US3666187A - Laboratory homogenizer - Google Patents

Laboratory homogenizer Download PDF

Info

Publication number
US3666187A
US3666187A US36758A US3666187DA US3666187A US 3666187 A US3666187 A US 3666187A US 36758 A US36758 A US 36758A US 3666187D A US3666187D A US 3666187DA US 3666187 A US3666187 A US 3666187A
Authority
US
United States
Prior art keywords
blade
homogenizer
container
plate
rotary blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US36758A
Inventor
George F Norris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Health and Human Services
Original Assignee
US Department of Health and Human Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Health and Human Services filed Critical US Department of Health and Human Services
Application granted granted Critical
Publication of US3666187A publication Critical patent/US3666187A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/86Mixing heads comprising a driven stirrer

Definitions

  • ABSTRACT An homogenizer for laboratory usage for the grinding and homogenizing of animal bone, gristle, cartilage. fur and the like including a container and a cutting unit operable through the container cover.
  • the grinding and homogenizing is accomplished by means of the cutting unit which includes three series of blades, the first being a stationary plate blade having obliquely directed holes passing therethrough, the second being a rotary cutting blade which slides against the plate blade, and the third being an axially disposed second rotary blade which assists in both cutting and pumping.
  • the present invention relates to an homogenizer, and, more particularly, to an homogenizer for laboratory usage capable of homogenizing animal bone, gristle, cartilage, fur and other bio-materials.
  • the homogenizer relies on two blades, one of which is stationary and the other of which rotates.
  • the rotating blade has a plurality of cutting edges which are in contact with. and sweep over the stationary plate. Material to be homogenized is sheared by the scissor action between the two blades.
  • the rotating member may also contain other blades off-set in such fashion as to rotate free of contact from the stationary plate. In addition to a first crude chopping operation, these ofl set blades aid in the pumping action which is of prime importance in pulling sample particles into the shearing edges of the scissor action.
  • the invention relates to the features of novelty and substantially the construction, combination and arrangement of the several parts hereinafter more fully described and shown in the accompanying drawing of an exemplification illustrating this invention and in which:
  • FIG. IA is a perspective view, partly broken away, of the internal structure of an embodiment in accordance with the present invention.
  • FIG. 18 is an homogenizer container used in conjunction with the structure ofFIG. 1A;
  • FIG. 2A is a bottom view of an embodiment of a stationary plate blade such as may be used in the structure of FIG. IA;
  • FIG. 2B is a perspective view of the plate blade of FIG. 2A and its supporting structure
  • FIG. 3A is a plan view of an embodiment of a rotating cutter assembly of the type shown in FIG. IA, normally used in conjunction with the plate blade of FIG. 2',
  • FIG. 3B is an elevation of the rotary cutter of FIG. 3A;
  • FIG. 4A is a bottom plan view of a plate blade of the type shown in the construction of FIG. 1A;
  • FIG. 4B is a perspective view of the plate blade of FIG. 4A showing its supporting structure
  • FIG. 5A is a plan view of a second rotary cutter assembly
  • FIG. 5B is an elevation of the cutter assembly of FIG. 5A, normally used with the plate blade construction of FIG. 4;
  • FIG. 6A is a bottom plan view of a third rotary cutter construction, which may be used as a replacement for the cutter of FIG. 5;
  • FIG. 6B is a section taken along line 6B6B of FIG. 6A.
  • FIG. 1B An homogenizer container 10, of generally cylindrical construction, is shown in FIG. 1B.
  • the container 10 is preferably provided with an exterior screw thread 12 at its open end so as to provide cooperation with the container cover, described below.
  • the container 10 may have a plurality of axially extending indentations 14 in its outer surface extending from its bottom surface upwardly, the purpose of such grooves being to retain the stationary plate blade in stationary position within the homogenizer container 10 during use of the homogenizer.
  • FIG. 1A it will be seen that a single unit is provided comprising a removable cover 16 for the container 10, a downwardly depending drive shaft construction [8 and a means 20 at the bottom of the device to cut, macerate and homogenize material within the container 10.
  • the removable cover 16 is provided with a threaded portion 22 for cooperation with the threads 12 of the container 10, although it will be understood that any suitable interconnection other than thread means may be used in such a device.
  • the drive shaft assembly 18 comprises a drive shaft housing 24 rigidly connected at its upper end to the cover I6, and carrying at each end thereof a suitable bearing 26.
  • a drive shaft 28 which passes through both bearings 26.
  • the drive shaft 28 passes through the container cover 16 and is there rigidly connected to a suitable means 30 carried on the cover 16 for effecting rotary movement of the drive shaft 28 within the housing 24.
  • the means 20 to cut, macerate and homogenize material within the container 10 comprises a stationary plate blade 32 and a rotary blade element 34 for coaction with the plate blade 32.
  • the blades 32 and 34 extend radially with respect to the axis of the drive shaft 28 and container 10, and these blade elements are spaced immediately axially adjacent one another.
  • the rotary blade 34 is driven by the drive shaft 28 at a high rate and sweeps over the stationary plate to shear and homogenize by scissor action between the two, material which is contained within the container 10.
  • the stationary plate blade 32 is preferably of circular construction of a diameter only slightly less than the internal diameter of the container 10. Thus, there may be provided a plurality of circumferentially disposed grooves 36 about the periphery of the plate blade 32 which grooves 36 are employed for circulation of materials in the container 10.
  • a particularly important feature of the plate blade 32 is the provision of a plurality of openings 38 extending therethrough at an oblique angle.
