US3716059A - Cardiac resuscitator - Google Patents

Cardiac resuscitator Download PDF

Info

Publication number
US3716059A
US3716059A US00066189A US3716059DA US3716059A US 3716059 A US3716059 A US 3716059A US 00066189 A US00066189 A US 00066189A US 3716059D A US3716059D A US 3716059DA US 3716059 A US3716059 A US 3716059A
Authority
US
United States
Prior art keywords
patient
output
heart
signal
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00066189A
Inventor
W Welborn
M Holznagel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiac Resuscitator Corp
Original Assignee
Cardiac Resuscitator Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardiac Resuscitator Corp filed Critical Cardiac Resuscitator Corp
Application granted granted Critical
Publication of US3716059A publication Critical patent/US3716059A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36585Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by two or more physical parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3904External heart defibrillators [EHD]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3904External heart defibrillators [EHD]
    • A61N1/39046User protection from shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3987Heart defibrillators characterised by the timing or triggering of the shock

Definitions

  • Appl' 66,189 A resuscitator apparatus includes means for detecting and counting the electrical and mechanical output of 521 US. Cl ..128/419 1), 128/2.()5 P, 128/2.06 A, the heart of a suspected heart attack victim, and 1 123 g Z, 123 419 p means for substantially immediately applying a pacing 51 Int. Cl.
  • a pacing pulse is automatically app 2.05 p 2 5 R, 2 5 S, 2 )5 T plied for stimulating a heart beat in time withsuch pulse.
  • electrical activity is present while [56] Ref f Cit d mechanical output is absent, indicative of ventricular fibrillation, a defibrillat'ing pulse is applied to the pa- UNITED STATES PATENTS tient.
  • the apparatus attaches to the patient for 3,144,019 8/1964 Haber ..l28/2.06 A administering the correct electrical stimulation to the 3,236,239 9 o -w 123/4l9 D patient as soon as possible after the occurrence of the 3,460,542 8/ 1969 Gemmer l28/4l9 P -suspected attack 3,149,627 9/1964 Bagno ....l28/2.-l Z 3,593,718 7/1971 1 Krasner et a1 128/419 P 17 Claims, 14 Drawing Figures FOREIGN PATENTS OR APPLICATIONS 1,272,570 8 1961 France "1287 11 96 A co ECG DETECTOR 4 LOGICAI; I 7 ANALYZER XEQM/F/ AZ COINCIDENCE DETECTOR DETECTOR PATIENT 8 INTERFACE 7 v DEFIBRILLATOR PACER PAIENTEDFEB 13 I975 3,716,059 SHEET 10F a WARREN S. WELBORN ME
  • BUCKHORN, BLORE, KLARQUIST & SPARKMAN ATTORNEYS An unusually large number of heart attack victims die each year as a result of delays in providing the intensive care required. A suspected heart attack victim typically must be hospitalized before receiving adequate medical attention. However, a great many pa-' tients suffering from a coronary attack never reach the hospital. Cardiac arrests and arrhythmias such as ventricular fibrillation frequently develop within a short time after the onset of the attack, e.g. within the first hour, with fatal results unless remedial steps are taken within minutes. Unless a normal rhythm can be restored to a heart in ventricular fibrillation within minutes, serious brain damage or death will result.
  • a cardiac resuscitator which is compact enough for attachment to a suspected heart attack victim at nearly any location, and which may be operated by comparatively unskilled personnel.
  • the resuscitator may be carried in an ambulance, for example, or may be conveniently stored in an industrial plant, office building, hotel, or the like, for immediate application to the suspected victim of a heart attack.
  • the resuscitator electrode current applicator is applied to the patient, and the apparatus measures the electrical and mechanical output of the'patients heart. If a normal heart beat is detected, an appropriate indication is given.
  • a pacing pulse is applied to the patient for restoring a normal heart beat. If electrical output is present while mechanical output is absent, indicative of ventricular fibrillation or ventricular tachycardia, an appropriate defibrillating impulse is applied to the patient.
  • the apparatus may remain applied to the patient for detecting possible arrhythmias occuring after the onset of a possible heart attack until adequate hospitalization can be provided.
  • FIG. 1 is a perspective view of cardiac resuscitator apparatus according to the present invention, shown applied to a patient;
  • FIG. 1A is a side view of an electrode current applicator portion of the present resuscitator apparatus
  • FIG. 2 illustrates typical electrical signals corresponding to normal cardiac conditions
  • FIG. 2A illustrates typical signals corresponding to fibrillation of the patients heart
  • FIG. 3 is a simplified block diagram of cardiac resuscitator apparatus according to the present invention.
  • FIG. 3A is a more specific block diagram of cardiac resuscitator apparatus according to thepresent invention.
  • FIG. 4 is a schematic diagram of interface 1 portion of the apparatus as referenced in the FIG. 3A block diagram;
  • FIG. 5 is aschematic diagram of the ECG detector 2 portion in the block diagram
  • FIG. 6 is a schematic diagram of the [CG detector 3 in the block diagram
  • FIG. 7 is a schematic diagram of coincidence detector 4.
  • FIG. 8 is a schematic diagram of counter 5
  • FIG. 9 is a schematic diagram of clock 6
  • FIG. 10 is a schematic diagram of pacer 7; and FIG. 11 is a schematic diagram of the defibrillator 8 portion of the FIG. 3A block diagram.
  • the apparatus includes a U-shaped electrode current applicator 110 provided with a handle 116 and electrodes and which are individually connected to the control cabinet 112 via cable 114.
  • the applicator is desirably formed of spring plastic or plastic-covered metal electrically insulated from the electrodes. As illustrated in the FIG.-1A, the applicator tends to urge contacts Q) and toward one another so that when placed on the patient as illustrated in FIG. 1, contacts a), (2), Q) and make firm contact with the patients body.
  • Electrode (D is designated the chest electrode, with electrode (2) comprising the back electrode.
  • the third electrode termed an indifferent or neutral electrode, makes contact with the patient in the shoulder region.
  • a fourth electrode, located near (D is called the current source el ec trode.
  • the control cabinet 112 suitably contains electronic circuitry for sensing the electrocardiac signal generated by the heart, electronic circuitry for sensing changes in the electrical impedance of the patients body, and electronic circuitry for making logical decisions based upon the analysis of the electrocardiac (ECG) and impedance (ICG) signals. As hereinafter disclosed, other means may be employed for measuring mechanical activity of the heart in place of circuitry for sensing impedance changes, but the latter is preferred.
  • the control cabinet also contains electronic circuitry for generating 'defibrillating or pacing pulses in response to the logical decisions and for applying these pulses to the patient electrodes.
  • FIG. 2 shows typical waveforms which may be present in the cardiac resuscitator when attached to a patient having normal heart operation.
  • Waveform A is the ECG signal as obtained from the patient.
  • the QRS portion of the waveform is associated with contraction of the ventricles and is of great importance in the cardiac resuscitator, while the P and T portions are of no importance in this application. Filtering of waveform A results in waveform B in which the P and T portions are essentially eliminated.
  • Waveform C shows a typical ICG signal which may be obtained by processing a high frequency signal provided at the patient electrodes
  • waveform D is a filtered version of waveform C.
  • the voltage peaks of waveform D which are representative of electrical impedance changes in the patients chest, occur somewhat later than, but in a definite time relationship with, the peaks of waveform B.
  • the impedance changes are brought about by mechanical movement of the patients heart, blood flow, or the like.
  • waveform artifacts which may be present on the ICG waveforms due to patient respiration or externally induced motion.
  • the cardiac resuscitator makes use of the'time relationship of the ECG and ICG waveforms to reduce the effects of artifacts by requiring that an ICG pulse, to be valid, must be immediately preceded by an ECG pulse.
  • FIG. 2A shows waveforms typical of those to be found in the cardiac resuscitator when the patient is in ventricular fibrillation.
  • Waveform A is the ECG waveform as obtained from the patient. Although random in nature, the waveform typically contains fast-rising portions which may be more clearly defined by filtering, to produce waveform B.
  • the same circuitry which converts waveform A to waveform B in FIG. 2 will convert waveform A to waveform B in FIG. 2A.
  • the circuitry is capable of recognizing the presence of electrical activity in a fibrillating heart while rejecting the? and T portions ofa normal ECG.
  • the circuitry of the present invention counts the rate I of the ECG pulses and the rate of ICG pulses which have been immediately preceded by ECG pulses to determine whether there is substantial electrical activity present and whether there is substantial mechanical activity present.
  • the circuitry according to the present invention is provided with continuity means for determining whether electrodes Q) and are making proper electrical connection with the patients body. Only after such a determination is the heart rate indication able to bring about the aforementioned pacing or defibrillating impulses.
  • a poor contact indicator l-D suitably comprising a pilot lamp, also warns the operator that proper contact with the patient has not been established.
  • Cabinet 112 additionally includes power supply circuitry and batteries for use in case of portable operation. An off-on switch as well as a pilot lamp indicating the presence of power are suitably also included.
  • the electrode current applicator is applied as illustrated in FIG. 1, and the power switch is operated for energizing the apparatus.
  • a normal heart signal may reveal the patient has merely fainted, rather than having suffered a heart attack. However, such a signal may only indicate that arrhythmias have not as yet developed.
  • the device is suitably left applied to the patient until adequate medical attention is provided, and meanwhile the device continuously monitors the heart during the critical period after a possible attack.
  • battery powered apparatus of the present type may be left attached to the patient while he is being transported to a hospital in an ambulance.
  • the apparatus is relatively compact, and may be transported in an ambulance and easily carried by hand, or conveniently stored in an industrial plant, office building, hotel, or the like, for immediate application to a suspected victim of a heart attack.
  • the apparatus may be operated by comparatively unskilled personnel, without the need of an expert diagnosis, while awaiting conventional medical attention.
  • FIG. 3 is a simplified block diagram of electronic circuitry according to the present invention.
  • Patient interface collectively includes the various electrodes or other means for receiving information from the patient and applying corrective measures to the patient.
  • Both the ECG detector 2 and mechanical activity detector 3 receive information from the patient, regarding the electrical and mechanical activity of the patients heart, respectively.
  • the mechanical activity detector suitably comprises an electrical impedance change detector, but may alternatively comprise other means for ascertaining mechanical activity of the heart.
  • means 3 may alternatively comprise a pressure transducer or microphone for providing a phone-cardiogram signal of heartbeat activity, or may comprise ultrasonic or other means for detecting blood flow as understood by those skilled in the art.
  • the ECG output from detector 2 together with output A Z from detector 3 are applied to time coincidence detector 4.
  • the detector 4 supplies an output to logical analyzer 5 only if the output from mechanical activity detector 3 occurs within a predetermined time after an output from ECG detector 2.
  • Logical analyzer 5 which may comprise means for counting pulse inputs within a predetermined period of time, directly receives the ECG output from detector 2, as well as the output from the coincidence detector.
  • Logical analyzer 5 further comprises means for making a decision on the basis of input supplied thereto, and in consequence thereof delivers an output D, an output P or no output.
  • the possible combinations of ECG activity and A 2 activity resulting in the D and P I outputs are indicated in the truth table accompanying FIG. 3.
  • a zero is indicative of substantially no activity, or activity below a predetermined minimum threshold level.
  • electrical (ECG) activity is present, but no mechanical (A Z) activity is present which substantially coincides with electrical activity, logical analyzer 5 will provide'an output D. For both, neither an output D nor an input P is supplied.
  • Output P is applied to pacer 7, which provides a pacing pulse to the patient electrodes in the event that neither electrical nor mechanical activity is detected, i.e. as indicated by the first combination of the truth table. This situation corresponds generally to cardiac arrest.
  • An output D is applied to defibrillator 2 if electrical activity is present, but no mechanical activity or heart beat ensues within a predetermined time immediately following each electrical activity. As a consequence, a defibrillating pulse is applied to the patient.
  • the fourth line of the truth table corresponds to normal heart activity, wherein neither a pacing nor defibrillating pulse is needed,while the third combination of mechanical activity without electrical activity will generally not occur.
  • FIG. 3A is a more detailed electrical block diagram signal to the ECG amplifier.
  • the ECG amplifier and filter, 2B amplifies the desiredcomponents of the remaining signal while attenuating unwanted signals andnoise.
  • circuit Z-B provides'a high degree of rejection of 60 Hz signals which may be present due to the proximity of electrical power lines.
  • the output of circuit 2 B is rectified by rectifier 2-C so that the output of rectifier 2-C comprises pulses of only one polarity.
  • disabling claim 2-D operates to inhibit transmission of the ECG signal at times when electrical stimulation is being delivered to the patient. 7
  • the output of rectifier 2-C is applied to peak detector 2-F and comparator Z-H. These units comprise detection means of varying sensitivity for detecting or developing peaks from the ECG signal relative to previously stored values of such peaks-The detection means functions over a wide range of input signal amplitude with little or no degradation in performance.
  • the comparator 2-H provides an output pulse whenever the input signal exceeds the reference voltage provided by the peak detector 2-F.
  • the reference voltage represents a proportion of previous signal peaks.
  • the output of the comparator is applied to one-shot multivibrator 2-J which serves to widen the pulse and thus prevent two or more peaks of a QRS complex from producing multiple output pulses at One output pulse will be roduced at for each heart beat.
  • the output at is also coupled to inverter 2-K for supplyinga resetting signal to the pacer as hereinafter more fully described.
  • the HF. (high frequency), current generator 3A supplies an alternating current of constant amplitude at a frequency of approximately KHz to the patient electrode 6) This current produces a high frequency voltage at the patient electrodes, the amplitude of which is a function of the electrical impedance of the patients body.
  • the hi h frequency component of the composite signal at is representative of the electrical impedance of the patients body.
  • the beating of the heart produces a change in the electrical impedance of the body and thus the beating of the heart frequency component of the signal at
  • the composite electrical signal at is applied to H.F. bandpass filter 3B which rejects all signals except those which contain the ICG (impedance cardiogram) information.
  • the output of 343 is amplified by H.F.
  • circuit 3C which has provision for AGC (automatic gain control).
  • the output of circuit 3C is applied to the A.M. detector 3D (and AGC unit) which provides a low frequency output to the ICG amplifier and filter unit 3-E proportional to the changes in electrical impedance occuring in the patients body.
  • Circuit 3D also provides an AGC signal to I-I.F. amplifier 3C which controls the amplifier gain in such a way as to maintain the average output signal amplitude relatively constant over a wide range of input signal amplitudes. This feature allows the system to operate effectively over a wide range of patient body impedances.
  • the ICG amplifier and filter 3E amplifies the desired components of the ICG signal while attenuating unwanted components. In particular,'low frequency signals due to patient respiration are attenuated.
  • the output of circuit 3-E is applied to rectifier 3F which produces output pulses of a single polarity. Disabling clamp 3-H operates to inhibit the transmission .of the ICG signal during the delivery of electrical stimulation to the patient, as is hereinafter indicated.
  • the ICG pulses from circuit 3H are applied to comparator 3K which produces an output pulse at which is. applied to one input of and-gate 4-B.
  • the second input to and-gate 4-B is provided by oneshot multivibrator 4-A, and is an extended version of the ECG detector output at Thus, a pulse is present at if an output pulse from the ICG detector occurs at the time of, or slightly later than, an output from the ECG detector are present at the input of counter 5-A.
  • This information is transferred to J-K flip-flop 5-C upon receipt of a clock pulse.
  • a reset pulse is applied to counter 5-A and flip-flop 5-B to reset 5-A and S-B to the zero state and thus initiate a new counting period.
  • a clear input is provided at J-K flip-flop 5-C to reset flip-flop 5-C to the zero state when power is first applied to the resuscitator or when a defibrillating pulse is applied to the patient, as is hereinafter indicated.
