US3601126A - High frequency electrosurgical apparatus - Google Patents

High frequency electrosurgical apparatus Download PDF

Info

Publication number
US3601126A
US3601126A US789716A US3601126DA US3601126A US 3601126 A US3601126 A US 3601126A US 789716 A US789716 A US 789716A US 3601126D A US3601126D A US 3601126DA US 3601126 A US3601126 A US 3601126A
Authority
US
United States
Prior art keywords
tissue
electrode
generating means
amplitude
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US789716A
Inventor
Jerry R Estes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Medical System Inc
Original Assignee
Electro Medical System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Medical System Inc filed Critical Electro Medical System Inc
Application granted granted Critical
Publication of US3601126A publication Critical patent/US3601126A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac

Definitions

  • Electrosurgical apparatus including electrodes powered by high frequency electric current, wherein the amplitude of the current flowing through the circuit is monitored and compared with a reference amplitude so that the current source can be regulated to transmit power of a desired amplitude. Further, the waveform of the current can be selectively switched from a sinusoidal waveform to a pulsed waveform. Also, there is provided an indifferent or return electrode whose conductivity controls the operation of the power source.
  • Known electrosurgical apparatus generates a high frequency electric current which is fed to an active electrode.
  • An indifferent electrode is placed in contact with the patient to supply a return path for the current.
  • the active electrode When the active electrode is applied to tissue of the patient at the operating site, a circuit is closed and the high frequency power emitted by the active electrode generates heat at the site. The resultant heat implements the desired operative procedure.
  • the amplitude of the current flowing between the electrodes is a function of the electrical resistance of the tissue current path between the electrodes. If the current generator is set to transmit a current of a given amplitude, such amplitude will be effectively related to a given load resistance. If the resistance decreases, the current amplitude increases; and vice versa.
  • Another object of this invention is to provide in apparatus of the character described, means for monitoring the am plitude of the power flow to the electrodes of the apparatus and controlling the output of the high frequency generator to maintain a desired or selected power amplitude.
  • the electrosurgical apparatus of the instant invention comprises a pair of electrodes applicable to biological tissue; the electrodes being powered from a high frequency generator operative to controllably vary the power amplitude.
  • the apparatus further includes reference means to establish a desired power amplitude in respect to the operating current passing through the biological tissue; together with means for sensing the amplitude of the power passing through the tissue and control means for comparing the amplitudes of the desired and actual power; the control means being responsive to such amplitude comparison to regulate the operation of the generator so that the generator will transmit power having an amplitude substantially equal to the desired power amplitude.
  • a cutting operation calls for a continuous wave or sinusoidal radio frequency oscillation of the current; whereas a coagulating procedure requires an oscillating current of the type pro vided by a spark gap oscillator.
  • a spark gap oscillator generates a spectrum of frequencies between 0.5 mHz. and 1.5 ml-lz. This noise spectrum is distinguished by high voltage spikes with low average power values.
  • Such a signal when impressed by way of the electrode on tissue, has a drying effeet which leads to a coagulating action in respect to such tissue, with very little tissue separation or cutting.
  • the instant invention comprises a high frequency current generator which can be selectively controlled to operate in a continuous wave mode or a pulsed wave mode with the amplitudes of the signals being held at predetermined values.
  • the input current is applied to the tissue by way of an active electrode of very small cross section so as to obtain high current densities at the operation site.
  • the return or indifferent electrode must be in contact over a substantial area of the tissue so that the return current has a low density, which prevents burning or scarring of the tissue in contact with the indifferent electrode.
  • the indifferent electrode or its connection to the current source is broken or faulty, the low current density is not achieved and the tissue at the situs where the high frequency currents leave, will be burned or scarred.
  • the conductive state of the indifferent electrode and its connection to the current generator is monitored and the generator made inoperative when the conductive state falls below a given value.
  • the indifferent electrode takes the form of a stainless steel plate which is placed under the patient and a conductive fluid is spread thereover to increase the contact area.
  • a conductive fluid is spread thereover to increase the contact area.
  • Such an electrode must be sterilized before each use thereof and must be prewet with conductive fluid. This procedure may lead to omissions and inexact applications of fluid.
  • an inexpensive, prepackaged disposable indifferent electrode which is presterilized and prewet with conductive fluid. Such an electrode facilitates monitoring its conductive state and thus avoids tissue burns or scars.
  • FIG. 1 is a circuit diagram for electrosurgical apparatus embodying the invention
  • FIG. 2 is a top plan view of the indifferent electrode, forming part of the apparatus
  • FIG. 3 is a sectional view taken on the line 3-3 of FIG. 2;
  • FIG. 4 is an enlarged, partial sectional view of a portion of said electrode
  • FIG. 5 is a top plan view showing a connector for the electrode of FIG. 2;
  • FIG. 6 is a sectional view taken on the line 645 of FIG. 5.
  • electrosurgical apparatus embodying the invention is indicated at 10, for operative application to selected tissue portions of a patient indicated at 12.
  • the apparatus 10 comprises a high frequency current generating system including an RF. oscillator 14 which drives a gain controlled power amplifier 16.
  • the power amplifier 16 is coupled via step-up transformer 18 and coupling capacitors 20, 22 to active electrode 24 and an indifferent electrode 100, respectively.
  • the power output in the form of the square of the amplitude of the alternating current must be set at a selected, desired level and maintained at such level for the desired operating procedure. Such desired levels are attained by adjusting one of the two calibrated power level setting potentiometers 32, 34. The operation of the respective potentiometers 32, 34 will be hereinafter described.
  • Difference amplifier 38 compares the DC voltage on line 40 with the DC voltage on line 36 and transmits a signal on line 48 to gain control amplifier 50 which amplifies the signal and transmits the same by lead 52 to a gain control terminal of power amplifier 16.
  • amplifier 16 and the elements connected to its output comprise a servo system with the current sensor, square law detector, difference amplifier and gain control amplifier being the feedback loop; the signal on line 52 being the error signal and the signal on line 36 being the reference signal.
  • cutting switch 54 When the indicated surgical procedure involves a cutting operation, cutting switch 54 is closed to energize relay 56 which causes transfer contact 56A to connect potentiometer 32 to lead 36, and transfer contact 56B to connect with fixed contact 56C.
  • oscillator 14 transmits a continuous wave of AC signal, as will be hereinafter described, and lead 36 transmits a DC voltage related to the desired amplitude of the alternating current for the cutting operation.
  • switch 58 When a coagulating action is desired, switch 58 is closed, switch 54 being open, to energize relay 60 causing its transfer contact 60A to connect with fixed contact 608; transfer contact 56A of relay 56 now connects lead 36 to potentiometer 34. in this case, oscillator 14 emits packets of alternating current, as later described, and lead 36 transmits a DC voltage related to the desired amplitude of the alternating current for a coagulating operation.
  • the indifferent electrode 100 requires an electrolyte to pro vide good conductive contact with patient 12.
  • the electrolyte is monitored as to quantity and the oscillator 14 is rendered inoperative when the quantity falls below a given value.
  • relay 66 is not energized and oscillator 14 is made inoperative, while bulb 68 is energized to direct attention to the insufficiency of electrolyte in electrode 100.
  • the R.F. oscillator 14 comprises transistor T1 and transformer 70 whose primary winding is connected between the collector of the transistor and ground.
  • the output winding of the transformer is connected to a voltage source V and the input of power amplifier 16.
  • the feedback winding of the transformer has one end connected to the base of the transistor, the other end being connected to transfer contact 56B, and a center tap being connected to relay contact 60A.
  • the emitter of the transistor T1 is connected via contact set 66A to operating voltage source V.
  • a timing capacitor 72 connects the emitter to junction 74 which is connected to fixed contact 56C.
  • Resistor 76 connects junction 74 to ground while resistor 78 connects junction 74 to contact 608.
  • the feedback winding of transformer 70 is connected to the emitter of the transistor via capacitor 72 and the oscillator 14 operates in the continuous wave mode with a frequency determined by the constants of the transformer, the capacitor 72 and the load on the transformer.
  • the frequency may thus be set at l mHz.
  • relay 60 when relay 60 is energized the center tap of transformer 70 is connected to junction 74.
  • capacitor 72 charges via resistor 76, the oscillator is turned ofi until the base-emitter junction of the transistor is forward biased. At that time the oscillator oscillates at 1 mHz. for a period of time determined by the time required for capacitor 72 to discharge via resistor 78 to a value which again back biases the base-emitter junction.
  • resistor 78 it is possible to cause the oscillator to block at a kHz. rate.
  • the power amplifier 16 is conventional in form and whose gain is controlled by shifting its operating voltage which is supplied by line 52.
  • Gain control amplifier 50, difference amplifier 38 and square-law detector 42 are known devices.
  • Active electrode 24 takes the form of known electrosurgical probes regularly used in the art.
  • the indifferent electrode 100 is shown in detail in FIGS. 2 4; the same comprising a conductive base member which may take the form of a sheet of plastic such as polyvinyl chloride (PVC) whose top surface is metallized as by depositing aluminum or the like thereon by known techniques.
  • Tabs 112, 114 are affixed to the bottom surface of member 110 at the opposite ends thereof, in the form of adhesive tapes, for affixing the electrode to patient 12.
  • a porous sheet 116 of flexible spongy material such as sponge rubber, latex or polyurethane foam, or the like, is fixed to the top metallized surface of member 110 by an appropriate adhesive.
  • the porous sheet 116 is impregnated with nontoxic electrolyte such as a saturated saline solution.
  • the solution is preferably rendered somewhat viscous by adding gelatine thereto, to thereby reduce the evaporation of the same.
  • a protective plastic film bag 118 encloses the electrode 100 including the saturated sheet 116 and the exposed adhesive surfaces of tabs 112, 114. Bag 118 provides a leakproof container for the electrolyte contained in sheet 116, while the same is in storage. When electrode 100 is to be used, no additional electrolyte need be added to sheet 116. Also, bag 118 serves as a germproof shield for its contents and need be sterilized but once when the same is filled. The bag protects the adhesive areas of the tabs 112, 114 until ready for use in applying the electrode in place.
  • the bag 1 18 is opened to expose sheet 116 and tabs 112, 114.
  • the top of sheet 116 is placed against the patient and held in place by adhesive tabs- 112, l 14.
  • a terminal connector is clipped to the electrode.
  • Connector 120 comprises a pair of plates 122, 124 which are hingedly interconnected by ear portions extending toward each other at the side edges thereof, as at 126, 128. Plates 122, 124 are formed of Nylon or the like to be resistant to sterilizing temperatures. A spring biases the forward jawlike portions of plates 122, 124 toward each other.
  • a pair of stainless steel terminal blocks 102, 104 are suitably affixed to the underside of top plate 122 and signal leads 62, 64 are respectively connected to said blocks.
  • the rear portions of plates 122, 124 are pinched together to open the jaw portions to receive the edge portion of electrode 100 therebetween.
  • the terminal blocks 102, 104 will then embed themselves in the porous sheet 116 to make good contact therewith.
  • Terminal blocks 102, 104 are electrically interconnected only when sheet 116 is saturated with electrolyte and a measurement of the conductivity between the terminal blocks will determine the presence or absence of electrolyte.
  • the on/off switch 28 may be of the conventional foot pedal operated type. Alternatively such switch may be finger operated and mounted on the active electrode 24. Also the switch may be of the reed type which has a magnet to operate the same. Obviously, the foot operated and finger operated switches may be connected in parallel to afford a maximum of convenience in operation.
  • said generating means includes means for selectively operating said generating means to operate in a first mode to generate a continuous alternating current, or in a second mode to generate timespaced packets of alternating current.
  • said reference means comprises means for establishing a first desired amplitude for electric current related to said continuous alternating current generated by said generating means and a second desired amplitude for electric current related to said time-spaced packets of alternating current generated by said generating means, and
  • selection means for simultaneously controlling the mode of operation of said generating means and controlling which desired amplitude of electric current is received by said control means for controlling said generating means.
  • said first electrode is an active electrode and said second electrode is an indifferent electrode, and means for rendering said generating means inoperative when an open circuit exists in the electrical circuit including the tissue, said indifferent electrode and said generating means.
  • High frequency electrosurgical apparatus for operating on electrically conductive tissue comprising: a controllably operable generating means for generating a high frequency electric current; an active electrode adapted to be applied to tissue at the situs of the operation; an indifferent electrode for contact with tissue at the situs of the operation, said indifferent electrode comprising a sheet of porous material, adhesive means connected to said sheet of material for removably affixing said indifferent electrode to tissue, and a pair of spaced electrical terminals in contact with said porous material; circuit means for connecting said active electrode and said terminals of said indifferent electrode to said generating means; and control means for rendering said generating means inoperative when the conductivity in a circuit including the tissue, said indifferent electrode and said circuit means connecting said indifferent electrode to said generating means is less than a given value.