  • the nature of these openings is best seen in FIGS. 2A and 4A from which it will be understood that by oblique openings it is meant that the opening at one surface of the plate does not directly overlie (or underlie) the opening at the other surface of the plate, and a channel is formed through the body of the plate 32 which is disposed at an angle from the axis of the drive shaft 28.
  • the bottom edges of these openings 38 which are swept by the rotary blade 34, constitute shearing edges which cooperate with the sharp edges of the rotary blade to provide the scissors action. While the illustrated embodiments show four oblique openings, it will be understood that more or less oblique openings may be formed, if desired, and that their shape may depart from the circular.
  • the plate blade 32 In addition to the oblique openings 38, the plate blade 32 also is provided with an axial opening extending therethrough, the purpose of which is to provide for connection between the drive shah 28 and the rotating blade 34. As can be seen in FIG. 1A, the plate blade 32 is provided with an upper mounting section 40 which surrounds the terminal portion of the crank shafi 24 as well as the lower bearing 26, and which serves to rigidly mount the plate blade 32 onto the terminal end of the shaft housing 24. The rigid connection may be made by any suitable means, such as a set screw 42.
  • the plate blade 32' may be integral with the shaft housing 24', in which case no mounting element 40 is necessary.
  • the rotary blade 34 is connected to the drive shaft 28 through the axial opening 44 in the plate blade 34.
  • This connection may be made by any suitable means, e.g., the terminal end of the drive shaft 28 may be threaded and the rotary blade structure may be screw thereto and capped with a hex nut, or the rotary cutter blade assembly may be bolted to the terminal end of the drive shah 28 through the opening 44.
  • the rotary blade 34 is driven by the drive shaft 28 at a high rate and in the same direction as the inclination of the oblique openings 38 passing through the plate blade 32.
  • the homogenizer of the present invention preferably is provided with a second rotary cutter 46 which will normally be integrally associated with the first rotary cutter 34.
  • the second rotary cutter 46 is spaced axially from the plate blade 32 and makes no contact therewith.
  • the purpose of this second rotary blade cutter is, as mentioned above, to aid in efiecting homogenization and to assist in pumping material within the container through the oblique openings 38 in the plate blade 32.
  • the plate blade is provided with four oblique equally spaced openings 38
  • the first rotary blade cutter 34 comprises a pair of oppositely directed blade elements
  • the second rotary blade 46 comprises a pair of oppositely directed, radially extending blade elements disposed at right angles to the elements of the blade 34, as shown in FIGS. 1A, 3 and 5. Comparing FIGS. 3 and 5, it will be seen that the precise structure of these blades may vary somewhat, the construction of FIG. 3 being preferred for smaller homogenizers and that of FIG. 5 for larger homogenizers. In each of these, it will be seen that the leading cutting edges 34' of the cutter 34 is disposed so the cutting edge sweeps the stationary plate blade 32, while the leading cutting edge 46' of the rotary cutter 46 is disposed a maximum distance from the cutting edge 34].
  • FIGS. 6A and 6B show a modified type of rotary cutter structure, preferably for use in a larger construction homogenizer, which may be substituted for the rotary cutter of FIG. 5.
  • the first rotary blade 34' is flat as in the other embodiments to provide effective sweeping against the face of the plate blade 32.
  • the second to tary cutter 46' comprises a pair of oppositely directed inclined blade elements disposed at an angle to the flat elements of the first rotary blade member 34'.
  • the device of FIG. 6 may be constructed from a household blender blade by removing two of the six blade elements opposite one another which would interfer with first rotary cutter blade 34' from sweeping cutting edges of plate blade 32.
  • the homogenizer in accordance with the present invention will be obvious from its construction, although it may be mentioned briefly that the material to be homogenized is merely placed in the container 10 and the assembly of FIG. IA is then screwed onto or otherwise attached to the container 10. A suitable source of power is then applied to the element 30 which causes the rotary blades to rotate at a high speed through means of the drive shaft 28.
  • the construction of the device particularly the provision of the oblique holes bored through the stationary plate blade, is such to provide a pumping and shearing action which effects thorough homogenization of the material within the container.
  • An homogenizer for laboratory usage capable of homogenizing animal bone, gristle, cartilage, fur and other bio-materials, comprising:
  • a generally cylindrical container for the material to be homogenized having an open top end;
  • a drive-shaft housing connected to said cover and projecting downwardly within said container, a drive-shaft rotatably carried within said drive-shaft housing, and means on said cover for effecting rotary movement of said drive shaft within said housing;
  • means to pump and to cut, macerate and homogenize material within said container including a pair of interengaging and radially extending blades which pair of blades comprise a stationary plate blade and a rotary blade immediately axially adjacent and below said stationary plate blade, said plate blade being mounted to the bottom end of said shaft housing and having an axial opening extending therethrough, a plurality of relatively large openings spaced about said axial opening and extending through said plate blade at an oblique angle, the edges of said plate blade forming said oblique openings constituting shearing edges cooperating with the edges of said rotary blade, said rotary blade being connected to said drive shaft through the axial opening in said plate blade; and
  • means to additionally cut, macerate and homogenize material within said container and to assist in pumping such material through said oblique openings comprising a second rotary blade connected to said first-mentioned rotary blade and spaced axially from said plate blade therebelow.
  • said plate blade comprises a radially extending transverse, generally circular plate having a radius approximately equal to the inner radius of said cylindrical container.
  • said second rotary blade comprises a pair of oppositely directed, radially extending blade elements disposed at right angles to said blade elements of said first mentioned rotary blade.

