US3785380A - Filtering blood sucker - Google Patents

Filtering blood sucker Download PDF

Info

Publication number
US3785380A
US3785380A US00228033A US3785380DA US3785380A US 3785380 A US3785380 A US 3785380A US 00228033 A US00228033 A US 00228033A US 3785380D A US3785380D A US 3785380DA US 3785380 A US3785380 A US 3785380A
Authority
US
United States
Prior art keywords
blood
sucker
filter
air
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00228033A
Inventor
R Brumfield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3785380A publication Critical patent/US3785380A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/76Handpieces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/79Filters for solid matter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/74Suction control
    • A61M1/741Suction control with means for varying suction manually
    • A61M1/7411Suction control with means for varying suction manually by changing the size of a vent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S604/00Surgery
    • Y10S604/902Suction wands

Definitions

  • the air evacuated through the blood sucker when in use can be filtered through a first disposable micropore filter in the sucker, prior to contacting the blood evacuated from the surgical site.
  • the patient blood, clean air and surgical debris are also filtered through a sucker second disposable filter, whose pore apertures are sized to remove the tissue debris from the blood flowing into the sucker.
  • Early removal of tissue debris from patient blood in the blood sucker can slow the initiation of the blood clotting mechanism.
  • the filtered air can decrease the microscopic air contaminants in the filtered blood, which can then be returned to the patients circulatory system.
  • An integral plurality of flexible, parallel array blood conductive tubing provide wall stabilized, low turbulence blood flow from the sucker to a cardiotomy reservoir or the like, prior to returning the blood to the patients circulation.
  • the filtering blood sucker is classified in Class 23 Subclass 258.5.
  • the blood sucker is useful in combination with a peristaltic tube pump, evacuating blood lost by a patient at a surgical site.
  • a blood sucker is connected to the suction side of a peristaltic tube pump and evacuates patient blood lost, for early processing of the blood and its return to the patients circulatory system. Since the recovered blood can contain surgical tissue debris, the blood can initiate the clotting mechanism. By removing the tissue debris from the recovered blood as quickly as possible by the filtering blood sucker, it is possible to decrease the risk of clot formation in the patient, with a subsequent more favorable patient progno- SIS.
  • the filtering blood sucker is connected to the suction side ofa peristaltic tube pump and evacuates blood lost in a body cavity by a patient during a surgical operation.
  • the blood sucker evacuates air through its sucker vent as the blood sucker lies operatively connected to the peristaltic pump, prior to its actual use on a patient.
  • the surgeon grips the blood sucker and applies a finger, closing the air vent aperture and causing the sucker to evacuate blood, air, surgical tissue debris and fluids from the surgical site.
  • the air evacuated through the sucker while operatively connected, but not in surgical use, can be filtered through a disposable microporous filter secured in the sucker, cleaning the air. Thus the blood contamination from the air is greatly reduced.
  • the blood sucker positively contains a second disposable open pore foam filter whose pore apertures are sized to remove tissue debris from the blood flowing into the sucker.
  • the pore apertures are sized to remove the tissue debris, without removing the formed elements of the blood and altering the homogeneity of the blood.
  • the pair of filters, the micropore filter for air and the second disposable foam filter for the patients blood are physically separated.
  • the air enters through the blood sucker air vent and the three-phase mixture of blood, air, and tissue debris enters through the surgical evacuating tube also on the suction side of the blood sucker.
  • the blood sucker can have only a disposable open pore foam filter sleeve means for the removal of surgical tissue debris from the evacuated three-phase mixture of blood, air and tissue debris, omitting the microporous air filter.
  • FIG. 1 is a schematic illustration of the blood sucker of this invention connected in combination with the suction side of the peristaltic tube pump.
  • FIG. 2 is an elevational perspective partial sectional view of one blood sucker modification incorporating an open pore foam filter sleeve.
  • FIG. 3 is an elevational perspective view of a filter frame of this invention useful in the blood sucker illustrated in FIG. 2.
  • FIG. 4 is an elevational perspective view of a filter sleeve useful in the blood sucker illustrated in FIG. 2.
  • FIG. 5 illustrates a further detail of the attachment of the filter sleeve to the filter frame as shown in FIG. 2.
  • FIG. 6 is a perspective elevational view illustrating a single use integral component of a blood sucker incorporating a microporous air filter and an open pore foam blood filter of this invention.
  • FIG. 7 illustrates in perspective elevational view an assembled blood sucker of this invention incorporating the disposable blood sucker insert of FIG. 6 of this invention.
  • FIG. 8 is a detailed view of the simple blood sucker case closure for attaching and sealing a disposable blood sucker insert of FIG. 6 into the blood sucker product illustrated in FIG. 7.
  • FIGS. 9A and 9B illustrate the construction of the integral plurality of blood sucker tubes, providing separation and removal of air from the blood sucker.
  • the blood sucker 10 is shown connected by blood conductive tubing 11 to the roller pump 12, which has a peristaltic pump suction side 13 and a pump pressure side 14, as the pump rotates in a direction 15.
  • the suction side 16 of the blood sucker l0 accepts a threephase flow of blood, air and surgical tissue debris intake flowing through the pump in the direction 17 and venting from the pump at 18 into a cardiotomy reservoir, or the like.
  • the vent 19 on the blood sucker 10 is closed by an operators finger to produce evacuation through the sucker It) in the direc' tion 16.
  • a blood sucker 20 of this invention has a surgical evacuating tube 21 disposed on the suction side of the sucker 20 and secured to a tubular plastic case 22.
  • the screw cap closure 23 closes the blood sucker 20.
  • the air vent 241 penetrates the case 22 and is equivalent to the air vent 19 of blood sucker 10.
  • the pump evacuation tube 25 is equivalent to the blood conductive tubing 11.
  • Disposed internally in the tubular plastic case 22 is the open pore foam filter sleeve 26 having a closed filter terminus 27.
  • the tubular case 22 has a closed case terminus 28 to which the surgical evacuating tube 21 is attached.
  • a filter frame 29 supports the porous foam filter sleeve 26, the filter frame 29 having a frame terminus closure 30.
  • the porous foam filter sleeve 26 covers the filter frame 29 and is secured to the filter frame closure 30 by the wire clamp ring 32.
  • the filter frame exit conduit 31 provides a filter evacuation aperture 33 in the frame closed end 30.
  • the exit conduit 31 is secured in the exterior evacuating means tube 25.
  • FIG. 3 Further details of the filter frame 29 are illustrated in FIG. 3, wherein the filter frame members 29 are shown to be connected by a crossed set of frame members 34, and all are integral with the filter frame closure 30.
  • the filter frame exit conduit 31 is integrally secured to the closed end 30, providing a filter evacuating aperture 33.
  • a securing groove 36 is provided around the end 30.
  • the porous foam filter sleeve 26 is shown in detail in FIG. 4, having a closed filter terminus 27 and an open filter sleeve terminus 35. Further, in FIG. is shown the details of the conventional wire clamp ring 32 which is secured to the porous foam filter terminus 35, securing the sleeve 26 in the groove 36 of the closed terminus 30.
  • the single use blood sucker tubular insert unit 60 is shown to have triangular shape support sides 61 and 62 and a triangular central partition 63.
  • a plurality of supportive ribs 64 are secured across the members 61, 62 and 63, providing a pair of oppositely disposed frame plate support areas 100 and 101.
  • An evacuating aperture 65 forms one end of the unit 60 and a support bracket 66 forms the other insert end.
  • On the top surface of the blood sucker unit 60 is disposed a microporous filter sheet 67 sealed on the frame plate support area 100 formed on the pair of edges of the triangular sides 61 and 62.
  • a porous polyurethane foam filter sheet 68 is sealed on the frame plate support area 101 formed on the pair of bottom edges of the triangular shape support sides 61 and 62.
  • the filter sheet 68 is permeable to whole blood, and filters out surgical debris and the like.
  • the bracket 66 supports a bond 69 of the microporous filter sheet 67 and the foam sheet filter 68, providing an impervious seal through which blood does not flow.
  • the tubular plastic case 70 encloses the blood sucker insert unit 60, and has an evacuating closure 71 secured to the case 70.
  • An air vent 72 is covered by the surgeons finger to place the complete blood sucker unit 73 in operation.
  • room air is sucked through the air vent 72 by a peristaltic pump unit 12 or the like.
  • the air sucked into the blood sucker 73 through the vent 72 is filtered through the microporous filter sheet 67, thus filtering out bacterial, pollen and other types of airborne contaminants from the remainder of the blood sucker unit 73.
  • the surgeon closes the air vent 72 with a finger, and places the evacuation tube in the patients body cavity, the three-phase mixture of blood, air and surgical tissue debris are evacuated through the tube 74 into the blood reservoir 75 and thence into the filtered blood reservoir 76 where the filtered blood 77 and air 78 are removed through the blood sucker case closure 71.
  • the inlet blood and tissue reservoir 75 traps the surgical tissue debris, passing whole blood through the foam sheet filter 68 into the filtered blood reservoir 76.
  • blood sucker insert unit 60 is dimensioned to fit snugly in the case 70, the bonded joint 69 contacts and imperviously seals the case at the case terminus 79, providing a separate air reservoir 80 disposed above the microporous filter sheet 67.
  • FIG. 8 illustrates in detail the seal and the mechanical securing means provided by the sealing bead 8] disposed on the blood sucker case closure 71.
  • FIG. 9 illustrates an integral plurality of flexible, conductive blood tubing which are useful in inducing laminar blood-air slug flow in a roller peristaltic pump of the illustrated type 12.
  • the unit tube 90 is secured to the exit conduit 84 and vents most of the air from the sucker 73.
  • the pair of unit tubes 91 and 92 carry exiting blood 77 in the blood-air slug flow from the sucker 73.
  • the tubes 91 and 92 are specifically diametrically sized to provide laminar slug flow as taught in applicants earlier teaching of US. Ser. Nos. l75,l82 and 196,458.
  • the unit tubes 90, 91 and 92 are integrally connected by the flat continuous rubber strips 93 and 94. Thus the three tubes can be disposed parallel and flat, as shown by the fragmentary view of FIG. 9B, and placed in a peristaltic roller pump for operational blood processing.
  • a porous filter structure which has pore structure sized to filter the formed elements of whole blood, ranging up to I00 micron average particle diameter.
  • the porous polyurethane foam filter sheet 68 is sized to remove surgical tissue debris and the like of larger particle size, retaining these large particles on the reservoir 75 side of the foam filter sheet.
  • an open pore foam filter permeable to whole blood can be embodied in the case, to filter out the surgical tissue debris which enters the blood sucker.
  • the microporous filter paper typically has pore structure of less than 1 micron, such as 0.5 microns, or the like.
  • the filter sheets, microporous or foam filter can be sealed to the filter frame structures by heat sealing, cementing or the like.
  • the porous polyurethane foam filter may be treated with a well known silicone defoaming composition to provide a very thin silicone film on the porous foam which will tend to collapse the air-blood foam on contacting the filter.
  • the blood sucker filtering unit can provide the first step in the defoaming of filtered blood and air phases increasing the rate of blood processing for rapid return to the patient's extra-corporeal circulation.
  • a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube and an air vent, the improvement comprising:
  • an open pore plastic foam filter mat operatively disposed inside said blood sucker case providing pores sized to pass particles less than 100 micron average diameter, said filter mat compatible with blood, said filter mat filtering all blood, air and surgical debris passing into said blood sucker filter case, said filter mat retaining said surgical debris, said blood and air exiting through said filter mat through the sucker case exit conduit.
  • a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube, an air vent, and an exit conduit, the improvement combination comprising:
  • an open pore plastic foam filter means operatively disposed inside said blood sucker case, said filter means compatible with blood;
  • a support filter frame positioned inside said blood sucker case providing a support structure for said filter
  • said filter means and support filter frame combination adaptively filtering the whole blood-air foam and surgical tissue debris entering said blood sucker case, retaining said tissue debris in said filter and passing said whole blood and air through the exit conduit of said blood sucker case.
  • porous plastic foam sheet filter means having a porous foam filter sleeve having one closed terminus and one open terminus;
  • a support filter frame having a frame supportively positioned inside said filter sleeve, said frame having one terminus closure and an evacuation tube secured to said closure, providing a fluid conductive aperture therein;
  • a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube, and
  • a support filter frame having a pair of oppositely dis posed frame plate support areas, said frame closely fitting in said blood sucker case, said frame imperviously partitioning said pair of frame plate support areas from each other;
  • microporous filter sheet completely disposed over one of said frame plate support areas having pores less than one micron average diameter
  • an open pore plastic foam sheet completely disposed over the second of said pair of frame plate support areas, providing pores sized to pass particles less than micron average diameter;
  • microporous filter sheet confronting the blood sucker case air vent and spaced therefrom, providing a separate air reservoir in said blood sucker case;
  • plastic foam sheet confronting the blood sucker case evacuation tube, providing a separate reservoir for blood, air and surgical tissue debris in said blood sucker case;
  • a blood sucker case closure conductively sealing said blood sucker case exit terminus, providing an exit conduit for the blood and air filtered through said plastic foam sheet on evacuation of said blood sucker case, retaining said surgical tissue debris in said sucker case.
  • a blood sucker case closure having at least two exit conduits disposed thereon, each one of said conduits geometrically disposed providing dominantly separate air and blood evacuation through a separate conduit.
  • a blood sucker case closure having three exit conduits disposed thereon, one exit conduit sized and disposed to conduct predominantly air, and a pair of exit conduits sized and disposed to predominantly conduct laminar blood-air slug flow in exit conduits.
  • an open pore, sponge cartridge having a blood impermeable sponge surface and a pore size less than 1 micron, disposed in said air exit conduit, providing a filtering air exit separating air from the bloodair foam.
  • an open pore polyurethane foam having a blood compatible surface disposed thereon.