  • Counter 5-D, flip-flop S-E and .I-K flip-flop 5-F operate in a manner similar to that described above for counter S-A, flip-flop S-B and J-K flip-flop 5-C.
  • the input to counter 5-D is the output of the coincidence detector unit 4.
  • the interval between clock pulses is desirably 10 seconds, and the dividing ratio of each counter is desirably five to one.
  • a high level at the Q output of circuit 5-C indicates an average ECG rate of at least five pulses per l seconds or 30 per minute.
  • a high-level at the Q output of circuit -F indicates that an average rate of at least 30 per minute was attained at the output of the coincidence detector 4 during the previous clock period.
  • the Q outputs of'S-C and 5-F are connected to and-gate S-l-l which causes the normal heart indicator to be actuated when the two 0 outputs are high and the enable signal is also high.
  • the enable signal is high after the completion of at least one clock period as hereinafter indicated.
  • circuit 5-C and the Q-not output of circuit 5-F are connected to and-gate 5-K.
  • a third input to and-gate S-K is provided by the reset pulse.
  • reset pulse which occurs at the end of the clock period causes an output pulse from S-K which, in turn, actuates the defibrillator by an input at And-gate 5-L receives the Q-not outputs of flip-flops 5-C and 5-F..
  • clock pulse generator 6-B starts providing clock pulses at at l0-second intervals. At the end of each such clock pulse, a reset is provided or-gate 6-C and flip-flop 6-D.
  • the reset via leads and reset the counters 5-A and 5-D as well as flip-flops 5-B and 5-E for another cycle.
  • the clock pulse at causes the J-K flip-flops to register the condition of flip-flops 5-B and 5-E as hereinbefore described.
  • Flip-flop 6-D provides an output at effective for enabling the pacer and normal heart indicator only after a suitable period of time has elapsed for counter 5 actually to count the heart rate. Otherwise, pacer 7 could be falsely actuated before proper counter operation. Operation of flip-flop 6-D will be further described hereinafter.
  • pacemaker timer 7-B generates a series of timing pulses with a period of approximately 0.85 seconds, whenever the output of and-gate 7-A is high.
  • the output of and-gate 7-A is high (1) when the circuitry has 0 e'rated at least 10 seconds as indicated by a signal at (2) when ECG detector 2 does not detect a present heart beat, and (3) when counter 5 dicates a heart rate of below30 beats a minute.
  • the output of timer 7-B triggers one-shot multivibrator 7-C which operates pacer pulse generator 7-D. The latter delivers a pacing pulse to the patient electrodes via leads and switching diodes l-F.
  • the switching diodes l-F essentially disconnect the pacer from the patient electrodes when the pacer produces no output.
  • output multivibrator 7-C operates or-gates 2-E and 3-] for disabling the signal paths. If, between pacer pulses, a heart beat is detected, reset signal will reset pacer timer 7- B via and-gate 7-A, restarting the timing of the 0.85 second interval. Thus, the pacer operates on a demand basis and produces no output when spontaneous heart beats are present.
  • defibrillator 8 When defibrillator 8 receives an input at oneshot multivibrator 8-A is set in a second state for approximately 100 milliseconds. Output disables the signal paths, and output resets clock 6 as well as counter 5.
  • the third output of multivibrator 8-A operates defibrillator generator 8-C through and-gate 8'-B if input is also present.
  • a defibrillating pulse a high energy electrical pulse, is applied through leads and switching diodes l-E, to patient electrodes l-A. Input is present if the patient electrodes make proper contact and certain other conditions-are met as hereinafter more fully described.
  • the switching diodes essentially disconnect the defibrillator when the same is clock period.
  • the pacer 7 will be actuated by an input at v Clock 6 includes a clock pulse generator 6-B providin gpulse outputs at lO-second intervals at If a signal is present at either indicating defibrillator operation, or at indicating faulty interface operation or initial start conditions, the clock pulse generator 6-8 is reset from or-gate 6-A. Atthe same time, the J-K flip-flops 5-C and S-F are cleared via lead and a reset pulse is provided at via or-gate 6-C. Likewise, flip-flop 6-D is set. After being initially not in use. It is observed the defibrillator operation resets clock 6 and counter 5 for successive operations.
  • defibrillator operation will again be initiated in the same manner as hereinbefore described.
  • continuity checker l-C which determines if the patent electrodes are in proper electrical contact with the patients body. If not, a poor contact indicator 1-D, suitably comprising a pilot lamp, is energized, and defibrillator and-gate 8-B is disabled via and-gate l-K and .lead thus preventing defibrillator operation and possible patient burns in case of poor electrical contacLAlso in such case, clock 6 is reset via lead ((3 and inverting gate l-L, and flipof one-shot INTERFACE Referring to FIG.
  • transistors 0101 and 0102 provide DC current sources for patient electrodes and to ground via indifferent or neutral patient electrode
  • Patient electrode (D is coupled to the input and an operational amplifier U101, while the patient electrode is coupled to the input of an operational amplifier U102, with diodes D105, D106, D107 and D108 protecting the amplifiers during the application ofa pacing or defibril lating pulse.
  • the voltage at patient electrode (D is less than about +0.15 volts, then the output of U101 will be about +15 volts, and the voltage at the junction of D109 and D110 will be clamped to about +5.6 volts. However, if the voltage at patient electrode (D exceeds +0.15 volts, the voltage at the output of U101 will be about -15 volts, and the voltage at the junction of diodes D109 and D110 will be clamped at about 0.6 volts.
  • the output of amplifier U102 is similarly controlled by the voltage at patient electrode
  • the output of amplifier U107 is controlled by the amplitude of the high frequency AC voltage which exists at electrode due to current supplied at The AC voltage is rectified by diode D142 so that the voltage at the minus input of amplifier U107 is a DC volta e representing the peak value of the AC voltage at Thus if electrode is in poor contact with the patient, the voltage at the minus input of amplifier U107 is relatively high, causing the voltage at the junction ofdiodes D143 and D144 to be about -0.6 volts.
  • Nand-gate receives the outputs of the three amplifiers U101, U102 and U 107 anddrives nand-gate 32, here used as an inverter, which is coupled to transistor 0103 having a poor contact indicator lamp in its collector circuit.
  • nand-gate 32 here used as an inverter
  • nand-gate 32 drives nand-gate 34 in conjunction with start circuit 1-H comprising transistor 0104.
  • transistor 0104 When power is first turned on, transistor 0104 is momentarily turned on.
  • Capacitor C101 charges so that transistor Q104 cuts off, thereby providing a high input to nand-gate 34.
  • both inputs to nandgate 34 will be up, and the output of nand-gate 36, driven by nand-gate 34, will also be up.
  • the output of nand-gate 36 is applied to leads and Since nand-gates are employed throughout, no inverting gate is employed in lead nor is an inverting gate required in the output of the start circuit.
  • Switching diodes 1-E and 1-F from the defibrillator and pacer, respectively, couple these units to the patient electrodes, and essentially decouple these units when neither provides an output pulse. Also, the
  • respective diodes prevent application of a defibrillator pulse to the pacer or a pacer pulse to the defibrillator.
  • Operational amplifiers U104 and U105 receive signal outputs from patient electrodes (D and and diodes D116 and D117, D118 and D119 limit the voltage excursion of the inputs of these amplifiers during the occurrence of defibrillator or pacer pulses.
  • Each of the amplifiers U104 and U105 is connected as a voltage follower, so the outputs thereof are the same as those from patient electrodes and respectively, except the DC component has been removed, and the impedance level is greatly reduced.
  • the outputs of amplifiers U104 and U105 are applied as inputs to differential amplifier U106 which has a voltage gain of approximately 10 as determinedin part by feed back resistor R135.
  • the output of amplifier U106 at lead is therefore an amplified version of the signal existing between patient electrodes (D and (2) except that any DC component has been removed.
  • a low pass filter 2-A comprises inductors L201 and L202 and capacitors C201 and C202.
  • the cutoff frequency of filter 2-A is such that the IOOKl-iz component of the signal at is severely attenuated, while-the low frequency ECG signal is allowed to pass.
  • Capacitor C203 and resistor R201 operate as a differentiating network so the signal at the positive input of amplifier U201 is representative of the rate of change of the ECG signal.
  • the very low frequency components of the signal including baseline shift and the P and T portions of the normal electrocardiogram, are effectively reduced.
  • Amplifiers U201 and U202 together with twin-tee filter and other associated components, operate as an active filter which rejects any 60 hertz component which may appear upon the ECG signal due to proximity of electrical power lines or apparatus, while providing amplification of other frequency components.
  • the signal at the base of transistor Q201 is a highly refined version of the signal at with all undesirable components reduced to small amplitude.
  • Rectifier 2-C comprises transistor Q201 operating as a phase inverter so that the signals at the emitter and collector terminals of 0201 are of equal magnitude, but of opposite polarity, the magnitude being nearly equal to the magnitude at the base terminal.
  • the collector of Q201 is coupled through capacitor C208 to the base of transistor 0202 and to one end of resistor R21 1, which has its opposite end connected to ground.
  • the emitter of transistor Q201 is coupled through capacitor C209 to the base of transistor Q203 and to one end of resistor R214 which has its opposite end connected to ground.
  • the emitter terminals of transistors 0202 and 0203 are connected together and to one end of resistor R215, the other end of which is grounded.
  • a positive signal at the base of transistor 0201 produces a positive signal at the base of transistor 0203 and a positive signal at the common emitter terminals of transistors 0202 and 0203.
  • a negative signal at the base of transistor 0201 causes a positive signal at the base of transistor 0202 and a positive signal at the common emitter terminals of transistors 0202 and 0203.
  • positive signals at the base terminals of transistors 0202 and 0203 which are smaller in amplitude than 0.6 volts, will be severely attenuated because of the nonlinear characteristics of the baseemitter junctions of transistors 0202 and 0203.
  • the signal at the common emitter terminal of transistors 0202 and 0203 is a series of positive pulses which occur whenever the signal at the" base of transistor 0201 exceeds 0.6 volts in either the positive or negative direction, and which correspond to the fastrising portions of the ECG component of the signal at
  • the common emitter terminal of transistors 0202 and 0203 is coupled through resistor R216 to the positive input of amplifier U204 and to the collector of transistor 0204, forming a part of disabling clamp circuit 2-D.
  • the base of transistor 0204 is coupled to the output of gate 2-E employed for causing transistor 0204 to conduct and clamp the signal at its collector terminal to ground whenever either of the inputs, and are low. Clamping occurs during the delivery of defibrillating or pacing pulses to the patient.
  • the series of positive pulses present at the common emitter terminals of transistors 0202 and 0203 is applied to the positive input of amplifier U204, to the anode of diode D201 and to the emitter of transistor 0207.
  • a positive pulse causes diode D201 to conduct andto charge capacitor C210 to the peak value of the pulse (less the diode voltage).
  • Resistor R230 allows capacitor C210 to discharge at a rate which is slow in comparison ,with the time between normal heart beats. Therefore capacitor C210 acts as a peak storage capacitor and discharges only slightly between input pulses.
  • Amplifier U205 is connectedas a typical voltage follower except that diode D202 is connected between the output and the inverting input. This .diode compensates for the voltage drop which occurs across diode D201 while capacitor C210 is charging, in order to make the output voltage of amplifier U205 more nearly equal to the peak value of the input pulse.
  • amplifier U205 The output of amplifier U205 is applied to amplifier U206 through a delay network comprising resistor R234 and capacitor C213. Thus the input to amplifier U206 does not immediately respond to a change in the output of amplifier U205.
  • Amplifier U206 is connected in a noninverting configuration with a gain of two, so
  • the output of amplifier U206 is a voltage approximately equal to twice the stored value on capacitor C210.
  • the output of amplifier U206 is coupled to the base of transistor 0207 which operates as a limiter inasmuch as its emitter is coupled to the input line of the peak detector 2-F, i.e. at the anode of diode D201.
  • transistor 0207 conducts
  • This limiting feature prevents a single large pulse, whether originating in the patient as in the case of an ectopic beat, or induced into the patient from an external source, from raising the stored peak value to some value which is entirely unrepresentative of the average signal amplitude.
  • the limiting feature particularly prevents the large voltage peaks associated with ectopic beats from decreasing the sensitivity of the circuit to the point where the next normal QRS heart signal complex would be undetected.
  • the output of amplifier U205 is also coupled to a divider comprising resistors R232 and R233 which allows approximately one-third of the stored peak value to be coupled to the negative input of comparator amplifier U204 as a reference voltage.
  • Capacitor C211 is connected in shunt with resistor R233 to cause a delay in any change in the reference voltage, so the reference cannot follow the input signal.
  • the system Since the reference voltage for the comparator varies with the peak amplitude of the signal, the system is of variable sensitivity, rendering it operable with respect to cardiac signals of different average amplitude values. It is noted that the one-third reference value allows detection of a normal signal after an ectopic beat, the storage of which is restricted to double amplitude.
  • Nand-gate 2-K here connected as aninverter, provides an output for resetting the pacer.
  • high frequency current generator 3-A includes 100 KHz crystal oscillator U301 which is coupled through transformerT30l to high frequency amplifier- U302 which also has an automatic gain control (AGC) input, numbered 5.
  • the output of amplifier U302 is coupled through tuned transformer T302 to capacitors C303 and C304 and to the anode of diode D301, the signal at this junction being a sinusoidal voltage symmetrical with respect to ground.
  • the cathode of D301 is coupled to the base of transistor 0301, the emitter of which is connected to the positive input of amplifier U303 and to the parallel combination of resistor R306 and capacitor C305.
  • the time constant of circuit R306, C305 is long with respect to the period of the sinusoidal signal at the anode of diode D301, so that capacitor C305 is maintained at a voltage which is representative of the peak value of the sine wave I applied to capacitors C303 and C304, at approximately volts.
  • Capacitor C303 couples the 100 KHz signal to the base of transistor 0302 which is biased so that the base (is approximately l4.4 volts DC.
  • the emitter of transistor 0302 is coupled through resistor R302 to the +15 volt supply.
  • resistor R302 to the +15 volt supply.
  • capacitor C304 couples the 100 KHz signal to transistor 0303, which conducts a half sine wave of current to the output terminal when the signal at the base'swin gs positive.
  • a full sine wave of current is supplied at the output terminal the magnitude of the current being approximately 5 milliamperes peak, and independent of load impedance for impedances less than about 1,000 ohms.
  • the output current is coupled to the patient electrodes in order to detect changes in the electrical impedance of the body.
  • a constant current output is required in order to avoid' artifacts in the impedance cardiogram (ICG) waveform due to changes in impedance at the electrode-patient interface.
  • ICG impedance cardiogram
  • the composite signal obtained from the patient including the 100 KHz ICG signal, the low frequency ECG signal, and-superimposed noise, is applied at in FIG. 5.
  • Bandpass filter 3-B comprising tuned transformer T303, rejectsall components of the signal except the 100 KHz component, which is an amplitude modulated signal containing the ICG information.
  • the 100 KHz signal is amplified by high frequency amplifier U304 which has provision for AGC at its terminal 5.
  • the output of amplifier U304 is coupled through tuned transformer T304 to the base of transistor 0305 which has its emitter terminal connected tocapacitor C317.
  • the base-emitter junction of transistor Q305 serves as. a rectifier, and in conjunction with capacitor C317, as an amplitude modulation detector.
  • Capacitor C317 filters out the 100 KHz component of the. signal and the resultant voltage applied to capacitor C320 is therefore a low frequency signal which is proportional to the imtially a DC voltage representative of the average amplitude of the KHz signal at the output of amplifier U304.
  • Transistor 0304 serves as an emitter follower to couple this DC voltage to the AGC input of amplifier U304, thus providing a closed-loop system to maintain the output of amplifier U304 relatively constant.
  • the system is operable over a wide range of body impedance levels with a relatively constant amplitude of ICG signal being obtained.
  • the low frequency signal at the emitter of 0305 is coupled through the differentiating circuit comprising capacitor C320 and resistor R320 to the inverting input of amplifier U305 which is connected for conventional operation as an inverting amplifier.
