US20140042470A1 - Method of making light emitting device and light emitting device made thereof - Google Patents

Method of making light emitting device and light emitting device made thereof Download PDF

Info

Publication number
US20140042470A1
US20140042470A1 US13/570,558 US201213570558A US2014042470A1 US 20140042470 A1 US20140042470 A1 US 20140042470A1 US 201213570558 A US201213570558 A US 201213570558A US 2014042470 A1 US2014042470 A1 US 2014042470A1
Authority
US
United States
Prior art keywords
light
emitting
electrode
layer
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/570,558
Inventor
Ming-Chi Hsu
Chih-Ming Wang
Chien-Yuan Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to US13/570,558 priority Critical patent/US20140042470A1/en
Assigned to EPISTAR CORPORATION reassignment EPISTAR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, CHIH-MING, HSU, MING-CHI, WANG, CHIEN-YUAN
Priority to TW102128579A priority patent/TWI607584B/en
Priority to CN201310347194.8A priority patent/CN103579465B/en
Publication of US20140042470A1 publication Critical patent/US20140042470A1/en
Priority to US14/678,700 priority patent/US9543464B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present disclosure relates to a method of making a light-emitting device, and in particular to a method comprising forming a protection layer on each of light-emitting units on a single wafer.
  • the light-emitting diodes (LEDs) of the solid-state lighting elements have the characteristics of low power consumption, low heat generation, long operational life, shockproof, small volume, quick response and good opto-electrical property like light emission with a stable wavelength, so the LEDs have been widely used in household appliances, indicator light of instruments, and opto-electrical products, etc.
  • a phosphor material is widely used on blue LEDs to generate a white light LED.
  • blue LEDs have different emission wavelengths and optical powers, it is difficult to obtain a desired CIE coordinate for each blue LEDs on a single wafer.
  • the white light LED can be further connected to other components in order to form a light emitting apparatus.
  • the white light LED may be mounted onto a submount with the side of the substrate, or a solder bump or a glue material may be formed between the submount and the white light LED, therefore a light-emitting apparatus is formed.
  • the submount further comprises the circuit layout electrically connected to the electrode of the white light LED.
  • the present disclosure provides a method of making a light-emitting device and a light-emitting device made thereof.
  • the method of making a light-emitting device comprises: forming a plurality of light-emitting chips, wherein each of the light-emitting chips comprising an epitaxial structure and an electrode formed on the epitaxial structure; forming a protection layer on the electrode in each of the light-emitting chips; forming a plurality of light-emitting groups by collecting the light-emitting chips, wherein each of the light-emitting groups having substantially the same opto-electrical characteristics; forming a wavelength converted layer in each of the light-emitting groups to cover the epitaxial structure and the protection layer; and removing the wavelength converted layer on the protection layer to expose the protection layer.
  • the present disclosure also provides a light-emitting device.
  • the light-emitting device comprises: a substrate; a substrate; a light-emitting stack formed on the substrate and having a top region; a wavelength converted layer formed on the light-emitting stack and has a first portion covering on the top region of the light-emitting stack and a second portion protruding from the first portion with a first distance.
  • the present disclosure also provides a light-emitting device.
  • the light-emitting device comprises: a substrate having a top surface, a bottom surface, and four side regions between the top and bottom surfaces; a light-emitting stack on the top surface of the substrate and having a top region; a metal bump electrically couple to the light-emitting stack; and a wavelength converted layer formed on the four side regions and the top region of the light-emitting stack without covering the metal bump.
  • FIGS. 1A to 1K are cross-sectional views showing a method of making a light-emitting device in accordance with the first embodiment of the present disclosure.
  • FIG. 2A shows a chromaticity diagram showing emission characteristics of the light-emitting device in accordance with the present disclosure.
  • FIG. 2B is a chromaticity diagram showing a black body curve.
  • FIG. 3A is a plan view of a light-emitting device made by the method in accordance with the first embodiment of the present disclosure.
  • FIG. 3B is a cross-sectional view of the light-emitting device, taken along line AA′ of FIG. 3A .
  • FIG. 4 is a cross-sectional view of a light-emitting device made by the method in accordance with a second embodiment of the present disclosure.
  • FIGS. 1A to 1K disclose a method of making a plurality of light-emitting devices 100 according to one embodiment of the present disclosure.
  • a plurality of light-emitting units 20 are formed on a single wafer 10 .
  • Each of the light-emitting units 20 comprises an epitaxial structure 201 and a pair of electrodes 202 formed on the epitaxial structure 201 .
  • a horizontal-type light-emitting unit is shown, but a vertical-type light-emitting unit or other type can be included therein.
  • a trench 30 is formed in the single wafer 10 between two adjacent light-emitting units 20 and the single wafer 10 is thinned to form a thinned wafer 10 ′.
  • a protection layer 40 is formed on and covers entirely the light-emitting units 20 .
  • the protection layer 40 is a photoresist.
  • the photoresist is exposed using a mask 50 such that the photoresist on the electrode 202 is modified like being hardened and remained after subsequent developing process.
  • the light-emitting units 20 are separated along the trench 30 into a plurality of light-emitting chips 21 .
  • Each of the light-emitting chips 21 has the modified photoresist 401 on the electrodes 202 .