Abstract

An homogenizer for laboratory usage for the grinding and homogenizing of animal bone, gristle, cartilage, fur and the like including a container and a cutting unit operable through the container cover. The grinding and homogenizing is accomplished by means of the cutting unit which includes three series of blades, the first being a stationary plate blade having obliquely directed holes passing therethrough, the second being a rotary cutting blade which slides against the plate blade, and the third being an axially disposed second rotary blade which assists in both cutting and pumping.

Description

United States Patent Norris [4 1 May 30, 1972 LABORATORY HOMOGENIZER [72] Inventor: George F. Norris, Kensington, Md. 20795 The United States of America as represented by the Secretary of the Department of Health, Education and Wellare 221 Filed: May 13,1970
[21] Appl.No.: 36,758
[73] Assignee:
{52] U.S. Cl ....24l/90, 241/4617 [51] Int. Cl. ..B02c 13/18 [58] Field olSeareh ..241/46, 46.06, 46.17, 84, 90, 241/100 [56] References Cited UNITED STATES PATENTS 1,480,969 1/1924 Thomson ..24l/46 X 3,361,369 1/1968 Ruble ..24l/46. 17
182,398 9/l 876 Wyatt ..24 l /90 2,074,795 3/1937 Mantelet... .....24l/9O 3,053,297 9/1962 Brundler ..24l/9O X Primary xaminerGranville Y. Custer, Jr. Attorney-Browdy and Neimark [57] ABSTRACT An homogenizer for laboratory usage for the grinding and homogenizing of animal bone, gristle, cartilage. fur and the like including a container and a cutting unit operable through the container cover. The grinding and homogenizing is accomplished by means of the cutting unit which includes three series of blades, the first being a stationary plate blade having obliquely directed holes passing therethrough, the second being a rotary cutting blade which slides against the plate blade, and the third being an axially disposed second rotary blade which assists in both cutting and pumping.
6 Claims, 12 Drawing Figures LABORATORY HOMOGENIZER The present invention relates to an homogenizer, and, more particularly, to an homogenizer for laboratory usage capable of homogenizing animal bone, gristle, cartilage, fur and other bio-materials.
While many types of laboratory homogenizers are commercially available, these devices inevitably are incapable of homogenizing all bio-materials. While some devices are capable of effectively homogenizing some laboratory samples, these devices often leave other samples incompletely macerated so as to leave the sample unhomogenized. Other constructions may be successful with other laboratory samples, but unsuccessful with the first-mentioned samples. In addition, besides being less than satisfactory for all samples desired to be homogenized, many of the commercially available homogenizers are unduly complex, large or expensive.
Attempts have been made to use other devices for laboratory usage, such as commercial blenders, but these devices do not adequately mix the samples or macerate them sufficiently to provide a homogeneous product. Devices designed for other purposes, such as garbage disposals, do not sufficiently cut and macerate the material so as to provide a homogeneous product.
There has now been provided in accordance with the present invention an homogenizer construction which overcomes the defects of the prior art, such as indicated above, and which successfully homogenizes for laboratory usage a large class of bio-materials, including animal bone, gristle, cartilage, fur, etc. The homogenizer relies on two blades, one of which is stationary and the other of which rotates. The rotating blade has a plurality of cutting edges which are in contact with. and sweep over the stationary plate. Material to be homogenized is sheared by the scissor action between the two blades. The rotating member may also contain other blades off-set in such fashion as to rotate free of contact from the stationary plate. In addition to a first crude chopping operation, these ofl set blades aid in the pumping action which is of prime importance in pulling sample particles into the shearing edges of the scissor action.
It is, accordingly, an object of the present invention to overcome the defects of the prior art, such as indicated above.
It is another object of the present invention to provide a new and improved laboratory homogenizer.
It is another object of the present invention to homogenize animal bone, gristle, cartilage, fur and other bio-materials with a degree of efficiency and quality not obtainable with previously known devices.
It is another object to provide a laboratory homogenizer which can be made in ultra-small homogenizer container size, which is inexpensive, which is easily cleaned, which is not susceptible to contamination, and may be used in working with radio-active samples.
To the attainment of these ends and the accomplishment of the above as well as other new and useful objects as will appear below, the invention relates to the features of novelty and substantially the construction, combination and arrangement of the several parts hereinafter more fully described and shown in the accompanying drawing of an exemplification illustrating this invention and in which:
FIG. IA is a perspective view, partly broken away, of the internal structure of an embodiment in accordance with the present invention;
FIG. 18 is an homogenizer container used in conjunction with the structure ofFIG. 1A;
FIG. 2A is a bottom view of an embodiment of a stationary plate blade such as may be used in the structure of FIG. IA;
FIG. 2B is a perspective view of the plate blade of FIG. 2A and its supporting structure;