Abstract

A blood sucker is connected to the suction side of a peristaltic tube pump, evacuating blood lost by a patient at a surgical site. The air evacuated through the blood sucker when in use can be filtered through a first disposable micropore filter in the sucker, prior to contacting the blood evacuated from the surgical site. The patient blood, clean air and surgical debris are also filtered through a sucker second disposable filter, whose pore apertures are sized to remove the tissue debris from the blood flowing into the sucker. Early removal of tissue debris from patient blood in the blood sucker can slow the initiation of the blood clotting mechanism. The filtered air can decrease the microscopic air contaminants in the filtered blood, which can then be returned to the patient''s circulatory system. An integral plurality of flexible, parallel array blood conductive tubing provide wall stabilized, low turbulence blood flow from the sucker to a cardiotomy reservoir or the like, prior to returning the blood to the patient''s circulation.

Description

United States Patent Brumfield 1 .Han. 15, 1974 FlLTERlNG BLOOD SUCKER [76] Inventor: Robert C. Brumfield, 73 Emerald STRACT Laguna Beach Cahf' 92657 A blood sucker is connected to the suction side of a [22] Fil d; F b, 22, 1972 peristaltic tube pump, evacuating blood lost by a pa- App]. No.: 228,033
Primary Examiner-Charles F. Rosenbaum Attorney-J. L. Jones tient at a surgical site. The air evacuated through the blood sucker when in use can be filtered through a first disposable micropore filter in the sucker, prior to contacting the blood evacuated from the surgical site. The patient blood, clean air and surgical debris are also filtered through a sucker second disposable filter, whose pore apertures are sized to remove the tissue debris from the blood flowing into the sucker. Early removal of tissue debris from patient blood in the blood sucker can slow the initiation of the blood clotting mechanism. The filtered air can decrease the microscopic air contaminants in the filtered blood, which can then be returned to the patients circulatory system. An integral plurality of flexible, parallel array blood conductive tubing provide wall stabilized, low turbulence blood flow from the sucker to a cardiotomy reservoir or the like, prior to returning the blood to the patients circulation.
8 Claims, 10 Drawing Figures PATENIED JAN 1 5 i974 SHEET 2 0f 2 FILTERING BLOOD SUCKER CROSS-REFERENCES TO RELATED APPLICATION This application is related to the following applications filed earlier by the same sole inventor:
US Patent application, Ser. No. 175,182 for BLOOD OXYGENATOR AND THERMOREGU- LATOR APPARATUS by Robert C. Brumfield, filed Aug. 26, 1971;
US. Patent application, Ser. No. 196,458, for
BLOOD OXYGENATOR FLOW GUIDE, by Robert C. Brumfield, filed Nov. 11, 1971;
US. Patent application, Ser. No. 202,779, for TWO- PHASE FLUID FLOW GUIDE FOR BLOOD OX- YGENATOR, By Robert C. Brumfield, filed Nov. 29, 1971; and
Docket No. 158 for LOW PRESSURE HEAT EX- CHANGER FOR OXYGENATED BLOOD, by Robert C. Brunfield, filed Jan. 10, 1972. Brumfield,
Docket No. 160 for CARDIOTOMY RESERVOIR,
by Robert C. Brumfield, filed Jan. 31, 1972.
BACKGROUND OF THE INVENTION The filtering blood sucker is classified in Class 23 Subclass 258.5. The blood sucker is useful in combination with a peristaltic tube pump, evacuating blood lost by a patient at a surgical site.
There can be substantial loss of patient blood during a surgical procedure. A blood sucker is connected to the suction side of a peristaltic tube pump and evacuates patient blood lost, for early processing of the blood and its return to the patients circulatory system. Since the recovered blood can contain surgical tissue debris, the blood can initiate the clotting mechanism. By removing the tissue debris from the recovered blood as quickly as possible by the filtering blood sucker, it is possible to decrease the risk of clot formation in the patient, with a subsequent more favorable patient progno- SIS.
SUMMARY OF THE INVENTION The filtering blood sucker is connected to the suction side ofa peristaltic tube pump and evacuates blood lost in a body cavity by a patient during a surgical operation. The blood sucker evacuates air through its sucker vent as the blood sucker lies operatively connected to the peristaltic pump, prior to its actual use on a patient. The surgeon grips the blood sucker and applies a finger, closing the air vent aperture and causing the sucker to evacuate blood, air, surgical tissue debris and fluids from the surgical site. The air evacuated through the sucker while operatively connected, but not in surgical use, can be filtered through a disposable microporous filter secured in the sucker, cleaning the air. Thus the blood contamination from the air is greatly reduced. The blood sucker positively contains a second disposable open pore foam filter whose pore apertures are sized to remove tissue debris from the blood flowing into the sucker. The pore apertures are sized to remove the tissue debris, without removing the formed elements of the blood and altering the homogeneity of the blood. In the sucker the pair of filters, the micropore filter for air and the second disposable foam filter for the patients blood, are physically separated. The air enters through the blood sucker air vent and the three-phase mixture of blood, air, and tissue debris enters through the surgical evacuating tube also on the suction side of the blood sucker. Alternatively, the blood sucker can have only a disposable open pore foam filter sleeve means for the removal of surgical tissue debris from the evacuated three-phase mixture of blood, air and tissue debris, omitting the microporous air filter.
Other objects and advantages of this invention can be found in the specification and drawings appended to this application.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic illustration of the blood sucker of this invention connected in combination with the suction side of the peristaltic tube pump.
FIG. 2 is an elevational perspective partial sectional view of one blood sucker modification incorporating an open pore foam filter sleeve.
FIG. 3 is an elevational perspective view of a filter frame of this invention useful in the blood sucker illustrated in FIG. 2.
FIG. 4 is an elevational perspective view of a filter sleeve useful in the blood sucker illustrated in FIG. 2.
FIG. 5 illustrates a further detail of the attachment of the filter sleeve to the filter frame as shown in FIG. 2.
FIG. 6 is a perspective elevational view illustrating a single use integral component of a blood sucker incorporating a microporous air filter and an open pore foam blood filter of this invention.
FIG. 7 illustrates in perspective elevational view an assembled blood sucker of this invention incorporating the disposable blood sucker insert of FIG. 6 of this invention.
FIG. 8 is a detailed view of the simple blood sucker case closure for attaching and sealing a disposable blood sucker insert of FIG. 6 into the blood sucker product illustrated in FIG. 7.
FIGS. 9A and 9B illustrate the construction of the integral plurality of blood sucker tubes, providing separation and removal of air from the blood sucker.
THE PREFERRED EMBODIMENT OF THE INVENTION Referring to the schematic view of FIG. 1 in detail, the blood sucker 10 is shown connected by blood conductive tubing 11 to the roller pump 12, which has a peristaltic pump suction side 13 and a pump pressure side 14, as the pump rotates in a direction 15. The suction side 16 of the blood sucker l0 accepts a threephase flow of blood, air and surgical tissue debris intake flowing through the pump in the direction 17 and venting from the pump at 18 into a cardiotomy reservoir, or the like. In operative procedure, the vent 19 on the blood sucker 10 is closed by an operators finger to produce evacuation through the sucker It) in the direc' tion 16.
Referring to FIG. 2 in detail, a blood sucker 20 of this invention has a surgical evacuating tube 21 disposed on the suction side of the sucker 20 and secured to a tubular plastic case 22. The screw cap closure 23 closes the blood sucker 20. The air vent 241 penetrates the case 22 and is equivalent to the air vent 19 of blood sucker 10. The pump evacuation tube 25 is equivalent to the blood conductive tubing 11. Disposed internally in the tubular plastic case 22 is the open pore foam filter sleeve 26 having a closed filter terminus 27. The tubular case 22 has a closed case terminus 28 to which the surgical evacuating tube 21 is attached. A filter frame 29 supports the porous foam filter sleeve 26, the filter frame 29 having a frame terminus closure 30. The porous foam filter sleeve 26 covers the filter frame 29 and is secured to the filter frame closure 30 by the wire clamp ring 32. The filter frame exit conduit 31 provides a filter evacuation aperture 33 in the frame closed end 30. The exit conduit 31 is secured in the exterior evacuating means tube 25.
Further details of the filter frame 29 are illustrated in FIG. 3, wherein the filter frame members 29 are shown to be connected by a crossed set of frame members 34, and all are integral with the filter frame closure 30. The filter frame exit conduit 31 is integrally secured to the closed end 30, providing a filter evacuating aperture 33. A securing groove 36 is provided around the end 30.
The porous foam filter sleeve 26 is shown in detail in FIG. 4, having a closed filter terminus 27 and an open filter sleeve terminus 35. Further, in FIG. is shown the details of the conventional wire clamp ring 32 which is secured to the porous foam filter terminus 35, securing the sleeve 26 in the groove 36 of the closed terminus 30.