  • the light-emitting chips 21 are classified (or sorted or collected) into a plurality of light-emitting groups 22 such that each of the light-emitting groups 22 comprises the light-emitting chips 21 having at least one substantially the same emission wavelength, substantially the same optical power and substantially the same forward voltage.
  • a difference of the emission wavelength between the light-emitting chips 21 in each of the light-emitting groups 22 is smaller than 10 nm, a difference of the optical power between the light-emitting chips 21 in each of the light-emitting groups 22 is not greater than 10% and a difference of the forward voltage in each of the light-emitting groups 22 is less than 0.4 V.
  • One of the light-emitting group 22 is shown in FIG. 1F and the light-emitting group 22 is attached to a temporary substrate 11 . It is noted that the light-emitting group 22 comprises the light-emitting chips 21 from the same wafer.
  • the light-emitting group 22 can comprise light-emitting chips from different wafers while the light-emitting chips 21 have the same opto-electrical characteristics.
  • the non-modified photoresist is removed and the modified photoresist 401 is left on the electrodes 202 .
  • a wavelength converted layer 60 is formed to cover entirely and conformally the light-emitting chips 21 comprising the modified photoresist 401 and the epitaxial structure 201 .
  • the wavelength converted layer 60 is used for converting the light generated from the light-emitting chip 21 into a converted light having a wavelength different from the wavelength of the light emitting from the light-emitting chip 21 .
  • the converted light is mixed with the light generated from the light-emitting chip 21 to obtain a white light or other color light.
  • the wavelength converted layer 60 on the modified photoresist 401 is removed to expose the modified photoresist 401 .
  • the wavelength converted layer 60 is removed by gridding (polishing) or tape lift-off.
  • the modified photoresist 401 is further removed to expose the electrodes 202 .
  • the modified photoresist 401 is removed by a solvent such as acetone or N-Methyl-2-Pyrrolidone (NMP).
  • NMP N-Methyl-2-Pyrrolidone
  • the wavelength converted layer 60 on the temporary substrate 11 between two adjacent ones of the light-emitting chips 21 is separated by laser or diamond blade.
  • the temporary substrate 11 is removed from the light-emitting chips 21 and the light-emitting chip 21 is mounted on a carrier (not shown).
  • the wavelength converted layer 60 on the temporary substrate 11 can be separated prior to removal of the modified photoresist 401 .
  • a metal bump (not shown) is further formed on the electrodes 202 for electrically connecting with an external power source (not shown) through wires.
  • the protection layer is an electroplated metal layer (such as copper or nickel) and therefore the wires are electrically coupled with the electrodes through the protection layer without removing the protection layer.
  • the protection layer has a height ranging from 30 ⁇ m to 150 ⁇ m.
  • FIG. 2A shows a CIE 1931 chromaticity diagram.
  • FIG. 2B shows the blackbody curve 701 , and there are seven color temperature regions (7-step MacAdam ellipse) (only three color temperature regions are shown in FIGS. 2A and 2B ), and the center point (for example, 5000K, 5700K, 6500K) of each of the seven color temperature regions is near the blackbody curve 701 .
  • Each of the color temperature regions is defined by four CIE points to form a quadrangle (shown in Table 1).
  • the light generated by the light-emitting chip is mixed with the converted light converted by the wavelength converted layer to generate a white light having a CIE coordinate within the seven color temperature regions.
  • the light-emitting groups since each of the light-emitting groups has different emission wavelength, the light-emitting groups are required to be covered by different wavelength converted layers emitting different light that each light can be defined by a CIE coordinate, thereby obtaining white light within one color temperature region.
  • the light converted by different wavelength converted layers can have different main emission peak wavelength while having the same CIE coordinate.
  • a first light-emitting group comprises the light-emitting chips having a main emission wavelength of about 450 nm
  • a second light-emitting group comprises the light-emitting chips having a main emission wavelength of about 460 nm
  • the first and the second white light have a CIE coordinate in the same color temperature region (for example, the region having a center point of 6500k).
  • the first wavelength converted layer with the first CIE coordinate has a main emission peak wavelength of 551 nm
  • the second wavelength converted layer with the second CIE coordinate has a main emission peak wavelength of 558 nm.
  • a thickness of the wavelength converted layer on the first light-emitting group is substantially the same as that on the second light-emitting group.
  • a thickness of the wavelength converted layer may be different on different light-emitting group.
  • Line L indicates the color point of the light-emitting chip having the main emission peak wavelength of 450 nm in combination with the wavelength converted layer having the main emission peak wavelength of 551 nm (yellow color).
  • a color point is varied along the Line L while a thickness of the converted wavelength layer on the light-emitting chip is varied.
  • the thinner thickness of the converted wavelength layer indicates a color point along the Line L closer to the color point of the light-emitting chip.
  • each of a third light-emitting group and a fourth light-emitting group includes the light-emitting chips having a main emission wavelength of 450 nm.
  • a wavelength converted layer having a main emission peak wavelength of 551 nm is adopted in the third and the fourth light-emitting groups.
  • the wavelength converted layer on the third light-emitting group has a first thickness to emit a mixed light having a first CIE coordinate (point a) and the wavelength converted layer on the fourth light-emitting group has a second thickness to emit a mixed light having a second CIE coordinate (point b).