  • Capacitor C321 connected in shunt with feedback resistor R321 serves to eliminate any residual high frequency component present on the signal.
  • the signal at the output of amplifier U305 is proportional to the rate of change of the patients body impedance due to the differentiating action of components C320 and R320.
  • the output of amplifier U305 is applied to rectifier circuit 3-F which operates in a manner similar to that hereinbefore described in reference to rectifier 2-C.
  • the signal applied at the noninverting input of amplifier U306 is a series of positive pulses, each pulse corresponding to a rapid change in the electrical impedance of the patients body.
  • Disabling clamp 3-1-1 comprising transistor Q309 clamps the signal to ground during times when defibrillating or pacing pulses are being generated.
  • Amplifier U306 here operates as a comparator (3K) causing a positive rectangular pulse to be applied at output terminal whenever the signal at the noninverting input exceeds the reference voltage supplied by the voltage reference 3-L comprising resistors R333 and R334 and capacitor C324.
  • coincidence detector 4 comprises one-shot multivibrator 4-A and an and-gate 4-B.
  • Rectangular pulses from the ECG detector are applied at input approximately 200 milliseconds in width, to be generated at the collector of transistor 0402.
  • the collector of transistor 0402 is connected to one input of nand-gate U401A, the second input. of U401A being connected to the output of the ICG detector at
  • the output of gate U401A is connected to the inputs of nand-gate U401B, here employed as an inverter.
  • the output is low except when a high level signal is received at during the first 200 milliseconds after the receipt of a high level input at In essence, this means that in order for an output of the lCG detector to be considered valid, it must be immediately preceded by an output from the ECG detector. This feature reduces the probability that artifacts in the ICG signal can cause a false diagnosis of the patients condition.
  • counter 5-A receives input pulse at from the ECG detector and after receiving five pulses produces a negative-going voltage step which is differentiated and applied to flip-flop 5-B.
  • flip-flop 5-B receives input pulse at from the ECG detector and after receiving five pulses produces a negative-going voltage step which is differentiated and applied to flip-flop 5-B.
  • Clock pulses are supplied at at intervals of approximately lO seconds, the width of the clock pulse being small with respect to the lO-second interval.
  • the clock pulse causes the information present at the .l and vK inputs of flip-flop 5-C to be stored in such flip-flop and to be registered at the Q and Q-not outputs thereof.
  • J is low and K is high at the time of the clock pulse, then will be low and Q-not high after the end operate in a similar manner to count input pulses presented at during the clock interval and to register the result at the 0 and Q-not outputs of flip-flop -F.
  • the states of the outputs of flip-flops 5-C and 5-F are representative of the number of pulses received at and respectively during the previous interval between clock pulses.
  • a high level at the Q outputs of both flip-flops 5-C and S-F indicates that the patients heart has both significant electrical activity and significant mechanical activity.
  • the two 0 outputs are connected to two inputs of nand-gate S-H.
  • a third input to gate 5-H is supplied at to enable 5-H only after a full clock period has elapsed for counting.
  • the output of gate 5-H is low when significant electrical and mechanical activity is present in the patient and after sufficient time has elapsed for counting, causing the normal heart indicator 5-J including transistor 0501 to be energized.
  • the reset pulse immediately following the clock period in which such determination was made causes the output of nand-gate U206B to be low and the signal at to be high, triggering the defibrillator.
  • the two Q-not outputs applied to nand-gate U207A will be high, causing the signal at to be high, activating the pacemaker.
  • gate portions 6A' and 6-C' perform the functions of or-gates 6A and 6-C on the block diagram.
  • This structure is conveniently provided as a fou-r-nand-gate integrated circuit including nandgates. 60, 62, 64, and 66, which are consecutively connected.
  • Nand-gate 60 receives inputs from the interface circuit, and from the defibrillator circuit. Providing both these inputs are up, the output of nandgate is low, and the clock pulse generator 6-B can operate in a normal fashion.
  • transistor 0601 receives the output of nand-gate 60 at its base, and its collector-emitter terminals are coupled across capacitor C601 coupled between the emitter and lower base terminals of unijunction transistor 0602.
  • the circuit normally operates as a relaxation oscillator whereby the unijunction transistor periodically discharges capacitor C601 to supply a pulse output at its lower base. If either input or should drop, transistor 0601 would be rendered conducting and short capacitor C601 causing immediate discharge thereof. At the conclusion of such input at or the operation of the oscillator including unijunction transistor 0602 would be restarted.
  • the normal period of the oscillator is here adjusted to be 10 seconds by means of potentiometer R606, and at the end of conduction of transistor 0601, a new 10- second interval is started.
  • a new 10- second interval will start.
  • the output of unijunction transistor 0602 is connected via a Schmitt trigger circuit, comprising transistors 0603, 0604, and 0605, to an input of nandgate 68, the output of which provides the clock pulse on lead
  • the output of the Schmitt trigger circuit comprising transistors 0603, 0604, and 0605 is also coupled to a second Schmitt trigger circuit comprising transistor 0606 and 0607.
  • the output of the latter trigger circuit is applied to nand-gate and the output of nand-gate 70 is connected to an input of nand-gate 74 which forms flip-flop 6-D together with nand-gate 72.
  • the output of nand-gate 74 is connected to one input of nand-gate 72, and vice versa.
  • nand-gate 72 Another input of nand-gate 72 is derived from the output of nand-gate 62. As thus appears, flip-f lop 6-D will be set upon the operation of nand-gates 60 and 62, and will then be reset upon the occurrence of a clock pulse.
  • the signal at from nand-gate 74 enables the pacemaker at the first clock pulse after power has been applied for a short period, or after any difficulty with respect to continuity has been rectified, or after the occurrence of a defibrillator pulse. Thus, the pacer is disabled until a proper count can be made.
  • nand-gate 70 drops at the end of a clock pulse, and the output of nand-gate 70 is also applied to nand-gate 64 in conjunction with the output of nand-gate 62.
  • nand-gate 64 drops at the end of a clock pulse, and the output of nand-gate 70 is also applied to nand-gate 64 in conjunction with the output of nand-gate 62.
  • a reset is provided by nand-gate 64 on lead at the conclusion ofa clock pulse.
  • This signal is inverted by nand-gate 66 to provide the reset signal on lead
  • a clear signal is provided on lead at the same time that either input or lowers, and the J-K flip-flops in the counter circuit will be cleared at such time.
  • nand-gate 70 receives input from the counter, enabling signal from the clock circult, and reset signal from the ECG detector. Input from the counter is the one indicating a slow heart beat and the desirability of applying pacing pulses. Enabling signal indicates that the interface is operating properly and that sufficient time has elapsed for the counter to make a proper count after application of power or application of a defibrillator pulse.
  • the output of gate 7-A which here comprises a nandgate, is applied to transistor 0702, and assuming all three of the aforementioned inputs, and
  • the input to transistor 0702 will be low. Therefore, the pacemaker 7-B is operable.
  • Pacer timer 7B comprises a'unijunction transistor Q703 having a capacitor C703 coupled between its emitter terminal and lower base.
  • This circuit is a relaxa tion oscillator similar to that described in connection with the clock circuit, except in the present instance the relaxation oscillator suitably has a period of approximately 0.85 seconds.
  • the output of timer 7-B is applied to oneshot multivibrator 7-C including transistors 0704 and 0705.
  • the output at the collector of transistor 0705 is a series of positive pulses, each pulse having a duration of about I milliseconds, and this output is connected to the input of nand-gate 76.
  • Nand-gate 76 provides signal applied to the ECG detector and ICG detector for disabling the signal channels when a pacer pulse is being generated. It should be noted that the duration of the output pulse at is considerably longer than the duration of the pacing pulse applied to the patient. This allows time for the amplifier 1-8 and other signal circuits to recover from the overdriven condition imposed by the pacing pulse.
  • the output of one-shot multivibrator circuit 7-C is also applied via transistor 0706 as the input of pulse transformer T701, the secondary of which is coupled to provide the input of thyristor Q701.
  • AC voltage from a power supply is normally applied across a bridge circuit comprising diodes D701, D702, D703 and D704 connected in DC charging relationship to capacitors C701 and C702, with thyristor Q701 being interposed between the positive end of capacitor C702 and connection (6) coupled to the patient electrodes.
  • transistor 0706 turns on, current flow rapidly increases through the primary winding of pulse transformer T701, and a resultant secondary pulse triggers thyristor 0701 into a conducting state.
  • thyristor Q701 When thyristor Q701 is turned on, capacitor C702 discharges through diodes l-F and through the patients body. As capaci tor C702 discharges, the current through thyristor Q701 decreases until the minimum holding current is DEFIBRILLATOR Referring to FIG. 11, illustrating the defibrillator 8, an input is received at from counter 5 when significant electrical activity in the absence of significant mechanical activity has been detected, indicative of ventricular fibrillation or ventricular tachycardia.
  • the input .pulse operates one-shot multivibrator 8-A comprising transistors Q802 and Q803, which in turn applies a lengthened output to gate 8-B, here comprising nand-gates 78, 79 and 80 consecutively connected.
  • nand-gate 78 The output of nand-gate 78 is connected to leads and which, respectively, disable and recycle the clock, and clamp the input signal channels during the defibrillator pulse.
  • the output of the one-shot multivibrator 8-A is longer than the duration of the defibrillating pulse applied to the patient to allow time for amplifier and other circuits to recover.
  • Signal (9 comprising a disabling input from the interface circuit, is also connected to nand-gate 80, and when this signal drops, indicating improper connection of the patient electrodes or the start of operation, the defibrillator is disabled.
  • nand-gate 80 is connected to the base of transistor 0801 which has the operating coil of relay K801 serially connected in its collector circuit.
  • the contacts of relay K801 normally connect capacitor C801 to the output of a bridge circuit comprising diodes D801, D802, D803 and D804, receiving a high voltage alternating current input.
  • relay K801 connects capacitor C801, theretofore charged through the aforementioned bridge circuit, to leads and via inductance L801. Leads and are coupled through diodes l-E to the patient electrodes, as hereinbefore mentioned.
  • Capacitor C801 initially charged to a high voltage from the power supply, applies this high voltage across a circuit comprising inductance L801,
  • the device is applied to the suspected heart attack patient as illustrated in FIG. 1, with the patient electrodes in direct contact with his body.
  • patient electrodes and are positioned in good contact with the patients chest, and patient electrodes Q) and (3) are positioned in direct contact with the patients back.
  • the device is turned on to operate the apparatus power supplies, and if proper contact is not made with the patient, indicator 1-D will light, and moreover, operation of the instrument is prevented.
  • counter 5 will cycle under the control of clock 6 for the first lO-second period, and if a normal condition exists, normal heart indicator 5.l will light.
  • pacer 7 will operate through switching diodes l-F, and the patient electrodes, to provide a pacing pulse to the patient as long as required. Should a normal heart beat resume without the aid of the pacer, the pacer will be disabled via input of and-gate 7-A. If, on the other hand, electrical activity is present, while mechanical activity is absent, indicating ventricular fibrillation, defibrillator 8 will be energized to provide a defibrillating pulse to the patient via switching diodes 14-3. The apparatus will then be recycled to take another measurement of the heart rate, and appropriate corrective action will again be taken.
  • the corrective action taken by the resuscitator may be accomplished as soon as or even before an ambulance team or fist aid personnel have reached the patient, the chances for survival are materially increased as compared with the chances for survival when treatment must await telemetry or transport of a heart patient to a hospital.
  • a cardiac resuscitator comprising:
  • the apparatus according to claim 1 including means for rendering said means for detecting mechanical activity effective only immediately following detected electrical activity.
  • Cardiac resuscitator apparatus comprising:
  • said means for detecting mechanical activity comprises means for applying a signal to the patient, and means for detecting a change in voltage drop produced by said signal for detecting changes in body impedance caused by mechanical heart activity.
  • said means for applying a signal to a patient includes a first electrode connected to the means'for applying a signal, a second electrode for application to the patient, and
  • a cardiac resuscitator comprising:
  • Electrode means for application to a patient suffering from possible heart attack, first means coupled to said electrode means for detecting the electrocardiac signal generated by the patients heart including the QRS wave of the electrocardiac complex, if present,
  • logical means coupled to receive outputs from said first and second means and for determining when said first and second means produce output rates respectively indicative of acceptable electrical and mechanical activity of the patients heart, as the pulse rate detected by each of said first and second means exceeds predetermined levels
  • pacer means coupled to said logical means and responsive to the absence of both electrical and mechanical activity, as indicated by failure of the outputs of either said first and second means to exceed predetermined levels, for providing an output comprising periodic pacing pulses at a predetermined rate, means coupling the last mentioned output to saidelectrode means,
  • defibrillator means coupled to said electrode means and responsive to said logical means, as the output of said first means above a predetermined level indicates electrical activity of the patients heart, while the output of the second means fails to exceed a predetermined level indicating absence. of acceptable mechanical activity of the patients heart, for applying a defibrillating pulse to said electrode means.
  • the apparatus according to claim 8 including indicating means responsive to said logical means when both said first and second means produce outputs above predetermined limits for indicating normal heart activity.
  • the apparatus according to claim 8 including a coincidence detector for receiving the outputs of both said first and second means and providing the output of said second means to said logical means only in the event that the output of said second means occurs withinpredetermined time limits of the output of said first means such that mechanical activity will only be detected in each instance substantially immediately following a detection of electrical activity of a patients heart.
  • said logical means comprises means for counting the outputs of said first means and said second means within predetermined time periods and producing logical outputs in accordance with the count of said outputs as they exceed predetermined lower activity levels.
  • said means for detecting impedance changes of the patients body comprises means for generating a high frequency alternating current for application to said patients body via said electrode means, and means responsive to the signal received at other electrode means for detecting changes in said signal.
  • the apparatus according to claim 8 including means for decoupling said detecting means from said electrode means during an output from said pacemaker means or said defibrillator means.
  • the apparatus according to claim 8 including means for determining the continuity of connection of said electrode means with the patients body, and means for inhibiting the pacing pulse and defibrillating pulse application of said resuscitator apparatus, in response to a lack of such continuity.
  • said first detecting means includes a variable sensitivity signal channel, having means for receiving and coupling the electrocardiac signal and means for storing previous peak values detected, the signal channel being coupled to the means for storing for changing the sensitivity of said signal channel in response to the previous level of peak values stored for causing said first detecting means to be responsive to signals exceeding at least a predetermined proportion of said peak values.
  • the apparatus according to claim 15 further including means for limiting the level stored by said storing means to a predetermined multiple of said peak values stored ther'etofore.
  • the apparatus according to claim 8 including a U-shaped applicator wherein said electrode means are carried by said U-shaped applicator positionable for yieldably urging said electrode means into firm contact with the patients body, at least one of said electrode means being mounted from an upper leg of said applicator for location against the patient's chest over the heart area, and a second electrode means being mounted upon a lower leg of said applicator for positioning against the patients back opposite the first mentioned electrode means.

