim 1 further comprising means connected in said second conduit means for filtering particulate material from the aspirated flu id 4. Apparatus as in claim 1 further comprising means connected in said second conduit means for selectively restricting the flow rate of the aspirated fluid to said controller rneans.
5. Apparatus as in claim 4 wherein said flow rate restricting means includes means having two different sized orifice openings, and means for selecting one of said orifice openings to achieve the desired flow rate.
6. Apparatus as in claim 1 further comprising means connected in said second conduit means for sensing the pressure differential of the fluid between said one end of said second conduit means and said controller means and for closing the suction pressure flow in said second conduit means when the pressure differential sensed exceeds a predetermined value,
7. Apparatus as in claim 1 further comprising means for supplying fluid under pressure including a third conduit means having an outlet end at which the pressurized fluid is produced, said means for selectively controlling the flow of suction pressure to said controller means also selectively controlling the flow of pressurized fluid at the outlet end of said third conduit means.
8. Apparatus as in claim 7 wherein said means for selectively controlling the flow of suction pressure and the flow of pressurized fluid operates to provide fluid under pressure from said third conduit means at the same time that the fluid in said controller means is being removed.
9. Apparatus as in claim 7 wherein said means for selectively controlling the flow of suction pressure and the flow of fluid under pressure operates to provide suction pressure at said end of said second conduit and pressurized fluid at said outlet end of said third conduit means at the same time.
10. Apparatus for aspirating fluid and any solid material entrained therein from an operating field comprising a source of suction pressure, controller means having an inlet and an outlet, first conduit means connected between said controller inlet and the source of suction pressure, second conduit means connected to the controller outlet and having an end through which the fluid to be aspirated from the operating field enters, means for selectively controlling the flow of the suction pressure from the source to said controller means to produce suction pressure at the end of said second conduit means, and means for supplying fluid under pressure including a third conduit means having an outlet end at which the pressurized fluid is produced, said means for selectively controlling the flow of suction pressure to said controller means also selectively controlling the flow of pressurized fluid at the outlet end of said third conduit means to provide suction pressure at said end of said second conduit and pressurized fluid at said outlet end of said third conduit means at a first pressure level at the same time and also operates in another mode to provide pressurized fluid from said out-.
let of said third conduit means at a second pressure level.
11. Apparatus as in claim 10 wherein said means to selectively control the flow of suction pressure operates to remove the contents from the controller means while removing the suction pressure from said second conduit means.
12. Apparatus for supplying fluid to and aspirating fluid and solid material entrained therein from an operating field comprising in combination an instrument for removing material from a larger mass, an aspirating passage and a fluid supply passage formed in said instrument, suction pressure fluid supply means, pressurized fluid supply means, first conduit means connected between said source of suction pressure fluid and said aspirating passage of said instrument, second conduit means connected between said pressurized fluid supply means and said fluid supply passage, means for selectively controlling the flow in said first and second conduit means to selectively provide suction pressure fluid in said aspirating passage and pressurized fluid in said fluid supply passage, means located in the flow path of said first conduit means for sensing the differential pressure between the outlet of the aspirating passage and the suction pressure of the source, means operated by said sensing means for closing said first conduit means when said differential pressure exceeds a predetermined amount, and means for clearing material from said first conduit means without losing the suction pressure in said aspirating passage.
13. Apparatus as in claim 12 further comprising first container means in the path of said second conduit means between said pressurized fluid supply means and said fluid supply passage into which the pressurized fluid is applied, and respective means in said first and said second conduit means to adjust the suction pressure and the pressure of the fluid in said first container means respectively.
14. Apparatus as in claim 13 further comprising means for also operating said selective controlling means to apply pressurized fluid from the outlet of said first container means at the same time that suction pressure is removed from said first conduit means.
15. Apparatus as in claim 12 further comprising means located in the flow path of said first conduit means for selectively restricting the flow of the suction pressure.
16. Apparatus for supplying fluid to and aspirating fluid and solid material entrained therein from an operating field comprising in combination an instrument for removing material from a larger mass, an aspirating passage and a fluid supply passage formed in said instrument, suction pressure fluid supply means, pressurized fluid supply means, first conduit means connected between said source of suction pressure fluid and said aspirating passage of said instrument, means for applying fluid under pressure to said first conduit means including third conduit means connected between said pressurized fluid supply means and said first conduit means, second conduit means connected between said pressurized fluid supply means and said fluid supply passage, means for selectively controlling the flow in said first and second conduit means to selectively provide suction pressure fluid in said aspirating passage and pressurized fluid in said fluid supply passage and means for clearing material from said first conduit means without losing the suction pressure in said aspirating passage.
17. Apparatus as in claim 16 wherein said selectively operated flow control means operates to remove suction pressure from said first conduit means when fluid under pressure is supplied from said third conduit means to said first conduit means.
18. Apparatus as in claim 16 wherein said means for applying fluid under pressure to said first conduit means supplies gas under pressure.
19. Apparatus as in claim 16 wherein said means for applying fluid under pressure to said first conduit means includes means for supplying a liquid.
i k i l

Claims (19)

1. Apparatus for aspirating fluid and any solid material entrained therein from an operating field comprising a source of suction pressure, controller means having an inlet and an outlet, first conduit means connected between said controller inlet and the source of suction pressure, second conduit means connected to the controller outlet and having an end through which the fluid to be aspirated from the operating field enters, means for selectively controlling the flow of the suction pressure from the source to said controller means to produce suction pressure at the end of said second conduit means, and means connected between said source of suction pressure and said controller means for removing the fluid aspirated from the operating field from said controller means while removing the suction pressure from said second conduit means.
2. Apparatus as in claim 1 wherein said means for selectively controlling the flow of the suction pressure includes means for selectively producing two different rates of suction flow.
3. Apparatus as in claim 1 further comprising means connected in said second conduit means for filtering particulate material from the aspirated fluid.
4. Apparatus as in claim 1 further comprising means connected in said second conduit means for selectively restricting the flow rate of the aspirated fluid to said controller means.
5. Apparatus as in claim 4 wherein said flow rate restricting means includes means having two different sized orifice openings, and means for selecting one of said orifice openings to achieve the desired flow rate.
6. Apparatus as in claim 1 further comprising Means connected in said second conduit means for sensing the pressure differential of the fluid between said one end of said second conduit means and said controller means and for closing the suction pressure flow in said second conduit means when the pressure differential sensed exceeds a predetermined value.
7. Apparatus as in claim 1 further comprising means for supplying fluid under pressure including a third conduit means having an outlet end at which the pressurized fluid is produced, said means for selectively controlling the flow of suction pressure to said controller means also selectively controlling the flow of pressurized fluid at the outlet end of said third conduit means.
8. Apparatus as in claim 7 wherein said means for selectively controlling the flow of suction pressure and the flow of pressurized fluid operates to provide fluid under pressure from said third conduit means at the same time that the fluid in said controller means is being removed.
9. Apparatus as in claim 7 wherein said means for selectively controlling the flow of suction pressure and the flow of fluid under pressure operates to provide suction pressure at said end of said second conduit and pressurized fluid at said outlet end of said third conduit means at the same time.
10. Apparatus for aspirating fluid and any solid material entrained therein from an operating field comprising a source of suction pressure, controller means having an inlet and an outlet, first conduit means connected between said controller inlet and the source of suction pressure, second conduit means connected to the controller outlet and having an end through which the fluid to be aspirated from the operating field enters, means for selectively controlling the flow of the suction pressure from the source to said controller means to produce suction pressure at the end of said second conduit means, and means for supplying fluid under pressure including a third conduit means having an outlet end at which the pressurized fluid is produced, said means for selectively controlling the flow of suction pressure to said controller means also selectively controlling the flow of pressurized fluid at the outlet end of said third conduit means to provide suction pressure at said end of said second conduit and pressurized fluid at said outlet end of said third conduit means at a first pressure level at the same time and also operates in another mode to provide pressurized fluid from said outlet of said third conduit means at a second pressure level.
11. Apparatus as in claim 10 wherein said means to selectively control the flow of suction pressure operates to remove the contents from the controller means while removing the suction pressure from said second conduit means.
12. Apparatus for supplying fluid to and aspirating fluid and solid material entrained therein from an operating field comprising in combination an instrument for removing material from a larger mass, an aspirating passage and a fluid supply passage formed in said instrument, suction pressure fluid supply means, pressurized fluid supply means, first conduit means connected between said source of suction pressure fluid and said aspirating passage of said instrument, second conduit means connected between said pressurized fluid supply means and said fluid supply passage, means for selectively controlling the flow in said first and second conduit means to selectively provide suction pressure fluid in said aspirating passage and pressurized fluid in said fluid supply passage, means located in the flow path of said first conduit means for sensing the differential pressure between the outlet of the aspirating passage and the suction pressure of the source, means operated by said sensing means for closing said first conduit means when said differential pressure exceeds a predetermined amount, and means for clearing material from said first conduit means without losing the suction pressure in said aspirating passage.
13. Apparatus as in claim 12 Further comprising first container means in the path of said second conduit means between said pressurized fluid supply means and said fluid supply passage into which the pressurized fluid is applied, and respective means in said first and said second conduit means to adjust the suction pressure and the pressure of the fluid in said first container means respectively.
14. Apparatus as in claim 13 further comprising means for also operating said selective controlling means to apply pressurized fluid from the outlet of said first container means at the same time that suction pressure is removed from said first conduit means.