FIG. 3A is a plan view of an embodiment of a rotating cutter assembly of the type shown in FIG. IA, normally used in conjunction with the plate blade of FIG. 2',
FIG. 3B is an elevation of the rotary cutter of FIG. 3A;
FIG. 4A is a bottom plan view of a plate blade of the type shown in the construction of FIG. 1A;
FIG. 4B is a perspective view of the plate blade of FIG. 4A showing its supporting structure;
FIG. 5A is a plan view of a second rotary cutter assembly;
FIG. 5B is an elevation of the cutter assembly of FIG. 5A, normally used with the plate blade construction of FIG. 4;
FIG. 6A is a bottom plan view of a third rotary cutter construction, which may be used as a replacement for the cutter of FIG. 5; and
FIG. 6B is a section taken along line 6B6B of FIG. 6A.
An homogenizer container 10, of generally cylindrical construction, is shown in FIG. 1B. The container 10 is preferably provided with an exterior screw thread 12 at its open end so as to provide cooperation with the container cover, described below. If desired, the container 10 may have a plurality of axially extending indentations 14 in its outer surface extending from its bottom surface upwardly, the purpose of such grooves being to retain the stationary plate blade in stationary position within the homogenizer container 10 during use of the homogenizer.
Noting FIG. 1A, it will be seen that a single unit is provided comprising a removable cover 16 for the container 10, a downwardly depending drive shaft construction [8 and a means 20 at the bottom of the device to cut, macerate and homogenize material within the container 10. The removable cover 16 is provided with a threaded portion 22 for cooperation with the threads 12 of the container 10, although it will be understood that any suitable interconnection other than thread means may be used in such a device.
The drive shaft assembly 18 comprises a drive shaft housing 24 rigidly connected at its upper end to the cover I6, and carrying at each end thereof a suitable bearing 26. Rotatably carried within the housing 24 is a drive shaft 28 which passes through both bearings 26. At the upper part of the device, the drive shaft 28 passes through the container cover 16 and is there rigidly connected to a suitable means 30 carried on the cover 16 for effecting rotary movement of the drive shaft 28 within the housing 24.
The means 20 to cut, macerate and homogenize material within the container 10 comprises a stationary plate blade 32 and a rotary blade element 34 for coaction with the plate blade 32. As illustrated in FIG. IA, the blades 32 and 34 extend radially with respect to the axis of the drive shaft 28 and container 10, and these blade elements are spaced immediately axially adjacent one another. The rotary blade 34 is driven by the drive shaft 28 at a high rate and sweeps over the stationary plate to shear and homogenize by scissor action between the two, material which is contained within the container 10.
The stationary plate blade 32 is preferably of circular construction of a diameter only slightly less than the internal diameter of the container 10. Thus, there may be provided a plurality of circumferentially disposed grooves 36 about the periphery of the plate blade 32 which grooves 36 are employed for circulation of materials in the container 10.
A particularly important feature of the plate blade 32 is the provision of a plurality of openings 38 extending therethrough at an oblique angle. The nature of these openings is best seen in FIGS. 2A and 4A from which it will be understood that by oblique openings it is meant that the opening at one surface of the plate does not directly overlie (or underlie) the opening at the other surface of the plate, and a channel is formed through the body of the plate 32 which is disposed at an angle from the axis of the drive shaft 28. The bottom edges of these openings 38, which are swept by the rotary blade 34, constitute shearing edges which cooperate with the sharp edges of the rotary blade to provide the scissors action. While the illustrated embodiments show four oblique openings, it will be understood that more or less oblique openings may be formed, if desired, and that their shape may depart from the circular.
In addition to the oblique openings 38, the plate blade 32 also is provided with an axial opening extending therethrough, the purpose of which is to provide for connection between the drive shah 28 and the rotating blade 34. As can be seen in FIG. 1A, the plate blade 32 is provided with an upper mounting section 40 which surrounds the terminal portion of the crank shafi 24 as well as the lower bearing 26, and which serves to rigidly mount the plate blade 32 onto the terminal end of the shaft housing 24. The rigid connection may be made by any suitable means, such as a set screw 42.
In the embodiment of FIG. 2B, particularly useful for a very short (in height) homogenizer, the plate blade 32' may be integral with the shaft housing 24', in which case no mounting element 40 is necessary.
As indicated previously, the rotary blade 34 is connected to the drive shaft 28 through the axial opening 44 in the plate blade 34. This connection may be made by any suitable means, e.g., the terminal end of the drive shaft 28 may be threaded and the rotary blade structure may be screw thereto and capped with a hex nut, or the rotary cutter blade assembly may be bolted to the terminal end of the drive shah 28 through the opening 44. The rotary blade 34 is driven by the drive shaft 28 at a high rate and in the same direction as the inclination of the oblique openings 38 passing through the plate blade 32.
The homogenizer of the present invention preferably is provided with a second rotary cutter 46 which will normally be integrally associated with the first rotary cutter 34. The second rotary cutter 46 is spaced axially from the plate blade 32 and makes no contact therewith. The purpose of this second rotary blade cutter is, as mentioned above, to aid in efiecting homogenization and to assist in pumping material within the container through the oblique openings 38 in the plate blade 32.
In the preferred embodiment of the present invention, the plate blade is provided with four oblique equally spaced openings 38, the first rotary blade cutter 34 comprises a pair of oppositely directed blade elements, and the second rotary blade 46 comprises a pair of oppositely directed, radially extending blade elements disposed at right angles to the elements of the blade 34, as shown in FIGS. 1A, 3 and 5. Comparing FIGS. 3 and 5, it will be seen that the precise structure of these blades may vary somewhat, the construction of FIG. 3 being preferred for smaller homogenizers and that of FIG. 5 for larger homogenizers. In each of these, it will be seen that the leading cutting edges 34' of the cutter 34 is disposed so the cutting edge sweeps the stationary plate blade 32, while the leading cutting edge 46' of the rotary cutter 46 is disposed a maximum distance from the cutting edge 34].
FIGS. 6A and 6B show a modified type of rotary cutter structure, preferably for use in a larger construction homogenizer, which may be substituted for the rotary cutter of FIG. 5. In the device of FIG. 6 the first rotary blade 34' is flat as in the other embodiments to provide effective sweeping against the face of the plate blade 32. However, the second to tary cutter 46' comprises a pair of oppositely directed inclined blade elements disposed at an angle to the flat elements of the first rotary blade member 34'. The device of FIG. 6 may be constructed from a household blender blade by removing two of the six blade elements opposite one another which would interfer with first rotary cutter blade 34' from sweeping cutting edges of plate blade 32.
Use of the homogenizer in accordance with the present invention will be obvious from its construction, although it may be mentioned briefly that the material to be homogenized is merely placed in the container 10 and the assembly of FIG. IA is then screwed onto or otherwise attached to the container 10. A suitable source of power is then applied to the element 30 which causes the rotary blades to rotate at a high speed through means of the drive shaft 28. The construction of the device, particularly the provision of the oblique holes bored through the stationary plate blade, is such to provide a pumping and shearing action which effects thorough homogenization of the material within the container.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applyin current knowledge readily modify such embodiments an or adapt them for various applications without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalence of the disclosed embodiments. It is also to be understood that the phraseology or terminology employed herein is for the purpose of description. and not of limitation.
What is claimed is:
I. An homogenizer for laboratory usage capable of homogenizing animal bone, gristle, cartilage, fur and other bio-materials, comprising:
a generally cylindrical container for the material to be homogenized, having an open top end;
a removable cover for the open top end of said container;
a drive-shaft housing connected to said cover and projecting downwardly within said container, a drive-shaft rotatably carried within said drive-shaft housing, and means on said cover for effecting rotary movement of said drive shaft within said housing;
means to pump and to cut, macerate and homogenize material within said container including a pair of interengaging and radially extending blades which pair of blades comprise a stationary plate blade and a rotary blade immediately axially adjacent and below said stationary plate blade, said plate blade being mounted to the bottom end of said shaft housing and having an axial opening extending therethrough, a plurality of relatively large openings spaced about said axial opening and extending through said plate blade at an oblique angle, the edges of said plate blade forming said oblique openings constituting shearing edges cooperating with the edges of said rotary blade, said rotary blade being connected to said drive shaft through the axial opening in said plate blade; and
means to additionally cut, macerate and homogenize material within said container and to assist in pumping such material through said oblique openings comprising a second rotary blade connected to said first-mentioned rotary blade and spaced axially from said plate blade therebelow.
2. An homogenizer in accordance with claim 1 wherein said plate blade comprises a radially extending transverse, generally circular plate having a radius approximately equal to the inner radius of said cylindrical container.
3. An homogenizer in accordance with claim 2 wherein four oblique equally spaced openings are provided in said plate blade.
4. An homogenizer in accordance with claim 2 wherein said first-mentioned rotary blade comprises a pair of oppositely directed blade elements.
5. An homogenizer in accordance with claim 4 wherein said second rotary blade comprises a pair of oppositely directed, radially extending blade elements disposed at right angles to said blade elements of said first mentioned rotary blade.
6. An homogenizer in accordance with claim 4 wherein said second rotary blade comprises a pair of oppositely directed inclined blade elements disposed at an angle to said blade elements of said first-mentioned rotary blade.