Referring to FIG. 6 in detail, the single use blood sucker tubular insert unit 60 is shown to have triangular shape support sides 61 and 62 and a triangular central partition 63. A plurality of supportive ribs 64 are secured across the members 61, 62 and 63, providing a pair of oppositely disposed frame plate support areas 100 and 101. An evacuating aperture 65 forms one end of the unit 60 and a support bracket 66 forms the other insert end. On the top surface of the blood sucker unit 60 is disposed a microporous filter sheet 67 sealed on the frame plate support area 100 formed on the pair of edges of the triangular sides 61 and 62. A porous polyurethane foam filter sheet 68 is sealed on the frame plate support area 101 formed on the pair of bottom edges of the triangular shape support sides 61 and 62. The filter sheet 68 is permeable to whole blood, and filters out surgical debris and the like. The bracket 66 supports a bond 69 of the microporous filter sheet 67 and the foam sheet filter 68, providing an impervious seal through which blood does not flow.
Referring to FIG. 7 in detail, the tubular plastic case 70 encloses the blood sucker insert unit 60, and has an evacuating closure 71 secured to the case 70. An air vent 72 is covered by the surgeons finger to place the complete blood sucker unit 73 in operation. Prior to the use of the blood sucker unit 73, room air is sucked through the air vent 72 by a peristaltic pump unit 12 or the like. The air sucked into the blood sucker 73 through the vent 72 is filtered through the microporous filter sheet 67, thus filtering out bacterial, pollen and other types of airborne contaminants from the remainder of the blood sucker unit 73. When the surgeon closes the air vent 72 with a finger, and places the evacuation tube in the patients body cavity, the three-phase mixture of blood, air and surgical tissue debris are evacuated through the tube 74 into the blood reservoir 75 and thence into the filtered blood reservoir 76 where the filtered blood 77 and air 78 are removed through the blood sucker case closure 71. In practice the inlet blood and tissue reservoir 75 traps the surgical tissue debris, passing whole blood through the foam sheet filter 68 into the filtered blood reservoir 76. The
blood sucker insert unit 60 is dimensioned to fit snugly in the case 70, the bonded joint 69 contacts and imperviously seals the case at the case terminus 79, providing a separate air reservoir 80 disposed above the microporous filter sheet 67.
FIG. 8 illustrates in detail the seal and the mechanical securing means provided by the sealing bead 8] disposed on the blood sucker case closure 71. By simply inserting the blood sucker insert unit 60 into the case 70 and pushing in the closure 71, one can make an hermetic and mechanical joint, sealing in the insert 60. A further modification of the blood sucker unit 73 is provided by the fine pore sponge cartridge 82 secured in the air aperture 83, through which the air 78 exits through exit conduit 84. The polyurethane sponge cartridge 82 is treated with a thin film of the silicone composition which induces blood-air foam collapse. Thus, any blood-air foam touching 82 is induced to collapse and air passes through the polyurethane sponge. The silicone treated sponge cartridge 82 will not readily pass whole blood, so the blood is entrained in the pair of apertures 85 and 86 and exits through conduits 87 and 88.
FIG. 9 illustrates an integral plurality of flexible, conductive blood tubing which are useful in inducing laminar blood-air slug flow in a roller peristaltic pump of the illustrated type 12. The unit tube 90 is secured to the exit conduit 84 and vents most of the air from the sucker 73. The pair of unit tubes 91 and 92 carry exiting blood 77 in the blood-air slug flow from the sucker 73. The tubes 91 and 92 are specifically diametrically sized to provide laminar slug flow as taught in applicants earlier teaching of US. Ser. Nos. l75,l82 and 196,458. The unit tubes 90, 91 and 92 are integrally connected by the flat continuous rubber strips 93 and 94. Thus the three tubes can be disposed parallel and flat, as shown by the fragmentary view of FIG. 9B, and placed in a peristaltic roller pump for operational blood processing.
It is basic to the filtering blood sucker of this invention that a porous filter structure is embodied which has pore structure sized to filter the formed elements of whole blood, ranging up to I00 micron average particle diameter. The porous polyurethane foam filter sheet 68 is sized to remove surgical tissue debris and the like of larger particle size, retaining these large particles on the reservoir 75 side of the foam filter sheet. In a further modification of this invention an open pore foam filter permeable to whole blood can be embodied in the case, to filter out the surgical tissue debris which enters the blood sucker.
It is desirable to provide a simple frame structure of a low cost, blood compatible plastic which can be suitably enclosed with a foam filter sleeve, filter sheet or other similar structure for the filtering of whole blood. The microporous filter paper typically has pore structure of less than 1 micron, such as 0.5 microns, or the like. The filter sheets, microporous or foam filter, can be sealed to the filter frame structures by heat sealing, cementing or the like. The porous polyurethane foam filter may be treated with a well known silicone defoaming composition to provide a very thin silicone film on the porous foam which will tend to collapse the air-blood foam on contacting the filter. Thus the blood sucker filtering unit can provide the first step in the defoaming of filtered blood and air phases increasing the rate of blood processing for rapid return to the patient's extra-corporeal circulation.
Obviously many modifications and variations in the improvement in the filtering blood sucker can be made in the light of the above illustrations, embodiment and teaching. it is therefore understood that within the scope of the appended claims the invention may be practiced otherwise than has been specifically described.
I claim:
l. in a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube and an air vent, the improvement comprising:
an open pore plastic foam filter mat operatively disposed inside said blood sucker case providing pores sized to pass particles less than 100 micron average diameter, said filter mat compatible with blood, said filter mat filtering all blood, air and surgical debris passing into said blood sucker filter case, said filter mat retaining said surgical debris, said blood and air exiting through said filter mat through the sucker case exit conduit.
2. In a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube, an air vent, and an exit conduit, the improvement combination comprising:
an open pore plastic foam filter means operatively disposed inside said blood sucker case, said filter means compatible with blood; and,
a support filter frame positioned inside said blood sucker case providing a support structure for said filter;
said filter means and support filter frame combination adaptively filtering the whole blood-air foam and surgical tissue debris entering said blood sucker case, retaining said tissue debris in said filter and passing said whole blood and air through the exit conduit of said blood sucker case.
3. The combination with claim 2 wherein the further improvement comprises:
a porous plastic foam sheet filter means having a porous foam filter sleeve having one closed terminus and one open terminus; and,
a support filter frame having a frame supportively positioned inside said filter sleeve, said frame having one terminus closure and an evacuation tube secured to said closure, providing a fluid conductive aperture therein;
said open terminus of said filter sleeve adaptively secured coaxially on said frame terminus closure and said evacuation tube adaptively conductively secured to said blood sucker case exit conduit of said sucker case closure.
4. In a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube, and
an air vent, the improvement combination comprising:
a support filter frame having a pair of oppositely dis posed frame plate support areas, said frame closely fitting in said blood sucker case, said frame imperviously partitioning said pair of frame plate support areas from each other;
a microporous filter sheet completely disposed over one of said frame plate support areas having pores less than one micron average diameter;
an open pore plastic foam sheet completely disposed over the second of said pair of frame plate support areas, providing pores sized to pass particles less than micron average diameter;
said microporous filter sheet confronting the blood sucker case air vent and spaced therefrom, providing a separate air reservoir in said blood sucker case;
said plastic foam sheet confronting the blood sucker case evacuation tube, providing a separate reservoir for blood, air and surgical tissue debris in said blood sucker case; and,
a blood sucker case closure conductively sealing said blood sucker case exit terminus, providing an exit conduit for the blood and air filtered through said plastic foam sheet on evacuation of said blood sucker case, retaining said surgical tissue debris in said sucker case.
5. The combination of claim 4 wherein the further improvement combination comprises:
a blood sucker case closure having at least two exit conduits disposed thereon, each one of said conduits geometrically disposed providing dominantly separate air and blood evacuation through a separate conduit.
6. The combination of claim 4 wherein the further improvement combination comprises: 7
a blood sucker case closure having three exit conduits disposed thereon, one exit conduit sized and disposed to conduct predominantly air, and a pair of exit conduits sized and disposed to predominantly conduct laminar blood-air slug flow in exit conduits.
7. The combination with claim 4 wherein the further improvement comprises:
an open pore, sponge cartridge, having a blood impermeable sponge surface and a pore size less than 1 micron, disposed in said air exit conduit, providing a filtering air exit separating air from the bloodair foam.
8. The combination with claim 4 wherein the further improvment comprises:
an open pore polyurethane foam, having a blood compatible surface disposed thereon.