Abstract

A resuscitator apparatus includes means for detecting and counting the electrical and mechanical output of the heart of a suspected heart attack victim, and means for substantially immediately applying a pacing pulse or a defibrilating pulse, as required. Thus, if both electrical and mechanical outputs have low rates, or are nonexistent, a pacing pulse is automatically applied for stimulating a heart beat in time with such pulse. However, if electrical activity is present while mechanical output is absent, indicative of ventricular fibrillation, a defibrillating pulse is applied to the patient. If both electrical and mechanical activity are present, indicative of substantially normal operation, appropriate indication is given, and no corrective action is taken. The apparatus attaches to the patient for administering the correct electrical stimulation to the patient as soon as possible after the occurrence of the suspected attack.

Description

United States Patent 1191 TRUTH TABLE Welborn et al. Feb. 13, 1973 1 CARDIAC RESUSCITATOR OTHER PUBLICATIONS [75] Inventors: Warren Welbomv Portland? Stratboeler et 111., Rocky Mountain Engineering vin A. Holznagel, Sherwood, both of Society," 19 5 57 Oreg. [73] Assignee: Cardiac Resuscitator Corporation, Primary Emminer-wmlm m Portland Oreg Attorney-Buckhorn, Blore, Klarquist and Sparkman [22] Filed: Aug. 24, 1970 i 57 ABSTRACT [21] Appl' 66,189 A resuscitator apparatus includes means for detecting and counting the electrical and mechanical output of 521 US. Cl ..128/419 1), 128/2.()5 P, 128/2.06 A, the heart of a suspected heart attack victim, and 1 123 g Z, 123 419 p means for substantially immediately applying a pacing 51 Int. Cl. ..A6ln 1/36 pulse or a defibrilating pulse, as required- Thus, if 58 Field of Search ..128/2.06 A, 2.06 E, 2.06 F, both electrical and mechanical outputs have low rates, 12 20 R, 2 1 E, 2 1 R, 2 1 Z, 419 419 or are nonexistent, a pacing pulse is automatically app 2.05 p 2 5 R, 2 5 S, 2 )5 T plied for stimulating a heart beat in time withsuch pulse. However, if electrical activity is present while [56] Ref f Cit d mechanical output is absent, indicative of ventricular fibrillation, a defibrillat'ing pulse is applied to the pa- UNITED STATES PATENTS tient. If both electrical and mechanical activity are 3,030,946 4/1962 Richards ..l28/2.06R Present indicative of Substantially mmlal Operation 3 547 10 12 1970 s 12 20 R appropriate indication is given, and no corrective ac- 3,174,47s 3 1965 Kahn 23 2 0 F tion is taken. The apparatus attaches to the patient for 3,144,019 8/1964 Haber ..l28/2.06 A administering the correct electrical stimulation to the 3,236,239 9 o -w 123/4l9 D patient as soon as possible after the occurrence of the 3,460,542 8/ 1969 Gemmer l28/4l9 P -suspected attack 3,149,627 9/1964 Bagno ....l28/2.-l Z 3,593,718 7/1971 1 Krasner et a1 128/419 P 17 Claims, 14 Drawing Figures FOREIGN PATENTS OR APPLICATIONS 1,272,570 8 1961 France "1287 11 96 A co ECG DETECTOR 4 LOGICAI; I 7 ANALYZER XEQM/F/ AZ COINCIDENCE DETECTOR DETECTOR PATIENT 8 INTERFACE 7 v DEFIBRILLATOR PACER PAIENTEDFEB 13 I975 3,716,059 SHEET 10F a WARREN S. WELBORN MELVIN A. HOLZNAGEL INVENTORS.
BY v
BUCKHORN, BLORE, KLARQUIST & SPARKMAN ATTORNEYS PAIENIEDFEB13 I975 SHEET 2 [IF 8 TRUTH TABLE LOGICAL ANALYZER ECG DETECTOR AZ. COINCIDENCE DE TEC TO R MECHANICAL ACTIVITY DEFIBRILLATOR PACER DETECTOR WARREN S. WELBORN MELVIN A. HOLZNAGEL INVENTORS.
BY I
BUCKHORN, BLORE, KLARQUIST & SPARKMAN PATIENT I NTERFACE ATTORNEYS PATENTEU 5 3,716,059 SHEET 4 0F 8 WARREN S. WELBORN MELVIN A HOLZNAGEL -INVENTORS.
BUCKHORN, mom, KLAROUIST & SPARKMAN ATTORNEYS PAIENIEDFEB 1 3 I973 SHEET 5 OF 8 WARREN SWELBORN MELVIN A, HOLZNAGEL INVENTORS.
BUCKHORN, BLORE, KLARQUIST & SPARKMAN ATTORNEYS PATENTEDFEB13 1975 3.7 1 6; 059
SHEET 6 BF 8 U3OI lOOKHz CRYSTAL OSC WARREN S. WELBORN MELVIN A. HOLZNAGEL INVENTORS.
BUCKHORN, BLORE, KLARQUIST & SPARKMAN ATTORNEYS PATENTEUFEB 13 I975 SHEET 7 [IF 8 BUCKHORN, BLORE, KLARQUIST & SPARKMAN ATTORNEYS PAIENTEDFEB13 I975 SHEET 80F 8 3,716,059
ason NORMAL.
5 HEART DEFIB.
PACE.
RESET RE SET CLOCK CLEAR WARREN S. WELBORN MELVIN A. HOLZNAGEL INVENTORS. 7
BUCKHORN, BLORE, KLARQUIST & SPARKMAN ATTORNEYS An unusually large number of heart attack victims die each year as a result of delays in providing the intensive care required. A suspected heart attack victim typically must be hospitalized before receiving adequate medical attention. However, a great many pa-' tients suffering from a coronary attack never reach the hospital. Cardiac arrests and arrhythmias such as ventricular fibrillation frequently develop within a short time after the onset of the attack, e.g. within the first hour, with fatal results unless remedial steps are taken within minutes. Unless a normal rhythm can be restored to a heart in ventricular fibrillation within minutes, serious brain damage or death will result.
SUMMARY OF THE INVENTION In accordance with the present invention, a cardiac resuscitator is provided which is compact enough for attachment to a suspected heart attack victim at nearly any location, and which may be operated by comparatively unskilled personnel. The resuscitator may be carried in an ambulance, for example, or may be conveniently stored in an industrial plant, office building, hotel, or the like, for immediate application to the suspected victim of a heart attack. The resuscitator electrode current applicator is applied to the patient, and the apparatus measures the electrical and mechanical output of the'patients heart. If a normal heart beat is detected, an appropriate indication is given. How ever, if the heart beat is excessively slow or nonexistent indicating substantial cardiac arrest, a pacing pulse is applied to the patient for restoring a normal heart beat. If electrical output is present while mechanical output is absent, indicative of ventricular fibrillation or ventricular tachycardia, an appropriate defibrillating impulse is applied to the patient. The apparatus may remain applied to the patient for detecting possible arrhythmias occuring after the onset of a possible heart attack until adequate hospitalization can be provided.
It is an object of the present invention to provide an accurately interprets the electrical and mechanical signals from a suspected heart attack victim and applies a corrective impulse in cases of then determined arrhythmias. r
It is a further object of the present invention to provide an improved cardiac resuscitator apparatus which is substantially foolproof in operation.
The subject matter which we regard as our invention is particularly pointed out and distinctly claimed in the concludingportion of this specification. The invention,
however, both as to organization and method of operation, together with further advantages and objects thereof, may best be understood by reference to the following description taken in connection with the accompanying drawings wherein like reference characters refer to like elements.
DRAWINGS FIG. 1 is a perspective view of cardiac resuscitator apparatus according to the present invention, shown applied to a patient;
FIG. 1A is a side view of an electrode current applicator portion of the present resuscitator apparatus;
FIG. 2 illustrates typical electrical signals corresponding to normal cardiac conditions;
FIG. 2A illustrates typical signals corresponding to fibrillation of the patients heart;
FIG. 3 is a simplified block diagram of cardiac resuscitator apparatus according to the present invention;
- FIG. 3A is a more specific block diagram of cardiac resuscitator apparatus according to thepresent invention;
FIG. 4 is a schematic diagram of interface 1 portion of the apparatus as referenced in the FIG. 3A block diagram;
FIG. 5 is aschematic diagram of the ECG detector 2 portion in the block diagram; I
FIG. 6 is a schematic diagram of the [CG detector 3 in the block diagram;
FIG. 7 is a schematic diagram of coincidence detector 4;
FIG. 8 is a schematic diagram of counter 5;
FIG. 9 is a schematic diagram of clock 6;
FIG. 10 is a schematic diagram of pacer 7; and FIG. 11 is a schematic diagram of the defibrillator 8 portion of the FIG. 3A block diagram.
DETAILED DESCRIPTION Referring to FIGS. 1 and 1A, illustrating resuscitator apparatus according to the present invention, the apparatus includes a U-shaped electrode current applicator 110 provided with a handle 116 and electrodes and which are individually connected to the control cabinet 112 via cable 114. The applicator is desirably formed of spring plastic or plastic-covered metal electrically insulated from the electrodes. As illustrated in the FIG.-1A, the applicator tends to urge contacts Q) and toward one another so that when placed on the patient as illustrated in FIG. 1, contacts a), (2), Q) and make firm contact with the patients body.
The electrode current applicator is placed over the left shoulder ofthe patient so that electrodes and are positioned appropriately above. and below the heart, with the patient ordinarily being in a prone position. The patient is desirably stripped to the waist so that such contact may be made with the body or, alternatively, the applicator can be inserted beneath clothing to some extent. Electrode (D is designated the chest electrode, with electrode (2) comprising the back electrode. The third electrode termed an indifferent or neutral electrode, makes contact with the patient in the shoulder region. A fourth electrode, located near (D is called the current source el ec trode.
The control cabinet 112 suitably contains electronic circuitry for sensing the electrocardiac signal generated by the heart, electronic circuitry for sensing changes in the electrical impedance of the patients body, and electronic circuitry for making logical decisions based upon the analysis of the electrocardiac (ECG) and impedance (ICG) signals. As hereinafter disclosed, other means may be employed for measuring mechanical activity of the heart in place of circuitry for sensing impedance changes, but the latter is preferred. The control cabinet also contains electronic circuitry for generating 'defibrillating or pacing pulses in response to the logical decisions and for applying these pulses to the patient electrodes.
FIG. 2 shows typical waveforms which may be present in the cardiac resuscitator when attached to a patient having normal heart operation. Waveform A is the ECG signal as obtained from the patient. The QRS portion of the waveform is associated with contraction of the ventricles and is of great importance in the cardiac resuscitator, while the P and T portions are of no importance in this application. Filtering of waveform A results in waveform B in which the P and T portions are essentially eliminated. Waveform C shows a typical ICG signal which may be obtained by processing a high frequency signal provided at the patient electrodes, and waveform D is a filtered version of waveform C. The voltage peaks of waveform D, which are representative of electrical impedance changes in the patients chest, occur somewhat later than, but in a definite time relationship with, the peaks of waveform B. The impedance changes are brought about by mechanical movement of the patients heart, blood flow, or the like. Not shown in FIG. 2 are waveform artifacts which may be present on the ICG waveforms due to patient respiration or externally induced motion. The cardiac resuscitator makes use of the'time relationship of the ECG and ICG waveforms to reduce the effects of artifacts by requiring that an ICG pulse, to be valid, must be immediately preceded by an ECG pulse.
FIG. 2A shows waveforms typical of those to be found in the cardiac resuscitator when the patient is in ventricular fibrillation. Waveform A is the ECG waveform as obtained from the patient. Although random in nature, the waveform typically contains fast-rising portions which may be more clearly defined by filtering, to produce waveform B. The same circuitry which converts waveform A to waveform B in FIG. 2 will convert waveform A to waveform B in FIG. 2A. Thus the circuitry is capable of recognizing the presence of electrical activity in a fibrillating heart while rejecting the? and T portions ofa normal ECG.
While in fibrillation, the heart muscle fibers contract in a random, uncoordinated manner so that no effective pumping of blood occurs. Thus no significant mechanical changes are present which would bring about body impedance changes, and the ICG pulses are absent. This fact is used to distinguish fibrillation from normal heart operation in the present invention.
- The circuitry of the present invention counts the rate I of the ECG pulses and the rate of ICG pulses which have been immediately preceded by ECG pulses to determine whether there is substantial electrical activity present and whether there is substantial mechanical activity present.
In order to render the device substantially foolproof, and to prevent improper application of electrical impulses when a proper signal cannot be received, the circuitry according to the present invention is provided with continuity means for determining whether electrodes Q) and are making proper electrical connection with the patients body. Only after such a determination is the heart rate indication able to bring about the aforementioned pacing or defibrillating impulses. In addition to the inhibition of the device in the absence of proper contact with the patients body, a poor contact indicator l-D, suitably comprising a pilot lamp, also warns the operator that proper contact with the patient has not been established. Cabinet 112 additionally includes power supply circuitry and batteries for use in case of portable operation. An off-on switch as well as a pilot lamp indicating the presence of power are suitably also included.
In operation, the electrode current applicator is applied as illustrated in FIG. 1, and the power switch is operated for energizing the apparatus. A normal heart signal may reveal the patient has merely fainted, rather than having suffered a heart attack. However, such a signal may only indicate that arrhythmias have not as yet developed. The device is suitably left applied to the patient until adequate medical attention is provided, and meanwhile the device continuously monitors the heart during the critical period after a possible attack. For example, battery powered apparatus of the present type may be left attached to the patient while he is being transported to a hospital in an ambulance.
The apparatus is relatively compact, and may be transported in an ambulance and easily carried by hand, or conveniently stored in an industrial plant, office building, hotel, or the like, for immediate application to a suspected victim of a heart attack. The apparatus may be operated by comparatively unskilled personnel, without the need of an expert diagnosis, while awaiting conventional medical attention.
FIG. 3 is a simplified block diagram of electronic circuitry according to the present invention. Patient interface collectively includes the various electrodes or other means for receiving information from the patient and applying corrective measures to the patient. Both the ECG detector 2 and mechanical activity detector 3 receive information from the patient, regarding the electrical and mechanical activity of the patients heart, respectively. The mechanical activity detector suitably comprises an electrical impedance change detector, but may alternatively comprise other means for ascertaining mechanical activity of the heart. For instance, means 3 may alternatively comprise a pressure transducer or microphone for providing a phone-cardiogram signal of heartbeat activity, or may comprise ultrasonic or other means for detecting blood flow as understood by those skilled in the art.
The ECG output from detector 2 together with output A Z from detector 3 are applied to time coincidence detector 4. The detector 4 supplies an output to logical analyzer 5 only if the output from mechanical activity detector 3 occurs within a predetermined time after an output from ECG detector 2. Logical analyzer 5, which may comprise means for counting pulse inputs within a predetermined period of time, directly receives the ECG output from detector 2, as well as the output from the coincidence detector.
Logical analyzer 5 further comprises means for making a decision on the basis of input supplied thereto, and in consequence thereof delivers an output D, an output P or no output. The possible combinations of ECG activity and A 2 activity resulting in the D and P I outputs are indicated in the truth table accompanying FIG. 3. In each of the ECG and A Z columns, a zero is indicative of substantially no activity, or activity below a predetermined minimum threshold level. Thus, if substantially no electrical (ECG) nor mechanical (A Z) activity occurs, logical analyzer 5 will provide an output P. If on the other hand, electrical (ECG) activity is present, but no mechanical (A Z) activity is present which substantially coincides with electrical activity, logical analyzer 5 will provide'an output D. For both, neither an output D nor an input P is supplied.
Output P is applied to pacer 7, which provides a pacing pulse to the patient electrodes in the event that neither electrical nor mechanical activity is detected, i.e. as indicated by the first combination of the truth table. This situation corresponds generally to cardiac arrest. An output D is applied to defibrillator 2 if electrical activity is present, but no mechanical activity or heart beat ensues within a predetermined time immediately following each electrical activity. As a consequence, a defibrillating pulse is applied to the patient.
This situation corresponds to the-second line of the truth table. The fourth line of the truth table corresponds to normal heart activity, wherein neither a pacing nor defibrillating pulse is needed,while the third combination of mechanical activity without electrical activity will generally not occur.
BLOCK DIAGRAM FIG. 3A is a more detailed electrical block diagram signal to the ECG amplifier. The ECG amplifier and filter, 2B, amplifies the desiredcomponents of the remaining signal while attenuating unwanted signals andnoise. In particular, circuit Z-B provides'a high degree of rejection of 60 Hz signals which may be present due to the proximity of electrical power lines. The output of circuit 2 B is rectified by rectifier 2-C so that the output of rectifier 2-C comprises pulses of only one polarity. As is hereinafter indicated, disabling claim 2-D operates to inhibit transmission of the ECG signal at times when electrical stimulation is being delivered to the patient. 7
topic beats.
r of the apparatus according to the present invention,
The output of rectifier 2-C is applied to peak detector 2-F and comparator Z-H. These units comprise detection means of varying sensitivity for detecting or developing peaks from the ECG signal relative to previously stored values of such peaks-The detection means functions over a wide range of input signal amplitude with little or no degradation in performance. Without Referring to the drawing, the comparator 2-H provides an output pulse whenever the input signal exceeds the reference voltage provided by the peak detector 2-F. The reference voltage represents a proportion of previous signal peaks. The output of the comparator is applied to one-shot multivibrator 2-J which serves to widen the pulse and thus prevent two or more peaks of a QRS complex from producing multiple output pulses at One output pulse will be roduced at for each heart beat. The output at is also coupled to inverter 2-K for supplyinga resetting signal to the pacer as hereinafter more fully described.
The HF. (high frequency), current generator 3A supplies an alternating current of constant amplitude at a frequency of approximately KHz to the patient electrode 6) This current produces a high frequency voltage at the patient electrodes, the amplitude of which is a function of the electrical impedance of the patients body. Thus, the hi h frequency component of the composite signal at is representative of the electrical impedance of the patients body. The beating of the heart produces a change in the electrical impedance of the body and thus the beating of the heart frequency component of the signal at The composite electrical signal at is applied to H.F. bandpass filter 3B which rejects all signals except those which contain the ICG (impedance cardiogram) information. The output of 343 is amplified by H.F. (high frequency) amplifier 3C which has provision for AGC (automatic gain control). The output of circuit 3C is applied to the A.M. detector 3D (and AGC unit) which provides a low frequency output to the ICG amplifier and filter unit 3-E proportional to the changes in electrical impedance occuring in the patients body. Circuit 3D also provides an AGC signal to I-I.F. amplifier 3C which controls the amplifier gain in such a way as to maintain the average output signal amplitude relatively constant over a wide range of input signal amplitudes. This feature allows the system to operate effectively over a wide range of patient body impedances.
The ICG amplifier and filter 3E amplifies the desired components of the ICG signal while attenuating unwanted components. In particular,'low frequency signals due to patient respiration are attenuated. The output of circuit 3-E is applied to rectifier 3F which produces output pulses of a single polarity. Disabling clamp 3-H operates to inhibit the transmission .of the ICG signal during the delivery of electrical stimulation to the patient, as is hereinafter indicated.