Claims (6)

1. An homogenizer for laboratory usage capable of homogenizing animal bone, gristle, cartilage, fur and other bio-materials, comprising: a generally cylindrical container for the material to be homogenized, having an open top end; a removable cover for the open top end of said container; a drive-shaft housing connected to said cover and projecting downwardly within said container, a drive-shaft rotatably carried within said drive-shaft housing, and means on said cover for effecting rotary movement of said drive shaft within said housing; means to pump and to cut, macerate and homogenize material within said container including a pair of interengaging and radially extending blades which pair of blades comprise a stationary plate blade and a rotary blade immediately axially adjacent and below said stationary plate blade, said plate blade being mounted to the bottom end of said shaft housing and having an axial opening extending therethrough, a plurality of relatively large openings spaced about said axial opening and extending through said plate blade at an oblique angle, the edges of said plate blade forming said oblique openings constituting shearing edges cooperating with the edges of said rotary blade, said rotary blade being connected to said drive shaft through the axial opening in said plate blade; and means to additionally cut, macerate and homogenize material within said container and to assist in pumping such material through said oblique openings comprising a second rotary blade connected to said first-mentioned rotary blade and spaced axially from said plate blade therebelow.
2. An homogenizer in accordance with claim 1 wherein said plate blade comprises a radially extending transverse, generally circular plate having a radius approximately eqUal to the inner radius of said cylindrical container.
3. An homogenizer in accordance with claim 2 wherein four oblique equally spaced openings are provided in said plate blade.
4. An homogenizer in accordance with claim 2 wherein said first-mentioned rotary blade comprises a pair of oppositely directed blade elements.
5. An homogenizer in accordance with claim 4 wherein said second rotary blade comprises a pair of oppositely directed, radially extending blade elements disposed at right angles to said blade elements of said first mentioned rotary blade.
6. An homogenizer in accordance with claim 4 wherein said second rotary blade comprises a pair of oppositely directed inclined blade elements disposed at an angle to said blade elements of said first-mentioned rotary blade.
US36758A 1970-05-13 1970-05-13 Laboratory homogenizer Expired - Lifetime US3666187A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3675870A 1970-05-13 1970-05-13

Publications (1)

Publication Number Publication Date
US3666187A true US3666187A (en) 1972-05-30

Family

ID=21890458

Family Applications (1)

Application Number Title Priority Date Filing Date
US36758A Expired - Lifetime US3666187A (en) 1970-05-13 1970-05-13 Laboratory homogenizer

Country Status (1)

