US20110098809A1 - Ocular Implant System and Method - Google Patents

Ocular Implant System and Method Download PDF

Info

Publication number
US20110098809A1
US20110098809A1 US12/911,451 US91145110A US2011098809A1 US 20110098809 A1 US20110098809 A1 US 20110098809A1 US 91145110 A US91145110 A US 91145110A US 2011098809 A1 US2011098809 A1 US 2011098809A1
Authority
US
United States
Prior art keywords
canal
schlemm
eye
channel
cannula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/911,451
Inventor
John Wardle
Andrew T. Schieber
Kenneth M. Galt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcon Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/911,451 priority Critical patent/US20110098809A1/en
Publication of US20110098809A1 publication Critical patent/US20110098809A1/en
Assigned to IVANTIS, INC. reassignment IVANTIS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GALT, KENNETH M., SCHIEBER, ANDREW T., WARDLE, JOHN
Priority to US14/279,983 priority patent/US9579234B2/en
Assigned to ALCON INC. reassignment ALCON INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IVANTIS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment

Definitions

  • glaucoma is now the leading cause of irreversible blindness worldwide and the second leading cause of blindness, behind cataract, in the world.
  • NASH National Eye Institute
  • Glaucoma researchers have found a strong correlation between high intraocular pressure and glaucoma.
  • shunts were implanted to direct aqueous humor from the anterior chamber to the extraocular vein (Lee and Scheppens, “Aqueous-venous shunt and intraocular pressure,” Investigative Ophthalmology (February 1966)).
  • Other early glaucoma treatment implants led from the anterior chamber to a sub-conjunctival bleb (e.g., U.S. Pat. No. 4,968,296 and U.S. Pat. No. 5,180,362).
  • glaucoma treatment devices that are disposed partially or completely within Schlemm's canal have been described. Examples of such devices may be found, e.g., in U.S. Pat. No. 7,740,604; US Patent Publ. No. 2009/0082860; US Patent Publ. No. 2009/0227934; US Patent Publ. No. 2009/0132040; US Patent Publ. No. 2010/0121342; US Patent Publ. No. 2006/0195187; and U.S. application Ser. No. 12/833,863.
  • the Schlemm's canal of a patient suffering from glaucoma has lost some or all of its natural functionality. Due to the abnormal pressures caused by glaucoma, Schlemm's canal and related tissues may have lost the ability to move. In some patients, these conditions may result in the collapse and subsequent closure of part or all of Schlemm's canal. When this is the case, portions of the wall of Schlemm's canal may be pushed closed and may not be allowed to rebound to an open shape. Over time, the collapsed wall of Schlemm's canal may adhere to itself causing the canal to become compartmentalized.
  • One aspect of the invention provides an ocular implant and delivery system having a channel tool (such as a torque tube or coil) adapted to extend through at least a portion of Schlemm's canal of a human eye and to determine whether the Schlemm's canal portion provides a suitable location for the delivery of an ocular implant; an ocular implant adapted to be disposed within Schlemm's canal of a human eye; and a cannula comprising a distal opening adapted to deliver the channel tool and the ocular implant into Schlemm's canal of the eye.
  • the channel tool is further adapted to open a channel within the Schlemm's canal portion.
  • Some embodiments of the invention also have a proximal control adapted to be operated from exterior to the eye to move the channel opening tool and the ocular implant when the distal opening of the cannula is within the eye.
  • the channel opening tool may be configured to be disposed within the ocular implant and to move with respect to the ocular implant.
  • the system includes a fluid and a fluid injection mechanism adapted to inject the fluid (such as, e.g., a dilatation agent adapted to dilate tissue) into Schlemm's canal of the eye through the cannula.
  • the channel opening tool has a fluid lumen and the fluid injection mechanism is adapted to inject fluid through the channel opening tool fluid lumen.
  • the channel opening tool may have a distal opening communicating with the fluid lumen and/or a liner tube surrounding the fluid lumen.
  • the fluid injection mechanism has a piston disposed in a cylinder.
  • the fluid injection mechanism may also include an injection tube extending from an outlet of the cylinder to the handle.
  • Another aspect of the invention provides a method of treating glaucoma in a human eye including the steps of: inserting a distal exit port of a cannula at least partially into Schlemm's canal of the eye; delivering a channel tool through the cannula into Schlemm's canal; delivering an ocular implant through the cannula into Schlemm's canal; and removing the channel tool and the cannula from the eye while leaving the ocular implant in place within Schlemm's canal.
  • the method includes the step of delivering a dye through the channel tool and observing the behavior of the dye to identify the location of obstructions within Schlemm's canal.
  • the method includes the step of opening a channel in Schlemm's canal with the channel tool.
  • the step of opening a channel may include the step of moving the channel tool within Schlemm's canal.
  • the step of opening a channel may include the step of delivering a fluid (such as a dilatation agent, a therapeutic agent and/or a dye) through the channel tool by, e.g., moving the fluid through an obstruction within Schlemm's canal to increase fluid communication between adjacent segments of Schlemm's canal.
  • a fluid such as a dilatation agent, a therapeutic agent and/or a dye
  • the delivering steps include the step of delivering the channel opening tool and the ocular implant without removing the distal tip of the cannula from the eye.
  • Some embodiments of the method include the step of moving the channel opening tool and the ocular implant with respect to each other within Schlemm's canal.
  • the delivering steps include the step of delivering the ocular implant over the channel opening tool.
  • the inserting step includes the step of inserting the distal exit port of the cannula at least partially into Schlemm's canal of the eye through an ab interno approach. In other embodiments, the inserting step includes the step of inserting the distal exit port of the cannula at least partially into Schlemm's canal of the eye through an ab externo approach.
  • an ocular implant and delivery system including a channel tool adapted to extend through at least a portion of Schlemm's canal of a human eye and to determine whether the Schlemm's canal portion provides a suitable location for the delivery of an ocular implant; a cannula comprising a distal opening adapted to deliver the channel tool and the ocular implant into Schlemm's canal of the eye; and a proximal control adapted to move the channel tool with respect to the cannula.
  • Still another aspect of the invention provides a method of treating glaucoma in a human eye including the steps of inserting a distal exit port of a cannula at least partially into Schlemm's canal of the eye; delivering a channel tool through the cannula into Schlemm's canal using a proximal control; and removing the channel tool and the cannula from the eye while leaving the ocular implant in place within Schlemm's canal.
  • FIG. 1 is a stylized representation of an exemplary medical procedure in accordance with this detailed description.
  • FIGS. 2A and 2C are perspective views illustrating an ocular implant and delivery system and method according to an embodiment of this invention.
  • FIG. 2B is an enlarged perspective view of a cannula and channel tool of the system shown in FIG. 2A .
  • FIG. 3 is a stylized partial cross-sectional and partial plan view of an ocular implant and delivery system according to an embodiment of this invention.
  • FIG. 4A is a partial cross-sectional view of a distal portion of a channel tool according to an embodiment of this invention.
  • FIG. 4B is a partial cross-sectional view of a distal portion of a channel tool according to another embodiment of this invention.
  • FIG. 5 is a partial cross-sectional view of a distal portion of a channel tool according to yet another embodiment of this invention.
  • FIG. 6 is a stylized perspective view illustrating the anatomy of an eye.
  • FIG. 7 is a stylized perspective view showing Schlemm's canal and an iris of the eye shown in the previous figure.
  • FIG. 8 is an enlarged cross-sectional view further illustrating Schlemm's canal shown in the previous figure.
  • FIG. 9 is a stylized perspective view of an eye in which a scleral flap has been formed.
  • FIG. 10 is a stylized perspective view of the eye of FIG. 9 in which a second scleral flap has been formed.
  • FIG. 11 is a stylized perspective view of the eye of FIGS. 9 and 10 in which openings have been made in Schlemm's canal.
  • FIG. 12 is a stylized perspective view of the eye of FIGS. 9-11 showing a cannula proximate the eye.
  • FIG. 13 is a stylized perspective view of the eye of FIGS. 9-12 showing the insertion of a distal tip of a cannula into Schlemm's canal.
  • FIG. 14 is a stylized perspective view of the eye of FIGS. 9-13 showing a channel tool and ocular implant being advanced out of the cannula and into Schlemm's canal.
  • FIG. 15 is a stylized perspective view of the eye of FIGS. 9-14 showing retraction of the channel tool from Schlemm's canal, leaving the ocular implant in Schlemm's canal.
  • FIG. 16 is a stylized perspective view of the eye of FIGS. 9-15 showing removal of the cannula from the eye.
  • FIG. 17 is a stylized perspective view of the eye of FIGS. 9-16 showing closing of the scleral flap.
  • FIGS. 18A and 18B are stylized perspective views of eyes in which ocular implants have been placed in Schlemm's canal.
  • FIG. 19A is a stylized perspective view of an eye in which an ocular implant has been placed with an inlet in the anterior chamber and the remainder of the device in Schlemm's canal.
  • FIG. 19B is a stylized perspective view of an eye in which an ocular implant has been placed so that it lies entirely within Schlemm's canal.
  • FIGS. 20A-D and 21 show details of a method of using the system of this invention.
  • FIGS. 22A-F show details of a method of using the system of this invention.
  • FIG. 23A is a perspective view of certain components of an ocular implant and delivery system according to an embodiment of this invention.
  • FIG. 23B is a detail view of the distal end of the system shown in FIG. 23A .
  • FIG. 24 is an elevational view of a cannula, push tube ocular plant of a system according to an embodiment of this invention.
  • FIGS. 25A-B show details of the connection between the ocular implant and push tube shown in FIG. 24 .
  • FIG. 1 is a stylized representation of an exemplary medical procedure in accordance with this detailed description.
  • a physician is treating an eye 20 of a patient P using a therapy system 100 , such as an ocular implant and delivery system.
  • a therapy system 100 such as an ocular implant and delivery system.
  • the physician is holding a handle portion of therapy system 100 in his or her right hand RH.
  • the physician's left hand (not shown) may be used to hold the handle H of a gonio lens 23 . It will be appreciated that some physician's may prefer holding the therapy system handle in the left hand and the gonio lens handle H in the right hand RH.
  • the physician may view the interior of the anterior chamber using gonio lens 23 and a microscope 25 .
  • Detail A of FIG. 1 is a stylized simulation of the image viewed by the physician.
  • a distal portion of a cannula 102 is visible in Detail A.
  • a shadow-like line indicates the location of Schlemm's canal SC which is lying under various tissue (e.g., the trabecular meshwork) that surround the anterior chamber.
  • a distal opening 104 of cannula 102 is positioned near Schlemm's canal SC of eye 20 .
  • distal opening 104 of cannula 102 is placed in fluid communication with Schlemm's canal SC.
  • a device e.g., an implant or a delivery tool for an implant
  • a device may be advanced through distal opening 104 and into Schlemm's canal SC.
  • FIG. 2A is a perspective view further illustrating therapy system 100 and eye 20 shown in the previous figure.
  • cannula 102 of therapy system 100 is shown extending through a cornea 40 of eye 20 .
  • a distal portion of cannula 102 is disposed inside the anterior chamber defined by cornea 40 of eye 20 .
  • cannula 102 is configured so that a distal opening 104 of cannula 102 can be placed in fluid communication with Schlemm's canal.
  • a channel tool 126 is disposed in a lumen defined by cannula 102 .
  • Therapy system 100 includes a mechanism that is capable of advancing and retracting the channel tool along the length of cannula 102 .
  • the channel tool 126 may be placed in Schlemm's canal of eye 20 by advancing the channel tool through distal opening 104 of cannula 102 while distal opening 104 is in fluid communication with Schlemm's canal.
  • FIG. 2B is an enlarged detail view further illustrating cannula 102 of therapy system 100 .
  • channel tool 126 has been advanced through distal opening 104 of cannula 102 .
  • Cannula 102 of FIG. 2B defines a passageway 124 that fluidly communicates with distal opening 104 .
  • Channel tool 126 may be moved along passageway 124 and through distal opening 104 by therapy system 100 .
  • Therapy system 100 includes a proximal control mechanism 101 disposed outside of the eye that is capable of performing this function.
  • FIG. 2C is an enlarged perspective view further illustrating eye 20 shown in FIG. 2A .
  • a cannula 102 of a therapy system 100 can be seen extending through cornea 40 of eye 20 so that a distal portion D of cannula 102 disposed in the anterior chamber AC of eye 20 .
  • cannula 102 has been positioned so that distal port 104 of cannula 102 is in fluid communication with Schlemm's canal of eye 20 .
  • a channel tool 126 of therapy system 100 has been advance through distal port 104 of cannula 102 and into Schlemm's canal of eye 20 .
  • FIG. 3 is a stylized plan view illustrating an exemplary therapy system 1100 in accordance with this detailed description.
  • the therapy system 1100 of FIG. 3 includes a channel tool 1152 , a cannula 1108 , and a fluid injection assembly 1162 .
  • fluid injection assembly 1162 includes a syringe (i.e., a piston disposed in a cylinder) 1163 that is filled with fluid 1164 .
  • Therapy system 1100 of FIG. 3 may be used, for example, to determine whether Schlemm's canal of an eye provides a suitable location for the delivery of an ocular implant and/or to open Schlemm's canal of the eye.
  • Exemplary methods in accordance with this detailed description may include the step of advancing a distal portion of channel tool 1152 through the distal port 1109 of cannula 1108 into Schlemm's canal of an eye. If resistance is encountered as channel tool 1152 is advanced, the user is provided with an indication that Schlemm's canal is partially or completely blocked.
  • the channel tool 1152 may be advanced through the blockage to open a channel in Schlemm's canal and/or to increase fluid communication between adjacent segments of Schlemm's canal.
  • the channel tool may also used to inject fluid 1164 into Schlemm's canal to open the canal and/or to provide lubrication for further advancement of the channel tool into the canal.
  • a physician may use channel tool 1152 to visually identify obstructions.
  • channel tool 1152 may be used to inject a visualization enhancing fluid (e.g., a dye) into Schlemm's canal.
  • a visualization enhancing fluid e.g., a dye
  • the physician may observe the movement of that fluid within Schlemm's canal using a microscope and a gonio lens as shown in FIG. 1 .
  • Therapy system 1100 may also be used to deliver an implant, such as an aqueous humor drainage device, into Schlemm's canal of the eye. When this is the case, the aqueous humor drainage device may be mounted on channel tool 1152 .
  • channel tool 1152 is shown extending through a distal port 1109 of cannula 1108 .
  • Cannula 1108 is coupled to a proximal control 1102 of therapy system 1100 .
  • Proximal control 1102 includes a mechanism 1166 that is capable of advancing and retracting channel tool 1152 .
  • mechanism 1166 is substantially disposed inside proximal control 1102 .
  • channel tool 1152 includes a coiled cable.
  • An injection tube 1156 extends from a fluid injection port 1168 in syringe 1163 through proximal control 1102 to deliver fluid 1164 to channel tool 1152 .
  • Fluid 1164 that has exited channel tool 1152 is represented by a number of fluid drops in the stylized plan view of FIG. 3 .
  • Fluid injection assembly 1162 includes a mechanism including a lever. The mechanism cooperates with syringe 1163 to dispense fluid (e.g., the drops shown in FIG. 3 ). In the exemplary embodiment of FIG. 3 , fluid injection assembly 1162 will dispense a controlled volume of fluid each time the lever is actuated.
  • fluid injection assembly 1162 may employ a screw type ratcheting plunger which can dispense a controlled volume per click of the ratchet mechanism.
  • fluid 1164 may comprise various materials without deviating from the spirit and scope of the present detailed description.
  • fluids that may be suitable in some applications include water, saline, hyaluronic acid and/or viscoelastic.
  • viscoelastic is sometimes used to describe various viscoelastic materials that are injected into the eye as part of a surgical procedure. Viscoelastics for use in ophthalmic surgery are commercially available from Bausch and Lomb Incorporated (Rochester, N.Y., U.S.A.) and Alcon, Incorporated (Hünenberg, Switzerland). Viscoelastics may comprise, for example, hyaluronic acid.
  • Hyaluronic acid is a material that is naturally found in the vitreous humor that fills the posterior chamber of the eye. Accordingly, this material is well suited for use in ophthalmic surgery.
  • Hyaluronic acid is also known as hyaluronan and hyaluronate.
  • a loop 1172 is formed in injection tube 1156 .
  • loop 1172 is sized to provide a level of travel necessary to advance the distal end channel tool 1152 through the entire length of Schlemm's canal.
  • loop 1172 is disposed inside proximal control 1102 .
  • FIG. 4A is a partial cross-sectional view showing a distal portion of an exemplary channel tool 1152 in accordance with this detailed description.
  • channel tool 1152 includes a cable 1154 and a distal tip 1160 at the distal end of cable 1154 .
  • Distal tip 1160 may be attached to cable 1154 , for example, by welding.
  • Distal tip 1160 is rounded so as to be atraumatic.
  • Distal tip 1160 has a tip lumen 1174 fluidly communicating with a distal opening 1170 .
  • cable 1154 is formed as a helical coil (formed, e.g., from stainless steel, nitinol or other suitable material) having a plurality of filars 1176 forming a hollow tube-like structure.
  • cable 1154 comprises a torque cable.
  • Torque cables that may be suitable in some applications are commercially available from Fort Wayne Metals, Inc. (Fort Wayne, Ind., U.S.A) and Asahi Intecc Co. Ltd. (Nagoya, Aichi Prefecture, Japan).
  • each filar 1176 has a generally helical shape.
  • filars 1176 of cable 1154 define a cable lumen 1178 . Lubricity of the coil can be enhanced by the application of a surface coating (PTFE, heparin, etc.) which will further reduce potential trauma and facilitate smooth predictable advancement.
  • a liner tube 1158 is disposed inside cable lumen 1178 .
  • Liner tube 1158 may be formed, e.g., from polyimide and defines a liner lumen 1180 that fluidly communicates with tip lumen 1174 defined by distal tip 1160 .
  • FIG. 4A includes a plurality of arrows representing fluid 1164 flowing through tip lumen 1174 of channel tool 1152 and shown exiting distal opening 1170 .
  • Fluid such as, e.g., viscoelastic
  • injected through this opening may be used, for example, to gently separate the walls of Schlemm's canal in areas where the canal walls have collapsed and or adhered to each other. The newly created space will provide a passageway for the cable to atraumatically advance without causing tearing or puncturing into the canal.
  • liner tube 1158 is positioned so that its distal end extends through cable 1154 to a proximal surface of distal tip 1160 .
  • liner tube 1158 ends proximally of the proximal surface of distal tip 1160 to expose a distal portion 1182 of cable 1154 to fluid (such as, e.g., viscoelastic) within lumen 1180 .
  • fluid such as, e.g., viscoelastic
  • Fluid injected between adjacent filars 1176 may be used, for example, to gently separate the walls of Schlemm's canal in areas where the canal walls have collapsed upon each other.
  • FIG. 5 is a partial cross-sectional view showing a distal portion of a channel tool 2152 according to another embodiment of this invention.
  • distal tip 2160 is closed, i.e., it lacks the distal opening shown in the embodiment of FIGS. 4A and 4B .
  • Other elements of this embodiment are the same as those of the FIGS. 4A and 4B embodiment and therefore have the same element numbers.
  • a distal portion 1182 of cable 1154 is exposed to fluid within lumen 1180 .
  • fluid such as, e.g., viscoelastic
  • Fluid injected between adjacent filars 1176 may be used, for example, to gently dilate the walls of Schlemm's canal to a larger dimension than the channel tool itself.
  • An enlarged lumen is useful in accommodating an even larger device, such as an implant.
  • the channel tools of this invention may be used to determine whether a portion of Schlemm's canal provides a suitable location for the delivery of an ocular implant.
  • the channel tools may also be used to open a blocked or partially blocked portion of Schlemm's canal by injecting fluid (such as viscoelastic) and/or by mechanical force as the channel tool is advanced through Schlemm's canal.
  • the channel tool may be used to deliver a canal dilation agent such as trypan blue or Indocyannine green (ICG), a colored agent or dye to provide enhanced viewing of the canal by a clinician and/or a therapeutic agent (such as, e.g., therapeutic agents enhancing the collector channels/trabecular meshwork, including ethacrynic acid, cytochalasin, rho kinase inhibitors).
  • a therapeutic agent such as, e.g., therapeutic agents enhancing the collector channels/trabecular meshwork, including ethacrynic acid, cytochalasin, rho kinase inhibitors.
  • enhanced viewing of Schlemm's canal may be achieved using a fluorescent dye in conjunction with black light.
  • FIGS. 6-8 show details of a human eye.
  • FIG. 6 is an enlarged perspective view illustrating a portion of eye 20 shown as a cross-sectional view created by a cutting plane passing through the center of pupil 32 .