Abstract

Electrosurgical apparatus including electrodes powered by high frequency electric current, wherein the amplitude of the current flowing through the circuit is monitored and compared with a reference amplitude so that the current source can be regulated to transmit power of a desired amplitude. Further, the waveform of the current can be selectively switched from a sinusoidal waveform to a pulsed waveform. Also, there is provided an indifferent or return electrode whose conductivity controls the operation of the power source.

Description

United States Patent [72] Inventor Jerry R. Estes Boulder, Colo. 2: Appl. No. 789,716 [22] Filed Jan. 8, 1969 [45] Patented Aug. 24, 1971 [73] Assignee Elects-o Medical Systems, Inc.
Englewood, Colo.
[54] HIGH FREQUENCY ELECTROSURGICAL APPARATUS 5 Claims, 6 Drawing Figs.
[52] US. Cl 128/301, 128/417 [51] lnL Cl. A6111 17/36 [50] Field of Search CUTTl N6 SWlTCH a ELECTRO SURGICA L [56] References Cited UNITED STATES PATENTS 3,478,744 11/1969 Leiter 123/303. 14
FOREIGN PATENTS 1,178,528 9/1964 Germany l28/303.l7 1,139,927 11/1962 Germany l28/303.l3
Primary ExaminerL W. Trapp Attomey Philip G. Hilbert ABSTRACT: Electrosurgical apparatus including electrodes powered by high frequency electric current, wherein the amplitude of the current flowing through the circuit is monitored and compared with a reference amplitude so that the current source can be regulated to transmit power of a desired amplitude. Further, the waveform of the current can be selectively switched from a sinusoidal waveform to a pulsed waveform. Also, there is provided an indifferent or return electrode whose conductivity controls the operation of the power source.
DEVICE g INDIFFERENT ELECTRODE COAGULATlNG SWITCH I 5a -ON/OFF l b I SWITCH 2 6 l T 668} l GAIN CONTROL AMF'LlFlER g9 SQUARE LAW DETECTOR DIFFERENCE AMPLIFIER g s HIGH FREQUENCY ELECTROSURGICAL APPARATUS BACKGROUND OF THE INVENTION This invention pertains to electrosurgical apparatus and more particularly, to such apparatus which is powered by high frequency current for cutting tissue, coagulating blood vessels and fulguration of growths.
Known electrosurgical apparatus generates a high frequency electric current which is fed to an active electrode. An indifferent electrode is placed in contact with the patient to supply a return path for the current. When the active electrode is applied to tissue of the patient at the operating site, a circuit is closed and the high frequency power emitted by the active electrode generates heat at the site. The resultant heat implements the desired operative procedure.
The amplitude of the current flowing between the electrodes is a function of the electrical resistance of the tissue current path between the electrodes. If the current generator is set to transmit a current of a given amplitude, such amplitude will be effectively related to a given load resistance. If the resistance decreases, the current amplitude increases; and vice versa.
During an operation, the impedance of the tissue changes as the active electrode moves through different types of tissue. Accordingly, a selected initial setting of the current generator at the start of an operation may not produce the desired current conditions as the operation proceeds.
It is a general object of this invention to provide electrosurgical apparatus wherein the power delivered to the active electrode as the same engages the tissue, is maintained at a constant desired level during the entire operational procedure.
Another object of this invention is to provide in apparatus of the character described, means for monitoring the am plitude of the power flow to the electrodes of the apparatus and controlling the output of the high frequency generator to maintain a desired or selected power amplitude.
Essentially, the electrosurgical apparatus of the instant invention comprises a pair of electrodes applicable to biological tissue; the electrodes being powered from a high frequency generator operative to controllably vary the power amplitude. The apparatus further includes reference means to establish a desired power amplitude in respect to the operating current passing through the biological tissue; together with means for sensing the amplitude of the power passing through the tissue and control means for comparing the amplitudes of the desired and actual power; the control means being responsive to such amplitude comparison to regulate the operation of the generator so that the generator will transmit power having an amplitude substantially equal to the desired power amplitude.
It is known in the art that different operative procedures require differing high frequency current waveforms. Thus, a cutting operation calls for a continuous wave or sinusoidal radio frequency oscillation of the current; whereas a coagulating procedure requires an oscillating current of the type pro vided by a spark gap oscillator. Such a spark gap oscillator generates a spectrum of frequencies between 0.5 mHz. and 1.5 ml-lz. This noise spectrum is distinguished by high voltage spikes with low average power values. Such a signal when impressed by way of the electrode on tissue, has a drying effeet which leads to a coagulating action in respect to such tissue, with very little tissue separation or cutting.
It is believed that any waveform which spreads the signal over a reasonable frequency spectrum, will produce the same effect.
Accordingly, the instant invention comprises a high frequency current generator which can be selectively controlled to operate in a continuous wave mode or a pulsed wave mode with the amplitudes of the signals being held at predetermined values.
In electrosurgical procedures the input current is applied to the tissue by way of an active electrode of very small cross section so as to obtain high current densities at the operation site.
These high current densities provide the desired heating effects. However the return or indifferent electrode must be in contact over a substantial area of the tissue so that the return current has a low density, which prevents burning or scarring of the tissue in contact with the indifferent electrode.
If for any reason, the indifferent electrode or its connection to the current source is broken or faulty, the low current density is not achieved and the tissue at the situs where the high frequency currents leave, will be burned or scarred.
With the apparatus of the instant invention, the conductive state of the indifferent electrode and its connection to the current generator is monitored and the generator made inoperative when the conductive state falls below a given value. I
In known electrosurgical apparatus, the indifferent electrode takes the form of a stainless steel plate which is placed under the patient and a conductive fluid is spread thereover to increase the contact area. Such an electrode must be sterilized before each use thereof and must be prewet with conductive fluid. This procedure may lead to omissions and inexact applications of fluid.
In the apparatus of the instant invention there is provided an inexpensive, prepackaged disposable indifferent electrode which is presterilized and prewet with conductive fluid. Such an electrode facilitates monitoring its conductive state and thus avoids tissue burns or scars.
Other objects of this invention will in part be obvious and in part hereinafter pointed out.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram for electrosurgical apparatus embodying the invention;
FIG. 2 is a top plan view of the indifferent electrode, forming part of the apparatus;
FIG. 3 is a sectional view taken on the line 3-3 of FIG. 2;
FIG. 4 is an enlarged, partial sectional view of a portion of said electrode;
FIG. 5 is a top plan view showing a connector for the electrode of FIG. 2;
FIG. 6 is a sectional view taken on the line 645 of FIG. 5.
DESCRIPTION OF THE PREFERRED EMBODIMENT As shown in the drawings, and particularly FIG. 1, electrosurgical apparatus embodying the invention is indicated at 10, for operative application to selected tissue portions of a patient indicated at 12. The apparatus 10 comprises a high frequency current generating system including an RF. oscillator 14 which drives a gain controlled power amplifier 16. The power amplifier 16 is coupled via step-up transformer 18 and coupling capacitors 20, 22 to active electrode 24 and an indifferent electrode 100, respectively.
During normal operation, when on/off switch 28 is in its closed position, the output of oscillator 14 is amplified by power amplifier 16 and transformer 18 to provide a alternating current which flows via capacitor 20 and active electrode 24 to the selected tissue area in contact therewith. The current passes through the body of patient 12 to the indifferent electrode where it is returned via lead 30 and capacitor 22 to transformer 18.
The power output in the form of the square of the amplitude of the alternating current must be set at a selected, desired level and maintained at such level for the desired operating procedure. Such desired levels are attained by adjusting one of the two calibrated power level setting potentiometers 32, 34. The operation of the respective potentiometers 32, 34 will be hereinafter described.
It is assumed that a voltage indicating the desired square law power amplitude level is present on lead 36 which feeds one input of difference amplifier 38. The other input of difference amplifier 38 is a voltage on lead 40 from square-law detector 42. The inputs of detector 42 are connected to a winding 44 of a magnetic core toroid 46 through which passes lead 30 connecting indifferent electrode 100 to capacitor 22. The combination of lead 30, toroid 46 and winding 44 provides in effect a transformer acting as a current sensor.
As the alternating current flows through lead 30, it will induce an alternating current in winding 44 which is detected in detector 42 to thereby generate a DC voltage having an amplitude proportional to the square of the AC current in lead 30. Difference amplifier 38 compares the DC voltage on line 40 with the DC voltage on line 36 and transmits a signal on line 48 to gain control amplifier 50 which amplifies the signal and transmits the same by lead 52 to a gain control terminal of power amplifier 16.
The relationship of the signals is such that if the amplitude of the current in lead 30 is greater than the desired amplitude as represented by the DC voltage on line 36, the signal on line 52 has a value to decrease the gain of amplifier 16. A similar effect occurs in the opposite direction when the actual current amplitude is less than the desired amplitude. Thus, amplifier 16 and the elements connected to its output comprise a servo system with the current sensor, square law detector, difference amplifier and gain control amplifier being the feedback loop; the signal on line 52 being the error signal and the signal on line 36 being the reference signal.
When the indicated surgical procedure involves a cutting operation, cutting switch 54 is closed to energize relay 56 which causes transfer contact 56A to connect potentiometer 32 to lead 36, and transfer contact 56B to connect with fixed contact 56C. In this case, oscillator 14 transmits a continuous wave of AC signal, as will be hereinafter described, and lead 36 transmits a DC voltage related to the desired amplitude of the alternating current for the cutting operation.
When a coagulating action is desired, switch 58 is closed, switch 54 being open, to energize relay 60 causing its transfer contact 60A to connect with fixed contact 608; transfer contact 56A of relay 56 now connects lead 36 to potentiometer 34. in this case, oscillator 14 emits packets of alternating current, as later described, and lead 36 transmits a DC voltage related to the desired amplitude of the alternating current for a coagulating operation.
The indifferent electrode 100 requires an electrolyte to pro vide good conductive contact with patient 12. When the quantity of electrolyte falls below a certain level, poor contact results and the patient may sufier from burns. Accordingly, the electrolyte is monitored as to quantity and the oscillator 14 is rendered inoperative when the quantity falls below a given value.
To this end, a series circuit is established between voltage source V, lead 62, a terminal 102 of electrode 100, the electrolyte in the electrode, another terminal 104 of the electrode lead 64, switch 28, the coil of relay 66 and ground. If sufficient dectrolyte is present when switch 28 is closed, relay 66 is energized, closing contact set 66A which supplies operating pow .1" o oscillator 14, and opening contact set 66B which breaks the series circuit from voltage source V via contact set 668 and neon bulb 68 and ground to deenergize bulb 68.
If the electrolyte is insufficient, relay 66 is not energized and oscillator 14 is made inoperative, while bulb 68 is energized to direct attention to the insufficiency of electrolyte in electrode 100.
The R.F. oscillator 14 comprises transistor T1 and transformer 70 whose primary winding is connected between the collector of the transistor and ground. The output winding of the transformer is connected to a voltage source V and the input of power amplifier 16. The feedback winding of the transformer has one end connected to the base of the transistor, the other end being connected to transfer contact 56B, and a center tap being connected to relay contact 60A. The emitter of the transistor T1 is connected via contact set 66A to operating voltage source V. A timing capacitor 72 connects the emitter to junction 74 which is connected to fixed contact 56C. Resistor 76 connects junction 74 to ground while resistor 78 connects junction 74 to contact 608.
When relay 66 is energized, an operating voltage is applied to the transistor T1 by virtue of the closing of contact set 66A.
Now, if relay 56 is energized, the feedback winding of transformer 70 is connected to the emitter of the transistor via capacitor 72 and the oscillator 14 operates in the continuous wave mode with a frequency determined by the constants of the transformer, the capacitor 72 and the load on the transformer. The frequency may thus be set at l mHz. However, when relay 60 is energized the center tap of transformer 70 is connected to junction 74. Now, as capacitor 72 charges via resistor 76, the oscillator is turned ofi until the base-emitter junction of the transistor is forward biased. At that time the oscillator oscillates at 1 mHz. for a period of time determined by the time required for capacitor 72 to discharge via resistor 78 to a value which again back biases the base-emitter junction. By a suitable choice of values for resistor 78 it is possible to cause the oscillator to block at a kHz. rate.
The power amplifier 16 is conventional in form and whose gain is controlled by shifting its operating voltage which is supplied by line 52. Gain control amplifier 50, difference amplifier 38 and square-law detector 42 are known devices. Active electrode 24 takes the form of known electrosurgical probes regularly used in the art.
The indifferent electrode 100 is shown in detail in FIGS. 2 4; the same comprising a conductive base member which may take the form of a sheet of plastic such as polyvinyl chloride (PVC) whose top surface is metallized as by depositing aluminum or the like thereon by known techniques. Tabs 112, 114 are affixed to the bottom surface of member 110 at the opposite ends thereof, in the form of adhesive tapes, for affixing the electrode to patient 12.
A porous sheet 116 of flexible spongy material such as sponge rubber, latex or polyurethane foam, or the like, is fixed to the top metallized surface of member 110 by an appropriate adhesive. The porous sheet 116 is impregnated with nontoxic electrolyte such as a saturated saline solution. The solution is preferably rendered somewhat viscous by adding gelatine thereto, to thereby reduce the evaporation of the same.
A protective plastic film bag 118 encloses the electrode 100 including the saturated sheet 116 and the exposed adhesive surfaces of tabs 112, 114. Bag 118 provides a leakproof container for the electrolyte contained in sheet 116, while the same is in storage. When electrode 100 is to be used, no additional electrolyte need be added to sheet 116. Also, bag 118 serves as a germproof shield for its contents and need be sterilized but once when the same is filled. The bag protects the adhesive areas of the tabs 112, 114 until ready for use in applying the electrode in place.
At the time of use of electrode 100, the bag 1 18 is opened to expose sheet 116 and tabs 112, 114. The top of sheet 116 is placed against the patient and held in place by adhesive tabs- 112, l 14. A terminal connector is clipped to the electrode.
A terminal connector 120 for attachment to electrode 100, is shown in FIGS. 5, 6. Connector 120 comprises a pair of plates 122, 124 which are hingedly interconnected by ear portions extending toward each other at the side edges thereof, as at 126, 128. Plates 122, 124 are formed of Nylon or the like to be resistant to sterilizing temperatures. A spring biases the forward jawlike portions of plates 122, 124 toward each other.
A pair of stainless steel terminal blocks 102, 104 are suitably affixed to the underside of top plate 122 and signal leads 62, 64 are respectively connected to said blocks. To clip the connector 120 to electrode 100, the rear portions of plates 122, 124 are pinched together to open the jaw portions to receive the edge portion of electrode 100 therebetween. The terminal blocks 102, 104 will then embed themselves in the porous sheet 116 to make good contact therewith. Terminal blocks 102, 104 are electrically interconnected only when sheet 116 is saturated with electrolyte and a measurement of the conductivity between the terminal blocks will determine the presence or absence of electrolyte.
The on/off switch 28 may be of the conventional foot pedal operated type. Alternatively such switch may be finger operated and mounted on the active electrode 24. Also the switch may be of the reed type which has a magnet to operate the same. Obviously, the foot operated and finger operated switches may be connected in parallel to afford a maximum of convenience in operation.
I claim:
1. High frequency electrosurgical apparatus for operating on electrically conductive tissue comprising first and second electrodes, each of said electrodes being adapted for electrically contacting tissue whereby an electric current path is established between said electrodes via said tissue, means for generating a high frequency electric current having a controllably varying amplitude, means for connecting said generating means to said electrodes, reference means for establishing a desired amplitude for the current passing through the tissue, sensing means for sensing the amplitude of the actual current passing through the tissue, and control means responsive to said reference means and said sensing means for controlling said generating means to generate a high frequency electric current having an amplitude substantially equal to said desired amplitude.
2. Apparatus as in claim 1 wherein said generating means includes means for selectively operating said generating means to operate in a first mode to generate a continuous alternating current, or in a second mode to generate timespaced packets of alternating current.
3. Apparatus as in claim 2 wherein said reference means comprises means for establishing a first desired amplitude for electric current related to said continuous alternating current generated by said generating means and a second desired amplitude for electric current related to said time-spaced packets of alternating current generated by said generating means, and
LII
further comprising selection means for simultaneously controlling the mode of operation of said generating means and controlling which desired amplitude of electric current is received by said control means for controlling said generating means.
4. The apparatus of claim 1 wherein said first electrode is an active electrode and said second electrode is an indifferent electrode, and means for rendering said generating means inoperative when an open circuit exists in the electrical circuit including the tissue, said indifferent electrode and said generating means.
5. High frequency electrosurgical apparatus for operating on electrically conductive tissue comprising: a controllably operable generating means for generating a high frequency electric current; an active electrode adapted to be applied to tissue at the situs of the operation; an indifferent electrode for contact with tissue at the situs of the operation, said indifferent electrode comprising a sheet of porous material, adhesive means connected to said sheet of material for removably affixing said indifferent electrode to tissue, and a pair of spaced electrical terminals in contact with said porous material; circuit means for connecting said active electrode and said terminals of said indifferent electrode to said generating means; and control means for rendering said generating means inoperative when the conductivity in a circuit including the tissue, said indifferent electrode and said circuit means connecting said indifferent electrode to said generating means is less than a given value.

Claims (5)

1. High frequency electrosurgical apparatus for operating on electrically conductive tissue comprising first and second electrodes, each of said electrodes being adapted for electrically contacting tissue whereby an electric current path is established between said electrodes via said tissue, means for generating a high frequency electric current having a controllably varying amplitude, means for connecting said generating means to said electrodes, reference means for establishing a desired amplitude for the current passing through the tissue, sensing means for sensing the amplitude of the actual current passing through the tissue, and control means responsive to said reference means and said sensing means for controlling said generating means to generate a high frequency electric current having an amplitude substantially equal to said desired amplitude.
2. Apparatus as in claim 1 wherein said generating means includes means for selectively operating said generating means to operate in a first mode to generate a continuous alternating current, or in a second mode to generate time-spaced packets of alternating current.
3. Apparatus as in claim 2 wherein said reference means comprises means for establishing a first desired amplitude for electric current related to said continuous alternating current generated by said generating means and a second desired amplitude for electric current related to said time-spaced packets of alternating current generated by said generating means, and further comprising selection means for simultaneously controlling the mode of operation of said generating means and controlling which desired amplitude of electric current is received by said control means for controlling said generating means.
4. The apparatus of claim 1 wherein said first electrode is an active electrode and said second electrode is an indifferent electrode, and means for rendering said generating means inoperative when an open circuit exists in the electrical circuit including the tissue, said indifferent electrode and said generating means.
5. High frequency electrosurgical apparatus for operating on electrically conductive tissue comprising: a controllably operable generating means for generating a high frequency electric current; an active electrode adapted to be applied to tissue at the situs of the operation; an indifferent electrode for contact with tissue at the situs of the operation, said indifferent electrode comprising a sheet of porous material, adhesive means connected to said sheet of material for removably affixing said indifferent electrode to tissue, and a pair of spaced electrical terminals in contact with said porous material; circuit means for connecting said active electrode and said terminals of said indifferent electrode to said generating means; and control means for rendering said generating means inoperative when the conductivity in a circuit including the tissue, said indifferent electrode and said circuit means connecting said indifferent electrode to said generating means is less than a given value.
US789716A 1969-01-08 1969-01-08 High frequency electrosurgical apparatus Expired - Lifetime US3601126A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78971669A 1969-01-08 1969-01-08

Publications (1)

Publication Number Publication Date
US3601126A true US3601126A (en) 1971-08-24

Family

ID=25148473

Family Applications (1)

Application Number Title Priority Date Filing Date
US789716A Expired - Lifetime US3601126A (en) 1969-01-08 1969-01-08 High frequency electrosurgical apparatus

Country Status (1)

Country Link
US (1) US3601126A (en)

Cited By (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2170227A1 (en) * 1972-02-03 1973-09-14 Ndm Corp
US3804096A (en) * 1972-11-30 1974-04-16 Dentsply Int Inc Electrosurgical device
US3826245A (en) * 1973-02-09 1974-07-30 Statham Instrument Inc Electrodes employing disposable electropods for cardiac instruments
US3885569A (en) * 1972-11-21 1975-05-27 Birtcher Corp Electrosurgical unit
US3897787A (en) * 1972-12-29 1975-08-05 Olympus Optical Co Power source device for an electric surgical knife
US3913583A (en) * 1974-06-03 1975-10-21 Sybron Corp Control circuit for electrosurgical units
US3923063A (en) * 1974-07-15 1975-12-02 Sybron Corp Pulse control circuit for electrosurgical units
US3946738A (en) * 1974-10-24 1976-03-30 Newton David W Leakage current cancelling circuit for use with electrosurgical instrument
US3961623A (en) * 1975-01-17 1976-06-08 Medical Research Laboratories, Inc. Method of using a disposable electrode pad
US3963030A (en) * 1973-04-16 1976-06-15 Valleylab, Inc. Signal generating device and method for producing coagulation electrosurgical current
US3964487A (en) * 1974-12-09 1976-06-22 The Birtcher Corporation Uncomplicated load-adapting electrosurgical cutting generator
DE2602517A1 (en) * 1975-01-23 1976-07-29 Dentsply Int Inc ELECTROSURGICAL DEVICE
US3987796A (en) * 1974-04-18 1976-10-26 Dentsply Research & Development Corporation Electrosurgical device
US4016882A (en) * 1975-03-05 1977-04-12 Cavitron Corporation Neurosonic aspirator and method
US4051855A (en) * 1976-02-06 1977-10-04 Ipco Hospital Supply Corporation, Whaledent International Division Electrosurgical unit
US4102341A (en) * 1975-12-20 1978-07-25 Olympus Optical Co., Ltd. Electric knife device
US4114623A (en) * 1975-02-01 1978-09-19 Karl Storz Endoscopy-America, Inc. Cutting and coagulation apparatus for surgery
US4114622A (en) * 1975-07-02 1978-09-19 Dentsply Research And Development Corporation Electrosurgical device
US4121590A (en) * 1977-03-14 1978-10-24 Dentsply Research And Development Corporation System for monitoring integrity of a patient return circuit
US4123673A (en) * 1977-03-14 1978-10-31 Dentsply Research And Development Corporation Control circuit for an electrical device
US4122854A (en) * 1973-08-23 1978-10-31 Matburn (Holdings) Limited Electrosurgical apparatus
US4126137A (en) * 1977-01-21 1978-11-21 Minnesota Mining And Manufacturing Company Electrosurgical unit
US4164214A (en) * 1977-07-25 1979-08-14 The Regents Of The University Of California Method and apparatus for measuring the sensitivity of teeth
US4184492A (en) * 1975-08-07 1980-01-22 Karl Storz Endoscopy-America, Inc. Safety circuitry for high frequency cutting and coagulating devices
US4188927A (en) * 1978-01-12 1980-02-19 Valleylab, Inc. Multiple source electrosurgical generator
EP0013613A1 (en) * 1979-01-08 1980-07-23 Johnson & Johnson Products Inc. Electrosurgical grounding pad
US4303073A (en) * 1980-01-17 1981-12-01 Medical Plastics, Inc. Electrosurgery safety monitor
US4343308A (en) * 1980-06-09 1982-08-10 Gross Robert D Surgical ground detector
DE3225221A1 (en) * 1981-09-03 1983-03-24 Bard Inc C R ELECTROSURGICAL GENERATOR
US4494541A (en) * 1980-01-17 1985-01-22 Medical Plastics, Inc. Electrosurgery safety monitor
US4651280A (en) * 1983-05-24 1987-03-17 Chang Sien S Electrosurgical control system using tissue conductivity
US4658819A (en) * 1983-09-13 1987-04-21 Valleylab, Inc. Electrosurgical generator
US4687004A (en) * 1976-12-27 1987-08-18 Zenex Corporation Dual element electrical connector
US4722761A (en) * 1986-03-28 1988-02-02 Baxter Travenol Laboratories, Inc. Method of making a medical electrode
US4727874A (en) * 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
US4769519A (en) * 1985-06-28 1988-09-06 Metcal, Inc. Ferromagnetic element with temperature regulation
US4818954A (en) * 1986-02-15 1989-04-04 Karl Storz Endoscopy-America, Inc. High-frequency generator with automatic power-control for high-frequency surgery
US4969885A (en) * 1987-11-17 1990-11-13 Erbe Elektromedizin Gmbh High frequency surgery device for cutting and/or coagulating biologic tissue
USRE33644E (en) * 1985-06-28 1991-07-23 Metcal, Inc. Ferromagnetic element with temperature regulation
US5160317A (en) * 1991-01-03 1992-11-03 Costin John A Computer controlled smart phacoemulsification method and apparatus
WO1993013718A1 (en) * 1992-01-21 1993-07-22 Valleylab, Inc. Electrosurgical control for a trocar
US5279547A (en) * 1991-01-03 1994-01-18 Alcon Surgical Inc. Computer controlled smart phacoemulsification method and apparatus
WO1994024951A1 (en) * 1993-04-30 1994-11-10 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5417687A (en) * 1993-04-30 1995-05-23 Medical Scientific, Inc. Bipolar electrosurgical trocar
US5422567A (en) * 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
US5437662A (en) * 1992-11-13 1995-08-01 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
US5484434A (en) * 1993-12-06 1996-01-16 New Dimensions In Medicine, Inc. Electrosurgical scalpel
US5498261A (en) * 1991-12-20 1996-03-12 Advanced Cardiovascular Systems, Inc. Thermal angioplasty system
US5540681A (en) * 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5573533A (en) * 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5584830A (en) * 1994-03-30 1996-12-17 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5688269A (en) * 1991-07-10 1997-11-18 Electroscope, Inc. Electrosurgical apparatus for laparoscopic and like procedures
US5713896A (en) * 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5769841A (en) * 1995-06-13 1998-06-23 Electroscope, Inc. Electrosurgical apparatus for laparoscopic and like procedures