15. Apparatus as in claim 12 further comprising means located in the flow path of said first conduit means for selectively restricting the flow of the suction pressure.
16. Apparatus for supplying fluid to and aspirating fluid and solid material entrained therein from an operating field comprising in combination an instrument for removing material from a larger mass, an aspirating passage and a fluid supply passage formed in said instrument, suction pressure fluid supply means, pressurized fluid supply means, first conduit means connected between said source of suction pressure fluid and said aspirating passage of said instrument, means for applying fluid under pressure to said first conduit means including third conduit means connected between said pressurized fluid supply means and said first conduit means, second conduit means connected between said pressurized fluid supply means and said fluid supply passage, means for selectively controlling the flow in said first and second conduit means to selectively provide suction pressure fluid in said aspirating passage and pressurized fluid in said fluid supply passage and means for clearing material from said first conduit means without losing the suction pressure in said aspirating passage.
17. Apparatus as in claim 16 wherein said selectively operated flow control means operates to remove suction pressure from said first conduit means when fluid under pressure is supplied from said third conduit means to said first conduit means.
18. Apparatus as in claim 16 wherein said means for applying fluid under pressure to said first conduit means supplies gas under pressure.
19. Apparatus as in claim 16 wherein said means for applying fluid under pressure to said first conduit means includes means for supplying a liquid.
US00208282A 1971-12-15 1971-12-15 System for controlling fluid and suction pressure Expired - Lifetime US3812855A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00208282A US3812855A (en) 1971-12-15 1971-12-15 System for controlling fluid and suction pressure
US475398A US3920014A (en) 1971-12-15 1974-06-03 Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00208282A US3812855A (en) 1971-12-15 1971-12-15 System for controlling fluid and suction pressure

Publications (1)

Publication Number Publication Date
US3812855A true US3812855A (en) 1974-05-28

Family

ID=22774003

Family Applications (1)

Application Number Title Priority Date Filing Date
US00208282A Expired - Lifetime US3812855A (en) 1971-12-15 1971-12-15 System for controlling fluid and suction pressure

Country Status (1)

Country Link
US (1) US3812855A (en)

Cited By (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900022A (en) * 1973-12-10 1975-08-19 Jerrold Widran Endoscope with uninterrupted flow purging system
US3902495A (en) * 1974-01-28 1975-09-02 Cavitron Corp Flow control system
US3920014A (en) * 1971-12-15 1975-11-18 Anton Banko Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field
US3930505A (en) * 1974-06-24 1976-01-06 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US3942519A (en) * 1972-12-26 1976-03-09 Ultrasonic Systems, Inc. Method of ultrasonic cryogenic cataract removal
US3955574A (en) * 1974-12-09 1976-05-11 Rubinstein Morton K Pumping system for catheter suction units
US3982541A (en) * 1974-07-29 1976-09-28 Esperance Jr Francis A L Eye surgical instrument
US4007742A (en) * 1974-06-03 1977-02-15 Surgical Design Corporation. Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field
US4014333A (en) * 1975-09-22 1977-03-29 Mcintyre David J Instrument for aspirating and irrigating during ophthalmic surgery
US4019514A (en) * 1974-06-03 1977-04-26 Surgical Design Corporation Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field
US4033349A (en) * 1976-04-13 1977-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Corneal seal device
US4052987A (en) * 1976-04-01 1977-10-11 Cavitron Corporation Automatic aspiration apparatus
US4090502A (en) * 1975-08-22 1978-05-23 Medical Institute Of Hoshokai Remote-controlled barium injection apparatus
US4168707A (en) * 1977-06-13 1979-09-25 Douvas Nicholas G Control apparatus for microsurgical instruments
US4180074A (en) * 1977-03-15 1979-12-25 Fibra-Sonics, Inc. Device and method for applying precise irrigation, aspiration, medication, ultrasonic power and dwell time to biotissue for surgery and treatment
US4184510A (en) * 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4314560A (en) * 1979-11-28 1982-02-09 Helfgott Maxwell A Powered handpiece for endophthalmic surgery
US4324243A (en) * 1979-11-28 1982-04-13 Helfgott Maxwell A Apparatus and process for aspirating and evacuating a surgical site
US4369785A (en) * 1980-02-21 1983-01-25 Contemporary Ocu-Flo, Inc. Surgical fluid flow system
US4395258A (en) * 1980-11-03 1983-07-26 Cooper Medical Devices Linear intra-ocular suction device
US4411652A (en) * 1981-08-21 1983-10-25 The Regents Of The University Of California Internally sterile pulsatile infusor system
US4465470A (en) * 1982-06-04 1984-08-14 Kelman Charles D Apparatus for and method of irrigating and aspirating an eye
EP0121277A1 (en) * 1983-03-25 1984-10-10 SIS-TER S.p.A. Automatic suction and pumping apparatus
US4589412A (en) * 1984-01-03 1986-05-20 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4654029A (en) * 1982-12-13 1987-03-31 Howmedica, Inc. Electronic drainage system
US4670006A (en) * 1984-10-16 1987-06-02 Sinnett Kevin B Fluid and air infusion device
US4710165A (en) * 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
EP0306445A1 (en) * 1987-08-26 1989-03-08 Orthoconcept S.A. Electric control circuit for a device to irrigate cavities of the body with a physiological liquid
US4832685A (en) * 1985-06-05 1989-05-23 Coopervision, Inc. Fluid flow control system and connecting fitting therefor
US4870964A (en) * 1988-06-16 1989-10-03 Paul F. Bailey, Jr. Opthalmic surgical device and method with image data reflected off of the eye
EP0348146A1 (en) * 1988-06-21 1989-12-27 Alcon Laboratories, Inc. Apparatus for injecting viscous fluid into the eye
US4921476A (en) * 1980-10-08 1990-05-01 Cavitron, Inc. Method for preventing clogging of a surgical aspirator
US4935005A (en) * 1985-06-05 1990-06-19 Nestle, S.A. Opthalmic fluid flow control system
US4973311A (en) * 1986-12-27 1990-11-27 Kabushiki Kaisha Toshiba Aspirator for endoscopic system
US5019037A (en) * 1989-07-06 1991-05-28 Alcon Laboratories, Inc. Pneumatic retinopexy injector
US5047009A (en) * 1987-09-22 1991-09-10 Vitreoretinal Development, Inc. Method and apparatus for ocular perfusion
US5120307A (en) * 1988-06-21 1992-06-09 Alcon Laboratories, Inc. Method for injecting viscous fluid into the eye to life retinal membrane
WO1992011814A1 (en) * 1991-01-03 1992-07-23 Costin John A Computer controlled smart phacoemulsification method and apparatus
US5157603A (en) * 1986-11-06 1992-10-20 Storz Instrument Company Control system for ophthalmic surgical instruments
US5160317A (en) * 1991-01-03 1992-11-03 Costin John A Computer controlled smart phacoemulsification method and apparatus
US5181916A (en) * 1991-04-26 1993-01-26 Sorenson Laboratories, Inc. Surgical probe and smoke eliminator
WO1993018802A1 (en) * 1992-03-20 1993-09-30 Alcon Surgical, Inc. Fluid flow and pressure control system
US5265639A (en) * 1992-12-22 1993-11-30 Boc Health Care, Inc. Magneto-pneumatic timing device
US5265638A (en) * 1992-12-22 1993-11-30 Boc Health Care, Inc. Magneto-pneumatic intermittent suction device
US5328456A (en) * 1990-11-13 1994-07-12 Nidek Co., Ltd. Irrigation and aspiration apparatus
US5429601A (en) * 1992-02-12 1995-07-04 American Cyanamid Company Aspiration control system
WO1995020374A1 (en) * 1994-01-28 1995-08-03 Allergan Method and apparatus for controlling irrigation and aspiration of fluids during surgical procedures on the eye
US5549139A (en) * 1989-10-27 1996-08-27 Storz Instrument Company Pneumatic controls for ophthalmic surgical system
US5562612A (en) * 1995-02-02 1996-10-08 Charles D. Kelman Apparatus and method for reverse flow irrigation and aspiration of interior regions of the human eye
US5591127A (en) * 1994-01-28 1997-01-07 Barwick, Jr.; Billie J. Phacoemulsification method and apparatus
