US3435824A - Surgical apparatus and related process - Google Patents

Surgical apparatus and related process Download PDF

Info

Publication number
US3435824A
US3435824A US590079A US3435824DA US3435824A US 3435824 A US3435824 A US 3435824A US 590079 A US590079 A US 590079A US 3435824D A US3435824D A US 3435824DA US 3435824 A US3435824 A US 3435824A
Authority
US
United States
Prior art keywords
tube
end portions
extremity
bladder
shunt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US590079A
Inventor
Herminio Gamponia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3435824A publication Critical patent/US3435824A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/1204Type of occlusion temporary occlusion
    • A61B17/12045Type of occlusion temporary occlusion double occlusion, e.g. during anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12136Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/12127Double occlusion, e.g. for creating blood-free anastomosis site

Definitions

  • This invention relates to surgical apparatus and techniques and more particularly to devices and processes useful in connection with heart surgery and types of surgery in which a portion of a blood circulatory system has to be by-passed.
  • a tube may be employed to by-pass the diseased section, the extremities of the tube being inserted through slits made in the vessels into the interior of the same thus constituting a shunt through which the blood flows. It is necessary, however, that the tube extremities be retained in position in the blood vessel so that the tube does not become detached during the operation. To this end it is known to retain the tube extremities in position by the use of tying sutures or surgical thread or the like around the vessels at positions whereat said extremities are internally located. This procedure is, however, time consuming and in addition may possibly traumatize the blood vessel due to a possibly overtight tying of the cord.
  • the invention involves the use of a tube, the extremities of which are encircled by an inflatable bladder or collar such that when the extremities are inserted into a vessel such bladder can be inflated to retain the extremities in position within the circulatory system.
  • the inflatable means will preferably be an integral part of the tube and a duct means may be provided which is also preferably integral with the tube and which leads to a branch by means of which a pressure medium can be introduced into the aforesaid bladder.
  • the pressure medium is preferably a liquid such as Water and the source of the same may take the form of a detachable syringe.
  • the syringe will be insertable into the aforesaid branch which preferably contains a one-way releasable valve which will retain the water in the bladder under pressure once the water has been inserted.
  • the tube structure of the invention is especially intended for use in connection with blood vessels or the like, such tube, as will be shown, will preferably be of a nature which is atraumatic to blood cells.
  • the tube will preferably be of a transparent material so that it is possible to determine visually when the tube is performing its shunting function. Other requirements for the tube and related structures will be indicated in greater detail hereinafter.
  • the initial step involves partially cutting through the circulatory or vessel system at positions located at opposite ends of the diseased section. Thereafter the extremities of the aforesaid tube are inserted into the thusly resulting cuts, the tube being so ice selected as to have a diameter closely matching the inner diameter of the vessel or vessels adjacent the cuts.
  • the bladder in each extremity is thereafter inflated with a pressure medium to an extent such that the extremities are retained in the system but with a pressure less than that which would cause the system to rupture. Further details in respect of this process will be discussed hereinafter.
  • a tubular system with a multiplicity of branches, some of which, or all of which, are provided with inflatable bladders or portions capable of retaining these extremities in position in a circulatory system.
  • FIGURE 1 diagrammatically illustrates a portion of a circulatory system in which a diseased portion thereof is shunted by a tubular shunt provided in accordance with the invention
  • FIGURE 2 is an enlarged view of one of the extremities of the tubular shunt taken along line II-1T of FIG. 1;
  • FIGURE 3 is a diagrammatic representation of a tubular system illustrative of a multi-branch system.
  • FIG. 1 is illustrated diagrammatically a heart 10 having a right auricle 12, a left auricle 14, a right ventricle 16 and a left ventricle 18.
  • the pulmonary artery 20 extends from the right ventricle to the exterior of the heart and branches into the right pulmonary artery 22 and left pulmonary artery 24.
  • the aorta 26 extends from the left ventricle and branching therefrom is the right innominate artery 28 which branches into the right subclaviclavian artery 30 and the right common carotid artery 32.
  • the left common carotid artery 34 branches from the aorta downstream of the aforesaid system as does the left subclaviclavian artery 36.
  • the inferior vena cava 38 and the superior vena cava 40 empties into the right auricle 12.
  • section S of the aorta 26 is diseased such as, for example, by an aneurysm requiring the application of surgical technique during which the section S must be temporarily by-passed.
  • incision is made into the aorta at the beginning of the operation and the extremities of a suitable tubular shunt will be inserted into the aorta through these slits or incisions and maintained in position by means of surgical thread or the like which is wrapped around the aorta and the tubular extremities accommodated therein to lock the latter in position.
  • FIGS. 1 and 2 appears a tubular shunt 42 constructed preferably of a transparent flexible material such as a plastic or a silicon rubber.
  • the outer diameter of such tube is preferably selected as to provide for a close fit within the aorta at those zones of the aorta whereat the slits for insertion are made.
  • the outer diameter should be preferably such that a free insertion of the tubular extremities into the aorta is possible without stretching the aorta and, more particularly, the outer diameter of the tube will preferably be about 87-98% of the inner diameter of the aorta in the zones of insertion.
  • the inner surface of the tubular shunt 42 is preferably siliconized to minimize trauma on the blood cells which will pass through the shunt.
  • the extremities of the tubular shunt 42 will be hereinafter identified as end portions 44 and 46, the latter being shown in enlarged scale in FIG. 2.
  • the wall thickness of the tubular shunt is of a continuous thickness T throughout with an exception which will be hereinafter explained and the bore 48 is also preferably of a continuous diameter extending without change axially throughout the entire tubular shunt.
  • the thickness T may preferably be in the order of 12 millimeters, although this may vary depending on the material, provided that the functions to be hereinafter enumerated are accomplished.
  • the end profile indicated at 50 of the tubular wall is preferably rounded in order to avoid injury to the blood vessel during insertion.
  • the wall thickness of the tube is reduced at 52 to define with an inflatable bladder 54 encircling the end portion of the tube an internal chamber 56.
  • Said chamber is connected with an internal duct 58- extending axially through the wall of the tubular shunt to a branch 60 through which a pressure medium can be introduced.
  • a valve 62 of conventional type which is a one-way valve which is releasable as will be explained.
  • a similar branch 64 is provided in respect of extremity 44 and if the system is a multibranch system, as will hereinafter be illustrated, additional inlets will also be provided.
  • the pressure medium employed in accordance with the invention is preferably sterile water or some other incompressible fluid.
  • the pressure medium may be stored, for example, in syringes 66 and 68 separately, although a single syringe can serve the purpose of providing the pressure medium for all bladders.
  • frangible capsules maybe substituted for the syringes to provide acompletely self-contained system.
  • syringes 66 and 68 are individually operated to force water by the respective valves into inlets 60 and 64.
  • inlet branch 60 by way of example, the water passes therefrom and via internal duct 58 into chamber 56 which, as aforesaid, is an annular chamber completely encircling end portion 46.
  • chamber 56 which, as aforesaid, is an annular chamber completely encircling end portion 46.
  • membrane 54 which bulges outwardly carrying the expandable blood vessel wall therewith thereby to constitute an enlargement which will prevent ready withdrawal of the shunt extremity from the vessel.
  • Expulsion of the pressure fluid is prevented by means of the aforesaid valves which, however, may be opened to release the pressure medium after the surgical process on diseased section S has been completed.
  • the duct means 58 noted above has been shown as being accommodated internally within the wall of the tubular shunt. It would also be possible to run a separate tube to the chamber 56, for example, by means of a separate but substantially smaller tube internally accommodated within the shunt.
  • the extent of the inflatable bladder structure noted above is, for example, up to /2 from the extremities of the shunt and the inlet branches 60 and 64 are preferably, for example, a minimum of about 1 from the ends of the tubular shunt and even more to facilitate manipulating the syringes. To this end the inlet branches 60 and 64 preferably extend a minimum of about 1 from the shunt.
  • the flexible material in the end portions and particularly in the area adjacent the inflatable bladder is of a thickness and strength which will be resistant to collapsing when the inflatable bladder is inflated. This will normally present no problem since the wall thickness at such zones will be decreased only very slightly to accommodate the membrane 54 which will be relatively thin in order to permit ready inflation.
  • the bladder at the end portions of the tubular shunt will be inflated to an extent that the end portions are effectively retained in the circulatory system but with a pressure of less than that which would cause the system to rupture.
  • a pressure of less than that which would cause the system to rupture For example, an inflation of the bladder with water under a pressure corresponding to about 2040 millimeters of mercury above atmospheric pressure is suflicient to accomplish the aforenoted purposes.
  • the end portions are inserted into the blood vessel a minimum of about this will be found satisfactory to permit the above-noted tubular shunt to operate effectively.
  • FIGURE 3 illustrates a multi-branch tubular shunt for insertion at three locations in a circulatory system.
  • Said shunt consists of a main tube 70 and two smaller branches 72 and 74. These tubular sections are respectively provided with inflatable bladders 76, 78 and and inlet branches 82, 84 and 86.
  • the entire structure may have an overall length of about 2 feet.
  • Bladder 76 may extend along tube 70 for about two centimeters whereas bladders 78 and 80 extend from their respective ends for about one centimeter.
  • Inlet branches 82, 84 and 86 are preferably tapered from a dimension to readily accommodate a syringe to a smaller diameter compatible with the size of the duct leading along the shunt wall to the aforesaid flexible bladders.
  • FIG. 3 is illustrative only of the nuerous variations and functions which the invention may provide inasmuch as tubular shunts have been designed inclusive of as many as seven end portions adapted for insertion at various zones in a circulatory system.
  • Surgical apparatus comprising a tube including at least two end portions adapted for insertion into spaced locations in a fluid carrying system, said tube and end portions being provided with a continuous axially disposed bore extending completely therethrough, and inflatable means connected to and encircling each of said end portions for retaining the end portions in said system after insertion into the same.
  • Apparatus as claimed in claim 1 comprising a duct means at least partly integral with said tube and coupled to said inflatable means, said duct means extending from the inflatable means to positions remote from the end portions so that an inflating medium can be transmitted to said inflatable means from positions external to the system.
  • Apparatus as claimed in claim 2 comprising a source of liquid detachably connectable with said duct means to supply liquid to said inflatable means to inflate the latter.
  • Apparatus as claimed in claim 3 for use with blood vessels wherein the tube is of a material which is atraumatic to blood cells and wherein the tube has a well the end profile of which is rounded.
  • said tube is of a flexible material having a thickness which is strong enough to resist collapsing when said inflatable means is inflated, said inflatable means including an annular ring of expandable material encircling each related end portion and extending along the tube for up to about one-half inch from the respective ends thereof, said duct means including branches branching from the tube at approximately one inch from the respective ends thereof, said branches including one-way releasable valves for enabling the insertion and retention of liquid for inflating said inflatable means, said branches further extending a minimum of about one inch from said tube.
  • a surgical process for by-passing a section of a blood vessel system comprising partially cutting through the vessel system at a position at least one end of said section, inserting into the thusly resulting cut the extremity of a tube having a diameter closely matching the inner diameter of the system adjacent said cut and which tube has an inflatable bladder encircling said extremity, and inflating said bladder with a pressure medium to an extent that said extremity is retained in the system but with a pressure of less than that which would cause the system to rupture.