Claims (8)

1. In a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube and an air vent, the improvement comprising: an open pore plastic foam filter mat operatively disposed inside said blood sucker case providing pores sized to pass particles less than 100 micron average diameter, said filter mat compatible with blood, said filter mat filtering all blood, air and surgical debris passing into said blood sucker filter case, said filter mat retaining said surgical Debris, said blood and air exiting through said filter mat through the sucker case exit conduit.
2. In a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube, an air vent, and an exit conduit, the improvement combination comprising: an open pore plastic foam filter means operatively disposed inside said blood sucker case, said filter means compatible with blood; and, a support filter frame positioned inside said blood sucker case providing a support structure for said filter; said filter means and support filter frame combination adaptively filtering the whole blood-air foam and surgical tissue debris entering said blood sucker case, retaining said tissue debris in said filter and passing said whole blood and air through the exit conduit of said blood sucker case.
3. The combination with claim 2 wherein the further improvement comprises: a porous plastic foam sheet filter means having a porous foam filter sleeve having one closed terminus and one open terminus; and, a support filter frame having a frame supportively positioned inside said filter sleeve, said frame having one terminus closure and an evacuation tube secured to said closure, providing a fluid conductive aperture therein; said open terminus of said filter sleeve adaptively secured coaxially on said frame terminus closure and said evacuation tube adaptively conductively secured to said blood sucker case exit conduit of said sucker case closure.
4. In a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube, and an air vent, the improvement combination comprising: a support filter frame having a pair of oppositely disposed frame plate support areas, said frame closely fitting in said blood sucker case, said frame imperviously partitioning said pair of frame plate support areas from each other; a microporous filter sheet completely disposed over one of said frame plate support areas having pores less than one micron average diameter; an open pore plastic foam sheet completely disposed over the second of said pair of frame plate support areas, providing pores sized to pass particles less than 100 micron average diameter; said microporous filter sheet confronting the blood sucker case air vent and spaced therefrom, providing a separate air reservoir in said blood sucker case; said plastic foam sheet confronting the blood sucker case evacuation tube, providing a separate reservoir for blood, air and surgical tissue debris in said blood sucker case; and, a blood sucker case closure conductively sealing said blood sucker case exit terminus, providing an exit conduit for the blood and air filtered through said plastic foam sheet on evacuation of said blood sucker case, retaining said surgical tissue debris in said sucker case.
5. The combination of claim 4 wherein the further improvement combination comprises: a blood sucker case closure having at least two exit conduits disposed thereon, each one of said conduits geometrically disposed providing dominantly separate air and blood evacuation through a separate conduit.
6. The combination of claim 4 wherein the further improvement combination comprises: a blood sucker case closure having three exit conduits disposed thereon, one exit conduit sized and disposed to conduct predominantly air, and a pair of exit conduits sized and disposed to predominantly conduct laminar blood-air slug flow in exit conduits.
7. The combination with claim 4 wherein the further improvement comprises: an open pore, sponge cartridge, having a blood impermeable sponge surface and a pore size less than 1 micron, disposed in said air exit conduit, providing a filtering air exit separating air from the blood-air foam.
8. The combination with claim 4 wherein the further improvment comprises: an open pore polyurethane foam, having a blood compatible surface disposed thereon.
US00228033A 1972-02-22 1972-02-22 Filtering blood sucker Expired - Lifetime US3785380A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22803372A 1972-02-22 1972-02-22

Publications (1)

Publication Number Publication Date
US3785380A true US3785380A (en) 1974-01-15

Family

ID=22855477

Family Applications (1)

Application Number Title Priority Date Filing Date
US00228033A Expired - Lifetime US3785380A (en) 1972-02-22 1972-02-22 Filtering blood sucker

Country Status (1)