Country Link
US (1) US3666187A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851826A (en) * 1973-09-13 1974-12-03 Technicon Instr Apparatus for treatment of solids for analysis
US4145008A (en) * 1977-08-22 1979-03-20 The Gorman-Rupp Company Waste material pumping apparatus
US5731199A (en) * 1993-09-28 1998-03-24 Roggero; Gianmarco Mechanical triturator for biological material
US20030206485A1 (en) * 1992-03-30 2003-11-06 Yacko Richard M. Disruptor device which eliminates cross contamination
US20050128865A1 (en) * 2003-12-11 2005-06-16 Conair Corporation Hand held blender
US20050139704A1 (en) * 2003-12-31 2005-06-30 Chun-Jen Liao Tissue homogenizer
US20050190642A1 (en) * 2004-02-27 2005-09-01 Ika-Werke Gmbh & Co. Kg Dispersing tool
US20110220751A1 (en) * 2008-12-16 2011-09-15 Ika-Werke Gmbh & Co. Kg Mixing device having rotor and stator
US20110282238A1 (en) * 2010-05-13 2011-11-17 Houser Kevin L Method and Apparatus for Morcellating Tissue
EP2423301A1 (en) * 2010-08-27 2012-02-29 Nihon Kohden Corporation Cell isolation apparatus
US20140252149A1 (en) * 2011-11-01 2014-09-11 Ningbo Chefshere Kitchen Technology Co., Ltd. Grinder
US8893995B2 (en) 2011-11-08 2014-11-25 Auxocell Laboratories, Inc. Systems and methods for processing cells
CN104874464A (en) * 2015-05-07 2015-09-02 郭斌 Grinding wheel driving mechanism
USD748462S1 (en) 2014-08-11 2016-02-02 Auxocell Laboratories, Inc. Centrifuge clip
US9993748B2 (en) 2014-08-11 2018-06-12 Auxocell Laboratories, Inc. Centrifuge clip and method
US10173220B2 (en) 2014-09-04 2019-01-08 Becton, Dickinson And Company Devices and methods for dissociating a biological tissue sample
WO2020264545A1 (en) * 2019-06-24 2020-12-30 Siemens Healthcare Diagnostics Inc. Methods and apparatus for rotary mixing of laboratory samples
US10996146B2 (en) 2017-06-01 2021-05-04 Becton, Dickinson And Company Devices for dissociating a biological tissue sample and methods of use thereof
US11918248B2 (en) 2019-05-06 2024-03-05 Tissuemill Technologies Llc Atraumatically formed tissue compositions, devices and methods of preparation and treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US182398A (en) * 1876-09-19 Improvement in clay-grinders
US1480969A (en) * 1923-07-27 1924-01-15 Nutriment Ltd Disintegrating solid substances
US2074795A (en) * 1934-12-15 1937-03-23 Mantelet & Boucher Mill for pepper, salt, sugar, coffee, and the like
US3053297A (en) * 1957-10-28 1962-09-11 Brundler Hans Meat comminuting machine
US3361369A (en) * 1964-09-08 1968-01-02 James A Kilbane Jr Chlorinator and disposal unit for marine water closet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US182398A (en) * 1876-09-19 Improvement in clay-grinders
US1480969A (en) * 1923-07-27 1924-01-15 Nutriment Ltd Disintegrating solid substances
US2074795A (en) * 1934-12-15 1937-03-23 Mantelet & Boucher Mill for pepper, salt, sugar, coffee, and the like
US3053297A (en) * 1957-10-28 1962-09-11 Brundler Hans Meat comminuting machine
US3361369A (en) * 1964-09-08 1968-01-02 James A Kilbane Jr Chlorinator and disposal unit for marine water closet

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851826A (en) * 1973-09-13 1974-12-03 Technicon Instr Apparatus for treatment of solids for analysis
US4145008A (en) * 1977-08-22 1979-03-20 The Gorman-Rupp Company Waste material pumping apparatus
US20030206485A1 (en) * 1992-03-30 2003-11-06 Yacko Richard M. Disruptor device which eliminates cross contamination
US6863431B2 (en) * 1992-03-30 2005-03-08 Omni International, Inc. Disruptor device which eliminates cross contamination
US5731199A (en) * 1993-09-28 1998-03-24 Roggero; Gianmarco Mechanical triturator for biological material
US7172334B2 (en) * 2003-12-11 2007-02-06 Conair Corporation Hand held blender
US20050128865A1 (en) * 2003-12-11 2005-06-16 Conair Corporation Hand held blender
US20050139704A1 (en) * 2003-12-31 2005-06-30 Chun-Jen Liao Tissue homogenizer
US7270284B2 (en) * 2003-12-31 2007-09-18 Industrial Technology Research Institute Tissue homogenizer
US20050190642A1 (en) * 2004-02-27 2005-09-01 Ika-Werke Gmbh & Co. Kg Dispersing tool
US7056009B2 (en) * 2004-02-27 2006-06-06 Ika-Werke Gmbh & Co. Kg Dispersing tool with an inner shaft rotatable within a hollow shaft to create a pumping effect
US8303162B2 (en) * 2008-12-16 2012-11-06 Ika-Werke Gmbh & Co. Kg Mixing device with stator having grooved pulverizing edges and rotor for pumping
US20110220751A1 (en) * 2008-12-16 2011-09-15 Ika-Werke Gmbh & Co. Kg Mixing device having rotor and stator
US8491497B2 (en) * 2010-05-13 2013-07-23 Ethicon Endo-Surgery, Inc. Method and apparatus for morcellating tissue
US20110282238A1 (en) * 2010-05-13 2011-11-17 Houser Kevin L Method and Apparatus for Morcellating Tissue
EP2423301A1 (en) * 2010-08-27 2012-02-29 Nihon Kohden Corporation Cell isolation apparatus
US8882012B2 (en) 2010-08-27 2014-11-11 Nihon Kohden Corporation Cell isolation apparatus
CN102382757A (en) * 2010-08-27 2012-03-21 日本光电工业株式会社 Cell isolation apparatus
US20140252149A1 (en) * 2011-11-01 2014-09-11 Ningbo Chefshere Kitchen Technology Co., Ltd. Grinder
US10251514B2 (en) * 2011-11-01 2019-04-09 Ningbo Chefshere Kitchen Technology Co., Ltd. Grinder
US9663760B2 (en) 2011-11-08 2017-05-30 Auxocell Laboratories, Inc. Systems and methods for processing cells
US8893995B2 (en) 2011-11-08 2014-11-25 Auxocell Laboratories, Inc. Systems and methods for processing cells
US8967512B1 (en) 2011-11-08 2015-03-03 Auxocell Laboratories, Inc. Systems and methods for processing cells
US8967513B1 (en) 2011-11-08 2015-03-03 Auxocell Laboratories, Inc. Systems and methods for processing cells
US9145544B2 (en) 2011-11-08 2015-09-29 Auxocell Laboratories, Inc. Systems and methods for processing cells
US9993748B2 (en) 2014-08-11 2018-06-12 Auxocell Laboratories, Inc. Centrifuge clip and method
USD748462S1 (en) 2014-08-11 2016-02-02 Auxocell Laboratories, Inc. Centrifuge clip
US10441901B2 (en) 2014-08-11 2019-10-15 Auxocell Laboratories, Inc. Centrifuge clip and method
US10173220B2 (en) 2014-09-04 2019-01-08 Becton, Dickinson And Company Devices and methods for dissociating a biological tissue sample
CN104874464A (en) * 2015-05-07 2015-09-02 郭斌 Grinding wheel driving mechanism
US10996146B2 (en) 2017-06-01 2021-05-04 Becton, Dickinson And Company Devices for dissociating a biological tissue sample and methods of use thereof
US11918248B2 (en) 2019-05-06 2024-03-05 Tissuemill Technologies Llc Atraumatically formed tissue compositions, devices and methods of preparation and treatment
WO2020264545A1 (en) * 2019-06-24 2020-12-30 Siemens Healthcare Diagnostics Inc. Methods and apparatus for rotary mixing of laboratory samples

Similar Documents

Publication Publication Date Title
US3666187A (en) Laboratory homogenizer
US2284155A (en) Food mixer
US3368800A (en) Blender
US3299924A (en) Rotating comminuting attachment for use with portable kitchen appliances of the electric mixer-type
US2246054A (en) Food cutter
US2894551A (en) Meat cutter
US2757909A (en) Agitator device for a mixer
US2886254A (en) Demountable and separable pulverizer
US5727742A (en) Food mixer incorporating an archimedean screw and cutting blades
US2511357A (en) Cutter or disintegrator for seeds, grains, or the like
JPS6257338B2 (en)
JP2012192319A (en) Rotary cutter device, and agitation apparatus
US4074868A (en) Food processing system
JP2005177701A (en) Two stage type homogenizer
US2390898A (en) Turbodissolver
DE1037088B (en) Device for mixing, crushing, stirring, foaming, coagulating and ventilating food and luxury foods or chemicals and the like. like
US3335772A (en) Comminuting attachment for hand mixer
US3907459A (en) Mixing apparatus
DE2136203A1 (en) Waste Crusher
US3693893A (en) Granulator
CN207429011U (en) A kind of Mechatronic mixer
US3738585A (en) Chopper for meat and other foods
DE19706754A1 (en) Household appliance with a rotating knife, such as a chipper
US2533241A (en) Apparatus for comminuting and mixing materials
US2808866A (en) Meat chopper having rotary and stationary blades