  • Eye 20 includes an iris 30 defining a pupil 32 .
  • Eye 20 can be conceptualized as a fluid filled ball having two chambers.
  • Sclera 34 of eye 20 surrounds a posterior chamber PC filled with a viscous fluid known as vitreous humor.
  • Cornea 36 of eye 20 encloses an anterior chamber AC that is filled with a fluid know as aqueous humor.
  • the cornea 36 meets the sclera 34 at a limbus 38 of eye 20 .
  • a lens 40 of eye 20 is located between anterior chamber AC and posterior chamber PC. Lens 40 is held in place by a number of ciliary zonules 42 .
  • the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor.
  • a continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.
  • Aqueous humor is produced by an organ known as the ciliary body.
  • the ciliary body includes epithelial cells that continuously secrete aqueous humor.
  • a stream of aqueous humor flows out of the eye as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the blood stream and is carried away by venous blood leaving the eye.
  • Schlemm's canal SC is a tube-like structure that encircles iris 30 . Two laterally cut ends of Schlemm's canal SC are visible in the cross-sectional view of FIG. 6 .
  • aqueous humor flows out of anterior chamber AC and into Schlemm's canal SC.
  • Aqueous humor exits Schlemm's canal SC and flows into a number of collector channels (shown as CC in FIG. 9 ).
  • collector channels shown as CC in FIG. 9
  • FIG. 7 is a stylized perspective view showing Schlemm's canal SC and iris 30 of eye 20 shown in the previous figure.
  • Schlemm's canal SC is shown encircling iris 30 .
  • Schlemm's canal SC may overhang iris 30 slightly.
  • Iris 30 defines a pupil 32 .
  • Schlemm's canal SC and iris 30 are shown in cross-section, with a cutting plane passing through the center of pupil 32 .
  • Schlemm's canal SC is somewhat irregular, and can vary from patient to patient.
  • the shape of Schlemm's canal SC may be conceptualized as a cylindrical-tube that has been partially flattened. With reference to FIG. 7 , it will be appreciated that Schlemm's canal SC has a first major side 50 , a second major side 52 , a first minor side 54 , and a second minor side 56 .
  • Schlemm's canal SC forms a ring around iris 30 with pupil 32 disposed in the center of that ring.
  • First major side 50 is on the outside of the ring formed by Schlemm's canal SC and second major side 52 is on the inside of the ring formed by Schlemm's canal SC. Accordingly, first major side 50 may be referred to as an outer major side of Schlemm's canal SC and second major side 52 may be referred to as an inner major side of Schlemm's canal SC. With reference to FIG. 7 , it will be appreciated that first major side 50 is further from pupil 32 than second major side 52 .
  • the high pressures inside the eye of a patient suffering from glaucoma may cause the inner major wall of Schlemm's canal to be pressed against the outer major wall of the canal.
  • adhesions may form between the inner major wall and the outer major wall. These adhesions obstruct Schlemm's canal, inhibit circumferential flow and divide the canal into isolated compartments.
  • Exemplary methods in accordance with this detailed description may be used by a physician to examine Schlemm's canal and identify to location and nature of such obstructions.
  • a channel tool in accordance with this detailed description may be used to inject a fluid (e.g., dye) into Schlemm's canal.
  • a fluid e.g., dye
  • Schlemm's canal the physician may observe the movement of that fluid within Schlemm's canal using a microscope and a gonio lens as shown in FIG. 1 . Studying Schlemm's canal in this fashion allows the physician to achieve a clear understanding of the anatomical structure of the eye being studied. This knowledge will inform the physician's decision making when determining when and where to place aqueous humor drainage devices.
  • FIG. 8 is an enlarged cross-sectional view further illustrating Schlemm's canal SC shown in the previous figure.
  • Schlemm's canal SC has a wall W defining a lumen 58 .
  • the shape of Schlemm's canal SC is somewhat irregular, and it can vary from patient to patient.
  • the shape of Schlemm's canal SC may be conceptualized as a cylindrical-tube that has been partially flattened.
  • the cross-sectional shape of lumen 58 may be compared to the shape of an ellipse.
  • a major axis 60 and a minor axis 62 of lumen 58 are illustrated with dashed lines in FIG. 8 .
  • the length of major axis 60 and minor axis 62 can vary from patient to patient.
  • the length of minor axis 62 is between one and thirty micrometers in most patients.
  • the length of major axis 60 is between one hundred and fifty micrometers and three hundred and fifty micrometers in most patients.
  • Schlemm's canal SC comprises a first major side 50 , a second major side 52 , a first minor side 54 , and a second minor side 56 .
  • first major side 50 is longer than both first minor side 54 and second minor side 56 .
  • second major side 52 is longer than both first minor side 54 and second minor side 56 .
  • FIG. 9 is a stylized perspective view showing an eye 20 .
  • the upper and lower eyelids of the eye are held open with surgical tools so that the eye is accessible to a physician.
  • Cornea 24 of eye 20 meets the sclera 26 of eye 20 at the limbus.
  • the Schlemm's canal SC of eye 20 is disposed below sclera 26 .
  • Schlemm's canal SC is illustrated with dashed lines in FIG. 9 . These dashed lines generally encircle the iris 22 of eye 20 .
  • Glaucoma may be treated, for example, by implanting one or more aqueous humor drainage devices in the eye.
  • the several figures that follow illustrate exemplary methods of an ab externo approach for using a channel tool to determine whether the Schlemm's canal portion provides a suitable location for the delivery of an ocular implant and for placing an aqueous humor drainage device into an eye.
  • Two incisions have been made in sclera 26 of eye 20 of FIG. 9 . These two incisions define a first scleral flap 28 .
  • the two incisions defining first scleral flap 28 extend through less than the entire thickness of sclera 26 . Accordingly, these two incisions may be referred to as partial thickness incisions.
  • first scleral flap 28 has been folded upward.
  • FIG. 10 is an additional perspective view of eye 20 shown in the previous figure.
  • Two additional incisions have been made in the eye 20 of FIG. 10 . These two additional incisions extend deeper into sclera 26 and define a second scleral flap 30 .
  • the incisions made in sclera 26 have formed a recess 32 in eye 20 .
  • second scleral flap 30 has been folded upward.
  • second scleral flap 30 is surgically removed from eye 20 .
  • the area formerly occupied by second scleral flap 30 may act as a reservoir for aqueous humor leaving anterior chamber AC. This reservoir may facilitate the flow of aqueous humor out of eye 20 .
  • a portion of eye 20 is surrounded by a frame F in FIG. 10 . This portion of eye 20 will be enlarged for purposes of illustration in subsequent figures.
  • FIG. 11 is an enlarged figure showing the portion of eye 20 surrounded by frame F.
  • Incisions made in sclera 26 have formed a recess 32 in eye 20 .
  • the incisions have cut through a wall 34 of Schlemm's canal SC and extend approximately halfway through Schlemm's canal SC.
  • the wall 34 of Schlemm's canal SC defines a first opening 36 and a second opening 38 .
  • Some exemplary methods in accordance with this detailed description may include the steps of advancing a first aqueous humor drainage device through first opening 36 and advancing a second aqueous humor drainage device through second opening 38 .
  • a single aqueous humor drainage device may be inserted into Schlemm's canal.
  • FIG. 12 is an additional enlarged figure showing the portion of eye 20 surrounded by frame F.
  • Schlemm's canal SC is a somewhat placid channel encircling iris 22 .
  • Iris 22 defines a pupil 44 .
  • Schlemm's canal SC is a somewhat placid channel encircling iris 22 .
  • Iris 22 defines a pupil 44 .
  • Schlemm's canal of a patient suffering from glaucoma has lost some or all of its natural functionality. Due to the abnormal pressures caused by glaucoma, Schlemm's canal and related tissues may have lost the ability to respond (move) to pressure gradients. In some patients, these conditions may result in the collapse and subsequent closure of Schlemm's canal. When this is the case, the wall of Schlemm's canal may be pushed closed and may not be allowed to rebound to an open shape.
  • a cannula 108 has been positioned proximate recess 32 .
  • a distal tip portion 40 of cannula 108 has a blunt shape.
  • distal tip portion 40 of cannula 108 is configured to be inserted partially or completely into an opening cut through the wall of Schlemm's canal.
  • wall 34 of Schlemm's canal SC defines a first opening 36 and a second opening 38 .
  • FIG. 13 is an additional perspective view showing a portion of eye 20 .
  • distal tip portion 40 of cannula 108 has been positioned near an opening 38 cut through the wall 34 of Schlemm's canal SC.
  • distal port 42 of cannula 108 is generally aligned with opening 38 defined by wall 34 of Schlemm's canal SC.
  • Some methods in accordance with this detailed description may include the step of aligning the distal port of a cannula with an opening cut through the wall of Schlemm's canal.
  • a channel tool may be advanced through the distal port of the cannula and through the opening defined by the wall of Schlemm's canal.
  • the channel tool may be used, for example, to determine whether a portion of Schlemm's canal near the opening provides a suitable location for the delivery of an aqueous humor drainage device.
  • the aqueous humor drainage device may be advanced through the distal port of the cannula and through the opening defined by the wall of Schlemm's canal.
  • FIG. 14 is an additional perspective view showing a portion of eye 20 .
  • a channel tool 154 and an aqueous humor drainage device 122 have been advanced into Schlemm's canal SC.
  • channel tool 154 extends through distal port 42 of cannula 108 and through an opening 38 defined by wall 34 of Schlemm's canal SC.
  • Channel tool 154 may be as described with respect to one of the embodiments described above.
  • Therapy system 100 may include a mechanism that is capable of advancing and retracting the channel tool 154 .
  • aqueous humor drainage device 122 is disposed about a distal portion of channel tool 154 .
  • Aqueous humor drainage device 122 and channel tool 154 slidingly engage each other in the embodiment of FIG. 14 .
  • Therapy system 100 may include a mechanism that is capable of advancing and retracting the aqueous humor drainage device 122 .
  • the channel tool may be used to determine whether a Schlemm's canal portion provides a suitable location for the delivery of an ocular implant, such as aqueous humor drainage device 122 .
  • Channel tool 154 is formed with sufficient column strength to enable the tool to be advanced through an open canal without kinking. A sensation of kinking or resistance as the channel tool is advanced into Schlemm's canal will provide a user of an indication that a portion of Schlemm's canal may be partially or completely blocked and therefore unsuitable for the delivery of an ocular implant.
  • the channel tool 154 of therapy system 100 may have one or more distal openings that fluidly communicate with a fluid source for the injection of fluids (e.g., viscoelastic compositions) into Schlemm's canal during ophthalmic surgery.
  • a fluid source for the injection of fluids (e.g., viscoelastic compositions) into Schlemm's canal during ophthalmic surgery.
  • fluids e.g., viscoelastic compositions
  • a viscoelastic gel-like composition can be used and introduced directly into the canal to protect sensitive tissues from trauma and to provide fluid pressure for expanding collapsed portions of the canal through controlled dilatation. Viscoelastic also provides a lubricious interface between the implant and the canal to facilitate placement.
  • the injection of viscoelastic may aid in opening the canal and may provide a lubricious interface between the channel tool and the canal wall.
  • FIG. 15 is an additional perspective view showing a portion of eye 20 .
  • channel tool 154 has been retracted from Schlemm's canal SC leaving ocular implant 122 in place.
  • therapy system 100 includes a mechanism that is capable of advancing and retracting of both channel tube 154 and a push tube (not shown). When this is the case, channel tool 154 may be retracted from Schlemm's canal while the push tube prevents aqueous humor drainage device 122 from being pulled proximally.
  • FIG. 16 is an additional perspective view showing a portion of eye 20 .
  • cannula tip 40 of cannula 108 has been moved away from Schlemm's canal SC.
  • Aqueous humor drainage device 122 is shown residing in Schlemm's canal.
  • the second scleral flap has been optionally surgically removed from eye 20 .
  • the portion of recess 32 formerly occupied by second scleral flap 30 may act as a reservoir for aqueous humor leaving anterior chamber AC. This reservoir may facilitate the flow of aqueous humor out of anterior chamber AC.
  • FIG. 17 is an additional perspective view showing a portion of eye 20 .
  • first scleral flap 28 has been folded over recess 32 .
  • first scleral flap 28 is secured to the remainder of sclera 26 with a plurality of sutures.
  • FIG. 18A and FIG. 18B are stylized plan views showing an eye 20 .
  • a recess 32 has been formed in eye 20 .
  • a single aqueous humor drainage device 122 A has been advanced through a first opening 36 defined by the wall of Schlemm's canal of eye 20 .
  • a first aqueous humor drainage device 122 A has been advanced through a first opening 36 defined by the wall of Schlemm's canal and a second aqueous humor drainage device 122 B has been advanced through a second opening 38 defined by the wall of Schlemm's canal.
  • the implants shown in FIGS. 18A and 18B may be implanted according to the methods, and using the systems, described above.
  • FIG. 19A and FIG. 19B are stylized plan views showing an eye 20 .
  • a recess 32 has been formed in eye 20 .
  • a first aqueous humor drainage device 122 has been advanced into Schlemm's canal of first eye 20 .
  • an inlet portion 46 of first aqueous humor drainage device 122 has been positioned to extend into the anterior chamber AC of first eye 20 .
  • the aqueous humor drainage device 122 in FIG. 19B lies entirely within Schlemm's canal and does not extend into the anterior chamber AC of eye 20 .
  • Methods in accordance with this detailed description may include the step of advancing an inlet portion of a first aqueous humor drainage device into the anterior chamber of an eye.
  • the implants shown in FIGS. 19A and 19B may be implanted according to the methods, and using the systems, described above.
  • the methods illustrated in FIGS. 9-19 may be generally referred to as ab externo methods.
  • Access to Schlemm's canal may be established using an ab interno approach or an ab externo approach.
  • the ab externo methods described herein may be particularly useful when treating closed angle forms of glaucoma. Methods in accordance with this detailed description may include the steps of identifying a patient suffering from closed angle glaucoma and performing the method steps illustrated herein on the eye(s) of that patient.
  • a substantially straight cannula (having, e.g., a blunt distal tip) is used in connection with ab externo approaches.
  • FIGS. 2 and 20 - 22 show the use of an ab interno approach to deliver a channel tool and/or ocular implant according to embodiments of this invention.
  • FIG. 20A shows a distal tip 202 of a delivery system cannula 200 passing through the anterior chamber AC of an eye.
  • the inner major wall 252 of Schlemm's canal SC in apposition with the outer major wall 250 preventing circumferential flow within the canal and eliminating a flow path for aqueous access with the closest collector channel.
  • the distal tip 202 of cannula 200 has passed through the trabecular meshwork TM so that at least a portion of a distal opening 204 of cannula 200 is within Schlemm's canal SC.
  • a channel tool 226 is being advanced through distal opening 204 of cannula 200 into Schlemm's canal to determine whether that portion of Schlemm's canal provides a suitable location for the delivery of an ocular implant and/or to open that portion of Schlemm's canal, either through the mechanical action of the advancing channel tool, via the injection of a fluid such as viscoelastic, or both.
  • FIG. 20C includes a plurality of arrows representing fluid flowing through the side walls of channel tool 226 . This fluid may be injected into Schlemm's canal in a series of controlled-volume increments to gently separate the walls of the canal in areas where Schlemm's canal is obstructed.
  • FIG. 21 shows cannula 200 entering through the cornea of the eye into the anterior chamber and Schlemm's canal.
  • FIGS. 22A-F show steps of a therapy method according to this invention.
  • a cannula 200 has been inserted through the anterior chamber of the eye to place the distal tip 202 at least partially in Schlemm's canal SC.
  • a channel tool 226 has been advanced out of cannula 200 into Schlemm's canal SC.
  • a fluid 228 such as viscoelastic may be ejected from channel tool 226 into Schlemm's canal to provide lubrication for the advancement of channel tool 226 and/or to dilate Schlemm's canal.
  • An ocular implant 250 may thereafter be placed in Schlemm's canal, as shown in FIG. 22F .
  • a visible colorant may be added to the viscoelastic composition.
  • the visible colorant may facilitate and evaluation of canal patency. The information gained during this may assist a physician in pre-screening a patient and predicting the potential success of an aqueous drainage aqueous humor drainage device placement procedure for that patient.
  • FIG. 23A is a stylized perspective view illustrating an exemplary therapy system 3100 in accordance with this detailed description.
  • FIG. 23B is an enlarged detail view further illustrating a portion of therapy system 3100 .
  • FIG. 23A and FIG. 23B will be collectively referred to as FIG. 23 .
  • the therapy system 3100 of FIG. 23 includes an ocular implant 3122 , a channel tool 3152 , a push tube 3190 , a cannula 3108 , and a fluid injection assembly 3162 .
  • ocular implant 3122 may be used, for example, to determine whether Schlemm's canal of an eye provides a suitable location for the delivery of ocular implant 3122 , to open Schlemm's canal of the eye, and/or to place an ocular implant in Schlemm's canal of the eye.
  • push tube 3190 and ocular implant 3122 are both disposed about channel tool 3152 .
  • push tube 3190 can be seen extending through a distal port 3109 of cannula 3108 .
  • a distal portion of channel tool 3152 can be seen extending beyond ocular implant 3122 in FIG. 23A .
  • channel tool 3152 is slidingly disposed in lumens defined by push tube 3190 and ocular implant 3122 . Accordingly, channel tool 3152 is free to translate in axial directions (e.g., distal and proximal directions) with respect to both push tube 3190 and ocular implant 3122 .
  • channel tool 3152 may be advanced beyond ocular implant 3122 and into Schlemm's canal.
  • the distal end of channel tool 3152 may be advanced through a portion of Schlemm's canal, for example, to determine whether that portion of Schlemm's canal provides a suitable location for the delivery of ocular implant 3122 .
  • the user may advance ocular implant 3122 into the identified portion of Schlemm's canal.
  • ocular implant 3122 may be advanced using push tube 3190 .
  • proximal control 3102 includes a first mechanism 3166 A and second mechanism 3166 B.
  • First mechanism 3166 A is capable of advancing and retracting channel tool 3152 .
  • Push tube 3190 may be advanced and retracted in axial directions by a second mechanism 3166 B.
  • Cannula 3108 of therapy system 3100 is adapted and configured to deliver channel tool 3152 and ocular implant 3122 into Schlemm's canal of a human eye.
  • a number of exemplary cannulas that may be used with the therapy systems described herein are disclosed in U.S. patent application Ser. No. 12/632,738. The disclosure of this U.S. patent application is hereby incorporated by reference in its entirety.
  • Ocular implant 3122 of therapy system 3100 is adapted and configured to be disposed within Schlemm's canal of a human eye.
  • Ocular implants that may be suitable in some applications are disclosed e.g., in U.S. Pat. No. 7,740,604; US Patent Publ. No. 2009/0082860; US Patent Publ. No. 2009/0227934; US Patent Publ. No. 2009/0132040; US Patent Publ. No. 2010/0121342; US Patent Publ. No. 2006/0195187; and U.S. application Ser. No. 12/833,863. The entire disclosure of these U.S. Patents and patent applications is hereby incorporated by reference.
  • Fluid injection assembly 3162 may comprise, for example, a syringe (i.e., a piston disposed in a cylinder) that is filled with fluid. Fluid injection assembly 3162 may also include a mechanism configured to dispense a controlled volume of fluid each time an input element of the mechanism (e.g., a lever) is actuated. Fluid injection assembly 3162 fluidly communicates with channel tool 3152 via an injection tube 3156 .
  • a syringe i.e., a piston disposed in a cylinder
  • Fluid injection assembly 3162 may also include a mechanism configured to dispense a controlled volume of fluid each time an input element of the mechanism (e.g., a lever) is actuated. Fluid injection assembly 3162 fluidly communicates with channel tool 3152 via an injection tube 3156 .
  • FIG. 24 is an enlarged plan view further illustrating ocular implant 3122 , push tube 3190 , and cannula 3108 .
  • ocular implant 3122 and push tube 3190 are mechanically coupled to each other at a connection 3192 .
  • an ear of ocular implant 3192 is received in an aperture defined by push tube 3190 .
  • an ear of push tube 3190 is received in an aperture defined by ocular implant 3192 .
  • Channel tool 3152 extends through connection 3192 in the embodiment of FIG. 24 .
  • the presence of channel tool 3152 extending through ocular implant 3122 and push tube 3190 locks these two elements together.
  • An area including connection 3192 is surrounded by a frame F in FIG. 24 . This area will be enlarged for purposes of illustration in subsequent figures.
  • FIG. 25A and FIG. 25B are enlarged perspective views illustrating the connection formed between ocular implant 3122 and push tube 3190 .
  • ocular implant 3122 and push tube 3190 are mechanically coupled at a connection 3192 .
  • the connection between ocular implant 3122 and push tube 3190 has been broken.

Abstract

An ocular implant and delivery system having a channel tool adapted to extend through at least a portion of Schlemm's canal of a human eye and to determine whether the Schlemm's canal portion provides a suitable location for the delivery of an ocular implant; an ocular implant adapted to be disposed within Schlemm's canal of a human eye; and a cannula comprising a distal opening adapted to deliver the channel tool and the ocular implant into Schlemm's canal of the eye. The invention also provides a method of treating glaucoma in a human eye including the steps of inserting a distal exit port of a cannula at least partially into Schlemm's canal of the eye; delivering a channel tool through the cannula into Schlemm's canal; delivering an ocular implant through the cannula into Schlemm's canal; and removing the channel tool and the cannula from the eye while leaving the ocular implant in place within Schlemm's canal.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit under 35 U.S.C. §119 of U.S. Provisional Application No. 61/254,523 filed Oct. 23, 2009, the disclosure of which is incorporated herein by reference.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • According to a draft report by The National Eye Institute (NEI) at The United States National Institutes of Health (NIH), glaucoma is now the leading cause of irreversible blindness worldwide and the second leading cause of blindness, behind cataract, in the world. Thus, the NEI draft report concludes, “it is critical that significant emphasis and resources continue to be devoted to determining the pathophysiology and management of this disease.” Glaucoma researchers have found a strong correlation between high intraocular pressure and glaucoma.
  • In addition to drug treatments, a variety of surgical treatments for glaucoma have been described. For example, shunts were implanted to direct aqueous humor from the anterior chamber to the extraocular vein (Lee and Scheppens, “Aqueous-venous shunt and intraocular pressure,” Investigative Ophthalmology (February 1966)). Other early glaucoma treatment implants led from the anterior chamber to a sub-conjunctival bleb (e.g., U.S. Pat. No. 4,968,296 and U.S. Pat. No. 5,180,362). Still others were shunts leading from the anterior chamber to a point just inside Schlemm's canal (Spiegel et al., “Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?” Ophthalmic Surgery and Lasers (June 1999); U.S. Pat. No. 6,450,984; U.S. Pat. No. 6,450,984).
  • More recently, glaucoma treatment devices that are disposed partially or completely within Schlemm's canal have been described. Examples of such devices may be found, e.g., in U.S. Pat. No. 7,740,604; US Patent Publ. No. 2009/0082860; US Patent Publ. No. 2009/0227934; US Patent Publ. No. 2009/0132040; US Patent Publ. No. 2010/0121342; US Patent Publ. No. 2006/0195187; and U.S. application Ser. No. 12/833,863.
  • SUMMARY OF THE INVENTION
  • In some cases, the Schlemm's canal of a patient suffering from glaucoma has lost some or all of its natural functionality. Due to the abnormal pressures caused by glaucoma, Schlemm's canal and related tissues may have lost the ability to move. In some patients, these conditions may result in the collapse and subsequent closure of part or all of Schlemm's canal. When this is the case, portions of the wall of Schlemm's canal may be pushed closed and may not be allowed to rebound to an open shape. Over time, the collapsed wall of Schlemm's canal may adhere to itself causing the canal to become compartmentalized. Prior to implantation of an implant into Schlemm's canal, therefore, it may be advantageous to determine whether the lumen of Schlemm's canal is partially or completely blocked, i.e., to establish and confirm that enough space exists for an implant to reside and optionally to open up part of all of the canal lumen.
  • One aspect of the invention provides an ocular implant and delivery system having a channel tool (such as a torque tube or coil) adapted to extend through at least a portion of Schlemm's canal of a human eye and to determine whether the Schlemm's canal portion provides a suitable location for the delivery of an ocular implant; an ocular implant adapted to be disposed within Schlemm's canal of a human eye; and a cannula comprising a distal opening adapted to deliver the channel tool and the ocular implant into Schlemm's canal of the eye. In some embodiments, the channel tool is further adapted to open a channel within the Schlemm's canal portion.
  • Some embodiments of the invention also have a proximal control adapted to be operated from exterior to the eye to move the channel opening tool and the ocular implant when the distal opening of the cannula is within the eye. The channel opening tool may be configured to be disposed within the ocular implant and to move with respect to the ocular implant.
  • In some embodiments, the system includes a fluid and a fluid injection mechanism adapted to inject the fluid (such as, e.g., a dilatation agent adapted to dilate tissue) into Schlemm's canal of the eye through the cannula. In some such embodiments, the channel opening tool has a fluid lumen and the fluid injection mechanism is adapted to inject fluid through the channel opening tool fluid lumen. In some such embodiments, the channel opening tool may have a distal opening communicating with the fluid lumen and/or a liner tube surrounding the fluid lumen.
  • In some embodiments, the fluid injection mechanism has a piston disposed in a cylinder. In such embodiments in which the proximal control includes a handle, the fluid injection mechanism may also include an injection tube extending from an outlet of the cylinder to the handle.
  • Another aspect of the invention provides a method of treating glaucoma in a human eye including the steps of: inserting a distal exit port of a cannula at least partially into Schlemm's canal of the eye; delivering a channel tool through the cannula into Schlemm's canal; delivering an ocular implant through the cannula into Schlemm's canal; and removing the channel tool and the cannula from the eye while leaving the ocular implant in place within Schlemm's canal. In some embodiments, the method includes the step of delivering a dye through the channel tool and observing the behavior of the dye to identify the location of obstructions within Schlemm's canal.
  • In some embodiments, the method includes the step of opening a channel in Schlemm's canal with the channel tool. The step of opening a channel may include the step of moving the channel tool within Schlemm's canal. The step of opening a channel may include the step of delivering a fluid (such as a dilatation agent, a therapeutic agent and/or a dye) through the channel tool by, e.g., moving the fluid through an obstruction within Schlemm's canal to increase fluid communication between adjacent segments of Schlemm's canal.
  • In some embodiments, the delivering steps include the step of delivering the channel opening tool and the ocular implant without removing the distal tip of the cannula from the eye. Some embodiments of the method include the step of moving the channel opening tool and the ocular implant with respect to each other within Schlemm's canal.
  • In some embodiments, the delivering steps include the step of delivering the ocular implant over the channel opening tool. In some embodiments, the inserting step includes the step of inserting the distal exit port of the cannula at least partially into Schlemm's canal of the eye through an ab interno approach. In other embodiments, the inserting step includes the step of inserting the distal exit port of the cannula at least partially into Schlemm's canal of the eye through an ab externo approach.
  • Yet another aspect of the invention provides an ocular implant and delivery system including a channel tool adapted to extend through at least a portion of Schlemm's canal of a human eye and to determine whether the Schlemm's canal portion provides a suitable location for the delivery of an ocular implant; a cannula comprising a distal opening adapted to deliver the channel tool and the ocular implant into Schlemm's canal of the eye; and a proximal control adapted to move the channel tool with respect to the cannula.
  • Still another aspect of the invention provides a method of treating glaucoma in a human eye including the steps of inserting a distal exit port of a cannula at least partially into Schlemm's canal of the eye; delivering a channel tool through the cannula into Schlemm's canal using a proximal control; and removing the channel tool and the cannula from the eye while leaving the ocular implant in place within Schlemm's canal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • FIG. 1 is a stylized representation of an exemplary medical procedure in accordance with this detailed description.
  • FIGS. 2A and 2C are perspective views illustrating an ocular implant and delivery system and method according to an embodiment of this invention.
  • FIG. 2B is an enlarged perspective view of a cannula and channel tool of the system shown in FIG. 2A.
  • FIG. 3 is a stylized partial cross-sectional and partial plan view of an ocular implant and delivery system according to an embodiment of this invention.
  • FIG. 4A is a partial cross-sectional view of a distal portion of a channel tool according to an embodiment of this invention.
  • FIG. 4B is a partial cross-sectional view of a distal portion of a channel tool according to another embodiment of this invention.
  • FIG. 5 is a partial cross-sectional view of a distal portion of a channel tool according to yet another embodiment of this invention.
  • FIG. 6 is a stylized perspective view illustrating the anatomy of an eye.
  • FIG. 7 is a stylized perspective view showing Schlemm's canal and an iris of the eye shown in the previous figure.
  • FIG. 8 is an enlarged cross-sectional view further illustrating Schlemm's canal shown in the previous figure.
  • FIG. 9 is a stylized perspective view of an eye in which a scleral flap has been formed.
  • FIG. 10 is a stylized perspective view of the eye of FIG. 9 in which a second scleral flap has been formed.
  • FIG. 11 is a stylized perspective view of the eye of FIGS. 9 and 10 in which openings have been made in Schlemm's canal.
  • FIG. 12 is a stylized perspective view of the eye of FIGS. 9-11 showing a cannula proximate the eye.
  • FIG. 13 is a stylized perspective view of the eye of FIGS. 9-12 showing the insertion of a distal tip of a cannula into Schlemm's canal.
  • FIG. 14 is a stylized perspective view of the eye of FIGS. 9-13 showing a channel tool and ocular implant being advanced out of the cannula and into Schlemm's canal.
  • FIG. 15 is a stylized perspective view of the eye of FIGS. 9-14 showing retraction of the channel tool from Schlemm's canal, leaving the ocular implant in Schlemm's canal.
  • FIG. 16 is a stylized perspective view of the eye of FIGS. 9-15 showing removal of the cannula from the eye.
  • FIG. 17 is a stylized perspective view of the eye of FIGS. 9-16 showing closing of the scleral flap.
  • FIGS. 18A and 18B are stylized perspective views of eyes in which ocular implants have been placed in Schlemm's canal.
  • FIG. 19A is a stylized perspective view of an eye in which an ocular implant has been placed with an inlet in the anterior chamber and the remainder of the device in Schlemm's canal.
  • FIG. 19B is a stylized perspective view of an eye in which an ocular implant has been placed so that it lies entirely within Schlemm's canal.
  • FIGS. 20A-D and 21 show details of a method of using the system of this invention.
  • FIGS. 22A-F show details of a method of using the system of this invention.
  • FIG. 23A is a perspective view of certain components of an ocular implant and delivery system according to an embodiment of this invention.
  • FIG. 23B is a detail view of the distal end of the system shown in FIG. 23A.
  • FIG. 24 is an elevational view of a cannula, push tube ocular plant of a system according to an embodiment of this invention.
  • FIGS. 25A-B show details of the connection between the ocular implant and push tube shown in FIG. 24.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following detailed description should be read with reference to the drawings, in which like elements in different drawings are numbered identically. The drawings, which are not necessarily to scale, depict exemplary embodiments and are not intended to limit the scope of the invention. Examples of constructions, materials, dimensions, and manufacturing processes are provided for selected elements. All other elements employ that which is known to those of skill in the field of the invention. Those skilled in the art will recognize that many of the examples provided have suitable alternatives that can be utilized.
  • FIG. 1 is a stylized representation of an exemplary medical procedure in accordance with this detailed description. In this exemplary medical procedure, a physician is treating an eye 20 of a patient P using a therapy system 100, such as an ocular implant and delivery system. In the exemplary procedure of FIG. 1, the physician is holding a handle portion of therapy system 100 in his or her right hand RH. The physician's left hand (not shown) may be used to hold the handle H of a gonio lens 23. It will be appreciated that some physician's may prefer holding the therapy system handle in the left hand and the gonio lens handle H in the right hand RH.
  • During the exemplary procedure illustrated in FIG. 1, the physician may view the interior of the anterior chamber using gonio lens 23 and a microscope 25. Detail A of FIG. 1 is a stylized simulation of the image viewed by the physician. A distal portion of a cannula 102 is visible in Detail A. A shadow-like line indicates the location of Schlemm's canal SC which is lying under various tissue (e.g., the trabecular meshwork) that surround the anterior chamber. A distal opening 104 of cannula 102 is positioned near Schlemm's canal SC of eye 20. In some methods in accordance with this detailed description, distal opening 104 of cannula 102 is placed in fluid communication with Schlemm's canal SC. When this is the case, a device (e.g., an implant or a delivery tool for an implant) may be advanced through distal opening 104 and into Schlemm's canal SC.
  • FIG. 2A is a perspective view further illustrating therapy system 100 and eye 20 shown in the previous figure. In FIG. 2A, cannula 102 of therapy system 100 is shown extending through a cornea 40 of eye 20. A distal portion of cannula 102 is disposed inside the anterior chamber defined by cornea 40 of eye 20. In the embodiment of FIG. 2A, cannula 102 is configured so that a distal opening 104 of cannula 102 can be placed in fluid communication with Schlemm's canal.
  • In the embodiment of FIGS. 2A and 2B, a channel tool 126 is disposed in a lumen defined by cannula 102. Therapy system 100 includes a mechanism that is capable of advancing and retracting the channel tool along the length of cannula 102. The channel tool 126 may be placed in Schlemm's canal of eye 20 by advancing the channel tool through distal opening 104 of cannula 102 while distal opening 104 is in fluid communication with Schlemm's canal.
  • FIG. 2B is an enlarged detail view further illustrating cannula 102 of therapy system 100. In the illustrative embodiment of FIG. 2B, channel tool 126 has been advanced through distal opening 104 of cannula 102. Cannula 102 of FIG. 2B defines a passageway 124 that fluidly communicates with distal opening 104. Channel tool 126 may be moved along passageway 124 and through distal opening 104 by therapy system 100. Therapy system 100 includes a proximal control mechanism 101 disposed outside of the eye that is capable of performing this function.
  • FIG. 2C is an enlarged perspective view further illustrating eye 20 shown in FIG. 2A. In FIG. 2C, a cannula 102 of a therapy system 100 can be seen extending through cornea 40 of eye 20 so that a distal portion D of cannula 102 disposed in the anterior chamber AC of eye 20. A proximal portion P of cannula 102 disposed outside anterior chamber AC in FIG. 2C. In the embodiment of FIG. 2C, cannula 102 has been positioned so that distal port 104 of cannula 102 is in fluid communication with Schlemm's canal of eye 20. A channel tool 126 of therapy system 100 has been advance through distal port 104 of cannula 102 and into Schlemm's canal of eye 20.
  • FIG. 3 is a stylized plan view illustrating an exemplary therapy system 1100 in accordance with this detailed description. The therapy system 1100 of FIG. 3 includes a channel tool 1152, a cannula 1108, and a fluid injection assembly 1162. In the embodiment of FIG. 3, fluid injection assembly 1162 includes a syringe (i.e., a piston disposed in a cylinder) 1163 that is filled with fluid 1164. Therapy system 1100 of FIG. 3 may be used, for example, to determine whether Schlemm's canal of an eye provides a suitable location for the delivery of an ocular implant and/or to open Schlemm's canal of the eye.
  • Exemplary methods in accordance with this detailed description may include the step of advancing a distal portion of channel tool 1152 through the distal port 1109 of cannula 1108 into Schlemm's canal of an eye. If resistance is encountered as channel tool 1152 is advanced, the user is provided with an indication that Schlemm's canal is partially or completely blocked. The channel tool 1152 may be advanced through the blockage to open a channel in Schlemm's canal and/or to increase fluid communication between adjacent segments of Schlemm's canal. Alternatively or additionally, the channel tool may also used to inject fluid 1164 into Schlemm's canal to open the canal and/or to provide lubrication for further advancement of the channel tool into the canal. In addition to locating obstructions using tactile feel, a physician may use channel tool 1152 to visually identify obstructions. For example, channel tool 1152 may be used to inject a visualization enhancing fluid (e.g., a dye) into Schlemm's canal. As fluid is injected into Schlemm's canal, the physician may observe the movement of that fluid within Schlemm's canal using a microscope and a gonio lens as shown in FIG. 1. Therapy system 1100 may also be used to deliver an implant, such as an aqueous humor drainage device, into Schlemm's canal of the eye. When this is the case, the aqueous humor drainage device may be mounted on channel tool 1152.
  • In FIG. 3, channel tool 1152 is shown extending through a distal port 1109 of cannula 1108. Cannula 1108 is coupled to a proximal control 1102 of therapy system 1100. Proximal control 1102 includes a mechanism 1166 that is capable of advancing and retracting channel tool 1152. In the exemplary embodiment of FIG. 3, mechanism 1166 is substantially disposed inside proximal control 1102.
  • In the embodiment of FIG. 3, channel tool 1152 includes a coiled cable. An injection tube 1156 extends from a fluid injection port 1168 in syringe 1163 through proximal control 1102 to deliver fluid 1164 to channel tool 1152. Fluid 1164 that has exited channel tool 1152 is represented by a number of fluid drops in the stylized plan view of FIG. 3. Fluid injection assembly 1162 includes a mechanism including a lever. The mechanism cooperates with syringe 1163 to dispense fluid (e.g., the drops shown in FIG. 3). In the exemplary embodiment of FIG. 3, fluid injection assembly 1162 will dispense a controlled volume of fluid each time the lever is actuated. In some exemplary methods, fluid is injected into Schlemm's canal as a series of controlled-volume increments to gently separate the walls of the canal in areas where Schlemm's canal is obstructed. It will be appreciated that other embodiments of the fluid injection assembly 1162 are possible without deviating from the spirit and scope of the present detailed description. For example, fluid injection assembly 1162 may employ a screw type ratcheting plunger which can dispense a controlled volume per click of the ratchet mechanism.
  • It will be appreciated that fluid 1164 may comprise various materials without deviating from the spirit and scope of the present detailed description. Examples of fluids that may be suitable in some applications include water, saline, hyaluronic acid and/or viscoelastic. The term “viscoelastic” is sometimes used to describe various viscoelastic materials that are injected into the eye as part of a surgical procedure. Viscoelastics for use in ophthalmic surgery are commercially available from Bausch and Lomb Incorporated (Rochester, N.Y., U.S.A.) and Alcon, Incorporated (Hünenberg, Switzerland). Viscoelastics may comprise, for example, hyaluronic acid. Hyaluronic acid is a material that is naturally found in the vitreous humor that fills the posterior chamber of the eye. Accordingly, this material is well suited for use in ophthalmic surgery. Hyaluronic acid is also known as hyaluronan and hyaluronate.
  • With reference to FIG. 3, a loop 1172 is formed in injection tube 1156. In some useful embodiments, loop 1172 is sized to provide a level of travel necessary to advance the distal end channel tool 1152 through the entire length of Schlemm's canal. In the exemplary embodiment of FIG. 3, loop 1172 is disposed inside proximal control 1102.
  • FIG. 4A is a partial cross-sectional view showing a distal portion of an exemplary channel tool 1152 in accordance with this detailed description. In this embodiment, channel tool 1152 includes a cable 1154 and a distal tip 1160 at the distal end of cable 1154. Distal tip 1160 may be attached to cable 1154, for example, by welding. Distal tip 1160 is rounded so as to be atraumatic. Distal tip 1160 has a tip lumen 1174 fluidly communicating with a distal opening 1170. In this embodiment, cable 1154 is formed as a helical coil (formed, e.g., from stainless steel, nitinol or other suitable material) having a plurality of filars 1176 forming a hollow tube-like structure. In some particularly useful embodiments, cable 1154 comprises a torque cable. Torque cables that may be suitable in some applications are commercially available from Fort Wayne Metals, Inc. (Fort Wayne, Ind., U.S.A) and Asahi Intecc Co. Ltd. (Nagoya, Aichi Prefecture, Japan). In the embodiment of FIG. 4A, each filar 1176 has a generally helical shape. In the embodiment of FIG. 4A, filars 1176 of cable 1154 define a cable lumen 1178. Lubricity of the coil can be enhanced by the application of a surface coating (PTFE, heparin, etc.) which will further reduce potential trauma and facilitate smooth predictable advancement. A liner tube 1158 is disposed inside cable lumen 1178. Liner tube 1158 may be formed, e.g., from polyimide and defines a liner lumen 1180 that fluidly communicates with tip lumen 1174 defined by distal tip 1160. FIG. 4A includes a plurality of arrows representing fluid 1164 flowing through tip lumen 1174 of channel tool 1152 and shown exiting distal opening 1170. Fluid (such as, e.g., viscoelastic) injected through this opening may be used, for example, to gently separate the walls of Schlemm's canal in areas where the canal walls have collapsed and or adhered to each other. The newly created space will provide a passageway for the cable to atraumatically advance without causing tearing or puncturing into the canal.
  • In the view of FIG. 4A, liner tube 1158 is positioned so that its distal end extends through cable 1154 to a proximal surface of distal tip 1160. In the view of FIG. 4B, liner tube 1158 ends proximally of the proximal surface of distal tip 1160 to expose a distal portion 1182 of cable 1154 to fluid (such as, e.g., viscoelastic) within lumen 1180. This fluid can then flow between adjacent filars 1176 of cable 1154, as shown by arrows 1164. Fluid injected between adjacent filars 1176 may be used, for example, to gently separate the walls of Schlemm's canal in areas where the canal walls have collapsed upon each other.
  • FIG. 5 is a partial cross-sectional view showing a distal portion of a channel tool 2152 according to another embodiment of this invention. In this embodiment, distal tip 2160 is closed, i.e., it lacks the distal opening shown in the embodiment of FIGS. 4A and 4B. Other elements of this embodiment are the same as those of the FIGS. 4A and 4B embodiment and therefore have the same element numbers. As shown in FIG. 5, a distal portion 1182 of cable 1154 is exposed to fluid within lumen 1180. When this is the case, fluid (such as, e.g., viscoelastic) can flow between adjacent filars 1176 of cable 1154. Fluid injected between adjacent filars 1176 may be used, for example, to gently dilate the walls of Schlemm's canal to a larger dimension than the channel tool itself. An enlarged lumen is useful in accommodating an even larger device, such as an implant.
  • The channel tools of this invention (such as channel tools 1152 and 2152 described above) may be used to determine whether a portion of Schlemm's canal provides a suitable location for the delivery of an ocular implant. The channel tools may also be used to open a blocked or partially blocked portion of Schlemm's canal by injecting fluid (such as viscoelastic) and/or by mechanical force as the channel tool is advanced through Schlemm's canal. The channel tool may be used to deliver a canal dilation agent such as trypan blue or Indocyannine green (ICG), a colored agent or dye to provide enhanced viewing of the canal by a clinician and/or a therapeutic agent (such as, e.g., therapeutic agents enhancing the collector channels/trabecular meshwork, including ethacrynic acid, cytochalasin, rho kinase inhibitors). In some cases, enhanced viewing of Schlemm's canal may be achieved using a fluorescent dye in conjunction with black light.
  • The system of this invention may be used to deploy a channel tool and/or an ocular implant via an ab interno approach or an ab externo approach. FIGS. 6-8 show details of a human eye. FIG. 6 is an enlarged perspective view illustrating a portion of eye 20 shown as a cross-sectional view created by a cutting plane passing through the center of pupil 32. Eye 20 includes an iris 30 defining a pupil 32. Eye 20 can be conceptualized as a fluid filled ball having two chambers. Sclera 34 of eye 20 surrounds a posterior chamber PC filled with a viscous fluid known as vitreous humor. Cornea 36 of eye 20 encloses an anterior chamber AC that is filled with a fluid know as aqueous humor. The cornea 36 meets the sclera 34 at a limbus 38 of eye 20. A lens 40 of eye 20 is located between anterior chamber AC and posterior chamber PC. Lens 40 is held in place by a number of ciliary zonules 42.
  • Whenever a person views an object, he or she is viewing that object through the cornea, the aqueous humor, and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.
  • Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the eye as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the blood stream and is carried away by venous blood leaving the eye.
  • Schlemm's canal SC is a tube-like structure that encircles iris 30. Two laterally cut ends of Schlemm's canal SC are visible in the cross-sectional view of FIG. 6. In a healthy eye, aqueous humor flows out of anterior chamber AC and into Schlemm's canal SC. Aqueous humor exits Schlemm's canal SC and flows into a number of collector channels (shown as CC in FIG. 9). After leaving Schlemm's canal SC, aqueous humor is absorbed into the venous blood stream and carried out of the eye.
  • FIG. 7 is a stylized perspective view showing Schlemm's canal SC and iris 30 of eye 20 shown in the previous figure. In FIG. 7, Schlemm's canal SC is shown encircling iris 30. With reference to FIG. 7, it will be appreciated that Schlemm's canal SC may overhang iris 30 slightly. Iris 30 defines a pupil 32. In the exemplary embodiment of FIG. 7, Schlemm's canal SC and iris 30 are shown in cross-section, with a cutting plane passing through the center of pupil 32.
  • The shape of Schlemm's canal SC is somewhat irregular, and can vary from patient to patient. The shape of Schlemm's canal SC may be conceptualized as a cylindrical-tube that has been partially flattened. With reference to FIG. 7, it will be appreciated that Schlemm's canal SC has a first major side 50, a second major side 52, a first minor side 54, and a second minor side 56.
  • Schlemm's canal SC forms a ring around iris 30 with pupil 32 disposed in the center of that ring. First major side 50 is on the outside of the ring formed by Schlemm's canal SC and second major side 52 is on the inside of the ring formed by Schlemm's canal SC. Accordingly, first major side 50 may be referred to as an outer major side of Schlemm's canal SC and second major side 52 may be referred to as an inner major side of Schlemm's canal SC. With reference to FIG. 7, it will be appreciated that first major side 50 is further from pupil 32 than second major side 52. The high pressures inside the eye of a patient suffering from glaucoma, may cause the inner major wall of Schlemm's canal to be pressed against the outer major wall of the canal. Over time, adhesions may form between the inner major wall and the outer major wall. These adhesions obstruct Schlemm's canal, inhibit circumferential flow and divide the canal into isolated compartments. Exemplary methods in accordance with this detailed description may be used by a physician to examine Schlemm's canal and identify to location and nature of such obstructions. For example, a channel tool in accordance with this detailed description may be used to inject a fluid (e.g., dye) into Schlemm's canal. As fluid is injected into Schlemm's canal, the physician may observe the movement of that fluid within Schlemm's canal using a microscope and a gonio lens as shown in FIG. 1. Studying Schlemm's canal in this fashion allows the physician to achieve a clear understanding of the anatomical structure of the eye being studied. This knowledge will inform the physician's decision making when determining when and where to place aqueous humor drainage devices.
  • FIG. 8 is an enlarged cross-sectional view further illustrating Schlemm's canal SC shown in the previous figure. As shown in FIG. 8, Schlemm's canal SC has a wall W defining a lumen 58. The shape of Schlemm's canal SC is somewhat irregular, and it can vary from patient to patient. The shape of Schlemm's canal SC may be conceptualized as a cylindrical-tube that has been partially flattened. The cross-sectional shape of lumen 58 may be compared to the shape of an ellipse. A major axis 60 and a minor axis 62 of lumen 58 are illustrated with dashed lines in FIG. 8.
  • The length of major axis 60 and minor axis 62 can vary from patient to patient. The length of minor axis 62 is between one and thirty micrometers in most patients. The length of major axis 60 is between one hundred and fifty micrometers and three hundred and fifty micrometers in most patients.
  • With reference to FIG. 8, it will be appreciated that Schlemm's canal SC comprises a first major side 50, a second major side 52, a first minor side 54, and a second minor side 56. In the exemplary embodiment of FIG. 8, first major side 50 is longer than both first minor side 54 and second minor side 56. Also in the exemplary embodiment of FIG. 8, second major side 52 is longer than both first minor side 54 and second minor side 56.
  • FIG. 9 is a stylized perspective view showing an eye 20. In the embodiment of FIG. 9, the upper and lower eyelids of the eye are held open with surgical tools so that the eye is accessible to a physician. Cornea 24 of eye 20 meets the sclera 26 of eye 20 at the limbus. The Schlemm's canal SC of eye 20 is disposed below sclera 26. Schlemm's canal SC is illustrated with dashed lines in FIG. 9. These dashed lines generally encircle the iris 22 of eye 20.
  • Glaucoma may be treated, for example, by implanting one or more aqueous humor drainage devices in the eye. The several figures that follow illustrate exemplary methods of an ab externo approach for using a channel tool to determine whether the Schlemm's canal portion provides a suitable location for the delivery of an ocular implant and for placing an aqueous humor drainage device into an eye. Two incisions have been made in sclera 26 of eye 20 of FIG. 9. These two incisions define a first scleral flap 28. The two incisions defining first scleral flap 28 extend through less than the entire thickness of sclera 26. Accordingly, these two incisions may be referred to as partial thickness incisions. As shown in FIG. 9, first scleral flap 28 has been folded upward.
  • FIG. 10 is an additional perspective view of eye 20 shown in the previous figure. Two additional incisions have been made in the eye 20 of FIG. 10. These two additional incisions extend deeper into sclera 26 and define a second scleral flap 30. The incisions made in sclera 26 have formed a recess 32 in eye 20. In FIG. 10, second scleral flap 30 has been folded upward. In some useful embodiments, second scleral flap 30 is surgically removed from eye 20. When this is the case, the area formerly occupied by second scleral flap 30 may act as a reservoir for aqueous humor leaving anterior chamber AC. This reservoir may facilitate the flow of aqueous humor out of eye 20. For purposes of illustration, a portion of eye 20 is surrounded by a frame F in FIG. 10. This portion of eye 20 will be enlarged for purposes of illustration in subsequent figures.
  • FIG. 11 is an enlarged figure showing the portion of eye 20 surrounded by frame F. Incisions made in sclera 26 have formed a recess 32 in eye 20. The incisions have cut through a wall 34 of Schlemm's canal SC and extend approximately halfway through Schlemm's canal SC. The wall 34 of Schlemm's canal SC defines a first opening 36 and a second opening 38. Some exemplary methods in accordance with this detailed description may include the steps of advancing a first aqueous humor drainage device through first opening 36 and advancing a second aqueous humor drainage device through second opening 38. In some cases, a single aqueous humor drainage device may be inserted into Schlemm's canal.
  • FIG. 12 is an additional enlarged figure showing the portion of eye 20 surrounded by frame F. Schlemm's canal SC is a somewhat placid channel encircling iris 22. Iris 22 defines a pupil 44. In some cases, the Schlemm's canal of a patient suffering from glaucoma has lost some or all of its natural functionality. Due to the abnormal pressures caused by glaucoma, Schlemm's canal and related tissues may have lost the ability to respond (move) to pressure gradients. In some patients, these conditions may result in the collapse and subsequent closure of Schlemm's canal. When this is the case, the wall of Schlemm's canal may be pushed closed and may not be allowed to rebound to an open shape. Over time, the collapsed wall of Schlemm's canal may adhere to itself causing the canal to become compartmentalized. A cannula 108 has been positioned proximate recess 32. In the embodiment of FIG. 12, a distal tip portion 40 of cannula 108 has a blunt shape. Embodiments are also possible in which distal tip portion 40 of cannula 108 is configured to be inserted partially or completely into an opening cut through the wall of Schlemm's canal. In the embodiment of FIG. 12, wall 34 of Schlemm's canal SC defines a first opening 36 and a second opening 38.
  • FIG. 13 is an additional perspective view showing a portion of eye 20. In the embodiment of FIG. 13, distal tip portion 40 of cannula 108 has been positioned near an opening 38 cut through the wall 34 of Schlemm's canal SC. With reference to FIG. 13, it will be appreciated that distal port 42 of cannula 108 is generally aligned with opening 38 defined by wall 34 of Schlemm's canal SC. Some methods in accordance with this detailed description may include the step of aligning the distal port of a cannula with an opening cut through the wall of Schlemm's canal. A channel tool may be advanced through the distal port of the cannula and through the opening defined by the wall of Schlemm's canal. The channel tool may be used, for example, to determine whether a portion of Schlemm's canal near the opening provides a suitable location for the delivery of an aqueous humor drainage device. In some cases, the aqueous humor drainage device may be advanced through the distal port of the cannula and through the opening defined by the wall of Schlemm's canal.
  • FIG. 14 is an additional perspective view showing a portion of eye 20. In the embodiment of FIG. 14, a channel tool 154 and an aqueous humor drainage device 122 have been advanced into Schlemm's canal SC. As shown in FIG. 14, channel tool 154 extends through distal port 42 of cannula 108 and through an opening 38 defined by wall 34 of Schlemm's canal SC. Channel tool 154 may be as described with respect to one of the embodiments described above. Therapy system 100 may include a mechanism that is capable of advancing and retracting the channel tool 154. In this embodiment, aqueous humor drainage device 122 is disposed about a distal portion of channel tool 154. Aqueous humor drainage device 122 and channel tool 154 slidingly engage each other in the embodiment of FIG. 14. Therapy system 100 may include a mechanism that is capable of advancing and retracting the aqueous humor drainage device 122.
  • The channel tool may be used to determine whether a Schlemm's canal portion provides a suitable location for the delivery of an ocular implant, such as aqueous humor drainage device 122. Channel tool 154 is formed with sufficient column strength to enable the tool to be advanced through an open canal without kinking. A sensation of kinking or resistance as the channel tool is advanced into Schlemm's canal will provide a user of an indication that a portion of Schlemm's canal may be partially or completely blocked and therefore unsuitable for the delivery of an ocular implant.
  • As described above, in some useful embodiments the channel tool 154 of therapy system 100 may have one or more distal openings that fluidly communicate with a fluid source for the injection of fluids (e.g., viscoelastic compositions) into Schlemm's canal during ophthalmic surgery. In ophthalmic surgical procedures requiring the placement of an aqueous humor drainage device in Schlemm's canal, a viscoelastic gel-like composition can be used and introduced directly into the canal to protect sensitive tissues from trauma and to provide fluid pressure for expanding collapsed portions of the canal through controlled dilatation. Viscoelastic also provides a lubricious interface between the implant and the canal to facilitate placement. When a channel tool is moved into Schlemm's canal to establish fluid flow between pockets or compartments along the canal (with or without an aqueous humor drainage device disposed about the torque cable), the injection of viscoelastic may aid in opening the canal and may provide a lubricious interface between the channel tool and the canal wall.
  • FIG. 15 is an additional perspective view showing a portion of eye 20. In the embodiment of FIG. 15, channel tool 154 has been retracted from Schlemm's canal SC leaving ocular implant 122 in place. In some useful embodiments, therapy system 100 includes a mechanism that is capable of advancing and retracting of both channel tube 154 and a push tube (not shown). When this is the case, channel tool 154 may be retracted from Schlemm's canal while the push tube prevents aqueous humor drainage device 122 from being pulled proximally.
  • FIG. 16 is an additional perspective view showing a portion of eye 20. In the embodiment of FIG. 16, cannula tip 40 of cannula 108 has been moved away from Schlemm's canal SC. Aqueous humor drainage device 122 is shown residing in Schlemm's canal. As shown, the second scleral flap has been optionally surgically removed from eye 20. The portion of recess 32 formerly occupied by second scleral flap 30 may act as a reservoir for aqueous humor leaving anterior chamber AC. This reservoir may facilitate the flow of aqueous humor out of anterior chamber AC.
  • FIG. 17 is an additional perspective view showing a portion of eye 20. In the embodiment of FIG. 17, first scleral flap 28 has been folded over recess 32. In some useful methods, first scleral flap 28 is secured to the remainder of sclera 26 with a plurality of sutures.
  • FIG. 18A and FIG. 18B are stylized plan views showing an eye 20. A recess 32 has been formed in eye 20. In the embodiment of FIG. 18A, a single aqueous humor drainage device 122A has been advanced through a first opening 36 defined by the wall of Schlemm's canal of eye 20. In the embodiment of FIG. 18B, a first aqueous humor drainage device 122A has been advanced through a first opening 36 defined by the wall of Schlemm's canal and a second aqueous humor drainage device 122B has been advanced through a second opening 38 defined by the wall of Schlemm's canal. The implants shown in FIGS. 18A and 18B may be implanted according to the methods, and using the systems, described above.
  • FIG. 19A and FIG. 19B are stylized plan views showing an eye 20. A recess 32 has been formed in eye 20. A first aqueous humor drainage device 122 has been advanced into Schlemm's canal of first eye 20. In the exemplary embodiment of FIG. 19A, an inlet portion 46 of first aqueous humor drainage device 122 has been positioned to extend into the anterior chamber AC of first eye 20. The aqueous humor drainage device 122 in FIG. 19B, on the other hand, lies entirely within Schlemm's canal and does not extend into the anterior chamber AC of eye 20. Methods in accordance with this detailed description may include the step of advancing an inlet portion of a first aqueous humor drainage device into the anterior chamber of an eye. The implants shown in FIGS. 19A and 19B may be implanted according to the methods, and using the systems, described above.
  • The methods illustrated in FIGS. 9-19 may be generally referred to as ab externo methods. Access to Schlemm's canal may be established using an ab interno approach or an ab externo approach. The ab externo methods described herein may be particularly useful when treating closed angle forms of glaucoma. Methods in accordance with this detailed description may include the steps of identifying a patient suffering from closed angle glaucoma and performing the method steps illustrated herein on the eye(s) of that patient. In some embodiments, a substantially straight cannula (having, e.g., a blunt distal tip) is used in connection with ab externo approaches.
  • FIGS. 2 and 20-22 show the use of an ab interno approach to deliver a channel tool and/or ocular implant according to embodiments of this invention. FIG. 20A shows a distal tip 202 of a delivery system cannula 200 passing through the anterior chamber AC of an eye. In this view, the inner major wall 252 of Schlemm's canal SC in apposition with the outer major wall 250 preventing circumferential flow within the canal and eliminating a flow path for aqueous access with the closest collector channel. In FIG. 20B, the distal tip 202 of cannula 200 has passed through the trabecular meshwork TM so that at least a portion of a distal opening 204 of cannula 200 is within Schlemm's canal SC. In FIG. 20C, a channel tool 226 is being advanced through distal opening 204 of cannula 200 into Schlemm's canal to determine whether that portion of Schlemm's canal provides a suitable location for the delivery of an ocular implant and/or to open that portion of Schlemm's canal, either through the mechanical action of the advancing channel tool, via the injection of a fluid such as viscoelastic, or both. FIG. 20C includes a plurality of arrows representing fluid flowing through the side walls of channel tool 226. This fluid may be injected into Schlemm's canal in a series of controlled-volume increments to gently separate the walls of the canal in areas where Schlemm's canal is obstructed. Thereafter, an ocular implant (not shown) may be placed in that portion of Schlemm's canal before withdrawing the cannula 200 from Schlemm's canal, as shown in FIG. 20D. FIG. 21 shows cannula 200 entering through the cornea of the eye into the anterior chamber and Schlemm's canal.
  • FIGS. 22A-F show steps of a therapy method according to this invention. In FIG. 22B, a cannula 200 has been inserted through the anterior chamber of the eye to place the distal tip 202 at least partially in Schlemm's canal SC. In FIGS. 22C and 22D, a channel tool 226 has been advanced out of cannula 200 into Schlemm's canal SC. A fluid 228 such as viscoelastic may be ejected from channel tool 226 into Schlemm's canal to provide lubrication for the advancement of channel tool 226 and/or to dilate Schlemm's canal. An ocular implant 250 may thereafter be placed in Schlemm's canal, as shown in FIG. 22F.
  • In some cases, a visible colorant may be added to the viscoelastic composition. When this is the case, the visible colorant may facilitate and evaluation of canal patency. The information gained during this may assist a physician in pre-screening a patient and predicting the potential success of an aqueous drainage aqueous humor drainage device placement procedure for that patient.
  • FIG. 23A is a stylized perspective view illustrating an exemplary therapy system 3100 in accordance with this detailed description. FIG. 23B is an enlarged detail view further illustrating a portion of therapy system 3100. FIG. 23A and FIG. 23B will be collectively referred to as FIG. 23. The therapy system 3100 of FIG. 23 includes an ocular implant 3122, a channel tool 3152, a push tube 3190, a cannula 3108, and a fluid injection assembly 3162. Therapy system 3100 of FIG. 23 may be used, for example, to determine whether Schlemm's canal of an eye provides a suitable location for the delivery of ocular implant 3122, to open Schlemm's canal of the eye, and/or to place an ocular implant in Schlemm's canal of the eye.
  • In the embodiment of FIG. 23, push tube 3190 and ocular implant 3122 are both disposed about channel tool 3152. In FIG. 23B, push tube 3190 can be seen extending through a distal port 3109 of cannula 3108. A distal portion of channel tool 3152 can be seen extending beyond ocular implant 3122 in FIG. 23A. In the embodiment of FIG. 23, channel tool 3152 is slidingly disposed in lumens defined by push tube 3190 and ocular implant 3122. Accordingly, channel tool 3152 is free to translate in axial directions (e.g., distal and proximal directions) with respect to both push tube 3190 and ocular implant 3122. This arrangement allows channel tool 3152 to be advanced beyond ocular implant 3122 and into Schlemm's canal. The distal end of channel tool 3152 may be advanced through a portion of Schlemm's canal, for example, to determine whether that portion of Schlemm's canal provides a suitable location for the delivery of ocular implant 3122. After making this determination, the user may advance ocular implant 3122 into the identified portion of Schlemm's canal. In the exemplary embodiment of FIG. 23, ocular implant 3122 may be advanced using push tube 3190.
  • The motion of push tube 3190 and channel tool 3152 may be controlled using a proximal control 3102 of therapy system 3100. In the exemplary embodiment of FIG. 23, proximal control 3102 includes a first mechanism 3166A and second mechanism 3166B. First mechanism 3166A is capable of advancing and retracting channel tool 3152. Push tube 3190 may be advanced and retracted in axial directions by a second mechanism 3166B.
  • Cannula 3108 of therapy system 3100 is adapted and configured to deliver channel tool 3152 and ocular implant 3122 into Schlemm's canal of a human eye. A number of exemplary cannulas that may be used with the therapy systems described herein are disclosed in U.S. patent application Ser. No. 12/632,738. The disclosure of this U.S. patent application is hereby incorporated by reference in its entirety.
  • Ocular implant 3122 of therapy system 3100 is adapted and configured to be disposed within Schlemm's canal of a human eye. Ocular implants that may be suitable in some applications are disclosed e.g., in U.S. Pat. No. 7,740,604; US Patent Publ. No. 2009/0082860; US Patent Publ. No. 2009/0227934; US Patent Publ. No. 2009/0132040; US Patent Publ. No. 2010/0121342; US Patent Publ. No. 2006/0195187; and U.S. application Ser. No. 12/833,863. The entire disclosure of these U.S. Patents and patent applications is hereby incorporated by reference.
  • Therapy system 3100 of FIG. 23 includes a fluid injection assembly 3162. Fluid injection assembly 3162 may comprise, for example, a syringe (i.e., a piston disposed in a cylinder) that is filled with fluid. Fluid injection assembly 3162 may also include a mechanism configured to dispense a controlled volume of fluid each time an input element of the mechanism (e.g., a lever) is actuated. Fluid injection assembly 3162 fluidly communicates with channel tool 3152 via an injection tube 3156.
  • FIG. 24 is an enlarged plan view further illustrating ocular implant 3122, push tube 3190, and cannula 3108. With reference to FIG. 24, it will be appreciated that ocular implant 3122 and push tube 3190 are mechanically coupled to each other at a connection 3192. In the embodiment of FIG. 24, an ear of ocular implant 3192 is received in an aperture defined by push tube 3190. Additionally, an ear of push tube 3190 is received in an aperture defined by ocular implant 3192. Channel tool 3152 extends through connection 3192 in the embodiment of FIG. 24. The presence of channel tool 3152 extending through ocular implant 3122 and push tube 3190 locks these two elements together. An area including connection 3192 is surrounded by a frame F in FIG. 24. This area will be enlarged for purposes of illustration in subsequent figures.
  • FIG. 25A and FIG. 25B are enlarged perspective views illustrating the connection formed between ocular implant 3122 and push tube 3190. In the embodiment of FIG. 25A, ocular implant 3122 and push tube 3190 are mechanically coupled at a connection 3192. In the embodiment of FIG. 25B, the connection between ocular implant 3122 and push tube 3190 has been broken.
  • As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims (25)

1. An ocular implant and delivery system comprising:
a channel tool adapted to extend through at least a portion of Schlemm's canal of a human eye and to determine whether the Schlemm's canal portion provides a suitable location for the delivery of an ocular implant;
an ocular implant adapted to be disposed within Schlemm's canal of a human eye; and
a cannula comprising a distal opening adapted to deliver the channel tool and the ocular implant into Schlemm's canal of the eye.
2. The system of claim 1 wherein the channel tool is further adapted to open a channel within the Schlemm's canal portion.
3. The system of claim 1 further comprising a proximal control adapted to be operated from exterior to the eye to move the channel opening tool and the ocular implant when the distal opening of the cannula is within the eye.
4. The system of claim 1 wherein the channel opening tool is configured to be disposed within the ocular implant and to move with respect to the ocular implant.
5. The system of claim 1 wherein the channel opening tool comprises a coil.
6. The system of claim 1 further comprising a fluid and a fluid injection mechanism adapted to inject the fluid into Schlemm's canal of the eye through the cannula.
7. The system of claim 6 wherein the channel opening tool comprises a fluid lumen, the fluid injection mechanism being adapted to inject fluid through the channel opening tool fluid lumen.
8. The system of claim 7 wherein the channel opening tool further comprises a distal opening communicating with the fluid lumen.
9. The system of claim 7 wherein the channel opening tool further comprises a liner tube surrounding the fluid lumen.
10. The system of claim 6 wherein the fluid injection mechanism comprises a piston disposed in a cylinder.
11. The system of claim 10 wherein the proximal control comprises a handle, the fluid injection mechanism further comprising an injection tube extending from an outlet of the cylinder to the handle.
12. The system of claim 6 wherein the fluid comprises a dilatation agent adapted to dilate tissue within the Schlemm's canal portion.
13. A method of treating glaucoma in a human eye comprising:
inserting a distal exit port of a cannula at least partially into Schlemm's canal of the eye;
delivering a channel tool through the cannula into Schlemm's canal;
delivering an ocular implant through the cannula into Schlemm's canal; and
removing the channel tool and the cannula from the eye while leaving the ocular implant in place within Schlemm's canal.
14. The method of claim 13 further comprising delivering a dye through the channel tool and observing the behavior of the dye to identify the location of obstructions within Schlemm's canal.
15. The method of claim 13 further comprising opening a channel in Schlemm's canal with the channel tool.
16. The method of claim 15 wherein the opening step comprises moving the channel tool within Schlemm's canal.
17. The method of claim 15 wherein the opening step comprises delivering a fluid through the channel tool.
18. The method of claim 17 further comprises moving the fluid through an obstruction within Schlemm's canal to increase fluid communication between adjacent segments of Schlemm's canal.
19. The method of claim 17 wherein the fluid comprises a dilatation agent adapted to dilate tissue within the Schlemm's canal portion.
20. The method of claim 17 wherein the fluid comprises a therapeutic agent.
21. The method of claim 13 wherein the delivering steps comprise delivering the channel opening tool and the ocular implant without removing the distal tip of the cannula from the eye.
22. The method of claim 13 further comprising moving the channel opening tool and the ocular implant with respect to each other within Schlemm's canal.
23. The method of claim 13 wherein the delivering steps comprise delivering the ocular implant over the channel opening tool.
24. The method of claim 13 wherein the inserting step comprises inserting the distal exit port of the cannula at least partially into Schlemm's canal of the eye through an ab interno approach.
25. The method of claim 13 wherein the inserting step comprises inserting the distal exit port of the cannula at least partially into Schlemm's canal of the eye through an ab externo approach.
US12/911,451 2009-10-23 2010-10-25 Ocular Implant System and Method Abandoned US20110098809A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/911,451 US20110098809A1 (en) 2009-10-23 2010-10-25 Ocular Implant System and Method
US14/279,983 US9579234B2 (en) 2009-10-23 2014-05-16 Ocular implant system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25452309P 2009-10-23 2009-10-23
US12/911,451 US20110098809A1 (en) 2009-10-23 2010-10-25 Ocular Implant System and Method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/279,983 Division US9579234B2 (en) 2009-10-23 2014-05-16 Ocular implant system and method

Publications (1)

Publication Number Publication Date
US20110098809A1 true US20110098809A1 (en) 2011-04-28

Family

ID=43899083

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/911,451 Abandoned US20110098809A1 (en) 2009-10-23 2010-10-25 Ocular Implant System and Method
US14/279,983 Active 2031-08-23 US9579234B2 (en) 2009-10-23 2014-05-16 Ocular implant system and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/279,983 Active 2031-08-23 US9579234B2 (en) 2009-10-23 2014-05-16 Ocular implant system and method

Country Status (7)

Country Link
US (2) US20110098809A1 (en)
EP (1) EP2490621A4 (en)
JP (1) JP2013508096A (en)
CN (1) CN102647960A (en)
AU (1) AU2010310484A1 (en)
CA (1) CA2778452A1 (en)
WO (1) WO2011050360A1 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100191329A1 (en) * 2006-06-26 2010-07-29 Badawi David Y Intraocular implants and methods and kits therefor
US20110196487A1 (en) * 2010-02-05 2011-08-11 Sight Sciences, Inc. Intraocular implants and related kits and methods
US8372026B2 (en) 2007-09-24 2013-02-12 Ivantis, Inc. Ocular implant architectures
US8414518B2 (en) 2007-09-24 2013-04-09 Ivantis, Inc. Glaucoma treatment method
WO2013096453A1 (en) 2011-12-19 2013-06-27 Ivantis, Inc. Delivering ocular implants into the eye
US8529494B2 (en) 2008-03-05 2013-09-10 Ivantis, Inc. Methods and apparatus for treating glaucoma
US20130253437A1 (en) * 2012-03-20 2013-09-26 Sight Sciences, Inc. Ocular delivery systems and methods
US8545430B2 (en) 2010-06-09 2013-10-01 Transcend Medical, Inc. Expandable ocular devices
US8551166B2 (en) 2007-11-20 2013-10-08 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
WO2013158919A1 (en) 2012-04-19 2013-10-24 Transcend Medical, Inc. Delivery system for ocular implant
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
WO2014085450A1 (en) * 2012-11-28 2014-06-05 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US20140155805A1 (en) * 2012-04-24 2014-06-05 Transcend Medical, Inc. Delivery System for Ocular Implant
US8808222B2 (en) 2007-11-20 2014-08-19 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US9039650B2 (en) 2007-09-24 2015-05-26 Ivantis, Inc. Ocular implants with asymmetric flexibility
US9095413B2 (en) 2011-12-08 2015-08-04 Aquesys, Inc. Intraocular shunt manufacture
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US20150297344A1 (en) * 2014-04-21 2015-10-22 Arvind Saini Irrigating intraocular lens rotators and related methods
US9211213B2 (en) 2009-07-09 2015-12-15 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
US9358156B2 (en) 2012-04-18 2016-06-07 Invantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
WO2016159999A1 (en) 2015-03-31 2016-10-06 Sight Sciences, Inc. Ocular delivery systems and methods
US9480598B2 (en) 2012-09-17 2016-11-01 Novartis Ag Expanding ocular implant devices and methods
US9492320B2 (en) 1999-04-26 2016-11-15 Glaukos Corporation Shunt device and method for treating ocular disorders
US9510973B2 (en) 2010-06-23 2016-12-06 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
US9554940B2 (en) 2012-03-26 2017-01-31 Glaukos Corporation System and method for delivering multiple ocular implants
US9572963B2 (en) 2001-04-07 2017-02-21 Glaukos Corporation Ocular disorder treatment methods and systems
US9579234B2 (en) 2009-10-23 2017-02-28 Ivantis, Inc. Ocular implant system and method
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
WO2017106517A1 (en) * 2015-12-15 2017-06-22 Ivantis, Inc. Ocular implant and delivery system
US9763828B2 (en) 2009-01-28 2017-09-19 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US9763829B2 (en) 2012-11-14 2017-09-19 Novartis Ag Flow promoting ocular implant
US9962290B2 (en) 2006-11-10 2018-05-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US9993368B2 (en) 2000-04-14 2018-06-12 Glaukos Corporation System and method for treating an ocular disorder
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US10159600B2 (en) 2013-02-19 2018-12-25 Aquesys, Inc. Adjustable intraocular flow regulation
US10159601B2 (en) 2000-05-19 2018-12-25 Ivantis, Inc. Delivery system and method of use for the eye
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus
US10285856B2 (en) 2001-08-28 2019-05-14 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US10299958B2 (en) 2015-03-31 2019-05-28 Sight Sciences, Inc. Ocular delivery systems and methods
US10406029B2 (en) 2001-04-07 2019-09-10 Glaukos Corporation Ocular system with anchoring implant and therapeutic agent
US10485701B2 (en) 2002-04-08 2019-11-26 Glaukos Corporation Devices and methods for glaucoma treatment
US10492949B2 (en) 2009-07-09 2019-12-03 Ivantis, Inc. Single operator device for delivering an ocular implant
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US10709547B2 (en) 2014-07-14 2020-07-14 Ivantis, Inc. Ocular implant delivery system and method
US20200378948A1 (en) * 2018-01-05 2020-12-03 Path Ex, Inc. Device for the capture and removal of disease material from fluids
WO2021055751A1 (en) * 2019-09-18 2021-03-25 Ivantis, Inc. Synthetic eye model for ocular implant surgical training
US10959941B2 (en) 2014-05-29 2021-03-30 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
US11197779B2 (en) 2015-08-14 2021-12-14 Ivantis, Inc. Ocular implant with pressure sensor and delivery system
US11376040B2 (en) 2017-10-06 2022-07-05 Glaukos Corporation Systems and methods for delivering multiple ocular implants
US20220218521A1 (en) * 2021-01-11 2022-07-14 Ivantis, Inc. Systems and methods for viscoelastic delivery
US11504270B1 (en) 2019-09-27 2022-11-22 Sight Sciences, Inc. Ocular delivery systems and methods
US11744734B2 (en) 2007-09-24 2023-09-05 Alcon Inc. Method of implanting an ocular implant
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
US11938059B2 (en) 2013-11-14 2024-03-26 Aquesys, Inc. Intraocular shunt insertion techniques
US11951037B2 (en) * 2022-05-27 2024-04-09 Sight Sciences, Inc. Ocular delivery systems and methods

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050164A1 (en) 2009-10-21 2011-04-28 Avedro, Inc. Eye therapy
EP2547298B1 (en) 2010-03-19 2019-05-08 Avedro, Inc. Systems for applying and monitoring eye therapy
WO2012162529A1 (en) 2011-05-24 2012-11-29 Avedro, Inc. Systems and methods for reshaping an eye feature
JP6122845B2 (en) 2011-06-02 2017-04-26 アヴェドロ・インコーポレーテッドAvedro,Inc. System and method for monitoring the delivery of time-based photoactive agents or the presence of photoactive markers
EP2872081B1 (en) 2012-07-16 2022-06-08 Avedro, Inc. Systems for corneal cross-linking with pulsed light
WO2014145684A1 (en) * 2013-03-15 2014-09-18 Avedro, Inc. Systems and methods for treating glaucoma
WO2014205145A1 (en) 2013-06-18 2014-12-24 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
US9498114B2 (en) 2013-06-18 2016-11-22 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
US10219936B2 (en) * 2014-09-11 2019-03-05 Orbit Biomedical Limited Therapeutic agent delivery device with advanceable cannula and needle
CN107205845B (en) 2014-10-27 2020-03-31 艾维德洛公司 Systems and methods for cross-linking treatment of the eye
WO2016077747A1 (en) 2014-11-13 2016-05-19 Avedro, Inc. Multipass virtually imaged phased array etalon
EP3827792A1 (en) 2015-04-24 2021-06-02 Avedro, Inc. Systems and methods for photoactivating a photosensitizer applied to an eye
EP3297589A4 (en) 2015-05-22 2019-03-06 Avedro Inc. Systems and methods for monitoring cross-linking activity for corneal treatments
EP3324973B1 (en) 2015-07-21 2020-06-03 Avedro, Inc. Treament of an eye with a photosensitizer
CN110087569B (en) * 2016-12-19 2022-06-07 新世界医学有限公司 Ocular treatment devices and related methods of use
CN107174399B (en) * 2017-05-27 2019-07-12 天津优视眼科技术有限公司 What a kind of interior road was implemented applies Lai Mushi pipe operation transportation system
JP7309624B2 (en) * 2017-06-13 2023-07-18 インフォーカス,インコーポレイテッド Systems, methods and devices for treating glaucoma
CN112351755A (en) * 2018-02-22 2021-02-09 伊万提斯公司 Ocular implants and delivery systems
CA3093707A1 (en) 2018-03-16 2019-03-15 Minas Theodore Coroneo Ophthalmic compositions, and ocular uses thereof, of indigo carmine
EP3870121A4 (en) * 2018-10-24 2022-08-24 New World Medical, Inc. Ophthalmic device
WO2020186293A1 (en) * 2019-03-15 2020-09-24 Minas Theodore Coroneo Ophthalmic compositions, and ocular uses thereof, of indigo carmine
WO2021003304A1 (en) 2019-07-01 2021-01-07 Berlin Michael S Image guidance methods and apparatus for glaucoma surgery

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788327A (en) * 1971-03-30 1974-01-29 H Donowitz Surgical implant device
US3811442A (en) * 1972-03-23 1974-05-21 A Maroth Hypodermic syringe holder and applicator
US4428746A (en) * 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4722724A (en) * 1986-06-23 1988-02-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4934809A (en) * 1988-06-24 1990-06-19 Volk Donald A Lens positioning device for indirect biomicroscopy of the eye
US4946436A (en) * 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5178604A (en) * 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5865831A (en) * 1996-04-17 1999-02-02 Premier Laser Systems, Inc. Laser surgical procedures for treatment of glaucoma
US6409752B1 (en) * 1993-07-23 2002-06-25 Cook Incorporated Flexible stent having a pattern formed from a sheet of material
US6544249B1 (en) * 1996-11-29 2003-04-08 The Lions Eye Institute Of Western Australia Incorporated Biological microfistula tube and implantation method and apparatus
US20040254517A1 (en) * 2003-02-18 2004-12-16 Hugo Quiroz-Mercado Methods and devices for draining fluids and lowering intraocular pressure
US20050041200A1 (en) * 2001-11-07 2005-02-24 Darren Rich Gonioscopy assembly
US20050154443A1 (en) * 2004-01-09 2005-07-14 Rubicon Medical, Inc. Stent delivery device
US20050260186A1 (en) * 2003-03-05 2005-11-24 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US20050288745A1 (en) * 2004-06-28 2005-12-29 Andersen Dan E Method and device for optical ophthalmic therapy
US20060178674A1 (en) * 2005-02-08 2006-08-10 Mcintyre John Surgical apparatus having configurable portions
US20060241749A1 (en) * 2001-08-28 2006-10-26 Hosheng Tu Glaucoma stent system
US20070027452A1 (en) * 2005-05-18 2007-02-01 Varner Signe E Insertion instrument for non-linear medical devices
US20070265582A1 (en) * 2002-06-12 2007-11-15 University Of Southern California Injection Devices for Unimpeded Target Location Testing
US20070293872A1 (en) * 2006-06-20 2007-12-20 Minu, L.L.C. Ocular Drainage Device
US20080228127A1 (en) * 2006-11-10 2008-09-18 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US20090005852A1 (en) * 1999-01-15 2009-01-01 Gittings Darin C Methods and Devices for Placing a Conduit in Fluid Communication with a Target Vessel
US20090030363A1 (en) * 2002-10-30 2009-01-29 Gellman Barry N Linearly expandable ureteral stent
US20090030381A1 (en) * 2007-07-23 2009-01-29 Lind Casey J Arced Hypodermic Needle
US20090043321A1 (en) * 2004-04-29 2009-02-12 Iscience Interventional Corporation Apparatus And Method For Surgical Enhancement Of Aqueous Humor Drainage
US20090104248A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. -Qpdi Lacrimal implants and related methods
US20090132040A1 (en) * 2007-11-20 2009-05-21 Ivantis, Inc. Ocular Implant Delivery System and Method
US20090182421A1 (en) * 2007-07-17 2009-07-16 Tom Silvestrini Ocular implant with hydrogel expansion capabilities
US20090227934A1 (en) * 2008-03-05 2009-09-10 Euteneuer Charles L Methods and Apparatus for Treating Glaucoma
US20090281520A1 (en) * 2007-11-08 2009-11-12 Brian Highley Ocular Implantation Device
US20100004580A1 (en) * 1999-04-26 2010-01-07 Glaukos Corporation Shunt device and method for treating ocular disorders
US20100057072A1 (en) * 2008-09-02 2010-03-04 Medtronic, Inc. Irrigated Ablation Catheter System and Methods
US20100137981A1 (en) * 2008-06-25 2010-06-03 Silvestrini Thomas A Ocular implant with shape change capabilities
US20110196487A1 (en) * 2010-02-05 2011-08-11 Sight Sciences, Inc. Intraocular implants and related kits and methods
US8012115B2 (en) * 2003-02-18 2011-09-06 S.K. Pharmaceuticals, Inc. Optic nerve implants
US20110218523A1 (en) * 2010-03-03 2011-09-08 Wavelight Ag Apparatus for Movable and Weight-Compensating Suspension of a Focusing Objective of a Laser System
US20120035524A1 (en) * 2010-06-09 2012-02-09 Silvestrini Thomas A Expandable ocular devices
US20120136439A1 (en) * 2007-09-24 2012-05-31 Schieber Andrew T Ocular Implant Architectures
US20120179087A1 (en) * 2007-09-24 2012-07-12 Schieber Andrew T Glaucoma Treatment Method
US20130267887A1 (en) * 2010-09-21 2013-10-10 The Regents Of The University Of Colorado Aqueous humor micro-bypass shunts
US8636647B2 (en) * 2009-04-03 2014-01-28 Transcend Medical, Inc. Ocular implant delivery systems and methods

Family Cites Families (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US703296A (en) 1901-06-15 1902-06-24 Arnold Nueesch Cattle-probe.
US1601709A (en) 1924-01-28 1926-10-05 Anderson Windom Edward Retainable needle construction for syringes
US2716983A (en) 1952-10-08 1955-09-06 Abbott Lab Piercing needle
US3071135A (en) 1960-01-27 1963-01-01 Mfg Process Lab Inc Hollow needle
US3948271A (en) 1972-11-07 1976-04-06 Taichiro Akiyama Drain for the eardrum and apparatus for introducing the same
US4037604A (en) 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4457757A (en) 1981-07-20 1984-07-03 Molteno Anthony C B Device for draining aqueous humour
JPS61501067A (en) 1984-01-30 1986-05-29 シユレ−ゲル・ハンス−ヨアキム Living eye lens capsule anterior wall drilling device
US4689040A (en) 1985-04-29 1987-08-25 Thompson Robert J Tip for a phacoemulsification needle
US4601713A (en) 1985-06-11 1986-07-22 Genus Catheter Technologies, Inc. Variable diameter catheter
US4699140A (en) 1985-07-10 1987-10-13 Iolab Corporation Instrument for inserting an intraocular lens
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
NZ215409A (en) 1986-03-07 1989-02-24 Anthony Christopher Be Molteno Implant for drainage of aqueous humour in glaucoma
US4826478A (en) 1986-06-23 1989-05-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4919130A (en) 1986-11-07 1990-04-24 Nestle S.A. Tool for inserting compressible intraocular lenses into the eye and method
US4886488A (en) 1987-08-06 1989-12-12 White Thomas C Glaucoma drainage the lacrimal system and method
US4880000A (en) 1987-12-15 1989-11-14 Iolab Corporation Lens insertion instrument
US4934363A (en) 1987-12-15 1990-06-19 Iolab Corporation Lens insertion instrument
US4936825A (en) 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
US4861341A (en) 1988-07-18 1989-08-29 Woodburn Robert T Subcutaneous venous access device and needle system
US5092837A (en) 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US4968296A (en) 1989-12-20 1990-11-06 Robert Ritch Transscleral drainage implant device for the treatment of glaucoma
US5180362A (en) 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5127901A (en) 1990-05-18 1992-07-07 Odrich Ronald B Implant with subconjunctival arch
US5547468A (en) 1990-07-12 1996-08-20 University Of Miami Instruments for use in performing gel injection adjustable keratoplasty
US5290267A (en) 1991-01-17 1994-03-01 Fresenius Ag Hypodermic needle
US5454796A (en) 1991-04-09 1995-10-03 Hood Laboratories Device and method for controlling intraocular fluid pressure
US6007511A (en) 1991-05-08 1999-12-28 Prywes; Arnold S. Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation
US5360399A (en) 1992-01-10 1994-11-01 Robert Stegmann Method and apparatus for maintaining the normal intraocular pressure
US5190552A (en) 1992-02-04 1993-03-02 Kelman Charles D Slotted tube injector for an intraocular lens
US5213569A (en) 1992-03-31 1993-05-25 Davis Peter L Tip for a tissue phacoemulsification device
US5246452A (en) 1992-04-13 1993-09-21 Impra, Inc. Vascular graft with removable sheath
US5613972A (en) 1992-07-15 1997-03-25 The University Of Miami Surgical cutting heads with curled cutting wings
DE4226476C1 (en) 1992-08-10 1993-08-12 Hans Dr.Med. 3015 Wennigsen De Haindl
US5383926A (en) 1992-11-23 1995-01-24 Children's Medical Center Corporation Re-expandable endoprosthesis
US5676669A (en) 1993-04-30 1997-10-14 Colvard; Michael Intraocular capsular shield
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5702402A (en) 1994-04-29 1997-12-30 Allergal Method and apparatus for folding of intraocular lens
US5445637A (en) 1993-12-06 1995-08-29 American Cyanamid Company Method and apparatus for preventing posterior capsular opacification
FR2721499B1 (en) 1994-06-22 1997-01-03 Opsia Trabeculectomy implant.
US6102045A (en) 1994-07-22 2000-08-15 Premier Laser Systems, Inc. Method and apparatus for lowering the intraocular pressure of an eye
JP3573531B2 (en) 1994-08-03 2004-10-06 鐘淵化学工業株式会社 Microcatheter
US5814062A (en) 1994-12-22 1998-09-29 Target Therapeutics, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US5792099A (en) 1995-02-14 1998-08-11 Decamp; Dennis Syringe and cannula for insertion of viscoelastic material into an eye and method of using same
US5575780A (en) 1995-04-28 1996-11-19 Saito; Yoshikuni Medical hollow needle and a method of producing thereof
US5626558A (en) 1995-05-05 1997-05-06 Suson; John Adjustable flow rate glaucoma shunt and method of using same
US5968058A (en) 1996-03-27 1999-10-19 Optonol Ltd. Device for and method of implanting an intraocular implant
IL113723A (en) 1995-05-14 2002-11-10 Optonol Ltd Intraocular implant
US5536259A (en) 1995-07-28 1996-07-16 Medisystems Technology Corp Hypodermic cannula
US5807302A (en) 1996-04-01 1998-09-15 Wandel; Thaddeus Treatment of glaucoma
US5948427A (en) 1996-04-25 1999-09-07 Point Medical Corporation Microparticulate surgical adhesive
CA2253740A1 (en) 1996-05-09 1997-11-13 Yehoshua Ben Nun A method and a system for performing cataract surgery
US6328747B1 (en) 1996-05-09 2001-12-11 Itos Innovative Technology In Ocular Surgery, Ltd. Method and a system for performing cataract surgery
GB9700390D0 (en) 1997-01-10 1997-02-26 Biocompatibles Ltd Device for use in the eye
US5893837A (en) 1997-02-28 1999-04-13 Staar Surgical Company, Inc. Glaucoma drain implanting device and method
US5911732A (en) 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
US6050970A (en) 1997-05-08 2000-04-18 Pharmacia & Upjohn Company Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
EP0898947A3 (en) 1997-08-15 1999-09-08 GRIESHABER & CO. AG SCHAFFHAUSEN Method and apparatus to improve the outflow of the aqueous humor of an eye
US6591838B2 (en) 1998-07-06 2003-07-15 Scimed Life Systems, Inc. Implant system and method for bulking tissue
WO2000007525A1 (en) 1998-08-05 2000-02-17 Keravision, Inc. Corneal implant with migration preventer
DE19840047B4 (en) 1998-09-02 2004-07-08 Neuhann, Thomas, Prof.Dr.med. Device for the targeted improvement and / or permanent guarantee of the permeability for eye chamber water through the trabecular mechanism in the Schlemm's Canal
US6241721B1 (en) * 1998-10-09 2001-06-05 Colette Cozean Laser surgical procedures for treatment of glaucoma
US6447520B1 (en) 2001-03-19 2002-09-10 Advanced Medical Optics, Inc. IOL insertion apparatus with IOL engagement structure and method for using same
US6371904B1 (en) 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
CA2361062A1 (en) 1999-02-04 2000-08-10 Integ, Inc. Needle for body fluid tester
JP3492543B2 (en) 1999-03-15 2004-02-03 金子工業有限会社 Injection needle and its manufacturing method
US7214229B2 (en) 1999-03-18 2007-05-08 Fossa Medical, Inc. Radially expanding stents
US20050119601A9 (en) 1999-04-26 2005-06-02 Lynch Mary G. Shunt device and method for treating glaucoma
US6699210B2 (en) 1999-04-27 2004-03-02 The Arizona Board Of Regents Glaucoma shunt and a method of making and surgically implanting the same
AU772615B2 (en) 1999-05-03 2004-05-06 Ventrica, Inc. Methods and devices for placing a conduit in fluid communication with a target vessel
US6858034B1 (en) 1999-05-20 2005-02-22 Scimed Life Systems, Inc. Stent delivery system for prevention of kinking, and method of loading and using same
US6221078B1 (en) 1999-06-25 2001-04-24 Stephen S. Bylsma Surgical implantation apparatus
US8500795B2 (en) 1999-08-09 2013-08-06 Cardiokinetix, Inc. Retrievable devices for improving cardiac function
JP4085351B2 (en) 1999-09-14 2008-05-14 ドクタージャパン株式会社 Epidural anesthesia needle
US20090028953A1 (en) * 1999-12-10 2009-01-29 Yamamoto Ronald K Method of treatment using microparticulate biomaterial composition
EP1239774B1 (en) 1999-12-10 2005-09-07 Iscience Corporation Treatment of ocular disease
US6726676B2 (en) 2000-01-05 2004-04-27 Grieshaber & Co. Ag Schaffhausen Method of and device for improving the flow of aqueous humor within the eye
US6375642B1 (en) 2000-02-15 2002-04-23 Grieshaber & Co. Ag Schaffhausen Method of and device for improving a drainage of aqueous humor within the eye
US6471666B1 (en) 2000-02-24 2002-10-29 Steven A. Odrich Injectable glaucoma device
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US6533768B1 (en) 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof
US20030060752A1 (en) 2000-04-14 2003-03-27 Olav Bergheim Glaucoma device and methods thereof
US20040111050A1 (en) 2000-04-14 2004-06-10 Gregory Smedley Implantable ocular pump to reduce intraocular pressure
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US20020143284A1 (en) 2001-04-03 2002-10-03 Hosheng Tu Drug-releasing trabecular implant for glaucoma treatment
US20050277864A1 (en) 2000-04-14 2005-12-15 David Haffner Injectable gel implant for glaucoma treatment
US20050049578A1 (en) 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
CA2446143C (en) 2000-05-19 2010-01-19 Michael S. Berlin Delivery system and method of use for the eye
JP3364654B2 (en) 2000-05-31 2003-01-08 独立行政法人産業技術総合研究所 Virtual form generation apparatus and generation method
US6394979B1 (en) 2000-06-09 2002-05-28 Inviro Medical Devices Ltd. Cannula for use with a medical syringe
AU2001268253A1 (en) 2000-06-19 2002-01-02 Glaukos Corporation Stented trabecular shunt and methods thereof
USD444874S1 (en) 2000-07-31 2001-07-10 Allergan Sales, Inc. Self instill twist housing eye drop dispenser
US6699211B2 (en) 2000-08-22 2004-03-02 James A. Savage Method and apparatus for treatment of glaucoma
US6730056B1 (en) 2000-09-21 2004-05-04 Motorola, Inc. Eye implant for treating glaucoma and method for manufacturing same
US6962573B1 (en) 2000-10-18 2005-11-08 Wilcox Michael J C-shaped cross section tubular ophthalmic implant for reduction of intraocular pressure in glaucomatous eyes and method of use
AU2001261262A1 (en) 2000-11-01 2002-05-15 Glaukos Corporation Glaucoma treatment device
US6533764B1 (en) 2000-11-06 2003-03-18 Allergan, Inc. Twist housing apparatus for instilling a medication into an eye
US6544208B2 (en) 2000-12-29 2003-04-08 C. Ross Ethier Implantable shunt device
US6881198B2 (en) 2001-01-09 2005-04-19 J. David Brown Glaucoma treatment device and method
AU2002243612A1 (en) 2001-01-18 2002-07-30 The Regents Of The University Of California Minimally invasive glaucoma surgical instrument and method
US6692524B2 (en) 2001-01-19 2004-02-17 Georges Baikoff Techniques and implants for correcting presbyopia
US6989007B2 (en) 2001-02-21 2006-01-24 Solx, Inc. Devices and techniques for treating glaucoma
EP1367968A4 (en) 2001-03-16 2006-12-13 Glaukos Corp Applicator and methods for placing a trabecular shunt for glaucoma treatment
JP3310270B1 (en) 2001-03-28 2002-08-05 宮子 鎌田 Medical injection needle and method of manufacturing the same
ES2304438T3 (en) 2001-04-07 2008-10-16 Glaukos Corporation GLAUCOMA STENT FOR THE TREATMENT OF GLAUCOMA.
US6666841B2 (en) 2001-05-02 2003-12-23 Glaukos Corporation Bifurcatable trabecular shunt for glaucoma treatment
US7488303B1 (en) * 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US6981958B1 (en) 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
AT409586B (en) 2001-04-26 2002-09-25 Clemens Dr Vass Implant draining aqueous humor from anterior chamber of eye into Schlemm's channel, includes fixation plate for stabilization on sclera
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
AU2002305400A1 (en) 2001-05-03 2002-11-18 Glaukos Corporation Medical device and methods of use for glaucoma treatment
US6802827B2 (en) 2001-06-26 2004-10-12 Stig O. Andersson Hypodermic implant device
US8267995B2 (en) 2001-08-03 2012-09-18 David Castillejos Method and intra sclera implant for treatment of glaucoma and presbyopia
KR20040036912A (en) 2001-08-16 2004-05-03 지엠피 비젼 솔루션즈 인코포레이티드 Improved shunt device and method for treating glaucoma
US20030097151A1 (en) 2001-10-25 2003-05-22 Smedley Gregory T. Apparatus and mitochondrial treatment for glaucoma
US7163543B2 (en) 2001-11-08 2007-01-16 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20030093084A1 (en) 2001-11-13 2003-05-15 Optonol Ltd. Delivery devices for flow regulating implants
JP4303116B2 (en) 2001-11-21 2009-07-29 アイサイエンス コーポレイション Ophthalmic microsurgery device
US6770093B2 (en) 2002-01-23 2004-08-03 Ophtec B.V. Fixation of an intraocular implant to the iris
WO2003073968A2 (en) * 2002-02-28 2003-09-12 Gmp Vision Solutions, Inc. Device and method for monitoring aqueous flow within the eye
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US20060200113A1 (en) 2002-03-07 2006-09-07 David Haffner Liquid jet for glaucoma treatment
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20030229303A1 (en) 2002-03-22 2003-12-11 Haffner David S. Expandable glaucoma implant and methods of use
US20040147870A1 (en) 2002-04-08 2004-07-29 Burns Thomas W. Glaucoma treatment kit
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US20040024345A1 (en) 2002-04-19 2004-02-05 Morteza Gharib Glaucoma implant with valveless flow bias
AU2003233300A1 (en) 2002-05-29 2003-12-12 University Of Saskatchewan Technologies Inc. A shunt and method treatment of glaucoma
US20030236483A1 (en) 2002-06-25 2003-12-25 Ren David H Dual drainage ocular shunt for glaucoma
EP1524938A2 (en) 2002-07-12 2005-04-27 Iscience Surgical Corporation Ultrasound interfacing device for tissue imaging
ES2320121T3 (en) 2002-07-19 2009-05-19 Yale University UVEOESCLERAL DRAINAGE DEVICE.
MXPA05002284A (en) 2002-08-29 2006-02-10 Mitralsolutions Inc Implantable devices for controlling the internal circumference of an anatomic orifice or lumen.
US7192412B1 (en) 2002-09-14 2007-03-20 Glaukos Corporation Targeted stent placement and multi-stent therapy
AU2003273339B2 (en) 2002-09-17 2008-08-14 Iscience Interventional Corporation Apparatus and method for surgical bypass of aqueous humor
US20050203542A1 (en) 2002-09-18 2005-09-15 Allergan, Inc. Apparatus for delivery of ocular implants with reduced incidence of ocular adverse events
US6899717B2 (en) 2002-09-18 2005-05-31 Allergan, Inc. Methods and apparatus for delivery of ocular implants
PL223153B1 (en) 2002-09-18 2016-10-31 Allergan Inc Methods and apparatus for delivery of ocular implants
AU2003290881A1 (en) 2002-11-15 2004-06-15 Gmp Cardiac Care, Inc. Rail stent
US20040098124A1 (en) 2002-11-19 2004-05-20 Freeman Jerre M. Elongate scleral implants for the treatment of eye disorders such as presbyopia and glaucoma
AU2003289010A1 (en) 2002-12-13 2004-07-09 Terumo Kabushiki Kaisha Needle body for medical use and liquid-introducing tool
US20040122380A1 (en) 2002-12-19 2004-06-24 Utterberg David S. Blunt cannula with bent tip
CA2513705A1 (en) 2003-01-21 2004-08-05 Carmel Pharma Ab A needle for penetrating a membrane
AT413332B (en) 2003-01-23 2006-02-15 Clemens Dr Vass DRAINAGE IMPLANT FOR THE DISPOSAL OF CHAMBER WATER FROM THE FRONT EYE CHAMBER IN THE EPISCLERAL VEINS
US20040216749A1 (en) 2003-01-23 2004-11-04 Hosheng Tu Vasomodulation during glaucoma surgery
USD490152S1 (en) 2003-02-28 2004-05-18 Glaukos Corporation Surgical handpiece
US20040193262A1 (en) 2003-03-29 2004-09-30 Shadduck John H. Implants for treating ocular hypertension, methods of use and methods of fabrication
US20040193095A1 (en) 2003-03-29 2004-09-30 Shadduck John H. Implants for treating ocular hypertension, methods of use and methods of fabrication
US20040199171A1 (en) 2003-04-04 2004-10-07 Takayuki Akahoshi Phacoemulsification needle
AU2004231968B2 (en) 2003-04-16 2011-02-24 Iscience Surgical Corporation Opthalmic microsurgical instruments
US20040225250A1 (en) 2003-05-05 2004-11-11 Michael Yablonski Internal shunt and method for treating glaucoma
US20060069340A1 (en) 2003-06-16 2006-03-30 Solx, Inc. Shunt for the treatment of glaucoma
JP2007526013A (en) 2003-06-16 2007-09-13 ソルクス インコーポレイテッド Shunt device for treating glaucoma
US7147650B2 (en) 2003-10-30 2006-12-12 Woojin Lee Surgical instrument
US7291125B2 (en) 2003-11-14 2007-11-06 Transcend Medical, Inc. Ocular pressure regulation
US6929664B2 (en) 2003-12-05 2005-08-16 Fossa Medical, Inc. Open lumen stents
JP5090742B2 (en) 2003-12-05 2012-12-05 インフォーカス リミテッド ライアビリティー カンパニー Improved glaucoma transplant device
BRPI0506837A (en) 2004-01-12 2007-06-12 Iscience Surgical Corp viscous material injector, and devices and kit for providing micro-quantities of viscous materials
WO2005072294A2 (en) 2004-01-22 2005-08-11 Solx, Inc. Glaucoma treatment method
JP5064806B2 (en) 2004-01-23 2012-10-31 アイサイエンス インターヴェンショナル コーポレイション Ophthalmic composite microcannula
US20050250788A1 (en) * 2004-01-30 2005-11-10 Hosheng Tu Aqueous outflow enhancement with vasodilated aqueous cavity
US7468051B2 (en) 2004-03-02 2008-12-23 Boston Scientific Scimed, Inc. Occlusion balloon catheter with external inflation lumen
JP2007534383A (en) 2004-04-23 2007-11-29 ジーエムピー ヴィジョン ソルーションズ インコーポレイテッド Indwelling shunt device and device and method for glaucoma
BRPI0510380A (en) 2004-04-29 2007-11-06 Iscience Surgical Corp composite micro-cannula device, and methods for treating the supracoroidal space of an eye, for treating the posterior region of an eye and for treating tissues within or adjacent to the supracoroidal space of an eye
US20100173866A1 (en) 2004-04-29 2010-07-08 Iscience Interventional Corporation Apparatus and method for ocular treatment
US20080058704A1 (en) 2004-04-29 2008-03-06 Michael Hee Apparatus and Method for Ocular Treatment
US7799336B2 (en) 2004-04-30 2010-09-21 Allergan, Inc. Hypotensive lipid-containing biodegradable intraocular implants and related methods
WO2005110280A2 (en) 2004-05-07 2005-11-24 Valentx, Inc. Devices and methods for attaching an endolumenal gastrointestinal implant
US20060032507A1 (en) 2004-08-11 2006-02-16 Hosheng Tu Contrast-enhanced ocular imaging
US20060173397A1 (en) 2004-11-23 2006-08-03 Hosheng Tu Ophthalmology implants and methods of manufacture
US20120010702A1 (en) 2004-12-16 2012-01-12 Iscience Interventional Corporation Ophthalmic implant for treatment of glaucoma
CN101128171A (en) 2004-12-16 2008-02-20 I科学干预公司 Ophthalmic implant for treatment of glaucoma
US20060154981A1 (en) 2005-01-12 2006-07-13 Alcon, Inc. Method of reducing intraocular pressure and treating glaucoma
US20060167421A1 (en) 2005-01-21 2006-07-27 Radius International Ltd. Partnership Catheter with insert-molded tip
US20060167466A1 (en) 2005-01-21 2006-07-27 Vaclav Dusek Intraocular lens inserter system components
AR054647A1 (en) 2005-02-21 2007-07-11 Maldonado Bas Arturo DEVICE FOR WATER HUMOR DRAINAGE IN GLAUCOMA CASES
US7641627B2 (en) 2005-02-23 2010-01-05 Camras Carl B Method and apparatus for reducing intraocular pressure
US20060217741A1 (en) 2005-03-28 2006-09-28 Ghannoum Ziad R Irrigation tip
US20060264971A1 (en) 2005-05-18 2006-11-23 Takayuki Akahoshi Intraocular lens injection nozzle
US20090043365A1 (en) 2005-07-18 2009-02-12 Kolis Scientific, Inc. Methods, apparatuses, and systems for reducing intraocular pressure as a means of preventing or treating open-angle glaucoma
CA2621993A1 (en) 2005-09-16 2007-03-29 Bg Implant, Inc. Glaucoma treatment devices and methods
US8496628B2 (en) 2005-09-30 2013-07-30 Erskine Medical Llc Needle-based medical device including needle guide
US20070197491A1 (en) 2005-10-14 2007-08-23 Alcon, Inc. Method for treating primary and secondary forms of glaucoma
US20070106200A1 (en) 2005-11-08 2007-05-10 Brian Levy Intraocular shunt device and method
US8251963B2 (en) 2005-12-08 2012-08-28 Boston Scientific Scimed, Inc. Flexible needle
EP3005996B1 (en) 2006-01-17 2019-12-04 Novartis Ag Glaucoma treatment device
US7942894B2 (en) 2006-01-31 2011-05-17 Codman & Shurtleff, Inc. Embolic device delivery system
US20070202186A1 (en) 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
JP2007244671A (en) 2006-03-16 2007-09-27 Fujifilm Corp Blood collecting needle, injection needle, winged needle, test kit and blood collection kit
US20070293807A1 (en) 2006-05-01 2007-12-20 Lynch Mary G Dual drainage pathway shunt device and method for treating glaucoma
ATE549999T1 (en) 2006-05-18 2012-04-15 Staar Japan Inc INTRAOCULAR LENS INSERTION DEVICE
US7909789B2 (en) 2006-06-26 2011-03-22 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US20080108933A1 (en) 2006-06-30 2008-05-08 Dao-Yi Yu Methods, Systems and Apparatus for Relieving Pressure in an Organ
AU2007339929A1 (en) 2006-12-26 2008-07-10 Qlt Inc. Drug delivery implants for inhibition of optical defects
US8956419B2 (en) 2007-05-14 2015-02-17 Boston Scientific Scimed, Inc. Open lumen stent
US20080312661A1 (en) 2007-06-12 2008-12-18 Downer David A Lens Injector Lumen Tip for Wound Assisted Delivery
US8734377B2 (en) 2007-09-24 2014-05-27 Ivantis, Inc. Ocular implants with asymmetric flexibility
EP2203139A4 (en) 2007-10-12 2010-12-01 Medical Res Products B Inc Medical apparatus and method for facilitating the management of long term tunneled conduits
US8808222B2 (en) 2007-11-20 2014-08-19 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8088150B2 (en) 2008-02-04 2012-01-03 Aleeva Medical Inc. Device for disc shunt implantation and peri-shunt injection
US8109896B2 (en) 2008-02-11 2012-02-07 Optonol Ltd. Devices and methods for opening fluid passageways
EP2262555A2 (en) 2008-03-27 2010-12-22 iScience Interventional Corporation Microliter injector
AU2009231645A1 (en) 2008-04-02 2009-10-08 Laurimed, Llc Methods and devices for delivering injections
CA2972136C (en) 2008-12-05 2019-08-06 Ivantis, Inc. Cannula for ocular implant delivery system
CH700161A2 (en) 2008-12-22 2010-06-30 Grieshaber Ophthalmic Res Foun IMPLANT FOR INTRODUCING into Schlemm's canal AN EYE.
US8425473B2 (en) 2009-01-23 2013-04-23 Iscience Interventional Corporation Subretinal access device
US20100191177A1 (en) 2009-01-23 2010-07-29 Iscience Interventional Corporation Device for aspirating fluids
US8377122B2 (en) 2009-01-28 2013-02-19 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
EP2429607A4 (en) 2009-05-15 2014-01-08 Iscience Interventional Corp Methods and apparatus for sub-retinal catheterization
AU2010271274B2 (en) 2009-07-09 2015-05-21 Alcon Inc. Single operator device for delivering an ocular implant
CN102481404B (en) 2009-07-09 2014-03-05 伊万提斯公司 Ocular implants
US8951221B2 (en) 2009-08-20 2015-02-10 Grieshaber Ophthalmic Research Foundation Method and device for the treatment of glaucoma
JP2013508096A (en) 2009-10-23 2013-03-07 イバンティス インコーポレイテッド Intraocular transplantation system and intraocular transplantation method
WO2011057283A1 (en) 2009-11-09 2011-05-12 Iscience Interventional Corporation Expandable cannula for infusion of fluids
WO2011106781A1 (en) 2010-02-26 2011-09-01 Iscience Interventional Corporation Apparatus for enhancement of aqueous humor drainage from the eye
PT2575715E (en) 2010-05-27 2014-12-22 Ellex Iscience Inc Device for placing circumferential implant in schlemm's canal
WO2011163505A1 (en) 2010-06-23 2011-12-29 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
CN104758118B (en) 2010-10-15 2018-04-06 科尼尔赛德生物医学公司 For entering the device of eyes
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
WO2013040426A2 (en) 2011-09-14 2013-03-21 Forsight Labs, Llc Ocular insert apparatus and methods
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US20130182223A1 (en) 2012-01-17 2013-07-18 John Wardle Suspended goniolens system
US9358156B2 (en) 2012-04-18 2016-06-07 Invantis, Inc. Ocular implants for delivery into an anterior chamber of the eye

Patent Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788327A (en) * 1971-03-30 1974-01-29 H Donowitz Surgical implant device
US3811442A (en) * 1972-03-23 1974-05-21 A Maroth Hypodermic syringe holder and applicator
US4428746A (en) * 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4722724A (en) * 1986-06-23 1988-02-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4934809A (en) * 1988-06-24 1990-06-19 Volk Donald A Lens positioning device for indirect biomicroscopy of the eye
US4946436A (en) * 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5178604A (en) * 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US6409752B1 (en) * 1993-07-23 2002-06-25 Cook Incorporated Flexible stent having a pattern formed from a sheet of material
US5865831A (en) * 1996-04-17 1999-02-02 Premier Laser Systems, Inc. Laser surgical procedures for treatment of glaucoma
US6544249B1 (en) * 1996-11-29 2003-04-08 The Lions Eye Institute Of Western Australia Incorporated Biological microfistula tube and implantation method and apparatus
US20090005852A1 (en) * 1999-01-15 2009-01-01 Gittings Darin C Methods and Devices for Placing a Conduit in Fluid Communication with a Target Vessel
US20100004580A1 (en) * 1999-04-26 2010-01-07 Glaukos Corporation Shunt device and method for treating ocular disorders
US20060241749A1 (en) * 2001-08-28 2006-10-26 Hosheng Tu Glaucoma stent system
US20050041200A1 (en) * 2001-11-07 2005-02-24 Darren Rich Gonioscopy assembly
US20070265582A1 (en) * 2002-06-12 2007-11-15 University Of Southern California Injection Devices for Unimpeded Target Location Testing
US20090030363A1 (en) * 2002-10-30 2009-01-29 Gellman Barry N Linearly expandable ureteral stent
US20040254517A1 (en) * 2003-02-18 2004-12-16 Hugo Quiroz-Mercado Methods and devices for draining fluids and lowering intraocular pressure
US8012115B2 (en) * 2003-02-18 2011-09-06 S.K. Pharmaceuticals, Inc. Optic nerve implants
US20050260186A1 (en) * 2003-03-05 2005-11-24 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US20050154443A1 (en) * 2004-01-09 2005-07-14 Rubicon Medical, Inc. Stent delivery device
US20090043321A1 (en) * 2004-04-29 2009-02-12 Iscience Interventional Corporation Apparatus And Method For Surgical Enhancement Of Aqueous Humor Drainage
US20050288745A1 (en) * 2004-06-28 2005-12-29 Andersen Dan E Method and device for optical ophthalmic therapy
US20060178674A1 (en) * 2005-02-08 2006-08-10 Mcintyre John Surgical apparatus having configurable portions
US20070027452A1 (en) * 2005-05-18 2007-02-01 Varner Signe E Insertion instrument for non-linear medical devices
US20070293872A1 (en) * 2006-06-20 2007-12-20 Minu, L.L.C. Ocular Drainage Device
US20080228127A1 (en) * 2006-11-10 2008-09-18 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US20090182421A1 (en) * 2007-07-17 2009-07-16 Tom Silvestrini Ocular implant with hydrogel expansion capabilities
US20090030381A1 (en) * 2007-07-23 2009-01-29 Lind Casey J Arced Hypodermic Needle
US20090104248A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. -Qpdi Lacrimal implants and related methods
US20120136439A1 (en) * 2007-09-24 2012-05-31 Schieber Andrew T Ocular Implant Architectures
US20120179087A1 (en) * 2007-09-24 2012-07-12 Schieber Andrew T Glaucoma Treatment Method
US20090281520A1 (en) * 2007-11-08 2009-11-12 Brian Highley Ocular Implantation Device
US20090132040A1 (en) * 2007-11-20 2009-05-21 Ivantis, Inc. Ocular Implant Delivery System and Method
US20090227934A1 (en) * 2008-03-05 2009-09-10 Euteneuer Charles L Methods and Apparatus for Treating Glaucoma
US20100137981A1 (en) * 2008-06-25 2010-06-03 Silvestrini Thomas A Ocular implant with shape change capabilities
US20100057072A1 (en) * 2008-09-02 2010-03-04 Medtronic, Inc. Irrigated Ablation Catheter System and Methods
US8636647B2 (en) * 2009-04-03 2014-01-28 Transcend Medical, Inc. Ocular implant delivery systems and methods
US20110196487A1 (en) * 2010-02-05 2011-08-11 Sight Sciences, Inc. Intraocular implants and related kits and methods
US20110218523A1 (en) * 2010-03-03 2011-09-08 Wavelight Ag Apparatus for Movable and Weight-Compensating Suspension of a Focusing Objective of a Laser System
US20120035524A1 (en) * 2010-06-09 2012-02-09 Silvestrini Thomas A Expandable ocular devices
US20130267887A1 (en) * 2010-09-21 2013-10-10 The Regents Of The University Of Colorado Aqueous humor micro-bypass shunts

Cited By (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492320B2 (en) 1999-04-26 2016-11-15 Glaukos Corporation Shunt device and method for treating ocular disorders
US10568762B2 (en) 1999-04-26 2020-02-25 Glaukos Corporation Stent for treating ocular disorders
US9827143B2 (en) 1999-04-26 2017-11-28 Glaukos Corporation Shunt device and method for treating ocular disorders
US10492950B2 (en) 1999-04-26 2019-12-03 Glaukos Corporation Shunt device and method for treating ocular disorders
US9993368B2 (en) 2000-04-14 2018-06-12 Glaukos Corporation System and method for treating an ocular disorder
US10485702B2 (en) 2000-04-14 2019-11-26 Glaukos Corporation System and method for treating an ocular disorder
US10687978B2 (en) 2000-05-19 2020-06-23 Ivantis, Inc. Delivery system and method of use for the eye
US10159601B2 (en) 2000-05-19 2018-12-25 Ivantis, Inc. Delivery system and method of use for the eye
US10335314B2 (en) 2000-05-19 2019-07-02 Ivantis, Inc. Delivery system and method of use for the eye
US10390993B1 (en) 2000-05-19 2019-08-27 Ivantis, Inc. Delivery system and method of use for the eye
US9572963B2 (en) 2001-04-07 2017-02-21 Glaukos Corporation Ocular disorder treatment methods and systems
US10406029B2 (en) 2001-04-07 2019-09-10 Glaukos Corporation Ocular system with anchoring implant and therapeutic agent
US9987472B2 (en) 2001-04-07 2018-06-05 Glaukos Corporation Ocular implant delivery systems
US10828473B2 (en) 2001-04-07 2020-11-10 Glaukos Corporation Ocular implant delivery system and methods thereof
US10285856B2 (en) 2001-08-28 2019-05-14 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US10485701B2 (en) 2002-04-08 2019-11-26 Glaukos Corporation Devices and methods for glaucoma treatment
US11389328B2 (en) 2006-06-26 2022-07-19 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US8287482B2 (en) 2006-06-26 2012-10-16 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US11865041B2 (en) 2006-06-26 2024-01-09 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US9486361B2 (en) 2006-06-26 2016-11-08 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US20110130831A1 (en) * 2006-06-26 2011-06-02 Badawi David Y Intraocular implants and methods and kits therefor
US20100191329A1 (en) * 2006-06-26 2010-07-29 Badawi David Y Intraocular implants and methods and kits therefor
US10398597B2 (en) 2006-06-26 2019-09-03 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US10314742B2 (en) 2006-06-26 2019-06-11 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US9370443B2 (en) 2006-06-26 2016-06-21 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US10828195B2 (en) 2006-11-10 2020-11-10 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US9962290B2 (en) 2006-11-10 2018-05-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US8414518B2 (en) 2007-09-24 2013-04-09 Ivantis, Inc. Glaucoma treatment method
US9039650B2 (en) 2007-09-24 2015-05-26 Ivantis, Inc. Ocular implants with asymmetric flexibility
US8372026B2 (en) 2007-09-24 2013-02-12 Ivantis, Inc. Ocular implant architectures
US11744734B2 (en) 2007-09-24 2023-09-05 Alcon Inc. Method of implanting an ocular implant
US9610196B2 (en) 2007-09-24 2017-04-04 Ivantis, Inc. Ocular implants with asymmetric flexibility
US9402767B2 (en) 2007-09-24 2016-08-02 Ivantis, Inc. Ocular implant architectures
US8961447B2 (en) 2007-09-24 2015-02-24 Ivantis, Inc. Glaucoma treatment method
US9050169B2 (en) 2007-11-20 2015-06-09 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US9226852B2 (en) 2007-11-20 2016-01-05 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8808222B2 (en) 2007-11-20 2014-08-19 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8551166B2 (en) 2007-11-20 2013-10-08 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US9351874B2 (en) 2007-11-20 2016-05-31 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US9693902B2 (en) 2008-03-05 2017-07-04 Ivantis, Inc. Methods and apparatus for treating glaucoma
US9066783B2 (en) 2008-03-05 2015-06-30 Ivantis, Inc. Methods and apparatus for treating glaucoma
US10537474B2 (en) 2008-03-05 2020-01-21 Ivantis, Inc. Methods and apparatus for treating glaucoma
US8529494B2 (en) 2008-03-05 2013-09-10 Ivantis, Inc. Methods and apparatus for treating glaucoma
US10531983B2 (en) 2009-01-28 2020-01-14 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US11344448B2 (en) 2009-01-28 2022-05-31 Alcon Inc. Ocular implant with stiffness qualities, methods of implantation and system
US11839571B2 (en) 2009-01-28 2023-12-12 Alcon Inc. Ocular implant with stiffness qualities, methods of implantation and system
US9763828B2 (en) 2009-01-28 2017-09-19 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US10492949B2 (en) 2009-07-09 2019-12-03 Ivantis, Inc. Single operator device for delivering an ocular implant
US11596546B2 (en) 2009-07-09 2023-03-07 Alcon Inc. Ocular implants and methods for delivering ocular implants into the eye
US11918514B2 (en) 2009-07-09 2024-03-05 Alcon Inc. Single operator device for delivering an ocular implant
US10406025B2 (en) 2009-07-09 2019-09-10 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
US9211213B2 (en) 2009-07-09 2015-12-15 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
US11464675B2 (en) 2009-07-09 2022-10-11 Alcon Inc. Single operator device for delivering an ocular implant
US9579234B2 (en) 2009-10-23 2017-02-28 Ivantis, Inc. Ocular implant system and method
US10406030B2 (en) 2010-02-05 2019-09-10 Sight Sciences, Inc. Intraocular implants and related kits and methods
US8529622B2 (en) 2010-02-05 2013-09-10 Sight Sciences, Inc. Intraocular implants and related kits and methods
US11166847B2 (en) 2010-02-05 2021-11-09 Sight Sciences, Inc. Intraocular implants and related kits and methods
US20110196487A1 (en) * 2010-02-05 2011-08-11 Sight Sciences, Inc. Intraocular implants and related kits and methods
US8876898B2 (en) 2010-02-05 2014-11-04 Sight Sciences, Inc. Intraocular implants and related kits and methods
US8439972B2 (en) 2010-02-05 2013-05-14 Sight Sciences, Inc. Intraocular implants and related kits and methods
US8545430B2 (en) 2010-06-09 2013-10-01 Transcend Medical, Inc. Expandable ocular devices
US9510973B2 (en) 2010-06-23 2016-12-06 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
US10363168B2 (en) 2011-06-14 2019-07-30 Ivantis, Inc. Ocular implants for delivery into the eye
US9155655B2 (en) 2011-06-14 2015-10-13 Ivantis, Inc. Ocular implants for delivery into the eye
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
US9095413B2 (en) 2011-12-08 2015-08-04 Aquesys, Inc. Intraocular shunt manufacture
US9592154B2 (en) 2011-12-08 2017-03-14 Aquesys, Inc. Intraocular shunt manufacture
US9113994B2 (en) 2011-12-08 2015-08-25 Aquesys, Inc. Intraocular shunt manufacture
US10314743B2 (en) 2011-12-08 2019-06-11 Aquesys, Inc. Intraocular shunt manufacture
EP2763625A1 (en) * 2011-12-19 2014-08-13 Ivantis, Inc. Delivering ocular implants into the eye
US20150119787A1 (en) * 2011-12-19 2015-04-30 John Wardle Delivering ocular implants into the eye
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US11135088B2 (en) 2011-12-19 2021-10-05 Ivantis Inc. Delivering ocular implants into the eye
EP2763625A4 (en) * 2011-12-19 2014-10-08 Ivantis Inc Delivering ocular implants into the eye
US9931243B2 (en) * 2011-12-19 2018-04-03 Ivantis, Inc. Delivering ocular implants into the eye
US9066750B2 (en) 2011-12-19 2015-06-30 Ivantis, Inc. Delivering ocular implants into the eye
WO2013096453A1 (en) 2011-12-19 2013-06-27 Ivantis, Inc. Delivering ocular implants into the eye
US9855167B2 (en) * 2012-03-20 2018-01-02 Sight Sciences, Inc. Ocular delivery systems and methods
US11471324B2 (en) * 2012-03-20 2022-10-18 Sight Sciences, Inc. Ocular delivery systems and methods
US20230233372A1 (en) * 2012-03-20 2023-07-27 Sight Sciences, Inc. Ocular delivery systems and methods
US11344447B2 (en) * 2012-03-20 2022-05-31 Sight Sciences, Inc. Ocular delivery systems and methods
US9895258B2 (en) 2012-03-20 2018-02-20 Sight Sciences, Inc. Ocular delivery systems and methods
US11116660B2 (en) * 2012-03-20 2021-09-14 Sight Sciences, Inc. Ocular delivery systems and methods
US20230277373A1 (en) * 2012-03-20 2023-09-07 Sight Sciences, Inc. Ocular delivery systems and methods
US10179066B2 (en) * 2012-03-20 2019-01-15 Sight Sciences, Inc. Ocular delivery systems and methods
EP4302734A3 (en) * 2012-03-20 2024-03-20 Sight Sciences, Inc. Ocular delivery systems and methods
AU2020202716B2 (en) * 2012-03-20 2021-04-15 Sight Sciences, Inc. Ocular delivery systems and methods
US10888453B2 (en) * 2012-03-20 2021-01-12 Sight Sciences, Inc. Ocular delivery systems and methods
US10857027B2 (en) 2012-03-20 2020-12-08 Sight Sciences, Inc. Ocular delivery systems and methods
US20230233371A1 (en) * 2012-03-20 2023-07-27 Sight Sciences, Inc. Ocular delivery systems and methods
AU2012374034B2 (en) * 2012-03-20 2017-10-19 Sight Sciences, Inc. Ocular delivery systems and methods
US11389327B2 (en) * 2012-03-20 2022-07-19 Sight Sciences, Inc. Ocular delivery systems and methods
US20150335481A1 (en) * 2012-03-20 2015-11-26 Sight Sciences, Inc. Ocular delivery systems and methods
US8894603B2 (en) 2012-03-20 2014-11-25 Sight Sciences, Inc. Ocular delivery systems and methods
US20220280339A1 (en) * 2012-03-20 2022-09-08 Sight Sciences, Inc. Ocular delivery systems and methods
US20220280340A1 (en) * 2012-03-20 2022-09-08 Sight Sciences, Inc. Ocular delivery systems and methods
US9216109B2 (en) * 2012-03-20 2015-12-22 Sight Sciences, Inc. Ocular delivery systems and methods
US20130253402A1 (en) * 2012-03-20 2013-09-26 Sight Sciences, Inc. Ocular delivery systems and methods
US20130253437A1 (en) * 2012-03-20 2013-09-26 Sight Sciences, Inc. Ocular delivery systems and methods
US20180271699A1 (en) * 2012-03-20 2018-09-27 Sight Sciences, Inc. Ocular delivery systems and methods
US9095412B2 (en) * 2012-03-20 2015-08-04 Sight Sciences, Inc. Ocular delivery systems and methods
EP3047823A1 (en) * 2012-03-20 2016-07-27 Sight Sciences, Inc. Ocular delivery systems
EP2844200A4 (en) * 2012-03-20 2016-04-27 Sight Sciences Inc Ocular delivery systems and methods
US20160100980A1 (en) * 2012-03-20 2016-04-14 Sight Sciences, Inc. Ocular delivery systems and methods
US11617679B2 (en) * 2012-03-20 2023-04-04 Sight Sciences, Inc. Ocular delivery systems and methods
US9554940B2 (en) 2012-03-26 2017-01-31 Glaukos Corporation System and method for delivering multiple ocular implants
US11944573B2 (en) 2012-03-26 2024-04-02 Glaukos Corporation System and method for delivering multiple ocular implants
US10271989B2 (en) 2012-03-26 2019-04-30 Glaukos Corporation System and method for delivering multiple ocular implants
US11197780B2 (en) 2012-03-26 2021-12-14 Glaukos Corporation System and method for delivering multiple ocular implants
US11026836B2 (en) 2012-04-18 2021-06-08 Ivantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US9358156B2 (en) 2012-04-18 2016-06-07 Invantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
EP2838470A4 (en) * 2012-04-19 2015-11-25 Transcend Medical Inc Delivery system for ocular implant
EP3730103A1 (en) * 2012-04-19 2020-10-28 Alcon Inc. Delivery system for ocular implant
AU2013249153B2 (en) * 2012-04-19 2017-02-02 Alcon Inc. Delivery system for ocular implant
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
CN104540472A (en) * 2012-04-19 2015-04-22 创森德医疗设备公司 Delivery system for ocular implant
JP2015516858A (en) * 2012-04-19 2015-06-18 トランセンド・メディカル・インコーポレイテッドTranscend Medical, Inc. Delivery system for intraocular implants
RU2636859C2 (en) * 2012-04-19 2017-11-28 Новартис Аг System of eye implant delivery
WO2013158919A1 (en) 2012-04-19 2013-10-24 Transcend Medical, Inc. Delivery system for ocular implant
EP3403622A1 (en) * 2012-04-19 2018-11-21 Novartis Ag Delivery system for ocular implant
US9907697B2 (en) 2012-04-24 2018-03-06 Novartis Ag Delivery system for ocular implant
US9155656B2 (en) * 2012-04-24 2015-10-13 Transcend Medical, Inc. Delivery system for ocular implant
US10912676B2 (en) 2012-04-24 2021-02-09 Alcon Inc. Delivery system for ocular implant
US20140155805A1 (en) * 2012-04-24 2014-06-05 Transcend Medical, Inc. Delivery System for Ocular Implant
US9241832B2 (en) 2012-04-24 2016-01-26 Transcend Medical, Inc. Delivery system for ocular implant
US9480598B2 (en) 2012-09-17 2016-11-01 Novartis Ag Expanding ocular implant devices and methods
US9763829B2 (en) 2012-11-14 2017-09-19 Novartis Ag Flow promoting ocular implant
US10617558B2 (en) 2012-11-28 2020-04-14 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
WO2014085450A1 (en) * 2012-11-28 2014-06-05 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US11712369B2 (en) 2012-11-28 2023-08-01 Alcon Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US10159600B2 (en) 2013-02-19 2018-12-25 Aquesys, Inc. Adjustable intraocular flow regulation
US10195079B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular implant
US10195078B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular flow regulation
US10188551B2 (en) 2013-03-15 2019-01-29 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US11523938B2 (en) 2013-03-15 2022-12-13 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US10285853B2 (en) 2013-03-15 2019-05-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US11559430B2 (en) 2013-03-15 2023-01-24 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US11938059B2 (en) 2013-11-14 2024-03-26 Aquesys, Inc. Intraocular shunt insertion techniques
US20150297344A1 (en) * 2014-04-21 2015-10-22 Arvind Saini Irrigating intraocular lens rotators and related methods
US10959941B2 (en) 2014-05-29 2021-03-30 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US10709547B2 (en) 2014-07-14 2020-07-14 Ivantis, Inc. Ocular implant delivery system and method
US11872158B2 (en) 2015-03-31 2024-01-16 Sight Sciences, Inc. Ocular delivery systems and methods
US10299958B2 (en) 2015-03-31 2019-05-28 Sight Sciences, Inc. Ocular delivery systems and methods
WO2016159999A1 (en) 2015-03-31 2016-10-06 Sight Sciences, Inc. Ocular delivery systems and methods
EP3964183A1 (en) * 2015-03-31 2022-03-09 Sight Sciences, Inc. Ocular delivery systems and methods
EP3277236A4 (en) * 2015-03-31 2018-12-19 Sight Sciences, Inc. Ocular delivery systems and methods
US11090188B2 (en) 2015-03-31 2021-08-17 Sight Sciences, Inc. Ocular delivery systems and methods
CN113208806A (en) * 2015-03-31 2021-08-06 美国商业眼科医疗器械公司 Ophthalmic delivery systems and methods
US11197779B2 (en) 2015-08-14 2021-12-14 Ivantis, Inc. Ocular implant with pressure sensor and delivery system
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
WO2017106517A1 (en) * 2015-12-15 2017-06-22 Ivantis, Inc. Ocular implant and delivery system
US11938058B2 (en) 2015-12-15 2024-03-26 Alcon Inc. Ocular implant and delivery system
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
US11376040B2 (en) 2017-10-06 2022-07-05 Glaukos Corporation Systems and methods for delivering multiple ocular implants
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus
USD938585S1 (en) 2017-10-27 2021-12-14 Glaukos Corporation Implant delivery apparatus
USD901683S1 (en) 2017-10-27 2020-11-10 Glaukos Corporation Implant delivery apparatus
US20200378948A1 (en) * 2018-01-05 2020-12-03 Path Ex, Inc. Device for the capture and removal of disease material from fluids
WO2021055751A1 (en) * 2019-09-18 2021-03-25 Ivantis, Inc. Synthetic eye model for ocular implant surgical training
US11504270B1 (en) 2019-09-27 2022-11-22 Sight Sciences, Inc. Ocular delivery systems and methods
US11857460B2 (en) 2019-09-27 2024-01-02 Sight Sciences, Inc. Ocular delivery systems and methods
US20220218521A1 (en) * 2021-01-11 2022-07-14 Ivantis, Inc. Systems and methods for viscoelastic delivery
US11540940B2 (en) * 2021-01-11 2023-01-03 Alcon Inc. Systems and methods for viscoelastic delivery
US11951037B2 (en) * 2022-05-27 2024-04-09 Sight Sciences, Inc. Ocular delivery systems and methods

Also Published As

Publication number Publication date
WO2011050360A1 (en) 2011-04-28
AU2010310484A1 (en) 2012-05-10
CN102647960A (en) 2012-08-22
US9579234B2 (en) 2017-02-28
EP2490621A4 (en) 2013-04-03
US20140249463A1 (en) 2014-09-04
JP2013508096A (en) 2013-03-07
EP2490621A1 (en) 2012-08-29
CA2778452A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
US9579234B2 (en) Ocular implant system and method
US20230107345A1 (en) Methods and apparatus for treating glaucoma
US20190343679A1 (en) Ocular implants and methods for delivering ocular implants into the eye
AU2009322146B2 (en) Methods and apparatus for delivering ocular implants into the eye
US9351874B2 (en) Methods and apparatus for delivering ocular implants into the eye
AU2015218475B2 (en) Methods and apparatus for delivering ocular implants into the eye

Legal Events

Date Code Title Description
AS Assignment

Owner name: IVANTIS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WARDLE, JOHN;SCHIEBER, ANDREW T.;GALT, KENNETH M.;REEL/FRAME:026388/0796

Effective date: 20101025

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ALCON INC., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IVANTIS, INC.;REEL/FRAME:061161/0697

Effective date: 20220719