Country Link
US (1) US3785380A (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863624A (en) * 1973-06-15 1975-02-04 Hans Gram Vacuum curettage device
US3929133A (en) * 1974-11-20 1975-12-30 Int Pregnancy Advisory Service Apparatus for removing, washing and displaying fragmentary products of operative procedures
US3965896A (en) * 1974-06-17 1976-06-29 Swank Roy L Blood autotransfusion method and apparatus
US4393879A (en) * 1980-04-11 1983-07-19 Milex Products, Inc. Tissue-collecting apparatus
US4463616A (en) * 1982-03-24 1984-08-07 Instrumentation Laboratory Inc. Sample handling apparatus
US4468217A (en) * 1982-07-09 1984-08-28 Kuzmick Kenneth M Surgical suction tip with filter
US4801292A (en) * 1986-06-24 1989-01-31 Bard Limited Medical pump for debris collection
US4857063A (en) * 1988-01-19 1989-08-15 Usa Medical Surgical aspirator
US4886492A (en) * 1987-03-24 1989-12-12 Brooke Gerard M Surgical suction tip with filter
US5197485A (en) * 1991-10-15 1993-03-30 Pilling Co. Method and apparatus for sampling aortic plaque
WO1993011721A1 (en) * 1991-12-16 1993-06-24 Schmalzried Thomas P Apparatus for joint fluid decompression and filtration
US5421824A (en) * 1988-02-10 1995-06-06 Boston Scientific Corporation Bladder evacuator
US5630939A (en) * 1995-09-15 1997-05-20 Imtec Corporation Filter assembly device for use in surgical aspirated suction
DE19545404A1 (en) * 1995-12-06 1997-06-12 Kevin Business Corp Excretion of air from blood containing air
EP0846469A2 (en) 1996-12-05 1998-06-10 Kevin Business Corporation Blood suction device
DE19650407A1 (en) * 1996-12-05 1998-06-10 Kevin Business Corp Blood-gas separation method and device
US5766134A (en) * 1995-07-18 1998-06-16 Atrion Medical Products, Inc. Autogenous bone specimen collector
EP0876822A2 (en) 1997-05-09 1998-11-11 Kevin Business Corporation Process and apparatus for separating gas from blood
US6068477A (en) * 1999-07-06 2000-05-30 Mahlmann; Lee A. Foam-cushioned aspirator
US6083175A (en) * 1994-09-20 2000-07-04 Bladhs Medical Ab Method and apparatus for collecting fragments of bone tissue
US6406454B1 (en) * 2000-03-14 2002-06-18 Mohammed Ali Hajianpour Surgical suction probe system with an easily cleaned internal filter
DE10162931A1 (en) * 2001-12-20 2003-07-17 Fraunhofer Ges Forschung Device for separating inhomogeneous tissue, especially bone and soft tissue, comprises a container, an actuator, and devices for mechanically separating one tissue type from the other tissue type
US20040049128A1 (en) * 2000-11-06 2004-03-11 Miller Michael E. Biopsy apparatus
US20050054995A1 (en) * 2003-09-09 2005-03-10 Barzell Winston E. System and method for irrigation and tissue evacuation and collection
US6908455B2 (en) 2000-03-14 2005-06-21 Mohammed Ali Hajianpour Surgical suction probe system with an easily cleaned internal filter
US20060129062A1 (en) * 2000-11-06 2006-06-15 Nicoson Zachary R Fluid control element for biopsy apparatus
US20060258956A1 (en) * 2004-05-21 2006-11-16 Haberstich Wells D MRI Biopsy Device
US20060260994A1 (en) * 2005-05-18 2006-11-23 Mark Joseph L Selectively openable tissue filter
US20080287826A1 (en) * 2004-07-09 2008-11-20 Bard Peripheral Vasular, Inc. Transport System for Biopsy Device
US20090088663A1 (en) * 2007-10-01 2009-04-02 Miller Michael E Surgical system
US20110004119A1 (en) * 2009-07-01 2011-01-06 Michael Hoffa Surgical system
US20110105946A1 (en) * 2009-10-31 2011-05-05 Sorensen Peter L Biopsy system with infrared communications
US20110208085A1 (en) * 2005-01-31 2011-08-25 C.R. Bard, Inc. Quick cycle biopsy system
US20120065541A1 (en) * 2009-04-15 2012-03-15 Videbaek Karsten Biopsy apparatus having integrated fluid management
US8690793B2 (en) 2009-03-16 2014-04-08 C. R. Bard, Inc. Biopsy device having rotational cutting
US8721563B2 (en) 2005-08-10 2014-05-13 C. R. Bard, Inc. Single-insertion, multiple sample biopsy device with integrated markers
US8728004B2 (en) 2003-03-29 2014-05-20 C.R. Bard, Inc. Biopsy needle system having a pressure generating unit
US8771200B2 (en) 2005-08-10 2014-07-08 C.R. Bard, Inc. Single insertion, multiple sampling biopsy device with linear drive
US8808197B2 (en) 2009-10-29 2014-08-19 Bard Peripheral Vascular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US8808200B2 (en) 2007-10-01 2014-08-19 Suros Surgical Systems, Inc. Surgical device and method of using same
US8858463B2 (en) 2007-12-20 2014-10-14 C. R. Bard, Inc. Biopsy device
US8951208B2 (en) 2006-08-21 2015-02-10 C. R. Bard, Inc. Self-contained handheld biopsy needle
US8951209B2 (en) 2002-03-19 2015-02-10 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
US8961430B2 (en) 2005-08-10 2015-02-24 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US9072502B2 (en) 2002-03-19 2015-07-07 C. R. Bard, Inc. Disposable biopsy unit
US9173641B2 (en) 2009-08-12 2015-11-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9282949B2 (en) 2009-09-01 2016-03-15 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
US9566045B2 (en) 2006-10-06 2017-02-14 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US9638770B2 (en) 2004-05-21 2017-05-02 Devicor Medical Products, Inc. MRI biopsy apparatus incorporating an imageable penetrating portion
US9795365B2 (en) 2004-05-21 2017-10-24 Devicor Medical Products, Inc. MRI biopsy apparatus incorporating a sleeve and multi-function obturator
WO2018115409A1 (en) * 2016-12-23 2018-06-28 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin Suction tip for the gentle suctioning of a biological fluid
US10149664B2 (en) 2006-10-24 2018-12-11 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
WO2018227311A3 (en) * 2018-07-30 2019-05-02 Molchanov Ruslan Bone dust trap
US10285673B2 (en) 2013-03-20 2019-05-14 Bard Peripheral Vascular, Inc. Biopsy device
US10456120B2 (en) 2013-11-05 2019-10-29 C. R. Bard, Inc. Biopsy device having integrated vacuum
US10463350B2 (en) 2015-05-01 2019-11-05 C. R. Bard, Inc. Biopsy device
US20190336142A1 (en) * 2018-01-26 2019-11-07 Smith & Nephew, Inc. Tissue collection and delivery device and methods of use thereof
US11517682B2 (en) * 2015-05-27 2022-12-06 Vital Signs, Inc. Apparatus and methods for intravenous gas elimination
US11918244B2 (en) 2015-10-23 2024-03-05 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US20240074771A1 (en) * 2018-01-26 2024-03-07 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2449497A (en) * 1946-08-22 1948-09-14 Will W Mcleod Combination aspirator tip
US3191600A (en) * 1962-05-04 1965-06-29 Hazen F Everett Blood suction apparatus
US3324855A (en) * 1965-01-12 1967-06-13 Henry J Heimlich Surgical sponge stick
US3430631A (en) * 1966-01-12 1969-03-04 Daniel J Abramson Surgeon's drain
US3520300A (en) * 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3610242A (en) * 1969-02-28 1971-10-05 David S Sheridan Medico-surgical suction systems
US3675653A (en) * 1969-08-15 1972-07-11 Air Shields Wound drainage equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2449497A (en) * 1946-08-22 1948-09-14 Will W Mcleod Combination aspirator tip
US3191600A (en) * 1962-05-04 1965-06-29 Hazen F Everett Blood suction apparatus
US3324855A (en) * 1965-01-12 1967-06-13 Henry J Heimlich Surgical sponge stick
US3430631A (en) * 1966-01-12 1969-03-04 Daniel J Abramson Surgeon's drain
US3520300A (en) * 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3610242A (en) * 1969-02-28 1971-10-05 David S Sheridan Medico-surgical suction systems
US3675653A (en) * 1969-08-15 1972-07-11 Air Shields Wound drainage equipment