The ICG pulses from circuit 3H are applied to comparator 3K which produces an output pulse at which is. applied to one input of and-gate 4-B. The second input to and-gate 4-B is provided by oneshot multivibrator 4-A, and is an extended version of the ECG detector output at Thus, a pulse is present at if an output pulse from the ICG detector occurs at the time of, or slightly later than, an output from the ECG detector are present at the input of counter 5-A. This information is transferred to J-K flip-flop 5-C upon receipt of a clock pulse. After completion of the clock pulse, a reset pulse is applied to counter 5-A and flip-flop 5-B to reset 5-A and S-B to the zero state and thus initiate a new counting period. A clear input is provided at J-K flip-flop 5-C to reset flip-flop 5-C to the zero state when power is first applied to the resuscitator or when a defibrillating pulse is applied to the patient, as is hereinafter indicated.
Counter 5-D, flip-flop S-E and .I-K flip-flop 5-F operate in a manner similar to that described above for counter S-A, flip-flop S-B and J-K flip-flop 5-C. The input to counter 5-D, however, is the output of the coincidence detector unit 4.
Clock pulses, followed immediately by reset pulses, are supplied at regular intervals. Therefore, the" logic levels present at the Q and Q-not outputs of 5-C and 5-F are-representative of the number of pulses received at and at between clock pulses. 1
The interval between clock pulses is desirably 10 seconds, and the dividing ratio of each counter is desirably five to one. Thus a high level at the Q output of circuit 5-C indicates an average ECG rate of at least five pulses per l seconds or 30 per minute. Similarly, a high-level at the Q output of circuit -F indicates that an average rate of at least 30 per minute was attained at the output of the coincidence detector 4 during the previous clock period. The Q outputs of'S-C and 5-F are connected to and-gate S-l-l which causes the normal heart indicator to be actuated when the two 0 outputs are high and the enable signal is also high.
The enable signal is high after the completion of at least one clock period as hereinafter indicated.
The Q output of circuit 5-C and the Q-not output of circuit 5-F are connected to and-gate 5-K. A third input to and-gate S-K is provided by the reset pulse. Thus, if during a certain clock period at least five ECG pulses are detected but fewer than five ICG pulses which are correlatable to ECG pulses are detected, the
reset pulse which occurs at the end of the clock period causes an output pulse from S-K which, in turn, actuates the defibrillator by an input at And-gate 5-L receives the Q-not outputs of flip-flops 5-C and 5-F..In the event that fewer than five pulses and fewer than five pulses are present at during a clockperiod, the output of and-gate 5-L will be high after the completion of the during the previous interval reset from Or-gate 6-A, clock pulse generator 6-B starts providing clock pulses at at l0-second intervals. At the end of each such clock pulse, a reset is provided or-gate 6-C and flip-flop 6-D. The reset via leads and reset the counters 5-A and 5-D as well as flip-flops 5-B and 5-E for another cycle. At the end of such cycle, the clock pulse at causes the J-K flip-flops to register the condition of flip-flops 5-B and 5-E as hereinbefore described. Flip-flop 6-D provides an output at effective for enabling the pacer and normal heart indicator only after a suitable period of time has elapsed for counter 5 actually to count the heart rate. Otherwise, pacer 7 could be falsely actuated before proper counter operation. Operation of flip-flop 6-D will be further described hereinafter.
ln pacer 7, pacemaker timer 7-B generates a series of timing pulses with a period of approximately 0.85 seconds, whenever the output of and-gate 7-A is high. The output of and-gate 7-A is high (1) when the circuitry has 0 e'rated at least 10 seconds as indicated by a signal at (2) when ECG detector 2 does not detect a present heart beat, and (3) when counter 5 dicates a heart rate of below30 beats a minute. The output of timer 7-B triggers one-shot multivibrator 7-C which operates pacer pulse generator 7-D. The latter delivers a pacing pulse to the patient electrodes via leads and switching diodes l-F. The switching diodes l-F essentially disconnect the pacer from the patient electrodes when the pacer produces no output. During each pacemaker pulse, output multivibrator 7-C operates or-gates 2-E and 3-] for disabling the signal paths. If, between pacer pulses, a heart beat is detected, reset signal will reset pacer timer 7- B via and-gate 7-A, restarting the timing of the 0.85 second interval. Thus, the pacer operates on a demand basis and produces no output when spontaneous heart beats are present.
When defibrillator 8 receives an input at oneshot multivibrator 8-A is set in a second state for approximately 100 milliseconds. Output disables the signal paths, and output resets clock 6 as well as counter 5. The third output of multivibrator 8-A operates defibrillator generator 8-C through and-gate 8'-B if input is also present. A defibrillating pulse, a high energy electrical pulse, is applied through leads and switching diodes l-E, to patient electrodes l-A. Input is present if the patient electrodes make proper contact and certain other conditions-are met as hereinafter more fully described. The switching diodes essentially disconnect the defibrillator when the same is clock period. Therefore the pacer 7 will be actuated by an input at v Clock 6 includes a clock pulse generator 6-B providin gpulse outputs at lO-second intervals at If a signal is present at either indicating defibrillator operation, or at indicating faulty interface operation or initial start conditions, the clock pulse generator 6-8 is reset from or-gate 6-A. Atthe same time, the J-K flip-flops 5-C and S-F are cleared via lead and a reset pulse is provided at via or-gate 6-C. Likewise, flip-flop 6-D is set. After being initially not in use. It is observed the defibrillator operation resets clock 6 and counter 5 for successive operations.
lf, after a defibrillating'pulse is applied to the patient,
fibrillation or tachycardia persists, defibrillator operation will again be initiated in the same manner as hereinbefore described.
1 Interface [further includes continuity checker l-C, which determines if the patent electrodes are in proper electrical contact with the patients body. If not, a poor contact indicator 1-D, suitably comprising a pilot lamp, is energized, and defibrillator and-gate 8-B is disabled via and-gate l-K and .lead thus preventing defibrillator operation and possible patient burns in case of poor electrical contacLAlso in such case, clock 6 is reset via lead ((3 and inverting gate l-L, and flipof one-shot INTERFACE Referring to FIG. 4, illustrating interface unit 1 in greater detail, transistors 0101 and 0102 provide DC current sources for patient electrodes and to ground via indifferent or neutral patient electrode The DC voltage at electrodes (D and depends upon the resistance between each electrode and ground, and therefore, if either electrode (D or Q) is in poor contact with the patient, a comparatively high DC voltage will occur at that electrode. Patient electrode (D is coupled to the input and an operational amplifier U101, while the patient electrode is coupled to the input of an operational amplifier U102, with diodes D105, D106, D107 and D108 protecting the amplifiers during the application ofa pacing or defibril lating pulse. 1f the voltage at patient electrode (D is less than about +0.15 volts, then the output of U101 will be about +15 volts, and the voltage at the junction of D109 and D110 will be clamped to about +5.6 volts. However, if the voltage at patient electrode (D exceeds +0.15 volts, the voltage at the output of U101 will be about -15 volts, and the voltage at the junction of diodes D109 and D110 will be clamped at about 0.6 volts. The output of amplifier U102 is similarly controlled by the voltage at patient electrode The output of amplifier U107 is controlled by the amplitude of the high frequency AC voltage which exists at electrode due to current supplied at The AC voltage is rectified by diode D142 so that the voltage at the minus input of amplifier U107 is a DC volta e representing the peak value of the AC voltage at Thus if electrode is in poor contact with the patient, the voltage at the minus input of amplifier U107 is relatively high, causing the voltage at the junction ofdiodes D143 and D144 to be about -0.6 volts.
Nand-gate receives the outputs of the three amplifiers U101, U102 and U 107 anddrives nand-gate 32, here used as an inverter, which is coupled to transistor 0103 having a poor contact indicator lamp in its collector circuit. Thus, if the output of any of the three amplifiers U101, U102 or U107 drops, indicating poor patient electrode contact, lamp l-D will light.
Likewise, nand-gate 32 drives nand-gate 34 in conjunction with start circuit 1-H comprising transistor 0104. When power is first turned on, transistor 0104 is momentarily turned on. Capacitor C101 charges so that transistor Q104 cuts off, thereby providing a high input to nand-gate 34. Assuming good contact is made by the patient electrodes, and the power has been applied for a short period of time, both inputs to nandgate 34 will be up, and the output of nand-gate 36, driven by nand-gate 34, will also be up. The output of nand-gate 36 is applied to leads and Since nand-gates are employed throughout, no inverting gate is employed in lead nor is an inverting gate required in the output of the start circuit. Both outputs and will be energized so long as continuity is present to the patient's body from the patient electrodes, and 'so long as power has been applied to the apparatus for at least a short time. Then, the clock and defibrillator are operable.
Switching diodes 1-E and 1-F, from the defibrillator and pacer, respectively, couple these units to the patient electrodes, and essentially decouple these units when neither provides an output pulse. Also, the
, respective diodes prevent application of a defibrillator pulse to the pacer or a pacer pulse to the defibrillator.
Operational amplifiers U104 and U105 receive signal outputs from patient electrodes (D and and diodes D116 and D117, D118 and D119 limit the voltage excursion of the inputs of these amplifiers during the occurrence of defibrillator or pacer pulses. Each of the amplifiers U104 and U105 is connected as a voltage follower, so the outputs thereof are the same as those from patient electrodes and respectively, except the DC component has been removed, and the impedance level is greatly reduced. The outputs of amplifiers U104 and U105 are applied as inputs to differential amplifier U106 which has a voltage gain of approximately 10 as determinedin part by feed back resistor R135. The output of amplifier U106 at lead is therefore an amplified version of the signal existing between patient electrodes (D and (2) except that any DC component has been removed.
ECG DETECTOR Referring to FIG. 5 further illustrating the aforementioned ECG detector 2, a low pass filter 2-A comprises inductors L201 and L202 and capacitors C201 and C202. The cutoff frequency of filter 2-A is such that the IOOKl-iz component of the signal at is severely attenuated, while-the low frequency ECG signal is allowed to pass. Capacitor C203 and resistor R201 operate as a differentiating network so the signal at the positive input of amplifier U201 is representative of the rate of change of the ECG signal. Thus the very low frequency components of the signal, including baseline shift and the P and T portions of the normal electrocardiogram, are effectively reduced.
Amplifiers U201 and U202, together with twin-tee filter and other associated components, operate as an active filter which rejects any 60 hertz component which may appear upon the ECG signal due to proximity of electrical power lines or apparatus, while providing amplification of other frequency components. Thus the signal at the base of transistor Q201 is a highly refined version of the signal at with all undesirable components reduced to small amplitude. Rectifier 2-C comprises transistor Q201 operating as a phase inverter so that the signals at the emitter and collector terminals of 0201 are of equal magnitude, but of opposite polarity, the magnitude being nearly equal to the magnitude at the base terminal. The collector of Q201 is coupled through capacitor C208 to the base of transistor 0202 and to one end of resistor R21 1, which has its opposite end connected to ground. Similarly, the emitter of transistor Q201 is coupled through capacitor C209 to the base of transistor Q203 and to one end of resistor R214 which has its opposite end connected to ground. The emitter terminals of transistors 0202 and 0203 are connected together and to one end of resistor R215, the other end of which is grounded.
A positive signal at the base of transistor 0201 produces a positive signal at the base of transistor 0203 and a positive signal at the common emitter terminals of transistors 0202 and 0203. A negative signal at the base of transistor 0201 causes a positive signal at the base of transistor 0202 and a positive signal at the common emitter terminals of transistors 0202 and 0203. However, positive signals at the base terminals of transistors 0202 and 0203, which are smaller in amplitude than 0.6 volts, will be severely attenuated because of the nonlinear characteristics of the baseemitter junctions of transistors 0202 and 0203. Therefore, the signal at the common emitter terminal of transistors 0202 and 0203 is a series of positive pulses which occur whenever the signal at the" base of transistor 0201 exceeds 0.6 volts in either the positive or negative direction, and which correspond to the fastrising portions of the ECG component of the signal at The common emitter terminal of transistors 0202 and 0203 is coupled through resistor R216 to the positive input of amplifier U204 and to the collector of transistor 0204, forming a part of disabling clamp circuit 2-D. The base of transistor 0204 is coupled to the output of gate 2-E employed for causing transistor 0204 to conduct and clamp the signal at its collector terminal to ground whenever either of the inputs, and are low. Clamping occurs during the delivery of defibrillating or pacing pulses to the patient.
Assuming that the disabling clamp circuit 2-D is inactive, the series of positive pulses present at the common emitter terminals of transistors 0202 and 0203 is applied to the positive input of amplifier U204, to the anode of diode D201 and to the emitter of transistor 0207. A positive pulse causes diode D201 to conduct andto charge capacitor C210 to the peak value of the pulse (less the diode voltage). Resistor R230 allows capacitor C210 to discharge at a rate which is slow in comparison ,with the time between normal heart beats. Therefore capacitor C210 acts as a peak storage capacitor and discharges only slightly between input pulses.
Amplifier U205 is connectedas a typical voltage follower except that diode D202 is connected between the output and the inverting input. This .diode compensates for the voltage drop which occurs across diode D201 while capacitor C210 is charging, in order to make the output voltage of amplifier U205 more nearly equal to the peak value of the input pulse.
The output of amplifier U205 is applied to amplifier U206 through a delay network comprising resistor R234 and capacitor C213. Thus the input to amplifier U206 does not immediately respond to a change in the output of amplifier U205. Amplifier U206 is connected in a noninverting configuration with a gain of two, so
that the output of amplifier U206 is a voltage approximately equal to twice the stored value on capacitor C210. The output of amplifier U206 is coupled to the base of transistor 0207 which operates as a limiter inasmuch as its emitter is coupled to the input line of the peak detector 2-F, i.e. at the anode of diode D201.
Thus, if the input becomes more positive than twice the previously stored value, transistor 0207 conducts,
than twice the previously stored peak value. This limiting feature prevents a single large pulse, whether originating in the patient as in the case of an ectopic beat, or induced into the patient from an external source, from raising the stored peak value to some value which is entirely unrepresentative of the average signal amplitude. The limiting feature particularly prevents the large voltage peaks associated with ectopic beats from decreasing the sensitivity of the circuit to the point where the next normal QRS heart signal complex would be undetected.
The output of amplifier U205 is also coupled to a divider comprising resistors R232 and R233 which allows approximately one-third of the stored peak value to be coupled to the negative input of comparator amplifier U204 as a reference voltage. Capacitor C211 is connected in shunt with resistor R233 to cause a delay in any change in the reference voltage, so the reference cannot follow the input signal.
Since the reference voltage for the comparator varies with the peak amplitude of the signal, the system is of variable sensitivity, rendering it operable with respect to cardiac signals of different average amplitude values. It is noted that the one-third reference value allows detection of a normal signal after an ectopic beat, the storage of which is restricted to double amplitude.
When an input pulse at the positive input of amplifier U204 exceeds the reference voltage at its negative input, theoutput of amplifier U204 goes positive, causing a positive voltage spike to be coupled to one-shot multivibrator 2-J, triggering 2-], and causing a positive pulse of about 5 volts in am litude and milliseconds in width to occur at During the width of the output pulse at the one-shot multivibrator 2-] cannot respond to further. inputs. This prevents the QRS complex of the normal electrocardiac signal, which may comprise several peaks closely adjacent in time, from being registered as multiple pulses.
Nand-gate 2-K, here connected as aninverter, provides an output for resetting the pacer.
ICG DETECTOR Referring to F IG. 6, further illustrating the ICG detector, high frequency current generator 3-A includes 100 KHz crystal oscillator U301 which is coupled through transformerT30l to high frequency amplifier- U302 which also has an automatic gain control (AGC) input, numbered 5. The output of amplifier U302 is coupled through tuned transformer T302 to capacitors C303 and C304 and to the anode of diode D301, the signal at this junction being a sinusoidal voltage symmetrical with respect to ground. The cathode of D301 is coupled to the base of transistor 0301, the emitter of which is connected to the positive input of amplifier U303 and to the parallel combination of resistor R306 and capacitor C305. The time constant of circuit R306, C305 is long with respect to the period of the sinusoidal signal at the anode of diode D301, so that capacitor C305 is maintained at a voltage which is representative of the peak value of the sine wave I applied to capacitors C303 and C304, at approximately volts.
Capacitor C303 couples the 100 KHz signal to the base of transistor 0302 which is biased so that the base (is approximately l4.4 volts DC. The emitter of transistor 0302 is coupled through resistor R302 to the +15 volt supply. Thus, when the sinusoidal signal swings positive, transistor 0302 is cutoff, and when the signal swings negative, a half sine wave of current flows to output terminal Similarly capacitor C304 couples the 100 KHz signal to transistor 0303, which conducts a half sine wave of current to the output terminal when the signal at the base'swin gs positive. Thus, a full sine wave of current is supplied at the output terminal the magnitude of the current being approximately 5 milliamperes peak, and independent of load impedance for impedances less than about 1,000 ohms. The output current is coupled to the patient electrodes in order to detect changes in the electrical impedance of the body. A constant current output is required in order to avoid' artifacts in the impedance cardiogram (ICG) waveform due to changes in impedance at the electrode-patient interface.
Also, in order to avoid sensing changes in the electrode-patient interface impedance, separate electrode means are used for supplying the constant current and for sensing the voltage which is representative of the body impedance, as hereinbefore described. I
The composite signal obtained from the patient, including the 100 KHz ICG signal, the low frequency ECG signal, and-superimposed noise, is applied at in FIG. 5. Bandpass filter 3-B, comprising tuned transformer T303, rejectsall components of the signal except the 100 KHz component, which is an amplitude modulated signal containing the ICG information. The 100 KHz signal is amplified by high frequency amplifier U304 which has provision for AGC at its terminal 5. The output of amplifier U304 is coupled through tuned transformer T304 to the base of transistor 0305 which has its emitter terminal connected tocapacitor C317. The base-emitter junction of transistor Q305 serves as. a rectifier, and in conjunction with capacitor C317, as an amplitude modulation detector. Capacitor C317 filters out the 100 KHz component of the. signal and the resultant voltage applied to capacitor C320 is therefore a low frequency signal which is proportional to the imtially a DC voltage representative of the average amplitude of the KHz signal at the output of amplifier U304. Transistor 0304 serves as an emitter follower to couple this DC voltage to the AGC input of amplifier U304, thus providing a closed-loop system to maintain the output of amplifier U304 relatively constant. Thus the system is operable over a wide range of body impedance levels with a relatively constant amplitude of ICG signal being obtained.