US5772659A (en) * 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US5944715A (en) * 1996-06-20 1999-08-31 Gyrus Medical Limited Electrosurgical instrument
US5976128A (en) * 1996-06-14 1999-11-02 Gebrueder Berchtold Gmbh & Co. Electrosurgical high frequency generator
US6004319A (en) * 1995-06-23 1999-12-21 Gyrus Medical Limited Electrosurgical instrument
US6007532A (en) * 1997-08-29 1999-12-28 3M Innovative Properties Company Method and apparatus for detecting loss of contact of biomedical electrodes with patient skin
US6013076A (en) * 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US6015406A (en) * 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
US6027501A (en) * 1995-06-23 2000-02-22 Gyrus Medical Limited Electrosurgical instrument
US6090106A (en) * 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6093186A (en) * 1996-12-20 2000-07-25 Gyrus Medical Limited Electrosurgical generator and system
US6210405B1 (en) 1996-06-20 2001-04-03 Gyrus Medical Limited Under water treatment
US6261286B1 (en) 1995-06-23 2001-07-17 Gyrus Medical Limited Electrosurgical generator and system
US6277114B1 (en) 1998-04-03 2001-08-21 Gyrus Medical Limited Electrode assembly for an electrosurical instrument
WO2002094090A3 (en) * 2001-05-23 2003-03-06 Osypka Medical Gmbh Transformer-isolated alternating current power supply
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
US20030163058A1 (en) * 2001-10-11 2003-08-28 Osypka Markus J. Method and apparatus for determining the left-ventricular ejection time TLVE of a heart of a subject
WO2003092520A1 (en) 2002-05-06 2003-11-13 Sherwood Services Ag Blood detector for controlling anesu and method therefor
US20040116918A1 (en) * 2002-12-17 2004-06-17 Konesky Gregory A. Electrosurgical device to generate a plasma stream
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
US6790206B2 (en) * 2002-01-31 2004-09-14 Scimed Life Systems, Inc. Compensation for power variation along patient cables
US20050012414A1 (en) * 2003-07-18 2005-01-20 Osypka Medical Gmbh Method and apparatus for isolated transformation of a first voltage into a second voltage for measurement of electrical bioimpedances or bioconductances
US20050113817A1 (en) * 2003-11-21 2005-05-26 Isaacson James D. Tuned return electrode with matching inductor
US20050209561A1 (en) * 2004-03-22 2005-09-22 Raphael Gordon Method of detecting surgical events
US20050209560A1 (en) * 2004-03-22 2005-09-22 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US20050228425A1 (en) * 2004-03-22 2005-10-13 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20050267504A1 (en) * 2004-03-22 2005-12-01 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US20050273091A1 (en) * 2002-10-29 2005-12-08 Cathrxptyltd System for, and method of, heating a biological site in a patient's body
US20050277869A1 (en) * 2004-03-22 2005-12-15 Alcon, Inc. Method of operating an ultrasound handpiece
US20060036180A1 (en) * 2004-08-12 2006-02-16 Mikhail Boukhny Ultrasonic handpiece
US20060041252A1 (en) * 2004-08-17 2006-02-23 Odell Roger C System and method for monitoring electrosurgical instruments
US20060041253A1 (en) * 2004-08-17 2006-02-23 Newton David W System and method for performing an electrosurgical procedure
US20060041251A1 (en) * 2004-08-17 2006-02-23 Odell Roger C Electrosurgical system and method
US20060041220A1 (en) * 2004-08-12 2006-02-23 Alcon, Inc. Ultrasound handpiece
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US20070043303A1 (en) * 2005-08-17 2007-02-22 Osypka Markus J Method and apparatus for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in an object
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US20070255271A1 (en) * 2000-12-28 2007-11-01 Senorx, Inc. High frequency power source
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7303557B2 (en) 1998-10-23 2007-12-04 Sherwood Services Ag Vessel sealing system
US20080009855A1 (en) * 2004-10-29 2008-01-10 Jacques Hamou Device For Resection And/Or Ablation Of Organic Tissue By Means Of High-Frequency Current
US20080030206A1 (en) * 2006-07-14 2008-02-07 Sherwood Services Ag Surgical testing instrument and system
US20080071263A1 (en) * 2006-09-19 2008-03-20 Sherwood Services Ag System and method for return electrode monitoring
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
USRE40388E1 (en) 1997-04-09 2008-06-17 Covidien Ag Electrosurgical generator with adaptive power control
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US20080172076A1 (en) * 2006-11-01 2008-07-17 Alcon, Inc. Ultrasound apparatus and method of use
US20080281253A1 (en) * 2007-05-10 2008-11-13 Injev Valentine P Method of Operating an Ultrasound Handpiece
US20090030405A1 (en) * 2003-06-03 2009-01-29 Senorx, Inc. Universal medical device control console
US20090076493A1 (en) * 2000-12-28 2009-03-19 Senorx, Inc. Electrosurgical medical system and method
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US20090112204A1 (en) * 2007-10-26 2009-04-30 Encision, Inc. Multiple Parameter Fault Detection in Electrosurgical Instrument Shields
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US20100036464A1 (en) * 2008-08-05 2010-02-11 Tony Picciano Electronic stimulation device
US20100036256A1 (en) * 2008-08-08 2010-02-11 Mikhail Boukhny Offset ultrasonic hand piece
US20100094321A1 (en) * 2008-10-10 2010-04-15 Takayuki Akahoshi Ultrasound Handpiece
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US20100217260A1 (en) * 2009-02-26 2010-08-26 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode with pressure sore reduction and heating capabilities
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US20100241023A1 (en) * 2009-03-19 2010-09-23 Tyco Healthcare Group Lp System and Method for Return Electrode Monitoring
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US20100324581A1 (en) * 2006-12-08 2010-12-23 Alcon, Inc. Torsional Ultrasound Hand Piece That Eliminates Chatter
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US20110071517A1 (en) * 2009-09-23 2011-03-24 Bovie Medical Corporation Electrosurgical system to generate a pulsed plasma stream and method thereof
US7927328B2 (en) 2006-01-24 2011-04-19 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US20110137232A1 (en) * 2009-12-09 2011-06-09 Alcon Research, Ltd. Thermal Management Algorithm For Phacoemulsification System
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US8007494B1 (en) 2006-04-27 2011-08-30 Encision, Inc. Device and method to prevent surgical burns
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8251989B1 (en) 2006-06-13 2012-08-28 Encision, Inc. Combined bipolar and monopolar electrosurgical instrument and method
US8409190B2 (en) 2002-12-17 2013-04-02 Bovie Medical Corporation Electrosurgical device to generate a plasma stream
US8414605B2 (en) 2011-07-08 2013-04-09 Alcon Research, Ltd. Vacuum level control of power for phacoemulsification hand piece
US8486061B2 (en) 2009-01-12 2013-07-16 Covidien Lp Imaginary impedance process monitoring and intelligent shut-off
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8623040B2 (en) 2009-07-01 2014-01-07 Alcon Research, Ltd. Phacoemulsification hook tip
US8663214B2 (en) 2006-01-24 2014-03-04 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US20140114303A1 (en) * 2010-06-25 2014-04-24 Covidien Lp Current-fed push-pull converter with passive voltage clamp
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8784357B2 (en) 2010-09-15 2014-07-22 Alcon Research, Ltd. Phacoemulsification hand piece with two independent transducers
US8808161B2 (en) 2003-10-23 2014-08-19 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US9116179B2 (en) 2012-12-17 2015-08-25 Covidien Lp System and method for voltage and current sensing
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US9192424B2 (en) 2012-05-31 2015-11-24 Covidien Lp AC active load
US9314294B2 (en) 2008-08-18 2016-04-19 Encision, Inc. Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US9387269B2 (en) 2011-01-28 2016-07-12 Bovie Medical Corporation Cold plasma jet hand sanitizer
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US9504516B2 (en) 2013-05-31 2016-11-29 Covidien LLP Gain compensation for a full bridge inverter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9681907B2 (en) 2010-01-28 2017-06-20 Bovie Medical Corporation Electrosurgical apparatus to generate a dual plasma stream and method thereof
US9833281B2 (en) 2008-08-18 2017-12-05 Encision Inc. Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US9863983B2 (en) 2012-12-17 2018-01-09 Covidien Lp System and method for voltage and current sensing
US9867650B2 (en) 2013-12-26 2018-01-16 Megadyne Medical Products, Inc. Universal self-limiting electrosurgical return electrode
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US10085791B2 (en) 2013-12-26 2018-10-02 Megadyne Medical Products, Inc. Universal self-limiting electrosurgical return electrode
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
US10908187B2 (en) 2016-05-02 2021-02-02 Covidien Lp Current sensor with reduced voltage coupling
US10918433B2 (en) 2016-09-27 2021-02-16 Apyx Medical Corporation Devices, systems and methods for enhancing physiological effectiveness of medical cold plasma discharges
US11129665B2 (en) 2015-12-02 2021-09-28 Apyx Medical Corporation Mixing cold plasma beam jets with atmopshere

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1139927B (en) * 1961-01-03 1962-11-22 Friedrich Laber High-frequency surgical device
DE1178528B (en) * 1962-11-22 1964-09-24 Parisienne D Expl Des Etabliss Electrosurgical device for diathermic coagulation
US3478744A (en) * 1964-12-30 1969-11-18 Harry Leiter Surgical apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1139927B (en) * 1961-01-03 1962-11-22 Friedrich Laber High-frequency surgical device
DE1178528B (en) * 1962-11-22 1964-09-24 Parisienne D Expl Des Etabliss Electrosurgical device for diathermic coagulation
US3478744A (en) * 1964-12-30 1969-11-18 Harry Leiter Surgical apparatus

Cited By (310)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2170227A1 (en) * 1972-02-03 1973-09-14 Ndm Corp
US3848600A (en) * 1972-02-03 1974-11-19 Ndm Corp Indifferent electrode in electrosurgical procedures and method of use
US3885569A (en) * 1972-11-21 1975-05-27 Birtcher Corp Electrosurgical unit
US3804096A (en) * 1972-11-30 1974-04-16 Dentsply Int Inc Electrosurgical device
US3897787A (en) * 1972-12-29 1975-08-05 Olympus Optical Co Power source device for an electric surgical knife
US3826245A (en) * 1973-02-09 1974-07-30 Statham Instrument Inc Electrodes employing disposable electropods for cardiac instruments
US3963030A (en) * 1973-04-16 1976-06-15 Valleylab, Inc. Signal generating device and method for producing coagulation electrosurgical current
US4122854A (en) * 1973-08-23 1978-10-31 Matburn (Holdings) Limited Electrosurgical apparatus
US3987796A (en) * 1974-04-18 1976-10-26 Dentsply Research & Development Corporation Electrosurgical device
US3913583A (en) * 1974-06-03 1975-10-21 Sybron Corp Control circuit for electrosurgical units
US3923063A (en) * 1974-07-15 1975-12-02 Sybron Corp Pulse control circuit for electrosurgical units
US3946738A (en) * 1974-10-24 1976-03-30 Newton David W Leakage current cancelling circuit for use with electrosurgical instrument
US3964487A (en) * 1974-12-09 1976-06-22 The Birtcher Corporation Uncomplicated load-adapting electrosurgical cutting generator
US3961623A (en) * 1975-01-17 1976-06-08 Medical Research Laboratories, Inc. Method of using a disposable electrode pad
DE2602517A1 (en) * 1975-01-23 1976-07-29 Dentsply Int Inc ELECTROSURGICAL DEVICE
FR2298342A1 (en) * 1975-01-23 1976-08-20 Dentsply Int Inc HIGH FREQUENCY ELECTROSURGICAL DEVICE
US4114623A (en) * 1975-02-01 1978-09-19 Karl Storz Endoscopy-America, Inc. Cutting and coagulation apparatus for surgery
US4209018A (en) * 1975-02-01 1980-06-24 Karl Fastenmeier Tissue coagulation apparatus and method
US4016882A (en) * 1975-03-05 1977-04-12 Cavitron Corporation Neurosonic aspirator and method
US4114622A (en) * 1975-07-02 1978-09-19 Dentsply Research And Development Corporation Electrosurgical device
US4184492A (en) * 1975-08-07 1980-01-22 Karl Storz Endoscopy-America, Inc. Safety circuitry for high frequency cutting and coagulating devices
US4102341A (en) * 1975-12-20 1978-07-25 Olympus Optical Co., Ltd. Electric knife device
US4051855A (en) * 1976-02-06 1977-10-04 Ipco Hospital Supply Corporation, Whaledent International Division Electrosurgical unit
US4687004A (en) * 1976-12-27 1987-08-18 Zenex Corporation Dual element electrical connector
US4126137A (en) * 1977-01-21 1978-11-21 Minnesota Mining And Manufacturing Company Electrosurgical unit
US4123673A (en) * 1977-03-14 1978-10-31 Dentsply Research And Development Corporation Control circuit for an electrical device
US4121590A (en) * 1977-03-14 1978-10-24 Dentsply Research And Development Corporation System for monitoring integrity of a patient return circuit
US4164214A (en) * 1977-07-25 1979-08-14 The Regents Of The University Of California Method and apparatus for measuring the sensitivity of teeth
US4188927A (en) * 1978-01-12 1980-02-19 Valleylab, Inc. Multiple source electrosurgical generator
EP0013613A1 (en) * 1979-01-08 1980-07-23 Johnson & Johnson Products Inc. Electrosurgical grounding pad
US4303073A (en) * 1980-01-17 1981-12-01 Medical Plastics, Inc. Electrosurgery safety monitor
US4494541A (en) * 1980-01-17 1985-01-22 Medical Plastics, Inc. Electrosurgery safety monitor
US4343308A (en) * 1980-06-09 1982-08-10 Gross Robert D Surgical ground detector
DE3225221A1 (en) * 1981-09-03 1983-03-24 Bard Inc C R ELECTROSURGICAL GENERATOR
US4651280A (en) * 1983-05-24 1987-03-17 Chang Sien S Electrosurgical control system using tissue conductivity
US4658819A (en) * 1983-09-13 1987-04-21 Valleylab, Inc. Electrosurgical generator
US4727874A (en) * 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
USRE33644E (en) * 1985-06-28 1991-07-23 Metcal, Inc. Ferromagnetic element with temperature regulation
US4769519A (en) * 1985-06-28 1988-09-06 Metcal, Inc. Ferromagnetic element with temperature regulation
US4818954A (en) * 1986-02-15 1989-04-04 Karl Storz Endoscopy-America, Inc. High-frequency generator with automatic power-control for high-frequency surgery
US4722761A (en) * 1986-03-28 1988-02-02 Baxter Travenol Laboratories, Inc. Method of making a medical electrode
US4969885A (en) * 1987-11-17 1990-11-13 Erbe Elektromedizin Gmbh High frequency surgery device for cutting and/or coagulating biologic tissue
US5160317A (en) * 1991-01-03 1992-11-03 Costin John A Computer controlled smart phacoemulsification method and apparatus
US5279547A (en) * 1991-01-03 1994-01-18 Alcon Surgical Inc. Computer controlled smart phacoemulsification method and apparatus
US5520633A (en) * 1991-01-03 1996-05-28 Costin; John A. Computer controlled smart phacoemulsification method and apparatus
US5688269A (en) * 1991-07-10 1997-11-18 Electroscope, Inc. Electrosurgical apparatus for laparoscopic and like procedures
US5713896A (en) * 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5498261A (en) * 1991-12-20 1996-03-12 Advanced Cardiovascular Systems, Inc. Thermal angioplasty system
WO1993013718A1 (en) * 1992-01-21 1993-07-22 Valleylab, Inc. Electrosurgical control for a trocar
US5423809A (en) * 1992-01-21 1995-06-13 Valleylab Inc. Electrosurgical control for a trocar
US5540681A (en) * 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5573533A (en) * 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5437662A (en) * 1992-11-13 1995-08-01 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
US5417687A (en) * 1993-04-30 1995-05-23 Medical Scientific, Inc. Bipolar electrosurgical trocar
US5658279A (en) * 1993-04-30 1997-08-19 Medical Scientific, Inc. Bipolar electrosurgical trocar
WO1994024949A1 (en) * 1993-04-30 1994-11-10 Medical Scientific, Inc. Impedance feedback electrosurgical system
WO1994024951A1 (en) * 1993-04-30 1994-11-10 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5484434A (en) * 1993-12-06 1996-01-16 New Dimensions In Medicine, Inc. Electrosurgical scalpel
US5422567A (en) * 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
US5584830A (en) * 1994-03-30 1996-12-17 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5769841A (en) * 1995-06-13 1998-06-23 Electroscope, Inc. Electrosurgical apparatus for laparoscopic and like procedures
US6364877B1 (en) 1995-06-23 2002-04-02 Gyrus Medical Limited Electrosurgical generator and system
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
US6004319A (en) * 1995-06-23 1999-12-21 Gyrus Medical Limited Electrosurgical instrument
US6416509B1 (en) 1995-06-23 2002-07-09 Gyrus Medical Limited Electrosurgical generator and system
US6306134B1 (en) 1995-06-23 2001-10-23 Gyrus Medical Limited Electrosurgical generator and system
US6027501A (en) * 1995-06-23 2000-02-22 Gyrus Medical Limited Electrosurgical instrument
US6056746A (en) * 1995-06-23 2000-05-02 Gyrus Medical Limited Electrosurgical instrument
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US6261286B1 (en) 1995-06-23 2001-07-17 Gyrus Medical Limited Electrosurgical generator and system
US6174308B1 (en) 1995-06-23 2001-01-16 Gyrus Medical Limited Electrosurgical instrument
US6251106B1 (en) 1995-09-26 2001-06-26 Sherwood Services Ag Electrosurgical generator power control circuit and method
US5772659A (en) * 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US6234178B1 (en) 1996-01-09 2001-05-22 Gyrus Medical Limited Electrosurgical instrument
US6090106A (en) * 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6015406A (en) * 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
US6013076A (en) * 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US5976128A (en) * 1996-06-14 1999-11-02 Gebrueder Berchtold Gmbh & Co. Electrosurgical high frequency generator
US5944715A (en) * 1996-06-20 1999-08-31 Gyrus Medical Limited Electrosurgical instrument
US6210405B1 (en) 1996-06-20 2001-04-03 Gyrus Medical Limited Under water treatment
US6482202B1 (en) 1996-06-20 2002-11-19 Gyrus Medical Limited Under water treatment
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
US6093186A (en) * 1996-12-20 2000-07-25 Gyrus Medical Limited Electrosurgical generator and system
USRE40388E1 (en) 1997-04-09 2008-06-17 Covidien Ag Electrosurgical generator with adaptive power control
US6007532A (en) * 1997-08-29 1999-12-28 3M Innovative Properties Company Method and apparatus for detecting loss of contact of biomedical electrodes with patient skin
US6277114B1 (en) 1998-04-03 2001-08-21 Gyrus Medical Limited Electrode assembly for an electrosurical instrument
US9113900B2 (en) 1998-10-23 2015-08-25 Covidien Ag Method and system for controlling output of RF medical generator
US8105323B2 (en) 1998-10-23 2012-01-31 Covidien Ag Method and system for controlling output of RF medical generator
US7303557B2 (en) 1998-10-23 2007-12-04 Sherwood Services Ag Vessel sealing system
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US9168089B2 (en) 1998-10-23 2015-10-27 Covidien Ag Method and system for controlling output of RF medical generator
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US8287528B2 (en) 1998-10-23 2012-10-16 Covidien Ag Vessel sealing system
US9408664B2 (en) 2000-12-28 2016-08-09 Senorx, Inc. Electrosurgical medical system and method
US20090088737A1 (en) * 2000-12-28 2009-04-02 Senorx, Inc. Electrosurgical medical system and method
US10278763B2 (en) 2000-12-28 2019-05-07 Senorx, Inc. Electrosurgical medical system and method
US10172664B2 (en) 2000-12-28 2019-01-08 Senorx, Inc. Electrosurgical medical system and method
US8231615B2 (en) 2000-12-28 2012-07-31 Senorx, Inc. Electrosurgical medical system and method
US9750558B2 (en) 2000-12-28 2017-09-05 Senorx, Inc. Electrosurgical medical system and method
US20070282322A1 (en) * 2000-12-28 2007-12-06 Senorx, Inc. High frequency power source
US9750557B2 (en) * 2000-12-28 2017-09-05 Senorx, Inc. High frequency power source
US8475446B2 (en) 2000-12-28 2013-07-02 Senorx, Inc. Electrosurgical medical system and method
US9517104B2 (en) 2000-12-28 2016-12-13 Senorx, Inc. Electrosurgical medical system and method
US20070255271A1 (en) * 2000-12-28 2007-11-01 Senorx, Inc. High frequency power source
US8882760B2 (en) 2000-12-28 2014-11-11 Senorx, Inc. Electrosurgical medical system and method
US8764741B2 (en) 2000-12-28 2014-07-01 Senorx, Inc. High frequency power source
US10517663B2 (en) 2000-12-28 2019-12-31 Senorx, Inc. Electrosurgical medical system and method
US20090076493A1 (en) * 2000-12-28 2009-03-19 Senorx, Inc. Electrosurgical medical system and method
US20090069799A1 (en) * 2000-12-28 2009-03-12 Senorx, Inc. Electrosurgical medical system and method
WO2002094090A3 (en) * 2001-05-23 2003-03-06 Osypka Medical Gmbh Transformer-isolated alternating current power supply
US20040152996A1 (en) * 2001-05-23 2004-08-05 Eberhard Gersing Transformer-isolated alternating current power supply
US20060167363A1 (en) * 2001-10-11 2006-07-27 Osypka Medical Gmbh System and apparatus for determining the left-ventricular ejection time TLVE of a heart of a subject
US20030163058A1 (en) * 2001-10-11 2003-08-28 Osypka Markus J. Method and apparatus for determining the left-ventricular ejection time TLVE of a heart of a subject
US8562538B2 (en) 2001-10-11 2013-10-22 Osypka Medical Gmbh System for determining the left-ventricular ejection time TLVE of a heart of a subject
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
US7904141B2 (en) 2001-10-11 2011-03-08 Osypka Medical Gmbh System and apparatus for determining the left-ventricular ejection time TLVE of a heart of a subject
US20110190601A1 (en) * 2001-10-11 2011-08-04 Osypka Markus J System for Determining the Left-Ventricular Ejection Time TLVE of a Heart of a Subject
US6790206B2 (en) * 2002-01-31 2004-09-14 Scimed Life Systems, Inc. Compensation for power variation along patient cables
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
WO2003092520A1 (en) 2002-05-06 2003-11-13 Sherwood Services Ag Blood detector for controlling anesu and method therefor
US7749217B2 (en) 2002-05-06 2010-07-06 Covidien Ag Method and system for optically detecting blood and controlling a generator during electrosurgery
US20060025760A1 (en) * 2002-05-06 2006-02-02 Podhajsky Ronald J Blood detector for controlling anesu and method therefor
US7871410B2 (en) * 2002-10-29 2011-01-18 Cathrx Ltd System for, and method of, heating a biological site in a patient's body
US20050273091A1 (en) * 2002-10-29 2005-12-08 Cathrxptyltd System for, and method of, heating a biological site in a patient's body
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7824400B2 (en) 2002-12-10 2010-11-02 Covidien Ag Circuit for controlling arc energy from an electrosurgical generator
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US8523855B2 (en) 2002-12-10 2013-09-03 Covidien Ag Circuit for controlling arc energy from an electrosurgical generator
US7316682B2 (en) * 2002-12-17 2008-01-08 Aaron Medical Industries, Inc. Electrosurgical device to generate a plasma stream
US20040116918A1 (en) * 2002-12-17 2004-06-17 Konesky Gregory A. Electrosurgical device to generate a plasma stream
US8409190B2 (en) 2002-12-17 2013-04-02 Bovie Medical Corporation Electrosurgical device to generate a plasma stream
US8298223B2 (en) 2003-05-01 2012-10-30 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8012150B2 (en) 2003-05-01 2011-09-06 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8303580B2 (en) 2003-05-01 2012-11-06 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8080008B2 (en) 2003-05-01 2011-12-20 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8267929B2 (en) 2003-05-01 2012-09-18 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US10912541B2 (en) 2003-06-03 2021-02-09 Senorx, Inc. Universal medical device control console
US8696650B2 (en) 2003-06-03 2014-04-15 Senorx, Inc. Universal medical device control console
US20100114335A1 (en) * 2003-06-03 2010-05-06 Senrx, Inc. Universal medical device control consol
US8652121B2 (en) 2003-06-03 2014-02-18 Senorx, Inc. Universal medical device control console
US20090030405A1 (en) * 2003-06-03 2009-01-29 Senorx, Inc. Universal medical device control console
US20050012414A1 (en) * 2003-07-18 2005-01-20 Osypka Medical Gmbh Method and apparatus for isolated transformation of a first voltage into a second voltage for measurement of electrical bioimpedances or bioconductances
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US8808161B2 (en) 2003-10-23 2014-08-19 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US8647340B2 (en) 2003-10-23 2014-02-11 Covidien Ag Thermocouple measurement system
US8966981B2 (en) 2003-10-30 2015-03-03 Covidien Ag Switched resonant ultrasonic power amplifier system
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US8096961B2 (en) 2003-10-30 2012-01-17 Covidien Ag Switched resonant ultrasonic power amplifier system
US8485993B2 (en) 2003-10-30 2013-07-16 Covidien Ag Switched resonant ultrasonic power amplifier system
US8113057B2 (en) 2003-10-30 2012-02-14 Covidien Ag Switched resonant ultrasonic power amplifier system
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7416437B2 (en) 2003-11-20 2008-08-26 Sherwood Services Ag Connector systems for electrosurgical generator
US7766693B2 (en) 2003-11-20 2010-08-03 Covidien Ag Connector systems for electrosurgical generator
US20050113817A1 (en) * 2003-11-21 2005-05-26 Isaacson James D. Tuned return electrode with matching inductor
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7169145B2 (en) * 2003-11-21 2007-01-30 Megadyne Medical Products, Inc. Tuned return electrode with matching inductor
US7837680B2 (en) 2003-11-21 2010-11-23 Megadyne Medical Products, Inc. Tuned return electrode with matching inductor
US20070049916A1 (en) * 2003-11-21 2007-03-01 Megadyne Medical Products, Inc. Tuned return electrode with matching inductor
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US8523812B2 (en) 2004-03-22 2013-09-03 Alcon Research, Ltd. Method of controlling a surgical system based on a rate of change of an operating parameter
US9282989B2 (en) 2004-03-22 2016-03-15 Novartis Ag Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20090306583A1 (en) * 2004-03-22 2009-12-10 Mikhail Boukhny Method of Operating An Ultrasound Handpiece
US7727193B2 (en) 2004-03-22 2010-06-01 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US7625388B2 (en) 2004-03-22 2009-12-01 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US7572242B2 (en) 2004-03-22 2009-08-11 Alcon, Inc. Method of operating an ultrasound handpiece
US20050209561A1 (en) * 2004-03-22 2005-09-22 Raphael Gordon Method of detecting surgical events
US20050209560A1 (en) * 2004-03-22 2005-09-22 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US8403851B2 (en) 2004-03-22 2013-03-26 Novartis Ag Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US7811255B2 (en) 2004-03-22 2010-10-12 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US20100130914A1 (en) * 2004-03-22 2010-05-27 Alcon, Inc. Method Of Controlling A Surgical System Based On Irrigation Flow
US7713202B2 (en) 2004-03-22 2010-05-11 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20050228425A1 (en) * 2004-03-22 2005-10-13 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20050261715A1 (en) * 2004-03-22 2005-11-24 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20050261628A1 (en) * 2004-03-22 2005-11-24 Alcon, Inc. Method of controlling a surgical system based on a rate of change of an operating parameter
US20050267504A1 (en) * 2004-03-22 2005-12-01 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US20110015563A1 (en) * 2004-03-22 2011-01-20 Alcon, Inc. Method Of Controlling A Surgical System Based On A Rate Of Change Of An Operating Parameter
US20050277869A1 (en) * 2004-03-22 2005-12-15 Alcon, Inc. Method of operating an ultrasound handpiece
US20100036406A1 (en) * 2004-03-22 2010-02-11 Alcon, Inc. Method of Controlling a Surgical System Based on a Load on the Cutting Tip of a Handpiece
US7758538B2 (en) 2004-03-22 2010-07-20 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US8430838B2 (en) 2004-03-22 2013-04-30 Novartis Ag Method of controlling a surgical system based on irrigation flow
US8172786B2 (en) 2004-03-22 2012-05-08 Alcon Research, Ltd. Method of operating an ultrasound handpiece
US7645255B2 (en) 2004-03-22 2010-01-12 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US8257307B2 (en) 2004-03-22 2012-09-04 Alcon Research, Ltd. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US8048020B2 (en) 2004-03-22 2011-11-01 Alcon, Inc. Method of controlling a surgical system based on irrigation flow
US8974412B2 (en) 2004-03-22 2015-03-10 Novartis Ag Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US7645256B2 (en) 2004-08-12 2010-01-12 Alcon, Inc. Ultrasound handpiece
US7651490B2 (en) 2004-08-12 2010-01-26 Alcon, Inc. Ultrasonic handpiece
US20060036180A1 (en) * 2004-08-12 2006-02-16 Mikhail Boukhny Ultrasonic handpiece
US20060041220A1 (en) * 2004-08-12 2006-02-23 Alcon, Inc. Ultrasound handpiece
US8771301B2 (en) 2004-08-12 2014-07-08 Alcon Research, Ltd. Ultrasonic handpiece
US20100004585A1 (en) * 2004-08-12 2010-01-07 Mikhail Boukhny Ultrasonic Handpiece
US8814894B2 (en) 2004-08-12 2014-08-26 Novartis Ag Ultrasound handpiece
US7465302B2 (en) 2004-08-17 2008-12-16 Encision, Inc. System and method for performing an electrosurgical procedure
US7422589B2 (en) 2004-08-17 2008-09-09 Encision, Inc. System and method for performing an electrosurgical procedure
US20060041252A1 (en) * 2004-08-17 2006-02-23 Odell Roger C System and method for monitoring electrosurgical instruments
US20060041251A1 (en) * 2004-08-17 2006-02-23 Odell Roger C Electrosurgical system and method
US20060041253A1 (en) * 2004-08-17 2006-02-23 Newton David W System and method for performing an electrosurgical procedure
US8758336B2 (en) 2004-08-17 2014-06-24 Encision, Inc. System and method for monitoring electrosurgical systems
US8025660B2 (en) 2004-10-13 2011-09-27 Covidien Ag Universal foot switch contact port
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US20080009855A1 (en) * 2004-10-29 2008-01-10 Jacques Hamou Device For Resection And/Or Ablation Of Organic Tissue By Means Of High-Frequency Current
US7789880B2 (en) * 2004-10-29 2010-09-07 Jacques Hamou Device for resection and/or ablation of organic tissue by means of high-frequency current
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US11013548B2 (en) 2005-03-31 2021-05-25 Covidien Ag Method and system for compensating for external impedance of energy carrying component when controlling electrosurgical generator
US20070043303A1 (en) * 2005-08-17 2007-02-22 Osypka Markus J Method and apparatus for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in an object
US10470718B2 (en) 2005-08-17 2019-11-12 Osypka Medical Gmbh Method for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in a human subject
US11642088B2 (en) 2005-08-17 2023-05-09 Osypka Medical Gmbh Method and apparatus for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in an object
US9522032B2 (en) 2005-10-21 2016-12-20 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8241278B2 (en) 2005-12-12 2012-08-14 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8187262B2 (en) 2006-01-24 2012-05-29 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8267928B2 (en) 2006-01-24 2012-09-18 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8663214B2 (en) 2006-01-24 2014-03-04 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US9642665B2 (en) 2006-01-24 2017-05-09 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8202271B2 (en) 2006-01-24 2012-06-19 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US7927328B2 (en) 2006-01-24 2011-04-19 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US10582964B2 (en) 2006-01-24 2020-03-10 Covidien Lp Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8475447B2 (en) 2006-01-24 2013-07-02 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7972332B2 (en) 2006-03-03 2011-07-05 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US9119624B2 (en) 2006-04-24 2015-09-01 Covidien Ag ARC based adaptive control system for an electrosurgical unit
US8556890B2 (en) 2006-04-24 2013-10-15 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8007494B1 (en) 2006-04-27 2011-08-30 Encision, Inc. Device and method to prevent surgical burns
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US8251989B1 (en) 2006-06-13 2012-08-28 Encision, Inc. Combined bipolar and monopolar electrosurgical instrument and method
US7443175B2 (en) 2006-07-14 2008-10-28 Covidien Ag Surgical testing instrument and system
US7804308B2 (en) 2006-07-14 2010-09-28 Covidien Ag Surgical testing instrument and system
US20090039900A1 (en) * 2006-07-14 2009-02-12 Covidien Ag Surgical Testing Instrument and System
US20080030206A1 (en) * 2006-07-14 2008-02-07 Sherwood Services Ag Surgical testing instrument and system
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US20080071263A1 (en) * 2006-09-19 2008-03-20 Sherwood Services Ag System and method for return electrode monitoring
US7637907B2 (en) 2006-09-19 2009-12-29 Covidien Ag System and method for return electrode monitoring
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US8231616B2 (en) 2006-09-28 2012-07-31 Covidien Ag Transformer for RF voltage sensing
US20080172076A1 (en) * 2006-11-01 2008-07-17 Alcon, Inc. Ultrasound apparatus and method of use
US8579929B2 (en) 2006-12-08 2013-11-12 Alcon Research, Ltd. Torsional ultrasound hand piece that eliminates chatter
US20100324581A1 (en) * 2006-12-08 2010-12-23 Alcon, Inc. Torsional Ultrasound Hand Piece That Eliminates Chatter
US20080281253A1 (en) * 2007-05-10 2008-11-13 Injev Valentine P Method of Operating an Ultrasound Handpiece
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8303530B2 (en) 2007-05-10 2012-11-06 Novartis Ag Method of operating an ultrasound handpiece
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8353905B2 (en) 2007-09-07 2013-01-15 Covidien Lp System and method for transmission of combined data stream
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US9271790B2 (en) 2007-09-21 2016-03-01 Coviden Lp Real-time arc control in electrosurgical generators
US8460284B2 (en) 2007-10-26 2013-06-11 Encision, Inc. Multiple parameter fault detection in electrosurgical instrument shields
US9757183B2 (en) 2007-10-26 2017-09-12 Encision Inc. Multiple parameter fault detection in electrosurgical instrument shields
US20090112204A1 (en) * 2007-10-26 2009-04-30 Encision, Inc. Multiple Parameter Fault Detection in Electrosurgical Instrument Shields
US9254165B2 (en) 2007-10-26 2016-02-09 Encision, Inc. Multiple parameter fault detection in electrosurgical instrument shields
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8340756B2 (en) 2008-08-05 2012-12-25 Tony Picciano Electronic stimulation device
US20100036464A1 (en) * 2008-08-05 2010-02-11 Tony Picciano Electronic stimulation device
US20100036256A1 (en) * 2008-08-08 2010-02-11 Mikhail Boukhny Offset ultrasonic hand piece
US9314294B2 (en) 2008-08-18 2016-04-19 Encision, Inc. Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US9833281B2 (en) 2008-08-18 2017-12-05 Encision Inc. Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US20100094321A1 (en) * 2008-10-10 2010-04-15 Takayuki Akahoshi Ultrasound Handpiece
US8486061B2 (en) 2009-01-12 2013-07-16 Covidien Lp Imaginary impedance process monitoring and intelligent shut-off
US8876812B2 (en) 2009-02-26 2014-11-04 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode with pressure sore reduction and heating capabilities
US20100217260A1 (en) * 2009-02-26 2010-08-26 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode with pressure sore reduction and heating capabilities
US8298225B2 (en) 2009-03-19 2012-10-30 Tyco Healthcare Group Lp System and method for return electrode monitoring
US20100241023A1 (en) * 2009-03-19 2010-09-23 Tyco Healthcare Group Lp System and Method for Return Electrode Monitoring
US8623040B2 (en) 2009-07-01 2014-01-07 Alcon Research, Ltd. Phacoemulsification hook tip
US9233021B2 (en) 2009-07-01 2016-01-12 Alcon Research, Ltd. Phacoemulsification hook tip
US20110071517A1 (en) * 2009-09-23 2011-03-24 Bovie Medical Corporation Electrosurgical system to generate a pulsed plasma stream and method thereof
US9649143B2 (en) 2009-09-23 2017-05-16 Bovie Medical Corporation Electrosurgical system to generate a pulsed plasma stream and method thereof
US20110137232A1 (en) * 2009-12-09 2011-06-09 Alcon Research, Ltd. Thermal Management Algorithm For Phacoemulsification System
US8070711B2 (en) 2009-12-09 2011-12-06 Alcon Research, Ltd. Thermal management algorithm for phacoemulsification system
US9681907B2 (en) 2010-01-28 2017-06-20 Bovie Medical Corporation Electrosurgical apparatus to generate a dual plasma stream and method thereof
US9522041B2 (en) * 2010-06-25 2016-12-20 Covidien Lp Current-fed push-pull converter with passive voltage clamp
US20140114303A1 (en) * 2010-06-25 2014-04-24 Covidien Lp Current-fed push-pull converter with passive voltage clamp
US8784357B2 (en) 2010-09-15 2014-07-22 Alcon Research, Ltd. Phacoemulsification hand piece with two independent transducers
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip
US9387269B2 (en) 2011-01-28 2016-07-12 Bovie Medical Corporation Cold plasma jet hand sanitizer
US9601317B2 (en) 2011-01-28 2017-03-21 Bovie Medical Corporation Cold plasma sanitizing device
US8414605B2 (en) 2011-07-08 2013-04-09 Alcon Research, Ltd. Vacuum level control of power for phacoemulsification hand piece
US9192424B2 (en) 2012-05-31 2015-11-24 Covidien Lp AC active load
US9863983B2 (en) 2012-12-17 2018-01-09 Covidien Lp System and method for voltage and current sensing
US9116179B2 (en) 2012-12-17 2015-08-25 Covidien Lp System and method for voltage and current sensing
US9366703B2 (en) 2012-12-17 2016-06-14 Covidien Lp System and method for voltage and current sensing
US9504516B2 (en) 2013-05-31 2016-11-29 Covidien LLP Gain compensation for a full bridge inverter
US10603098B2 (en) 2013-05-31 2020-03-31 Covidien Lp Gain compensation for a full bridge inverter
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US11135001B2 (en) 2013-07-24 2021-10-05 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US10085791B2 (en) 2013-12-26 2018-10-02 Megadyne Medical Products, Inc. Universal self-limiting electrosurgical return electrode
US11464560B2 (en) 2013-12-26 2022-10-11 Megadyne Medical Products, Inc. Universal self-limiting electrosurgical return electrode
US9867650B2 (en) 2013-12-26 2018-01-16 Megadyne Medical Products, Inc. Universal self-limiting electrosurgical return electrode
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
US10987154B2 (en) 2014-12-02 2021-04-27 Covidien Lp Electrosurgical generators and sensors
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US11129665B2 (en) 2015-12-02 2021-09-28 Apyx Medical Corporation Mixing cold plasma beam jets with atmopshere
US10908187B2 (en) 2016-05-02 2021-02-02 Covidien Lp Current sensor with reduced voltage coupling
US11703525B2 (en) 2016-05-02 2023-07-18 Covidien Lp Current sensor with reduced voltage coupling
US10918433B2 (en) 2016-09-27 2021-02-16 Apyx Medical Corporation Devices, systems and methods for enhancing physiological effectiveness of medical cold plasma discharges
US11696792B2 (en) 2016-09-27 2023-07-11 Apyx Medical Corporation Devices, systems and methods for enhancing physiological effectiveness of medical cold plasma discharges