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863624A (en) * 1973-06-15 1975-02-04 Hans Gram Vacuum curettage device
US3965896A (en) * 1974-06-17 1976-06-29 Swank Roy L Blood autotransfusion method and apparatus
US3929133A (en) * 1974-11-20 1975-12-30 Int Pregnancy Advisory Service Apparatus for removing, washing and displaying fragmentary products of operative procedures
US4393879A (en) * 1980-04-11 1983-07-19 Milex Products, Inc. Tissue-collecting apparatus
US4463616A (en) * 1982-03-24 1984-08-07 Instrumentation Laboratory Inc. Sample handling apparatus
US4468217A (en) * 1982-07-09 1984-08-28 Kuzmick Kenneth M Surgical suction tip with filter
US4801292A (en) * 1986-06-24 1989-01-31 Bard Limited Medical pump for debris collection
US4886492A (en) * 1987-03-24 1989-12-12 Brooke Gerard M Surgical suction tip with filter
US4857063A (en) * 1988-01-19 1989-08-15 Usa Medical Surgical aspirator
US5421824A (en) * 1988-02-10 1995-06-06 Boston Scientific Corporation Bladder evacuator
US5197485A (en) * 1991-10-15 1993-03-30 Pilling Co. Method and apparatus for sampling aortic plaque
WO1993011721A1 (en) * 1991-12-16 1993-06-24 Schmalzried Thomas P Apparatus for joint fluid decompression and filtration
US5378228A (en) * 1991-12-16 1995-01-03 Schmalzried; Thomas P. Method and apparatus for joint fluid decompression and filtration with particulate debris collection
US6468225B1 (en) 1994-09-20 2002-10-22 Astra Tech Ab Method and apparatus for collecting bone tissue fragments
US6083175A (en) * 1994-09-20 2000-07-04 Bladhs Medical Ab Method and apparatus for collecting fragments of bone tissue
US5766134A (en) * 1995-07-18 1998-06-16 Atrion Medical Products, Inc. Autogenous bone specimen collector
US5630939A (en) * 1995-09-15 1997-05-20 Imtec Corporation Filter assembly device for use in surgical aspirated suction
US5824212A (en) * 1995-12-06 1998-10-20 Kevin Business Corporation Cyclone apparatus for removal of air from air containing blood
DE19545404A1 (en) * 1995-12-06 1997-06-12 Kevin Business Corp Excretion of air from blood containing air
DE19650407A1 (en) * 1996-12-05 1998-06-10 Kevin Business Corp Blood-gas separation method and device
EP0852150A2 (en) 1996-12-05 1998-07-08 Kevin Business Corporation Blood/gas separator and method
US6066111A (en) * 1996-12-05 2000-05-23 Convergenza Ag Method of blood-gas separation device and separating device
DE19650406A1 (en) * 1996-12-05 1998-06-18 Kevin Business Corp Blood suction device
US6312414B1 (en) 1996-12-05 2001-11-06 Alexander Brockhoff Blood-gas separation device
EP0852150B1 (en) * 1996-12-05 2003-03-19 Convergenza Ag Blood/gas separator
EP0846469A2 (en) 1996-12-05 1998-06-10 Kevin Business Corporation Blood suction device
EP0876822A2 (en) 1997-05-09 1998-11-11 Kevin Business Corporation Process and apparatus for separating gas from blood
DE19719555A1 (en) * 1997-05-09 1998-11-12 Kevin Business Corp Method and device for separating gas from gaseous blood
US6827862B1 (en) 1997-05-09 2004-12-07 Alexander Brockhoff Method and device for removing gas from gas containing blood
US6068477A (en) * 1999-07-06 2000-05-30 Mahlmann; Lee A. Foam-cushioned aspirator
US6406454B1 (en) * 2000-03-14 2002-06-18 Mohammed Ali Hajianpour Surgical suction probe system with an easily cleaned internal filter
US6908455B2 (en) 2000-03-14 2005-06-21 Mohammed Ali Hajianpour Surgical suction probe system with an easily cleaned internal filter
US20040049128A1 (en) * 2000-11-06 2004-03-11 Miller Michael E. Biopsy apparatus
US8109886B2 (en) 2000-11-06 2012-02-07 Suros Surgical Systems, Inc. Biopsy apparatus
US8764679B2 (en) 2000-11-06 2014-07-01 Suros Surgical Systems, Inc. Biopsy apparatus
US8986222B2 (en) 2000-11-06 2015-03-24 Hologic, Inc. Biopsy apparatus
US20060129062A1 (en) * 2000-11-06 2006-06-15 Nicoson Zachary R Fluid control element for biopsy apparatus
US20060155209A1 (en) * 2000-11-06 2006-07-13 Miller Michael E Selectively detachable outer cannula hub
US8167818B2 (en) 2000-11-06 2012-05-01 Suros Surgical Systems, Inc. Biopsy apparatus with vacuum relief
US7883476B2 (en) 2000-11-06 2011-02-08 Suros Surgical Systems, Inc. Selectively detachable outer cannula hub
US7837630B2 (en) 2000-11-06 2010-11-23 Suros Surgical Systems, Inc. Fluid control element for biopsy apparatus
US20090137927A1 (en) * 2000-11-06 2009-05-28 Miller Michael E Biopsy apparatus with vacuum relief
DE10162931A1 (en) * 2001-12-20 2003-07-17 Fraunhofer Ges Forschung Device for separating inhomogeneous tissue, especially bone and soft tissue, comprises a container, an actuator, and devices for mechanically separating one tissue type from the other tissue type
DE10162931B4 (en) * 2001-12-20 2005-11-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for separating inhomogeneous biological tissue
US9421002B2 (en) 2002-03-19 2016-08-23 C. R. Bard, Inc. Disposable biopsy unit
US10271827B2 (en) 2002-03-19 2019-04-30 C. R. Bard, Inc. Disposable biopsy unit
US8951209B2 (en) 2002-03-19 2015-02-10 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
US9072502B2 (en) 2002-03-19 2015-07-07 C. R. Bard, Inc. Disposable biopsy unit
US10335128B2 (en) 2002-03-19 2019-07-02 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
US9439631B2 (en) 2002-03-19 2016-09-13 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
US11382608B2 (en) 2002-03-19 2022-07-12 C. R. Bard, Inc. Disposable biopsy unit
US8728004B2 (en) 2003-03-29 2014-05-20 C.R. Bard, Inc. Biopsy needle system having a pressure generating unit
US20050054995A1 (en) * 2003-09-09 2005-03-10 Barzell Winston E. System and method for irrigation and tissue evacuation and collection
US7172579B2 (en) 2003-09-09 2007-02-06 Civco Medical Instruments Co., Inc. System and method for irrigation and tissue evacuation and collection
US20070213666A1 (en) * 2003-09-09 2007-09-13 Civco Medical Instruments Co., Inc. System and method for irrigation and tissue evacuation and collection
US9392999B2 (en) 2004-05-21 2016-07-19 Devicor Medical Products, Inc. MRI biopsy device
US9504453B2 (en) 2004-05-21 2016-11-29 Devicor Medical Products, Inc. MRI biopsy device
US20060258956A1 (en) * 2004-05-21 2006-11-16 Haberstich Wells D MRI Biopsy Device
US9638770B2 (en) 2004-05-21 2017-05-02 Devicor Medical Products, Inc. MRI biopsy apparatus incorporating an imageable penetrating portion
US8932233B2 (en) 2004-05-21 2015-01-13 Devicor Medical Products, Inc. MRI biopsy device
US9795365B2 (en) 2004-05-21 2017-10-24 Devicor Medical Products, Inc. MRI biopsy apparatus incorporating a sleeve and multi-function obturator
US9872672B2 (en) 2004-07-09 2018-01-23 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
US10499888B2 (en) 2004-07-09 2019-12-10 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US10166011B2 (en) 2004-07-09 2019-01-01 Bard Peripheral Vascular, Inc. Transport system for biopsy device