The low frequency signal at the emitter of 0305 is coupled through the differentiating circuit comprising capacitor C320 and resistor R320 to the inverting input of amplifier U305 which is connected for conventional operation as an inverting amplifier. Capacitor C321 connected in shunt with feedback resistor R321 serves to eliminate any residual high frequency component present on the signal. The signal at the output of amplifier U305 is proportional to the rate of change of the patients body impedance due to the differentiating action of components C320 and R320.
The output of amplifier U305 is applied to rectifier circuit 3-F which operates in a manner similar to that hereinbefore described in reference to rectifier 2-C. Thus the signal applied at the noninverting input of amplifier U306 is a series of positive pulses, each pulse corresponding to a rapid change in the electrical impedance of the patients body.
Disabling clamp 3-1-1, comprising transistor Q309 clamps the signal to ground during times when defibrillating or pacing pulses are being generated. Amplifier U306 here operates as a comparator (3K) causing a positive rectangular pulse to be applied at output terminal whenever the signal at the noninverting input exceeds the reference voltage supplied by the voltage reference 3-L comprising resistors R333 and R334 and capacitor C324.
Thus a positive rectangular pulse occurs at whenever a rapid change in the patients body impedance occurs.
COINCIDENCE DETECTOR Referring to FIG. 7, coincidence detector 4 comprises one-shot multivibrator 4-A and an and-gate 4-B.
Rectangular pulses from the ECG detector are applied at input approximately 200 milliseconds in width, to be generated at the collector of transistor 0402. The collector of transistor 0402 is connected to one input of nand-gate U401A, the second input. of U401A being connected to the output of the ICG detector at The output of gate U401A is connected to the inputs of nand-gate U401B, here employed as an inverter. Thus the output is low except when a high level signal is received at during the first 200 milliseconds after the receipt of a high level input at In essence, this means that in order for an output of the lCG detector to be considered valid, it must be immediately preceded by an output from the ECG detector. This feature reduces the probability that artifacts in the ICG signal can cause a false diagnosis of the patients condition.
COUNTER Referring to FIG. 8, counter 5-A receives input pulse at from the ECG detector and after receiving five pulses produces a negative-going voltage step which is differentiated and applied to flip-flop 5-B. Thus, after five pulses are applied at the .1 input of J-K flipflop S-C is high, while the K input is low.
Clock pulses are supplied at at intervals of approximately lO seconds, the width of the clock pulse being small with respect to the lO-second interval. The clock pulse causes the information present at the .l and vK inputs of flip-flop 5-C to be stored in such flip-flop and to be registered at the Q and Q-not outputs thereof. Thus, ifJ is low and K is high at the time of the clock pulse, then will be low and Q-not high after the end operate in a similar manner to count input pulses presented at during the clock interval and to register the result at the 0 and Q-not outputs of flip-flop -F. Thus, at any given time, the states of the outputs of flip-flops 5-C and 5-F are representative of the number of pulses received at and respectively during the previous interval between clock pulses. A high level at the Q outputs of both flip-flops 5-C and S-F indicates that the patients heart has both significant electrical activity and significant mechanical activity. The two 0 outputs are connected to two inputs of nand-gate S-H. A third input to gate 5-H is supplied at to enable 5-H only after a full clock period has elapsed for counting. Thus the output of gate 5-H is low when significant electrical and mechanical activity is present in the patient and after sufficient time has elapsed for counting, causing the normal heart indicator 5-J including transistor 0501 to be energized. If the 0 output of flip-flop 5-C is high while the Q-not output of flip-flop 5-F is high, indicating significant electrical activity but no significant mechanical activity by the patients heart, i.e. a fibrillation condition, the reset pulse immediately following the clock period in which such determination was made causes the output of nand-gate U206B to be low and the signal at to be high, triggering the defibrillator. lf predetermined electrical or mechanical activity of the heart is not present, the two Q-not outputs applied to nand-gate U207A will be high, causing the signal at to be high, activating the pacemaker.
CLOCK Referring to FIG. 9, gate portions 6A' and 6-C' perform the functions of or-gates 6A and 6-C on the block diagram. This structure is conveniently provided as a fou-r-nand-gate integrated circuit including nandgates. 60, 62, 64, and 66, which are consecutively connected. Nand-gate 60 receives inputs from the interface circuit, and from the defibrillator circuit. Providing both these inputs are up, the output of nandgate is low, and the clock pulse generator 6-B can operate in a normal fashion.
In clock pulse generator 643, transistor 0601 receives the output of nand-gate 60 at its base, and its collector-emitter terminals are coupled across capacitor C601 coupled between the emitter and lower base terminals of unijunction transistor 0602. The circuit normally operates as a relaxation oscillator whereby the unijunction transistor periodically discharges capacitor C601 to supply a pulse output at its lower base. If either input or should drop, transistor 0601 would be rendered conducting and short capacitor C601 causing immediate discharge thereof. At the conclusion of such input at or the operation of the oscillator including unijunction transistor 0602 would be restarted.
The normal period of the oscillator is here adjusted to be 10 seconds by means of potentiometer R606, and at the end of conduction of transistor 0601, a new 10- second interval is started. Thus, at the conclusion of a defibrillator pulse, or the conclusion of a period of time during starting, or a period of time when the electrodes are improperly connected to the patient, a new 10- second interval will start.
The output of unijunction transistor 0602 is connected via a Schmitt trigger circuit, comprising transistors 0603, 0604, and 0605, to an input of nandgate 68, the output of which provides the clock pulse on lead The output of the Schmitt trigger circuit comprising transistors 0603, 0604, and 0605 is also coupled to a second Schmitt trigger circuit comprising transistor 0606 and 0607. The output of the latter trigger circuit is applied to nand-gate and the output of nand-gate 70 is connected to an input of nand-gate 74 which forms flip-flop 6-D together with nand-gate 72. The output of nand-gate 74 is connected to one input of nand-gate 72, and vice versa. Another input of nand-gate 72 is derived from the output of nand-gate 62. As thus appears, flip-f lop 6-D will be set upon the operation of nand- gates 60 and 62, and will then be reset upon the occurrence of a clock pulse. The signal at from nand-gate 74 enables the pacemaker at the first clock pulse after power has been applied for a short period, or after any difficulty with respect to continuity has been rectified, or after the occurrence of a defibrillator pulse. Thus, the pacer is disabled until a proper count can be made.
The output of nand-gate 70 drops at the end of a clock pulse, and the output of nand-gate 70 is also applied to nand-gate 64 in conjunction with the output of nand-gate 62. Thus, assuming both signals and are up, a reset is provided by nand-gate 64 on lead at the conclusion ofa clock pulse. This signal is inverted by nand-gate 66 to provide the reset signal on lead It is noted a clear signal is provided on lead at the same time that either input or lowers, and the J-K flip-flops in the counter circuit will be cleared at such time.
PACER In FIG. 10, nand-gate 70 receives input from the counter, enabling signal from the clock circult, and reset signal from the ECG detector. Input from the counter is the one indicating a slow heart beat and the desirability of applying pacing pulses. Enabling signal indicates that the interface is operating properly and that sufficient time has elapsed for the counter to make a proper count after application of power or application of a defibrillator pulse. The output of gate 7-A, which here comprises a nandgate, is applied to transistor 0702, and assuming all three of the aforementioned inputs, and
are present, the input to transistor 0702 will be low. Therefore, the pacemaker 7-B is operable.
Pacer timer 7B comprises a'unijunction transistor Q703 having a capacitor C703 coupled between its emitter terminal and lower base. This circuit is a relaxa tion oscillator similar to that described in connection with the clock circuit, except in the present instance the relaxation oscillator suitably has a period of approximately 0.85 seconds. The output of timer 7-B is applied to oneshot multivibrator 7-C including transistors 0704 and 0705. The output at the collector of transistor 0705 is a series of positive pulses, each pulse having a duration of about I milliseconds, and this output is connected to the input of nand-gate 76. Nand-gate 76 provides signal applied to the ECG detector and ICG detector for disabling the signal channels when a pacer pulse is being generated. It should be noted that the duration of the output pulse at is considerably longer than the duration of the pacing pulse applied to the patient. This allows time for the amplifier 1-8 and other signal circuits to recover from the overdriven condition imposed by the pacing pulse.
The output of one-shot multivibrator circuit 7-C is also applied via transistor 0706 as the input of pulse transformer T701, the secondary of which is coupled to provide the input of thyristor Q701. AC voltage from a power supply is normally applied across a bridge circuit comprising diodes D701, D702, D703 and D704 connected in DC charging relationship to capacitors C701 and C702, with thyristor Q701 being interposed between the positive end of capacitor C702 and connection (6) coupled to the patient electrodes. Thus when transistor 0706 turns on, current flow rapidly increases through the primary winding of pulse transformer T701, and a resultant secondary pulse triggers thyristor 0701 into a conducting state. When thyristor Q701 is turned on, capacitor C702 discharges through diodes l-F and through the patients body. As capaci tor C702 discharges, the current through thyristor Q701 decreases until the minimum holding current is DEFIBRILLATOR Referring to FIG. 11, illustrating the defibrillator 8, an input is received at from counter 5 when significant electrical activity in the absence of significant mechanical activity has been detected, indicative of ventricular fibrillation or ventricular tachycardia. The input .pulse operates one-shot multivibrator 8-A comprising transistors Q802 and Q803, which in turn applies a lengthened output to gate 8-B, here comprising nand- gates 78, 79 and 80 consecutively connected. The output of nand-gate 78 is connected to leads and which, respectively, disable and recycle the clock, and clamp the input signal channels during the defibrillator pulse. The output of the one-shot multivibrator 8-A is longer than the duration of the defibrillating pulse applied to the patient to allow time for amplifier and other circuits to recover. Signal (9 comprising a disabling input from the interface circuit, is also connected to nand-gate 80, and when this signal drops, indicating improper connection of the patient electrodes or the start of operation, the defibrillator is disabled.
The output of nand-gate 80 is connected to the base of transistor 0801 which has the operating coil of relay K801 serially connected in its collector circuit. The contacts of relay K801 normally connect capacitor C801 to the output of a bridge circuit comprising diodes D801, D802, D803 and D804, receiving a high voltage alternating current input. However, when transistor Q801 conducts, relay K801 connects capacitor C801, theretofore charged through the aforementioned bridge circuit, to leads and via inductance L801. Leads and are coupled through diodes l-E to the patient electrodes, as hereinbefore mentioned. Capacitor C801, initially charged to a high voltage from the power supply, applies this high voltage across a circuit comprising inductance L801,
the switching diodes 1-15, and the body resistance of the patient. Inductance L801 controls the resulting current. At the conclusion of the defibrillation pulse, clock 6 is recycled as the output at rises. Thus, the clock circuit begins a new IO-secbnd period, and signals are allowed to pass through the disabling clamp 2-B so that monitoring of the electrocardiac signal is resumed.
OPERATION In general operation, the device is applied to the suspected heart attack patient as illustrated in FIG. 1, with the patient electrodes in direct contact with his body. Thus, patient electrodes and are positioned in good contact with the patients chest, and patient electrodes Q) and (3) are positioned in direct contact with the patients back. The device is turned on to operate the apparatus power supplies, and if proper contact is not made with the patient, indicator 1-D will light, and moreover, operation of the instrument is prevented. Normally, counter 5 will cycle under the control of clock 6 for the first lO-second period, and if a normal condition exists, normal heart indicator 5.l will light. However, ifa cardiac arrest has taken place, or the heart rate is extremely low, pacer 7 will operate through switching diodes l-F, and the patient electrodes, to provide a pacing pulse to the patient as long as required. Should a normal heart beat resume without the aid of the pacer, the pacer will be disabled via input of and-gate 7-A. If, on the other hand, electrical activity is present, while mechanical activity is absent, indicating ventricular fibrillation, defibrillator 8 will be energized to provide a defibrillating pulse to the patient via switching diodes 14-3. The apparatus will then be recycled to take another measurement of the heart rate, and appropriate corrective action will again be taken.
Since the corrective action taken by the resuscitator may be accomplished as soon as or even before an ambulance team or fist aid personnel have reached the patient, the chances for survival are materially increased as compared with the chances for survival when treatment must await telemetry or transport of a heart patient to a hospital.
While we have shown and described a preferred embodiment of our invention, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from our invention in its broader aspects. We therefore intend the appended claims to cover all such changes and modifications as fall within the true spirit and scope of our invention.
What is claimed is:
1 A cardiac resuscitator comprising:
means for detecting electrical activity of a patients heart,
means for detecting mechanical activity of a patients heart,
and means for applying a defibrillating pulse to said patient in the presence of electrical activity accompanied by the absence of mechanical activity as compared with predetermined activity levels.
2. The apparatus according to claim 1 including means for rendering said means for detecting mechanical activity effective only immediately following detected electrical activity.
3'. The apparatus according to claim .1 wherein said means for detecting mechanical activity comprises means for detecting impedance changes in a-patients body.
4. Cardiac resuscitator apparatus comprising:
first means for detecting an electrocardiac signal generated by apatients heart including the QRS wave of the electrocardiac complex,
second means responsive to mechanical movement in the patients body indicative of a patients heart beat,
means for applying a pacing pulse at a predetermined rate to the patient in response to the absence of both electrical and mechanical activity of the patients heart as indicated by failure of both said first and second means to produce outputs above predetermined limits,
and means" for applying a defibrillating pulse tothe patient in response to the presence of an electrical activity indicating output above a predetermined limit from said first means and the absence of a mechanical activity indicating output above a predetermined limit from said second means;
5. The apparatus according to claim 4 wherein said means for detecting mechanical activity comprises means for applying a signal to the patient, and means for detecting a change in voltage drop produced by said signal for detecting changes in body impedance caused by mechanical heart activity.
6. The apparatus according to claim 5 wherein said means for applying a signal to a patient includes a first electrode connected to the means'for applying a signal, a second electrode for application to the patient, and
means connecting the second electrode to the means for detecting a change in voltage drop.
7. The apparatus according to claim 6 wherein at least one of said electrodes is also coupled to said first means for detecting the electrocardiac signal.
8. A cardiac resuscitator comprising:
electrode means for application to a patient suffering from possible heart attack, first means coupled to said electrode means for detecting the electrocardiac signal generated by the patients heart including the QRS wave of the electrocardiac complex, if present,
second means coupled to said electrode means for detecting impedance changes in the patients body,
logical means coupled to receive outputs from said first and second means and for determining when said first and second means produce output rates respectively indicative of acceptable electrical and mechanical activity of the patients heart, as the pulse rate detected by each of said first and second means exceeds predetermined levels,
pacer .means coupled to said logical means and responsive to the absence of both electrical and mechanical activity, as indicated by failure of the outputs of either said first and second means to exceed predetermined levels, for providing an output comprising periodic pacing pulses at a predetermined rate, means coupling the last mentioned output to saidelectrode means,
and defibrillator means coupled to said electrode means and responsive to said logical means, as the output of said first means above a predetermined level indicates electrical activity of the patients heart, while the output of the second means fails to exceed a predetermined level indicating absence. of acceptable mechanical activity of the patients heart, for applying a defibrillating pulse to said electrode means.
9. The apparatus according to claim 8 including indicating means responsive to said logical means when both said first and second means produce outputs above predetermined limits for indicating normal heart activity.
10. The apparatus according to claim 8 including a coincidence detector for receiving the outputs of both said first and second means and providing the output of said second means to said logical means only in the event that the output of said second means occurs withinpredetermined time limits of the output of said first means such that mechanical activity will only be detected in each instance substantially immediately following a detection of electrical activity of a patients heart.
11. The apparatus according to claim 8'wherein said logical means comprises means for counting the outputs of said first means and said second means within predetermined time periods and producing logical outputs in accordance with the count of said outputs as they exceed predetermined lower activity levels.
12-. The apparatus according to claim 8 wherein said means for detecting impedance changes of the patients body comprises means for generating a high frequency alternating current for application to said patients body via said electrode means, and means responsive to the signal received at other electrode means for detecting changes in said signal.
13. The apparatus according to claim 8 including means for decoupling said detecting means from said electrode means during an output from said pacemaker means or said defibrillator means.
14. The apparatus according to claim 8 including means for determining the continuity of connection of said electrode means with the patients body, and means for inhibiting the pacing pulse and defibrillating pulse application of said resuscitator apparatus, in response to a lack of such continuity.
15. The apparatus according to claim 8 wherein said first detecting means includes a variable sensitivity signal channel, having means for receiving and coupling the electrocardiac signal and means for storing previous peak values detected, the signal channel being coupled to the means for storing for changing the sensitivity of said signal channel in response to the previous level of peak values stored for causing said first detecting means to be responsive to signals exceeding at least a predetermined proportion of said peak values.
16. The apparatus according to claim 15 further including means for limiting the level stored by said storing means to a predetermined multiple of said peak values stored ther'etofore.
17. The apparatus according to claim 8 including a U-shaped applicator wherein said electrode means are carried by said U-shaped applicator positionable for yieldably urging said electrode means into firm contact with the patients body, at least one of said electrode means being mounted from an upper leg of said applicator for location against the patient's chest over the heart area, and a second electrode means being mounted upon a lower leg of said applicator for positioning against the patients back opposite the first mentioned electrode means.

Claims (17)

1. A cardiac resuscitator comprising: means for detecting electrical activity of a patient''s heart, means for detecting mechanical activity of a patient''s heart, and means for applying a defibrillating pulse to said patient in the presence of electrical activity accompanied by the absence of mechanical activity as compared with predetermined activity levels.
1. A cardiac resuscitator comprising: means for detecting electrical activity of a patient''s heart, means for detecting mechanical activity of a patient''s heart, and means for applying a defibrillating pulse to said patient in the presence of electrical activity accompanied by the absence of mechanical activity as compared with predetermined activity levels.
2. The apparatus according to claim 1 including means for rendering said means for detecting mechanical activity effective only immediately following detected electrical activity.
3. The apparatus according to claim 1 wherein said means for detecting mechanical activity comprises means for detecting impedance changes in a patient''s body.
4. Cardiac resuscitator apparatus comprising: first means for detecting an electrocardiac signal generated by a patient''s heart including the QRS wave of the electrocardiac complex, second means responsive to mechanical movement in the patient''s body indicative of a patient''s heart beat, means for applying a pacing pulse at a predetermined rate to the patient in response to the absence of both electrical and mechanical activity of the patient''s heart as indicated by failure of both said first and second means to produce outputs above predetermined limits, and means for applying a defibrillating pulse to the patient in response to the presence of an electrical activity indicating output above a predetermined lImit from said first means and the absence of a mechanical activity indicating output above a predetermined limit from said second means.
5. The apparatus according to claim 4 wherein said means for detecting mechanical activity comprises means for applying a signal to the patient, and means for detecting a change in voltage drop produced by said signal for detecting changes in body impedance caused by mechanical heart activity.
6. The apparatus according to claim 5 wherein said means for applying a signal to a patient includes a first electrode connected to the means for applying a signal, a second electrode for application to the patient, and means connecting the second electrode to the means for detecting a change in voltage drop.
7. The apparatus according to claim 6 wherein at least one of said electrodes is also coupled to said first means for detecting the electrocardiac signal.
8. A cardiac resuscitator comprising: electrode means for application to a patient suffering from possible heart attack, first means coupled to said electrode means for detecting the electrocardiac signal generated by the patient''s heart including the QRS wave of the electrocardiac complex, if present, second means coupled to said electrode means for detecting impedance changes in the patient''s body, logical means coupled to receive outputs from said first and second means and for determining when said first and second means produce output rates respectively indicative of acceptable electrical and mechanical activity of the patient''s heart, as the pulse rate detected by each of said first and second means exceeds predetermined levels, pacer means coupled to said logical means and responsive to the absence of both electrical and mechanical activity, as indicated by failure of the outputs of either said first and second means to exceed predetermined levels, for providing an output comprising periodic pacing pulses at a predetermined rate, means coupling the last mentioned output to said electrode means, and defibrillator means coupled to said electrode means and responsive to said logical means, as the output of said first means above a predetermined level indicates electrical activity of the patient''s heart, while the output of the second means fails to exceed a predetermined level indicating absence of acceptable mechanical activity of the patient''s heart, for applying a defibrillating pulse to said electrode means.
9. The apparatus according to claim 8 including indicating means responsive to said logical means when both said first and second means produce outputs above predetermined limits for indicating normal heart activity.
10. The apparatus according to claim 8 including a coincidence detector for receiving the outputs of both said first and second means and providing the output of said second means to said logical means only in the event that the output of said second means occurs within predetermined time limits of the output of said first means such that mechanical activity will only be detected in each instance substantially immediately following a detection of electrical activity of a patient''s heart.
11. The apparatus according to claim 8 wherein said logical means comprises means for counting the outputs of said first means and said second means within predetermined time periods and producing logical outputs in accordance with the count of said outputs as they exceed predetermined lower activity levels.
12. The apparatus according to claim 8 wherein said means for detecting impedance changes of the patient''s body comprises means for generating a high frequency alternating current for application to said patient''s body via said electrode means, and means responsive to the signal received at other electrode means for detecting changes in said signal.
13. The apparatus according to claim 8 including means for decoupling said detecting means from said electrode means during an output from said pacemaker Means or said defibrillator means.
14. The apparatus according to claim 8 including means for determining the continuity of connection of said electrode means with the patient''s body, and means for inhibiting the pacing pulse and defibrillating pulse application of said resuscitator apparatus, in response to a lack of such continuity.
15. The apparatus according to claim 8 wherein said first detecting means includes a variable sensitivity signal channel, having means for receiving and coupling the electrocardiac signal and means for storing previous peak values detected, the signal channel being coupled to the means for storing for changing the sensitivity of said signal channel in response to the previous level of peak values stored for causing said first detecting means to be responsive to signals exceeding at least a predetermined proportion of said peak values.
16. The apparatus according to claim 15 further including means for limiting the level stored by said storing means to a predetermined multiple of said peak values stored theretofore.
US00066189A 1970-08-24 1970-08-24 Cardiac resuscitator Expired - Lifetime US3716059A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6618970A 1970-08-24 1970-08-24

Publications (1)

Publication Number Publication Date
US3716059A true US3716059A (en) 1973-02-13

Family

ID=22067844

Family Applications (1)

Application Number Title Priority Date Filing Date
US00066189A Expired - Lifetime US3716059A (en) 1970-08-24 1970-08-24 Cardiac resuscitator

Country Status (1)

Country Link
US (1) US3716059A (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805795A (en) * 1972-03-17 1974-04-23 Medtronic Inc Automatic cardioverting circuit
US3810457A (en) * 1971-11-24 1974-05-14 Bosch Elektronik Gmbh Diagnostic apparatus for automatically generating an intensity-time diagram showing points of minimum involuntary muscle movement
US3826246A (en) * 1973-03-07 1974-07-30 Esb Inc Apparatus for sensing physiological potentials
DE2426425A1 (en) * 1974-01-02 1975-07-10 Cardiac Resuscitator Corp ARRANGEMENT FOR MONITORING HUMAN LIFE SIGNS
US3940742A (en) * 1973-08-06 1976-02-24 Medical Monitor Systems, Inc. Data acquisition, storage and display system
DE2643907A1 (en) 1975-09-30 1977-04-07 Mieczyslaw Mirowski SYSTEM FOR DISPLAYING HEART STATES
US4052991A (en) * 1970-03-24 1977-10-11 Fred Zacouto Method of stimulating the heart
DE2727141A1 (en) * 1976-06-18 1978-01-05 Medtronic Inc ANTIARRHYTHMIA PACEMAKER
US4088138A (en) * 1974-01-02 1978-05-09 Cardiac Resuscitator Corp. Cardiac resuscitator and monitoring apparatus
US4090518A (en) * 1975-08-25 1978-05-23 Elam James O Esophago-pharyngeal airway
US4114628A (en) * 1977-05-31 1978-09-19 Rizk Nabil I Demand pacemaker with self-adjusting threshold and defibrillating feature
US4137908A (en) * 1977-02-04 1979-02-06 Assistance Technique Medicale Serdal S.A. Societe Anonyme Apparatus for observing cardiac rhythm free of interfering effects
EP0009255A1 (en) * 1978-09-21 1980-04-02 Purdue Research Foundation An automatic cardiac ventricular defibrillator
US4198963A (en) * 1978-10-19 1980-04-22 Michigan Instruments, Inc. Cardiopulmonary resuscitator, defibrillator and monitor
US4202340A (en) * 1975-09-30 1980-05-13 Mieczyslaw Mirowski Method and apparatus for monitoring heart activity, detecting abnormalities, and cardioverting a malfunctioning heart
USRE30372E (en) * 1972-03-17 1980-08-19 Medtronic, Inc. Automatic cardioverting circuit
USRE30387E (en) * 1972-03-17 1980-08-26 Medtronic, Inc. Automatic cardioverting circuit
US4273114A (en) * 1978-10-19 1981-06-16 Michigan Instruments, Inc. Cardiopulmonary resuscitator, defibrillator and monitor
USRE30750E (en) * 1972-05-15 1981-09-29 Cardiac Resuscitator Corporation Cardiac resuscitator and monitoring apparatus
US4303075A (en) * 1980-02-11 1981-12-01 Mieczyslaw Mirowski Method and apparatus for maximizing stroke volume through atrioventricular pacing using implanted cardioverter/pacer
US4349030A (en) * 1980-07-10 1982-09-14 Ross H. Zoll External noninvasive electric cardiac stimulation
US4375817A (en) * 1979-07-19 1983-03-08 Medtronic, Inc. Implantable cardioverter
US4438765A (en) * 1981-06-04 1984-03-27 Jack Wilinsky Motion sensitive firable device
US4467813A (en) * 1982-05-04 1984-08-28 Cardiac Resuscitator Corporation Biological signal source amplifier
US4610254A (en) * 1984-03-08 1986-09-09 Physio-Control Corporation Interactive portable defibrillator
US4693253A (en) * 1981-03-23 1987-09-15 Medtronic, Inc. Automatic implantable defibrillator and pacer
FR2607015A1 (en) * 1981-12-14 1988-05-27 Zoll Ross Method and device for external cardiac stimulation
US4785812A (en) * 1986-11-26 1988-11-22 First Medical Devices Corporation Protection system for preventing defibrillation with incorrect or improperly connected electrodes
WO1989001802A1 (en) * 1987-09-02 1989-03-09 Telectronics Pty. Limited Reconfirmation prior to shock for implantable defibrillation
US4817611A (en) * 1986-11-13 1989-04-04 Arzco Medical Electronics, Inc. Esophageal electrocardiography electrode
US4848345A (en) * 1978-01-30 1989-07-18 Zenex Corporation Connection circuit and method for using monitor/defibrillator
DE3233718C2 (en) * 1981-02-18 1990-10-31 Mieczyslaw Mirowski
US5010888A (en) * 1988-03-25 1991-04-30 Arzco Medical Electronics, Inc. Method and apparatus for detection of posterior ischemia
US5083563A (en) * 1990-02-16 1992-01-28 Telectronics Pacing Systems, Inc. Implantable automatic and haemodynamically responsive cardioverting/defibrillating pacemaker
US5085213A (en) * 1990-06-01 1992-02-04 Leonard Bloom Hemodynamically responsive system for and method of treating a malfunctioning heart
US5184620A (en) * 1991-12-26 1993-02-09 Marquette Electronics, Inc. Method of using a multiple electrode pad assembly
US5191884A (en) * 1987-09-02 1993-03-09 Telectronics N.V. Reconfirmation prior to shock for implantable defibrillation
US5391187A (en) * 1994-02-22 1995-02-21 Zmd Corporation Semiautomatic defibrillator with heart rate alarm driven by shock advisory algorithm
US5403354A (en) * 1991-04-12 1995-04-04 Incontrol, Inc. Defibrillator and method utilizing three channel sensing
EP0655260A2 (en) * 1993-10-05 1995-05-31 SORIN BIOMEDICA CARDIO S.p.A. Device for determining myocardial function and corresponding procedure
US5507778A (en) * 1994-02-22 1996-04-16 Zmd Corporation Semiautomatic defibrillator with synchronized shock delivery
US5609612A (en) * 1993-10-05 1997-03-11 Sorin Biomedica Cardio S.P.A. Device for determining myocardial function and corresponding procedure and method
US6148233A (en) * 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
US20030060723A1 (en) * 1999-09-30 2003-03-27 Medtronic Physio-Control Manufacturing Corp. Pulse detection apparatus, software, and methods using patient physiological signals
US20030109790A1 (en) * 2001-12-06 2003-06-12 Medtronic Physio-Control Manufacturing Corp. Pulse detection method and apparatus using patient impedance
US20040039420A1 (en) * 2002-08-26 2004-02-26 Medtronic Physio-Control Manufacturing Corp. Apparatus, software, and methods for cardiac pulse detection using accelerometer data
US6751501B1 (en) 1997-07-17 2004-06-15 Science Medicus, Inc. Method and apparatus for myocardial control
US6809507B2 (en) * 2001-10-23 2004-10-26 Medtronic Minimed, Inc. Implantable sensor electrodes and electronic circuitry
US20040225332A1 (en) * 2003-05-09 2004-11-11 Ursula Gebhardt Use of accelerometer signal to augment ventricular arrhythmia detection
US20050131469A1 (en) * 2003-12-16 2005-06-16 Leonard Bloom Hemodynamic optimization system for biventricular implants
US20050234515A1 (en) * 2004-04-20 2005-10-20 Zoll Medical Corporation Microperfusive electrical stimulation
US20060167515A1 (en) * 1999-09-30 2006-07-27 Medtronic Emergency Response Apparatus, software, and methods for cardiac pulse detection using a piezoelectric sensor
US20070054871A1 (en) * 2005-09-06 2007-03-08 Pastore Joseph M Method and apparatus for device controlled gene expression for cardiac protection
US20070299356A1 (en) * 2006-06-27 2007-12-27 Ramesh Wariar Detection of myocardial ischemia from the time sequence of implanted sensor measurements
US20080081354A1 (en) * 2006-10-02 2008-04-03 Cardiac Pacemakers, Inc. Devices, vectors and methods for inducible ischemia cardioprotection
US20080082135A1 (en) * 2006-10-02 2008-04-03 Cardiac Pacemakers, Inc. Method and apparatus for identification of ischemic/infarcted regions and therapy optimization
US20080177194A1 (en) * 2007-01-19 2008-07-24 Cardiac Pacemakers, Inc. Heart attack detector
US20080208273A1 (en) * 2002-08-26 2008-08-28 Owen James M Pulse Detection Using Patient Physiological Signals
US7797043B1 (en) * 2001-05-01 2010-09-14 Zoll Medical Corporation Pulse sensors
US20100312130A1 (en) * 2006-06-27 2010-12-09 Yi Zhang Graded response to myocardial ischemia
US9248306B2 (en) 1999-09-30 2016-02-02 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US11904177B2 (en) 2021-01-28 2024-02-20 Usa Medical Electronix, Inc. Pocket-sized automated external defibrillator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1272570A (en) * 1960-08-17 1961-09-29 Cotelec Advanced resuscitator
US3030946A (en) * 1962-04-24 amplifier
US3144019A (en) * 1960-08-08 1964-08-11 Haber Edgar Cardiac monitoring device
US3149627A (en) * 1962-04-25 1964-09-22 Samuel M Bagno Plethysmograph
US3174478A (en) * 1962-03-29 1965-03-23 Beckman Instruments Inc Linear integrating cardiotachometer
US3236239A (en) * 1962-07-17 1966-02-22 American Optical Corp Defibrillator
US3460542A (en) * 1966-02-09 1969-08-12 Hellige & Co Gmbh F Instrument for electrically stimulating the activity of the heart
US3547108A (en) * 1968-09-18 1970-12-15 Physio Control Corp Combination defibrillator and heartbeat monitoring system
US3593718A (en) * 1967-07-13 1971-07-20 Biocybernetics Inc Physiologically controlled cardiac pacer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030946A (en) * 1962-04-24 amplifier
US3144019A (en) * 1960-08-08 1964-08-11 Haber Edgar Cardiac monitoring device
FR1272570A (en) * 1960-08-17 1961-09-29 Cotelec Advanced resuscitator
US3174478A (en) * 1962-03-29 1965-03-23 Beckman Instruments Inc Linear integrating cardiotachometer
US3149627A (en) * 1962-04-25 1964-09-22 Samuel M Bagno Plethysmograph
US3236239A (en) * 1962-07-17 1966-02-22 American Optical Corp Defibrillator
US3460542A (en) * 1966-02-09 1969-08-12 Hellige & Co Gmbh F Instrument for electrically stimulating the activity of the heart
US3593718A (en) * 1967-07-13 1971-07-20 Biocybernetics Inc Physiologically controlled cardiac pacer
US3547108A (en) * 1968-09-18 1970-12-15 Physio Control Corp Combination defibrillator and heartbeat monitoring system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Stratboeler et al., Rocky Mountain Engineering Society, 1965, pp. 57 61. *