Similar Documents

Publication Publication Date Title
US3601126A (en) High frequency electrosurgical apparatus
US4531524A (en) Circuit apparatus and method for electrothermal treatment of cancer eye
US4860745A (en) High frequency electrosurgical apparatus for thermal coagulation of biologic tissues
US4644955A (en) Circuit apparatus and method for electrothermal treatment of cancer eye
EP0949886B1 (en) Electrosurgical generator and system for underwater operation
US4657015A (en) Control device for a high frequency surgical apparatus
US4196734A (en) Combined electrosurgery/cautery system and method
US6309386B1 (en) Linear power control with PSK regulation
US6508815B1 (en) Radio-frequency generator for powering an ablation device
US4188927A (en) Multiple source electrosurgical generator
US3885569A (en) Electrosurgical unit
USRE41921E1 (en) Electrosurgery system and method
US6210403B1 (en) Automatic control for energy from an electrosurgical generator
US6039732A (en) Electric operation apparatus
EP0136855B1 (en) Electrosurgical generator
US9554853B2 (en) Radio-frequency generator for powering an ablation device
JP4162813B2 (en) Iontophoresis device
GB1321364A (en) Method and apparatus for high frequency electric surgery
JPH10500605A (en) Electrosurgical return electrode circuit for monitoring electrosurgical current
JPS61124266A (en) Surgical treatment electric-signal generator
KR20190086454A (en) Electrosurgical device with dynamic leakage current compensation and dynamic RF modulation
NL8402177A (en) ELECTROLYSIS MACHINE.
EP0188413B1 (en) Circuit apparatus for electrothermal treatment of cancer eye
JP2683427B2 (en) Microwave therapy device
CA1264068A (en) Circuit apparatus and method for electrothermal treatment of cancer eye