US8992440B2 (en) 2004-07-09 2015-03-31 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
US9456809B2 (en) 2004-07-09 2016-10-04 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US20080287826A1 (en) * 2004-07-09 2008-11-20 Bard Peripheral Vasular, Inc. Transport System for Biopsy Device
US8926527B2 (en) 2004-07-09 2015-01-06 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US9345458B2 (en) 2004-07-09 2016-05-24 Bard Peripheral Vascular, Inc. Transport system for biopsy device
US8864680B2 (en) 2004-07-09 2014-10-21 Bard Peripheral Vascular, Inc. Transport system for biopsy device
US8702622B2 (en) 2005-01-31 2014-04-22 C.R. Bard, Inc. Quick cycle biopsy system
US10058308B2 (en) 2005-01-31 2018-08-28 C. R. Bard, Inc. Method for operating a biopsy apparatus
US11166702B2 (en) 2005-01-31 2021-11-09 C.R. Bard, Inc. Quick cycle biopsy system
US9161743B2 (en) 2005-01-31 2015-10-20 C. R. Bard, Inc. Quick cycle biopsy system
US20110208085A1 (en) * 2005-01-31 2011-08-25 C.R. Bard, Inc. Quick cycle biopsy system
US8702621B2 (en) 2005-01-31 2014-04-22 C.R. Bard, Inc. Quick cycle biopsy system
US20060260994A1 (en) * 2005-05-18 2006-11-23 Mark Joseph L Selectively openable tissue filter
US7556622B2 (en) * 2005-05-18 2009-07-07 Suros Surgical Systems, Inc. Selectively openable tissue filter
US10368849B2 (en) 2005-08-10 2019-08-06 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US11219431B2 (en) 2005-08-10 2022-01-11 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device with linear drive
US8961430B2 (en) 2005-08-10 2015-02-24 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US8721563B2 (en) 2005-08-10 2014-05-13 C. R. Bard, Inc. Single-insertion, multiple sample biopsy device with integrated markers
US8728003B2 (en) 2005-08-10 2014-05-20 C.R. Bard Inc. Single insertion, multiple sample biopsy device with integrated markers
US8771200B2 (en) 2005-08-10 2014-07-08 C.R. Bard, Inc. Single insertion, multiple sampling biopsy device with linear drive
US10010307B2 (en) 2005-08-10 2018-07-03 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device with linear drive
US11849928B2 (en) 2005-08-10 2023-12-26 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US8951208B2 (en) 2006-08-21 2015-02-10 C. R. Bard, Inc. Self-contained handheld biopsy needle
US9439632B2 (en) 2006-08-21 2016-09-13 C. R. Bard, Inc. Self-contained handheld biopsy needle
US10617399B2 (en) 2006-08-21 2020-04-14 C.R. Bard, Inc. Self-contained handheld biopsy needle
US10172594B2 (en) 2006-10-06 2019-01-08 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US9566045B2 (en) 2006-10-06 2017-02-14 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US11559289B2 (en) 2006-10-06 2023-01-24 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US10149664B2 (en) 2006-10-24 2018-12-11 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
US11583261B2 (en) 2006-10-24 2023-02-21 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
US8202229B2 (en) 2007-10-01 2012-06-19 Suros Surgical Systems, Inc. Surgical device
US20090088663A1 (en) * 2007-10-01 2009-04-02 Miller Michael E Surgical system
US8187204B2 (en) 2007-10-01 2012-05-29 Suros Surgical Systems, Inc. Surgical device and method for using same
US20090088664A1 (en) * 2007-10-01 2009-04-02 Miller Michael E Surgical device and method for using same
US20090087249A1 (en) * 2007-10-01 2009-04-02 Jake Flagle Adapter assembly
US20090088666A1 (en) * 2007-10-01 2009-04-02 Miller Michael E Surgical device
US8808200B2 (en) 2007-10-01 2014-08-19 Suros Surgical Systems, Inc. Surgical device and method of using same
US10687791B2 (en) 2007-12-20 2020-06-23 C. R. Bard, Inc. Biopsy device
US9775588B2 (en) 2007-12-20 2017-10-03 C. R. Bard, Inc. Biopsy device
US8858463B2 (en) 2007-12-20 2014-10-14 C. R. Bard, Inc. Biopsy device
US8690793B2 (en) 2009-03-16 2014-04-08 C. R. Bard, Inc. Biopsy device having rotational cutting
US8708929B2 (en) 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US8708928B2 (en) * 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US20120065541A1 (en) * 2009-04-15 2012-03-15 Videbaek Karsten Biopsy apparatus having integrated fluid management
US8708930B2 (en) 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US20110004119A1 (en) * 2009-07-01 2011-01-06 Michael Hoffa Surgical system
US8858464B2 (en) 2009-07-01 2014-10-14 Suros Surgical Systems, Inc. Surgical system
US8529468B2 (en) 2009-07-01 2013-09-10 Suros Surgical Systems, Inc. Surgical system
US9173641B2 (en) 2009-08-12 2015-11-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9655599B2 (en) 2009-08-12 2017-05-23 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US10575833B2 (en) 2009-08-12 2020-03-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9282949B2 (en) 2009-09-01 2016-03-15 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
US9949726B2 (en) 2009-09-01 2018-04-24 Bard Peripheral Vscular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US8808197B2 (en) 2009-10-29 2014-08-19 Bard Peripheral Vascular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US20110105946A1 (en) * 2009-10-31 2011-05-05 Sorensen Peter L Biopsy system with infrared communications
US10285673B2 (en) 2013-03-20 2019-05-14 Bard Peripheral Vascular, Inc. Biopsy device
US11779316B2 (en) 2013-03-20 2023-10-10 Bard Peripheral Vascular, Inc. Biopsy device
US11534148B2 (en) 2013-11-05 2022-12-27 C. R. Bard, Inc. Biopsy device having integrated vacuum
US10456120B2 (en) 2013-11-05 2019-10-29 C. R. Bard, Inc. Biopsy device having integrated vacuum
US11179142B2 (en) 2015-05-01 2021-11-23 C.R. Bard, Inc. Biopsy device
US10463350B2 (en) 2015-05-01 2019-11-05 C. R. Bard, Inc. Biopsy device
US11517682B2 (en) * 2015-05-27 2022-12-06 Vital Signs, Inc. Apparatus and methods for intravenous gas elimination
US11638790B2 (en) 2015-05-27 2023-05-02 Vital Signs, Inc. Apparatus and methods for intravenous gas elimination
US11918244B2 (en) 2015-10-23 2024-03-05 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
WO2018115409A1 (en) * 2016-12-23 2018-06-28 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin Suction tip for the gentle suctioning of a biological fluid
US10639046B2 (en) * 2018-01-26 2020-05-05 Smith & Nephew, Inc. Tissue collection and delivery device and methods of use thereof
US20190336142A1 (en) * 2018-01-26 2019-11-07 Smith & Nephew, Inc. Tissue collection and delivery device and methods of use thereof
US20240074771A1 (en) * 2018-01-26 2024-03-07 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
WO2018227311A3 (en) * 2018-07-30 2019-05-02 Molchanov Ruslan Bone dust trap
US11819601B2 (en) 2018-07-30 2023-11-21 Ruslan MOLCHANOV Bone dust trap