Description

A ril 1, 1969 H. GAMPONIA 3,435,324
SURGICAL APPARATUS AND RELATED PROCESS Filed Oct. 27, 1966 Sheet 4 of 2 INVYUVTOR HERMHHO GAMPONM ATTORNEYS April 1969 H. GAMPONIA 3,435,824
SURGICAL APPARATUS AND RELATED PROCESS Filed Oct. 27, 1966 Sheet 2 of 2 HERMI NIO GAMPONIA ATTORNEYS United States Patent 3 435 824 SURGICAL APPARATUS AND RELATED PROCESS Herminio Gamponia, Flushing, N.Y. (668 Stratton St., Logan, W. Va. 25601) Filed Oct. 27, 1966, Ser. No. 590,079 Int. Cl. A61b 17/00, 19/00 U.S. Cl. 128-334 9 Claims This invention relates to surgical apparatus and techniques and more particularly to devices and processes useful in connection with heart surgery and types of surgery in which a portion of a blood circulatory system has to be by-passed.
If, by way of example, there is an aneurysm in an arterial vessel, surgical processes are known by means of which remedial measures will be effected. Such processes, however, require that the portion of the arterial vessel to be operated upon be temporarily by-passed so that the flow of blood can continue while the diseased situation is being corrected.
In accordance with known techniques a tube may be employed to by-pass the diseased section, the extremities of the tube being inserted through slits made in the vessels into the interior of the same thus constituting a shunt through which the blood flows. It is necessary, however, that the tube extremities be retained in position in the blood vessel so that the tube does not become detached during the operation. To this end it is known to retain the tube extremities in position by the use of tying sutures or surgical thread or the like around the vessels at positions whereat said extremities are internally located. This procedure is, however, time consuming and in addition may possibly traumatize the blood vessel due to a possibly overtight tying of the cord.
It is an object of the invention to provide techniques and structures for avoiding the above problem and particularly for maintaining the ends of a by-pass tube in position Within a circulatory system while at the same time avoiding the need for the external application of a cord or the like.
In achieving the above and other of its objectives, the invention involves the use of a tube, the extremities of which are encircled by an inflatable bladder or collar such that when the extremities are inserted into a vessel such bladder can be inflated to retain the extremities in position within the circulatory system.
The inflatable means will preferably be an integral part of the tube and a duct means may be provided which is also preferably integral with the tube and which leads to a branch by means of which a pressure medium can be introduced into the aforesaid bladder.
The pressure medium is preferably a liquid such as Water and the source of the same may take the form of a detachable syringe. The syringe will be insertable into the aforesaid branch which preferably contains a one-way releasable valve which will retain the water in the bladder under pressure once the water has been inserted.
Because the tube structure of the invention is especially intended for use in connection with blood vessels or the like, such tube, as will be shown, will preferably be of a nature which is atraumatic to blood cells. In addition, the tube will preferably be of a transparent material so that it is possible to determine visually when the tube is performing its shunting function. Other requirements for the tube and related structures will be indicated in greater detail hereinafter.
According to the surgical technique of using the aforesaid tubular structure, the initial step involves partially cutting through the circulatory or vessel system at positions located at opposite ends of the diseased section. Thereafter the extremities of the aforesaid tube are inserted into the thusly resulting cuts, the tube being so ice selected as to have a diameter closely matching the inner diameter of the vessel or vessels adjacent the cuts. The bladder in each extremity is thereafter inflated with a pressure medium to an extent such that the extremities are retained in the system but with a pressure less than that which would cause the system to rupture. Further details in respect of this process will be discussed hereinafter.
As a feature of the invention it is possible to construct a tubular system with a multiplicity of branches, some of which, or all of which, are provided with inflatable bladders or portions capable of retaining these extremities in position in a circulatory system.
The invention Will be more clearly understood from the following detailed description of some preferred embodiments thereof as illustrated in the accompanying drawing, in which:
FIGURE 1 diagrammatically illustrates a portion of a circulatory system in which a diseased portion thereof is shunted by a tubular shunt provided in accordance with the invention;
FIGURE 2 is an enlarged view of one of the extremities of the tubular shunt taken along line II-1T of FIG. 1; and
FIGURE 3 is a diagrammatic representation of a tubular system illustrative of a multi-branch system.
In FIG. 1 is illustrated diagrammatically a heart 10 having a right auricle 12, a left auricle 14, a right ventricle 16 and a left ventricle 18. The pulmonary artery 20 extends from the right ventricle to the exterior of the heart and branches into the right pulmonary artery 22 and left pulmonary artery 24. The aorta 26 extends from the left ventricle and branching therefrom is the right innominate artery 28 which branches into the right subclaviclavian artery 30 and the right common carotid artery 32. The left common carotid artery 34 branches from the aorta downstream of the aforesaid system as does the left subclaviclavian artery 36. The inferior vena cava 38 and the superior vena cava 40 empties into the right auricle 12.
It will now be assumed that the section S of the aorta 26 is diseased such as, for example, by an aneurysm requiring the application of surgical technique during which the section S must be temporarily by-passed. By means of one known technique, incision is made into the aorta at the beginning of the operation and the extremities of a suitable tubular shunt will be inserted into the aorta through these slits or incisions and maintained in position by means of surgical thread or the like which is wrapped around the aorta and the tubular extremities accommodated therein to lock the latter in position. It will be easily understood, however, that such an operation is time consuming and also unwieldy and furthermore may subject the aorta to a trauma due to the cutting or pinching action of the surgical cord. The invention avoids such difficulties by providing a more sophisticated locking arrangement involving inflatable balloons, bladders or collars as will next be explained with reference to both FIGS. 1 and 2.
In FIGS. 1 and 2 appears a tubular shunt 42 constructed preferably of a transparent flexible material such as a plastic or a silicon rubber. The outer diameter of such tube is preferably selected as to provide for a close fit within the aorta at those zones of the aorta whereat the slits for insertion are made. The outer diameter should be preferably such that a free insertion of the tubular extremities into the aorta is possible without stretching the aorta and, more particularly, the outer diameter of the tube will preferably be about 87-98% of the inner diameter of the aorta in the zones of insertion. The inner surface of the tubular shunt 42 is preferably siliconized to minimize trauma on the blood cells which will pass through the shunt.
The extremities of the tubular shunt 42 will be hereinafter identified as end portions 44 and 46, the latter being shown in enlarged scale in FIG. 2. The wall thickness of the tubular shunt is of a continuous thickness T throughout with an exception which will be hereinafter explained and the bore 48 is also preferably of a continuous diameter extending without change axially throughout the entire tubular shunt. The thickness T may preferably be in the order of 12 millimeters, although this may vary depending on the material, provided that the functions to be hereinafter enumerated are accomplished. The end profile indicated at 50 of the tubular wall is preferably rounded in order to avoid injury to the blood vessel during insertion.
The wall thickness of the tube is reduced at 52 to define with an inflatable bladder 54 encircling the end portion of the tube an internal chamber 56. Said chamber is connected with an internal duct 58- extending axially through the wall of the tubular shunt to a branch 60 through which a pressure medium can be introduced. At the outermost extremity of the branch 60 is provided a valve 62 of conventional type which is a one-way valve which is releasable as will be explained. A similar branch 64 is provided in respect of extremity 44 and if the system is a multibranch system, as will hereinafter be illustrated, additional inlets will also be provided.
The pressure medium employed in accordance with the invention is preferably sterile water or some other incompressible fluid. The pressure medium may be stored, for example, in syringes 66 and 68 separately, although a single syringe can serve the purpose of providing the pressure medium for all bladders. Similarly frangible capsules maybe substituted for the syringes to provide acompletely self-contained system.
When the ends of the tubular shunt are duly inserted in slits at opposite extremities of diseased section S, syringes 66 and 68 are individually operated to force water by the respective valves into inlets 60 and 64. Regarding inlet branch 60, by way of example, the water passes therefrom and via internal duct 58 into chamber 56 which, as aforesaid, is an annular chamber completely encircling end portion 46. This in turn causes an expansion of membrane 54 which bulges outwardly carrying the expandable blood vessel wall therewith thereby to constitute an enlargement which will prevent ready withdrawal of the shunt extremity from the vessel. Expulsion of the pressure fluid is prevented by means of the aforesaid valves which, however, may be opened to release the pressure medium after the surgical process on diseased section S has been completed.
The duct means 58 noted above has been shown as being accommodated internally within the wall of the tubular shunt. It would also be possible to run a separate tube to the chamber 56, for example, by means of a separate but substantially smaller tube internally accommodated within the shunt. The extent of the inflatable bladder structure noted above is, for example, up to /2 from the extremities of the shunt and the inlet branches 60 and 64 are preferably, for example, a minimum of about 1 from the ends of the tubular shunt and even more to facilitate manipulating the syringes. To this end the inlet branches 60 and 64 preferably extend a minimum of about 1 from the shunt.
The flexible material in the end portions and particularly in the area adjacent the inflatable bladder is of a thickness and strength which will be resistant to collapsing when the inflatable bladder is inflated. This will normally present no problem since the wall thickness at such zones will be decreased only very slightly to accommodate the membrane 54 which will be relatively thin in order to permit ready inflation.
The bladder at the end portions of the tubular shunt will be inflated to an extent that the end portions are effectively retained in the circulatory system but with a pressure of less than that which would cause the system to rupture. For example, an inflation of the bladder with water under a pressure corresponding to about 2040 millimeters of mercury above atmospheric pressure is suflicient to accomplish the aforenoted purposes. In addition, if the end portions are inserted into the blood vessel a minimum of about this will be found satisfactory to permit the above-noted tubular shunt to operate effectively.
When the operation on the diseased section is completed there is no necessity of untying the surgical cord of the prior art techniques. Instead it is only necessary to release the valves of the inlet branches. This will enable the bladder to deflate and the end portions of the shunt may be readily removed without interference. It is preferable that the upstream end of the shunt be removed first to avoid the unnecessary loss of blood.
FIGURE 3 illustrates a multi-branch tubular shunt for insertion at three locations in a circulatory system. Said shunt consists of a main tube 70 and two smaller branches 72 and 74. These tubular sections are respectively provided with inflatable bladders 76, 78 and and inlet branches 82, 84 and 86.
To give dimensional illustration of the structure of FIG. 3, the entire structure may have an overall length of about 2 feet. Bladder 76 may extend along tube 70 for about two centimeters whereas bladders 78 and 80 extend from their respective ends for about one centimeter. Inlet branches 82, 84 and 86 are preferably tapered from a dimension to readily accommodate a syringe to a smaller diameter compatible with the size of the duct leading along the shunt wall to the aforesaid flexible bladders.
The structure of FIG. 3 is illustrative only of the nuerous variations and functions which the invention may provide inasmuch as tubular shunts have been designed inclusive of as many as seven end portions adapted for insertion at various zones in a circulatory system.
There will now be obvious to those skilled in the art many modifications and wariations of the structures and techniques set forth hereinabove. Such modifications and variations will not, however, depart from the scope of the invention if defined by the following claims.
What is claimed is:
1. Surgical apparatus comprising a tube including at least two end portions adapted for insertion into spaced locations in a fluid carrying system, said tube and end portions being provided with a continuous axially disposed bore extending completely therethrough, and inflatable means connected to and encircling each of said end portions for retaining the end portions in said system after insertion into the same.
2. Apparatus as claimed in claim 1 comprising a duct means at least partly integral with said tube and coupled to said inflatable means, said duct means extending from the inflatable means to positions remote from the end portions so that an inflating medium can be transmitted to said inflatable means from positions external to the system.
3. Apparatus as claimed in claim 2 comprising a source of liquid detachably connectable with said duct means to supply liquid to said inflatable means to inflate the latter.
4. Apparatus as claimed in claim 3 for use with blood vessels wherein the tube is of a material which is atraumatic to blood cells and wherein the tube has a well the end profile of which is rounded.
5. Apparatus as claimed in claim 4 wherein said tube is of transparent material.
6. Apparatus as claimed in claim 4 wherein said tube is of a flexible material having a thickness which is strong enough to resist collapsing when said inflatable means is inflated, said inflatable means including an annular ring of expandable material encircling each related end portion and extending along the tube for up to about one-half inch from the respective ends thereof, said duct means including branches branching from the tube at approximately one inch from the respective ends thereof, said branches including one-way releasable valves for enabling the insertion and retention of liquid for inflating said inflatable means, said branches further extending a minimum of about one inch from said tube.
7. A surgical process for by-passing a section of a blood vessel system, said process comprising partially cutting through the vessel system at a position at least one end of said section, inserting into the thusly resulting cut the extremity of a tube having a diameter closely matching the inner diameter of the system adjacent said cut and which tube has an inflatable bladder encircling said extremity, and inflating said bladder with a pressure medium to an extent that said extremity is retained in the system but with a pressure of less than that which would cause the system to rupture.
8. A process as claimed in claim 7 wherein the tube 6 extremity is inserted into said system a minimum of about three-quarters of an inch.
9. A process as claimed in claim 8 wherein the bladder is inflated with water under a pressure corresponding to about 20-40 millimeters of mercury above atmospheric.
References Cited UNITED STATES PATENTS L. W. TRAPP, Primary Examiner.
US. Cl. 128-348