US5725495A (en) * 1995-06-02 1998-03-10 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US5902267A (en) * 1996-08-09 1999-05-11 Medo; Elena M. Breast pump system using wall vacuum source
US5910139A (en) * 1996-08-29 1999-06-08 Storz Instrument Co. Numeric keypad simulated on touchscreen
US5997528A (en) * 1996-08-29 1999-12-07 Bausch & Lomb Surgical, Inc. Surgical system providing automatic reconfiguration
US6055458A (en) * 1997-08-28 2000-04-25 Bausch & Lomb Surgical, Inc. Modes/surgical functions
US6086576A (en) * 1996-08-29 2000-07-11 Bausch & Lomb Surgical, Inc. Automatically switching the termination of a communications bus
US6117126A (en) * 1996-08-29 2000-09-12 Bausch & Lomb Surgical, Inc. Surgical module with independent microprocessor-based communication
US6251113B1 (en) 1996-08-29 2001-06-26 Bausch & Lomb Surgical, Inc. Ophthalmic microsurgical system employing surgical module employing flash EEPROM and reprogrammable modules
WO2001087380A1 (en) * 2000-02-01 2001-11-22 Med-Logics, Inc. Pulsed vacuum cataract removal system
US20020029055A1 (en) * 1990-06-28 2002-03-07 Bonutti Peter M. Apparatus and method for tissue removal
US20020040246A1 (en) * 1991-08-12 2002-04-04 Bonutti Peter M. Tissue press and system
US6425883B1 (en) 1998-05-08 2002-07-30 Circuit Tree Medical, Inc. Method and apparatus for controlling vacuum as a function of ultrasonic power in an ophthalmic phaco aspirator
US6425905B1 (en) 2000-11-29 2002-07-30 Med-Logics, Inc. Method and apparatus for facilitating removal of a corneal graft
US6447491B1 (en) * 1999-06-18 2002-09-10 Genzyme Corporation Rolling seal suction pressure regulator, apparatus and system for draining a body cavity and methods related thereto
US6478781B1 (en) 2000-04-11 2002-11-12 Circuit Tree Medical, Inc. Anterior chamber stabilizing device for use in eye surgery
US20020173744A1 (en) * 1997-04-14 2002-11-21 Epstein Gordon Howard Medical suctioning apparatus and methods of use
EP1281377A2 (en) * 2001-08-03 2003-02-05 Circuit Tree Medical, Inc. Surgical flow restrictor and filter
US20030045934A1 (en) * 1991-08-12 2003-03-06 Bonutti Peter M. Method for tissue grafting
US6579255B2 (en) * 2001-07-31 2003-06-17 Advanced Medical Optics, Inc. Pressurized flow of fluid into the eye using pump and pressure measurement system
US20030146299A1 (en) * 2002-01-23 2003-08-07 Nobuo Suzuki Irrigation/aspiration apparatus
US20030196693A1 (en) * 2002-04-23 2003-10-23 Jeffrey Schwindt Pinch valve
US20030199787A1 (en) * 2002-04-23 2003-10-23 Jeffrey Schwindt Pneumatic circuit
US20030199786A1 (en) * 2002-04-23 2003-10-23 Jeffrey Schwindt Evaporation valve
US6663644B1 (en) 2000-06-02 2003-12-16 Med-Logics, Inc. Cutting blade assembly for a microkeratome
WO2004000130A2 (en) * 2002-06-24 2003-12-31 Bausch & Lomb Incorporated Adjustable fluid flow resistor
US6699285B2 (en) 1999-09-24 2004-03-02 Scieran Technologies, Inc. Eye endoplant for the reattachment of a retina
US6702832B2 (en) 1999-07-08 2004-03-09 Med Logics, Inc. Medical device for cutting a cornea that has a vacuum ring with a slitted vacuum opening
US20050182432A1 (en) * 2004-02-18 2005-08-18 Fanton Gary S. Apparatus and methods for clearing obstructions from surgical cutting instruments
US20050209561A1 (en) * 2004-03-22 2005-09-22 Raphael Gordon Method of detecting surgical events
US20050209560A1 (en) * 2004-03-22 2005-09-22 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US20050261715A1 (en) * 2004-03-22 2005-11-24 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20050267504A1 (en) * 2004-03-22 2005-12-01 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US20050277869A1 (en) * 2004-03-22 2005-12-15 Alcon, Inc. Method of operating an ultrasound handpiece
US6986753B2 (en) 1998-05-21 2006-01-17 Buivision Constant ocular pressure active infusion system
US6990982B1 (en) 1990-06-28 2006-01-31 Bonutti Ip, Llc Method for harvesting and processing cells from tissue fragments
US20060036180A1 (en) * 2004-08-12 2006-02-16 Mikhail Boukhny Ultrasonic handpiece
US20060041220A1 (en) * 2004-08-12 2006-02-23 Alcon, Inc. Ultrasound handpiece
US20060052666A1 (en) * 2004-09-03 2006-03-09 Atul Kumar Electromagnetically controlled tissue cavity distending system
US20060122557A1 (en) * 2004-08-27 2006-06-08 Atul Kumar Tissue cavity distending system with low turbulence
US20060122558A1 (en) * 2004-09-21 2006-06-08 Impact Instrumentation, Inc. Digitally controlled aspirator
US20060161189A1 (en) * 2002-09-27 2006-07-20 Harp Richard J Surgical file system with a visualization instrument
US20070010798A1 (en) * 2004-04-02 2007-01-11 The Regents Of The University Of California Device and systems for the intermittent drainage of urine and other biological fluids
US20070021713A1 (en) * 2004-01-19 2007-01-25 Atul Kumar System for distending body tissue cavities by continuous flow irrigation
US20070293844A1 (en) * 2005-09-28 2007-12-20 Nader Nazarifar Intraocular pressure control
US7311700B2 (en) 2000-11-29 2007-12-25 Med-Logics, Inc. LASIK laminar flow system
US20080058820A1 (en) * 2002-09-27 2008-03-06 Harp Richard J Reciprocating cutting tool
US20080058842A1 (en) * 1997-09-04 2008-03-06 Smith & Nephew, Inc. Surgical endoscopic cutting device and method for its use
US20080103433A1 (en) * 2005-09-28 2008-05-01 Nader Nazarifar Intraocular pressure control
US20080125697A1 (en) * 2006-09-14 2008-05-29 Alcon, Inc. Method of controlling an irrigation/aspiration system
US20080172076A1 (en) * 2006-11-01 2008-07-17 Alcon, Inc. Ultrasound apparatus and method of use
US20080281253A1 (en) * 2007-05-10 2008-11-13 Injev Valentine P Method of Operating an Ultrasound Handpiece
US20080312594A1 (en) * 2007-06-13 2008-12-18 Dana Llc Vacuum surge suppressor for surgical aspiration systems
US20090149802A1 (en) * 2007-12-07 2009-06-11 Ross Peter Jones Surgical System Including a Trap for Noise-Inducing Materials
US20090163853A1 (en) * 2007-12-20 2009-06-25 Cull Laurence J Surgical System Having Means for Pressurizing Venting Valve
US20100036256A1 (en) * 2008-08-08 2010-02-11 Mikhail Boukhny Offset ultrasonic hand piece
US20100094321A1 (en) * 2008-10-10 2010-04-15 Takayuki Akahoshi Ultrasound Handpiece
US20100145302A1 (en) * 2008-12-08 2010-06-10 Cull Laurence J Flow control system based on leakage
US20100324581A1 (en) * 2006-12-08 2010-12-23 Alcon, Inc. Torsional Ultrasound Hand Piece That Eliminates Chatter
US20110125332A1 (en) * 2009-11-20 2011-05-26 Halliburton Energy Services, Inc. Systems and Methods for Specifying an Operational Parameter for a Pumping System
US20110137232A1 (en) * 2009-12-09 2011-06-09 Alcon Research, Ltd. Thermal Management Algorithm For Phacoemulsification System
US20110257614A1 (en) * 2007-06-13 2011-10-20 Dana Llc Vacuum surge suppressor for surgical aspiration systems
US8414605B2 (en) 2011-07-08 2013-04-09 Alcon Research, Ltd. Vacuum level control of power for phacoemulsification hand piece
US20130158470A1 (en) * 2005-09-02 2013-06-20 Irras Ab Fluid Exchange Catheter System
US8623040B2 (en) 2009-07-01 2014-01-07 Alcon Research, Ltd. Phacoemulsification hook tip
US20140052082A1 (en) * 2012-08-20 2014-02-20 Precision Medical, Inc. Vacuum regulator with pre-set and calibration features
US8747439B2 (en) 2000-03-13 2014-06-10 P Tech, Llc Method of using ultrasonic vibration to secure body tissue with fastening element
US8784357B2 (en) 2010-09-15 2014-07-22 Alcon Research, Ltd. Phacoemulsification hand piece with two independent transducers
US8808329B2 (en) 1998-02-06 2014-08-19 Bonutti Skeletal Innovations Llc Apparatus and method for securing a portion of a body
US8814902B2 (en) 2000-05-03 2014-08-26 Bonutti Skeletal Innovations Llc Method of securing body tissue
US8845687B2 (en) 1996-08-19 2014-09-30 Bonutti Skeletal Innovations Llc Anchor for securing a suture
US8845699B2 (en) 1999-08-09 2014-09-30 Bonutti Skeletal Innovations Llc Method of securing tissue
US9060800B1 (en) 2001-10-26 2015-06-23 Smith & Nephew, Inc. Reciprocating rotary arthroscopic surgical instrument
US9125550B2 (en) 2004-08-27 2015-09-08 Smith & Nephew, Inc. Tissue resecting system
US9155454B2 (en) 2010-09-28 2015-10-13 Smith & Nephew, Inc. Hysteroscopic system
US9486562B2 (en) 2014-10-24 2016-11-08 Integrated Surgical, Llc Suction device for surgical instruments
US9549850B2 (en) 2013-04-26 2017-01-24 Novartis Ag Partial venting system for occlusion surge mitigation
US9561321B2 (en) 2011-12-08 2017-02-07 Alcon Research, Ltd. Selectively moveable valve elements for aspiration and irrigation circuits
US9770238B2 (en) 2001-12-03 2017-09-26 P Tech, Llc Magnetic positioning apparatus
US10076630B2 (en) 2012-04-24 2018-09-18 The Queen Elizabeth Hospital King's Lynn Nhs Foundation Trust Device for performing regional anesthesia
WO2019010273A3 (en) * 2017-07-07 2019-02-07 Ethicon Llc Features to promote removal of debris from within ultrasonic surgical instrument
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip
US10299803B2 (en) 2016-08-04 2019-05-28 Covidien Lp Self-aligning drive coupler
US10299819B2 (en) 2016-07-28 2019-05-28 Covidien Lp Reciprocating rotary surgical cutting device and system for tissue resecting, and method for its use
US20200054487A1 (en) * 2013-04-26 2020-02-20 Med-Logics, Inc. Tissue Removal Devices, Systems and Methods
US10631889B2 (en) 2014-12-16 2020-04-28 Covidien Lp Surgical device with incorporated tissue extraction
US10750931B2 (en) 2015-05-26 2020-08-25 Covidien Lp Systems and methods for generating a fluid bearing for an operative procedure
US10772652B2 (en) 2015-01-28 2020-09-15 Covidien Lp Tissue resection system
US10772654B2 (en) 2017-03-02 2020-09-15 Covidien Lp Fluid-driven tissue resecting instruments, systems, and methods
US10804769B2 (en) 2015-06-17 2020-10-13 Covidien Lp Surgical instrument with phase change cooling
US10799264B2 (en) 2015-06-18 2020-10-13 Covidien Lp Surgical instrument with suction control
US10821212B2 (en) 2015-07-13 2020-11-03 Conmed Corporation Surgical suction device that uses positive pressure gas
US10842350B2 (en) 2015-06-17 2020-11-24 Covidien Lp Endoscopic device with drip flange and methods of use thereof for an operative procedure
US10869684B2 (en) 2018-02-13 2020-12-22 Covidien Lp Powered tissue resecting device
US10898218B2 (en) 2019-02-25 2021-01-26 Covidien Lp Tissue resecting device including a motor cooling assembly
US10926007B2 (en) 2015-07-13 2021-02-23 Conmed Corporation Surgical suction device that uses positive pressure gas
US10945752B2 (en) 2019-03-20 2021-03-16 Covidien Lp Tissue resecting instrument including a rotation lock feature
US11065147B2 (en) 2018-10-18 2021-07-20 Covidien Lp Devices, systems, and methods for pre-heating fluid to be introduced into a patient during a surgical procedure
US11083481B2 (en) 2019-02-22 2021-08-10 Covidien Lp Tissue resecting instrument including an outflow control seal
US20210275353A1 (en) * 2020-03-05 2021-09-09 Chukyo Medical Co., Inc. Ophthalmic surgery instrument
US11154421B2 (en) 2018-04-20 2021-10-26 Johnson & Johnson Surgical Vision, Inc. System and method for providing pressurized infusion transfer reservoirs
US11154318B2 (en) 2019-02-22 2021-10-26 Covidien Lp Tissue resecting instrument including an outflow control seal
US11179172B2 (en) 2019-12-05 2021-11-23 Covidien Lp Tissue resecting instrument
US11191668B2 (en) 2013-03-14 2021-12-07 Johnson & Johnson Surgical Vision, Inc. System and method for providing pressurized infusion
US11197710B2 (en) 2018-10-26 2021-12-14 Covidien Lp Tissue resecting device including a blade lock and release mechanism
US11317947B2 (en) 2020-02-18 2022-05-03 Covidien Lp Tissue resecting instrument
US11357907B2 (en) 2017-02-10 2022-06-14 Johnson & Johnson Surgical Vision, Inc. Apparatus, system, and method of gas infusion to allow for pressure control of irrigation in a surgical system
US11376032B2 (en) 2019-12-05 2022-07-05 Covidien Lp Tissue resecting instrument
US11452806B2 (en) 2019-10-04 2022-09-27 Covidien Lp Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures
US11504271B2 (en) 2018-03-30 2022-11-22 Surgical Design Corporation Surgical hand-piece with a bottom fluid tube convertible from irrigation to aspiration
US11547782B2 (en) 2020-01-31 2023-01-10 Covidien Lp Fluid collecting sheaths for endoscopic devices and systems
US11547815B2 (en) 2018-05-30 2023-01-10 Covidien Lp Systems and methods for measuring and controlling pressure within an internal body cavity
US11553977B2 (en) 2019-05-29 2023-01-17 Covidien Lp Hysteroscopy systems and methods for managing patient fluid
US11571233B2 (en) 2020-11-19 2023-02-07 Covidien Lp Tissue removal handpiece with integrated suction
US11596429B2 (en) 2020-04-20 2023-03-07 Covidien Lp Tissue resecting instrument
US11737777B2 (en) 2020-02-05 2023-08-29 Covidien Lp Tissue resecting instruments
US11864735B2 (en) 2016-05-26 2024-01-09 Covidien Lp Continuous flow endoscope
US11883058B2 (en) 2019-03-26 2024-01-30 Covidien Lp Jaw members, end effector assemblies, and ultrasonic surgical instruments including the same
US11890237B2 (en) 2019-10-04 2024-02-06 Covidien Lp Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2564809A (en) * 1947-12-11 1951-08-21 Levene George Apparatus for conveying fluid under pressure to an interiorly located cavity
US2646042A (en) * 1951-05-18 1953-07-21 Hu Quang Hsi Medical apparatus
US3429313A (en) * 1966-02-01 1969-02-25 Ram Domestic Products Co Medical drainage pump
US3513846A (en) * 1967-03-29 1970-05-26 George T Gallo Urinary tract irrigator
US3517665A (en) * 1967-06-28 1970-06-30 Sheldon Edward E Negative pressure treatment device
US3572319A (en) * 1969-05-23 1971-03-23 Us Health Education & Welfare Intraocular pressure control system
US3693613A (en) * 1970-12-09 1972-09-26 Cavitron Corp Surgical handpiece and flow control system for use therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2564809A (en) * 1947-12-11 1951-08-21 Levene George Apparatus for conveying fluid under pressure to an interiorly located cavity
US2646042A (en) * 1951-05-18 1953-07-21 Hu Quang Hsi Medical apparatus
US3429313A (en) * 1966-02-01 1969-02-25 Ram Domestic Products Co Medical drainage pump
US3513846A (en) * 1967-03-29 1970-05-26 George T Gallo Urinary tract irrigator
US3517665A (en) * 1967-06-28 1970-06-30 Sheldon Edward E Negative pressure treatment device
US3572319A (en) * 1969-05-23 1971-03-23 Us Health Education & Welfare Intraocular pressure control system
US3693613A (en) * 1970-12-09 1972-09-26 Cavitron Corp Surgical handpiece and flow control system for use therewith

Cited By (309)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920014A (en) * 1971-12-15 1975-11-18 Anton Banko Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field
US3942519A (en) * 1972-12-26 1976-03-09 Ultrasonic Systems, Inc. Method of ultrasonic cryogenic cataract removal
US3900022A (en) * 1973-12-10 1975-08-19 Jerrold Widran Endoscope with uninterrupted flow purging system
US3902495A (en) * 1974-01-28 1975-09-02 Cavitron Corp Flow control system
US4019514A (en) * 1974-06-03 1977-04-26 Surgical Design Corporation Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field
US4007742A (en) * 1974-06-03 1977-02-15 Surgical Design Corporation. Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field
US3930505A (en) * 1974-06-24 1976-01-06 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US3982541A (en) * 1974-07-29 1976-09-28 Esperance Jr Francis A L Eye surgical instrument
US3955574A (en) * 1974-12-09 1976-05-11 Rubinstein Morton K Pumping system for catheter suction units
US4090502A (en) * 1975-08-22 1978-05-23 Medical Institute Of Hoshokai Remote-controlled barium injection apparatus
US4014333A (en) * 1975-09-22 1977-03-29 Mcintyre David J Instrument for aspirating and irrigating during ophthalmic surgery
US4052987A (en) * 1976-04-01 1977-10-11 Cavitron Corporation Automatic aspiration apparatus
US4033349A (en) * 1976-04-13 1977-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Corneal seal device
US4180074A (en) * 1977-03-15 1979-12-25 Fibra-Sonics, Inc. Device and method for applying precise irrigation, aspiration, medication, ultrasonic power and dwell time to biotissue for surgery and treatment
US4184510A (en) * 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4168707A (en) * 1977-06-13 1979-09-25 Douvas Nicholas G Control apparatus for microsurgical instruments
US4314560A (en) * 1979-11-28 1982-02-09 Helfgott Maxwell A Powered handpiece for endophthalmic surgery
US4324243A (en) * 1979-11-28 1982-04-13 Helfgott Maxwell A Apparatus and process for aspirating and evacuating a surgical site
US4369785A (en) * 1980-02-21 1983-01-25 Contemporary Ocu-Flo, Inc. Surgical fluid flow system
US4921476A (en) * 1980-10-08 1990-05-01 Cavitron, Inc. Method for preventing clogging of a surgical aspirator
US4395258A (en) * 1980-11-03 1983-07-26 Cooper Medical Devices Linear intra-ocular suction device
US4411652A (en) * 1981-08-21 1983-10-25 The Regents Of The University Of California Internally sterile pulsatile infusor system
US4465470A (en) * 1982-06-04 1984-08-14 Kelman Charles D Apparatus for and method of irrigating and aspirating an eye
US4654029A (en) * 1982-12-13 1987-03-31 Howmedica, Inc. Electronic drainage system
EP0121277A1 (en) * 1983-03-25 1984-10-10 SIS-TER S.p.A. Automatic suction and pumping apparatus
US4589412A (en) * 1984-01-03 1986-05-20 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4670006A (en) * 1984-10-16 1987-06-02 Sinnett Kevin B Fluid and air infusion device
US4832685A (en) * 1985-06-05 1989-05-23 Coopervision, Inc. Fluid flow control system and connecting fitting therefor
US4935005A (en) * 1985-06-05 1990-06-19 Nestle, S.A. Opthalmic fluid flow control system
US4710165A (en) * 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
US5455766A (en) * 1986-11-06 1995-10-03 Storz Instrument Company Control system for ophthalmic surgical instruments
US5157603A (en) * 1986-11-06 1992-10-20 Storz Instrument Company Control system for ophthalmic surgical instruments
US4973311A (en) * 1986-12-27 1990-11-27 Kabushiki Kaisha Toshiba Aspirator for endoscopic system
EP0306445A1 (en) * 1987-08-26 1989-03-08 Orthoconcept S.A. Electric control circuit for a device to irrigate cavities of the body with a physiological liquid
US5047009A (en) * 1987-09-22 1991-09-10 Vitreoretinal Development, Inc. Method and apparatus for ocular perfusion
US4870964A (en) * 1988-06-16 1989-10-03 Paul F. Bailey, Jr. Opthalmic surgical device and method with image data reflected off of the eye
US5328481A (en) * 1988-06-21 1994-07-12 Alcon Laboratories, Inc. Method for injecting viscous fluid into the eye to lift retinal membrane
US5120307A (en) * 1988-06-21 1992-06-09 Alcon Laboratories, Inc. Method for injecting viscous fluid into the eye to life retinal membrane
EP0348146A1 (en) * 1988-06-21 1989-12-27 Alcon Laboratories, Inc. Apparatus for injecting viscous fluid into the eye
US5066276A (en) * 1988-06-21 1991-11-19 Alcon Laboratories, Inc. Method and apparatus for injecting viscous fluid into the eye to lift pre-retinal and post-retinal membrane with linear pressure control
US5019037A (en) * 1989-07-06 1991-05-28 Alcon Laboratories, Inc. Pneumatic retinopexy injector
US5857485A (en) * 1989-10-27 1999-01-12 Perkins; James T. Pneumatic controls for ophthalmic surgical system
US5549139A (en) * 1989-10-27 1996-08-27 Storz Instrument Company Pneumatic controls for ophthalmic surgical system
US5979494A (en) * 1989-10-27 1999-11-09 Bausch & Lomb Surgical, Inc. Pneumatic controls for ophthalmic surgical system
US20030009237A1 (en) * 1990-06-28 2003-01-09 Bonutti Peter M. Method for forming and implanting a grafting material containing tissue
US20020099401A1 (en) * 1990-06-28 2002-07-25 Bonutti Petel M. Apparatus and method for tissue removal
US20030009147A1 (en) * 1990-06-28 2003-01-09 Bonutti Peter M. Biodegradable sac and method of using same
US7134437B2 (en) 1990-06-28 2006-11-14 Bonutti Ip, Llc Method for utilizing human tissue
US6719803B2 (en) 1990-06-28 2004-04-13 Bonutti 2003 Trust-A Method for forming and implanting a grafting material containing tissue
US6835198B2 (en) * 1990-06-28 2004-12-28 The Bonutti 2003 Trust A Apparatus and method for tissue removal
US6990982B1 (en) 1990-06-28 2006-01-31 Bonutti Ip, Llc Method for harvesting and processing cells from tissue fragments
US7896880B2 (en) 1990-06-28 2011-03-01 P Tech, Llc Apparatus and method for tissue removal
US20020029055A1 (en) * 1990-06-28 2002-03-07 Bonutti Peter M. Apparatus and method for tissue removal
US20020055755A1 (en) * 1990-06-28 2002-05-09 Bonutti Peter M. Apparatus and method for tissue removal
US5328456A (en) * 1990-11-13 1994-07-12 Nidek Co., Ltd. Irrigation and aspiration apparatus
US5279547A (en) * 1991-01-03 1994-01-18 Alcon Surgical Inc. Computer controlled smart phacoemulsification method and apparatus
EP0776643A1 (en) * 1991-01-03 1997-06-04 COSTIN, John A. Computer controlled smart phacoemulsification method and apparatus
US5160317A (en) * 1991-01-03 1992-11-03 Costin John A Computer controlled smart phacoemulsification method and apparatus
US5520633A (en) * 1991-01-03 1996-05-28 Costin; John A. Computer controlled smart phacoemulsification method and apparatus
WO1992011814A1 (en) * 1991-01-03 1992-07-23 Costin John A Computer controlled smart phacoemulsification method and apparatus
US5181916A (en) * 1991-04-26 1993-01-26 Sorenson Laboratories, Inc. Surgical probe and smoke eliminator
US6989029B2 (en) 1991-08-12 2006-01-24 Bonutti Ip, Llc Tissue cage
US20040172033A1 (en) * 1991-08-12 2004-09-02 Bonutti Peter M. Tissue stabilization device and method
US7070557B2 (en) 1991-08-12 2006-07-04 Marctec, Llc Tissue graft material and method of making
US20030125811A1 (en) * 1991-08-12 2003-07-03 Bonutti Peter M. Method for forming implant containing tissue
US20030050708A1 (en) * 1991-08-12 2003-03-13 Bonutti Peter M. Tissue grafting material
US20030130744A1 (en) * 1991-08-12 2003-07-10 Bonutti Peter M. Tissue cage
US7462200B2 (en) 1991-08-12 2008-12-09 Marctec, Llc Method for tissue grafting
US7727283B2 (en) 1991-08-12 2010-06-01 P Tech, Llc. Tissue stabilizing implant method
US20030045934A1 (en) * 1991-08-12 2003-03-06 Bonutti Peter M. Method for tissue grafting
US6776938B2 (en) 1991-08-12 2004-08-17 Bonutti 2003 Trust-A Method for forming implant containing tissue
US6905517B2 (en) 1991-08-12 2005-06-14 Bonutti Ip, Llp Tissue grafting material
US20060106464A1 (en) * 1991-08-12 2006-05-18 Bonutti Peter M Method for tissue grafting
US20020040246A1 (en) * 1991-08-12 2002-04-04 Bonutti Peter M. Tissue press and system
US20040169311A1 (en) * 1991-08-12 2004-09-02 Bonutti Peter M. Tissue graft material and method of making
US20040172140A1 (en) * 1991-08-12 2004-09-02 Bonutti Peter M. Tissue stabilizing implant
US6860904B2 (en) 1991-08-12 2005-03-01 Bonutti 2003 Trust-A Method for tissue grafting
US5429601A (en) * 1992-02-12 1995-07-04 American Cyanamid Company Aspiration control system
WO1993018802A1 (en) * 1992-03-20 1993-09-30 Alcon Surgical, Inc. Fluid flow and pressure control system
US5265638A (en) * 1992-12-22 1993-11-30 Boc Health Care, Inc. Magneto-pneumatic intermittent suction device
US5265639A (en) * 1992-12-22 1993-11-30 Boc Health Care, Inc. Magneto-pneumatic timing device
WO1995020374A1 (en) * 1994-01-28 1995-08-03 Allergan Method and apparatus for controlling irrigation and aspiration of fluids during surgical procedures on the eye
US5591127A (en) * 1994-01-28 1997-01-07 Barwick, Jr.; Billie J. Phacoemulsification method and apparatus
US5700240A (en) * 1994-01-28 1997-12-23 Barwick, Jr.; Billie John Phacoemulsification system having ultrasonic power controlled by aspiration vacuum sensor
US5562612A (en) * 1995-02-02 1996-10-08 Charles D. Kelman Apparatus and method for reverse flow irrigation and aspiration of interior regions of the human eye
US5725495A (en) * 1995-06-02 1998-03-10 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US6159175A (en) * 1995-06-02 2000-12-12 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US5741226A (en) * 1995-06-02 1998-04-21 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US5743871A (en) * 1995-06-02 1998-04-28 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US5902267A (en) * 1996-08-09 1999-05-11 Medo; Elena M. Breast pump system using wall vacuum source
US8845687B2 (en) 1996-08-19 2014-09-30 Bonutti Skeletal Innovations Llc Anchor for securing a suture
US6086576A (en) * 1996-08-29 2000-07-11 Bausch & Lomb Surgical, Inc. Automatically switching the termination of a communications bus
US5910139A (en) * 1996-08-29 1999-06-08 Storz Instrument Co. Numeric keypad simulated on touchscreen
US6251113B1 (en) 1996-08-29 2001-06-26 Bausch & Lomb Surgical, Inc. Ophthalmic microsurgical system employing surgical module employing flash EEPROM and reprogrammable modules
US6117126A (en) * 1996-08-29 2000-09-12 Bausch & Lomb Surgical, Inc. Surgical module with independent microprocessor-based communication
US5997528A (en) * 1996-08-29 1999-12-07 Bausch & Lomb Surgical, Inc. Surgical system providing automatic reconfiguration
US6106512A (en) * 1996-08-29 2000-08-22 Bausch & Lomb Surgical, Inc. Numeric keypad simulated on touchscreen
US20020173744A1 (en) * 1997-04-14 2002-11-21 Epstein Gordon Howard Medical suctioning apparatus and methods of use
US7025755B2 (en) * 1997-04-14 2006-04-11 Baxter International Inc. Medical suctioning apparatus and methods of use
US6055458A (en) * 1997-08-28 2000-04-25 Bausch & Lomb Surgical, Inc. Modes/surgical functions
US20080058842A1 (en) * 1997-09-04 2008-03-06 Smith & Nephew, Inc. Surgical endoscopic cutting device and method for its use
US9226765B2 (en) 1997-09-04 2016-01-05 Smith & Nephew, Inc. Surgical cutting device and method for its use
US9089358B2 (en) 1997-09-04 2015-07-28 Smith & Nephew, Inc. Surgical cutting device and method for its use
US9750520B2 (en) 1997-09-04 2017-09-05 Covidien Lp Surgical endoscopic cutting device and method for its use
US9226650B2 (en) 1997-09-04 2016-01-05 Smith & Nephew, Inc. Surgical cutting device and method for its use
US9427247B2 (en) 1997-09-04 2016-08-30 Smith & Nephew, Inc. Surgical cutting device and method for its use
US8893722B2 (en) 1997-09-04 2014-11-25 Smith & Nephew, Inc. Surgical endoscopic cutting device and method for its use
US8808329B2 (en) 1998-02-06 2014-08-19 Bonutti Skeletal Innovations Llc Apparatus and method for securing a portion of a body
US6425883B1 (en) 1998-05-08 2002-07-30 Circuit Tree Medical, Inc. Method and apparatus for controlling vacuum as a function of ultrasonic power in an ophthalmic phaco aspirator
US6986753B2 (en) 1998-05-21 2006-01-17 Buivision Constant ocular pressure active infusion system
US6447491B1 (en) * 1999-06-18 2002-09-10 Genzyme Corporation Rolling seal suction pressure regulator, apparatus and system for draining a body cavity and methods related thereto
US6749592B2 (en) 1999-06-18 2004-06-15 Kevin M. Lord Suction pressure regulator for use with a chest drainage
US6702832B2 (en) 1999-07-08 2004-03-09 Med Logics, Inc. Medical device for cutting a cornea that has a vacuum ring with a slitted vacuum opening
US8845699B2 (en) 1999-08-09 2014-09-30 Bonutti Skeletal Innovations Llc Method of securing tissue
US6699285B2 (en) 1999-09-24 2004-03-02 Scieran Technologies, Inc. Eye endoplant for the reattachment of a retina
US6428508B1 (en) 2000-02-01 2002-08-06 Enlighten Technologies, Inc. Pulsed vacuum cataract removal system
WO2001087380A1 (en) * 2000-02-01 2001-11-22 Med-Logics, Inc. Pulsed vacuum cataract removal system
US8747439B2 (en) 2000-03-13 2014-06-10 P Tech, Llc Method of using ultrasonic vibration to secure body tissue with fastening element
US6478781B1 (en) 2000-04-11 2002-11-12 Circuit Tree Medical, Inc. Anterior chamber stabilizing device for use in eye surgery
US8814902B2 (en) 2000-05-03 2014-08-26 Bonutti Skeletal Innovations Llc Method of securing body tissue
US6663644B1 (en) 2000-06-02 2003-12-16 Med-Logics, Inc. Cutting blade assembly for a microkeratome
US6425905B1 (en) 2000-11-29 2002-07-30 Med-Logics, Inc. Method and apparatus for facilitating removal of a corneal graft
US7311700B2 (en) 2000-11-29 2007-12-25 Med-Logics, Inc. LASIK laminar flow system
US6579255B2 (en) * 2001-07-31 2003-06-17 Advanced Medical Optics, Inc. Pressurized flow of fluid into the eye using pump and pressure measurement system
EP1281377A2 (en) * 2001-08-03 2003-02-05 Circuit Tree Medical, Inc. Surgical flow restrictor and filter
EP1281377A3 (en) * 2001-08-03 2003-11-05 Circuit Tree Medical, Inc. Surgical flow restrictor and filter
US9636130B2 (en) 2001-10-26 2017-05-02 Covidien Lp Reciprocating rotary arthroscopic surgical instrument
US9066745B2 (en) 2001-10-26 2015-06-30 Smith & Nephew, Inc. Reciprocating rotary arthroscopic surgical instrument
US10441306B2 (en) 2001-10-26 2019-10-15 Covidien Lp Reciprocating rotary arthroscopic surgical instrument
US9060800B1 (en) 2001-10-26 2015-06-23 Smith & Nephew, Inc. Reciprocating rotary arthroscopic surgical instrument
US9060801B1 (en) 2001-10-26 2015-06-23 Smith & Nephew, Inc. Reciprocating rotary arthroscopic surgical instrument
US9770238B2 (en) 2001-12-03 2017-09-26 P Tech, Llc Magnetic positioning apparatus
US20030146299A1 (en) * 2002-01-23 2003-08-07 Nobuo Suzuki Irrigation/aspiration apparatus
US6849059B2 (en) * 2002-01-23 2005-02-01 Nidek Co., Ltd. Irrigation/aspiration apparatus
US20050075581A1 (en) * 2002-04-23 2005-04-07 Jeffrey Schwindt Pneumatic circuit
US20030199787A1 (en) * 2002-04-23 2003-10-23 Jeffrey Schwindt Pneumatic circuit
US7316726B2 (en) 2002-04-23 2008-01-08 Tissue Extraction Devices, Llc Evaporation valve
US20030196693A1 (en) * 2002-04-23 2003-10-23 Jeffrey Schwindt Pinch valve
US20030199786A1 (en) * 2002-04-23 2003-10-23 Jeffrey Schwindt Evaporation valve
US7749172B2 (en) 2002-04-23 2010-07-06 Tissue Extraction Devices, Llc Pneumatic circuit
WO2004000130A2 (en) * 2002-06-24 2003-12-31 Bausch & Lomb Incorporated Adjustable fluid flow resistor
WO2004000130A3 (en) * 2002-06-24 2004-06-24 Bausch & Lomb Adjustable fluid flow resistor
US20060161189A1 (en) * 2002-09-27 2006-07-20 Harp Richard J Surgical file system with a visualization instrument
US20060200154A1 (en) * 2002-09-27 2006-09-07 Harp Richard J Surgical file system with fluid system
US20060200155A1 (en) * 2002-09-27 2006-09-07 Harp Richard J Surgical file instrument
US8672834B2 (en) 2002-09-27 2014-03-18 Surgitech, Llc Surgical file system
US20080058820A1 (en) * 2002-09-27 2008-03-06 Harp Richard J Reciprocating cutting tool
US8545502B2 (en) 2002-09-27 2013-10-01 Surgitech, Llc Reciprocating cutting tool
US8100823B2 (en) 2002-09-27 2012-01-24 Surgitech, Llc Surgical file system with a visualization instrument
US8080011B2 (en) 2002-09-27 2011-12-20 Surgitech, L.L.C. Reciprocating cutting tool
US20070021713A1 (en) * 2004-01-19 2007-01-25 Atul Kumar System for distending body tissue cavities by continuous flow irrigation
US9101701B2 (en) 2004-01-19 2015-08-11 Arthrex, Inc. System for distending body tissue cavities by continuous flow irrigation
US8652089B2 (en) * 2004-01-19 2014-02-18 Arthrex, Inc. System for distending body tissue cavities by continuous flow irrigation
US20050182432A1 (en) * 2004-02-18 2005-08-18 Fanton Gary S. Apparatus and methods for clearing obstructions from surgical cutting instruments
US20050209561A1 (en) * 2004-03-22 2005-09-22 Raphael Gordon Method of detecting surgical events
US8048020B2 (en) 2004-03-22 2011-11-01 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US20100036406A1 (en) * 2004-03-22 2010-02-11 Alcon, Inc. Method of Controlling a Surgical System Based on a Load on the Cutting Tip of a Handpiece
US20090306583A1 (en) * 2004-03-22 2009-12-10 Mikhail Boukhny Method of Operating An Ultrasound Handpiece
US7572242B2 (en) 2004-03-22 2009-08-11 Alcon, Inc. Method of operating an ultrasound handpiece
US7713202B2 (en) 2004-03-22 2010-05-11 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20100130914A1 (en) * 2004-03-22 2010-05-27 Alcon, Inc. Method Of Controlling A Surgical System Based On Irrigation Flow
US20050267504A1 (en) * 2004-03-22 2005-12-01 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US7727193B2 (en) 2004-03-22 2010-06-01 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US8523812B2 (en) 2004-03-22 2013-09-03 Alcon Research, Ltd. Method of controlling a surgical system based on a rate of change of an operating parameter
US20050261715A1 (en) * 2004-03-22 2005-11-24 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US7758538B2 (en) 2004-03-22 2010-07-20 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US7811255B2 (en) 2004-03-22 2010-10-12 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US9282989B2 (en) 2004-03-22 2016-03-15 Novartis Ag Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20110015563A1 (en) * 2004-03-22 2011-01-20 Alcon, Inc. Method Of Controlling A Surgical System Based On A Rate Of Change Of An Operating Parameter
US20050261628A1 (en) * 2004-03-22 2005-11-24 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US8430838B2 (en) 2004-03-22 2013-04-30 Novartis Ag Method of controlling a surgical system based on irrigation flow
US8403851B2 (en) 2004-03-22 2013-03-26 Novartis Ag Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20050209560A1 (en) * 2004-03-22 2005-09-22 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US8257307B2 (en) 2004-03-22 2012-09-04 Alcon Research, Ltd. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20050277869A1 (en) * 2004-03-22 2005-12-15 Alcon, Inc. Method of operating an ultrasound handpiece
US7625388B2 (en) 2004-03-22 2009-12-01 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US8172786B2 (en) 2004-03-22 2012-05-08 Alcon Research, Ltd. Method of operating an ultrasound handpiece
US7645255B2 (en) 2004-03-22 2010-01-12 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US8974412B2 (en) 2004-03-22 2015-03-10 Novartis Ag Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20070010798A1 (en) * 2004-04-02 2007-01-11 The Regents Of The University Of California Device and systems for the intermittent drainage of urine and other biological fluids
US20100004585A1 (en) * 2004-08-12 2010-01-07 Mikhail Boukhny Ultrasonic Handpiece
US20060036180A1 (en) * 2004-08-12 2006-02-16 Mikhail Boukhny Ultrasonic handpiece
US8814894B2 (en) 2004-08-12 2014-08-26 Novartis Ag Ultrasound handpiece
US7651490B2 (en) 2004-08-12 2010-01-26 Alcon, Inc. Ultrasonic handpiece
US7645256B2 (en) 2004-08-12 2010-01-12 Alcon, Inc. Ultrasound handpiece
US8771301B2 (en) 2004-08-12 2014-07-08 Alcon Research, Ltd. Ultrasonic handpiece
US20060041220A1 (en) * 2004-08-12 2006-02-23 Alcon, Inc. Ultrasound handpiece
US10939810B2 (en) 2004-08-27 2021-03-09 Covidien Lp Tissue resecting system
US9936861B2 (en) 2004-08-27 2018-04-10 Covidien Lp Tissue resecting system
US10076237B2 (en) 2004-08-27 2018-09-18 Covidien Lp Tissue resecting system
US8512283B2 (en) * 2004-08-27 2013-08-20 Atul Kumar Tissue cavity distending system with low turbulence
US9125550B2 (en) 2004-08-27 2015-09-08 Smith & Nephew, Inc. Tissue resecting system
US20060122557A1 (en) * 2004-08-27 2006-06-08 Atul Kumar Tissue cavity distending system with low turbulence
US8308726B2 (en) * 2004-09-03 2012-11-13 Atul Kumar Electromagnetically controlled tissue cavity distending system
US20060052666A1 (en) * 2004-09-03 2006-03-09 Atul Kumar Electromagnetically controlled tissue cavity distending system
US11938262B2 (en) 2004-09-21 2024-03-26 Zoll Medical Corporation Digitally controlled aspirator
US20060122558A1 (en) * 2004-09-21 2006-06-08 Impact Instrumentation, Inc. Digitally controlled aspirator
US10835647B2 (en) 2004-09-21 2020-11-17 Zoll Medical Corporation Digitally controlled aspirator
US9855374B2 (en) 2004-09-21 2018-01-02 Zoll Medical Corporation Digitally controlled aspirator
US9119907B2 (en) * 2004-09-21 2015-09-01 Zoll Medical Corporation Digitally controlled aspirator
US11123483B2 (en) 2005-09-02 2021-09-21 Irras Ab Fluid exchange catheter system
US9623177B2 (en) * 2005-09-02 2017-04-18 Irras Ab Fluid exchange catheter system
US20130158470A1 (en) * 2005-09-02 2013-06-20 Irras Ab Fluid Exchange Catheter System
US10293105B2 (en) 2005-09-02 2019-05-21 Irras Ab Fluid exchange catheter system
US20070293844A1 (en) * 2005-09-28 2007-12-20 Nader Nazarifar Intraocular pressure control
US20080103433A1 (en) * 2005-09-28 2008-05-01 Nader Nazarifar Intraocular pressure control
US8465467B2 (en) * 2006-09-14 2013-06-18 Novartis Ag Method of controlling an irrigation/aspiration system
US20080125697A1 (en) * 2006-09-14 2008-05-29 Alcon, Inc. Method of controlling an irrigation/aspiration system
US20080172076A1 (en) * 2006-11-01 2008-07-17 Alcon, Inc. Ultrasound apparatus and method of use
US20100324581A1 (en) * 2006-12-08 2010-12-23 Alcon, Inc. Torsional Ultrasound Hand Piece That Eliminates Chatter
US8579929B2 (en) 2006-12-08 2013-11-12 Alcon Research, Ltd. Torsional ultrasound hand piece that eliminates chatter
US20080281253A1 (en) * 2007-05-10 2008-11-13 Injev Valentine P Method of Operating an Ultrasound Handpiece
US8303530B2 (en) 2007-05-10 2012-11-06 Novartis Ag Method of operating an ultrasound handpiece
US20080312594A1 (en) * 2007-06-13 2008-12-18 Dana Llc Vacuum surge suppressor for surgical aspiration systems
US20110257614A1 (en) * 2007-06-13 2011-10-20 Dana Llc Vacuum surge suppressor for surgical aspiration systems
US8753323B2 (en) * 2007-06-13 2014-06-17 Dana, LLC. Vacuum surge suppressor for surgical aspiration systems
US7914482B2 (en) * 2007-06-13 2011-03-29 Dana Llc Vacuum surge suppressor for surgical aspiration systems
CN101888820B (en) * 2007-12-07 2012-05-30 博士伦公司 Surgical system including a trap for noise-inducing materials
WO2009076041A1 (en) * 2007-12-07 2009-06-18 Bausch & Lomb Incorporated Surgical system including a trap for noise-inducing materials
JP2011505908A (en) * 2007-12-07 2011-03-03 ボシュ・アンド・ロム・インコーポレイテッド Surgical system including traps for noise-inducing substances
US20090149802A1 (en) * 2007-12-07 2009-06-11 Ross Peter Jones Surgical System Including a Trap for Noise-Inducing Materials
US8246579B2 (en) * 2007-12-20 2012-08-21 Bausch & Lomb Incorporated Surgical system having means for pressurizing venting valve
US20090163853A1 (en) * 2007-12-20 2009-06-25 Cull Laurence J Surgical System Having Means for Pressurizing Venting Valve
US20100036256A1 (en) * 2008-08-08 2010-02-11 Mikhail Boukhny Offset ultrasonic hand piece
US20100094321A1 (en) * 2008-10-10 2010-04-15 Takayuki Akahoshi Ultrasound Handpiece
EP2379126B1 (en) 2008-12-08 2015-04-22 Bausch & Lomb Incorporated Flow control system based on leakage
US20100145302A1 (en) * 2008-12-08 2010-06-10 Cull Laurence J Flow control system based on leakage
EP2379126B2 (en) 2008-12-08 2018-03-07 Bausch & Lomb Incorporated Flow control system based on leakage
US8162919B2 (en) 2008-12-08 2012-04-24 Bausch & Lomb Incorporated Flow control system based on leakage
US8623040B2 (en) 2009-07-01 2014-01-07 Alcon Research, Ltd. Phacoemulsification hook tip
US9233021B2 (en) 2009-07-01 2016-01-12 Alcon Research, Ltd. Phacoemulsification hook tip
US20110125332A1 (en) * 2009-11-20 2011-05-26 Halliburton Energy Services, Inc. Systems and Methods for Specifying an Operational Parameter for a Pumping System
US8543245B2 (en) * 2009-11-20 2013-09-24 Halliburton Energy Services, Inc. Systems and methods for specifying an operational parameter for a pumping system
US8070711B2 (en) 2009-12-09 2011-12-06 Alcon Research, Ltd. Thermal management algorithm for phacoemulsification system
US20110137232A1 (en) * 2009-12-09 2011-06-09 Alcon Research, Ltd. Thermal Management Algorithm For Phacoemulsification System
US8784357B2 (en) 2010-09-15 2014-07-22 Alcon Research, Ltd. Phacoemulsification hand piece with two independent transducers
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip
US11889993B2 (en) 2010-09-28 2024-02-06 Covidien Lp Hysteroscopic system
US10251539B2 (en) 2010-09-28 2019-04-09 Covidien Lp Hysteroscopic system
US9155454B2 (en) 2010-09-28 2015-10-13 Smith & Nephew, Inc. Hysteroscopic system
US11229354B2 (en) 2010-09-28 2022-01-25 Covidien Lp Hysteroscopic system
US8414605B2 (en) 2011-07-08 2013-04-09 Alcon Research, Ltd. Vacuum level control of power for phacoemulsification hand piece
US9561321B2 (en) 2011-12-08 2017-02-07 Alcon Research, Ltd. Selectively moveable valve elements for aspiration and irrigation circuits
US10076630B2 (en) 2012-04-24 2018-09-18 The Queen Elizabeth Hospital King's Lynn Nhs Foundation Trust Device for performing regional anesthesia
US11369769B2 (en) 2012-04-24 2022-06-28 The Queen Elizabeth Hospital King's Lynn Nhs Foundation Trust Device for performing regional anesthesia
US9132213B2 (en) * 2012-08-20 2015-09-15 Precision Medical, Inc. Vacuum regulator with pre-set and calibration features
US20140052082A1 (en) * 2012-08-20 2014-02-20 Precision Medical, Inc. Vacuum regulator with pre-set and calibration features
US11191668B2 (en) 2013-03-14 2021-12-07 Johnson & Johnson Surgical Vision, Inc. System and method for providing pressurized infusion
US20200054487A1 (en) * 2013-04-26 2020-02-20 Med-Logics, Inc. Tissue Removal Devices, Systems and Methods
US11896524B2 (en) * 2013-04-26 2024-02-13 Med-Logics, Inc. Tissue removal devices, systems and methods
US9549850B2 (en) 2013-04-26 2017-01-24 Novartis Ag Partial venting system for occlusion surge mitigation