Similar Documents

Publication Publication Date Title
US3785380A (en) Filtering blood sucker
US6099493A (en) Continuous autotransfusion filtration system
US4402687A (en) Suction collection system
US3747769A (en) Compressible disposable filter press for blood
US5061236A (en) Venous reservoir with improved inlet configuration and integral screen for bubble removal
JP3230240B2 (en) Gathering device
US3507395A (en) Cardiotomy reservoir
US10039867B2 (en) Intra-operative blood recovery system
US4798578A (en) Autotransfusion device
US4662906A (en) Cardiotomy reservoir
US3866608A (en) Aseptic suction collection system and method
US4642089A (en) Unitary venous return reservoir with cardiotomy filter
JP4810540B2 (en) Self-transfusion method and apparatus
US5141504A (en) Fluid recovery system with stopcock suction control
US4737139A (en) Unitary venous return reservoir with cardiotomy filter
US3768653A (en) Filtering cardiotomy reservoir
JPS59155256A (en) Self-transfusion apparatus
JPH01212560A (en) Blood collecting and transfrsing apparatus
US5100376A (en) Body-cavity drainage and autotransfusion system
JPH11342194A (en) Suction device for medical use
US4507120A (en) Suction canister with corrugated adjustable suction inlet
US4655740A (en) Autotransfusion apparatus
US3770129A (en) Manually flexible blood filter
US5201703A (en) Apparatus for collecting blood from a chest drainage unit and reinfusion of the blood
US5925025A (en) Filtration valve cap with reflux clearing feature and related method of use thereof