Claims (2)

1. SURGICAL APPARATUS COMPRISING A TUBE INCLUDING AT LEAST TWO END PORTIONS ADAPTED FOR INSERTION INTO SPACED LOCATIONS IN A FLUID CARRYING SYSTEM, SAID TUBE AND END PORTIONS BEING PROVIDED WITH A CONTINUOUS AXIALLY DISPOSED BORE EXTENDING COMPLETELY THERETHROUGH, AND INFLATABLE MEANS CONNECTED TO AND ENCIRCLING EACH OF SAID END PORTIONS FOR RETAINING THE END PORTIONS IN SAID SYSTEM AFTER INSERTION INTO THE SAME.
7. A SURGICAL PROCESS FOR BY-PASSING A SECTION-OF A BLOOD VESSEL SYSTEM, SAID PROCESS COMPRISING PARTIALLY CUTTING THROUGH THE VESSEL SYSTEM AT A POSITION AT LEAST ONE END OF SAID SECTION, INERTING INTO THE THUSLY RESULTING CUT THE EXTREMITY OF A TUBE HAVING A DIAMETER CLOSELY MATCHING THE INNER DIAMETER OF THE SYSTEM ADJACENT SAID CUT AND WHICH TUBE HAS AN INFLATABLE BLADDER ENCIRCLING SAID EXTREMITY, AND INFLATING SAID BLADDER WITH A PRESSURE MEDIUM TO AN EXTEND THAT SAID EXTREMITY IS RETAINED IN THE SYSTEM BUT WITH A PRESSURE OF LESS THAN THAT WHICH WOULD CAUSE THE SYSTEM TO RUPTURE.
US590079A 1966-10-27 1966-10-27 Surgical apparatus and related process Expired - Lifetime US3435824A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US59007966A 1966-10-27 1966-10-27

Publications (1)

Publication Number Publication Date
US3435824A true US3435824A (en) 1969-04-01

Family

ID=24360791

Family Applications (1)

Application Number Title Priority Date Filing Date
US590079A Expired - Lifetime US3435824A (en) 1966-10-27 1966-10-27 Surgical apparatus and related process

Country Status (1)

Country Link
US (1) US3435824A (en)

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516408A (en) * 1967-09-21 1970-06-23 Vincent L Montanti Arterial bypass
US3833940A (en) * 1971-11-17 1974-09-10 W Hartenbach Bile duct endoprothesis
US3937224A (en) * 1974-04-11 1976-02-10 Uecker Ronald L Colostomy catheter
US3991767A (en) * 1973-11-02 1976-11-16 Cutter Laboratories, Inc. Tubular unit with vessel engaging cuff structure
US4183102A (en) * 1977-09-08 1980-01-15 Jacques Guiset Inflatable prosthetic device for lining a body duct
US4323071A (en) * 1978-04-24 1982-04-06 Advanced Catheter Systems, Inc. Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
US4398907A (en) * 1981-07-02 1983-08-16 Crais Thomas F Multiple outlet microarterial bridge for digital replantation
US4592754A (en) * 1983-09-09 1986-06-03 Gupte Pradeep M Surgical prosthetic vessel graft and catheter combination and method
US4662885A (en) * 1985-09-03 1987-05-05 Becton, Dickinson And Company Percutaneously deliverable intravascular filter prosthesis
US4712551A (en) * 1986-10-14 1987-12-15 Rayhanabad Simon B Vascular shunt
US4714460A (en) * 1983-07-29 1987-12-22 Reynaldo Calderon Methods and systems for retrograde perfusion in the body for curing it of the disease or immume deficiency
US4721109A (en) * 1986-04-08 1988-01-26 Healey Maureen A Temporary anastomotic device
US4731055A (en) * 1986-08-25 1988-03-15 Becton, Dickinson And Company Blood flow conduit
US4753236A (en) * 1986-04-08 1988-06-28 Healey Maureen A Temporary anastomotic device
US4769029A (en) * 1987-06-19 1988-09-06 Patel Jayendrakumar I Prosthetic graft for arterial system repair
US4808164A (en) * 1987-08-24 1989-02-28 Progressive Angioplasty Systems, Inc. Catheter for balloon angioplasty
US4905693A (en) * 1983-10-03 1990-03-06 Biagio Ravo Surgical method for using an intraintestinal bypass graft
US4927413A (en) * 1987-08-24 1990-05-22 Progressive Angioplasty Systems, Inc. Catheter for balloon angioplasty
US4944745A (en) * 1988-02-29 1990-07-31 Scimed Life Systems, Inc. Perfusion balloon catheter
US4979937A (en) * 1987-12-22 1990-12-25 Khorasani Ahmad R Method and apparatus involving intercostal and lumbar perfusion
WO1991007927A1 (en) * 1989-12-01 1991-06-13 British Technology Group Plc Vascular surgical devices
US5129883A (en) * 1990-07-26 1992-07-14 Michael Black Catheter
US5267940A (en) * 1989-11-29 1993-12-07 The Administrators Of The Tulane Educational Fund Cardiovascular flow enhancer and method of operation
US5295962A (en) * 1992-04-29 1994-03-22 Cardiovascular Dynamics, Inc. Drug delivery and dilatation catheter
US5453084A (en) * 1993-05-19 1995-09-26 Moses; John A. Vascular graft with internal shunt
DE19508129A1 (en) * 1995-03-08 1996-09-12 Jan Dr Med Menke Blood flow restrictor with sleeve surrounding blood flow cross-section
US5569184A (en) * 1992-04-29 1996-10-29 Cardiovascular Dynamics, Inc. Delivery and balloon dilatation catheter and method of using
US5571167A (en) * 1991-07-03 1996-11-05 Maginot; Thomas J. Bypass grafting method
US5720735A (en) * 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
US5797959A (en) * 1995-09-21 1998-08-25 United States Surgical Corporation Surgical apparatus with articulating jaw structure
US5849036A (en) * 1996-03-29 1998-12-15 Zarate; Alfredo R. Vascular graft prosthesis
US5868764A (en) * 1996-12-12 1999-02-09 Cornell Research Foundation, Inc. Perfusion and occlusion device and method
US5876367A (en) * 1996-12-05 1999-03-02 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5879321A (en) * 1997-01-22 1999-03-09 The University Of Kentucky Research Foundation Portocaval-right atrial shunt
US5947919A (en) * 1997-05-28 1999-09-07 Heyer-Schulte Neurocare, Inc. Intraluminal shunt device
WO1999058068A3 (en) * 1998-05-13 2000-02-17 Salviac Ltd A surgical shunt
US6168623B1 (en) 1998-08-31 2001-01-02 Cardiothoracic Systems, Inc. Deformable conduits and methods for shunting bodily fluid during surgery
US6312462B1 (en) 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
US6322536B1 (en) 1998-03-06 2001-11-27 Cornell Research Foundation, Inc. Minimally invasive gene therapy delivery and method
US20020049467A1 (en) * 1997-11-07 2002-04-25 Paul Gilson Embolic protection system
US20020058900A1 (en) * 1999-03-31 2002-05-16 Barbut Denise R. Intravascular spinal perfusion and cooling for use during aortic surgery
US20020091409A1 (en) * 1999-07-30 2002-07-11 Sutton Gregg S. Vascular filter system for cardiopulmonary bypass
US20020091408A1 (en) * 1999-07-30 2002-07-11 Sutton Gregg S. Vascular filter system for carotid endarterectomy
US20020103501A1 (en) * 1999-02-12 2002-08-01 Pedro Diaz Low profile vascular filter system
US20030009189A1 (en) * 1997-11-07 2003-01-09 Salviac Limited Embolic protection device
US6508802B1 (en) 2000-05-23 2003-01-21 Cornell Research Foundation, Inc. Remote sensing gene therapy delivery device and method of administering a therapeutic solution to a heart
US20030032977A1 (en) * 1997-11-07 2003-02-13 Salviac Limited Filter element with retractable guidewire tip
US20030060844A1 (en) * 1999-02-12 2003-03-27 Thomas Borillo Vascular filter system
US20030130684A1 (en) * 2001-12-21 2003-07-10 Eamon Brady Support frame for an embolic protection device
US20030144687A1 (en) * 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US20030144688A1 (en) * 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US20030212429A1 (en) * 2002-03-05 2003-11-13 Martin Keegan Embolic protection system
US6669680B1 (en) * 1999-01-22 2003-12-30 John Macoviak Methods of maintaining selective flow within a vessel
US20040049213A1 (en) * 2001-02-21 2004-03-11 Terrence Buelna Anastomosis occlusion device
US6755846B1 (en) 1997-02-03 2004-06-29 Angioguard, Inc. Vascular filter
US20050131432A1 (en) * 2003-12-12 2005-06-16 Novare Surgical Systems, Inc. Device and method for performing multiple anastomoses
US6958074B2 (en) 2002-01-07 2005-10-25 Cordis Corporation Releasable and retrievable vascular filter system
US20060052803A1 (en) * 1991-07-03 2006-03-09 Maginot Thomas J Graft implant method
US7014647B2 (en) 1999-05-07 2006-03-21 Salviac Limited Support frame for an embolic protection device
US20060161173A1 (en) * 1991-07-03 2006-07-20 Maginot Thomas J Endoscopic bypass grafting method utilizing an inguinal approach
US7100617B1 (en) 1991-07-03 2006-09-05 Cardiothoracic Systems, Inc. Bypass grafting method
US20070198077A1 (en) * 2006-01-20 2007-08-23 Cully Edward H Device for rapid repair of body conduits
US20080167677A1 (en) * 1999-05-07 2008-07-10 Salviac Limited Filter element for embolic protection device
US7491215B2 (en) 1999-05-07 2009-02-17 Salviac Limited Filter element for embolic protection device
US20090177219A1 (en) * 2008-01-03 2009-07-09 Conlon Sean P Flexible tissue-penetration instrument with blunt tip assembly and methods for penetrating tissue
US20100249700A1 (en) * 2009-03-27 2010-09-30 Ethicon Endo-Surgery, Inc. Surgical instruments for in vivo assembly
US20110093009A1 (en) * 2009-10-16 2011-04-21 Ethicon Endo-Surgery, Inc. Otomy closure device
US8029504B2 (en) 2007-02-15 2011-10-04 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8939897B2 (en) 2007-10-31 2015-01-27 Ethicon Endo-Surgery, Inc. Methods for closing a gastrotomy
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9180033B2 (en) 2012-11-20 2015-11-10 Indiana University Research And Technology Corp. Intravascular shunt for traumatized arteries
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US20190105150A1 (en) * 2017-10-11 2019-04-11 Aquedeon Medical, Inc. Systems and methods for treatment of aortic dissection
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US20190374226A1 (en) * 2013-07-12 2019-12-12 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Perfusion device for treating an injured blood vessel
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2935068A (en) * 1955-08-04 1960-05-03 Donaldson John Shearman Surgical procedure and apparatus for use in carrying out the same
US3221746A (en) * 1963-01-25 1965-12-07 Noble John William Surgical connecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2935068A (en) * 1955-08-04 1960-05-03 Donaldson John Shearman Surgical procedure and apparatus for use in carrying out the same
US3221746A (en) * 1963-01-25 1965-12-07 Noble John William Surgical connecting device

Cited By (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516408A (en) * 1967-09-21 1970-06-23 Vincent L Montanti Arterial bypass
US3833940A (en) * 1971-11-17 1974-09-10 W Hartenbach Bile duct endoprothesis
US3991767A (en) * 1973-11-02 1976-11-16 Cutter Laboratories, Inc. Tubular unit with vessel engaging cuff structure
US3937224A (en) * 1974-04-11 1976-02-10 Uecker Ronald L Colostomy catheter
US4183102A (en) * 1977-09-08 1980-01-15 Jacques Guiset Inflatable prosthetic device for lining a body duct
US4323071A (en) * 1978-04-24 1982-04-06 Advanced Catheter Systems, Inc. Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
US4398907A (en) * 1981-07-02 1983-08-16 Crais Thomas F Multiple outlet microarterial bridge for digital replantation
US4714460A (en) * 1983-07-29 1987-12-22 Reynaldo Calderon Methods and systems for retrograde perfusion in the body for curing it of the disease or immume deficiency
US4592754A (en) * 1983-09-09 1986-06-03 Gupte Pradeep M Surgical prosthetic vessel graft and catheter combination and method
US4905693A (en) * 1983-10-03 1990-03-06 Biagio Ravo Surgical method for using an intraintestinal bypass graft
US4662885A (en) * 1985-09-03 1987-05-05 Becton, Dickinson And Company Percutaneously deliverable intravascular filter prosthesis
US4721109A (en) * 1986-04-08 1988-01-26 Healey Maureen A Temporary anastomotic device
US4753236A (en) * 1986-04-08 1988-06-28 Healey Maureen A Temporary anastomotic device
US4731055A (en) * 1986-08-25 1988-03-15 Becton, Dickinson And Company Blood flow conduit
US4712551A (en) * 1986-10-14 1987-12-15 Rayhanabad Simon B Vascular shunt
US4769029A (en) * 1987-06-19 1988-09-06 Patel Jayendrakumar I Prosthetic graft for arterial system repair
US4808164A (en) * 1987-08-24 1989-02-28 Progressive Angioplasty Systems, Inc. Catheter for balloon angioplasty
US4927413A (en) * 1987-08-24 1990-05-22 Progressive Angioplasty Systems, Inc. Catheter for balloon angioplasty
US4979937A (en) * 1987-12-22 1990-12-25 Khorasani Ahmad R Method and apparatus involving intercostal and lumbar perfusion
US4944745A (en) * 1988-02-29 1990-07-31 Scimed Life Systems, Inc. Perfusion balloon catheter
WO1992005815A1 (en) * 1989-10-02 1992-04-16 Ahmad Rajaii Khorasani Method and apparatus involving intercostal and lumbar perfusion
US5267940A (en) * 1989-11-29 1993-12-07 The Administrators Of The Tulane Educational Fund Cardiovascular flow enhancer and method of operation
US5330528A (en) * 1989-12-01 1994-07-19 British Technology Group Limited Vascular surgical devices
WO1991007927A1 (en) * 1989-12-01 1991-06-13 British Technology Group Plc Vascular surgical devices
US5129883A (en) * 1990-07-26 1992-07-14 Michael Black Catheter
US20060225747A1 (en) * 1991-07-03 2006-10-12 Maginot Thomas J Vessel grafting method
US7033383B1 (en) 1991-07-03 2006-04-25 Cardiothoracic Systems, Inc. Endoscopic bypass grafting method utilizing an inguinal approach
US20070129662A1 (en) * 1991-07-03 2007-06-07 Maginot Thomas J Bypass Grafting System and Apparatus
US7597697B1 (en) * 1991-07-03 2009-10-06 Boston Scientific Scimed, Inc. Bypass grafting method
US7100617B1 (en) 1991-07-03 2006-09-05 Cardiothoracic Systems, Inc. Bypass grafting method
US20060161173A1 (en) * 1991-07-03 2006-07-20 Maginot Thomas J Endoscopic bypass grafting method utilizing an inguinal approach
US5571167A (en) * 1991-07-03 1996-11-05 Maginot; Thomas J. Bypass grafting method
US7753946B2 (en) 1991-07-03 2010-07-13 Boston Scientific Scimed, Inc. Bypass grafting system and apparatus
US5749375A (en) * 1991-07-03 1998-05-12 Maginot; Thomas J. Method for implanting an end portion of a graft within the body of a patient during a bypass grafting procedure
US20060052803A1 (en) * 1991-07-03 2006-03-09 Maginot Thomas J Graft implant method
US5934286A (en) * 1991-07-03 1999-08-10 Maginot Vascular Systems Bypass grafting method which uses a number of balloon catheters to inhibit blood flow to an anastomosis site
US6599313B1 (en) 1991-07-03 2003-07-29 Cardiothoracic Systems, Inc. Extravascular bypass grafting method utilizing an intravascular approach
US6401721B1 (en) 1991-07-03 2002-06-11 Cardiothoracic Systems, Inc. Endoscopic bypass grafting method utilizing an inguinal approach
US5979455A (en) * 1991-07-03 1999-11-09 Maginot Vascular Systems Method for directing blood flow in the body of a patient with a graft and stent assembly
US5569184A (en) * 1992-04-29 1996-10-29 Cardiovascular Dynamics, Inc. Delivery and balloon dilatation catheter and method of using
US5368566A (en) * 1992-04-29 1994-11-29 Cardiovascular Dynamics, Inc. Delivery and temporary stent catheter having a reinforced perfusion lumen
US5295962A (en) * 1992-04-29 1994-03-22 Cardiovascular Dynamics, Inc. Drug delivery and dilatation catheter
US5421826A (en) * 1992-04-29 1995-06-06 Cardiovascular Dynamics, Inc. Drug delivery and dilatation catheter having a reinforced perfusion lumen
US5453084A (en) * 1993-05-19 1995-09-26 Moses; John A. Vascular graft with internal shunt
DE19508129A1 (en) * 1995-03-08 1996-09-12 Jan Dr Med Menke Blood flow restrictor with sleeve surrounding blood flow cross-section
US5797959A (en) * 1995-09-21 1998-08-25 United States Surgical Corporation Surgical apparatus with articulating jaw structure
US5849036A (en) * 1996-03-29 1998-12-15 Zarate; Alfredo R. Vascular graft prosthesis
EP1014868A4 (en) * 1996-12-05 2001-02-28 Embol X Inc Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
EP1014868A1 (en) * 1996-12-05 2000-07-05 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US6074357A (en) * 1996-12-05 2000-06-13 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5876367A (en) * 1996-12-05 1999-03-02 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US6551268B1 (en) 1996-12-05 2003-04-22 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US6689084B2 (en) 1996-12-05 2004-02-10 Edwards Lifescience Corporation Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5868764A (en) * 1996-12-12 1999-02-09 Cornell Research Foundation, Inc. Perfusion and occlusion device and method
US5879321A (en) * 1997-01-22 1999-03-09 The University Of Kentucky Research Foundation Portocaval-right atrial shunt
US6755846B1 (en) 1997-02-03 2004-06-29 Angioguard, Inc. Vascular filter
US5720735A (en) * 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
US5947919A (en) * 1997-05-28 1999-09-07 Heyer-Schulte Neurocare, Inc. Intraluminal shunt device
US20110125182A1 (en) * 1997-11-07 2011-05-26 Salviac Limited Filter element with retractable guidewire tip
US20070162070A1 (en) * 1997-11-07 2007-07-12 Salviac Limited Embolic protection device
US7491216B2 (en) 1997-11-07 2009-02-17 Salviac Limited Filter element with retractable guidewire tip
US8241319B2 (en) 1997-11-07 2012-08-14 Salviac Limited Embolic protection system
US20030032977A1 (en) * 1997-11-07 2003-02-13 Salviac Limited Filter element with retractable guidewire tip
US8328842B2 (en) 1997-11-07 2012-12-11 Salviac Limited Filter element with retractable guidewire tip