US10034970B2 (en) 2014-10-24 2018-07-31 Conmed Corporation Suction device for surgical instruments
US10022479B2 (en) 2014-10-24 2018-07-17 Conmed Corporation Suction device for surgical instruments
US9486562B2 (en) 2014-10-24 2016-11-08 Integrated Surgical, Llc Suction device for surgical instruments
US9867913B2 (en) 2014-10-24 2018-01-16 Conmed Corporation Suction device for surgical instruments
US9750855B2 (en) 2014-10-24 2017-09-05 Conmed Corporation Suction device for surgical instruments
US11871952B2 (en) 2014-12-16 2024-01-16 Covidien Lp Surgical device with incorporated tissue extraction
US10631889B2 (en) 2014-12-16 2020-04-28 Covidien Lp Surgical device with incorporated tissue extraction
US11666354B2 (en) 2015-01-28 2023-06-06 Covidien Lp Tissue resection system
US10772652B2 (en) 2015-01-28 2020-09-15 Covidien Lp Tissue resection system
US10750931B2 (en) 2015-05-26 2020-08-25 Covidien Lp Systems and methods for generating a fluid bearing for an operative procedure
US10842350B2 (en) 2015-06-17 2020-11-24 Covidien Lp Endoscopic device with drip flange and methods of use thereof for an operative procedure
US10804769B2 (en) 2015-06-17 2020-10-13 Covidien Lp Surgical instrument with phase change cooling
US11659977B2 (en) 2015-06-17 2023-05-30 Covidien Lp Endoscopic device with drip flange and methods of use thereof for an operative procedure
US10799264B2 (en) 2015-06-18 2020-10-13 Covidien Lp Surgical instrument with suction control
US11712262B2 (en) 2015-06-18 2023-08-01 Covidien Lp Surgical instrument with suction control
US10850012B2 (en) 2015-07-13 2020-12-01 Conmed Corporation Surgical suction device that uses positive pressure gas
US10835649B2 (en) 2015-07-13 2020-11-17 Conmed Corporation Surgical suction device that uses positive pressure gas
US10835648B2 (en) 2015-07-13 2020-11-17 Conmed Corporation Surgical suction device that uses positive pressure gas
US10926007B2 (en) 2015-07-13 2021-02-23 Conmed Corporation Surgical suction device that uses positive pressure gas
US10926008B2 (en) 2015-07-13 2021-02-23 Conmed Corporation Surgical suction device that uses positive pressure gas
US10821212B2 (en) 2015-07-13 2020-11-03 Conmed Corporation Surgical suction device that uses positive pressure gas
US11864735B2 (en) 2016-05-26 2024-01-09 Covidien Lp Continuous flow endoscope
US10299819B2 (en) 2016-07-28 2019-05-28 Covidien Lp Reciprocating rotary surgical cutting device and system for tissue resecting, and method for its use
US11172954B2 (en) 2016-07-28 2021-11-16 Covidien Lp Reciprocating rotary surgical cutting device and system for tissue resecting, and method for its use
US10299803B2 (en) 2016-08-04 2019-05-28 Covidien Lp Self-aligning drive coupler
US11357907B2 (en) 2017-02-10 2022-06-14 Johnson & Johnson Surgical Vision, Inc. Apparatus, system, and method of gas infusion to allow for pressure control of irrigation in a surgical system
US11622787B2 (en) 2017-03-02 2023-04-11 Covidien Lp Fluid-driven tissue resecting instruments, systems, and methods
US10772654B2 (en) 2017-03-02 2020-09-15 Covidien Lp Fluid-driven tissue resecting instruments, systems, and methods
US10478211B2 (en) 2017-07-07 2019-11-19 Ethicon Llc Features to promote removal of debris from within ultrasonic surgical instrument
US11399861B2 (en) 2017-07-07 2022-08-02 Cilag GmbH International Zug, Switzerland Features to promote removal of debris from within ultrasonic surgical instrument
WO2019010273A3 (en) * 2017-07-07 2019-02-07 Ethicon Llc Features to promote removal of debris from within ultrasonic surgical instrument
US10869684B2 (en) 2018-02-13 2020-12-22 Covidien Lp Powered tissue resecting device
US11806036B2 (en) 2018-02-13 2023-11-07 Covidien Lp Powered tissue resecting device
US11504271B2 (en) 2018-03-30 2022-11-22 Surgical Design Corporation Surgical hand-piece with a bottom fluid tube convertible from irrigation to aspiration
US11154421B2 (en) 2018-04-20 2021-10-26 Johnson & Johnson Surgical Vision, Inc. System and method for providing pressurized infusion transfer reservoirs
US11547815B2 (en) 2018-05-30 2023-01-10 Covidien Lp Systems and methods for measuring and controlling pressure within an internal body cavity
US11065147B2 (en) 2018-10-18 2021-07-20 Covidien Lp Devices, systems, and methods for pre-heating fluid to be introduced into a patient during a surgical procedure
US11197710B2 (en) 2018-10-26 2021-12-14 Covidien Lp Tissue resecting device including a blade lock and release mechanism
US11083481B2 (en) 2019-02-22 2021-08-10 Covidien Lp Tissue resecting instrument including an outflow control seal
US11154318B2 (en) 2019-02-22 2021-10-26 Covidien Lp Tissue resecting instrument including an outflow control seal
US11744606B2 (en) 2019-02-22 2023-09-05 Covidien Lp Tissue resecting instrument including an outflow control seal
US10898218B2 (en) 2019-02-25 2021-01-26 Covidien Lp Tissue resecting device including a motor cooling assembly
US11871950B2 (en) 2019-02-25 2024-01-16 Covidien Lp Tissue resecting device including a motor cooling assembly
US11819234B2 (en) 2019-03-20 2023-11-21 Covidien Lp Tissue resecting instrument including a rotation lock feature
US10945752B2 (en) 2019-03-20 2021-03-16 Covidien Lp Tissue resecting instrument including a rotation lock feature
US11883058B2 (en) 2019-03-26 2024-01-30 Covidien Lp Jaw members, end effector assemblies, and ultrasonic surgical instruments including the same
US11553977B2 (en) 2019-05-29 2023-01-17 Covidien Lp Hysteroscopy systems and methods for managing patient fluid
US11452806B2 (en) 2019-10-04 2022-09-27 Covidien Lp Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures
US11890237B2 (en) 2019-10-04 2024-02-06 Covidien Lp Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures
US11179172B2 (en) 2019-12-05 2021-11-23 Covidien Lp Tissue resecting instrument
US11376032B2 (en) 2019-12-05 2022-07-05 Covidien Lp Tissue resecting instrument
US11547782B2 (en) 2020-01-31 2023-01-10 Covidien Lp Fluid collecting sheaths for endoscopic devices and systems
US11737777B2 (en) 2020-02-05 2023-08-29 Covidien Lp Tissue resecting instruments
US11317947B2 (en) 2020-02-18 2022-05-03 Covidien Lp Tissue resecting instrument
US11806281B2 (en) * 2020-03-05 2023-11-07 Chukyo Medical Co., Inc. Ophthalmic surgery instrument
US20210275353A1 (en) * 2020-03-05 2021-09-09 Chukyo Medical Co., Inc. Ophthalmic surgery instrument
US11596429B2 (en) 2020-04-20 2023-03-07 Covidien Lp Tissue resecting instrument
US11571233B2 (en) 2020-11-19 2023-02-07 Covidien Lp Tissue removal handpiece with integrated suction

Similar Documents

Publication Publication Date Title
US3812855A (en) System for controlling fluid and suction pressure
US4117843A (en) Surgical operating system with upper pressure limit
US4369785A (en) Surgical fluid flow system
US5676650A (en) Ophthalmologic aspiration and irrigation system, and method of operating same
US4274411A (en) Fluid operated ophthalmic irrigation and aspiration device
US4465470A (en) Apparatus for and method of irrigating and aspirating an eye
KR101223988B1 (en) Priming a microsurgical system
US5360398A (en) Ophthalmological aspiration and irrigation system
US6599271B1 (en) Ophthalmic flow converter
US5047009A (en) Method and apparatus for ocular perfusion
US4475904A (en) Fast response vacuum aspiration collection system
US5032111A (en) Method and apparatus for ocular perfusion
US4900301A (en) Method for ocular perfusion
US4007742A (en) Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field
EP0466705A4 (en) Method and apparatus for ocular perfusion
JPH0810281A (en) Perfusion suction device
JPH0152026B2 (en)
JP2015500698A (en) Selectively movable valve elements for suction and irrigation circuits
EP0596967A4 (en) Controlling operation of handpieces during ophthalmic surgery.
US11779694B2 (en) Systems and methods for proportional pressure and vacuum control in surgical system
US4243530A (en) Haemofiltration with filtrate flow control by adjustable venting
US11357907B2 (en) Apparatus, system, and method of gas infusion to allow for pressure control of irrigation in a surgical system
AU1226392A (en) Method and apparatus for dozing an additive at collection of liquid
JPH0259741B2 (en)
JP5232243B2 (en) Surgical system including traps for noise-inducing substances