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052991A (en) * 1970-03-24 1977-10-11 Fred Zacouto Method of stimulating the heart
US3810457A (en) * 1971-11-24 1974-05-14 Bosch Elektronik Gmbh Diagnostic apparatus for automatically generating an intensity-time diagram showing points of minimum involuntary muscle movement
USRE30372E (en) * 1972-03-17 1980-08-19 Medtronic, Inc. Automatic cardioverting circuit
US3805795A (en) * 1972-03-17 1974-04-23 Medtronic Inc Automatic cardioverting circuit
USRE30387E (en) * 1972-03-17 1980-08-26 Medtronic, Inc. Automatic cardioverting circuit
USRE30750E (en) * 1972-05-15 1981-09-29 Cardiac Resuscitator Corporation Cardiac resuscitator and monitoring apparatus
US3826246A (en) * 1973-03-07 1974-07-30 Esb Inc Apparatus for sensing physiological potentials
US3940742A (en) * 1973-08-06 1976-02-24 Medical Monitor Systems, Inc. Data acquisition, storage and display system
DE2426425A1 (en) * 1974-01-02 1975-07-10 Cardiac Resuscitator Corp ARRANGEMENT FOR MONITORING HUMAN LIFE SIGNS
US4088138A (en) * 1974-01-02 1978-05-09 Cardiac Resuscitator Corp. Cardiac resuscitator and monitoring apparatus
US4090518A (en) * 1975-08-25 1978-05-23 Elam James O Esophago-pharyngeal airway
DE2643907A1 (en) 1975-09-30 1977-04-07 Mieczyslaw Mirowski SYSTEM FOR DISPLAYING HEART STATES
US4202340A (en) * 1975-09-30 1980-05-13 Mieczyslaw Mirowski Method and apparatus for monitoring heart activity, detecting abnormalities, and cardioverting a malfunctioning heart
DE2661005C2 (en) * 1975-09-30 1990-03-08 Mirowski, Mieczyslaw, Owings Mills, Md., Us
DE2727141A1 (en) * 1976-06-18 1978-01-05 Medtronic Inc ANTIARRHYTHMIA PACEMAKER
US4137908A (en) * 1977-02-04 1979-02-06 Assistance Technique Medicale Serdal S.A. Societe Anonyme Apparatus for observing cardiac rhythm free of interfering effects
US4114628A (en) * 1977-05-31 1978-09-19 Rizk Nabil I Demand pacemaker with self-adjusting threshold and defibrillating feature
US4848345A (en) * 1978-01-30 1989-07-18 Zenex Corporation Connection circuit and method for using monitor/defibrillator
EP0009255A1 (en) * 1978-09-21 1980-04-02 Purdue Research Foundation An automatic cardiac ventricular defibrillator
US4291699A (en) * 1978-09-21 1981-09-29 Purdue Research Foundation Method of and apparatus for automatically detecting and treating ventricular fibrillation
US4198963A (en) * 1978-10-19 1980-04-22 Michigan Instruments, Inc. Cardiopulmonary resuscitator, defibrillator and monitor
US4273114A (en) * 1978-10-19 1981-06-16 Michigan Instruments, Inc. Cardiopulmonary resuscitator, defibrillator and monitor
US4375817A (en) * 1979-07-19 1983-03-08 Medtronic, Inc. Implantable cardioverter
US4303075A (en) * 1980-02-11 1981-12-01 Mieczyslaw Mirowski Method and apparatus for maximizing stroke volume through atrioventricular pacing using implanted cardioverter/pacer
US4349030A (en) * 1980-07-10 1982-09-14 Ross H. Zoll External noninvasive electric cardiac stimulation
DE3233718C2 (en) * 1981-02-18 1990-10-31 Mieczyslaw Mirowski
US4693253A (en) * 1981-03-23 1987-09-15 Medtronic, Inc. Automatic implantable defibrillator and pacer
US4438765A (en) * 1981-06-04 1984-03-27 Jack Wilinsky Motion sensitive firable device
FR2607015A1 (en) * 1981-12-14 1988-05-27 Zoll Ross Method and device for external cardiac stimulation
US4467813A (en) * 1982-05-04 1984-08-28 Cardiac Resuscitator Corporation Biological signal source amplifier
US4610254A (en) * 1984-03-08 1986-09-09 Physio-Control Corporation Interactive portable defibrillator
US4817611A (en) * 1986-11-13 1989-04-04 Arzco Medical Electronics, Inc. Esophageal electrocardiography electrode
US4785812A (en) * 1986-11-26 1988-11-22 First Medical Devices Corporation Protection system for preventing defibrillation with incorrect or improperly connected electrodes
WO1989001802A1 (en) * 1987-09-02 1989-03-09 Telectronics Pty. Limited Reconfirmation prior to shock for implantable defibrillation
US5191884A (en) * 1987-09-02 1993-03-09 Telectronics N.V. Reconfirmation prior to shock for implantable defibrillation
US5010888A (en) * 1988-03-25 1991-04-30 Arzco Medical Electronics, Inc. Method and apparatus for detection of posterior ischemia
US5083563A (en) * 1990-02-16 1992-01-28 Telectronics Pacing Systems, Inc. Implantable automatic and haemodynamically responsive cardioverting/defibrillating pacemaker
US5085213A (en) * 1990-06-01 1992-02-04 Leonard Bloom Hemodynamically responsive system for and method of treating a malfunctioning heart
US5403354A (en) * 1991-04-12 1995-04-04 Incontrol, Inc. Defibrillator and method utilizing three channel sensing
US5184620A (en) * 1991-12-26 1993-02-09 Marquette Electronics, Inc. Method of using a multiple electrode pad assembly
EP0655260A2 (en) * 1993-10-05 1995-05-31 SORIN BIOMEDICA CARDIO S.p.A. Device for determining myocardial function and corresponding procedure
EP0655260A3 (en) * 1993-10-05 1996-02-07 Sorin Biomedica Cardio Spa Device for determining myocardial function and corresponding procedure.
US5609612A (en) * 1993-10-05 1997-03-11 Sorin Biomedica Cardio S.P.A. Device for determining myocardial function and corresponding procedure and method
US5693075A (en) * 1993-10-05 1997-12-02 Sorin Biomedica S.P.A. Device for determining myocardial function and corresponding procedure
US5507778A (en) * 1994-02-22 1996-04-16 Zmd Corporation Semiautomatic defibrillator with synchronized shock delivery
US5391187A (en) * 1994-02-22 1995-02-21 Zmd Corporation Semiautomatic defibrillator with heart rate alarm driven by shock advisory algorithm
US6148233A (en) * 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
US9089718B2 (en) 1997-03-07 2015-07-28 Cardiac Science Corporation Defibrillation system
US6751501B1 (en) 1997-07-17 2004-06-15 Science Medicus, Inc. Method and apparatus for myocardial control
US20110144708A1 (en) * 1999-09-30 2011-06-16 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US20060167515A1 (en) * 1999-09-30 2006-07-27 Medtronic Emergency Response Apparatus, software, and methods for cardiac pulse detection using a piezoelectric sensor
US8092392B2 (en) * 1999-09-30 2012-01-10 Physio-Control, Inc. Pulse detection method and apparatus using patient impedance
US8532766B2 (en) * 1999-09-30 2013-09-10 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US8239024B2 (en) * 1999-09-30 2012-08-07 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US9981142B2 (en) 1999-09-30 2018-05-29 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US7917209B2 (en) 1999-09-30 2011-03-29 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US9248306B2 (en) 1999-09-30 2016-02-02 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US20050240234A1 (en) * 1999-09-30 2005-10-27 Medtronic Emergency Response Systems, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US20120022339A1 (en) * 1999-09-30 2012-01-26 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US8160703B2 (en) 1999-09-30 2012-04-17 Physio-Control, Inc. Apparatus, software, and methods for cardiac pulse detection using a piezoelectric sensor
US20030060723A1 (en) * 1999-09-30 2003-03-27 Medtronic Physio-Control Manufacturing Corp. Pulse detection apparatus, software, and methods using patient physiological signals
US20100292748A9 (en) * 1999-09-30 2010-11-18 Stickney Ronald E Pulse Detection Method and Apparatus Using Patient Impedance
US20070288060A1 (en) * 1999-09-30 2007-12-13 Stickney Ronald E Pulse Detection Method and Apparatus Using Patient Impedance
US8744577B2 (en) 1999-09-30 2014-06-03 Physio-Control, Inc. Pulse detection apparatus, software, and methods using patient physiological signals
US7797043B1 (en) * 2001-05-01 2010-09-14 Zoll Medical Corporation Pulse sensors
US8064995B1 (en) 2001-05-01 2011-11-22 Zoll Medical Corporation Pulse sensors
US20090203979A1 (en) * 2001-10-23 2009-08-13 Medtronic Minimed, Inc. Implantable sensor electrodes and electronic circuitry
US6809507B2 (en) * 2001-10-23 2004-10-26 Medtronic Minimed, Inc. Implantable sensor electrodes and electronic circuitry
US20100121208A1 (en) * 2001-12-06 2010-05-13 Medtronic Physio-Control Manufacturing Corp. Pulse detection method and apparatus using patient impedance
US20100114219A1 (en) * 2001-12-06 2010-05-06 Medtronic Physio-Control, Manufacturing Corp. Pulse detection method and apparatus using patient impedance
US20100121392A1 (en) * 2001-12-06 2010-05-13 Medtronic Physio-Control Manufacturing Pulse detection method and apparatus using patient impedance
US8663121B2 (en) 2001-12-06 2014-03-04 Physio-Control, Inc. Pulse detection method and apparatus using patient impedance
US9950178B2 (en) * 2001-12-06 2018-04-24 Physio-Control, Inc. Pulse detection method and apparatus using patient impedance
US20030109790A1 (en) * 2001-12-06 2003-06-12 Medtronic Physio-Control Manufacturing Corp. Pulse detection method and apparatus using patient impedance
US20080208273A1 (en) * 2002-08-26 2008-08-28 Owen James M Pulse Detection Using Patient Physiological Signals
US8591425B2 (en) 2002-08-26 2013-11-26 Physio-Control, Inc. Pulse detection using patient physiological signals
US8992432B2 (en) 2002-08-26 2015-03-31 Physio-Control, Inc. Pulse detection using patient physiological signals
US9216001B2 (en) 2002-08-26 2015-12-22 Physio-Control, Inc. Pulse detection using patient physiological signals
US11045100B2 (en) 2002-08-26 2021-06-29 West Affum Holdings Corp. Pulse detection using patient physiological signals
US8135462B2 (en) 2002-08-26 2012-03-13 Physio-Control, Inc. Pulse detection using patient physiological signals
US20040039420A1 (en) * 2002-08-26 2004-02-26 Medtronic Physio-Control Manufacturing Corp. Apparatus, software, and methods for cardiac pulse detection using accelerometer data
US20040225332A1 (en) * 2003-05-09 2004-11-11 Ursula Gebhardt Use of accelerometer signal to augment ventricular arrhythmia detection
WO2004101066A1 (en) * 2003-05-09 2004-11-25 Medtronic, Inc. Use of accelerometer signal to augment ventricular arrhythmia detection
US7130681B2 (en) 2003-05-09 2006-10-31 Medtronic, Inc. Use of accelerometer signal to augment ventricular arrhythmia detection
US11419508B2 (en) 2003-09-02 2022-08-23 West Affum Holdings Dac Pulse detection using patient physiological signals
US20050131469A1 (en) * 2003-12-16 2005-06-16 Leonard Bloom Hemodynamic optimization system for biventricular implants
US7239915B2 (en) 2003-12-16 2007-07-03 Medtronic, Inc. Hemodynamic optimization system for biventricular implants
US8805491B2 (en) 2004-04-20 2014-08-12 Zoll Medical Corporation Microperfusive electrical stimulation
EP2431071A1 (en) 2004-04-20 2012-03-21 Zoll Medical Corporation Microperfusive electrical stimulation
US20050234515A1 (en) * 2004-04-20 2005-10-20 Zoll Medical Corporation Microperfusive electrical stimulation
EP1588736A2 (en) 2004-04-20 2005-10-26 Zoll Medical Corporation Microperfusive electrical stimulation
US7774057B2 (en) 2005-09-06 2010-08-10 Cardiac Pacemakers, Inc. Method and apparatus for device controlled gene expression for cardiac protection
US8538520B2 (en) 2005-09-06 2013-09-17 Cardiac Pacemakers, Inc. Method and apparatus for device controlled gene expression for cardiac protection
US20070054871A1 (en) * 2005-09-06 2007-03-08 Pastore Joseph M Method and apparatus for device controlled gene expression for cardiac protection
US20070299356A1 (en) * 2006-06-27 2007-12-27 Ramesh Wariar Detection of myocardial ischemia from the time sequence of implanted sensor measurements
US20100312130A1 (en) * 2006-06-27 2010-12-09 Yi Zhang Graded response to myocardial ischemia
US8000780B2 (en) 2006-06-27 2011-08-16 Cardiac Pacemakers, Inc. Detection of myocardial ischemia from the time sequence of implanted sensor measurements
US20080081354A1 (en) * 2006-10-02 2008-04-03 Cardiac Pacemakers, Inc. Devices, vectors and methods for inducible ischemia cardioprotection
US20080082135A1 (en) * 2006-10-02 2008-04-03 Cardiac Pacemakers, Inc. Method and apparatus for identification of ischemic/infarcted regions and therapy optimization
US8489204B2 (en) 2006-10-02 2013-07-16 Caridac Pacemakers, Inc. Method and apparatus for identification of ischemic/infarcted regions and therapy optimization
US8219210B2 (en) 2006-10-02 2012-07-10 Cardiac Pacemakers, Inc. Method and apparatus for identification of ischemic/infarcted regions and therapy optimization
US20080177194A1 (en) * 2007-01-19 2008-07-24 Cardiac Pacemakers, Inc. Heart attack detector
US8014863B2 (en) 2007-01-19 2011-09-06 Cardiac Pacemakers, Inc. Heart attack or ischemia detector
US11904177B2 (en) 2021-01-28 2024-02-20 Usa Medical Electronix, Inc. Pocket-sized automated external defibrillator

Similar Documents

Publication Publication Date Title
US3716059A (en) Cardiac resuscitator
US3703900A (en) Cardiac resuscitator
US3528428A (en) Demand pacer
US3857398A (en) Electrical cardiac defibrillator
US4473078A (en) Cardiac arrhythmia analysis system
US3747604A (en) Atrial and ventricular demand pacer with separate atrial and ventricular beat detectors
US8359094B2 (en) Extravascular arrhythmia induction
US5431687A (en) Impedance timed defibrillation system
US10406374B2 (en) Confidence analyzer for an automated external defibrillator (AED) with dual ECG analysis algorithms
CA1299252C (en) Implantable cardiac stimulator for detection and treatment of ventricular arrhythmias
US5464431A (en) Atrial fibrillation detector
US5522854A (en) Method and apparatus for the prevention of arrhythmia by nerve stimulation
US4432375A (en) Cardiac arrhythmia analysis system
DE69630054T2 (en) ATRIAL DEFIBRILLATOR
US5738105A (en) Method and apparatus for sensing R-waves using both near field and far field sensing simultaneously
US9950178B2 (en) Pulse detection method and apparatus using patient impedance
US3618615A (en) Self checking cardiac pacemaker
US8560064B2 (en) Extravascular arrhythmia induction
Furman et al. Transtelephone pacemaker monitoring: five years later
US3523539A (en) Demand cardiac pacemaker and method
EP3233183B1 (en) Defibrillator with scheduled and continuous modes of operation
EP3229896A1 (en) Automated external defibrillator (aed) with dual ecg analysis algorithms
US3757791A (en) Synchronized atrial and ventricular pacer and timing circuitry therefor
US3881493A (en) Synchronously reinforcing pacer
US3662759A (en) Cardiac pacer system