US8226678B2 (en) 1997-11-07 2012-07-24 Salviac Limited Embolic protection device
US20030187474A1 (en) * 1997-11-07 2003-10-02 Martin Keegan Embolic protection system
US8221448B2 (en) 1997-11-07 2012-07-17 Salviac Limited Embolic protection device
US20090099593A1 (en) * 1997-11-07 2009-04-16 Salviac Limited Embolic protection device
US20030009189A1 (en) * 1997-11-07 2003-01-09 Salviac Limited Embolic protection device
US20040039411A1 (en) * 1997-11-07 2004-02-26 Paul Gilson Embolic protection device
US8216270B2 (en) 1997-11-07 2012-07-10 Salviac Limited Embolic protection device
US20040073198A1 (en) * 1997-11-07 2004-04-15 Salviac Limited Embolic protection device
US20080188884A1 (en) * 1997-11-07 2008-08-07 Salviac Limited Embolic protection device
US20040127934A1 (en) * 1997-11-07 2004-07-01 Salviac Limited Embolic protection system
US20090143814A1 (en) * 1997-11-07 2009-06-04 Salviac Limited Embolic protection device
US20070282369A1 (en) * 1997-11-07 2007-12-06 Salviac Limited Embolic protection device
US8123776B2 (en) 1997-11-07 2012-02-28 Salviac Limited Embolic protection system
US8057504B2 (en) 1997-11-07 2011-11-15 Salviac Limited Embolic protection device
US8052716B2 (en) 1997-11-07 2011-11-08 Salviac Limited Embolic protection system
US20050228437A1 (en) * 1997-11-07 2005-10-13 Salviac Limited Embolic protection system
US20050234502A1 (en) * 1997-11-07 2005-10-20 Paul Gilson Embolic protection system
US7972352B2 (en) 1997-11-07 2011-07-05 Salviac Limited Embolic protection system
US8430901B2 (en) 1997-11-07 2013-04-30 Salviac Limited Embolic protection device
US20050283184A1 (en) * 1997-11-07 2005-12-22 Salviac Limited Embolic protection device
US20060004403A1 (en) * 1997-11-07 2006-01-05 Salviac Limited Embolic protection system
US20070250107A1 (en) * 1997-11-07 2007-10-25 Salviac Limited Embolic protection system
US8603131B2 (en) 1997-11-07 2013-12-10 Salviac Limited Embolic protection device
US7901426B2 (en) 1997-11-07 2011-03-08 Salviac Limited Embolic protection device
US20060074446A1 (en) * 1997-11-07 2006-04-06 Paul Gilson Embolic protection system
US20070244505A1 (en) * 1997-11-07 2007-10-18 Abbott Laboratories Embolic protection device
US20060089663A1 (en) * 1997-11-07 2006-04-27 Salviac Limited Embolic protection device
US7901427B2 (en) 1997-11-07 2011-03-08 Salviac Limited Filter element with retractable guidewire tip
US20110054516A1 (en) * 1997-11-07 2011-03-03 Salviac Limited Embolic protection method
US7846176B2 (en) 1997-11-07 2010-12-07 Salviac Limited Embolic protection system
US20060129182A1 (en) * 1997-11-07 2006-06-15 Salviac Limited Embolic protection device
US7510565B2 (en) 1997-11-07 2009-03-31 Salviac Limited Embolic protection device
US20020049467A1 (en) * 1997-11-07 2002-04-25 Paul Gilson Embolic protection system
US20070239200A1 (en) * 1997-11-07 2007-10-11 Abbott Laboratories Embolic protection device
US20060259069A1 (en) * 1997-11-07 2006-11-16 Salviac Limited Embolic protection device
US7842063B2 (en) 1997-11-07 2010-11-30 Salviac Limited Embolic protection device
US20060293704A1 (en) * 1997-11-07 2006-12-28 Salviac Limited Embolic protection device
US20070005096A1 (en) * 1997-11-07 2007-01-04 Salviac Limited Embolic protection system
US7842066B2 (en) 1997-11-07 2010-11-30 Salviac Limited Embolic protection system
US20070106322A1 (en) * 1997-11-07 2007-05-10 Salviac Limited Embolic protection device
US8852226B2 (en) 1997-11-07 2014-10-07 Salviac Limited Vascular device for use during an interventional procedure
US7837701B2 (en) 1997-11-07 2010-11-23 Salviac Limited Embolic protection device
US7833242B2 (en) 1997-11-07 2010-11-16 Salviac Limited Embolic protection device
US20070233181A1 (en) * 1997-11-07 2007-10-04 Abbott Laboratories Embolic protection device
US20070162069A1 (en) * 1997-11-07 2007-07-12 Salviac Limited Embolic protection device
US20070173883A1 (en) * 1997-11-07 2007-07-26 Martin Keegan Embolic protection system
US20070173884A1 (en) * 1997-11-07 2007-07-26 Salviac Limited Embolic protection device
US7785342B2 (en) 1997-11-07 2010-08-31 Salviac Limited Embolic protection device
US7780697B2 (en) 1997-11-07 2010-08-24 Salviac Limited Embolic protection system
US7662165B2 (en) 1997-11-07 2010-02-16 Salviac Limited Embolic protection device
US6322536B1 (en) 1998-03-06 2001-11-27 Cornell Research Foundation, Inc. Minimally invasive gene therapy delivery and method
WO1999058068A3 (en) * 1998-05-13 2000-02-17 Salviac Ltd A surgical shunt
US6168623B1 (en) 1998-08-31 2001-01-02 Cardiothoracic Systems, Inc. Deformable conduits and methods for shunting bodily fluid during surgery
US6562048B1 (en) 1998-08-31 2003-05-13 Thomas J. Fogarty Deformable conduits and methods for shunting bodily fluid during surgery
US6669680B1 (en) * 1999-01-22 2003-12-30 John Macoviak Methods of maintaining selective flow within a vessel
US20030060844A1 (en) * 1999-02-12 2003-03-27 Thomas Borillo Vascular filter system
US6991641B2 (en) 1999-02-12 2006-01-31 Cordis Corporation Low profile vascular filter system
US7399308B2 (en) 1999-02-12 2008-07-15 Cordis Corporation Vascular filter system
US20020103501A1 (en) * 1999-02-12 2002-08-01 Pedro Diaz Low profile vascular filter system
US20020058900A1 (en) * 1999-03-31 2002-05-16 Barbut Denise R. Intravascular spinal perfusion and cooling for use during aortic surgery
US20050070838A1 (en) * 1999-03-31 2005-03-31 Coaxia, Inc. Intravascular spinal perfusion and cooling for use during aortic surgery
US6817985B2 (en) * 1999-03-31 2004-11-16 Coaxia, Inc. Intravascular spinal perfusion and cooling for use during aortic surgery
US20030144687A1 (en) * 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US8002790B2 (en) 1999-05-07 2011-08-23 Salviac Limited Support frame for an embolic protection device
US7491215B2 (en) 1999-05-07 2009-02-17 Salviac Limited Filter element for embolic protection device
US20080167677A1 (en) * 1999-05-07 2008-07-10 Salviac Limited Filter element for embolic protection device
US20090149881A1 (en) * 1999-05-07 2009-06-11 Salviac Limited Filter element for embolic protection device
US6918921B2 (en) 1999-05-07 2005-07-19 Salviac Limited Support frame for an embolic protection device
US6964672B2 (en) 1999-05-07 2005-11-15 Salviac Limited Support frame for an embolic protection device
US7014647B2 (en) 1999-05-07 2006-03-21 Salviac Limited Support frame for an embolic protection device
US20060122645A1 (en) * 1999-05-07 2006-06-08 Salviac Limited Support frame for an embolic protection device
US20060122644A1 (en) * 1999-05-07 2006-06-08 Salviac Limited Support frame for an embolic protection device
US20030144688A1 (en) * 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US7799051B2 (en) 1999-05-07 2010-09-21 Salviac Limited Support frame for an embolic protection device
US7229463B2 (en) 1999-07-30 2007-06-12 Angioguard, Inc. Vascular filter system for cardiopulmonary bypass
US7229462B2 (en) 1999-07-30 2007-06-12 Angioguard, Inc. Vascular filter system for carotid endarterectomy
US20020091409A1 (en) * 1999-07-30 2002-07-11 Sutton Gregg S. Vascular filter system for cardiopulmonary bypass
US20020091408A1 (en) * 1999-07-30 2002-07-11 Sutton Gregg S. Vascular filter system for carotid endarterectomy
US6312462B1 (en) 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
US6508802B1 (en) 2000-05-23 2003-01-21 Cornell Research Foundation, Inc. Remote sensing gene therapy delivery device and method of administering a therapeutic solution to a heart
US20040049213A1 (en) * 2001-02-21 2004-03-11 Terrence Buelna Anastomosis occlusion device
US7537599B2 (en) 2001-02-21 2009-05-26 Novare Surgical Systems, Inc. Anastomosis occlusion device
US6953464B2 (en) 2001-02-21 2005-10-11 Novare Surgical Systems, Inc. Anastomosis occlusion device
US20070233180A1 (en) * 2001-12-21 2007-10-04 Abbott Laboratories Support frame for an embolic protection device
US7927349B2 (en) 2001-12-21 2011-04-19 Salviac Limited Support frame for an embolic protection device
US20070233179A1 (en) * 2001-12-21 2007-10-04 Abbott Laboratories Support frame for an embolic protection device
US7037320B2 (en) 2001-12-21 2006-05-02 Salviac Limited Support frame for an embolic protection device
US8114115B2 (en) 2001-12-21 2012-02-14 Salviac Limited Support frame for an embolic protection device
US20070233183A1 (en) * 2001-12-21 2007-10-04 Abbott Laboratories Support frame for an embolic protection device
US20030130684A1 (en) * 2001-12-21 2003-07-10 Eamon Brady Support frame for an embolic protection device
US6958074B2 (en) 2002-01-07 2005-10-25 Cordis Corporation Releasable and retrievable vascular filter system
US20070244504A1 (en) * 2002-03-05 2007-10-18 Salviac Limited Embolic protection system
US20030212429A1 (en) * 2002-03-05 2003-11-13 Martin Keegan Embolic protection system
US7144408B2 (en) 2002-03-05 2006-12-05 Salviac Limited Embolic protection system
US20070060946A1 (en) * 2002-03-05 2007-03-15 Salviac Limited Embolic protection system
US9259224B2 (en) 2003-12-12 2016-02-16 Vitalitec International, Inc. Device and method for performing multiple anastomoses
US8080023B2 (en) 2003-12-12 2011-12-20 Vitalitec International, Inc. Device and method for performing multiple anastomoses
US20050131432A1 (en) * 2003-12-12 2005-06-16 Novare Surgical Systems, Inc. Device and method for performing multiple anastomoses
US9375215B2 (en) 2006-01-20 2016-06-28 W. L. Gore & Associates, Inc. Device for rapid repair of body conduits
US20110230951A1 (en) * 2006-01-20 2011-09-22 Cully Edward H Device for rapid repair of body conduits
US9381018B2 (en) 2006-01-20 2016-07-05 W. L. Gore & Associates, Inc. Device for rapid repair of body conduits
US10357352B2 (en) 2006-01-20 2019-07-23 W. L. Gore & Associates, Inc. Device for rapid repair of body conduits
US20070198077A1 (en) * 2006-01-20 2007-08-23 Cully Edward H Device for rapid repair of body conduits
US9375268B2 (en) 2007-02-15 2016-06-28 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8029504B2 (en) 2007-02-15 2011-10-04 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8449538B2 (en) 2007-02-15 2013-05-28 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8425505B2 (en) 2007-02-15 2013-04-23 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US10478248B2 (en) 2007-02-15 2019-11-19 Ethicon Llc Electroporation ablation apparatus, system, and method
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US8939897B2 (en) 2007-10-31 2015-01-27 Ethicon Endo-Surgery, Inc. Methods for closing a gastrotomy
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US20090177219A1 (en) * 2008-01-03 2009-07-09 Conlon Sean P Flexible tissue-penetration instrument with blunt tip assembly and methods for penetrating tissue
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US11399834B2 (en) 2008-07-14 2022-08-02 Cilag Gmbh International Tissue apposition clip application methods
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US10105141B2 (en) 2008-07-14 2018-10-23 Ethicon Endo-Surgery, Inc. Tissue apposition clip application methods
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US10314603B2 (en) 2008-11-25 2019-06-11 Ethicon Llc Rotational coupling device for surgical instrument with flexible actuators
US9220526B2 (en) 2008-11-25 2015-12-29 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US9011431B2 (en) 2009-01-12 2015-04-21 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US10004558B2 (en) 2009-01-12 2018-06-26 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US20100249700A1 (en) * 2009-03-27 2010-09-30 Ethicon Endo-Surgery, Inc. Surgical instruments for in vivo assembly
US20110093009A1 (en) * 2009-10-16 2011-04-21 Ethicon Endo-Surgery, Inc. Otomy closure device
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US10098691B2 (en) 2009-12-18 2018-10-16 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US10278761B2 (en) 2011-02-28 2019-05-07 Ethicon Llc Electrical ablation devices and methods
US10258406B2 (en) 2011-02-28 2019-04-16 Ethicon Llc Electrical ablation devices and methods
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9883910B2 (en) 2011-03-17 2018-02-06 Eticon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US10206709B2 (en) 2012-05-14 2019-02-19 Ethicon Llc Apparatus for introducing an object into a patient
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US11284918B2 (en) 2012-05-14 2022-03-29 Cilag GmbH Inlernational Apparatus for introducing a steerable camera assembly into a patient
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9788888B2 (en) 2012-07-03 2017-10-17 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US10492880B2 (en) 2012-07-30 2019-12-03 Ethicon Llc Needle probe guide
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9788885B2 (en) 2012-08-15 2017-10-17 Ethicon Endo-Surgery, Inc. Electrosurgical system energy source
US10342598B2 (en) 2012-08-15 2019-07-09 Ethicon Llc Electrosurgical system for delivering a biphasic waveform
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9180033B2 (en) 2012-11-20 2015-11-10 Indiana University Research And Technology Corp. Intravascular shunt for traumatized arteries
US9398965B2 (en) 2012-11-20 2016-07-26 Indiana University Research And Technology Corporation Intravascular shunt for traumatized arteries
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US11484191B2 (en) 2013-02-27 2022-11-01 Cilag Gmbh International System for performing a minimally invasive surgical procedure
US20190374226A1 (en) * 2013-07-12 2019-12-12 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Perfusion device for treating an injured blood vessel
US11737760B2 (en) * 2013-07-12 2023-08-29 University of Pittsburgh—of the Commonwealth System of Higher Education Perfusion device for treating an injured blood vessel
US20190105150A1 (en) * 2017-10-11 2019-04-11 Aquedeon Medical, Inc. Systems and methods for treatment of aortic dissection

Similar Documents

Publication Publication Date Title
US3435824A (en) Surgical apparatus and related process
US4290428A (en) Catheter with bulb
US4577631A (en) Aneurysm repair apparatus and method
US5423745A (en) Irregular surface balloon catheters for body passageways and methods of use
US5312344A (en) Arterial perfusion cannula for extracorporeal circulation and other uses
US5484412A (en) Angioplasty method and means for performing angioplasty
US3516408A (en) Arterial bypass
US4183102A (en) Inflatable prosthetic device for lining a body duct
CA1255566A (en) Balloon catheter
US5788708A (en) Multiple balloon stent delivery catheter and method
US3049125A (en) Nose packing device
US5330528A (en) Vascular surgical devices
US4581017A (en) Catheter systems
US6248121B1 (en) Blood vessel occlusion device
US3504662A (en) Intra-arterial blood pump
US2173527A (en) Catheter or drainage tube
US5707358A (en) Dual concentric balloon catheter for retrograde cardioplegia perfusion
US3211152A (en) Safety endotracheal tube cuff
JPS58500644A (en) double balloon catheter
US20080319415A1 (en) Balloon Angioplasty Device with Distal Protection Capability
GB2190592A (en) Atraumatic vascular balloon clamp
JP2007518450A5 (en)
JPH0347872B2 (en)
JPS63177868A (en) Expansible catheter
CN102256659A (en) Medical device, method and system for temporary occlusion of an opening in a lumen of a body