  • the second thickness is greater than the first thickness.
  • FIG. 3A shows a plan view of a light-emitting device 100 made by the method in accordance with the first embodiment of the present disclosure
  • FIG. 3B shows a cross-sectional view of the light-emitting device 100 , taken along line AA′ of FIG. 3A
  • the light-emitting device 100 comprises a substrate 17 , a light-emitting stack 102 , a pair of electrodes 103 and a wavelength converted layer 104 .
  • the substrate 17 has a top surface 1071 , a bottom surface 1072 , and four side regions 1073 between the top and bottom surfaces 1071 , 1072 .
  • the light-emitting stack 102 is formed on the top surface 1071 .
  • the light-emitting stack 102 comprises a buffer layer 1026 , an n-type semiconductor layer 1021 on the buffer layer 1026 , an active layer 1022 formed on the n-type semiconductor layer 1021 , and a p-type semiconductor layer 1023 formed on the active layer 1022 .
  • the pair of electrodes 103 is formed on the n-type semiconductor layer 1021 and the p-type semiconductor layer 1023 respectively.
  • the wavelength converted layer 104 has a first portion 1041 covering a top region 1024 of the light-emitting stack 102 and a second portion 1042 protruding from a portion of the first portion 1041 with a first distance (D 1 ) in a first direction (P).
  • the second portion 1042 does not protrude from an entire surface of the first portion 1041 .
  • the second portion 1042 has a width (along a second direction (L)) less than that of the first portion 1041 .
  • the first distance (D 1 ) ranges from 10 ⁇ m to 70 ⁇ m.
  • the light-emitting stack 102 has four side regions 1025 , and the wavelength converted layer 104 entirely covers the four side regions 1003 , 1025 of the substrate 10 and the light-emitting stack 102 .
  • the wavelength converted layer 104 further has a protruding portion 1043 protruding from the side region 1003 of the substrate 10 with a second distance (D 2 ) in the second direction (L).
  • the second distance (D 2 ) is 30-100 ⁇ m.
  • the first direction (P) is substantially perpendicular to the second direction (L).
  • the wavelength converted layer 104 on the side region 1073 , 1025 has a width (w) smaller than a thickness (t) of the wavelength converted layer 104 on the top region 1024 .
  • the thickness (t) is 20-100 ⁇ m and the width (w) is 10-90 ⁇ m.
  • the width (w) is substantially equal to the thickness (t).
  • a height of the electrode 103 is less than that of the first portion 1041 of the wavelength converted layer 104 .
  • a metal bump 105 is formed on the electrode 103 .
  • the metal bump 105 further has a top surface 1051 and a sidewall 1052 .
  • the second portion 1042 of the wavelength converted layer 104 surrounds the sidewall 1052 without covering the top surface 1051 of the metal bump 105 .
  • the metal bump 105 has a trapezoid shape in cross section. Alternatively, the shape of the metal bump can be round or rectangular.
  • the wavelength converted layer 104 does not cover a top surface 1031 of the electrode 103 .
  • the wavelength converted layer 104 can cover a sidewall of the electrode 103 and portions of the top surface 1031 of the electrode 103 . Therefore, the metal bump 105 has a footprint area less than the area of the electrode 103 .
  • the metal bump 105 comprises gold, copper, silver, or aluminum.
  • a wire 106 is electrically connected with the metal bump 105 , and the wavelength converted layer 104 is not formed on the wire.
  • the wire comprises gold, copper, silver, or aluminum.
  • a light-emitting device 300 made by the method in accordance with a second embodiment of the present disclosure is disclosed.
  • a plurality of light-emitting units 20 are formed on a single wafer 10 (shown in FIG. 1A ).
  • Each of the light-emitting units 20 comprises an epitaxial structure 201 and a pair of electrodes 202 formed on the epitaxial structure 201 .
  • a trench 30 is formed in the single wafer 10 between two adjacent light-emitting units 20 and the single wafer 10 is thinned to form a thinned wafer 10 ′ (shown in FIG. 1B ).
  • opto-electrical characteristics such as emission wavelength, optical power, forward voltage (Vf), and reverse current (Ir)
  • a protection layer 40 is formed on and covers entirely the light-emitting units 20 (shown in FIG. 1C ).
  • the modified photoresist 401 covers the sidewall of the electrode 103 . Accordingly, the wavelength converted layer 304 does not cover the sidewall of the electrode 103 and is spaced apart from the electrode 303 after the modified photoresist 401 is removed.
  • the wavelength converted layer 304 covering the top region 3024 of the light-emitting stack 302 is spaced apart from the electrode 303 with a third distance (D 3 ) ranging from 1 ⁇ m to 20 ⁇ m for facilitating the forming of the metal bump 305 on the electrode 303 .
  • the metal bump 305 has an area less than or equal to the electrode 303 .
  • the light-emitting device can be composed of several materials such as the series of aluminum gallium indium phosphide (AlGaInP), the series of aluminum gallium indium nitride (AlGaInN), and/or the series of zinc oxide (ZnO).
  • the active layer can be configured to be a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-quantum well (MWQ) structure.
  • the wavelength of the emitted light could be controlled by changing the number of the pairs of the quantum well.
  • the material of the substrate(s) used for growing or supporting the light-emitting structure unit(s) can include but does not limit to germanium (Ge), gallium arsenide (GaAs), indium phosphide (InP), sapphire, silicon carbide (SiC), silicon (Si), lithium aluminium oxide (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaN), aluminum nitride (AlN), glass, composite, diamond, CVD diamond, diamond-like carbon (DLC) and any combination thereof.
  • the wavelength converted layer is phosphor, for example, Y 3 Al 5 O 12 .
  • the wavelength converted layer can also be Gd 3 Ga 5 O 12 :Ce, (Lu,Y) 3 Al 5 O12:Ce, SrS:Eu, SrGa 2 S 4 :Eu, (Sr,Ca,Ba)(Al,Ga) 2 S 4 :Eu, (Ca,Sr)S:Eu,Mn, (Ca,Sr)S:Ce, (Sr,Ba,Ca) 2 Si 5 N 8 :Eu, (Ba,Sr,Ca) 2 SiO 4 :Eu, (Ca,Sr,Ba)Si 2 O 2 N 2 :Eu, and CdZnSe.

Abstract

This disclosure discloses a method of making a light-emitting device. The method comprises forming a plurality of light-emitting chips, each of the light-emitting chips comprising an epitaxial structure and an electrode formed on the epitaxial structure; forming a protection layer on the electrode in each of the light-emitting chips; forming a plurality of light-emitting groups by collecting the light-emitting chips, wherein each of the light-emitting groups having substantially the same opto-electrical characteristics; forming a wavelength converted layer in each of the light-emitting groups to cover the epitaxial structure and the protection layer; and removing the wavelength converted layer on the protection layer to expose the protection layer.

Description

    BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to a method of making a light-emitting device, and in particular to a method comprising forming a protection layer on each of light-emitting units on a single wafer.
  • 2. Description of the Related Art
  • The light-emitting diodes (LEDs) of the solid-state lighting elements have the characteristics of low power consumption, low heat generation, long operational life, shockproof, small volume, quick response and good opto-electrical property like light emission with a stable wavelength, so the LEDs have been widely used in household appliances, indicator light of instruments, and opto-electrical products, etc.
  • A phosphor material is widely used on blue LEDs to generate a white light LED. When manufacturing the white light LED, since blue LEDs have different emission wavelengths and optical powers, it is difficult to obtain a desired CIE coordinate for each blue LEDs on a single wafer.
  • In addition, the white light LED can be further connected to other components in order to form a light emitting apparatus. The white light LED may be mounted onto a submount with the side of the substrate, or a solder bump or a glue material may be formed between the submount and the white light LED, therefore a light-emitting apparatus is formed. Besides, the submount further comprises the circuit layout electrically connected to the electrode of the white light LED.
  • SUMMARY OF THE DISCLOSURE
  • The present disclosure provides a method of making a light-emitting device and a light-emitting device made thereof.
  • The method of making a light-emitting device comprises: forming a plurality of light-emitting chips, wherein each of the light-emitting chips comprising an epitaxial structure and an electrode formed on the epitaxial structure; forming a protection layer on the electrode in each of the light-emitting chips; forming a plurality of light-emitting groups by collecting the light-emitting chips, wherein each of the light-emitting groups having substantially the same opto-electrical characteristics; forming a wavelength converted layer in each of the light-emitting groups to cover the epitaxial structure and the protection layer; and removing the wavelength converted layer on the protection layer to expose the protection layer.
  • The present disclosure also provides a light-emitting device.
  • The light-emitting device comprises: a substrate; a substrate; a light-emitting stack formed on the substrate and having a top region; a wavelength converted layer formed on the light-emitting stack and has a first portion covering on the top region of the light-emitting stack and a second portion protruding from the first portion with a first distance.
  • The present disclosure also provides a light-emitting device.
  • The light-emitting device comprises: a substrate having a top surface, a bottom surface, and four side regions between the top and bottom surfaces; a light-emitting stack on the top surface of the substrate and having a top region; a metal bump electrically couple to the light-emitting stack; and a wavelength converted layer formed on the four side regions and the top region of the light-emitting stack without covering the metal bump.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The accompanying drawing is included to provide easy understanding of the application, and is incorporated herein and constitutes a part of this specification. The drawing illustrates the embodiment of the application and, together with the description, serves to illustrate the principles of the application.
  • FIGS. 1A to 1K are cross-sectional views showing a method of making a light-emitting device in accordance with the first embodiment of the present disclosure.
  • FIG. 2A shows a chromaticity diagram showing emission characteristics of the light-emitting device in accordance with the present disclosure.
  • FIG. 2B is a chromaticity diagram showing a black body curve.
  • FIG. 3A is a plan view of a light-emitting device made by the method in accordance with the first embodiment of the present disclosure.
  • FIG. 3B is a cross-sectional view of the light-emitting device, taken along line AA′ of FIG. 3A.
  • FIG. 4 is a cross-sectional view of a light-emitting device made by the method in accordance with a second embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The following shows the description of embodiments of the present disclosure in accordance with the drawing.
  • FIGS. 1A to 1K disclose a method of making a plurality of light-emitting devices 100 according to one embodiment of the present disclosure.
  • Referring to FIG. 1A, a plurality of light-emitting units 20 are formed on a single wafer 10. Each of the light-emitting units 20 comprises an epitaxial structure 201 and a pair of electrodes 202 formed on the epitaxial structure 201. In this embodiment, a horizontal-type light-emitting unit is shown, but a vertical-type light-emitting unit or other type can be included therein. Referring to FIG. 1B, a trench 30 is formed in the single wafer 10 between two adjacent light-emitting units 20 and the single wafer 10 is thinned to form a thinned wafer 10′. Subsequently, opto-electrical characteristics (such as emission wavelength, optical power, forward voltage (Vf), and reverse current (Ir)) for each light-emitting unit 20 are measured. Referring to FIG. 1C, a protection layer 40 is formed on and covers entirely the light-emitting units 20. In this embodiment, the protection layer 40 is a photoresist. Referring to FIGS. 1D and 1E, the photoresist is exposed using a mask 50 such that the photoresist on the electrode 202 is modified like being hardened and remained after subsequent developing process. The light-emitting units 20 are separated along the trench 30 into a plurality of light-emitting chips 21. Each of the light-emitting chips 21 has the modified photoresist 401 on the electrodes 202. Referring to FIG. 1F, based on the measured opto-electrical characteristics, the light-emitting chips 21 are classified (or sorted or collected) into a plurality of light-emitting groups 22 such that each of the light-emitting groups 22 comprises the light-emitting chips 21 having at least one substantially the same emission wavelength, substantially the same optical power and substantially the same forward voltage. In one embodiment, a difference of the emission wavelength between the light-emitting chips 21 in each of the light-emitting groups 22 is smaller than 10 nm, a difference of the optical power between the light-emitting chips 21 in each of the light-emitting groups 22 is not greater than 10% and a difference of the forward voltage in each of the light-emitting groups 22 is less than 0.4 V. One of the light-emitting group 22 is shown in FIG. 1F and the light-emitting group 22 is attached to a temporary substrate 11. It is noted that the light-emitting group 22 comprises the light-emitting chips 21 from the same wafer. Alternatively, the light-emitting group 22 can comprise light-emitting chips from different wafers while the light-emitting chips 21 have the same opto-electrical characteristics. Referring to FIG. 1G, after developing the photoresist, the non-modified photoresist is removed and the modified photoresist 401 is left on the electrodes 202. Referring to FIG. 1H, a wavelength converted layer 60 is formed to cover entirely and conformally the light-emitting chips 21 comprising the modified photoresist 401 and the epitaxial structure 201. The wavelength converted layer 60 is used for converting the light generated from the light-emitting chip 21 into a converted light having a wavelength different from the wavelength of the light emitting from the light-emitting chip 21. The converted light is mixed with the light generated from the light-emitting chip 21 to obtain a white light or other color light.
  • Referring to FIG. 1I, the wavelength converted layer 60 on the modified photoresist 401 is removed to expose the modified photoresist 401. In one embodiment, the wavelength converted layer 60 is removed by gridding (polishing) or tape lift-off. Referring to FIG. 1J, the modified photoresist 401 is further removed to expose the electrodes 202. In this embodiment, the modified photoresist 401 is removed by a solvent such as acetone or N-Methyl-2-Pyrrolidone (NMP). Referring to FIG. 1K, the wavelength converted layer 60 on the temporary substrate 11 between two adjacent ones of the light-emitting chips 21 is separated by laser or diamond blade. Then, the temporary substrate 11 is removed from the light-emitting chips 21 and the light-emitting chip 21 is mounted on a carrier (not shown). Alternatively, the wavelength converted layer 60 on the temporary substrate 11 can be separated prior to removal of the modified photoresist 401. A metal bump (not shown) is further formed on the electrodes 202 for electrically connecting with an external power source (not shown) through wires. In another embodiment, the protection layer is an electroplated metal layer (such as copper or nickel) and therefore the wires are electrically coupled with the electrodes through the protection layer without removing the protection layer. The protection layer has a height ranging from 30 μm to 150 μm.
  • FIG. 2A shows a CIE 1931 chromaticity diagram. FIG. 2B shows the blackbody curve 701, and there are seven color temperature regions (7-step MacAdam ellipse) (only three color temperature regions are shown in FIGS. 2A and 2B), and the center point (for example, 5000K, 5700K, 6500K) of each of the seven color temperature regions is near the blackbody curve 701. Each of the color temperature regions is defined by four CIE points to form a quadrangle (shown in Table 1).
  • TABLE 1
    5000 5700 6500
    x y x y x y
    center point 0.3447 0.3553 0.3287 0.3417 0.3123 0.3282
    tolerance 0.3551 0.376 0.3376 0.3616 0.3205 0.3481
    quadrangle 0.3376 0.3616 0.3207 0.3462 0.3028 0.3304
    0.3366 0.3369 0.3222 0.3243 0.3068 0.3113
    0.3515 0.3487 0.3366 0.3369 0.3221 0.3261
  • Generally, in this embodiment, the light generated by the light-emitting chip is mixed with the converted light converted by the wavelength converted layer to generate a white light having a CIE coordinate within the seven color temperature regions. It is noted that, since each of the light-emitting groups has different emission wavelength, the light-emitting groups are required to be covered by different wavelength converted layers emitting different light that each light can be defined by a CIE coordinate, thereby obtaining white light within one color temperature region. To be more specific, the light converted by different wavelength converted layers can have different main emission peak wavelength while having the same CIE coordinate. For example, when a first light-emitting group comprises the light-emitting chips having a main emission wavelength of about 450 nm, and a second light-emitting group comprises the light-emitting chips having a main emission wavelength of about 460 nm, a first wavelength converted layer emitting a light that has a first CIE coordinate (x=0.426, y=0.548) is adopted in the first light-emitting group to generate a first white light, and a second wavelength converted layer emitting a light that has a second CIE coordinate (x=0.444, y=0.536) is adopted in the second light-emitting group to generated a second white light. The first and the second white light have a CIE coordinate in the same color temperature region (for example, the region having a center point of 6500k). In this embodiment, the first wavelength converted layer with the first CIE coordinate has a main emission peak wavelength of 551 nm, and the second wavelength converted layer with the second CIE coordinate has a main emission peak wavelength of 558 nm. Alternatively, the first wavelength converted layer having a main emission peak wavelength of 554 nm can emit a light having the first CIE coordinate (x=0.426, y=0.548), and the second wavelength converted layer having a main emission peak wavelength of 560 nm can emit a light having the second CIE coordinate (x=0.444, y=0.536). In this embodiment, a thickness of the wavelength converted layer on the first light-emitting group is substantially the same as that on the second light-emitting group.
  • Furthermore, as shown in FIG. 2A, a thickness of the wavelength converted layer may be different on different light-emitting group. In this embodiment, Line L indicates the color point of the light-emitting chip having the main emission peak wavelength of 450 nm in combination with the wavelength converted layer having the main emission peak wavelength of 551 nm (yellow color). A color point is varied along the Line L while a thickness of the converted wavelength layer on the light-emitting chip is varied. The thinner thickness of the converted wavelength layer indicates a color point along the Line L closer to the color point of the light-emitting chip. For example, each of a third light-emitting group and a fourth light-emitting group includes the light-emitting chips having a main emission wavelength of 450 nm. A wavelength converted layer having a main emission peak wavelength of 551 nm is adopted in the third and the fourth light-emitting groups. The wavelength converted layer on the third light-emitting group has a first thickness to emit a mixed light having a first CIE coordinate (point a) and the wavelength converted layer on the fourth light-emitting group has a second thickness to emit a mixed light having a second CIE coordinate (point b). The second thickness is greater than the first thickness.
  • FIG. 3A shows a plan view of a light-emitting device 100 made by the method in accordance with the first embodiment of the present disclosure, and FIG. 3B shows a cross-sectional view of the light-emitting device 100, taken along line AA′ of FIG. 3A. The light-emitting device 100 comprises a substrate 17, a light-emitting stack 102, a pair of electrodes 103 and a wavelength converted layer 104. The substrate 17 has a top surface 1071, a bottom surface 1072, and four side regions 1073 between the top and bottom surfaces 1071, 1072. The light-emitting stack 102 is formed on the top surface 1071. The light-emitting stack 102 comprises a buffer layer 1026, an n-type semiconductor layer 1021 on the buffer layer 1026, an active layer 1022 formed on the n-type semiconductor layer 1021, and a p-type semiconductor layer 1023 formed on the active layer 1022. The pair of electrodes 103 is formed on the n-type semiconductor layer 1021 and the p-type semiconductor layer 1023 respectively. The wavelength converted layer 104 has a first portion 1041 covering a top region 1024 of the light-emitting stack 102 and a second portion 1042 protruding from a portion of the first portion 1041 with a first distance (D1) in a first direction (P). In the embodiment, the second portion 1042 does not protrude from an entire surface of the first portion 1041. The second portion 1042 has a width (along a second direction (L)) less than that of the first portion 1041. The first distance (D1) ranges from 10 μm to 70 μm. Furthermore, the light-emitting stack 102 has four side regions 1025, and the wavelength converted layer 104 entirely covers the four side regions 1003, 1025 of the substrate 10 and the light-emitting stack 102. The wavelength converted layer 104 further has a protruding portion 1043 protruding from the side region 1003 of the substrate 10 with a second distance (D2) in the second direction (L). The second distance (D2) is 30-100 μm. The first direction (P) is substantially perpendicular to the second direction (L). In one embodiment, the wavelength converted layer 104 on the side region 1073, 1025 has a width (w) smaller than a thickness (t) of the wavelength converted layer 104 on the top region 1024. The thickness (t) is 20-100 μm and the width (w) is 10-90 μm. In other embodiment, the width (w) is substantially equal to the thickness (t). A height of the electrode 103 is less than that of the first portion 1041 of the wavelength converted layer 104. A metal bump 105 is formed on the electrode 103. The metal bump 105 further has a top surface 1051 and a sidewall 1052. The second portion 1042 of the wavelength converted layer 104 surrounds the sidewall 1052 without covering the top surface 1051 of the metal bump 105. The metal bump 105 has a trapezoid shape in cross section. Alternatively, the shape of the metal bump can be round or rectangular. In this embodiment, the wavelength converted layer 104 does not cover a top surface 1031 of the electrode 103. In other embodiment, the wavelength converted layer 104 can cover a sidewall of the electrode 103 and portions of the top surface 1031 of the electrode 103. Therefore, the metal bump 105 has a footprint area less than the area of the electrode 103. The metal bump 105 comprises gold, copper, silver, or aluminum. A wire 106 is electrically connected with the metal bump 105, and the wavelength converted layer 104 is not formed on the wire. The wire comprises gold, copper, silver, or aluminum.
  • Referring to FIG. 4, a light-emitting device 300 made by the method in accordance with a second embodiment of the present disclosure is disclosed. As to the method of the first embodiment, a plurality of light-emitting units 20 are formed on a single wafer 10 (shown in FIG. 1A). Each of the light-emitting units 20 comprises an epitaxial structure 201 and a pair of electrodes 202 formed on the epitaxial structure 201. A trench 30 is formed in the single wafer 10 between two adjacent light-emitting units 20 and the single wafer 10 is thinned to form a thinned wafer 10′ (shown in FIG. 1B). Subsequently, opto-electrical characteristics (such as emission wavelength, optical power, forward voltage (Vf), and reverse current (Ir)) for each light-emitting unit 20 are measured. A protection layer 40 is formed on and covers entirely the light-emitting units 20 (shown in FIG. 1C). However, when the photoresist layer 40 is exposed with the mask 50, since the mask 50 has a size larger than the electrode 202, the modified photoresist 401 covers the sidewall of the electrode 103. Accordingly, the wavelength converted layer 304 does not cover the sidewall of the electrode 103 and is spaced apart from the electrode 303 after the modified photoresist 401 is removed. In this embodiment, the wavelength converted layer 304 covering the top region 3024 of the light-emitting stack 302 is spaced apart from the electrode 303 with a third distance (D3) ranging from 1 μm to 20 μm for facilitating the forming of the metal bump 305 on the electrode 303. In one embodiment, the metal bump 305 has an area less than or equal to the electrode 303.
  • The light-emitting device can be composed of several materials such as the series of aluminum gallium indium phosphide (AlGaInP), the series of aluminum gallium indium nitride (AlGaInN), and/or the series of zinc oxide (ZnO). The active layer can be configured to be a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-quantum well (MWQ) structure. Besides, the wavelength of the emitted light could be controlled by changing the number of the pairs of the quantum well.
  • The material of the substrate(s) used for growing or supporting the light-emitting structure unit(s) can include but does not limit to germanium (Ge), gallium arsenide (GaAs), indium phosphide (InP), sapphire, silicon carbide (SiC), silicon (Si), lithium aluminium oxide (LiAlO2), zinc oxide (ZnO), gallium nitride (GaN), aluminum nitride (AlN), glass, composite, diamond, CVD diamond, diamond-like carbon (DLC) and any combination thereof. The wavelength converted layer is phosphor, for example, Y3Al5O12. Besides, the wavelength converted layer can also be Gd3Ga5O12:Ce, (Lu,Y)3Al5O12:Ce, SrS:Eu, SrGa2S4:Eu, (Sr,Ca,Ba)(Al,Ga)2S4:Eu, (Ca,Sr)S:Eu,Mn, (Ca,Sr)S:Ce, (Sr,Ba,Ca)2Si5N8:Eu, (Ba,Sr,Ca)2SiO4:Eu, (Ca,Sr,Ba)Si2O2N2:Eu, and CdZnSe.
  • The foregoing description has been directed to the specific embodiments of this invention. It will be apparent to those having ordinary skill in the art that other alternatives and modifications can be made to the devices in accordance with the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure covers modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.

Claims (30)

1.-11. (canceled)
12. A light-emitting device comprising:
a substrate;
a light-emitting stack formed on the substrate and having a top region;
a wavelength converted layer formed on the light-emitting stack and has a first portion covering the top region of the light-emitting stack and a second portion protruding from the first portion with a first distance.
13. The light-emitting device of claim 12, wherein the first distance ranges from 10 μm to 70 μm.
14. The light-emitting device of claim 12, wherein the second portion has a width less than that of the first portion.
15. The light-emitting device of claim 12, wherein each of the substrate and the light-emitting stack has a side region, and the wavelength converted layer covering and the side region of the substrate and the light-emitting stack.
16. The light-emitting device of claim 15, wherein the wavelength converted layer on the side region has a width smaller than a thickness of the wavelength converted layer on the top region.
17. The light-emitting device of claim 13, wherein the wavelength converted layer covering the top region of the light-emitting stack is spaced apart from the electrode with a second distance ranging from 1 to 10 μm.
18. The light-emitting device of claim 13, further comprising an electrode and a metal bump, wherein the metal bump is formed on a top surface of the electrode and has a sidewall and a top surface, and wherein the wavelength converted layer surrounds the sidewall without covering the top surface.
19. The light-emitting device of claim 18, further comprising a wire electrically connecting with the metal bump, and wherein the wavelength converted layer does not cover the wire.
20. A light-emitting device comprising:
a substrate having a top surface, a bottom surface, and four side regions between the top and bottom surfaces;
a light-emitting stack on the top surface of the substrate and having a top region;
a metal bump electrically coupled to the light-emitting stack; and
a wavelength converted layer formed on the four side regions and the top region of the light-emitting stack without covering the metal bump.
21. A method of making a light-emitting diode, comprising:
preparing a plurality of light-emitting chips, one of the plurality of light-emitting chips comprising an electrode and a protection layer covering the electrode;
forming a wavelength conversion layer on the protection layer after covering the electrode; and
exposing the electrode after forming the wavelength conversion layer.
22. The method of claim 21, wherein the plurality of light-emitting chips have an emission wavelength difference smaller than 10 nm.
23. The method of claim 21, wherein the plurality of light-emitting chips have a forward voltage difference less than 0.4V.
24. The method of claim 21, wherein the preparing step comprises separating a plurality of light-emitting units after the protection layer is formed on the electrode.
25. The method of claim 24, wherein the plurality of light-emitting units are commonly formed on a wafer.
26. The method of claim 24, wherein the plurality of light-emitting units comprises a first light-emitting unit formed on a first wafer, and a second light-emitting unit formed on a second wafer.
27. The method of claim 21, wherein the exposing step comprises partially removing the wavelength conversion layer.
28. The method of claim 21, wherein the exposing step comprises substantially removing the protection layer.
29. The method of claim 21, wherein the exposing step comprises exposing the protection layer.
30. The method of claim 21, further comprising a step of removing a part of the protection layer before forming the wavelength conversion layer.
31. The method of claim 21, wherein the electrode is surrounded by the wavelength conversion layer.
32. The method of claim 21, wherein the electrode has a top surface which is entirely exposed at the exposing step.
33. The method of claim 21, wherein the one of the plurality of light-emitting chips further comprises an epitaxial structure which is not covered by the protection layer before forming the wavelength conversion layer.
34. A method of making a light-emitting diode, comprising:
preparing a plurality of light-emitting units which are connected with each other, one of the plurality of light-emitting units comprising an epitaxial structure and an electrode;
forming a protection layer on the electrode;
disconnecting the plurality of light-emitting units from each other; and
removing the protection layer to substantially expose the electrode.
35. The method of claim 34, further comprising a step of forming a wavelength conversion layer on the protection layer.
36. The method of claim 34, wherein the electrode has a top surface which is entirely exposed after the removing step.
37. The method of claim 34, wherein the removing step comprises using a solvent of N-methyl-2-pyrrolidone.
38. The method of claim 34, wherein the removing step is conducted after the disconnecting step.
39. The method of claim 34, wherein the epitaxial structure is substantially not covered by the protection layer.
40. The method of claim 34, further comprising a step of grouping a part of the plurality of light-emitting units into a light-emitting group before the removing step.
US13/570,558 2012-08-09 2012-08-09 Method of making light emitting device and light emitting device made thereof Abandoned US20140042470A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/570,558 US20140042470A1 (en) 2012-08-09 2012-08-09 Method of making light emitting device and light emitting device made thereof
TW102128579A TWI607584B (en) 2012-08-09 2013-08-08 Method of making light emitting device and light emitting device made thereof
CN201310347194.8A CN103579465B (en) 2012-08-09 2013-08-09 Form the manufacture method of light-emitting device and its made light-emitting device
US14/678,700 US9543464B2 (en) 2012-08-09 2015-04-03 Method of making a light emitting device and a light emitting device made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/570,558 US20140042470A1 (en) 2012-08-09 2012-08-09 Method of making light emitting device and light emitting device made thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/678,700 Continuation US9543464B2 (en) 2012-08-09 2015-04-03 Method of making a light emitting device and a light emitting device made thereof

Publications (1)

Publication Number Publication Date
US20140042470A1 true US20140042470A1 (en) 2014-02-13

Family

ID=50050811

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/570,558 Abandoned US20140042470A1 (en) 2012-08-09 2012-08-09 Method of making light emitting device and light emitting device made thereof
US14/678,700 Active US9543464B2 (en) 2012-08-09 2015-04-03 Method of making a light emitting device and a light emitting device made thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/678,700 Active US9543464B2 (en) 2012-08-09 2015-04-03 Method of making a light emitting device and a light emitting device made thereof

Country Status (3)

Country Link
US (2) US20140042470A1 (en)
CN (1) CN103579465B (en)
TW (1) TWI607584B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264402A1 (en) * 2011-05-12 2014-09-18 Ledengin, Inc. Phosphors for warm white emitters
US20160087167A1 (en) * 2014-09-23 2016-03-24 Darshan Kundaliya Patterned Thin-Film Wavelength Converter and Method of Making Same
US9530943B2 (en) 2015-02-27 2016-12-27 Ledengin, Inc. LED emitter packages with high CRI
US20170040512A1 (en) * 2015-08-04 2017-02-09 Nichia Corporation Method of manufacturing light emitting device
US10219345B2 (en) 2016-11-10 2019-02-26 Ledengin, Inc. Tunable LED emitter with continuous spectrum
US20190309916A1 (en) * 2014-11-18 2019-10-10 Seoul Semiconductor Co., Ltd. Light emitting device and vehicular lamp comprising same
US11417801B2 (en) * 2017-08-30 2022-08-16 Xiamen San'an Optoelectronics Co., Ltd. Light-emitting diode and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992195B (en) * 2016-01-18 2021-10-15 晶元光电股份有限公司 Light emitting diode device and manufacturing method thereof
TWI690093B (en) * 2017-04-05 2020-04-01 晶元光電股份有限公司 Light-emitting element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110062479A1 (en) * 2008-05-14 2011-03-17 Showa Denko K.K. Method of manufacturing group-iii nitride semiconductor light-emitting device, and group-iii nitride semiconductor light-emitting device, and lamp
US20110284822A1 (en) * 2010-05-18 2011-11-24 Seoul Semiconductor Co., Ltd. Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
US20120032196A1 (en) * 2010-08-09 2012-02-09 Kabushiki Kaisha Toshiba Light emitting device
US20120193670A1 (en) * 2011-01-31 2012-08-02 Seoul Semiconductor Co., Ltd. Light emitting device having wavelength converting layer and method of fabricating the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066623B2 (en) 2003-12-19 2006-06-27 Soo Ghee Lee Method and apparatus for producing untainted white light using off-white light emitting diodes
US7310358B2 (en) * 2004-12-17 2007-12-18 Palo Alto Research Center Incorporated Semiconductor lasers
DE102006000810B4 (en) * 2006-01-03 2007-10-04 Vossloh-Schwabe Optoelectronic Gmbh & Co. Kg Interconnected arrangement of at least one LED chip having individual modules
TWI396298B (en) * 2007-08-29 2013-05-11 Everlight Electronics Co Ltd Phosphor coating method for light emmitting semiconductor device and applications thereof
US8290557B2 (en) 2007-12-12 2012-10-16 Medtronic, Inc. Implantable optical sensor and method for use
US8038497B2 (en) 2008-05-05 2011-10-18 Cree, Inc. Methods of fabricating light emitting devices by selective deposition of light conversion materials based on measured emission characteristics
KR20100076083A (en) 2008-12-17 2010-07-06 서울반도체 주식회사 Light emitting diode having plurality of light emitting cells and method of fabricating the same
TWI488334B (en) 2009-07-01 2015-06-11 Epistar Corp Light-emitting device and manufacturing method thereof
KR101565988B1 (en) * 2009-10-23 2015-11-05 삼성전자주식회사 Red phosphor Method for preparing the same Light emitting device package and Lighting apparatus using the Red Phosphor
US8835963B2 (en) * 2010-06-04 2014-09-16 3M Innovative Properties Company Light converting and emitting device with minimal edge recombination
US8421057B2 (en) 2010-06-25 2013-04-16 Invenlux Corporation Light-emitting devices with improved active-region
CN102376848A (en) * 2010-08-27 2012-03-14 璨圆光电股份有限公司 Manufacturing method of light-emitting device
TWI479641B (en) 2010-09-20 2015-04-01 英特明光能股份有限公司 Light emitting device and manufacturing method thereof
CN102136530A (en) * 2011-02-12 2011-07-27 西安神光安瑞光电科技有限公司 Preparation method for white light LED (light-emitting diode)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110062479A1 (en) * 2008-05-14 2011-03-17 Showa Denko K.K. Method of manufacturing group-iii nitride semiconductor light-emitting device, and group-iii nitride semiconductor light-emitting device, and lamp
US20110284822A1 (en) * 2010-05-18 2011-11-24 Seoul Semiconductor Co., Ltd. Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
US20120032196A1 (en) * 2010-08-09 2012-02-09 Kabushiki Kaisha Toshiba Light emitting device
US20120193670A1 (en) * 2011-01-31 2012-08-02 Seoul Semiconductor Co., Ltd. Light emitting device having wavelength converting layer and method of fabricating the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264402A1 (en) * 2011-05-12 2014-09-18 Ledengin, Inc. Phosphors for warm white emitters
US9528665B2 (en) * 2011-05-12 2016-12-27 Ledengin, Inc. Phosphors for warm white emitters
US20160087167A1 (en) * 2014-09-23 2016-03-24 Darshan Kundaliya Patterned Thin-Film Wavelength Converter and Method of Making Same
US9373761B2 (en) * 2014-09-23 2016-06-21 Osram Sylvania Inc. Patterned thin-film wavelength converter and method of making same
US20190309916A1 (en) * 2014-11-18 2019-10-10 Seoul Semiconductor Co., Ltd. Light emitting device and vehicular lamp comprising same
US10655801B2 (en) * 2014-11-18 2020-05-19 Seoul Semiconductor Co., Ltd. Light emitting device and vehicular lamp comprising same
US9530943B2 (en) 2015-02-27 2016-12-27 Ledengin, Inc. LED emitter packages with high CRI
US20170040512A1 (en) * 2015-08-04 2017-02-09 Nichia Corporation Method of manufacturing light emitting device
US9917234B2 (en) * 2015-08-04 2018-03-13 Nichia Corporation Method of manufacturing light emitting device
US10224468B2 (en) * 2015-08-04 2019-03-05 Nichia Corporation Method of manufacturing light emitting device
US10707389B2 (en) 2015-08-04 2020-07-07 Nichia Corporation Light emitting device
US10219345B2 (en) 2016-11-10 2019-02-26 Ledengin, Inc. Tunable LED emitter with continuous spectrum
US11417801B2 (en) * 2017-08-30 2022-08-16 Xiamen San'an Optoelectronics Co., Ltd. Light-emitting diode and method for manufacturing the same

Also Published As

Publication number Publication date
TW201407835A (en) 2014-02-16
US20150214419A1 (en) 2015-07-30
US9543464B2 (en) 2017-01-10
CN103579465A (en) 2014-02-12
TWI607584B (en) 2017-12-01
CN103579465B (en) 2018-03-23

Similar Documents

Publication Publication Date Title
US9543464B2 (en) Method of making a light emitting device and a light emitting device made thereof
US10854584B2 (en) Wafer level packaging of light emitting diodes (LEDs)
US7279350B2 (en) White-light emitting devices and methods for manufacturing the same
CN109075232B (en) Semiconductor element package
US8598617B2 (en) Methods of fabricating light emitting diode packages
KR100928259B1 (en) Light emitting device and manufacturing method thereof
US20120007102A1 (en) High Voltage Device and Method for Optical Devices
US10418412B2 (en) Light-emitting diode
KR20120040011A (en) Light emitting diode
KR20180111167A (en) Semiconductor light emitting device
US10242958B2 (en) High-voltage light emitting diode and fabrication method thereof
US20100045154A1 (en) Light emitting device
KR20170133702A (en) Light emitting device package
KR100898585B1 (en) Light emitting element having arrayed cells and method of fabricating the same
KR102261951B1 (en) Semiconductor device and semiconductor device manufacturing method
KR101142961B1 (en) Led lamp mounting a led having an array of light emitting cells coupled in series
KR20090036374A (en) Light emitting cell and method of making the same
KR20140072006A (en) Light emitting diode package
KR101216934B1 (en) Light emitting element having arrayed cells and method of fabricating the same
US20220181516A1 (en) Mixed color light emitting device
TW202107735A (en) Led device and manufacturing method thereof
KR20170048725A (en) Light emitting diode, and light system having the same
KR20150035149A (en) Nitride light emitting device

Legal Events

Date Code Title Description
AS Assignment

Owner name: EPISTAR CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HSU, MING-CHI;WANG, CHIH-MING;WANG, CHIEN-YUAN;SIGNING DATES FROM 20120718 TO 20120720;REEL/FRAME:028767/0164

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION