US20130296901A1 - Debulking catheter - Google Patents

Debulking catheter Download PDF

Info

Publication number
US20130296901A1
US20130296901A1 US13/664,499 US201213664499A US2013296901A1 US 20130296901 A1 US20130296901 A1 US 20130296901A1 US 201213664499 A US201213664499 A US 201213664499A US 2013296901 A1 US2013296901 A1 US 2013296901A1
Authority
US
United States
Prior art keywords
catheter
window
tissue
lumen
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/664,499
Inventor
William John Olson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/378,224 external-priority patent/US6299622B1/en
Priority claimed from US10/027,418 external-priority patent/US7771444B2/en
Priority claimed from US10/288,559 external-priority patent/US20030125757A1/en
Application filed by Covidien LP filed Critical Covidien LP
Assigned to FOX HOLLOW TECHNOLOGIES, INC. reassignment FOX HOLLOW TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OLSON, WILLIAM JOHN
Assigned to EV3 INC. reassignment EV3 INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: FOXHOLLOW TECHNOLOGIES, INC.
Assigned to TYCO HEALTHCARE GROUP LP reassignment TYCO HEALTHCARE GROUP LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EV3 LLC
Assigned to EV3 LLC reassignment EV3 LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EV3 INC.
Assigned to COVIDIEN LP reassignment COVIDIEN LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO HEALTHCARE GROUP LP
Publication of US20130296901A1 publication Critical patent/US20130296901A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/32075Pullback cutting; combined forward and pullback cutting, e.g. with cutters at both sides of the plaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320783Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • A61B2017/320775Morcellators, impeller or propeller like means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320783Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
    • A61B2017/320791Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter with cutter extending outside the cutting window

Definitions

  • Plaque deposits in cardiac arteries can result in angina and myocardial infarction. Plaque deposits in peripheral arteries of the limbs can result in peripheral artery disease (PAD). PAD affects about 20% of the population over 70, and in more severe forms (which afflict about 2 million people in the U.S.) can lead to non-healing ulcers, infection, and eventually loss of limb due to amputation. Most people die within two years of such amputations.
  • PAD peripheral artery disease
  • Atherectomy catheters which come in a variety of different designs, can be introduced into the body at a convenient location and threaded inside the artery to the plaque occluded target region (which can usually be determined exactly using fluoroscopy and appropriate radio opaque contrast dyes). Once they are at the correct region, atherectomy catheters then surgically remove the occluding plaque.
  • Atherectomy catheter devices Many different types have been proposed, including catheters with rotating burrs (Boston Scientific Rotablator), lasers to photo-dissolve tissue (Spectrametics Laser Catheter), and cutter-balloon catheters (Guidant AtheroCath). All have certain drawbacks, however, such as difficulty in traversing through small and torturous arteries to get to the plaque occluded target zone or zones.
  • Such cutting catheters include Andreas U.S. Pat. No. 5,250,059; Farley, U.S. Pat. No. 5,624,457; Conley U.S. Pat. No. 5,669,920; Schultz U.S. Pat. No. 5,836,957; and Rogers U.S. Pat. No. 6,120,515.
  • Other prior art includes Snow, U.S. application Ser. No. 09/930,372; Methods for removing atheromatous material from a body lumen
  • Atherectomy catheters such as the Fox Hollow SilverHawk articulated rotating blade atherectomy catheter, have been designed to address such issues.
  • the SilverHawk catheter (exemplified by U.S. patent application Ser. Nos. 10/027,418; 10/288,559; 10/896,747; and others) uses a unique rotating blade, window, and hinged hollow nose design, which can be controlled to either assume a straight position or an angled (drooped) position.
  • the operator will usually first insert a guide wire to the proper location, attach the SilverHawk to the guidewire, and introduce the SilverHawk through a convenient artery port, often located near the groin region.
  • the operator maneuvers the SilverHawk device to the appropriate region of plaque with the SilverHawk hinged (bendable) nose in a straight configuration.
  • the operator bends the angle of the SilverHawk's hollow nose. The nose contacts the artery wall opposite the plaque target, and which in turn results in an opposing force that presses the catheter's window and cutter against the plaque.
  • the operator will then spin-up the cutter, and move the catheter across the target zone.
  • the rotary cutter cuts a thin strip of plaque, which is directed, by the motion of the cutter and the device's geometry, into the hollow nose cone.
  • the cuttings stay in the nose cone, where they can eventually be removed from the body and analyzed.
  • the SilverHawk atherectomy catheter represented a significant advance in the state of the art, because it enabled substantially longer regions (often several centimeters or more) of plaque to be shaved for each pass of the catheter over a region.
  • An additional advantage was that the catheter could be rotated; exposing the window and the rotating blade to another region, and a target region of plaque could thus be shaved multiple times, allowing precise control over the amount and geometry of the plaque reduction process.
  • SilverHawk catheter demonstrated the utility of this type of approach, further improvements were still desirable.
  • the available plaque storage space in the device's hollow nose cone was limited, and improvements in trimming partially attached plaque shavings were also desirable.
  • a second problem was how to optimize plaque handling near the edges of trimmed areas.
  • plaque would be partially severed by the rotating cutter, yet still remain partially attached to the artery wall. This dangling plaque sometimes had a tendency to deform when a cutter passed over it, rather than be neatly severed and stored in the catheter's plaque storage compartment.
  • an alternative cutting means that could either cut the plaque from the opposite direction, and/or pinch off, cut, and store dangling plaque would be advantageous.
  • catheters In order to navigate the narrow and torturous arteries, veins and other lumens of the body, such catheters must have extremely small diameters, usually on the order of 1 to 3 millimeters (3-9 French).
  • the devices In the same time, the devices must be flexible enough to be threaded through such arteries, yet have sections that are rigid enough to accomplish the required positioning, cutting, and plaque storage functions.
  • the present invention is an improved atherectomy catheter designed with increased plaque carrying cap ability, and an improved ability to trim plaque, including the dangling portions of plaque that are still partially attached to artery or other body lumen walls.
  • the catheter will normally comprise a long catheter tube, with a cutting head attached to the tube comprising at least a hollow rigid tubular portion with a bladed edge window, and an adjustable angle distal nose portion.
  • the catheter head may additionally contain either a moveable plunger or a moveable plunger cutting wheel.
  • the catheter may achieve its plaque cutting action by more than one modality.
  • an operator controlled variable angle (drooping) nose or nose region is bent by the operator.
  • the tip of the nose contacts an opposite artery wall or other body lumen, forcing (as an equal and opposite reaction) a bladed window opening on the opposite side of the catheter up against a target region of plaque on the opposite artery wall.
  • the operator then retracts a plunger or shield that obscures the bladed edge of the catheter window, and advances the catheter.
  • the bladed window edge shaves the plaque, and plaque shavings pass through the window opening into a hollow storage space inside the catheter, where the shavings are stored. The shavings may then be subsequently removed from the body and subjected to pathological or medical diagnostic analysis as needed.
  • an operator uses the catheter's moveable plunger to close the catheter's open window. As it closes the window, the plunger presses any dangling plaque that is protruding into the window up against the bladed edge of the window. The dangling plaque is severed by the pinching action of the window blade and the plunger, and again enters the hollow storage space inside the catheter.
  • an operator spins up a moveable combination plunger and cutting wheel, and uses the spinning plunger/cutting wheel to almost close the catheter's open window, while optionally advancing or retracting the catheter.
  • the dangling plaque is thus subjected to cutting action from both sides, as well as a pinching action, and an optional force due to advancement or retraction of the catheter.
  • the severed plaque fragment and again enters the hollow storage space inside the catheter.
  • an operator may spin up a moveable plunger cutting wheel, and cut plaque by alternately advancing and retracting the catheter head. Plaque will be subjected to cutting from the bladed window when the catheter is advanced, and will be subjected to cutting from the rotating plunger when the catheter is retracted. As before, the shavings will again enter into the hollow storage space inside the catheter.
  • the operator will use a mechanism connected to the plunger to close the window. This helps insure that the bladed window edge will not inadvertently damage non-target regions of the arteries or other body lumens.
  • the operator may switch between various cutting modalities as appears best for the given situation.
  • the present design gives the operator a greater number of cutting options than prior art designs, thus allowing quicker and more precise procedures to be accomplished.
  • the catheter may additionally operate for a longer period of time before it must be withdrawn from the body for cleaning, and reinserted. This speeds up the procedure time, and reduces the burden on patients and physicians.
  • sensors may also be added to the design to help the operator properly position the device relative to target plaque or other body lumen targets of interest, and also properly orient the cutting window of the device.
  • FIG. 1 shows an overall view of the unit, including the proximal operator control, the catheter, and the distal catheter cutting head.
  • FIG. 2A shows a top view of the distal catheter cutting head.
  • FIG. 2B shows a side view of the distal catheter cutting head with the adjustable angle catheter nose in the up configuration.
  • FIG. 2C shows a side view of the distal catheter cutting head with the nose angled down in a drooped configuration.
  • FIG. 3 shows how a guide wire may be threaded through the catheter and the distal cutting head.
  • FIG. 4A shows the razor edge on the catheter window cutting through plaque with the plug in an open window configuration.
  • FIG. 4B shows the how dangling plaque may be cut off and stored in the head of the device by closing the plug.
  • FIG. 5 shows a variety of different catheter window blade edges.
  • Nomenclature The handle end of the catheter is the proximal location, and the nose cone tip of the catheter is the distal location.
  • the device consists of a handle ( 101 ), one or more control knobs, tabs, or switches ( 102 ), a long catheter tube or shaft ( 103 ), and the cutting atherectomy head ( 104 ).
  • the catheter tube or shaft ( 103 ) will typically consist of a flexible tube, which is often hollow and capable of passing a guide wire, as well as optionally other materials such as drugs and contrast materials, control wires, drive shafts, sensors, sensor fibers or wires, ultrasonic signals, and the like.
  • the control wires may optionally be used to operate plunger settings, nose angle, and the like as will be discussed in the next sections.
  • the handle ( 101 ) may also contain a battery and motor for driving a screw material transport device in the catheter head ( 104 ), or a rotating combination plunger and cutter.
  • the tube ( 103 ) may contain a shaft or hollow shaft additionally capable of transmitting torque from a motor mounted in the handle to the atherectomy head.
  • the cutting atherectomy head ( 104 ) will typically consist of a hollow body and a moveable tapered nose, which in some embodiments is connected to the front of the hollow body by at least one hinge.
  • the head will additionally consist of at least a window with a razor edge, and a moveable plunger or combination plunger/cutter that can transition from a more distal (open window) position to a more proximal (closed window) position.
  • Head ( 104 ) may additionally contain openings or ports to accommodate a guidewire to allow the catheter head to be precisely threaded through torturous arteries, veins, or other body lumens.
  • the guide wire may be routed to exit from the proximal region of the catheter head, and then reenter the catheter head at the distal region of the head, thus skipping the plaque cutting and storage regions of the head.
  • the guide wire will reenter the catheter head at the distal nose region, travel through the nose end of the head for a short distance, and then finally exit the head again through a third exit port, often located near the tip of the catheter's nose located at the extreme distal end of the catheter.
  • FIGS. 2A , 2 B, and 2 C show close-ups of the cutting atherectomy head ( 104 ) from various angles.
  • FIG. 2A shows the head from the top. The figure shows the head's adjustable angle nose cone ( 201 ), hinge pins ( 202 ), moveable plug ( 203 ), window opening ( 204 ), window blade edge ( 205 ), the plug movement shaft ( 206 ) an optional helical screw to help move and compact any plaque shavings ( 207 ), and the main body of the head ( 210 ).
  • the catheter's nose ( 201 ) usually has a tapered or conical atraumatic design intended to allow the catheter head to easily migrate through arteries. It may be composed of softer materials, and may additionally have an internal coiled spring or other means to allow the tip to bend somewhat as needed to migrate through torturous arteries and other body lumen structures.
  • FIG. 2B shows the same head from the side.
  • the adjustable angle nose ( 201 ) is shown in the “up” or straight configuration, which allows the catheter head to migrate though the torturous arteries and body lumens with maximum ease.
  • the plug ( 203 ) is shown in the extended configuration and the window ( 204 ) is open.
  • plug ( 203 ) will normally be in a closed position, closing window ( 204 ), and normally blocking window blade ( 205 ). This closed position helps to prevent the window blade ( 205 ) from accidentally nicking or cutting non-target regions of the arteries or other body lumens while the device is being moved to and from its various target zones.
  • FIG. 2C shows the head from the side, showing the catheter operating in a cutting configuration after the catheter head has been threaded to its designated target zone.
  • the nose cone ( 201 ) which is shown held to the main body ( 210 ) by hinge pins ( 202 ), rotates to a “bent” configuration.
  • This adjustable angle nose is typically rotated by the operator increasing the angle of the bend until the nose tip makes contact with the opposite wall of a body lumen (i.e. an opposite artery wall).
  • an equal and opposite force is generated (by the normal laws of physics) that acts to push or “urge” window ( 204 ) and the blade ( 205 ) against the target zone on the opposite lumen wall.
  • This target is usually a plaque occluded region of an artery wall.
  • This design thus differs from earlier cutting catheter designs, such as the Guidant AtheroCath, which used a balloon on one side of the cutting head to force the cutting portion of the catheter against the target plaque.
  • prior art atherectomy catheters typically stored plaque shavings in the hollow distal (nose) side of the catheter head. Although functional, the volume of this hollow nose is quite limited. As an unfortunate consequence, medical procedures had to be frequently interrupted whenever the catheter head filled up with plaque. The catheter then had to be carefully withdrawn, stored plaque removed, then slowly and carefully reinserted back to the target zone. This prolonged the medical procedures, and led to strain on the patient and physician, as well as encouraging less complete plaque removal.
  • the present art solves this limited storage problem by adapting a novel design in which the plaque cutting blade ( 205 ) is mounted on one or more edges of a hollow window ( 204 ) that in turn opens up into a much larger plaque shaving storage area ( 206 ) contained in the main body of the catheter head ( 210 ).
  • a second advantage of the present invention's bladed window design that it gives the operator a wider variety of cutting options.
  • the operator may use the bladed window ( 204 , 205 ) as a scraper, paring off unwanted plaque by advancing the catheter.
  • the operator may use the bladed window, in combination with a plunger ( 203 ) to pinch off plaque.
  • the operator may use the bladed window with a combination plunger and rotary cutter to cut plaque from both directions. The net effect is that the operator has a greater variety of cutting means at his or her disposal, and can thus choose the most appropriate means to fit the particular target at hand.
  • the catheter may additionally have sensors, such as directional ultrasonic or infrared sensors, mounted on the catheter head.
  • sensors such as directional ultrasonic or infrared sensors
  • the orientation of the sensor or sensors is directed to give the operator information as to the status of the plaque and/or artery of or other body lumen that is facing the cutting window of the catheter. This can allow the operator to determine if the catheter is in the proper orientation relative to its intended target. Examples of such sensors were described in more detail in application Ser. No. 10/421,980, the contents of which are incorporated herein by reference.
  • the catheter cutting head ( 210 ) will have a diameter between about 1 to 2.2 millimeters.
  • the cutting window ( 204 ) will typically have a length of about 1.2 to 2.5 millimeters.
  • the plunger orientation control mechanism may allow the plunger to at least temporarily be locked into a position that allows the cutting outer edge of the plunger to extend about 0.025 to 0.64 mm outside the cutting window.
  • This adjustable “slightly outside” configuration can also be used when the plunger does not have a cutting edge as well, as a slightly protruding plunger creates a “safety razor” type configuration in which any tendency of the blade to cut too deeply is mitigated by the force of the artery wall against the protruding plunger.
  • the net effect of the present design is to allow the operator to move the catheter backward along the target region of plaque, and shave off a long thin portion of this plaque using the cutting edge of plunger ( 203 ). The operator may then move the catheter forward, and cut off plaque using blade ( 205 ). In this configuration, both forward and backward movement can produce cutting activity, if desired.
  • the plunger ( 203 ) will typically have a diameter of about 1.14 mm, and a width typically at least as long as window ( 204 ).
  • the window facing side of the plunger and may have a dull edge, a sharp cutting edge, other edge.
  • the geometry of the plunger's window-facing edge may be chosen so that when the plunger is moved to close the window, window blade ( 205 ) may be partially or totally covered or obscured by the plunger.
  • the plunger may be designed to provide a flat or curved edge to help pinch material, and may be designed as to stop just short of contacting the window blade so as to avoid dulling window blade ( 205 ). If plunger ( 203 ) is designed to function as a cutting wheel, then usually some sort of safety stop will be used so as to prevent plunger ( 203 ) from coming into total contact with blade edge ( 205 ).
  • the catheter will have a mechanism to rotate the plunger/cutting wheel at high speeds, typically greater than 100 rotations per minute (rpm), preferably around 8000 rotations per minute (rpm).
  • the plunger will be mounted on a shuttle or cam mechanism to allow the operator to adjust the protrusion of the plunger from the window.
  • This will allow plunger ( 203 ) to function somewhat as the stop on a safety razor, and help prevent blade ( 205 ) from accidentally penetrating too far into plaque during a cutting step. That is, plunger ( 203 ) may be angled as to protrude partially outside of the window ( 204 ), and in particular further outside window ( 204 ) than blade ( 205 ). Thus if blade ( 205 ) starts to cut too deep, the protruding portion of plunger ( 203 ) will then start to generate a downward deflection force to help prevent blade ( 205 ) from cutting at a larger depth.
  • the cutting edge of the blades may be optionally hardened by an appropriate coating, such as ME-92, tungsten carbide, or other suitable materials as taught by U.S. Pat. Nos. 4,771,774; 5,242,460; 5,312,425; 5,431,673; and 5,674,232.
  • an appropriate coating such as ME-92, tungsten carbide, or other suitable materials as taught by U.S. Pat. Nos. 4,771,774; 5,242,460; 5,312,425; 5,431,673; and 5,674,232.
  • the action of blade can be facilitated by ultrasonic vibration, laser cutting, radiofrequency electrodes, and the like.
  • appropriate mechanisms i.e. a piezoelectric ultrasonic vibrator, laser diode or optical fiber, electrodes, etc. may also be provided in the catheter head to drive the blade as needed. If the action of the ultrasonic, laser, or electrode cutter is sufficiently robust enough as to make it a spinning blade unnecessary, then the blade may either not be spun up, or the blade rotary mechanism may be omitted, or a non-rotating blade may be used.
  • the location and orientation of the catheter head will be identified by constructing the catheter head ( 210 ), nose ( 201 ), and cutting window/plunger region ( 204 ), ( 203 ) out of suitable combinations of translucent and radio opaque materials, thus, for example, enabling the region distal to the cutting window to be distinguished from the region proximal to the cutting head by fluoroscopy or other X-ray detection means.
  • orientation may be facilitated by running a fiber optic strand through the catheter tube ( 103 ) (not shown) to an appropriate location on the catheter head, and determining the location and orientation of the head by optical means.
  • an ultrasonic transducer or pickup may be incorporated into the catheter head.
  • the flexible outer catheter tube ( 103 ) between the handle ( 101 ) and the head ( 104 ) will have a length between 50 cm and 200 cm, a diameter between 1 French (0.33 mm) and 12 French (4 mm), and will usually be between 3 French (1 mm) and 9 French (3 mm) in diameter.
  • the catheter body will often be made from extruded organic polymers such as polyvinylchloride, polyurethane, polyester, polytetrafluoroethylene (PTFE), silicon rubber, or similar materials.
  • the catheter body may be reinforced as needed with wires, coils, or filaments as needed to give the body additional strength and to control rigidity and pushability.
  • Portions of the catheter head ( 104 ) will often be rigid or partially rigid, and can be made from materials such as metals, hard plastics, composite materials, NiTi steel (optionally coated with titanium nitride, tantalum, ME-92® or diamonds. Usually stainless steel or platinum/iridium will be used.
  • the length of the middle portion of the catheter head may vary between about 5 to 35 mm, and will usually be between about 10 to 25 mm; however alternative lengths (longer or shorter) may also be used.
  • the extreme distal end of the catheter head (the nose) ( 201 ) will usually be made to be both flexible and atraumatic so as to allow the catheter to be threaded through arteries with maximum ease and minimum trauma. Because, in this design, the nose is no longer used to store plaque, this nose design may be optimized to accommodate the plunger, optional cams or drive mechanisms, and also optimized to allow easy passage of the catheter through arteries. In some cases, the distal tip will have an inner coil construction to maximize flexibility. The distance between the rigid part of the catheter head and the distal end tip of the flexible catheter nose will typically be between 10 and 30 mm, but may vary as needs dictate.
  • the present device will often be designed to make use of a monorail guidewire to assist in positioning the cutter to the proper location at the target site.
  • the guidewire will have diameters between about 0.010′′ and 0.032′′, usually around 0.014′′.
  • this guidewire may optionally pass through much of the 50 to 200 cm length of the flexible catheter through a hollow hole in the center of the catheter, it will usually be desirable to have the guidewire leave catheter head proximal to the plaque storage, window, cutting and cutting driver mechanism, and then rejoin the catheter head after these portions have been passed. This prevents interference with the plaque debulking mechanism.
  • the guidewire may have a portion that is external to the catheter head in this region.
  • a guidewire lumen or a telescoping guidewire lumen with a length between about 2 and 14 cm, or even longer as needed to accommodate higher plaque storage volumes.
  • This telescoping guidewire lumen protects both the guidewire from accidental cutting or entanglement with the blade and window, and also helps protect the patient's artery or other body lumen linings from inadvertent excessive pressure while the catheter head traverses narrow passages.
  • FIG. 3 shows one example of how the catheter of the present invention may interact with a guide wire.
  • either the catheter tube ( 103 ) and or the catheter head and nose ( 210 ), ( 201 ) may have hollow passages or openings in order to be compatible with such guide wires. This is shown in FIG. 3 .
  • a guide wire ( 301 ) originally threaded through the hollow catheter tube ( 103 ) exits the catheter head ( 210 ) at aperture ( 302 ).
  • the guide wire thus bypasses the hollow plaque storage region of the catheter head ( 303 ) which in this example may be separated from the hollow catheter tube ( 103 ) by a divider ( 304 ).
  • the guidewire travels outside of the head of the catheter ( 210 ) for a while (e.g. 5 to 15 cm) until it reaches a first opening ( 305 ) in the catheter nose.
  • the guide wire may then be threaded through the catheter nose until it reaches a second opening ( 306 ), where it may then exit.
  • Other guide wire configurations may be used, or alternatively, no guide wire at all may be used.
  • the adjustable angle nose ( 201 ) is angled or drooped, and the plug ( 203 ) is pushed distally ( 201 ), opening up window ( 204 ) and exposing the window knife edge ( 205 ).
  • the angled or drooped nose ( 201 ) contacts the opposite wall of artery or body lumen ( 401 ), providing pressure to force or “urge” window ( 204 ) and knife edge ( 205 ) against the wall of the artery ( 402 ) and against the target plaque ( 403 ).
  • the operator can then advance (more) the catheter head ( 210 ) forward (distally) by applying forward pressure to the catheter tube ( 103 ) or advancing some other type of drive mechanism.
  • Blade ( 205 ) shaves off some of this plaque ( 403 ) and this removed plaque ( 404 ) enters the hollow cavity of catheter head ( 210 ).
  • Helical screw ( 207 ) can then act to move this plaque further back into the storage cavity.
  • plunger ( 203 ) can optionally be rotated by a cam mechanism and advanced partially out of the window ( 205 ) in order to provide greater control over the depth of the cut by blade ( 205 ).
  • the dangling plaque ( 404 ) can also be trimmed by moving plunger ( 203 ) proximally back into the catheter head ( 210 ) thus closing or partially closing window ( 204 ).
  • the plunger forces the dangling plaque ( 404 ) up against the knife edge ( 205 ) pinching or cutting the dangling plaque.
  • This severed plaque ( 405 ) then enters the hollow capillary head where it can be moved to the back by an optional helical screw ( 207 ), suction, or other mechanism.
  • plunger ( 203 ) may be a rotating plunger that also has its own cutting head along the edge of the plunger facing the window.
  • plunger ( 203 ) may have an edge configuration designed to shield or partially shield blade ( 205 ) from inadvertent contact with body lumens when the window ( 204 ) is closed or partially closed by the plunger ( 203 ).
  • the plunger mechanism may additionally have various cams or stops designed to place the plunger at the appropriate angle and orientation necessary to perform its function.
  • FIG. 5 ( 501 ) to ( 506 ) shows various alternate blade ( 205 ) and window ( 204 ) configurations that may be used with the device.

Abstract

A catheter includes a rotatable cutter in a catheter body adjacent a window and operatively connected to a rotatable shaft for rotation therewith. The rotatable cutter includes a proximally-facing cutting edge. The rotatable cutter is selectively positionable to a cutting position in which the rotatable cutter extends partially outside the window to expose the cutting edge such that the catheter can be moved proximally within the body lumen as the rotatable cutter is rotating to remove tissue from the lumen and direct the removed tissue through the window and into a removed-tissue lumen.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation application of U.S. patent Ser. No. 11/934,670, filed Nov. 2, 2007, the entirety of which is incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • Restriction of blood circulation due to the atherosclerotic build up of plaque in arteries is the source of much mortality and morbidity. Plaque deposits in cardiac arteries can result in angina and myocardial infarction. Plaque deposits in peripheral arteries of the limbs can result in peripheral artery disease (PAD). PAD affects about 20% of the population over 70, and in more severe forms (which afflict about 2 million people in the U.S.) can lead to non-healing ulcers, infection, and eventually loss of limb due to amputation. Most people die within two years of such amputations.
  • Although many techniques, such as stenting and balloon angioplasty, have been developed to help restore circulation to plaque occluded cardiac arteries, these methods tend to be less effective for peripheral arteries. Stents, although well suited to low-mobility cardiac arteries, tend to either restenose or frequently break in peripheral limb arteries because these arteries are subjected to greater movement and mechanical stress. Balloon angioplasty, which stretches the artery walls while it compresses and redistributes plaque, tends to cause a greater and typically less acceptable amount of artery wall damage when it is used with peripheral arteries. Additionally, since angioplasty simply redistributes plaque rather than actually removing plaque, in the higher mobility peripheral arteries, the redistributed plaque tends to relatively quickly distribute itself back into an unacceptable configuration again.
  • From the surgical perspective, one of the most ideal ways to treat arteries blocked by plaque is to remove the plaque from the inside of the artery using an atherectomy catheter. Such catheters, which come in a variety of different designs, can be introduced into the body at a convenient location and threaded inside the artery to the plaque occluded target region (which can usually be determined exactly using fluoroscopy and appropriate radio opaque contrast dyes). Once they are at the correct region, atherectomy catheters then surgically remove the occluding plaque.
  • Many different types of atherectomy catheter devices have been proposed, including catheters with rotating burrs (Boston Scientific Rotablator), lasers to photo-dissolve tissue (Spectrametics Laser Catheter), and cutter-balloon catheters (Guidant AtheroCath). All have certain drawbacks, however, such as difficulty in traversing through small and torturous arteries to get to the plaque occluded target zone or zones.
  • One of the biggest problems plaguing prior art atherectomy catheters is the problem of gracefully handing the shaved plaque remnants. Some designs, such as the Rotablator, make no attempt at all to handle the liberated plaque fragments, and instead let the fragments migrate through the circulation. This can cause many problems, because the liberated plaque remnants can be thrombogenic, and can end up causing downstream occlusions. Other catheter designs attempt to reduce this problem by capturing the plaque shavings and safely removing them from the body. Capturing the plaque shavings also makes the samples available for pathologic and medical diagnostic examination, and may give important information as to the root causes behind the plaque build-up in the first place.
  • Examples of such cutting catheters include Andreas U.S. Pat. No. 5,250,059; Farley, U.S. Pat. No. 5,624,457; Conley U.S. Pat. No. 5,669,920; Schultz U.S. Pat. No. 5,836,957; and Rogers U.S. Pat. No. 6,120,515. Other prior art includes Snow, U.S. application Ser. No. 09/930,372; Methods for removing atheromatous material from a body lumen
  • More recent atherectomy catheters, such as the Fox Hollow SilverHawk articulated rotating blade atherectomy catheter, have been designed to address such issues. The SilverHawk catheter (exemplified by U.S. patent application Ser. Nos. 10/027,418; 10/288,559; 10/896,747; and others) uses a unique rotating blade, window, and hinged hollow nose design, which can be controlled to either assume a straight position or an angled (drooped) position.
  • To use the SilverHawk atherectomy catheter, the operator will usually first insert a guide wire to the proper location, attach the SilverHawk to the guidewire, and introduce the SilverHawk through a convenient artery port, often located near the groin region. The operator then maneuvers the SilverHawk device to the appropriate region of plaque with the SilverHawk hinged (bendable) nose in a straight configuration. Once at the target zone, the operator then bends the angle of the SilverHawk's hollow nose. The nose contacts the artery wall opposite the plaque target, and which in turn results in an opposing force that presses the catheter's window and cutter against the plaque.
  • The operator will then spin-up the cutter, and move the catheter across the target zone. The rotary cutter cuts a thin strip of plaque, which is directed, by the motion of the cutter and the device's geometry, into the hollow nose cone. The cuttings stay in the nose cone, where they can eventually be removed from the body and analyzed.
  • The SilverHawk atherectomy catheter represented a significant advance in the state of the art, because it enabled substantially longer regions (often several centimeters or more) of plaque to be shaved for each pass of the catheter over a region. An additional advantage was that the catheter could be rotated; exposing the window and the rotating blade to another region, and a target region of plaque could thus be shaved multiple times, allowing precise control over the amount and geometry of the plaque reduction process.
  • Although the SilverHawk catheter demonstrated the utility of this type of approach, further improvements were still desirable. In particular, the available plaque storage space in the device's hollow nose cone was limited, and improvements in trimming partially attached plaque shavings were also desirable.
  • One problem was that whenever the nose cone filled with plaque, the catheter needed to be pulled from the body, cleaned, and then laboriously rethreaded to the correct location in the target zone again. This tended to significantly prolong the length and effort required for many medical procedures, and thus was undesirable to both physician and patient alike. Methods to reduce this burden were thus highly desirable.
  • A second problem was how to optimize plaque handling near the edges of trimmed areas. In some cases, plaque would be partially severed by the rotating cutter, yet still remain partially attached to the artery wall. This dangling plaque sometimes had a tendency to deform when a cutter passed over it, rather than be neatly severed and stored in the catheter's plaque storage compartment. Here, an alternative cutting means that could either cut the plaque from the opposite direction, and/or pinch off, cut, and store dangling plaque would be advantageous.
  • Atherectomy design engineers face some formidable design challenges, however. In order to navigate the narrow and torturous arteries, veins and other lumens of the body, such catheters must have extremely small diameters, usually on the order of 1 to 3 millimeters (3-9 French). At the same time, the devices must be flexible enough to be threaded through such arteries, yet have sections that are rigid enough to accomplish the required positioning, cutting, and plaque storage functions.
  • Due to these many design constraints, mechanical designs that might be relatively simple to execute with larger diameter devices become very problematic at such extremely small diameters. Additional constraints, such as the need to use biocompatible materials, the need for extremely high reliability, and the need for accommodate a wide variety of different plaque targets in different patients make the design of such devices quite challenging.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is an improved atherectomy catheter designed with increased plaque carrying cap ability, and an improved ability to trim plaque, including the dangling portions of plaque that are still partially attached to artery or other body lumen walls. The catheter will normally comprise a long catheter tube, with a cutting head attached to the tube comprising at least a hollow rigid tubular portion with a bladed edge window, and an adjustable angle distal nose portion. The catheter head may additionally contain either a moveable plunger or a moveable plunger cutting wheel. The catheter may achieve its plaque cutting action by more than one modality.
  • In a first cutting modality, an operator controlled variable angle (drooping) nose or nose region is bent by the operator. The tip of the nose contacts an opposite artery wall or other body lumen, forcing (as an equal and opposite reaction) a bladed window opening on the opposite side of the catheter up against a target region of plaque on the opposite artery wall. The operator then retracts a plunger or shield that obscures the bladed edge of the catheter window, and advances the catheter. The bladed window edge shaves the plaque, and plaque shavings pass through the window opening into a hollow storage space inside the catheter, where the shavings are stored. The shavings may then be subsequently removed from the body and subjected to pathological or medical diagnostic analysis as needed.
  • In a second cutting modality, an operator uses the catheter's moveable plunger to close the catheter's open window. As it closes the window, the plunger presses any dangling plaque that is protruding into the window up against the bladed edge of the window. The dangling plaque is severed by the pinching action of the window blade and the plunger, and again enters the hollow storage space inside the catheter.
  • In a third cutting modality, an operator spins up a moveable combination plunger and cutting wheel, and uses the spinning plunger/cutting wheel to almost close the catheter's open window, while optionally advancing or retracting the catheter. The dangling plaque is thus subjected to cutting action from both sides, as well as a pinching action, and an optional force due to advancement or retraction of the catheter. The severed plaque fragment and again enters the hollow storage space inside the catheter.
  • In a fourth cutting modality, an operator may spin up a moveable plunger cutting wheel, and cut plaque by alternately advancing and retracting the catheter head. Plaque will be subjected to cutting from the bladed window when the catheter is advanced, and will be subjected to cutting from the rotating plunger when the catheter is retracted. As before, the shavings will again enter into the hollow storage space inside the catheter.
  • Normally, when the operator wishes to advance or retract the catheter through the body either towards or away from the target zone, the operator will use a mechanism connected to the plunger to close the window. This helps insure that the bladed window edge will not inadvertently damage non-target regions of the arteries or other body lumens.
  • It is contemplated that in normal operation, the operator may switch between various cutting modalities as appears best for the given situation. The present design gives the operator a greater number of cutting options than prior art designs, thus allowing quicker and more precise procedures to be accomplished. Due to the fact that the present invention stores the plaque shavings in the relatively large hollow storage space of the catheter body, rather than the relatively small storage space of the catheter nose (as was done with prior art designs), the catheter may additionally operate for a longer period of time before it must be withdrawn from the body for cleaning, and reinserted. This speeds up the procedure time, and reduces the burden on patients and physicians.
  • In an alternative embodiment of the present invention, sensors may also be added to the design to help the operator properly position the device relative to target plaque or other body lumen targets of interest, and also properly orient the cutting window of the device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an overall view of the unit, including the proximal operator control, the catheter, and the distal catheter cutting head.
  • FIG. 2A shows a top view of the distal catheter cutting head.
  • FIG. 2B shows a side view of the distal catheter cutting head with the adjustable angle catheter nose in the up configuration.
  • FIG. 2C shows a side view of the distal catheter cutting head with the nose angled down in a drooped configuration.
  • FIG. 3 shows how a guide wire may be threaded through the catheter and the distal cutting head.
  • FIG. 4A shows the razor edge on the catheter window cutting through plaque with the plug in an open window configuration.
  • FIG. 4B shows the how dangling plaque may be cut off and stored in the head of the device by closing the plug.
  • FIG. 5 shows a variety of different catheter window blade edges.
  • DESCRIPTION OF THE INVENTION
  • The present art is normally intended for use with human patients, as well as various veterinary applications. For simplicity, this combined human or animal use will be referred to as use in mammals, although of course such devices could also be used in appropriate non-mammal animals such as birds, reptiles, and amphibians, etc., as appropriate.
  • It should also be understood that although the examples of cutting unwanted plaque deposits in arteries are used throughout this disclosure, the actual invention may be used for a broader variety of applications, including removing tumors, getting biopsies, etc. in arteries, veins, and any other tubular or roughly tubular body lumen.
  • Nomenclature: The handle end of the catheter is the proximal location, and the nose cone tip of the catheter is the distal location.
  • An overview of the device is shown in FIG. 1. The device consists of a handle (101), one or more control knobs, tabs, or switches (102), a long catheter tube or shaft (103), and the cutting atherectomy head (104).
  • The catheter tube or shaft (103) will typically consist of a flexible tube, which is often hollow and capable of passing a guide wire, as well as optionally other materials such as drugs and contrast materials, control wires, drive shafts, sensors, sensor fibers or wires, ultrasonic signals, and the like. The control wires may optionally be used to operate plunger settings, nose angle, and the like as will be discussed in the next sections.
  • In some embodiments, the handle (101) may also contain a battery and motor for driving a screw material transport device in the catheter head (104), or a rotating combination plunger and cutter. In this case, the tube (103) may contain a shaft or hollow shaft additionally capable of transmitting torque from a motor mounted in the handle to the atherectomy head.
  • The cutting atherectomy head (104) will typically consist of a hollow body and a moveable tapered nose, which in some embodiments is connected to the front of the hollow body by at least one hinge. The head will additionally consist of at least a window with a razor edge, and a moveable plunger or combination plunger/cutter that can transition from a more distal (open window) position to a more proximal (closed window) position. Head (104) may additionally contain openings or ports to accommodate a guidewire to allow the catheter head to be precisely threaded through torturous arteries, veins, or other body lumens.
  • In the event that use with a guide wire is desired, to allow the head's bladed window and plunger cutting mechanism to operate freely and without risk accidentally cutting or entangling with the guide wire, the guide wire may be routed to exit from the proximal region of the catheter head, and then reenter the catheter head at the distal region of the head, thus skipping the plaque cutting and storage regions of the head. In some configurations, the guide wire will reenter the catheter head at the distal nose region, travel through the nose end of the head for a short distance, and then finally exit the head again through a third exit port, often located near the tip of the catheter's nose located at the extreme distal end of the catheter.
  • FIGS. 2A, 2B, and 2C show close-ups of the cutting atherectomy head (104) from various angles. FIG. 2A shows the head from the top. The figure shows the head's adjustable angle nose cone (201), hinge pins (202), moveable plug (203), window opening (204), window blade edge (205), the plug movement shaft (206) an optional helical screw to help move and compact any plaque shavings (207), and the main body of the head (210).
  • The catheter's nose (201) usually has a tapered or conical atraumatic design intended to allow the catheter head to easily migrate through arteries. It may be composed of softer materials, and may additionally have an internal coiled spring or other means to allow the tip to bend somewhat as needed to migrate through torturous arteries and other body lumen structures.
  • FIG. 2B shows the same head from the side. Here the adjustable angle nose (201) is shown in the “up” or straight configuration, which allows the catheter head to migrate though the torturous arteries and body lumens with maximum ease. In this figure the plug (203) is shown in the extended configuration and the window (204) is open. In actual operation however, when the head is being moved through the arteries to a target site, plug (203) will normally be in a closed position, closing window (204), and normally blocking window blade (205). This closed position helps to prevent the window blade (205) from accidentally nicking or cutting non-target regions of the arteries or other body lumens while the device is being moved to and from its various target zones.
  • FIG. 2C shows the head from the side, showing the catheter operating in a cutting configuration after the catheter head has been threaded to its designated target zone. Once the catheter is in position, the adjustable angle catheter nose (201) is put into a bent or drooped position through either a cam mechanism (not shown), or other means. Suitable cam mechanisms and deflection means for adjusting the angle of similar type catheter noses were previously taught by copending application Ser. Nos. 10/896,741, and 10/027,418, the contents of which are incorporated herein by reference.
  • In this angled or drooped position, the nose cone (201), which is shown held to the main body (210) by hinge pins (202), rotates to a “bent” configuration. This adjustable angle nose is typically rotated by the operator increasing the angle of the bend until the nose tip makes contact with the opposite wall of a body lumen (i.e. an opposite artery wall). Once the nose tip makes contact with an opposite wall, an equal and opposite force is generated (by the normal laws of physics) that acts to push or “urge” window (204) and the blade (205) against the target zone on the opposite lumen wall. This target is usually a plaque occluded region of an artery wall.
  • This design thus differs from earlier cutting catheter designs, such as the Guidant AtheroCath, which used a balloon on one side of the cutting head to force the cutting portion of the catheter against the target plaque.
  • One problem with earlier cutting catheter designs is the catheters either did not collect the plaque shavings at all (potentially causing significant complications and adverse effects), or else the earlier designs had only a relatively limited ability (storage volume) to store this collected plaque.
  • As an example, prior art atherectomy catheters typically stored plaque shavings in the hollow distal (nose) side of the catheter head. Although functional, the volume of this hollow nose is quite limited. As an unfortunate consequence, medical procedures had to be frequently interrupted whenever the catheter head filled up with plaque. The catheter then had to be carefully withdrawn, stored plaque removed, then slowly and carefully reinserted back to the target zone. This prolonged the medical procedures, and led to strain on the patient and physician, as well as encouraging less complete plaque removal.
  • By contrast, the present art solves this limited storage problem by adapting a novel design in which the plaque cutting blade (205) is mounted on one or more edges of a hollow window (204) that in turn opens up into a much larger plaque shaving storage area (206) contained in the main body of the catheter head (210).
  • A second advantage of the present invention's bladed window design that it gives the operator a wider variety of cutting options. The operator may use the bladed window (204, 205) as a scraper, paring off unwanted plaque by advancing the catheter. The operator may use the bladed window, in combination with a plunger (203) to pinch off plaque. The operator may use the bladed window with a combination plunger and rotary cutter to cut plaque from both directions. The net effect is that the operator has a greater variety of cutting means at his or her disposal, and can thus choose the most appropriate means to fit the particular target at hand.
  • In some embodiments, the catheter may additionally have sensors, such as directional ultrasonic or infrared sensors, mounted on the catheter head. In one embodiment, the orientation of the sensor or sensors is directed to give the operator information as to the status of the plaque and/or artery of or other body lumen that is facing the cutting window of the catheter. This can allow the operator to determine if the catheter is in the proper orientation relative to its intended target. Examples of such sensors were described in more detail in application Ser. No. 10/421,980, the contents of which are incorporated herein by reference.
  • Device dimensions: Typically the catheter cutting head (210) will have a diameter between about 1 to 2.2 millimeters. The cutting window (204) will typically have a length of about 1.2 to 2.5 millimeters. In embodiments where the plunger (203) is a plunger equipped with a cutting wheel that contains a cam or other orientation control mechanism that allows the cutting wheel portion of the plunger to extend slightly outside the window, the plunger orientation control mechanism may allow the plunger to at least temporarily be locked into a position that allows the cutting outer edge of the plunger to extend about 0.025 to 0.64 mm outside the cutting window.
  • This adjustable “slightly outside” configuration can also be used when the plunger does not have a cutting edge as well, as a slightly protruding plunger creates a “safety razor” type configuration in which any tendency of the blade to cut too deeply is mitigated by the force of the artery wall against the protruding plunger.
  • The net effect of the present design is to allow the operator to move the catheter backward along the target region of plaque, and shave off a long thin portion of this plaque using the cutting edge of plunger (203). The operator may then move the catheter forward, and cut off plaque using blade (205). In this configuration, both forward and backward movement can produce cutting activity, if desired.
  • The plunger (203) will typically have a diameter of about 1.14 mm, and a width typically at least as long as window (204). The window facing side of the plunger and may have a dull edge, a sharp cutting edge, other edge. The geometry of the plunger's window-facing edge may be chosen so that when the plunger is moved to close the window, window blade (205) may be partially or totally covered or obscured by the plunger. Alternatively, the plunger may be designed to provide a flat or curved edge to help pinch material, and may be designed as to stop just short of contacting the window blade so as to avoid dulling window blade (205). If plunger (203) is designed to function as a cutting wheel, then usually some sort of safety stop will be used so as to prevent plunger (203) from coming into total contact with blade edge (205).
  • If the plunger is designed to additionally operate as a rotating cutting wheel, then the catheter will have a mechanism to rotate the plunger/cutting wheel at high speeds, typically greater than 100 rotations per minute (rpm), preferably around 8000 rotations per minute (rpm).
  • As previously discussed, in some configurations, the plunger will be mounted on a shuttle or cam mechanism to allow the operator to adjust the protrusion of the plunger from the window. This will allow plunger (203) to function somewhat as the stop on a safety razor, and help prevent blade (205) from accidentally penetrating too far into plaque during a cutting step. That is, plunger (203) may be angled as to protrude partially outside of the window (204), and in particular further outside window (204) than blade (205). Thus if blade (205) starts to cut too deep, the protruding portion of plunger (203) will then start to generate a downward deflection force to help prevent blade (205) from cutting at a larger depth.
  • The cutting edge of the blades may be optionally hardened by an appropriate coating, such as ME-92, tungsten carbide, or other suitable materials as taught by U.S. Pat. Nos. 4,771,774; 5,242,460; 5,312,425; 5,431,673; and 5,674,232.
  • In other cases, the action of blade can be facilitated by ultrasonic vibration, laser cutting, radiofrequency electrodes, and the like. In this case, appropriate mechanisms (i.e. a piezoelectric ultrasonic vibrator, laser diode or optical fiber, electrodes, etc. may also be provided in the catheter head to drive the blade as needed. If the action of the ultrasonic, laser, or electrode cutter is sufficiently robust enough as to make it a spinning blade unnecessary, then the blade may either not be spun up, or the blade rotary mechanism may be omitted, or a non-rotating blade may be used.
  • In many embodiments, it will be useful to allow the location and orientation of the catheter head to be identified by constructing the catheter head (210), nose (201), and cutting window/plunger region (204), (203) out of suitable combinations of translucent and radio opaque materials, thus, for example, enabling the region distal to the cutting window to be distinguished from the region proximal to the cutting head by fluoroscopy or other X-ray detection means.
  • In addition to fluoroscopy localization, other modalities, such as light (optical) and sonic (ultrasonic) localization methods may also be used. Here orientation may be facilitated by running a fiber optic strand through the catheter tube (103) (not shown) to an appropriate location on the catheter head, and determining the location and orientation of the head by optical means. Alternatively an ultrasonic transducer or pickup may be incorporated into the catheter head.
  • Typically the flexible outer catheter tube (103) between the handle (101) and the head (104) will have a length between 50 cm and 200 cm, a diameter between 1 French (0.33 mm) and 12 French (4 mm), and will usually be between 3 French (1 mm) and 9 French (3 mm) in diameter. The catheter body will often be made from extruded organic polymers such as polyvinylchloride, polyurethane, polyester, polytetrafluoroethylene (PTFE), silicon rubber, or similar materials. The catheter body may be reinforced as needed with wires, coils, or filaments as needed to give the body additional strength and to control rigidity and pushability.
  • Portions of the catheter head (104) (distal region of the catheter) will often be rigid or partially rigid, and can be made from materials such as metals, hard plastics, composite materials, NiTi steel (optionally coated with titanium nitride, tantalum, ME-92® or diamonds. Usually stainless steel or platinum/iridium will be used. The length of the middle portion of the catheter head may vary between about 5 to 35 mm, and will usually be between about 10 to 25 mm; however alternative lengths (longer or shorter) may also be used.
  • As previously discussed, the extreme distal end of the catheter head (the nose) (201) will usually be made to be both flexible and atraumatic so as to allow the catheter to be threaded through arteries with maximum ease and minimum trauma. Because, in this design, the nose is no longer used to store plaque, this nose design may be optimized to accommodate the plunger, optional cams or drive mechanisms, and also optimized to allow easy passage of the catheter through arteries. In some cases, the distal tip will have an inner coil construction to maximize flexibility. The distance between the rigid part of the catheter head and the distal end tip of the flexible catheter nose will typically be between 10 and 30 mm, but may vary as needs dictate.
  • The present device will often be designed to make use of a monorail guidewire to assist in positioning the cutter to the proper location at the target site. Usually the guidewire will have diameters between about 0.010″ and 0.032″, usually around 0.014″. Although this guidewire may optionally pass through much of the 50 to 200 cm length of the flexible catheter through a hollow hole in the center of the catheter, it will usually be desirable to have the guidewire leave catheter head proximal to the plaque storage, window, cutting and cutting driver mechanism, and then rejoin the catheter head after these portions have been passed. This prevents interference with the plaque debulking mechanism. Thus the guidewire may have a portion that is external to the catheter head in this region.
  • In some embodiments, it may be desirable to protect the portion or portions of the guidewire that is briefly external to the catheter head by a guidewire lumen or a telescoping guidewire lumen with a length between about 2 and 14 cm, or even longer as needed to accommodate higher plaque storage volumes. This telescoping guidewire lumen protects both the guidewire from accidental cutting or entanglement with the blade and window, and also helps protect the patient's artery or other body lumen linings from inadvertent excessive pressure while the catheter head traverses narrow passages.
  • FIG. 3 shows one example of how the catheter of the present invention may interact with a guide wire. In order to do this, either the catheter tube (103) and or the catheter head and nose (210), (201) may have hollow passages or openings in order to be compatible with such guide wires. This is shown in FIG. 3. Here a guide wire (301) originally threaded through the hollow catheter tube (103) exits the catheter head (210) at aperture (302). The guide wire thus bypasses the hollow plaque storage region of the catheter head (303) which in this example may be separated from the hollow catheter tube (103) by a divider (304).
  • In this embodiment, the guidewire travels outside of the head of the catheter (210) for a while (e.g. 5 to 15 cm) until it reaches a first opening (305) in the catheter nose. The guide wire may then be threaded through the catheter nose until it reaches a second opening (306), where it may then exit. Other guide wire configurations may be used, or alternatively, no guide wire at all may be used.
  • As shown in FIG. 4A, once the catheter head has been maneuvered to the appropriate target zone, the adjustable angle nose (201) is angled or drooped, and the plug (203) is pushed distally (201), opening up window (204) and exposing the window knife edge (205). The angled or drooped nose (201) contacts the opposite wall of artery or body lumen (401), providing pressure to force or “urge” window (204) and knife edge (205) against the wall of the artery (402) and against the target plaque (403). The operator can then advance (more) the catheter head (210) forward (distally) by applying forward pressure to the catheter tube (103) or advancing some other type of drive mechanism.
  • Blade (205) shaves off some of this plaque (403) and this removed plaque (404) enters the hollow cavity of catheter head (210). Helical screw (207) can then act to move this plaque further back into the storage cavity. As previously discussed, plunger (203) can optionally be rotated by a cam mechanism and advanced partially out of the window (205) in order to provide greater control over the depth of the cut by blade (205).
  • As shown in FIG. 4B, the dangling plaque (404) can also be trimmed by moving plunger (203) proximally back into the catheter head (210) thus closing or partially closing window (204). The plunger forces the dangling plaque (404) up against the knife edge (205) pinching or cutting the dangling plaque. This severed plaque (405) then enters the hollow capillary head where it can be moved to the back by an optional helical screw (207), suction, or other mechanism.
  • As previously discussed, in alternative embodiments, plunger (203) may be a rotating plunger that also has its own cutting head along the edge of the plunger facing the window. Alternatively plunger (203) may have an edge configuration designed to shield or partially shield blade (205) from inadvertent contact with body lumens when the window (204) is closed or partially closed by the plunger (203). The plunger mechanism may additionally have various cams or stops designed to place the plunger at the appropriate angle and orientation necessary to perform its function.
  • FIG. 5 (501) to (506) shows various alternate blade (205) and window (204) configurations that may be used with the device.

Claims (18)

What is claimed is:
1. A catheter for removing tissue from a body lumen of a subject, the catheter comprising:
an elongate catheter body having proximal and distal ends and a longitudinal axis extending therebetween, the catheter body being sized and shaped for introduction into the body lumen of the subject;
a window adjacent the distal end of the catheter body and extending generally transversely into the catheter body relative to the longitudinal axis of the catheter body for receiving removed tissue from the body lumen;
a removed-tissue lumen in the catheter body and in communication with the window for receiving removed tissue passing through the window;
a rotatable shaft having proximal and distal ends and a longitudinal axis extending therebetween, the shaft extending longitudinally within the catheter body and configured for selective rotation about its longitudinal axis relative to the catheter body;
a rotatable cutter in the catheter body adjacent the window and operatively connected to the rotatable shaft for rotation therewith, the rotatable cutter including a proximally-facing cutting edge, wherein the rotatable cutter is selectively positionable to a cutting position in which the rotatable cutter extends partially outside the window to expose the cutting edge such that the catheter can be moved proximally within the body lumen as the rotatable cutter is rotating to remove tissue from the lumen and direct the removed tissue through the window and into the removed-tissue lumen.
2. The catheter set forth in claim 1, wherein the rotatable cutter is selectively lockable in the cutting position.
3. The catheter set forth in claim 2, wherein the cutting edge extends about 0.025 mm to 0.64 mm outside the window when the rotatable cutter is in the cutting position.
4. The catheter set forth in claim 1, wherein the catheter includes a transport mechanism for moving the removed tissue proximally within the removed-tissue lumen.
5. The catheter set forth in claim 4, wherein the rotatable shaft extends into the removed-tissue lumen, and the transport mechanism comprises a helical screw on the rotatable shaft.
6. The catheter set forth in claim 1, wherein the rotatable shaft is selectively moveable longitudinally relative to the catheter body to impart selective longitudinal movement of the rotatable cutter relative to the window.
7. The catheter set forth in claim 1, further comprising a stationary cutting element for removing tissue from the lumen, the stationary cutting element located adjacent to the window.
8. The catheter set forth in claim 7, wherein the rotatable shaft is selectively moveable longitudinally relative to the catheter body to impart selective longitudinal movement of the rotatable cutter relative to the stationary cutting element between a first longitudinal position, in which the rotatable cutter is in registration with the window and the cutting edge of the rotatable cutter is spaced a first longitudinal distance from the stationary cutting element to define a first effective open area of the window leading to the removed-tissue lumen, and a second longitudinal position, in which the rotatable cutter is in registration with the window and the cutting edge of the rotatable cutter is spaced a second longitudinal distance from the stationary cutting element to define a second effective open area of the window leading to the removed-tissue lumen, wherein the first longitudinal distal is greater than the second longitudinal distance and the first effective open area of the window is greater than the second effective open area of the window.
9. The catheter set forth in claim 1, wherein the rotatable cutter is selectively positionable to a non-cutting position in which an entirety of the rotatable cutter is disposed within the catheter body and the cutting edge is not exposed through the window.
10. A catheter for removing tissue from a body lumen of a subject, the catheter comprising:
an elongate catheter body having proximal and distal ends and a longitudinal axis extending therebetween, the catheter body being sized and shaped for introduction into the body lumen of the subject;
a window adjacent the distal end of the catheter body and extending generally transversely into the catheter body relative to the longitudinal axis of the catheter body for receiving removed tissue from the body lumen;
a removed-tissue lumen in the catheter body and in communication with the window for receiving removed tissue passing through the window;
a stationary cutting element for removing tissue from the body lumen, the stationary cutting element located adjacent to the window and configured to direct tissue cut from the body lumen toward the window;
a plunger assembly in the elongate catheter body, the plunger assembly including
a shaft having proximal and distal ends and a longitudinal axis extending therebetween, the shaft extending longitudinally through the elongate catheter body and configured for rotation about its longitudinal axis and longitudinal movement relative to the catheter body;
a plunger secured adjacent the distal end of the shaft within the removed-tissue lumen, the plunger configured to rotate with the shaft and move longitudinally with the shaft within the removed-tissue lumen, wherein the plunger is longitudinally moveable within the removed-tissue lumen between a first longitudinal position, in which the plunger is in registration with the window and spaced a first longitudinal distance from the stationary cutting element to define a first effective open area of the window leading to the removed-tissue lumen, and a second longitudinal position, in which the plunger is in registration with the window and spaced a second longitudinal distance from the stationary cutting element to define a second effective open area of the window leading to the removed-tissue lumen, wherein the first longitudinal distal is greater than the second longitudinal distance and the first effective open area of the window is greater than the second effective open area of the window.
11. The catheter set forth in claim 10, wherein the window is at least partially defined by a proximal window edge and a distal window edge of the catheter body, wherein the stationary cutting element is adjacent said proximal window edge.
12. The catheter set forth in claim 11, wherein the stationary cutting element extends along said proximal window edge.
13. The catheter set forth in claim 12, wherein the stationary cutting element is V-shaped.
14. The catheter set forth in claim 11, wherein the stationary cutting element faces distally.
15. The catheter set forth in claim 14, wherein the first longitudinal position of the plunger is distal to the second longitudinal position of the plunger.
16. The catheter set forth in claim 10, wherein the plunger includes a cutting element.
17. The catheter set forth in claim 16, wherein plunger comprises a cutting wheel facing proximally.
18. The catheter set forth in claim 17, wherein the shaft of the plunger assembly includes a helical screw for transporting removed plaque proximally within the removed-tissue lumen.
US13/664,499 1999-08-19 2012-10-31 Debulking catheter Abandoned US20130296901A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US09/378,224 US6299622B1 (en) 1999-08-19 1999-08-19 Atherectomy catheter with aligned imager
US25770400P 2000-12-20 2000-12-20
US27227301P 2001-02-27 2001-02-27
US09/930,372 US6623496B2 (en) 1999-08-19 2001-08-14 Atherectomy catheter with aligned imager
US10/027,418 US7771444B2 (en) 2000-12-20 2001-12-19 Methods and devices for removing material from a body lumen
US10/288,559 US20030125757A1 (en) 2000-12-20 2002-11-04 Debulking catheters and methods
US11/934,670 US8328829B2 (en) 1999-08-19 2007-11-02 High capacity debulking catheter with razor edge cutting window

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/934,670 Continuation US8328829B2 (en) 1999-08-19 2007-11-02 High capacity debulking catheter with razor edge cutting window

Publications (1)

Publication Number Publication Date
US20130296901A1 true US20130296901A1 (en) 2013-11-07

Family

ID=39170735

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/934,670 Active 2031-07-05 US8328829B2 (en) 1999-08-19 2007-11-02 High capacity debulking catheter with razor edge cutting window
US13/664,499 Abandoned US20130296901A1 (en) 1999-08-19 2012-10-31 Debulking catheter

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/934,670 Active 2031-07-05 US8328829B2 (en) 1999-08-19 2007-11-02 High capacity debulking catheter with razor edge cutting window

Country Status (1)

Country Link
US (2) US8328829B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110040315A1 (en) * 2006-06-30 2011-02-17 Atheromed, Inc. Devices, systems, and methods for cutting and removing occlusive material from a body lumen
US8795306B2 (en) 2011-10-13 2014-08-05 Atheromed, Inc. Atherectomy apparatus, systems and methods
US8888801B2 (en) 2006-06-30 2014-11-18 Atheromed, Inc. Atherectomy devices and methods
US8920448B2 (en) 2006-06-30 2014-12-30 Atheromed, Inc. Atherectomy devices and methods
US9095371B2 (en) 2007-10-22 2015-08-04 Atheromed, Inc. Atherectomy devices and methods
US9492192B2 (en) 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
US9675376B2 (en) 2006-06-30 2017-06-13 Atheromed, Inc. Atherectomy devices and methods
US9943330B2 (en) 2015-09-10 2018-04-17 Covidien Lp Tissue-removing catheter with asymmetric window
CN109069180A (en) * 2016-04-14 2018-12-21 柯惠有限合伙公司 Tissue with regulating mechanism removes conduit
US10226275B2 (en) 2006-06-30 2019-03-12 Atheromed, Inc. Devices, systems, and methods for debulking restenosis of a blood vessel
US11207096B2 (en) 2006-06-30 2021-12-28 Atheromed, Inc. Devices systems and methods for cutting and removing occlusive material from a body lumen
US11304723B1 (en) 2020-12-17 2022-04-19 Avantec Vascular Corporation Atherectomy devices that are self-driving with controlled deflection

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708749B2 (en) 2000-12-20 2010-05-04 Fox Hollow Technologies, Inc. Debulking catheters and methods
US6299622B1 (en) 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US7713279B2 (en) 2000-12-20 2010-05-11 Fox Hollow Technologies, Inc. Method and devices for cutting tissue
US7927784B2 (en) * 2000-12-20 2011-04-19 Ev3 Vascular lumen debulking catheters and methods
EP2353526B1 (en) 2000-12-20 2013-09-04 Covidien LP Catheter for removing atheromatous or thrombotic occlusive material
US7699790B2 (en) 2000-12-20 2010-04-20 Ev3, Inc. Debulking catheters and methods
US20060235366A1 (en) * 2000-12-20 2006-10-19 Fox Hollow Technologies, Inc. Method of evaluating a treatment for vascular disease
US20050154407A1 (en) * 2000-12-20 2005-07-14 Fox Hollow Technologies, Inc. Method of evaluating drug efficacy for treating atherosclerosis
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US7794413B2 (en) 2005-04-19 2010-09-14 Ev3, Inc. Libraries and data structures of materials removed by debulking catheters
US20070038173A1 (en) * 2005-07-27 2007-02-15 Fox Hollow Technologies, Inc. Methods affecting markers in patients having vascular disease
US7989207B2 (en) * 2006-02-17 2011-08-02 Tyco Healthcare Group Lp Testing lumenectomy samples for markers of non-vascular diseases
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US20100125253A1 (en) * 2008-11-17 2010-05-20 Avinger Dual-tip Catheter System for Boring through Blocked Vascular Passages
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
KR101645754B1 (en) 2008-10-13 2016-08-04 코비디엔 엘피 Devices and methods for manipulating a catheter shaft
US10849644B2 (en) 2009-03-09 2020-12-01 A.M. Surgical, Inc. Surgical device
US8911470B2 (en) 2012-09-04 2014-12-16 A.M. Surgical, Inc. Compact endoscopic surgical blade assembly and method of use thereof
US11096710B2 (en) * 2012-09-04 2021-08-24 A.M. Surgical, Inc. Compact endoscopic surgical blade assembly and method of use thereof
US9066746B2 (en) 2012-09-04 2015-06-30 A.M. Surgical, Inc. Compact endoscopic surgical blade assembly and method of use thereof
DE102009014489B4 (en) 2009-03-23 2011-03-10 Siemens Aktiengesellschaft Catheter and medical device
EP2424608B1 (en) 2009-04-28 2014-03-19 Avinger, Inc. Guidewire support catheter
BRPI1014721A2 (en) 2009-04-29 2016-04-12 Tyco Healthcare methods and devices for cutting and scraping fabric
CA2761774C (en) 2009-05-14 2014-09-16 Tyco Healthcare Group Lp Easily cleaned atherectomy catheters and methods of use
CA2763324C (en) 2009-05-28 2018-10-23 Avinger, Inc. Optical coherence tomography for biological imaging
WO2011003006A2 (en) * 2009-07-01 2011-01-06 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
BR112012013389A2 (en) 2009-12-02 2018-03-06 Tyco Healthcare methods and devices for cutting a fabric
WO2011072068A2 (en) 2009-12-08 2011-06-16 Avinger, Inc. Devices and methods for predicting and preventing restenosis
CA2783301C (en) 2009-12-11 2015-02-24 Tyco Healthcare Group Lp Material removal device having improved material capture efficiency and methods of use
EP2742881B1 (en) 2010-06-14 2015-10-07 Covidien LP Material removal device
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
CA2803992C (en) 2010-07-01 2018-03-20 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
JP5636114B2 (en) 2010-10-28 2014-12-03 コヴィディエン リミテッド パートナーシップ Substance removal device and method of use
CN103281964B (en) 2010-11-11 2015-09-30 科维蒂恩有限合伙公司 The flexibility possessing imaging capability subtracts the method for go out conduit and manufacture conduit
EP3135232B1 (en) 2011-03-28 2018-05-02 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
WO2013033426A2 (en) 2011-09-01 2013-03-07 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US11357533B2 (en) 2011-09-13 2022-06-14 Venturemed Group, Inc. Intravascular catheter having an expandable incising portion and abrasive surfaces
US10463387B2 (en) 2011-09-13 2019-11-05 John P. Pigott Intravascular catheter having an expandable incising portion for incising atherosclerotic material located in a blood vessel
US11559325B2 (en) 2011-09-13 2023-01-24 Venturemed Group, Inc. Intravascular catheter having an expandable incising portion and grating tool
BR112014005721B1 (en) 2011-09-13 2020-12-29 John P. Pigott intravascular catheter device
US11413062B2 (en) 2011-09-13 2022-08-16 Venturemed Group, Inc. Methods for preparing a zone of attention within a vascular system for subsequent angioplasty with an intravascular catheter device having an expandable incising portion and an integrated embolic protection device
US10610255B2 (en) 2011-09-13 2020-04-07 John P. Pigott Intravascular catheter having an expandable incising portion and medication delivery system
EP2768406B1 (en) 2011-10-17 2019-12-04 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
WO2013172970A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Atherectomy catheters with imaging
EP2849660B1 (en) 2012-05-14 2021-08-25 Avinger, Inc. Atherectomy catheter drive assemblies
WO2013172972A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US9579157B2 (en) 2012-09-13 2017-02-28 Covidien Lp Cleaning device for medical instrument and method of use
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
US9636138B2 (en) 2012-12-12 2017-05-02 Covidien Lp Tissue-removing catheter including force-transmitting member for actuating a cutter housing
EP2931147B1 (en) 2012-12-12 2019-02-06 Covidien LP Tissue-removing catheter including screw blade and cutter driveshaft
US9636139B2 (en) 2012-12-12 2017-05-02 Covidien Lp Tissue-removing catheter with ball and socket deployment mechanism
EP2931148B1 (en) 2012-12-12 2016-09-21 Covidien LP Cutter for tissue-removing catheter
WO2014093159A1 (en) * 2012-12-12 2014-06-19 Covidien Lp Eccentric pass-thru cutter
WO2014093148A2 (en) 2012-12-12 2014-06-19 Covidien Lp Tissue-removing catheter for body lumen
JP6110509B2 (en) 2012-12-12 2017-04-05 コヴィディエン リミテッド パートナーシップ Tissue removal catheter including pressing mechanism
EP2967507B1 (en) 2013-03-15 2018-09-05 Avinger, Inc. Tissue collection device for catheter
WO2014142958A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Optical pressure sensor assembly
EP2967371A4 (en) 2013-03-15 2016-12-07 Avinger Inc Chronic total occlusion crossing devices with imaging
EP3019096B1 (en) 2013-07-08 2023-07-05 Avinger, Inc. System for identification of elastic lamina to guide interventional therapy
US10828471B2 (en) 2013-07-15 2020-11-10 John P. Pigott Balloon catheter having a retractable sheath
US10315014B2 (en) 2013-07-15 2019-06-11 John P. Pigott Balloon catheter having a retractable sheath and locking mechanism with balloon recapture element
US10130798B2 (en) 2013-07-15 2018-11-20 John P. Pigott Balloon catheter having a retractable sheath and locking mechanism
US11202892B2 (en) 2013-07-15 2021-12-21 John P. Pigott Balloon catheter having a retractable sheath
MX2016010141A (en) 2014-02-06 2017-04-06 Avinger Inc Atherectomy catheters and occlusion crossing devices.
WO2015200702A1 (en) 2014-06-27 2015-12-30 Covidien Lp Cleaning device for catheter and catheter including the same
MX2017000303A (en) 2014-07-08 2017-07-10 Avinger Inc High speed chronic total occlusion crossing devices.
EP3244815B1 (en) 2015-01-13 2020-04-22 Pigott, John, P. Intravascular catheter having an expandable portion
US10603069B2 (en) 2015-01-13 2020-03-31 John P. Pigott Intravascular catheter balloon device having a tool for atherectomy or an incising portion for atheromatous plaque scoring
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop
JP6927986B2 (en) 2016-01-25 2021-09-01 アビンガー・インコーポレイテッドAvinger, Inc. OCT imaging catheter with delay compensation
WO2017173370A1 (en) 2016-04-01 2017-10-05 Avinger, Inc. Atherectomy catheter with serrated cutter
EP3463123A4 (en) * 2016-06-03 2020-01-08 Avinger, Inc. Catheter device with detachable distal end
JP7061080B2 (en) 2016-06-30 2022-04-27 アビンガー・インコーポレイテッド Atherectomy catheter with a shaped distal tip
US10588656B2 (en) * 2017-11-10 2020-03-17 Penumbra, Inc. Thrombectomy catheter
WO2021076356A1 (en) 2019-10-18 2021-04-22 Avinger, Inc. Occlusion-crossing devices
US20230035425A1 (en) * 2021-07-29 2023-02-02 Raghavendra Vitthalrao GHUGE Balloon catheter and methods of treatment using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868767A (en) * 1994-12-23 1999-02-09 Devices For Vascular Intervention Universal catheter with interchangeable work element
US6156046A (en) * 1997-11-07 2000-12-05 Prolifix Medical, Inc. Methods and systems for treating obstructions in a body lumen
US20030018346A1 (en) * 1999-08-19 2003-01-23 Fox Hollows Technologies, Inc. Apparatus and methods for removing material from a body lumen
US20050222663A1 (en) * 2000-12-20 2005-10-06 Fox Hollow Technologies, Inc. Debulking catheters and methods

Family Cites Families (562)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1481078A (en) 1922-11-24 1924-01-15 Albertson & Company Flexible shafting
US2178790A (en) 1938-05-07 1939-11-07 Abner E Henry Cutting implement
US2701559A (en) 1951-08-02 1955-02-08 William A Cooper Apparatus for exfoliating and collecting diagnostic material from inner walls of hollow viscera
US2850007A (en) 1956-05-31 1958-09-02 American Cyanamid Co Biopsy device
US3064651A (en) 1959-05-26 1962-11-20 Henderson Edward Hypodermic needle
US3082805A (en) 1960-12-21 1963-03-26 John H Royce Tissue macerator
US3320957A (en) 1964-05-21 1967-05-23 Sokolik Edward Surgical instrument
GB1235321A (en) 1968-01-30 1971-06-09 Nat Res Dev Improvements in or relating to drills for clearing obstructions
US3732858A (en) 1968-09-16 1973-05-15 Surgical Design Corp Apparatus for removing blood clots, cataracts and other objects from the eye
ES152231Y (en) 1969-10-02 1970-07-01 Ballestero Sierra A PERFECTED TROCAR.
US3749085A (en) 1970-06-26 1973-07-31 J Willson Vascular tissue removing device
US3683891A (en) 1970-06-26 1972-08-15 Marshall Eskridge Tissue auger
US3945375A (en) 1972-04-04 1976-03-23 Surgical Design Corporation Rotatable surgical instrument
SU442795A1 (en) 1972-04-27 1974-09-15 Л.С. Юхин Intravascular Surgery Device
US3815604A (en) 1972-06-19 1974-06-11 Malley C O Apparatus for intraocular surgery
US3800783A (en) 1972-06-22 1974-04-02 K Jamshidi Muscle biopsy device
US3831585A (en) 1972-07-19 1974-08-27 T Brondy Retrograde renal biopsy device
US3837345A (en) 1973-08-31 1974-09-24 A Matar Venous valve snipper
US3937222A (en) 1973-11-09 1976-02-10 Surgical Design Corporation Surgical instrument employing cutter means
US3845375A (en) 1973-11-09 1974-10-29 Mclaughlin Ward & Co Electronic rotational sensor
US3976077A (en) 1975-02-03 1976-08-24 Kerfoot Jr Franklin W Eye surgery device
US4007732A (en) 1975-09-02 1977-02-15 Robert Carl Kvavle Method for location and removal of soft tissue in human biopsy operations
US4038985A (en) 1975-10-07 1977-08-02 Medico Developments, Inc. Device for repairing arteries
US3995619A (en) 1975-10-14 1976-12-07 Glatzer Stephen G Combination subcutaneous suture remover, biopsy sampler and syringe
US4030503A (en) 1975-11-05 1977-06-21 Clark Iii William T Embolectomy catheter
US4020847A (en) 1975-11-05 1977-05-03 Clark Iii William T Rotating cutter catheter
US4034744A (en) 1975-11-13 1977-07-12 Smith Kline Instruments, Inc. Ultrasonic scanning system with video recorder
US4177797A (en) 1977-03-04 1979-12-11 Shelby M. Baylis Rotary biopsy device and method of using same
US4112708A (en) 1976-06-21 1978-09-12 Nippon Cable Systems Inc. Flexible drive cable
SU665908A1 (en) 1977-11-09 1979-06-05 Silin Semen A Device for intravascular surgery
US4210146A (en) 1978-06-01 1980-07-01 Anton Banko Surgical instrument with flexible blade
US4306562A (en) 1978-12-01 1981-12-22 Cook, Inc. Tear apart cannula
JPS5581633A (en) 1978-12-15 1980-06-19 Olympus Optical Co Endoscope
US4273128A (en) 1980-01-14 1981-06-16 Lary Banning G Coronary cutting and dilating instrument
US4368730A (en) 1981-02-12 1983-01-18 Nigel Sharrock Intravenous catheter
GB2093353B (en) 1981-02-25 1984-09-19 Dyonics Inc A surgical instrument for arthroscopic arthroplasty
US4436091A (en) 1981-03-20 1984-03-13 Surgical Design Corporation Surgical cutting instrument with release mechanism
JPS5887494U (en) 1981-12-05 1983-06-14 株式会社モリタ製作所 Speed control device for small medical motors
CH660015A5 (en) 1982-02-01 1987-03-13 Sandoz Ag PREPARATIONS CONTAINING POLYMER AND SURFACTANTS, THEIR PRODUCTION AND USE.
US4445509A (en) 1982-02-04 1984-05-01 Auth David C Method and apparatus for removal of enclosed abnormal deposits
US4692141A (en) 1982-03-08 1987-09-08 Mahurkar Sakharam D Double lumen catheter
US4512344A (en) 1982-05-12 1985-04-23 Barber Forest C Arthroscopic surgery dissecting apparatus
US4424045A (en) 1982-05-24 1984-01-03 Pennwalt Corporation Rigid high speed flexible shaft casing assembly for tight radii installations
DE3235612A1 (en) 1982-09-25 1984-03-29 Bayer Ag, 5090 Leverkusen MICROEMULSIONS
US4490139A (en) 1983-01-28 1984-12-25 Eli Lilly And Company Implant needle and method
US4936987A (en) 1983-03-07 1990-06-26 Calgon Corporation Synergistic scale and corrosion inhibiting admixtures containing carboxylic acid/sulfonic acid polymers
US4603694A (en) 1983-03-08 1986-08-05 Richards Medical Company Arthroscopic shaver
US4730616A (en) 1983-08-12 1988-03-15 Advanced Cardiovascular Systems, Inc. Multiple probe angioplasty apparatus and method
US5669936A (en) 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
DE3347671A1 (en) 1983-12-31 1985-07-11 Richard Wolf Gmbh, 7134 Knittlingen TISSUE SAMPLING INSTRUMENT
US4589412A (en) 1984-01-03 1986-05-20 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4631052A (en) 1984-01-03 1986-12-23 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4732154A (en) 1984-05-14 1988-03-22 Surgical Systems & Instruments, Inc. Rotary catheter system
US5135531A (en) 1984-05-14 1992-08-04 Surgical Systems & Instruments, Inc. Guided atherectomy system
US4754755A (en) 1984-05-14 1988-07-05 Husted Royce Hill Catheter with a rotary blade
US4842579B1 (en) 1984-05-14 1995-10-31 Surgical Systems & Instr Inc Atherectomy device
US5024651A (en) 1984-05-14 1991-06-18 Surgical Systems & Instruments, Inc. Atherectomy system with a sleeve
US4894051A (en) 1984-05-14 1990-01-16 Surgical Systems & Instruments, Inc. Atherectomy system with a biasing sleeve and method of using the same
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US5002553A (en) 1984-05-14 1991-03-26 Surgical Systems & Instruments, Inc. Atherectomy system with a clutch
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US4886490A (en) 1984-05-14 1989-12-12 Surgical Systems & Instruments, Inc. Atherectomy catheter system and method of using the same
US4819634A (en) 1984-05-14 1989-04-11 Surgical Systems & Instruments Rotary-catheter for atherectomy system
US4957482A (en) 1988-12-19 1990-09-18 Surgical Systems & Instruments, Inc. Atherectomy device with a positive pump means
US4979951A (en) 1984-05-30 1990-12-25 Simpson John B Atherectomy device and method
US4926858A (en) 1984-05-30 1990-05-22 Devices For Vascular Intervention, Inc. Atherectomy device for severe occlusions
US4781186A (en) 1984-05-30 1988-11-01 Devices For Vascular Intervention, Inc. Atherectomy device having a flexible housing
US4646719A (en) 1984-06-11 1987-03-03 Aries Medical Incorporated Intra-aortic balloon catheter having flexible torque transmitting tube
USRE33258E (en) 1984-07-23 1990-07-10 Surgical Dynamics Inc. Irrigating, cutting and aspirating system for percutaneous surgery
US4646736A (en) 1984-09-10 1987-03-03 E. R. Squibb & Sons, Inc. Transluminal thrombectomy apparatus
US4705038A (en) 1985-01-23 1987-11-10 Dyonics, Inc. Surgical system for powered instruments
US4649919A (en) 1985-01-23 1987-03-17 Precision Surgical Instruments, Inc. Surgical instrument
US4653496A (en) 1985-02-01 1987-03-31 Bundy Mark A Transluminal lysing system
US4745919A (en) 1985-02-01 1988-05-24 Bundy Mark A Transluminal lysing system
US4686982A (en) 1985-06-19 1987-08-18 John Nash Spiral wire bearing for rotating wire drive catheter
US4747406A (en) 1985-02-13 1988-05-31 Intravascular Surgical Instruments, Inc. Shaft driven, flexible intravascular recanalization catheter
US4706671A (en) 1985-05-02 1987-11-17 Weinrib Harry P Catheter with coiled tip
US4679558A (en) 1985-08-12 1987-07-14 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4664112A (en) 1985-08-12 1987-05-12 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4790812A (en) 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
US4696298A (en) 1985-11-19 1987-09-29 Storz Instrument Company Vitrectomy cutting mechanism
US4646738A (en) 1985-12-05 1987-03-03 Concept, Inc. Rotary surgical tool
AU607692B2 (en) 1986-01-06 1991-03-14 Boston Scientific Corporation Northwest Technology Center, Inc. Transluminal microdissection device
CA1293663C (en) 1986-01-06 1991-12-31 David Christopher Auth Transluminal microdissection device
US5000185A (en) 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
US4794931A (en) 1986-02-28 1989-01-03 Cardiovascular Imaging Systems, Inc. Catheter apparatus, system and method for intravascular two-dimensional ultrasonography
US4669469A (en) 1986-02-28 1987-06-02 Devices For Vascular Intervention Single lumen atherectomy catheter device
US4771774A (en) 1986-02-28 1988-09-20 Devices For Vascular Intervention, Inc. Motor drive unit
US4696667A (en) 1986-03-20 1987-09-29 Helmut Masch Intravascular catheter and method
US4728319A (en) 1986-03-20 1988-03-01 Helmut Masch Intravascular catheter
US5350395A (en) 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4757819A (en) 1986-05-21 1988-07-19 Olympus Optical Co., Ltd. Ultrasonic endoscope
US4729763A (en) 1986-06-06 1988-03-08 Henrie Rodney A Catheter for removing occlusive material
US4765332A (en) 1986-07-14 1988-08-23 Medinnovations, Inc. Pullback atherectomy catheter system
US4747821A (en) 1986-10-22 1988-05-31 Intravascular Surgical Instruments, Inc. Catheter with high speed moving working head
SE455834B (en) 1986-10-31 1988-08-15 Medinvent Sa DEVICE FOR TRANSLUMINAL IMPLANTATION OF A PRINCIPLE RODFORMALLY RADIALLY EXPANDABLE PROSTHESIS
US4733662A (en) 1987-01-20 1988-03-29 Minnesota Mining And Manufacturing Company Tissue gripping and cutting assembly for surgical instrument
US4923462A (en) 1987-03-17 1990-05-08 Cordis Corporation Catheter system having a small diameter rotatable drive member
US4846192A (en) 1987-04-17 1989-07-11 Eastman Kodak Company Rearwardly acting surgical catheter
US4784636A (en) 1987-04-30 1988-11-15 Schneider-Shiley (U.S.A.) Inc. Balloon atheroectomy catheter
US4817613A (en) 1987-07-13 1989-04-04 Devices For Vascular Intervention, Inc. Guiding catheter
US4954338A (en) 1987-08-05 1990-09-04 Rohm And Haas Company Microbicidal microemulsion
US4867157A (en) 1987-08-13 1989-09-19 Baxter Travenol Laboratories, Inc. Surgical cutting instrument
US4819635A (en) 1987-09-18 1989-04-11 Henry Shapiro Tubular microsurgery cutting apparatus
DE3732236C1 (en) 1987-09-24 1988-12-15 Rainer Dr Baumgart Recanalization catheter
US4844064A (en) 1987-09-30 1989-07-04 Baxter Travenol Laboratories, Inc. Surgical cutting instrument with end and side openings
US5165421A (en) 1987-09-30 1992-11-24 Lake Region Manufacturing Co., Inc. Hollow lumen cable apparatus
US5154705A (en) 1987-09-30 1992-10-13 Lake Region Manufacturing Co., Inc. Hollow lumen cable apparatus
US4857046A (en) 1987-10-21 1989-08-15 Cordis Corporation Drive catheter having helical pump drive shaft
US5047040A (en) 1987-11-05 1991-09-10 Devices For Vascular Intervention, Inc. Atherectomy device and method
US4870953A (en) 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
US4887613A (en) 1987-11-23 1989-12-19 Interventional Technologies Inc. Cutter for atherectomy device
NZ222930A (en) 1987-12-15 1990-08-28 Moffat Appliances Ltd Gas infra-red burner in heat exchanger
US5053044A (en) 1988-01-11 1991-10-01 Devices For Vascular Intervention, Inc. Catheter and method for making intravascular incisions
US4850957A (en) 1988-01-11 1989-07-25 American Biomed, Inc. Atherectomy catheter
DE3801318A1 (en) 1988-01-19 1989-07-27 Stocksmeier Uwe MEDICAL CATHETER WITH CUTTER
US4886061A (en) 1988-02-09 1989-12-12 Medinnovations, Inc. Expandable pullback atherectomy catheter system
US4899757A (en) 1988-02-22 1990-02-13 Intertherapy, Inc. Ultrasound imaging probe with zero dead space
DE58906466D1 (en) 1988-03-04 1994-02-03 Angiomed Ag Method and device for removing deposits in vessels and organs of living beings.
US4838268A (en) 1988-03-07 1989-06-13 Scimed Life Systems, Inc. Non-over-the wire balloon catheter
US5183432A (en) 1988-03-19 1993-02-02 Nihonmatai Co., Ltd. Floating body of sophisticated shape produced from a single sheet of film with a single sealing
US5372138A (en) 1988-03-21 1994-12-13 Boston Scientific Corporation Acousting imaging catheters and the like
US5368035A (en) 1988-03-21 1994-11-29 Boston Scientific Corporation Ultrasound imaging guidewire
US4935017A (en) 1988-04-29 1990-06-19 C. R. Bard, Inc. Variable shaped catheter system and method for catheterization
US4950238A (en) 1988-07-07 1990-08-21 Clarence E. Sikes Hydro-rotary vascular catheter
US4919133A (en) 1988-08-18 1990-04-24 Chiang Tien Hon Catheter apparatus employing shape memory alloy structures
US5071425A (en) 1988-09-12 1991-12-10 Devices For Vascular Intervention, Inc. Atherectomy catheter and method of forming the same
GB8822149D0 (en) 1988-09-21 1988-10-26 Ciba Geigy Ag Treatment of aqueous systems
DE8813144U1 (en) 1988-10-19 1988-12-15 Guenther, Rolf W., Prof. Dr., 5100 Aachen, De
GB8829182D0 (en) 1988-12-14 1989-01-25 Univ Birmingham Surgical instrument
DE8900059U1 (en) 1989-01-04 1989-05-24 Schneider (Europe) Ag, Zuerich, Ch
WO1990007303A1 (en) 1989-01-06 1990-07-12 Angioplasty Systems, Inc. Electrosurgical catheter for resolving atherosclerotic plaque
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US4986807A (en) 1989-01-23 1991-01-22 Interventional Technologies, Inc. Atherectomy cutter with radially projecting blade
US5077506A (en) 1989-02-03 1991-12-31 Dyonics, Inc. Microprocessor controlled arthroscopic surgical system
US4994067A (en) 1989-02-17 1991-02-19 American Biomed, Inc. Distal atherectomy catheter
US5087265A (en) 1989-02-17 1992-02-11 American Biomed, Inc. Distal atherectomy catheter
US5431673A (en) 1989-02-17 1995-07-11 American Biomed, Inc. Distal atherectomy catheter
US4928693A (en) 1989-03-13 1990-05-29 Schneider (Usa), Inc. Pressure monitor catheter
US5078723A (en) * 1989-05-08 1992-01-07 Medtronic, Inc. Atherectomy device
DE59010156D1 (en) 1989-06-01 1996-04-04 Schneider Europ Ag Catheter arrangement with a guide wire and method for producing such a guide wire
US5029588A (en) 1989-06-15 1991-07-09 Cardiovascular Imaging Systems, Inc. Laser catheter with imaging capability
US5226910A (en) 1989-07-05 1993-07-13 Kabushiki Kaisha Topcon Surgical cutter
US5269793A (en) 1989-07-20 1993-12-14 Devices For Vascular Intervention, Inc. Guide wire systems for intravascular catheters
US5100426A (en) 1989-07-26 1992-03-31 Fts Engineering, Inc. Catheter for performing an atherectomy procedure
US5115814A (en) 1989-08-18 1992-05-26 Intertherapy, Inc. Intravascular ultrasonic imaging probe and methods of using same
US5282484A (en) 1989-08-18 1994-02-01 Endovascular Instruments, Inc. Method for performing a partial atherectomy
US5211651A (en) 1989-08-18 1993-05-18 Evi Corporation Catheter atherotome
US5226909A (en) 1989-09-12 1993-07-13 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US4997435A (en) 1989-09-25 1991-03-05 Methodist Hospital Of Indiana Inc. Percutaneous catheter with encapsulating receptacle
US5092839A (en) 1989-09-29 1992-03-03 Kipperman Robert M Coronary thrombectomy
US5116352A (en) 1989-10-06 1992-05-26 Angiomed Ag Apparatus for removing deposits from vessels
US5049124A (en) 1989-10-14 1991-09-17 Dow Corning Wright Corporation Catheter drive apparatus having fluid delivery bearing
US5024234A (en) 1989-10-17 1991-06-18 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter with guidewire channel
US5009659A (en) 1989-10-30 1991-04-23 Schneider (Usa) Inc. Fiber tip atherectomy catheter
CA2028223C (en) 1989-11-02 2000-11-14 Jemin Charles Hsu Synergistic microbicidal combinations containing 4,5-dichloro-2-octyl-3-isothiazolone and certain commercial biocides
US5505210A (en) 1989-11-06 1996-04-09 Mectra Labs, Inc. Lavage with tissue cutting cannula
US5026384A (en) 1989-11-07 1991-06-25 Interventional Technologies, Inc. Atherectomy systems and methods
US5019088A (en) 1989-11-07 1991-05-28 Interventional Technologies Inc. Ovoid atherectomy cutter
US5085662A (en) 1989-11-13 1992-02-04 Scimed Life Systems, Inc. Atherectomy catheter and related components
US5030201A (en) 1989-11-24 1991-07-09 Aubrey Palestrant Expandable atherectomy catheter device
US5178625A (en) 1989-12-07 1993-01-12 Evi Corporation Catheter atherotome
US5011490A (en) 1989-12-07 1991-04-30 Medical Innovative Technologies R&D Limited Partnership Endoluminal tissue excision catheter system and method
US5003918A (en) 1989-12-28 1991-04-02 Interventional Technologies, Inc. Apparatus for manufacturing atherectomy torque tubes
US5120323A (en) 1990-01-12 1992-06-09 Schneider (Usa) Inc. Telescoping guide catheter system
US5916210A (en) 1990-01-26 1999-06-29 Intraluminal Therapeutics, Inc. Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities
US5074841A (en) 1990-01-30 1991-12-24 Microcision, Inc. Atherectomy device with helical cutter
US5152744A (en) 1990-02-07 1992-10-06 Smith & Nephew Dyonics Surgical instrument
US5084010A (en) 1990-02-20 1992-01-28 Devices For Vascular Intervention, Inc. System and method for catheter construction
US5222966A (en) 1990-02-28 1993-06-29 Devices For Vascular Intervention, Inc. Balloon connection and inflation lumen for atherectomy catheter
US5092873A (en) 1990-02-28 1992-03-03 Devices For Vascular Intervention, Inc. Balloon configuration for atherectomy catheter
US5366463A (en) 1990-05-02 1994-11-22 Ryan William J Atherectomy catheter for the removal of atherosclerosis from within blood vessels
US5267955A (en) 1990-05-10 1993-12-07 Lake Region Manufacturing Company, Inc. Atherectomy device
US5395311A (en) 1990-05-14 1995-03-07 Andrews; Winston A. Atherectomy catheter
US5154724A (en) 1990-05-14 1992-10-13 Andrews Winston A Atherectomy catheter
US5095911A (en) 1990-05-18 1992-03-17 Cardiovascular Imaging Systems, Inc. Guidewire with imaging capability
US5558093A (en) 1990-05-18 1996-09-24 Cardiovascular Imaging Systems, Inc. Guidewire with imaging capability
US5100424A (en) 1990-05-21 1992-03-31 Cardiovascular Imaging Systems, Inc. Intravascular catheter having combined imaging abrasion head
US5674232A (en) 1990-06-05 1997-10-07 Halliburton; Alexander George Catheter and method of use thereof
US5181920A (en) 1990-06-08 1993-01-26 Devices For Vascular Intervention, Inc. Atherectomy device with angioplasty balloon and method
US5527298A (en) 1990-06-11 1996-06-18 Schneider (Usa) Inc. Tracking guidewire
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
JPH06114070A (en) 1990-06-22 1994-04-26 Vance Prod Inc Tissue abscission device for surgery
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5520189A (en) 1990-07-13 1996-05-28 Coraje, Inc. Intravascular ultrasound imaging guidewire
CA2048120A1 (en) 1990-08-06 1992-02-07 William J. Drasler Thrombectomy method and device
US5078722A (en) 1990-08-14 1992-01-07 Cordis Corporation Method and apparatus for removing deposits from a vessel
US5100423A (en) 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5127902A (en) 1990-09-05 1992-07-07 Medical Innovative Technologies R&D Limited Partnership Apparatus and method for precisely controlling the excision of obstructive tissue in a human blood vessel
US5250065A (en) 1990-09-11 1993-10-05 Mectra Labs, Inc. Disposable lavage tip assembly
US5114399A (en) 1990-10-01 1992-05-19 Intramed Laboratories Surgical device
US5190528A (en) 1990-10-19 1993-03-02 Boston University Percutaneous transseptal left atrial cannulation system
US5242460A (en) 1990-10-25 1993-09-07 Devices For Vascular Intervention, Inc. Atherectomy catheter having axially-disposed cutting edge
US5527292A (en) 1990-10-29 1996-06-18 Scimed Life Systems, Inc. Intravascular device for coronary heart treatment
US5496267A (en) 1990-11-08 1996-03-05 Possis Medical, Inc. Asymmetric water jet atherectomy
DE4036570A1 (en) 1990-11-16 1992-05-21 Osypka Peter CATHETER FOR REDUCING OR REMOVING CONSTRUCTIONS IN VESSELS
JP2550778B2 (en) 1990-11-30 1996-11-06 富士写真光機株式会社 Ultrasonic inspection equipment
US5108500A (en) 1990-12-10 1992-04-28 Rohm And Haas Company Stabilization of water insoluble 3-isothiazolones
US5054492A (en) 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US5112345A (en) 1990-12-17 1992-05-12 Interventional Technologies Atherectomy cutter with arcuate blades
US5110822A (en) 1991-01-03 1992-05-05 Rohm And Haas Company Synergistic combinations of 4,5-dichloro-2-n-octyl-3-isothiazolone or 2-methyl-3-isothiazolone with ferric dimethyl dithiocarbamate fungicide
WO1992014413A1 (en) 1991-02-19 1992-09-03 Fischell Robert Improved apparatus and method for atherectomy
US5445155A (en) 1991-03-13 1995-08-29 Scimed Life Systems Incorporated Intravascular imaging apparatus and methods for use and manufacture
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
CA2065634C (en) 1991-04-11 1997-06-03 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
JP3479069B2 (en) 1991-04-29 2003-12-15 マサチューセッツ・インステチュート・オブ・テクノロジー Method and apparatus for optical imaging and measurement
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
IT1249059B (en) 1991-05-22 1995-02-11 Rosa Antonio ULTRASONIC DISSECTOR-DISCONNECTOR OF ATEROSCLEROTIC PLATES
US5395335A (en) 1991-05-24 1995-03-07 Jang; G. David Universal mode vascular catheter system
US5284486A (en) 1991-06-11 1994-02-08 Microvena Corporation Self-centering mechanical medical device
US5569275A (en) 1991-06-11 1996-10-29 Microvena Corporation Mechanical thrombus maceration device
US5263928A (en) 1991-06-14 1993-11-23 Baxter International Inc. Catheter and endoscope assembly and method of use
US5273526A (en) 1991-06-21 1993-12-28 Lake Region Manufacturing Company, Inc. Vascular occulusion removal devices and method
US5217474A (en) 1991-07-15 1993-06-08 Zacca Nadim M Expandable tip atherectomy method and apparatus
US5242461A (en) 1991-07-22 1993-09-07 Dow Corning Wright Variable diameter rotating recanalization catheter and surgical method
US5261877A (en) 1991-07-22 1993-11-16 Dow Corning Wright Method of performing a thrombectomy procedure
US5336167A (en) 1991-07-22 1994-08-09 Theratek International, Inc. Controller for intravascular catheter system
JPH0542162A (en) 1991-08-15 1993-02-23 Nissho Corp Embolus excision catheter
JP3084830B2 (en) 1991-08-29 2000-09-04 株式会社ニッショー Embolectomy catheter
US5377682A (en) 1991-09-05 1995-01-03 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe for transmission and reception of ultrasonic wave and ultrasonic diagnostic apparatus including ultrasonic probe
US5285795A (en) 1991-09-12 1994-02-15 Surgical Dynamics, Inc. Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula
US5263959A (en) 1991-10-21 1993-11-23 Cathco, Inc. Dottering auger catheter system and method
US5423846A (en) 1991-10-21 1995-06-13 Cathco, Inc. Dottering auger catheter system
AU669338B2 (en) 1991-10-25 1996-06-06 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5704361A (en) 1991-11-08 1998-01-06 Mayo Foundation For Medical Education And Research Volumetric image ultrasound transducer underfluid catheter system
US5316023A (en) 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
EP0681458B1 (en) 1992-01-13 1998-06-03 Schneider (Usa) Inc. Cutter for atherectomy catheter
US5224949A (en) 1992-01-13 1993-07-06 Interventional Technologies, Inc. Camming device
US5224945A (en) 1992-01-13 1993-07-06 Interventional Technologies, Inc. Compressible/expandable atherectomy cutter
US5192291A (en) 1992-01-13 1993-03-09 Interventional Technologies, Inc. Rotationally expandable atherectomy cutter assembly
WO1993013716A1 (en) 1992-01-13 1993-07-22 Schneider (Usa) Inc. Surgical cutting tool
US5250059A (en) 1992-01-22 1993-10-05 Devices For Vascular Intervention, Inc. Atherectomy catheter having flexible nose cone
US5318032A (en) 1992-02-05 1994-06-07 Devices For Vascular Intervention Guiding catheter having soft tip
US5295493A (en) 1992-03-19 1994-03-22 Interventional Technologies, Inc. Anatomical guide wire
US5350390A (en) 1992-03-25 1994-09-27 Arieh Sher Device for removal of intraluminal occlusions
US5176693A (en) 1992-05-11 1993-01-05 Interventional Technologies, Inc. Balloon expandable atherectomy cutter
US5269759A (en) 1992-07-28 1993-12-14 Cordis Corporation Magnetic guidewire coupling for vascular dilatation apparatus
US5306294A (en) 1992-08-05 1994-04-26 Ultrasonic Sensing And Monitoring Systems, Inc. Stent construction of rolled configuration
US5707376A (en) 1992-08-06 1998-01-13 William Cook Europe A/S Stent introducer and method of use
US5224488A (en) 1992-08-31 1993-07-06 Neuffer Francis H Biopsy needle with extendable cutting means
US5383460A (en) 1992-10-05 1995-01-24 Cardiovascular Imaging Systems, Inc. Method and apparatus for ultrasound imaging and atherectomy
US5356418A (en) 1992-10-28 1994-10-18 Shturman Cardiology Systems, Inc. Apparatus and method for rotational atherectomy
US5360432A (en) 1992-10-16 1994-11-01 Shturman Cardiology Systems, Inc. Abrasive drive shaft device for directional rotational atherectomy
US5312427A (en) 1992-10-16 1994-05-17 Shturman Cardiology Systems, Inc. Device and method for directional rotational atherectomy
US5531690A (en) 1992-10-30 1996-07-02 Cordis Corporation Rapid exchange catheter
US5336178A (en) 1992-11-02 1994-08-09 Localmed, Inc. Intravascular catheter with infusion array
US5571122A (en) 1992-11-09 1996-11-05 Endovascular Instruments, Inc. Unitary removal of plaque
US5643297A (en) 1992-11-09 1997-07-01 Endovascular Instruments, Inc. Intra-artery obstruction clearing apparatus and methods
US5792157A (en) 1992-11-13 1998-08-11 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5501694A (en) 1992-11-13 1996-03-26 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5540707A (en) 1992-11-13 1996-07-30 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5372602A (en) 1992-11-30 1994-12-13 Device For Vascular Intervention, Inc. Method of removing plaque using catheter cutter with torque control
JPH08503634A (en) 1992-12-01 1996-04-23 インテリワイヤー インコーポレイテッド Vibratory element for crossing a stenosis
US5584842A (en) 1992-12-02 1996-12-17 Intramed Laboratories, Inc. Valvulotome and method of using
US5318576A (en) 1992-12-16 1994-06-07 Plassche Jr Walter M Endovascular surgery systems
US5373849A (en) 1993-01-19 1994-12-20 Cardiovascular Imaging Systems, Inc. Forward viewing imaging catheter
US5620447A (en) 1993-01-29 1997-04-15 Smith & Nephew Dyonics Inc. Surgical instrument
CA2114330A1 (en) 1993-01-29 1994-07-30 Smith & Nephew Endoscopy, Inc. Rotatable curved instrument
DE9303531U1 (en) 1993-03-11 1994-07-14 Redha Falah Medical instrument
US5378234A (en) 1993-03-15 1995-01-03 Pilot Cardiovascular Systems, Inc. Coil polymer composite
CH685738A5 (en) 1993-03-25 1995-09-29 Ferromec Sa Medical instrument for removing deposits formed on the inner walls of the arteries or veins.
US5372601A (en) 1993-03-30 1994-12-13 Lary; Banning G. Longitudinal reciprocating incisor
US5322508A (en) 1993-04-08 1994-06-21 Cordis Corporation Guidewire fluid delivery system and method of use
US5318528A (en) 1993-04-13 1994-06-07 Advanced Surgical Inc. Steerable surgical devices
US5429136A (en) 1993-04-21 1995-07-04 Devices For Vascular Intervention, Inc. Imaging atherectomy apparatus
US5716410A (en) 1993-04-30 1998-02-10 Scimed Life Systems, Inc. Temporary stent and method of use
US5456667A (en) 1993-05-20 1995-10-10 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with one-piece expandable segment
WO1994027501A1 (en) 1993-05-24 1994-12-08 Boston Scientific Corporation Medical acoustic imaging catheter and guidewire
US5531685A (en) 1993-06-11 1996-07-02 Catheter Research, Inc. Steerable variable stiffness device
US5776153A (en) 1993-07-03 1998-07-07 Medical Miracles Company Limited Angioplasty catheter with guidewire
US5514115A (en) 1993-07-07 1996-05-07 Device For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5527325A (en) 1993-07-09 1996-06-18 Device For Vascular Intervention, Inc. Atherectomy catheter and method
US5419774A (en) 1993-07-13 1995-05-30 Scimed Life Systems, Inc. Thrombus extraction device
US5458585A (en) 1993-07-28 1995-10-17 Cardiovascular Imaging Systems, Inc. Tracking tip for a work element in a catheter system
US5395313A (en) 1993-08-13 1995-03-07 Naves; Neil H. Reciprocating arthroscopic shaver
US5441510A (en) 1993-09-01 1995-08-15 Technology Development Center Bi-axial cutter apparatus for catheter
US5573008A (en) 1993-10-29 1996-11-12 Boston Scientific Corporation Multiple biopsy sampling coring device
US5444078A (en) 1993-10-01 1995-08-22 Rohm And Haas Company Fully water-dilutable microemulsions
US5456689A (en) 1993-10-13 1995-10-10 Arnold J. Kresch Method and device for tissue resection
DE4335931B4 (en) 1993-10-21 2006-10-12 Cerasiv Gmbh Innovatives Keramik-Engineering acetabulum
WO1995013033A1 (en) 1993-11-08 1995-05-18 Lazarus Harrison M Intraluminal vascular graft and method
US5507760A (en) 1993-11-09 1996-04-16 Devices For Vascular Intervention, Inc. Cutter device
US5443497A (en) 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
US5427107A (en) 1993-12-07 1995-06-27 Devices For Vascular Intervention, Inc. Optical encoder for catheter device
AU1399995A (en) 1993-12-09 1995-06-27 Devices For Vascular Intervention, Inc. Composite drive shaft
US5503155A (en) 1994-01-26 1996-04-02 Cardiovascular Imaging Systems, Inc. Drive cable having internal lead wires
US5591127A (en) 1994-01-28 1997-01-07 Barwick, Jr.; Billie J. Phacoemulsification method and apparatus
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US5413107A (en) 1994-02-16 1995-05-09 Tetrad Corporation Ultrasonic probe having articulated structure and rotatable transducer head
US5485840A (en) 1994-03-15 1996-01-23 Bauman; Robert P. Method of precise guidance for directional atherectomy using ultrasound
US5624457A (en) 1994-04-07 1997-04-29 Devices For Vascular Intervention Directional atherectomy device with flexible housing
US5507795A (en) 1994-04-29 1996-04-16 Devices For Vascular Intervention, Inc. Catheter with perfusion system
US5569279A (en) 1994-04-29 1996-10-29 Rainin; Edgar A. Surgical abrading device
US5466382A (en) 1994-05-03 1995-11-14 Rohm And Haas Company Synergistic microbicidal combinations containing 4,5-dichloro-2-n-octyl-3-isothiazolone and certain commercial biocides
USRE38335E1 (en) 1994-05-24 2003-11-25 Endius Incorporated Surgical instrument
US5628761A (en) 1994-07-08 1997-05-13 Rizik; David G. Guide wire passage creation device
US5531700A (en) 1994-07-29 1996-07-02 Cardiovascular Imaging Systems, Inc. Convertible tip catheters and sheaths
US5575817A (en) 1994-08-19 1996-11-19 Martin; Eric C. Aorto femoral bifurcation graft and method of implantation
US5609605A (en) 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
WO1996010366A1 (en) 1994-10-03 1996-04-11 Heart Technology, Inc. Transluminal thrombectomy apparatus
US5571130A (en) 1994-10-04 1996-11-05 Advanced Cardiovascular Systems, Inc. Atherectomy and prostectomy system
US5491524A (en) 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5512044A (en) 1994-10-11 1996-04-30 Duer; Edward Y. Embolic cutting catheter
US5549601A (en) 1994-10-11 1996-08-27 Devices For Vascular Intervention, Inc. Delivery of intracorporeal probes
US5507761A (en) 1994-10-11 1996-04-16 Duer; Edward Y. Embolic cutting catheter
US6032673A (en) 1994-10-13 2000-03-07 Femrx, Inc. Methods and devices for tissue removal
AU3783295A (en) 1994-11-16 1996-05-23 Advanced Cardiovascular Systems Inc. Shape memory locking mechanism for intravascular stent
US5626562A (en) 1994-11-28 1997-05-06 Devices For Vascular Intervention Drug delivery catheter
DE4444166C2 (en) 1994-12-12 1998-09-24 Urotech Med Tech Gmbh Flexible knife device for surgical purposes
US5643296A (en) 1994-12-16 1997-07-01 Devices For Vasclar Intervention Intravascular catheter with guiding structure
US5584843A (en) 1994-12-20 1996-12-17 Boston Scientific Corporation Shaped wire multi-burr rotational ablation device
US5836957A (en) 1994-12-22 1998-11-17 Devices For Vascular Intervention, Inc. Large volume atherectomy device
US6027450A (en) 1994-12-30 2000-02-22 Devices For Vascular Intervention Treating a totally or near totally occluded lumen
CA2157697C (en) 1995-01-10 2007-03-13 Banning Gray Lary Vascular incisor/dilator
US5700687A (en) 1995-01-30 1997-12-23 Bedminster Bioconversion Corporation Odor control system
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5985397A (en) 1995-03-20 1999-11-16 Witt; Alvin E. Coated synthetic resin board tiles
WO1996029941A1 (en) 1995-03-28 1996-10-03 Straub Federnfabrik Ag Catheter for detaching abnormal deposits in human blood vessels
JP3735821B2 (en) 1995-03-28 2006-01-18 シュトラウブ メディカル アーゲー Catheter for removing abnormal deposits from human blood vessels
US5728123A (en) 1995-04-26 1998-03-17 Lemelson; Jerome H. Balloon actuated catheter
US5556408A (en) 1995-04-27 1996-09-17 Interventional Technologies Inc. Expandable and compressible atherectomy cutter
US5554163A (en) 1995-04-27 1996-09-10 Shturman Cardiology Systems, Inc. Atherectomy device
US5938645A (en) 1995-05-24 1999-08-17 Boston Scientific Corporation Northwest Technology Center Inc. Percutaneous aspiration catheter system
US5827229A (en) 1995-05-24 1998-10-27 Boston Scientific Corporation Northwest Technology Center, Inc. Percutaneous aspiration thrombectomy catheter system
US5596990A (en) 1995-06-06 1997-01-28 Yock; Paul Rotational correlation of intravascular ultrasound image with guide catheter position
US5618293A (en) 1995-06-06 1997-04-08 Smith & Nephews Dyonics, Inc. Surgical instrument
EP0836499A1 (en) 1995-06-07 1998-04-22 Cardima, Inc. Guiding catheter for coronary sinus
US5779673A (en) 1995-06-26 1998-07-14 Focal, Inc. Devices and methods for application of intraluminal photopolymerized gels
US5883458A (en) 1995-07-31 1999-03-16 Murata Manufacturing Co., Ltd. Terminal for a piezoelectric device
US5681336A (en) 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US6027460A (en) 1995-09-14 2000-02-22 Shturman Cardiology Systems, Inc. Rotatable intravascular apparatus
US5707383A (en) 1995-10-05 1998-01-13 Xomed Surgical Products, Inc. Method of removing soft tissue in the middle ear
US6375615B1 (en) 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US6283983B1 (en) 1995-10-13 2001-09-04 Transvascular, Inc. Percutaneous in-situ coronary bypass method and apparatus
EP1317908B1 (en) 1995-10-13 2011-07-06 Medtronic Vascular, Inc. A device and system for interstitial transvascular intervention
US6283951B1 (en) 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6190353B1 (en) 1995-10-13 2001-02-20 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US5766192A (en) 1995-10-20 1998-06-16 Zacca; Nadim M. Atherectomy, angioplasty and stent method and apparatus
US5843022A (en) 1995-10-25 1998-12-01 Scimied Life Systems, Inc. Intravascular device utilizing fluid to extract occlusive material
US5989281A (en) 1995-11-07 1999-11-23 Embol-X, Inc. Cannula with associated filter and methods of use during cardiac surgery
US5868685A (en) 1995-11-14 1999-02-09 Devices For Vascular Intervention Articulated guidewire
US5697944A (en) 1995-11-15 1997-12-16 Interventional Technologies Inc. Universal dilator with expandable incisor
US5827304A (en) 1995-11-16 1998-10-27 Applied Medical Resources Corporation Intraluminal extraction catheter
US5688234A (en) 1996-01-26 1997-11-18 Cardiometrics Inc. Apparatus and method for the treatment of thrombotic occlusions in vessels
US5695506A (en) 1996-02-06 1997-12-09 Devices For Vascular Intervention Catheter device with a flexible housing
US5733296A (en) 1996-02-06 1998-03-31 Devices For Vascular Intervention Composite atherectomy cutter
JPH09215753A (en) 1996-02-08 1997-08-19 Schneider Usa Inc Self-expanding stent made of titanium alloy
US5800389A (en) 1996-02-09 1998-09-01 Emx, Inc. Biopsy device
US5709698A (en) 1996-02-26 1998-01-20 Linvatec Corporation Irrigating/aspirating shaver blade assembly
US6036707A (en) 1996-03-07 2000-03-14 Devices For Vascular Intervention Catheter device having a selectively flexible housing
US5830224A (en) 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US5807329A (en) 1996-05-07 1998-09-15 Gelman; Martin L. Displaceable catheter device
US20010049517A1 (en) 1997-03-06 2001-12-06 Gholam-Reza Zadno-Azizi Method for containing and removing occlusions in the carotid arteries
US6152909A (en) 1996-05-20 2000-11-28 Percusurge, Inc. Aspiration system and method
US5709701A (en) 1996-05-30 1998-01-20 Parodi; Juan C. Apparatus for implanting a prothesis within a body passageway
US5779643A (en) 1996-11-26 1998-07-14 Hewlett-Packard Company Imaging guidewire with back and forth sweeping ultrasonic source
WO1997046164A1 (en) 1996-06-07 1997-12-11 Scieran Technologies, Inc. An apparatus and method for performing ophthalmic procedures
US5843161A (en) 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5819738A (en) 1996-07-03 1998-10-13 Symbiosis Corporation Jaw assembly having progressively larger teeth and endoscopic biopsy forceps instrument incorporating same
US5820592A (en) 1996-07-16 1998-10-13 Hammerslag; Gary R. Angiographic and/or guide catheter
US5662671A (en) 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5735816A (en) 1996-07-23 1998-04-07 Medtronic, Inc. Spiral sheath retainer for autoperfusion dilatation catheter balloon
US5972019A (en) 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US5779721A (en) 1996-07-26 1998-07-14 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other blood vessels
US6830577B2 (en) 1996-07-26 2004-12-14 Kensey Nash Corporation System and method of use for treating occluded vessels and diseased tissue
US5827201A (en) 1996-07-26 1998-10-27 Target Therapeutics, Inc. Micro-braided guidewire
US6080170A (en) 1996-07-26 2000-06-27 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US7603166B2 (en) 1996-09-20 2009-10-13 Board Of Regents University Of Texas System Method and apparatus for detection of vulnerable atherosclerotic plaque
US6682536B2 (en) 2000-03-22 2004-01-27 Advanced Stent Technologies, Inc. Guidewire introducer sheath
US5713913A (en) 1996-11-12 1998-02-03 Interventional Technologies Inc. Device and method for transecting a coronary artery
US6217595B1 (en) 1996-11-18 2001-04-17 Shturman Cardiology Systems, Inc. Rotational atherectomy device
JP2001505460A (en) 1996-12-02 2001-04-24 アンジオトラックス,インコーポレイテッド Apparatus and method for performing surgery percutaneously
US5931848A (en) 1996-12-02 1999-08-03 Angiotrax, Inc. Methods for transluminally performing surgery
US5893857A (en) 1997-01-21 1999-04-13 Shturman Cardiology Systems, Inc. Handle for atherectomy device
US6129734A (en) 1997-01-21 2000-10-10 Shturman Cardiology Systems, Inc. Rotational atherectomy device with radially expandable prime mover coupling
DE19703779C2 (en) 1997-02-01 2003-06-05 Karlsruhe Forschzent Method and device for producing a disperse mixture
US5720735A (en) 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
JP2001512334A (en) 1997-02-12 2001-08-21 プロリフィックス メディカル,インコーポレイテッド Equipment for removing material from stents
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
US6217549B1 (en) 1997-02-28 2001-04-17 Lumend, Inc. Methods and apparatus for treating vascular occlusions
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US6010449A (en) 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US5741270A (en) 1997-02-28 1998-04-21 Lumend, Inc. Manual actuator for a catheter system for treating a vascular occlusion
US5968064A (en) 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
US5843103A (en) 1997-03-06 1998-12-01 Scimed Life Systems, Inc. Shaped wire rotational atherectomy device
US6849068B1 (en) 1997-03-06 2005-02-01 Medtronic Ave, Inc. Aspiration catheter
US5824055A (en) 1997-03-25 1998-10-20 Endotex Interventional Systems, Inc. Stent graft delivery system and methods of use
US5772674A (en) 1997-03-31 1998-06-30 Nakhjavan; Fred K. Catheter for removal of clots in blood vessels
US5810867A (en) 1997-04-28 1998-09-22 Medtronic, Inc. Dilatation catheter with varied stiffness
US5911734A (en) 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US5922003A (en) 1997-05-09 1999-07-13 Xomed Surgical Products, Inc. Angled rotary tissue cutting instrument and method of fabricating the same
US5954745A (en) 1997-05-16 1999-09-21 Gertler; Jonathan Catheter-filter set having a compliant seal
US6048349A (en) 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6013072A (en) 1997-07-09 2000-01-11 Intraluminal Therapeutics, Inc. Systems and methods for steering a catheter through body tissue
AU8686798A (en) 1997-08-05 1999-03-01 Catalytica Advanced Technologies, Inc. Multiple stream high pressure mixer/reactor
GB9717580D0 (en) 1997-08-19 1997-10-22 Curry Paul Device for opening blocked tubes
US6050949A (en) 1997-09-22 2000-04-18 Scimed Life Systems, Inc. Catheher system having connectable distal and proximal portions
US6361545B1 (en) 1997-09-26 2002-03-26 Cardeon Corporation Perfusion filter catheter
US5951480A (en) 1997-09-29 1999-09-14 Boston Scientific Corporation Ultrasound imaging guidewire with static central core and tip
US6066149A (en) 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US6193676B1 (en) 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US5947985A (en) 1997-11-12 1999-09-07 Imran; Mir A. Apparatus and method for cleaning diseased vein grafts
US6183432B1 (en) 1997-11-13 2001-02-06 Lumend, Inc. Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip
US6330884B1 (en) 1997-11-14 2001-12-18 Transvascular, Inc. Deformable scaffolding multicellular stent
US5938671A (en) 1997-11-14 1999-08-17 Reflow, Inc. Recanalization apparatus and devices for use therein and method
US5935108A (en) 1997-11-14 1999-08-10 Reflow, Inc. Recanalization apparatus and devices for use therein and method
DE29722136U1 (en) 1997-12-15 1999-04-15 Ischinger Thomas Prof Dr Vascular thrombectomy catheter to remove endoluminal thrombus
US6027514A (en) * 1997-12-17 2000-02-22 Fox Hollow Technologies, Inc. Apparatus and method for removing occluding material from body lumens
US6217527B1 (en) 1998-09-30 2001-04-17 Lumend, Inc. Methods and apparatus for crossing vascular occlusions
US6231546B1 (en) 1998-01-13 2001-05-15 Lumend, Inc. Methods and apparatus for crossing total occlusions in blood vessels
US6081738A (en) 1998-01-15 2000-06-27 Lumend, Inc. Method and apparatus for the guided bypass of coronary occlusions
US5865748A (en) 1998-01-16 1999-02-02 Guidant Corporation Guided directional coronary atherectomy distal linear encoder
AU1927399A (en) 1998-01-16 1999-08-02 Lumend, Inc. Catheter apparatus for treating arterial occlusions
JP2002502626A (en) 1998-02-10 2002-01-29 アーテミス・メディカル・インコーポレイテッド Supplementary device and method of using the same
JP4157183B2 (en) 1998-02-17 2008-09-24 オリンパス株式会社 Endoscopic treatment tool
US6159195A (en) 1998-02-19 2000-12-12 Percusurge, Inc. Exchange catheter and method of use
US6398798B2 (en) 1998-02-28 2002-06-04 Lumend, Inc. Catheter system for treating a vascular occlusion
US6019778A (en) 1998-03-13 2000-02-01 Cordis Corporation Delivery apparatus for a self-expanding stent
US6561998B1 (en) 1998-04-07 2003-05-13 Transvascular, Inc. Transluminal devices, systems and methods for enlarging interstitial penetration tracts
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US6001112A (en) 1998-04-10 1999-12-14 Endicor Medical, Inc. Rotational atherectomy device
US6666874B2 (en) 1998-04-10 2003-12-23 Endicor Medical, Inc. Rotational atherectomy system with serrated cutting tip
US6383195B1 (en) 1998-04-13 2002-05-07 Endoline, Inc. Laparoscopic specimen removal apparatus
US6036646A (en) 1998-07-10 2000-03-14 Guided Therapy Systems, Inc. Method and apparatus for three dimensional ultrasound imaging
US6106515A (en) 1998-08-13 2000-08-22 Intraluminal Therapeutics, Inc. Expandable laser catheter
US6241744B1 (en) 1998-08-14 2001-06-05 Fox Hollow Technologies, Inc. Apparatus for deploying a guidewire across a complex lesion
US6095990A (en) 1998-08-31 2000-08-01 Parodi; Juan Carlos Guiding device and method for inserting and advancing catheters and guidewires into a vessel of a patient in endovascular treatments
US6440147B1 (en) 1998-09-03 2002-08-27 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6022362A (en) 1998-09-03 2000-02-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6620180B1 (en) 1998-09-09 2003-09-16 Medtronic Xomed, Inc. Powered laryngeal cutting blade
WO2000019917A1 (en) 1998-10-02 2000-04-13 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US6428551B1 (en) 1999-03-30 2002-08-06 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US6264611B1 (en) 1998-11-25 2001-07-24 Ball Semiconductor, Inc. Monitor for interventional procedures
US6228076B1 (en) 1999-01-09 2001-05-08 Intraluminal Therapeutics, Inc. System and method for controlling tissue ablation
US6165199A (en) 1999-01-12 2000-12-26 Coaxia, Inc. Medical device for removing thromboembolic material from cerebral arteries and methods of use
US6191862B1 (en) 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6110121A (en) 1999-01-25 2000-08-29 Lenker; Jay Alan Method and apparatus for obtaining improved resolution from intraluminal ultrasound
US7524289B2 (en) 1999-01-25 2009-04-28 Lenker Jay A Resolution optical and ultrasound devices for imaging and treatment of body lumens
US6592526B1 (en) 1999-01-25 2003-07-15 Jay Alan Lenker Resolution ultrasound devices for imaging and treatment of body lumens
US6113615A (en) 1999-02-03 2000-09-05 Scimed Life Systems, Inc. Atherectomy burr including a bias wire
US6475226B1 (en) 1999-02-03 2002-11-05 Scimed Life Systems, Inc. Percutaneous bypass apparatus and method
WO2000045691A2 (en) 1999-02-04 2000-08-10 Da Silva Branco Antonio Carlos Kit for endovascular venous surgery
US6196963B1 (en) 1999-03-02 2001-03-06 Medtronic Ave, Inc. Brachytherapy device assembly and method of use
DE19911777A1 (en) 1999-03-17 2000-09-21 Merck Patent Gmbh Process for the preparation of cosmetic formulations
US6245012B1 (en) 1999-03-19 2001-06-12 Nmt Medical, Inc. Free standing filter
US6911026B1 (en) 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy
US6066153A (en) 1999-03-31 2000-05-23 Lev; Avigdor Device and method for resecting body tissues
US6277138B1 (en) 1999-08-17 2001-08-21 Scion Cardio-Vascular, Inc. Filter for embolic material mounted on expandable frame
US6319275B1 (en) 1999-04-07 2001-11-20 Medtronic Ave, Inc. Endolumenal prosthesis delivery assembly and method of use
DE19917148C2 (en) 1999-04-16 2002-01-10 Inst Mikrotechnik Mainz Gmbh Process and micromixer for producing a dispersion
US6238405B1 (en) 1999-04-30 2001-05-29 Edwards Lifesciences Corp. Percutaneous material removal device and method
US6790215B2 (en) 1999-04-30 2004-09-14 Edwards Lifesciences Corporation Method of use for percutaneous material removal device and tip
DE19920794A1 (en) 1999-05-06 2000-11-09 Merck Patent Gmbh Process for the preparation of bead polymers
DE19925184A1 (en) 1999-05-26 2000-11-30 Schering Ag Continuous process for the production of morphologically uniform micro and nanoparticles by means of a micromixer as well as particles produced by this process
US6126649A (en) 1999-06-10 2000-10-03 Transvascular, Inc. Steerable catheter with external guidewire as catheter tip deflector
US6179859B1 (en) 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6231549B1 (en) 1999-08-17 2001-05-15 Sherwood Services, Ag Shim device for enteral feeding system
US20030120295A1 (en) 2000-12-20 2003-06-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US7713279B2 (en) 2000-12-20 2010-05-11 Fox Hollow Technologies, Inc. Method and devices for cutting tissue
US20030125757A1 (en) 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US6299622B1 (en) 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US6638233B2 (en) 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
US7887556B2 (en) 2000-12-20 2011-02-15 Fox Hollow Technologies, Inc. Debulking catheters and methods
WO2001015609A1 (en) 1999-08-31 2001-03-08 Fox Hollow Technologies Atherectomy catheter with a rotating and telescoping cutter
US6187025B1 (en) 1999-09-09 2001-02-13 Noble-Met, Ltd. Vascular filter
AU778076B2 (en) 1999-09-17 2004-11-11 Tyco Healthcare Group Lp Mechanical pump for removal of fragmented matter and methods of manufacture and use
US6533749B1 (en) 1999-09-24 2003-03-18 Medtronic Xomed, Inc. Angled rotary tissue cutting instrument with flexible inner member
WO2001030433A1 (en) 1999-10-26 2001-05-03 Mark Wilson Ian Webster A guidewire positioning device
US6263236B1 (en) 1999-11-29 2001-07-17 Illumenex Corporation Non-occlusive expandable catheter
WO2001043809A1 (en) 1999-12-16 2001-06-21 Advanced Cardiovascular Systems, Inc. Catheter assembly and method for positioning the same at a bifurcated vessel
DE19961257C2 (en) 1999-12-18 2002-12-19 Inst Mikrotechnik Mainz Gmbh micromixer
US6394976B1 (en) 2000-01-31 2002-05-28 Intraluminal Therapeutics, Inc. Catheter for controlling the advancement of a guide wire
US6629953B1 (en) 2000-02-18 2003-10-07 Fox Hollow Technologies, Inc. Methods and devices for removing material from a vascular site
GB2357762B (en) 2000-03-13 2002-01-30 Lundbeck & Co As H Crystalline base of citalopram
US20010031981A1 (en) 2000-03-31 2001-10-18 Evans Michael A. Method and device for locating guidewire and treating chronic total occlusions
US7344546B2 (en) 2000-04-05 2008-03-18 Pathway Medical Technologies Intralumenal material removal using a cutting device for differential cutting
WO2001076680A1 (en) 2000-04-05 2001-10-18 Stx Medical, Inc. Intralumenal material removal systems and methods
US6565588B1 (en) 2000-04-05 2003-05-20 Pathway Medical Technologies, Inc. Intralumenal material removal using an expandable cutting device
US6627784B2 (en) 2000-05-17 2003-09-30 Hydro Dynamics, Inc. Highly efficient method of mixing dissimilar fluids using mechanically induced cavitation
US6422736B1 (en) 2000-06-21 2002-07-23 Eastman Kodak Company Scalable impeller apparatus for preparing silver halide grains
US6532380B1 (en) 2000-06-30 2003-03-11 Cedars Sinai Medical Center Image guidance for coronary stent deployment
US6425870B1 (en) 2000-07-11 2002-07-30 Vermon Method and apparatus for a motorized multi-plane transducer tip
US6497711B1 (en) 2000-08-16 2002-12-24 Scimed Life Systems, Inc. Therectomy device having a light weight drive shaft and an imaging device
DE10041823C2 (en) 2000-08-25 2002-12-19 Inst Mikrotechnik Mainz Gmbh Method and static micromixer for mixing at least two fluids
US6656195B2 (en) 2000-09-22 2003-12-02 Medtronic Xomed, Inc. Flexible inner tubular members and rotary tissue cutting instruments having flexible inner tubular members
US20020058904A1 (en) 2000-11-08 2002-05-16 Robert Boock Thrombus removal device
US7004173B2 (en) 2000-12-05 2006-02-28 Lumend, Inc. Catheter system for vascular re-entry from a sub-intimal space
US20070049958A1 (en) 2005-08-30 2007-03-01 Arthrex, Inc. Spiral cut curved blade
US7699790B2 (en) 2000-12-20 2010-04-20 Ev3, Inc. Debulking catheters and methods
US20040167554A1 (en) 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for reentering a true lumen from a subintimal space
EP2353526B1 (en) 2000-12-20 2013-09-04 Covidien LP Catheter for removing atheromatous or thrombotic occlusive material
EP1767159A1 (en) 2000-12-20 2007-03-28 Fox Hollow Technologies Inc. Catheter for removing atheromatous or thrombotic occlusive material
US7169165B2 (en) 2001-01-16 2007-01-30 Boston Scientific Scimed, Inc. Rapid exchange sheath for deployment of medical devices and methods of use
US6569177B1 (en) 2001-01-19 2003-05-27 Scimed Life Systems, Inc. Ablation atherectomy burr
US6428552B1 (en) 2001-01-22 2002-08-06 Lumend, Inc. Method and apparatus for crossing intravascular occlusions
WO2002083229A2 (en) 2001-04-16 2002-10-24 Medtronic Percusurge, Inc. Aspiration catheters and method of use
US20030023263A1 (en) 2001-07-24 2003-01-30 Incept Llc Apparatus and methods for aspirating emboli
US6623437B2 (en) 2001-08-28 2003-09-23 Rex Medical, L.P. Tissue biopsy apparatus
US20030199747A1 (en) 2002-04-19 2003-10-23 Michlitsch Kenneth J. Methods and apparatus for the identification and stabilization of vulnerable plaque
US6932502B2 (en) 2002-05-01 2005-08-23 Hewlett-Packard Development Company, L.P. Mixing apparatus
US7153315B2 (en) 2002-06-11 2006-12-26 Boston Scientific Scimed, Inc. Catheter balloon with ultrasonic microscalpel blades
DE20210565U1 (en) * 2002-07-09 2002-09-05 Klann Tools Ltd Mounting device for cardan shafts
CA2493356A1 (en) 2002-07-13 2004-01-22 Stryker Corporation System and method for performing irrigated nose and throat surgery
US20040210245A1 (en) 2002-07-26 2004-10-21 John Erickson Bendable needle with removable stylet
US20040049225A1 (en) 2002-09-11 2004-03-11 Denison Andy E. Aspiration catheter
AU2003269460A1 (en) 2002-10-18 2004-05-04 Arieh Sher Atherectomy system with imaging guidewire
WO2004077372A1 (en) 2003-02-21 2004-09-10 Sensormatic Electronics Corporation Integrated electronic article surveillance (eas) and point of sale (pos) system and method
US20040193034A1 (en) 2003-03-28 2004-09-30 Lawrence Wasicek Combined long rail/short rail IVUS catheter
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US20050004594A1 (en) 2003-07-02 2005-01-06 Jeffrey Nool Devices and methods for aspirating from filters
JP4026829B2 (en) 2003-07-24 2007-12-26 ローム アンド ハース カンパニー Microbicidal composition
JP2005068125A (en) 2003-08-21 2005-03-17 Rohm & Haas Co Method for preparing biocide-blended material
US20050090849A1 (en) 2003-10-22 2005-04-28 Adams Kenneth M. Angled tissue cutting instruments and method of fabricating angled tissue cutting instrument having flexible inner tubular members of tube and single wrap construction
US7338495B2 (en) 2003-10-22 2008-03-04 Medtronic Xomed, Inc. Angled tissue cutting instruments having flexible inner tubular members of tube and sleeve construction
US7488322B2 (en) 2004-02-11 2009-02-10 Medtronic, Inc. High speed surgical cutting instrument
US7959634B2 (en) 2004-03-29 2011-06-14 Soteira Inc. Orthopedic surgery access devices
DE102004015639B4 (en) 2004-03-31 2007-05-03 Siemens Ag Apparatus for performing cutting-balloon intervention with IVUS monitoring
US7479148B2 (en) 2004-11-08 2009-01-20 Crescendo Technologies, Llc Ultrasonic shear with asymmetrical motion
WO2007002685A2 (en) 2005-06-24 2007-01-04 Volcano Corporation Co-registration of graphical image data representing three-dimensional vascular features
KR100668852B1 (en) 2005-06-30 2007-01-16 주식회사 하이닉스반도체 Duty Cycle Correction Device
DE102005048892B4 (en) 2005-09-22 2009-01-15 Siemens Ag Device for carrying out rotablation and medical treatment device
US20080051812A1 (en) 2006-08-01 2008-02-28 Baxano, Inc. Multi-Wire Tissue Cutter
DE102005059271B4 (en) 2005-12-12 2019-02-21 Siemens Healthcare Gmbh catheter device
DE102005059262B4 (en) 2005-12-12 2008-02-07 Siemens Ag catheter device
US7951161B2 (en) 2006-05-09 2011-05-31 Medrad, Inc. Atherectomy system having a variably exposed cutter
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
US8361094B2 (en) 2006-06-30 2013-01-29 Atheromed, Inc. Atherectomy devices and methods
US8007506B2 (en) 2006-06-30 2011-08-30 Atheromed, Inc. Atherectomy devices and methods
US20080045986A1 (en) 2006-06-30 2008-02-21 Atheromed, Inc. Atherectomy devices and methods
US8920448B2 (en) 2006-06-30 2014-12-30 Atheromed, Inc. Atherectomy devices and methods
US8628549B2 (en) 2006-06-30 2014-01-14 Atheromed, Inc. Atherectomy devices, systems, and methods
US20090018566A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
WO2008042987A2 (en) 2006-10-04 2008-04-10 Pathway Medical Technologies, Inc. Interventional catheters
EP2104460A2 (en) 2006-12-29 2009-09-30 Vascure Ltd. Atherectomy methods and apparatus
CN103222846B (en) 2007-01-19 2017-04-26 桑尼布鲁克健康科学中心 Scanning mechanisms for imaging probe
US20080208227A1 (en) 2007-02-23 2008-08-28 Terumo Cardiovascular Systems Corporation Self-contained dissector/harvester device
US20080312673A1 (en) 2007-06-05 2008-12-18 Viswanathan Raju R Method and apparatus for CTO crossing
US8475478B2 (en) 2007-07-05 2013-07-02 Cardiovascular Systems, Inc. Cleaning apparatus and method for high-speed rotational atherectomy devices
US8070762B2 (en) 2007-10-22 2011-12-06 Atheromed Inc. Atherectomy devices and methods
US8236016B2 (en) 2007-10-22 2012-08-07 Atheromed, Inc. Atherectomy devices and methods
US20090138031A1 (en) 2007-11-24 2009-05-28 Tsukernik Vladimir B Thrombectomy catheter with a helical cutter
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
WO2009111670A1 (en) 2008-03-06 2009-09-11 Ev3 Endovascular, Inc. Image enhancement and application functionality for medical and other uses
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US20090275966A1 (en) 2008-05-05 2009-11-05 Miroslav Mitusina Flexible inner members having flexible regions comprising a plurality of intertwined helical cuts
US9186170B2 (en) 2008-06-05 2015-11-17 Cardiovascular Systems, Inc. Bidirectional expandable head for rotational atherectomy device
KR101645754B1 (en) 2008-10-13 2016-08-04 코비디엔 엘피 Devices and methods for manipulating a catheter shaft
DE102009014489B4 (en) 2009-03-23 2011-03-10 Siemens Aktiengesellschaft Catheter and medical device
BRPI1014721A2 (en) 2009-04-29 2016-04-12 Tyco Healthcare methods and devices for cutting and scraping fabric
CA2761774C (en) 2009-05-14 2014-09-16 Tyco Healthcare Group Lp Easily cleaned atherectomy catheters and methods of use
WO2011003006A2 (en) 2009-07-01 2011-01-06 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US8142464B2 (en) 2009-07-21 2012-03-27 Miroslav Mitusina Flexible inner member having a flexible region composed of longitudinally and rotationally offset partial circumferential cuts
BR112012013389A2 (en) 2009-12-02 2018-03-06 Tyco Healthcare methods and devices for cutting a fabric
CA2783301C (en) 2009-12-11 2015-02-24 Tyco Healthcare Group Lp Material removal device having improved material capture efficiency and methods of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868767A (en) * 1994-12-23 1999-02-09 Devices For Vascular Intervention Universal catheter with interchangeable work element
US6156046A (en) * 1997-11-07 2000-12-05 Prolifix Medical, Inc. Methods and systems for treating obstructions in a body lumen
US20030018346A1 (en) * 1999-08-19 2003-01-23 Fox Hollows Technologies, Inc. Apparatus and methods for removing material from a body lumen
US20050222663A1 (en) * 2000-12-20 2005-10-06 Fox Hollow Technologies, Inc. Debulking catheters and methods

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154853B2 (en) 2006-06-30 2018-12-18 Atheromed, Inc. Devices, systems, and methods for cutting and removing occlusive material from a body lumen
US11207096B2 (en) 2006-06-30 2021-12-28 Atheromed, Inc. Devices systems and methods for cutting and removing occlusive material from a body lumen
US8888801B2 (en) 2006-06-30 2014-11-18 Atheromed, Inc. Atherectomy devices and methods
US8920448B2 (en) 2006-06-30 2014-12-30 Atheromed, Inc. Atherectomy devices and methods
US10226275B2 (en) 2006-06-30 2019-03-12 Atheromed, Inc. Devices, systems, and methods for debulking restenosis of a blood vessel
US20110040315A1 (en) * 2006-06-30 2011-02-17 Atheromed, Inc. Devices, systems, and methods for cutting and removing occlusive material from a body lumen
US10154854B2 (en) 2006-06-30 2018-12-18 Atheromed, Inc. Atherectomy devices and methods
US9492192B2 (en) 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
US9492193B2 (en) 2006-06-30 2016-11-15 Atheromed, Inc. Devices, systems, and methods for cutting and removing occlusive material from a body lumen
US9668767B2 (en) 2006-06-30 2017-06-06 Atheromed, Inc. Atherectomy devices and methods
US9675376B2 (en) 2006-06-30 2017-06-13 Atheromed, Inc. Atherectomy devices and methods
US9333007B2 (en) 2007-10-22 2016-05-10 Atheromed, Inc. Atherectomy devices and methods
US9095371B2 (en) 2007-10-22 2015-08-04 Atheromed, Inc. Atherectomy devices and methods
US11786269B2 (en) 2007-10-22 2023-10-17 Atheromed, Inc. Atherectomy devices and methods
US9345511B2 (en) 2011-10-13 2016-05-24 Atheromed, Inc. Atherectomy apparatus, systems and methods
US10226277B2 (en) 2011-10-13 2019-03-12 Atheromed, Inc. Atherectomy apparatus, systems, and methods
US8795306B2 (en) 2011-10-13 2014-08-05 Atheromed, Inc. Atherectomy apparatus, systems and methods
US11259835B2 (en) 2011-10-13 2022-03-01 Atheromed, Inc. Atherectomy apparatus systems and methods
US9943330B2 (en) 2015-09-10 2018-04-17 Covidien Lp Tissue-removing catheter with asymmetric window
CN109069180A (en) * 2016-04-14 2018-12-21 柯惠有限合伙公司 Tissue with regulating mechanism removes conduit
US11304723B1 (en) 2020-12-17 2022-04-19 Avantec Vascular Corporation Atherectomy devices that are self-driving with controlled deflection

Also Published As

Publication number Publication date
US8328829B2 (en) 2012-12-11
US20080065124A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
US8328829B2 (en) High capacity debulking catheter with razor edge cutting window
US8469979B2 (en) High capacity debulking catheter with distal driven cutting wheel
US20230181215A1 (en) Tissue slitting methods and systems
US4653496A (en) Transluminal lysing system
US4745919A (en) Transluminal lysing system
US9788854B2 (en) Debulking catheters and methods
US7887556B2 (en) Debulking catheters and methods
RU2538174C2 (en) Device for material removal
US6027514A (en) Apparatus and method for removing occluding material from body lumens
US5632754A (en) Universal catheter with interchangeable work element
US20030120295A1 (en) Debulking catheters and methods
US20030125757A1 (en) Debulking catheters and methods
EP1767159A1 (en) Catheter for removing atheromatous or thrombotic occlusive material
US10524827B2 (en) Tissue-removing catheter with ball and socket deployment mechanism
JP6129988B2 (en) Eccentric penetrating cutter

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:030312/0315

Effective date: 20120928

Owner name: EV3 LLC, MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:EV3 INC.;REEL/FRAME:030312/0298

Effective date: 20101222

Owner name: EV3 INC., MINNESOTA

Free format text: MERGER;ASSIGNOR:FOXHOLLOW TECHNOLOGIES, INC.;REEL/FRAME:030309/0366

Effective date: 20101220

Owner name: FOX HOLLOW TECHNOLOGIES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OLSON, WILLIAM JOHN;REEL/FRAME:030307/0633

Effective date: 20071102

Owner name: TYCO HEALTHCARE GROUP LP, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EV3 LLC;REEL/FRAME:030309/0455

Effective date: 20101223

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION