US20100280588A1 - Percutaneous method and device to treat dissections - Google Patents

Percutaneous method and device to treat dissections Download PDF

Info

Publication number
US20100280588A1
US20100280588A1 US12/771,711 US77171110A US2010280588A1 US 20100280588 A1 US20100280588 A1 US 20100280588A1 US 77171110 A US77171110 A US 77171110A US 2010280588 A1 US2010280588 A1 US 2010280588A1
Authority
US
United States
Prior art keywords
cover
vessel
frame
anchoring element
dissection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/771,711
Other versions
US9579103B2 (en
Inventor
Stefan G. Schreck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endologix LLC
Original Assignee
Endologix LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/771,711 priority Critical patent/US9579103B2/en
Application filed by Endologix LLC filed Critical Endologix LLC
Assigned to ENDOLOGIX, INC. reassignment ENDOLOGIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHRECK, STEFAN G.
Publication of US20100280588A1 publication Critical patent/US20100280588A1/en
Priority to US15/429,090 priority patent/US10772717B2/en
Application granted granted Critical
Publication of US9579103B2 publication Critical patent/US9579103B2/en
Assigned to DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT reassignment DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC., NELLIX, INC., TRIVASCULAR, INC.
Assigned to DEERFIELD ELGX REVOLVER, LLC, AS AGENT reassignment DEERFIELD ELGX REVOLVER, LLC, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC., NELLIX, INC., TRIVASCULAR, INC.
Assigned to TRIVASCULAR, INC., NELLIX, INC., ENDOLOGIX, INC. reassignment TRIVASCULAR, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEERFIELD ELGX REVOLVER, LLC, AS AGENT
Assigned to DEERFIELD ELGX REVOLVER, LLC, AS AGENT reassignment DEERFIELD ELGX REVOLVER, LLC, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC., NELLIX, INC., TRIVASCULAR, INC.
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC.
Priority to US16/992,020 priority patent/US11571291B2/en
Assigned to DEERFIELD PRIVATE DESIGN FUND IV, L.P. reassignment DEERFIELD PRIVATE DESIGN FUND IV, L.P. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX LLC (F/K/A ENDOLOGIX, INC.), NELLIX, INC., TRIVASCULAR CANADA, LLC, TRIVASCULAR TECHNOLOGIES, INC., TRIVASCULAR, INC.
Assigned to ENDOLOGIX LLC reassignment ENDOLOGIX LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC.
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX LLC
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • A61B17/12118Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm for positioning in conjunction with a stent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/061Blood vessels provided with means for allowing access to secondary lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/823Stents, different from stent-grafts, adapted to cover an aneurysm

Definitions

  • the present disclosure relates to a method and device for the treatment of aortic dissections.
  • An aortic dissection is a dangerous condition with high mortality rates.
  • a tear typically develops in the intima of the aorta that propagates along the vessel wall delaminating the inner layer of the aorta from the outer layer. Blood enters the space between the layers creating a false lumen. Several additional tears or entry points can be created between the true lumen of the aorta and the false lumen.
  • dissections may close a perfusion from the aorta to vital organs.
  • the chronic phase the weakened tissue can develop into an aneurysm and ultimately rupture.
  • Dissections involving the ascending aorta are referred to as Type A dissections.
  • Dissections only involving the descending aorta are referred to as Type B dissections.
  • dissections Current treatments for dissections include medical management to lower the blood pressure of the patient and reduce the hemodynamic stresses on the diseased vessel. If dissections are symptomatic, surgical intervention is necessary. Portions of the diseased aorta are replaced by a surgical graft and the dissection flap is reattached. More recently, stent grafts have been used to close the primary entry point into the false lumen with the goal to thrombose the false lumen and maintain patency of the true lumen.
  • Endovascular treatment of aortic dissections with a thoracic aortic stent graft may risk inter-operative and post-operative complications.
  • the catheter delivery systems of thoracic stent grafts typically have a profile of 20-24Fr, requiring a cut-down or conduit for delivery. Vessel damage by the large delivery catheters is common.
  • Stent grafts are difficult to deploy accurately in the thoracic aorta due to the high blood flow through the thoracic aorta.
  • the proximal end of the stent graft, particularly uncovered stent sections, may cause the dissection tear to propagate proximally into the aortic arch.
  • Some embodiments of the present disclosure are directed to methods for treating a vascular dissection, comprising advancing a catheter comprising a cover and a collapsed anchoring element connected to a frame through a first vessel to an entry point of the dissection, securing the anchoring element to a second vessel that is in communication with the first vessel, expanding the frame in the first vessel, and unfolding and positioning the cover over at least a portion of the entry point.
  • the cover can reduce blood flow into the entry point.
  • Some embodiments are directed to methods for treating a vascular dissection, comprising advancing a catheter supporting a prosthesis to an entry point of the dissection, wherein the entry point of the dissection is located in a first vessel and the prosthesis comprises a cover and a collapsible anchoring element in communication with the cover, securing the anchoring element to a second vessel that is in communication with the first vessel, expanding the cover in the first vessel, and positioning the cover over at least a portion of the entry point of the dissection.
  • the cover can be configured to reduce blood flow into the entry point of the dissection.
  • Some embodiments are directed to a device for treating vascular dissections, comprising an anchoring element, a frame supported by the anchoring element, and a cover supported by the frame.
  • the cover can be configured to cover a portion of a wall of a first vessel over an entry point into the dissection to at least substantially reduce blood flow into the entry point.
  • the anchoring element can be configured to be supported by a second vessel in communication with the first vessel.
  • Some embodiments are directed to a device for treating vascular dissections, comprising an anchoring element and a cover supported by the anchoring element, wherein the cover is configured to cover only a portion of a wall of a first vessel over an entry point into the dissection and is configured to at least substantially reduce blood flow into the entry point, and the anchoring element is configured to be deployed within a second vessel in communication with the first vessel.
  • FIG. 1 is a schematic illustration of a type B dissection in the aorta.
  • FIG. 2A illustrates an embodiment of a device to treat dissections.
  • FIG. 2B is a schematic illustration of the embodiment of the treatment device illustrated in FIG. 2A , taken along line 2 B- 2 B in FIG. 2A .
  • FIGS. 3A and 3B illustrate another embodiment of a device to treat dissections.
  • FIGS. 4A and 4B illustrate another embodiment of a device to treat dissections.
  • FIG. 5 illustrates another embodiment of a device to treat dissections.
  • FIGS. 6A and 6B illustrate another embodiment of a device to treat dissections.
  • FIGS. 7A and 7B illustrate another embodiment of a device to treat dissections.
  • FIGS. 8A and 8B are schematic side view representations of an embodiment of a device to treat dissections, wherein a support member is shown in a collapsed state in FIG. 8A and an expanded state in FIG. 8B .
  • FIG. 9A is a partial section schematic view of an embodiment of a delivery catheter that can be used to deploy some embodiments of the devices to treat dissections disclosed herein.
  • FIG. 9B is a partial section schematic view of the embodiment of the delivery catheter shown in FIG. 9A , showing an embodiment of a device to treat dissections supported therein.
  • FIG. 10 is a schematic illustration of patient's aorta having a type B dissection therein, showing a guidewire being advanced through a patient's subclavian artery into the aorta.
  • FIG. 11 is a schematic illustration showing an embodiment of a delivery catheter being advanced over the guidewire of FIG. 10 .
  • FIGS. 12 and 13 are schematic illustrations showing the embodiment of the device to treat dissections of FIG. 9B being deployed from the embodiment of the delivery catheter of FIG. 11 .
  • FIG. 14 is a schematic illustration showing the embodiment of the device to treat dissections of FIG. 9B deployed within the patient's vasculature.
  • FIG. 15 is a schematic illustration of patient's aorta having a type B dissection therein, showing a guidewire being advanced through a patient's aorta into the subclavian artery.
  • FIG. 16 is a schematic illustration showing an embodiment of a delivery catheter being advanced over the guidewire of FIG. 16 .
  • FIGS. 17 and 18 are schematic illustrations showing an embodiment of a device to treat dissections being deployed from the embodiment of the delivery catheter of FIG. 16 .
  • FIG. 19 is a schematic illustration showing an embodiment of the device to treat dissections deployed within the patient's vasculature.
  • Some embodiments of the present application pertain to methods of treating aortic dissections. Specifically, without limitation, these methods may be well suited for the treatment of acute Type B dissections involving the descending aorta, or for the treatment of dissections or tears anywhere in a human or animal vasculature.
  • aortic stent grafts that require delivery systems of 20-24Fr. These stent grafts rely on a large diameter stent for anchoring in the aorta and have a graft that covers the complete circumference of the aorta.
  • the need for an aortic stent is removed.
  • Some embodiments of the prosthesis, as described in greater detail below, can be delivered in a low-profile catheter of less than 12Fr, or, in some embodiments, less than 8Fr.
  • the device can be directly delivered from the branch vessel.
  • Some embodiments herein relate to devices and methods for creating a thrombosis in the false lumen of a dissection by closing the primary entry point of the dissection with a patch or a cover instead of a stent graft.
  • the primary entry point is typically located at the transition region from the aortic arch to the descending thoracic aorta, distal to the subclavian artery.
  • a patch can be positioned over the entry point of the dissection.
  • the patch can be, for example and without limitation, anchored in or secured to the subclavian artery.
  • the radial artery can be punctured to deliver the device into the subclavian artery.
  • the patch can be configured so as to not cover the entire inner surface of the blood vessel, such as, but not limited to, the aorta, but can, rather, cover only a portion of the wall of the blood vessel.
  • FIG. 1 is a schematic illustration of a type B dissection in the aorta.
  • a tear or entry point 3 in the inner layer of the aorta 1 distal to the subclavian artery 2 can be severe enough to allow blood to enter into the aortic wall and peel the inner layer 4 of the aorta from the outer layer 5 .
  • Arrow A 1 in FIG. 1 represents the flow of blood into the aortic wall.
  • the space created by the blood between the two layers is referred to as the false lumen 6 .
  • the tear 3 is referred to as the entry point to the false lumen.
  • the separated inner layer 4 is referred to as the flap.
  • the dissection is treated by closing the entry point so that the blood cannot enter and pressurize the false lumen 6 .
  • FIGS. 2A and 2B show an embodiment of a treatment device to substantially or fully close the entry point of a type B dissection in the aorta.
  • the device or prosthesis can comprise a cover 11 and a support member or anchoring element 12 .
  • the cover 11 or any cover of any other device or prosthesis embodiment disclosed herein can be sufficiently rigid to be self-supporting within the target vessel after being deployed.
  • the device can have a collapsible frame 10 configured to support the cover 11 .
  • the cover 11 or any other cover disclosed herein can be configured to have an integral frame or support structure such that an additional frame is not required.
  • cover or the frame disclosed herein can be biased or otherwise be configured to deflect or move against or adjacent to the vessel wall at the location of the entry point to the dissection upon deployment from a suitable delivery device.
  • the device can be collapsed into a low-profile delivery catheter for percutaneous delivery to the treatment site.
  • the device can be delivered from the radial artery or the femoral artery.
  • the collapsible frame 10 can be made from a shape memory material, including, without limitation, Nitinol.
  • the shape of the frame 10 can be elliptical to conform to the aortic wall.
  • the cover 11 can be suspended in the frame 10 .
  • the cover 11 can be made from a biocompatible, flexible, thin material. Potential materials include, but are not limited to, polyester, ePTFE, polyurethane, silk, animal tissue or any other materials suitable for long-term implants.
  • the cover 11 can be made from a material that promotes or assists tissue repair and integration of the cover 11 into the aortic wall.
  • the cover 11 can be made from matrices designed to act as a scaffold for tissue-engineered grafts.
  • the cover 11 can comprise proteins such as, without limitation, collagen and elastin, which are natural building blocks of the extracellular matrix in the aortic wall.
  • the cover 11 can comprise fibrin, polysaccharides, like chitosan or glycosaminoglycans.
  • the proteins can be cross-linked by a suitable cross-linking agent. Suitable cross-linking agents can include, without limitation, glutaraldehydes, carbodiimide, tannins, polyphenols, and photo-activated cross-linking agents.
  • the protein layer can be harvested from mammals. Possible sources of mammalian protein layers include, without limitation, pericardium, small intestine submucosa, blood vessels, and skin.
  • the thickness of the cover 11 can range from approximately 0.0001 inches to approximately 0.01 inches. In some embodiments, the thickness of the cover 11 can be from approximately 0.0005 inches to approximately 0.0020 inches.
  • the cover 11 can be made from non-porous materials, porous materials, a mesh, or from knitted or woven fibers. In some embodiments, the biochemical and surface properties of the cover 11 can promote adhesion of the cover to the aortic wall. For example, the cover 11 can be made from a knitted polyester or silk fabric.
  • the cover 11 can be attached to the frame 10 with sutures, adhesive, or with any other suitable fasteners or techniques. In some embodiments, the cover 11 can be molded directly onto the frame.
  • the frame 10 can move from a collapsed state during deployment to an expanded state after deployment into the aorta. In some embodiments, the frame 10 can unfold the cover 11 during deployment. The blood flow can push the cover against the aortic wall, thus helping to secure the cover 11 at the target location.
  • the flexible cover 11 can conform to the wall of the aorta 1 and can seal off the entry point 3 .
  • the frame 10 can be connected to an anchoring element 12 that can be placed in a side branch of the aorta, preferably the subclavian artery 2 .
  • the anchoring element 12 can be placed in any suitable branch vessel of the aorta, including without limitation the carotid or brachiocephalic artery.
  • the anchoring element 12 or any other anchoring element or support member can be a self-expandable stent, balloon-expandable stent, coil, hook, barb, balloon, stent graft, screw, staple, or other similar or suitable device.
  • FIGS. 3A and 3B illustrate another embodiment of a device to treat dissections.
  • the cover 22 can have a half-circular or ovular shape.
  • the frame 21 can comprise an arcuately-shaped wire.
  • the cover 22 can be unsupported at the distal end.
  • FIG. 3B a further alternative embodiment of the cover 32 is shown. As shown therein, some embodiments of the cover 32 can extend proximally beyond the anchoring element 33 , which may be suitable for situations in which the entry point 3 is at or proximal to the subclavian artery.
  • the subclavian artery can be covered by the cover 32 .
  • the cover 32 can have an opening to allow blood to enter into the subclavian artery.
  • the frame 31 can have an additional central strut 34 support the cover 31 or to push the cover 31 against the aortic wall.
  • FIGS. 4A and 4B illustrate another embodiment of a device to treat dissections.
  • the device can have one or more supports 41 a - e that can be connected to the anchoring element 43 .
  • the supports 41 a - e can be supported on one end by the proximal end of the anchoring element 43 .
  • the supports 51 a - e can be supported by the distal end of anchoring element 53 as shown in FIG. 4B .
  • FIG. 5 illustrates another embodiment of a device to treat dissections, configured to substantially or fully close the entry point of a type B dissection in the aorta.
  • the device can be similar to that shown in FIG. 2 .
  • a support element 64 can be connected to the distal end of the frame 61 .
  • the support element 64 can push the frame 61 and cover 62 against the flap 4 of the dissection.
  • the support element 64 can have an elliptical shape and can be made from a similar material as the frame 61 .
  • the ellipse can be slightly larger than the diameter of the aorta 1 so that the support element 64 can be in contact with the flap 4 and the opposing aortic wall 65 .
  • the support element 64 can be comprised to support a distal portion of the frame 61 so as to prevent or inhibit the distal portion of the cover 62 from detaching or moving away from the flap 4 .
  • FIGS. 6A and 6B illustrate another embodiment of a device configured to substantially or fully close the entry point of a type B dissection in the aorta.
  • the frame 71 can comprise two elliptical elements 71 a and 71 b that can form an open cage.
  • the cover 72 can be configured to conform to or be supported by one half of the frame 71 .
  • some embodiments of the frame can prevent the cover 72 from detaching or moving away from the flap 4 .
  • some embodiments of the frame can conform to the local cross-sectional area of the aorta.
  • FIGS. 7A and 7B illustrate another embodiment of a device to substantially or fully close the entry point of a type B dissection in the aorta.
  • the device can be similar to the device shown in FIG. 2 , except as described below.
  • a support element 84 can be supported by the anchor element 81 .
  • the support element 84 can be advanced through the entry point 3 into the false lumen 6 and can support the frame 81 from within the false lumen 6 .
  • the frame 81 and the support element 84 can effectively sandwich the flap 4 and can prevent the cover 82 from detaching from the flap 4 .
  • the frame 81 or the support element 84 can perform a clip-like function.
  • FIGS. 8A and 8B are schematic side view representations of an embodiment of a device 100 to treat dissections, wherein a support member 92 is shown in a collapsed state in FIG. 8A and an expanded state in FIG. 8B .
  • the device 100 can have any of the same features, components, or other details of any other embodiments of the devices to treat dissections disclosed herein.
  • the support member 92 also referred to as an anchor member herein
  • the support member 92 can be collapsed during delivery and expanded once the support member 92 is positioned in the target vessel location.
  • a cover member 94 can be attached to the support member 92 and can be configured to substantially or completely cover the entry point to the dissection.
  • FIG. 9A is a partial section schematic view of a delivery catheter 100 that can be used to deploy some embodiments of the devices to treat dissections disclosed herein, such as without limitation the device 90 described above.
  • the delivery catheter 100 can have any or any combination of the features, components, or other details of the delivery catheter embodiments disclosed in U.S. application Ser. No. 12/101,863, filed on Apr. 11, 2008 and entitled “Bifurcated Graft Deployment Systems And Methods,” which application is hereby incorporated by reference as if fully set forth herein.
  • the delivery catheter 100 can have an inner core 102 that can extend from a proximal end of the delivery catheter 100 through a lumen in an outer sheath 104 .
  • the inner core 102 can be axially and rotationally movable within the outer sheath 104 .
  • a tube member 106 can extend from a distal end portion of the inner core 102 and can support an atraumatic distal tip 108 .
  • a guidewire lumen 110 can be formed through the axial centerline of the distal tip 108 , the tube member 106 , and the inner core 102 .
  • FIG. 9B is a partial section schematic view of the delivery catheter shown in FIG. 9A , showing the embodiment of the device 90 to treat dissections supported therein.
  • the outer sheath 104 can be used to restrain the anchoring member 92 and the cover 94 , both of which can be supported within the delivery catheter 100 in a collapsed configuration.
  • a frame member can be attached to the anchoring member 92 and can be used to support the cover 106 .
  • the device 100 can be supported by the tube member 106 and radially restrained by the outer sheath 104 and, as will be described. As will be described, the radial restraint can be removed by retracting the outer sheath 104 relative to the inner core 102 , thereby exposing the device 100 .
  • FIG. 10 is a schematic illustration of patient's aorta having a type B dissection therein
  • a guidewire 120 can be advanced through a patient's subclavian artery 2 into the aorta 7 .
  • the guidewire can be advanced into the subclavian artery 2 through a patient's radial artery.
  • FIG. 11 is a schematic illustration showing the delivery catheter 100 being advanced over the guidewire 120 .
  • the delivery catheter 100 can be advanced through a patient's radial artery into the subclavian and aortic arteries.
  • FIGS. 12 and 13 are schematic illustrations showing the device 90 to treat dissections of FIG. 9B being deployed from the delivery catheter 100 .
  • the cover 94 can be deployed from the delivery catheter 100 be axially retracting the outer sheath 104 relative to the tube member 106 , thereby exposing the cover member 94 .
  • the delivery catheter 100 and prosthesis 90 can be properly positioned using one or more radiopaque markers supported on the delivery catheter 100 and/or prosthesis 90 .
  • the delivery catheter 100 was advanced through the subclavian artery 2 into the aorta 7 , further axial retraction of the outer sheath 104 relative to the inner core 102 and tube member 106 can cause the anchor member 92 to be deployed from the delivery catheter 100 into the subclavian artier 2 . Thereafter, the deployment catheter 100 can be axially retracted through the subclavian and radial artery and be removed from the body, as shown in FIG. 14 . The guidewire 120 can thereafter be removed, leaving only the device 90 for treating dissections.
  • the cover 94 of the device 90 can be deployed in a patient's aorta by first advancing a guidewire 120 through a patient's femoral artery into the aorta and subclavian arteries, as illustrated in FIG. 15 . Thereafter, the deployment catheter 100 described above can be advanced over the guidewire 120 , as illustrated in FIG. 16 . Once the delivery catheter 100 has reached the target location, e.g., within the subclavian artery 2 , the anchoring member 92 can be deployed within the subclavian artery 2 by axially retracting the outer sheath 104 relative to the tube member 106 and device 90 , as illustrated in FIG. 17 .
  • Further retraction of the outer sheath 104 can cause the remaining components of the device 90 to be deployed within the patient's vasculature. For example, with reference to FIG. 18 , further retraction of the outer sheath 104 can cause the cover member 94 to be deployed and to substantially or completely cover the entry point 3 to the dissection.
  • the deployment catheter 100 can be axially retracted through the aorta and femoral artery and be removed from the body, as shown in FIG. 19 .
  • the guidewire 120 can thereafter be removed, leaving only the device 90 for treating dissections.
  • FIGS. 2-19 illustrate some embodiments of devices and methods of the present disclosure. Other embodiments that support the proposed method of entry point closure are also within the scope of the present disclosure.
  • a collapsable device can be placed over the entry point and anchored to an aortic branch vessel that can be delivered with a low-profile catheter-based delivery system.

Abstract

Some embodiments of the present disclosure are directed to methods and systems for percutaneously treating dissections in a patient's vasculature, such as, without limitation, the aorta. The method can include deploying a catheter containing a collapsed anchoring element, frame, and cover through a first vessel to an entry point of the dissection. In some embodiments, the anchoring element can be secured to the second branch vessel. The frame can be expanded in the first branch vessel. The cover can be unfolded over at least a portion of the entry point. The cover then reduces blood flow into the entry point.

Description

    PRIORITY INFORMATION AND INCORPORATION BY REFERENCE
  • This application claims the benefit of U.S. Provisional Patent Application No. 61/174,888, filed on May 1, 2009, the entire content of which is hereby incorporated by reference and should be considered part of this specification. Additionally, U.S. patent application Ser. No. 12/101,863, filed on Apr. 11, 2008 (entitled “Bifurcated Graft Deployment Systems And Methods”) is also hereby incorporated by reference in its entirety as if fully set forth herein.
  • BACKGROUND OF THE DISCLOSURE
  • The present disclosure relates to a method and device for the treatment of aortic dissections.
  • An aortic dissection is a dangerous condition with high mortality rates. In an aortic dissection, a tear typically develops in the intima of the aorta that propagates along the vessel wall delaminating the inner layer of the aorta from the outer layer. Blood enters the space between the layers creating a false lumen. Several additional tears or entry points can be created between the true lumen of the aorta and the false lumen. In the acute phase, dissections may close a perfusion from the aorta to vital organs. In the chronic phase, the weakened tissue can develop into an aneurysm and ultimately rupture. Dissections involving the ascending aorta are referred to as Type A dissections. Dissections only involving the descending aorta are referred to as Type B dissections.
  • Current treatments for dissections include medical management to lower the blood pressure of the patient and reduce the hemodynamic stresses on the diseased vessel. If dissections are symptomatic, surgical intervention is necessary. Portions of the diseased aorta are replaced by a surgical graft and the dissection flap is reattached. More recently, stent grafts have been used to close the primary entry point into the false lumen with the goal to thrombose the false lumen and maintain patency of the true lumen.
  • Endovascular treatment of aortic dissections with a thoracic aortic stent graft may risk inter-operative and post-operative complications. The catheter delivery systems of thoracic stent grafts typically have a profile of 20-24Fr, requiring a cut-down or conduit for delivery. Vessel damage by the large delivery catheters is common. Stent grafts are difficult to deploy accurately in the thoracic aorta due to the high blood flow through the thoracic aorta. The proximal end of the stent graft, particularly uncovered stent sections, may cause the dissection tear to propagate proximally into the aortic arch.
  • There is a clear need for an improved method to treat aortic dissections. The current application describes certain embodiments, which provide a solution to the treatment of aortic dissections while minimizing the impact on the aorta.
  • SUMMARY OF SOME EMBODIMENTS
  • Some embodiments of the present disclosure are directed to methods for treating a vascular dissection, comprising advancing a catheter comprising a cover and a collapsed anchoring element connected to a frame through a first vessel to an entry point of the dissection, securing the anchoring element to a second vessel that is in communication with the first vessel, expanding the frame in the first vessel, and unfolding and positioning the cover over at least a portion of the entry point. In some embodiments, the cover can reduce blood flow into the entry point.
  • Some embodiments are directed to methods for treating a vascular dissection, comprising advancing a catheter supporting a prosthesis to an entry point of the dissection, wherein the entry point of the dissection is located in a first vessel and the prosthesis comprises a cover and a collapsible anchoring element in communication with the cover, securing the anchoring element to a second vessel that is in communication with the first vessel, expanding the cover in the first vessel, and positioning the cover over at least a portion of the entry point of the dissection. In some embodiments, the cover can be configured to reduce blood flow into the entry point of the dissection.
  • Some embodiments are directed to a device for treating vascular dissections, comprising an anchoring element, a frame supported by the anchoring element, and a cover supported by the frame. The cover can be configured to cover a portion of a wall of a first vessel over an entry point into the dissection to at least substantially reduce blood flow into the entry point. The anchoring element can be configured to be supported by a second vessel in communication with the first vessel. Some embodiments are directed to a device for treating vascular dissections, comprising an anchoring element and a cover supported by the anchoring element, wherein the cover is configured to cover only a portion of a wall of a first vessel over an entry point into the dissection and is configured to at least substantially reduce blood flow into the entry point, and the anchoring element is configured to be deployed within a second vessel in communication with the first vessel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects and advantages of the present disclosure will now be described in connection with non-exclusive embodiments, in reference to the accompanying drawings. The illustrated embodiments, however, are merely examples and are not intended to limit the invention. The following are brief descriptions of the drawings, which may not be drawn to scale.
  • FIG. 1 is a schematic illustration of a type B dissection in the aorta.
  • FIG. 2A illustrates an embodiment of a device to treat dissections.
  • FIG. 2B is a schematic illustration of the embodiment of the treatment device illustrated in FIG. 2A, taken along line 2B-2B in FIG. 2A.
  • FIGS. 3A and 3B illustrate another embodiment of a device to treat dissections.
  • FIGS. 4A and 4B illustrate another embodiment of a device to treat dissections.
  • FIG. 5 illustrates another embodiment of a device to treat dissections.
  • FIGS. 6A and 6B illustrate another embodiment of a device to treat dissections.
  • FIGS. 7A and 7B illustrate another embodiment of a device to treat dissections.
  • FIGS. 8A and 8B are schematic side view representations of an embodiment of a device to treat dissections, wherein a support member is shown in a collapsed state in FIG. 8A and an expanded state in FIG. 8B.
  • FIG. 9A is a partial section schematic view of an embodiment of a delivery catheter that can be used to deploy some embodiments of the devices to treat dissections disclosed herein.
  • FIG. 9B is a partial section schematic view of the embodiment of the delivery catheter shown in FIG. 9A, showing an embodiment of a device to treat dissections supported therein.
  • FIG. 10 is a schematic illustration of patient's aorta having a type B dissection therein, showing a guidewire being advanced through a patient's subclavian artery into the aorta.
  • FIG. 11 is a schematic illustration showing an embodiment of a delivery catheter being advanced over the guidewire of FIG. 10.
  • FIGS. 12 and 13 are schematic illustrations showing the embodiment of the device to treat dissections of FIG. 9B being deployed from the embodiment of the delivery catheter of FIG. 11.
  • FIG. 14 is a schematic illustration showing the embodiment of the device to treat dissections of FIG. 9B deployed within the patient's vasculature.
  • FIG. 15 is a schematic illustration of patient's aorta having a type B dissection therein, showing a guidewire being advanced through a patient's aorta into the subclavian artery.
  • FIG. 16 is a schematic illustration showing an embodiment of a delivery catheter being advanced over the guidewire of FIG. 16.
  • FIGS. 17 and 18 are schematic illustrations showing an embodiment of a device to treat dissections being deployed from the embodiment of the delivery catheter of FIG. 16.
  • FIG. 19 is a schematic illustration showing an embodiment of the device to treat dissections deployed within the patient's vasculature.
  • DETAILED DESCRIPTION OF SOME EXEMPLIFYING EMBODIMENTS
  • Some embodiments of the present application pertain to methods of treating aortic dissections. Specifically, without limitation, these methods may be well suited for the treatment of acute Type B dissections involving the descending aorta, or for the treatment of dissections or tears anywhere in a human or animal vasculature.
  • Current devices used for the endovascular treatment of dissections are aortic stent grafts that require delivery systems of 20-24Fr. These stent grafts rely on a large diameter stent for anchoring in the aorta and have a graft that covers the complete circumference of the aorta.
  • By anchoring the device in a branch vessel, as in some embodiments of this disclosure, the need for an aortic stent is removed. By covering only the flap of the dissection, as in some embodiments disclosed herein, less covering material is necessary. Some embodiments of the prosthesis, as described in greater detail below, can be delivered in a low-profile catheter of less than 12Fr, or, in some embodiments, less than 8Fr. Furthermore, the device can be directly delivered from the branch vessel.
  • Some embodiments herein relate to devices and methods for creating a thrombosis in the false lumen of a dissection by closing the primary entry point of the dissection with a patch or a cover instead of a stent graft. In Type B dissections, the primary entry point is typically located at the transition region from the aortic arch to the descending thoracic aorta, distal to the subclavian artery. In some embodiments disclosed herein, a patch can be positioned over the entry point of the dissection. The patch can be, for example and without limitation, anchored in or secured to the subclavian artery. For example, in some embodiments, the radial artery can be punctured to deliver the device into the subclavian artery. In situations where the entry point to the dissection is located at a different section of the aorta, other branch vessels may be utilized for anchoring the device. In some embodiments, the patch can be configured so as to not cover the entire inner surface of the blood vessel, such as, but not limited to, the aorta, but can, rather, cover only a portion of the wall of the blood vessel.
  • FIG. 1 is a schematic illustration of a type B dissection in the aorta. A tear or entry point 3 in the inner layer of the aorta 1 distal to the subclavian artery 2 can be severe enough to allow blood to enter into the aortic wall and peel the inner layer 4 of the aorta from the outer layer 5. Arrow A1 in FIG. 1 represents the flow of blood into the aortic wall. The space created by the blood between the two layers is referred to as the false lumen 6. The tear 3 is referred to as the entry point to the false lumen. The separated inner layer 4 is referred to as the flap. In some embodiments, the dissection is treated by closing the entry point so that the blood cannot enter and pressurize the false lumen 6.
  • FIGS. 2A and 2B show an embodiment of a treatment device to substantially or fully close the entry point of a type B dissection in the aorta. In some embodiments, the device or prosthesis can comprise a cover 11 and a support member or anchoring element 12. In some embodiments, the cover 11 or any cover of any other device or prosthesis embodiment disclosed herein can be sufficiently rigid to be self-supporting within the target vessel after being deployed. In some embodiments, however, as in the illustrated embodiment, the device can have a collapsible frame 10 configured to support the cover 11. In some embodiments, the cover 11 or any other cover disclosed herein can be configured to have an integral frame or support structure such that an additional frame is not required. Additionally, some embodiments of the cover or the frame disclosed herein, including without limitation cover 11 and frame 10, can be biased or otherwise be configured to deflect or move against or adjacent to the vessel wall at the location of the entry point to the dissection upon deployment from a suitable delivery device.
  • The device can be collapsed into a low-profile delivery catheter for percutaneous delivery to the treatment site. Preferably, the device can be delivered from the radial artery or the femoral artery. The collapsible frame 10 can be made from a shape memory material, including, without limitation, Nitinol. In some embodiments, the shape of the frame 10 can be elliptical to conform to the aortic wall. The cover 11 can be suspended in the frame 10.
  • In some embodiments, the cover 11 can be made from a biocompatible, flexible, thin material. Potential materials include, but are not limited to, polyester, ePTFE, polyurethane, silk, animal tissue or any other materials suitable for long-term implants. In some embodiments, the cover 11 can be made from a material that promotes or assists tissue repair and integration of the cover 11 into the aortic wall. In some embodiments, the cover 11 can be made from matrices designed to act as a scaffold for tissue-engineered grafts. The cover 11 can comprise proteins such as, without limitation, collagen and elastin, which are natural building blocks of the extracellular matrix in the aortic wall.
  • In some embodiments, the cover 11 can comprise fibrin, polysaccharides, like chitosan or glycosaminoglycans. In some embodiments, the proteins can be cross-linked by a suitable cross-linking agent. Suitable cross-linking agents can include, without limitation, glutaraldehydes, carbodiimide, tannins, polyphenols, and photo-activated cross-linking agents. In some embodiments, the protein layer can be harvested from mammals. Possible sources of mammalian protein layers include, without limitation, pericardium, small intestine submucosa, blood vessels, and skin.
  • In some embodiments, the thickness of the cover 11 can range from approximately 0.0001 inches to approximately 0.01 inches. In some embodiments, the thickness of the cover 11 can be from approximately 0.0005 inches to approximately 0.0020 inches. The cover 11 can be made from non-porous materials, porous materials, a mesh, or from knitted or woven fibers. In some embodiments, the biochemical and surface properties of the cover 11 can promote adhesion of the cover to the aortic wall. For example, the cover 11 can be made from a knitted polyester or silk fabric. The cover 11 can be attached to the frame 10 with sutures, adhesive, or with any other suitable fasteners or techniques. In some embodiments, the cover 11 can be molded directly onto the frame.
  • The frame 10 can move from a collapsed state during deployment to an expanded state after deployment into the aorta. In some embodiments, the frame 10 can unfold the cover 11 during deployment. The blood flow can push the cover against the aortic wall, thus helping to secure the cover 11 at the target location. The flexible cover 11 can conform to the wall of the aorta 1 and can seal off the entry point 3. To prevent migration of the cover 11, the frame 10 can be connected to an anchoring element 12 that can be placed in a side branch of the aorta, preferably the subclavian artery 2. The anchoring element 12 can be placed in any suitable branch vessel of the aorta, including without limitation the carotid or brachiocephalic artery. The anchoring element 12 or any other anchoring element or support member can be a self-expandable stent, balloon-expandable stent, coil, hook, barb, balloon, stent graft, screw, staple, or other similar or suitable device.
  • FIGS. 3A and 3B illustrate another embodiment of a device to treat dissections. With reference to FIG. 3A, in some embodiments, the cover 22 can have a half-circular or ovular shape. The frame 21 can comprise an arcuately-shaped wire. In some embodiments, the cover 22 can be unsupported at the distal end. In FIG. 3B, a further alternative embodiment of the cover 32 is shown. As shown therein, some embodiments of the cover 32 can extend proximally beyond the anchoring element 33, which may be suitable for situations in which the entry point 3 is at or proximal to the subclavian artery. The subclavian artery can be covered by the cover 32. In some embodiments, the cover 32 can have an opening to allow blood to enter into the subclavian artery. In some embodiments, the frame 31 can have an additional central strut 34 support the cover 31 or to push the cover 31 against the aortic wall.
  • FIGS. 4A and 4B illustrate another embodiment of a device to treat dissections. With reference to FIG. 4A, the device can have one or more supports 41 a-e that can be connected to the anchoring element 43. The supports 41 a-e can be supported on one end by the proximal end of the anchoring element 43. Alternatively, the supports 51 a-e can be supported by the distal end of anchoring element 53 as shown in FIG. 4B.
  • FIG. 5 illustrates another embodiment of a device to treat dissections, configured to substantially or fully close the entry point of a type B dissection in the aorta. In some embodiments, the device can be similar to that shown in FIG. 2. In some embodiments, a support element 64 can be connected to the distal end of the frame 61. In some embodiments, the support element 64 can push the frame 61 and cover 62 against the flap 4 of the dissection. The support element 64 can have an elliptical shape and can be made from a similar material as the frame 61. The ellipse can be slightly larger than the diameter of the aorta 1 so that the support element 64 can be in contact with the flap 4 and the opposing aortic wall 65. The support element 64 can be comprised to support a distal portion of the frame 61 so as to prevent or inhibit the distal portion of the cover 62 from detaching or moving away from the flap 4.
  • FIGS. 6A and 6B illustrate another embodiment of a device configured to substantially or fully close the entry point of a type B dissection in the aorta. In some embodiments, the frame 71 can comprise two elliptical elements 71 a and 71 b that can form an open cage. The cover 72 can be configured to conform to or be supported by one half of the frame 71. When placed in the aorta 1, some embodiments of the frame can prevent the cover 72 from detaching or moving away from the flap 4. Further, some embodiments of the frame can conform to the local cross-sectional area of the aorta.
  • FIGS. 7A and 7B illustrate another embodiment of a device to substantially or fully close the entry point of a type B dissection in the aorta. In some embodiments, the device can be similar to the device shown in FIG. 2, except as described below. A support element 84 can be supported by the anchor element 81. The support element 84 can be advanced through the entry point 3 into the false lumen 6 and can support the frame 81 from within the false lumen 6. The frame 81 and the support element 84 can effectively sandwich the flap 4 and can prevent the cover 82 from detaching from the flap 4. In some embodiments, the frame 81 or the support element 84 can perform a clip-like function.
  • FIGS. 8A and 8B are schematic side view representations of an embodiment of a device 100 to treat dissections, wherein a support member 92 is shown in a collapsed state in FIG. 8A and an expanded state in FIG. 8B. The device 100 can have any of the same features, components, or other details of any other embodiments of the devices to treat dissections disclosed herein. Accordingly, the support member 92 (also referred to as an anchor member herein) can be any suitable stent, including without limitation a self-expandable, balloon expandable stent, or any other anchoring element disclosed herein that can be deployed in a vessel that is adjacent to the vessel having the dissection therein. The support member 92 can be collapsed during delivery and expanded once the support member 92 is positioned in the target vessel location. As illustrated therein, a cover member 94 can be attached to the support member 92 and can be configured to substantially or completely cover the entry point to the dissection.
  • FIG. 9A is a partial section schematic view of a delivery catheter 100 that can be used to deploy some embodiments of the devices to treat dissections disclosed herein, such as without limitation the device 90 described above. In some embodiments, the delivery catheter 100 can have any or any combination of the features, components, or other details of the delivery catheter embodiments disclosed in U.S. application Ser. No. 12/101,863, filed on Apr. 11, 2008 and entitled “Bifurcated Graft Deployment Systems And Methods,” which application is hereby incorporated by reference as if fully set forth herein.
  • With reference to FIG. 9A, the delivery catheter 100 can have an inner core 102 that can extend from a proximal end of the delivery catheter 100 through a lumen in an outer sheath 104. The inner core 102 can be axially and rotationally movable within the outer sheath 104. A tube member 106 can extend from a distal end portion of the inner core 102 and can support an atraumatic distal tip 108. A guidewire lumen 110 can be formed through the axial centerline of the distal tip 108, the tube member 106, and the inner core 102.
  • FIG. 9B is a partial section schematic view of the delivery catheter shown in FIG. 9A, showing the embodiment of the device 90 to treat dissections supported therein. In some embodiments, the outer sheath 104 can be used to restrain the anchoring member 92 and the cover 94, both of which can be supported within the delivery catheter 100 in a collapsed configuration. Additionally, in some embodiments, although not required, a frame member can be attached to the anchoring member 92 and can be used to support the cover 106. The device 100 can be supported by the tube member 106 and radially restrained by the outer sheath 104 and, as will be described. As will be described, the radial restraint can be removed by retracting the outer sheath 104 relative to the inner core 102, thereby exposing the device 100.
  • With the foregoing description, several arrangements of methods to deploy a device to treat a dissection will be described. With reference to FIG. 10, which is a schematic illustration of patient's aorta having a type B dissection therein, a guidewire 120 can be advanced through a patient's subclavian artery 2 into the aorta 7. In some embodiments, the guidewire can be advanced into the subclavian artery 2 through a patient's radial artery. FIG. 11 is a schematic illustration showing the delivery catheter 100 being advanced over the guidewire 120. In this arrangement, the delivery catheter 100 can be advanced through a patient's radial artery into the subclavian and aortic arteries.
  • FIGS. 12 and 13 are schematic illustrations showing the device 90 to treat dissections of FIG. 9B being deployed from the delivery catheter 100. As illustrated in FIG. 12, the cover 94 can be deployed from the delivery catheter 100 be axially retracting the outer sheath 104 relative to the tube member 106, thereby exposing the cover member 94. The delivery catheter 100 and prosthesis 90 can be properly positioned using one or more radiopaque markers supported on the delivery catheter 100 and/or prosthesis 90. Because the delivery catheter 100 was advanced through the subclavian artery 2 into the aorta 7, further axial retraction of the outer sheath 104 relative to the inner core 102 and tube member 106 can cause the anchor member 92 to be deployed from the delivery catheter 100 into the subclavian artier 2. Thereafter, the deployment catheter 100 can be axially retracted through the subclavian and radial artery and be removed from the body, as shown in FIG. 14. The guidewire 120 can thereafter be removed, leaving only the device 90 for treating dissections.
  • In some embodiments, the cover 94 of the device 90 can be deployed in a patient's aorta by first advancing a guidewire 120 through a patient's femoral artery into the aorta and subclavian arteries, as illustrated in FIG. 15. Thereafter, the deployment catheter 100 described above can be advanced over the guidewire 120, as illustrated in FIG. 16. Once the delivery catheter 100 has reached the target location, e.g., within the subclavian artery 2, the anchoring member 92 can be deployed within the subclavian artery 2 by axially retracting the outer sheath 104 relative to the tube member 106 and device 90, as illustrated in FIG. 17. Further retraction of the outer sheath 104 can cause the remaining components of the device 90 to be deployed within the patient's vasculature. For example, with reference to FIG. 18, further retraction of the outer sheath 104 can cause the cover member 94 to be deployed and to substantially or completely cover the entry point 3 to the dissection.
  • Thereafter, the deployment catheter 100 can be axially retracted through the aorta and femoral artery and be removed from the body, as shown in FIG. 19. The guidewire 120 can thereafter be removed, leaving only the device 90 for treating dissections.
  • FIGS. 2-19 illustrate some embodiments of devices and methods of the present disclosure. Other embodiments that support the proposed method of entry point closure are also within the scope of the present disclosure. For example, in some embodiments, a collapsable device can be placed over the entry point and anchored to an aortic branch vessel that can be delivered with a low-profile catheter-based delivery system.
  • Although the inventions have been disclosed in the context of preferred embodiments and examples, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It can be also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments can be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it can be intended that the scope of the present disclosure herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims (31)

1. A method for treating a vascular dissection, comprising:
advancing a catheter supporting a prosthesis to an entry point of the dissection, wherein the entry point of the dissection is located in a first vessel and the prosthesis comprises a cover and a collapsible anchoring element in communication with the cover;
securing the anchoring element to a second vessel that is in communication with the first vessel;
expanding the cover in the first vessel; and
positioning the cover over at least a portion of the entry point of the dissection;
wherein the cover is configured to reduce blood flow into the entry point of the dissection.
2. The method of claim 1, wherein cover is supported by a collapsible frame and wherein the frame is connected to the anchoring element.
3. The method of claim 2, wherein the frame has an elliptical shape.
4. The method of claim 1, wherein the first or second vessel is the aorta.
5. The method of claim 1, wherein the cover is configured to cover only a portion of an inner perimeter of the first vessel.
6. The method of claim 1, wherein the second vessel is proximal to the entry point of the dissection.
7. The method of claim 1, wherein the first vessel is the subclavian artery.
8. The method of claim 1, wherein the first vessel is the left carotid artery.
9. The method of claim 1, wherein the second vessel is a brachiocephalic artery.
10. The method of claim 1, wherein the cover comprises a protein matrix.
11. The method of claim 10, wherein the protein matrix comprises at least one of collagen, elastin, and mammalian tissue.
12. The method of claim 10, wherein the mammalian tissue comprises tissue harvested from a pericardium or a small intestine submucosa.
13. The method of claim 1, further comprising advancing a support element of the prosthesis through the entry point of the dissection.
14. The method of claim 1, wherein the anchoring element is a stent.
15. A device for treating a vascular dissection, comprising:
an anchoring element; and
a cover supported by the anchoring element;
wherein:
the cover is configured to cover only a portion of a wall of a first vessel over an entry point into the dissection and is configured to at least substantially reduce blood flow into the entry point; and
the anchoring element is configured to be deployed within a second vessel in communication with the first vessel.
16. The device of claim 15, wherein the anchoring element and cover are collapsible into a first collapsed state for positioning within a catheter and are expandable to a second expanded state.
17. The device of claim 15, further comprising a frame configured to support the cover, the frame being attached to the anchoring element.
18. The device of claim 17, wherein the anchoring element, frame, and cover are collapsible into a first collapsed state for positioning within a catheter and expandable to a second expanded state.
19. The device of claim 17, wherein the frame is configured to unfold the cover during deployment of the frame.
20. The device of claim 17, wherein the cover is attached to the frame using sutures or adhesive.
21. The device of claim 17, wherein the frame comprises two interconnected elliptical components.
22. The device of claim 17, wherein the frame comprises a memory material such as Nitinol.
23. The device of claim 15, wherein the cover comprises at least one of a protein matrix, polyester, ePTFE, polyurethane, silk, and animal tissue.
24. The device of claim 23, wherein the protein matrix comprises at least one of mammalian tissue, collagen, elastin, fibrin, polysaccharides such as chitosan or glycosaminoglycans, and a cross-linking agent.
25. The device of claim 24, wherein the cross-linking agents comprise at least one of glutaraldehydes, carbodiimide, tannins, polyphenols, and photo-activated cross-linking agents.
26. The device of claim 24, wherein the mammalian tissue comprises tissue harvested from pericardium, small intestine submucosa, blood vessels, or skin.
27. The device of claim 15, wherein the anchoring element is a stent.
28. The device of claim 15, wherein the anchoring element comprises at least one of a coil, hook, barb, balloon, stent graft, screw, or staple.
29. The device of claim 15, wherein the cover is configured to contact at least a portion of the first vessel.
30. The device of claim 15, further comprising a plurality of supports attached to the anchoring element and configured to support the cover.
31. The device of claim 15, wherein a thickness of the cover is between approximately 0.0001 inches and approximately 0.01 inches.
US12/771,711 2009-05-01 2010-04-30 Percutaneous method and device to treat dissections Active 2032-06-10 US9579103B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/771,711 US9579103B2 (en) 2009-05-01 2010-04-30 Percutaneous method and device to treat dissections
US15/429,090 US10772717B2 (en) 2009-05-01 2017-02-09 Percutaneous method and device to treat dissections
US16/992,020 US11571291B2 (en) 2009-05-01 2020-08-12 Percutaneous method and device to treat dissections

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17488809P 2009-05-01 2009-05-01
US12/771,711 US9579103B2 (en) 2009-05-01 2010-04-30 Percutaneous method and device to treat dissections

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/429,090 Continuation US10772717B2 (en) 2009-05-01 2017-02-09 Percutaneous method and device to treat dissections

Publications (2)

Publication Number Publication Date
US20100280588A1 true US20100280588A1 (en) 2010-11-04
US9579103B2 US9579103B2 (en) 2017-02-28

Family

ID=42317676

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/771,711 Active 2032-06-10 US9579103B2 (en) 2009-05-01 2010-04-30 Percutaneous method and device to treat dissections

Country Status (4)

Country Link
US (1) US9579103B2 (en)
EP (1) EP2424447A2 (en)
JP (1) JP2012525239A (en)
WO (1) WO2010127305A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120197284A1 (en) * 2011-01-31 2012-08-02 Ogle Matthew F Devices, therapeutic compositions and corresponding percutaneous treatment methods for aortic dissection
US8491646B2 (en) 2009-07-15 2013-07-23 Endologix, Inc. Stent graft
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
US20150065945A1 (en) * 2012-03-08 2015-03-05 Denise Zarins Spinal neuromodulation and associated systems and methods
EP2862524A1 (en) * 2013-10-16 2015-04-22 Cook Medical Technologies LLC Vascular occluder with crossing frame elements
US9393100B2 (en) 2010-11-17 2016-07-19 Endologix, Inc. Devices and methods to treat vascular dissections
US9579103B2 (en) 2009-05-01 2017-02-28 Endologix, Inc. Percutaneous method and device to treat dissections
US11559386B2 (en) 2017-07-07 2023-01-24 Endologix Llc Endovascular graft systems and methods for deployment in main and branch arteries

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150164630A1 (en) * 2008-01-04 2015-06-18 Eric Johnson Filter support members
US10772717B2 (en) 2009-05-01 2020-09-15 Endologix, Inc. Percutaneous method and device to treat dissections
EP3941392A1 (en) 2019-03-20 2022-01-26 Inqb8 Medical Technologies, LLC Aortic dissection implant

Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437542A (en) * 1944-05-05 1948-03-09 American Catheter Corp Catheter-type instrument
US4497074A (en) * 1976-04-05 1985-02-05 Agence National De Valorisation De La Recherche (Anvar) Organ prostheses
US4501263A (en) * 1982-03-31 1985-02-26 Harbuck Stanley C Method for reducing hypertension of a liver
US4503568A (en) * 1981-11-25 1985-03-12 New England Deaconess Hospital Small diameter vascular bypass and method
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4816028A (en) * 1987-07-01 1989-03-28 Indu Kapadia Woven vascular graft
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US4981947A (en) * 1987-12-24 1991-01-01 Tosoh Corporation Aromatic sulfideamide polymer and method for producing the same
US4981478A (en) * 1988-09-06 1991-01-01 Advanced Cardiovascular Systems Composite vascular catheter
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5078726A (en) * 1989-02-01 1992-01-07 Kreamer Jeffry W Graft stent and method of repairing blood vessels
US5178634A (en) * 1989-03-31 1993-01-12 Wilson Ramos Martinez Aortic valved tubes for human implants
US5197976A (en) * 1991-09-16 1993-03-30 Atrium Medical Corporation Manually separable multi-lumen vascular graft
US5275622A (en) * 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US5282824A (en) * 1990-10-09 1994-02-01 Cook, Incorporated Percutaneous stent assembly
US5282860A (en) * 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
US5383897A (en) * 1992-10-19 1995-01-24 Shadyside Hospital Method and apparatus for closing blood vessel punctures
US5387235A (en) * 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
USRE34866E (en) * 1987-02-17 1995-02-21 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US5397355A (en) * 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5484444A (en) * 1992-10-31 1996-01-16 Schneider (Europe) A.G. Device for the implantation of self-expanding endoprostheses
US5489295A (en) * 1991-04-11 1996-02-06 Endovascular Technologies, Inc. Endovascular graft having bifurcation and apparatus and method for deploying the same
US5496365A (en) * 1992-07-02 1996-03-05 Sgro; Jean-Claude Autoexpandable vascular endoprosthesis
US5591198A (en) * 1995-04-27 1997-01-07 Medtronic, Inc. Multiple sinusoidal wave configuration stent
US5591229A (en) * 1990-06-11 1997-01-07 Parodi; Juan C. Aortic graft for repairing an abdominal aortic aneurysm
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5591230A (en) * 1994-09-07 1997-01-07 Global Therapeutics, Inc. Radially expandable stent
US5593422A (en) * 1989-05-29 1997-01-14 Muijs Van De Moer; Wouter M. Occlusion assembly for sealing openings in blood vessels and a method for sealing openings in blood vessels
US5593417A (en) * 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
US5604435A (en) * 1995-12-29 1997-02-18 General Electric Company Spiral scanning method for monitoring physiological changes
US5607445A (en) * 1992-06-18 1997-03-04 American Biomed, Inc. Stent for supporting a blood vessel
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5609628A (en) * 1995-04-20 1997-03-11 Keranen; Victor J. Intravascular graft and catheter
US5709703A (en) * 1995-11-14 1998-01-20 Schneider (Europe) A.G. Stent delivery device and method for manufacturing same
US5713917A (en) * 1995-10-30 1998-02-03 Leonhardt; Howard J. Apparatus and method for engrafting a blood vessel
US5716393A (en) * 1994-05-26 1998-02-10 Angiomed Gmbh & Co. Medizintechnik Kg Stent with an end of greater diameter than its main body
US5718973A (en) * 1993-08-18 1998-02-17 W. L. Gore & Associates, Inc. Tubular intraluminal graft
US5720735A (en) * 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
US5720776A (en) * 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5723004A (en) * 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5733325A (en) * 1993-11-04 1998-03-31 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system
US5855599A (en) * 1997-09-02 1999-01-05 Sitek, Inc. Silicon micro machined occlusion implant
US5860998A (en) * 1996-11-25 1999-01-19 C. R. Bard, Inc. Deployment device for tubular expandable prosthesis
US5867432A (en) * 1996-04-23 1999-02-02 Kabushiki Kaisha Toshiba Clock control circuit
US5868783A (en) * 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
US5871536A (en) * 1993-11-08 1999-02-16 Lazarus; Harrison M. Intraluminal vascular graft and method
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US5879321A (en) * 1997-01-22 1999-03-09 The University Of Kentucky Research Foundation Portocaval-right atrial shunt
US6017363A (en) * 1997-09-22 2000-01-25 Cordis Corporation Bifurcated axially flexible stent
US6027811A (en) * 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall intraluminal graft
US6027779A (en) * 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US6027520A (en) * 1997-05-08 2000-02-22 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6030415A (en) * 1997-01-29 2000-02-29 Endovascular Technologies, Inc. Bell-bottom modular stent-graft
US6039749A (en) * 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
US6039755A (en) * 1997-02-05 2000-03-21 Impra, Inc., A Division Of C.R. Bard, Inc. Radially expandable tubular polytetrafluoroethylene grafts and method of making same
US6171281B1 (en) * 1995-04-21 2001-01-09 Medtronic Ave, Inc. Interlocking catheter assembly
US6183509B1 (en) * 1995-05-04 2001-02-06 Alain Dibie Endoprosthesis for the treatment of blood-vessel bifurcation stenosis and purpose-built installation device
US6183481B1 (en) * 1999-09-22 2001-02-06 Endomed Inc. Delivery system for self-expanding stents and grafts
US6187036B1 (en) * 1998-12-11 2001-02-13 Endologix, Inc. Endoluminal vascular prosthesis
US6192944B1 (en) * 1998-08-14 2001-02-27 Prodesco, Inc. Method of forming a textile member with undulating wire
US6231597B1 (en) * 1999-02-16 2001-05-15 Mark E. Deem Apparatus and methods for selectively stenting a portion of a vessel wall
US6309367B1 (en) * 1999-07-23 2001-10-30 Neurovasx, Inc. Aneurysm shield
US20020013618A1 (en) * 1998-02-12 2002-01-31 Marotta Thomas R. Endovascular prosthesis
US6348066B1 (en) * 1995-11-07 2002-02-19 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
US6350278B1 (en) * 1994-06-08 2002-02-26 Medtronic Ave, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US20030004560A1 (en) * 2001-04-11 2003-01-02 Trivascular, Inc. Delivery system and method for bifurcated graft
US6508833B2 (en) * 1998-06-02 2003-01-21 Cook Incorporated Multiple-sided intraluminal medical device
US6511325B1 (en) * 1998-05-04 2003-01-28 Advanced Research & Technology Institute Aortic stent-graft calibration and training model
US6514281B1 (en) * 1998-09-04 2003-02-04 Scimed Life Systems, Inc. System for delivering bifurcation stents
US6514282B1 (en) * 1999-10-04 2003-02-04 Kanji Inoue Method of folding transplanting instrument and transplanting instrument
US6517572B2 (en) * 1999-12-03 2003-02-11 Teramaed, Inc. Endovascular graft system
US6517573B1 (en) * 2000-04-11 2003-02-11 Endovascular Technologies, Inc. Hook for attaching to a corporeal lumen and method of manufacturing
US6520988B1 (en) * 1997-09-24 2003-02-18 Medtronic Ave, Inc. Endolumenal prosthesis and method of use in bifurcation regions of body lumens
US6524335B1 (en) * 1997-12-10 2003-02-25 William A. Cook Australia Pty. Ltd. Endoluminal aortic stents
US20050038494A1 (en) * 2003-08-15 2005-02-17 Scimed Life Systems, Inc. Clutch driven stent delivery system
US6981982B2 (en) * 1999-01-22 2006-01-03 Gore Enterprise Holdings, Inc. Method of producing low profile stent and graft combination
US6984244B2 (en) * 2003-03-27 2006-01-10 Endovascular Technologies, Inc. Delivery system for endoluminal implant
US20060020320A1 (en) * 1998-12-11 2006-01-26 Shaolian Samuel M Bifurcation graft deployment catheter
US6994722B2 (en) * 2001-07-03 2006-02-07 Scimed Life Systems, Inc. Implant having improved fixation to a body lumen and method for implanting the same
US7004967B2 (en) * 2000-01-31 2006-02-28 Scimed Life Systems, Inc. Process for manufacturing a braided bifurcated stent
US7004964B2 (en) * 2002-02-22 2006-02-28 Scimed Life Systems, Inc. Apparatus and method for deployment of an endoluminal device
US7160318B2 (en) * 2001-03-28 2007-01-09 Cook Incorporated Modular stent graft assembly and use thereof
US7163715B1 (en) * 2001-06-12 2007-01-16 Advanced Cardiovascular Systems, Inc. Spray processing of porous medical devices
US20070014868A1 (en) * 2005-07-15 2007-01-18 Cormatrix Cardiovascular, Inc. Patch for reconstruction, replacement or repair of the pericardial sac
US7175657B2 (en) * 2004-07-28 2007-02-13 Cordis Corporation AAA device having connected bifurcated legs
US7175652B2 (en) * 2002-08-20 2007-02-13 Cook Incorporated Stent graft with improved proximal end
US20070168013A1 (en) * 2006-01-19 2007-07-19 Myles Douglas Vascular graft and deployment system
US7314483B2 (en) * 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US7320703B2 (en) * 2002-06-21 2008-01-22 Dimatteo Kristian Method for inserting a prosthesis
US20080114436A1 (en) * 2006-08-17 2008-05-15 Dieck Martin S Aneurysm covering devices and delivery devices
US20080221600A1 (en) * 2006-08-17 2008-09-11 Dieck Martin S Isolation devices for the treatment of aneurysms
US20090018638A1 (en) * 2007-07-10 2009-01-15 Cook Incorporated Minimally invasive medical device and method for delivery of therapeutic or diagnostic agents into a vessel wall
US20090018635A1 (en) * 2007-07-10 2009-01-15 Boston Scientific Scimed, Inc. Stent protector
US7491230B2 (en) * 1996-02-13 2009-02-17 Boston Scientific Scimed, Inc. Endovascular apparatus
US20090228029A1 (en) * 2008-03-05 2009-09-10 Neuro Vasx, Inc. Aneurysm shield anchoring device
US20090264914A1 (en) * 2007-12-11 2009-10-22 Howard Riina Method and apparatus for sealing an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while maintaining substantially normal flow through the body lumen
US20100004730A1 (en) * 2008-07-01 2010-01-07 Endologix, Inc. Catheter system and methods of using same
US7651519B2 (en) * 2003-09-16 2010-01-26 Cook Incorporated Prosthesis deployment system
US20100094335A1 (en) * 2008-09-05 2010-04-15 Pulsar Vascular, Inc. Systems and methods for supporting or occluding a physiological opening or cavity
US20110015718A1 (en) * 2009-07-15 2011-01-20 Endologix, Inc. Stent graft
US20110022153A1 (en) * 2009-07-27 2011-01-27 Endologix, Inc. Stent graft
US7879081B2 (en) * 2002-05-03 2011-02-01 Boston Scientific Scimed, Inc. Hypotube endoluminal device and method

Family Cites Families (474)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2127903A (en) 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
US2845959A (en) 1956-03-26 1958-08-05 John B Sidebotham Bifurcated textile tubes and method of weaving the same
US2990605A (en) 1957-01-30 1961-07-04 Demsyk Paul Method of forming artificial vascular members
US3096560A (en) 1958-11-21 1963-07-09 William J Liebig Process for synthetic vascular implants
US3029819A (en) 1959-07-30 1962-04-17 J L Mcatee Artery graft and method of producing artery grafts
US3805301A (en) 1972-07-28 1974-04-23 Meadox Medicals Inc Tubular grafts having indicia thereon
US3996938A (en) 1975-07-10 1976-12-14 Clark Iii William T Expanding mesh catheter
WO1980000007A1 (en) 1978-06-02 1980-01-10 A Rockey Medical sleeve
US4362156A (en) 1979-04-18 1982-12-07 Riverain Corporation Intravenous infusion assembly
US4473067A (en) 1982-04-28 1984-09-25 Peter Schiff Introducer assembly for intra-aortic balloons and the like incorporating a sliding, blood-tight seal
US4638803A (en) 1982-09-30 1987-01-27 Rand Robert W Medical apparatus for inducing scar tissue formation in a body
US4525157A (en) 1983-07-28 1985-06-25 Manresa, Inc. Closed system catheter with guide wire
US4592754A (en) 1983-09-09 1986-06-03 Gupte Pradeep M Surgical prosthetic vessel graft and catheter combination and method
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US6221102B1 (en) 1983-12-09 2001-04-24 Endovascular Technologies, Inc. Intraluminal grafting system
US5669936A (en) 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US5108424A (en) 1984-01-30 1992-04-28 Meadox Medicals, Inc. Collagen-impregnated dacron graft
US4617932A (en) 1984-04-25 1986-10-21 Elliot Kornberg Device and method for performing an intraluminal abdominal aortic aneurysm repair
US4562596A (en) 1984-04-25 1986-01-07 Elliot Kornberg Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4728328A (en) 1984-10-19 1988-03-01 Research Corporation Cuffed tubular organic prostheses
US4650466A (en) 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4756307A (en) 1987-02-09 1988-07-12 Zimmer, Inc. Nail device
US4744364A (en) 1987-02-17 1988-05-17 Intravascular Surgical Instruments, Inc. Device for sealing percutaneous puncture in a vessel
IT1210722B (en) 1987-05-11 1989-09-20 Sorin Biomedica Spa DEVICES FOR THE CONDITIONING OF BLOOD FLOWS
JPH0425755Y2 (en) 1987-10-16 1992-06-19
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4840940A (en) 1987-10-21 1989-06-20 Sottiurai Vikrom S Method for reducing the occurrence of distal anastomotic intimal hyperplasia using fractionated heparin
FR2624747A1 (en) 1987-12-18 1989-06-23 Delsanti Gerard REMOVABLE ENDO-ARTERIAL DEVICES FOR REPAIRING ARTERIAL WALL DECOLLEMENTS
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US4994069A (en) 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
CH678393A5 (en) 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
US5015232A (en) 1989-04-20 1991-05-14 Cook Incorporated Decompression enteroclysis balloon catheter
US5104400A (en) 1989-05-26 1992-04-14 Impra, Inc. Blood vessel patch
US5622188A (en) 1989-08-18 1997-04-22 Endovascular Instruments, Inc. Method of restoring reduced or absent blood flow capacity in an artery
US5034001A (en) 1989-09-08 1991-07-23 Advanced Cardiovascular Systems, Inc. Method of repairing a damaged blood vessel with an expandable cage catheter
US5035706A (en) 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
GB8927282D0 (en) 1989-12-01 1990-01-31 Univ Strathclyde Vascular surgical devices
US5041093A (en) 1990-01-31 1991-08-20 Boston Scientific Corp. Catheter with foraminous anchor
US5145620A (en) 1990-02-09 1992-09-08 Ngk Insulators, Ltd. Method of producing a silicon nitride sintered body
US5123917A (en) 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5116349A (en) 1990-05-23 1992-05-26 United States Surgical Corporation Surgical fastener apparatus
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5156619A (en) 1990-06-15 1992-10-20 Ehrenfeld William K Flanged end-to-side vascular graft
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5449372A (en) 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
DE69116130T2 (en) 1990-10-18 1996-05-15 Ho Young Song SELF-EXPANDING, ENDOVASCULAR DILATATOR
US5147334A (en) 1991-01-02 1992-09-15 Moss James P Catheter for cholangiography
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
US5156620A (en) 1991-02-04 1992-10-20 Pigott John P Intraluminal graft/stent and balloon catheter for insertion thereof
US5135536A (en) 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5669934A (en) 1991-02-13 1997-09-23 Fusion Medical Technologies, Inc. Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets
US5628783A (en) 1991-04-11 1997-05-13 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system and method
US5554118A (en) 1991-05-24 1996-09-10 Jang; G. David Universal mode vascular catheter system
US5304200A (en) 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5135535A (en) 1991-06-11 1992-08-04 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US5314472A (en) 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5443498A (en) 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
US5464450A (en) 1991-10-04 1995-11-07 Scimed Lifesystems Inc. Biodegradable drug delivery vascular stent
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
AU669338B2 (en) 1991-10-25 1996-06-06 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5693084A (en) 1991-10-25 1997-12-02 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5211658A (en) 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
US5316023A (en) 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5234448A (en) 1992-02-28 1993-08-10 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5370683A (en) 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
US5201757A (en) 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5263932A (en) 1992-04-09 1993-11-23 Jang G David Bailout catheter for fixed wire angioplasty
US5354308A (en) 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
WO1993022986A1 (en) 1992-05-08 1993-11-25 Schneider (Usa) Inc. Esophageal stent and delivery tool
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5530528A (en) 1992-09-28 1996-06-25 Fujitsu Limited Image forming apparatus having contact type, one-component developing unit
BE1006440A3 (en) 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Luminal endoprosthesis AND METHOD OF PREPARATION.
US5256141A (en) 1992-12-22 1993-10-26 Nelson Gencheff Biological material deployment method and apparatus
CA2149887A1 (en) 1992-12-30 1994-07-21 Steven J. Healy Apparatus for deploying body implantable stents
US5370691A (en) 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
US5403280A (en) 1993-02-16 1995-04-04 Wang; James C. Inflatable perfusion catheter
NL9300500A (en) 1993-03-22 1994-10-17 Industrial Res Bv Expandable hollow sleeve for locally supporting and / or strengthening a body vessel, as well as a method for manufacturing it.
AU689094B2 (en) 1993-04-22 1998-03-26 C.R. Bard Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5843167A (en) 1993-04-22 1998-12-01 C. R. Bard, Inc. Method and apparatus for recapture of hooked endoprosthesis
EP0695152A1 (en) 1993-04-23 1996-02-07 Schneider (Usa) Inc. Covered stent and stent delivery device
ES2114964T3 (en) 1993-04-23 1998-06-16 Schneider Europ Ag ENDOPROTESIS WITH A COAT OF ELASTIC MATERIAL COATING AND METHOD FOR APPLYING THE COAT ON ENDOPROTESIS.
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5643171A (en) 1993-05-04 1997-07-01 Neocardia, Llc Method and apparatus for uniform radiation treatment of vascular lumens
US5320602A (en) 1993-05-14 1994-06-14 Wilson-Cook Medical, Inc. Peel-away endoscopic retrograde cholangio pancreatography catheter and a method for using the same
US5338298A (en) 1993-06-04 1994-08-16 C. R. Bard, Inc. Double-tapered balloon
US5425765A (en) 1993-06-25 1995-06-20 Tiefenbrun; Jonathan Surgical bypass method
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5464449A (en) 1993-07-08 1995-11-07 Thomas J. Fogarty Internal graft prosthesis and delivery system
CA2125258C (en) 1993-08-05 1998-12-22 Dinah B Quiachon Multicapsule intraluminal grafting system and method
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5669880A (en) 1993-08-24 1997-09-23 Cordis Corporation Stent delivery system
WO1995008289A2 (en) 1993-09-16 1995-03-30 Scimed Life Systems, Inc. Percutaneous repair of cardiovascular anomalies and repair compositions
KR970004845Y1 (en) 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
US5782904A (en) 1993-09-30 1998-07-21 Endogad Research Pty Limited Intraluminal graft
EP0659389B1 (en) 1993-10-20 1998-04-22 Schneider (Europe) Ag Endoprothese
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5632772A (en) 1993-10-21 1997-05-27 Corvita Corporation Expandable supportive branched endoluminal grafts
US5989280A (en) 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
US6051020A (en) 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US5443477A (en) 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5653746A (en) 1994-03-08 1997-08-05 Meadox Medicals, Inc. Radially expandable tubular prosthesis
US5733303A (en) 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5415664A (en) 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5824044A (en) 1994-05-12 1998-10-20 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system
US5456694A (en) 1994-05-13 1995-10-10 Stentco, Inc. Device for delivering and deploying intraluminal devices
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
DE69528216T2 (en) 1994-06-17 2003-04-17 Terumo Corp Process for the production of a permanent stent
US5522881A (en) 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
US6123715A (en) 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
US5846261A (en) 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US5575816A (en) 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5653743A (en) 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US5562727A (en) 1994-10-07 1996-10-08 Aeroquip Corporation Intraluminal graft and method for insertion thereof
US5534024A (en) 1994-11-04 1996-07-09 Aeroquip Corporation Intraluminal stenting graft
CA2175720C (en) 1996-05-03 2011-11-29 Ian M. Penn Bifurcated stent and method for the manufacture and delivery of same
CA2134997C (en) 1994-11-03 2009-06-02 Ian M. Penn Stent
JP3182301B2 (en) 1994-11-07 2001-07-03 キヤノン株式会社 Microstructure and method for forming the same
EP0790810B1 (en) 1994-11-09 2004-04-28 Endotex Interventional Systems, Inc. Kit of delivery catheter and graft for aneurysm repair
AU3783195A (en) 1994-11-15 1996-05-23 Advanced Cardiovascular Systems Inc. Intraluminal stent for attaching a graft
US5507770A (en) 1994-11-23 1996-04-16 Aeroquip Corporation Intraluminal grafting stent and method for implanting same in a blood vessel
US5616114A (en) 1994-12-08 1997-04-01 Neocardia, Llc. Intravascular radiotherapy employing a liquid-suspended source
US5630829A (en) 1994-12-09 1997-05-20 Intervascular, Inc. High hoop strength intraluminal stent
NL9500094A (en) 1995-01-19 1996-09-02 Industrial Res Bv Y-shaped stent and method of deployment.
US5755770A (en) 1995-01-31 1998-05-26 Boston Scientific Corporatiion Endovascular aortic graft
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5522883A (en) 1995-02-17 1996-06-04 Meadox Medicals, Inc. Endoprosthesis stent/graft deployment system
EP0810845A2 (en) 1995-02-22 1997-12-10 Menlo Care Inc. Covered expanding mesh stent
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5662675A (en) 1995-02-24 1997-09-02 Intervascular, Inc. Delivery catheter assembly
US6818014B2 (en) 1995-03-01 2004-11-16 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US5681345A (en) 1995-03-01 1997-10-28 Scimed Life Systems, Inc. Sleeve carrying stent
JP3507503B2 (en) 1995-03-10 2004-03-15 インプラ・インコーポレーテッド Sealable stent for body cavity, method for producing the same, and method for introducing the same into body cavity
US6124523A (en) 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
WO1996028116A1 (en) 1995-03-10 1996-09-19 Cardiovascular Concepts, Inc. Tubular endoluminar prosthesis having oblique ends
US5647857A (en) 1995-03-16 1997-07-15 Endotex Interventional Systems, Inc. Protective intraluminal sheath
CA2171896C (en) 1995-03-17 2007-05-15 Scott C. Anderson Multi-anchor stent
US5643278A (en) 1995-04-06 1997-07-01 Leocor, Inc. Stent delivery system
ATE270528T1 (en) 1995-04-12 2004-07-15 Corvita Europ SELF-EXPANDING STENT FOR INTRODUCING A MEDICAL DEVICE INTO A BODY CAVITY AND METHOD OF MANUFACTURING
CA2218072A1 (en) 1995-04-14 1996-10-17 Schneider (Usa) Inc. Rolling membrane stent delivery device
US5641373A (en) 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
EE03800B1 (en) 1995-04-26 2002-08-15 Medinol Ltd. Articulated stent
US5662614A (en) 1995-05-09 1997-09-02 Edoga; John K. Balloon expandable universal access sheath
US5628786A (en) 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
WO1996036297A1 (en) 1995-05-19 1996-11-21 Kanji Inoue Transplantation instrument, method of bending same and method of transplanting same
ATE314022T1 (en) 1995-06-01 2006-01-15 Meadox Medicals Inc IMPLANTABLE INTRALUMINAL PROSTHESIS
US6151404A (en) 1995-06-01 2000-11-21 Medical Media Systems Anatomical visualization system
CA2221635A1 (en) 1995-06-05 1996-12-12 Creative Products Resource, Inc. Dry-cleaning kit for in-dryer use
US6312407B1 (en) 1995-06-05 2001-11-06 Medtronic Percusurge, Inc. Occlusion of a vessel
US5591199A (en) 1995-06-07 1997-01-07 Porter; Christopher H. Curable fiber composite stent and delivery system
RU2157146C2 (en) 1995-06-13 2000-10-10 ВИЛЬЯМ КУК Европа, A/S Device for performing implantation in blood vessels and hollow organs
US5676685A (en) 1995-06-22 1997-10-14 Razavi; Ali Temporary stent
US5785679A (en) 1995-07-19 1998-07-28 Endotex Interventional Systems, Inc. Methods and apparatus for treating aneurysms and arterio-venous fistulas
US5766203A (en) 1995-07-20 1998-06-16 Intelliwire, Inc. Sheath with expandable distal extremity and balloon catheters and stents for use therewith and method
US5697968A (en) 1995-08-10 1997-12-16 Aeroquip Corporation Check valve for intraluminal graft
US5769882A (en) 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5562697A (en) 1995-09-18 1996-10-08 William Cook, Europe A/S Self-expanding stent assembly and methods for the manufacture thereof
WO1997010757A1 (en) 1995-09-22 1997-03-27 Autogenics Sewing ring with integral retaining springs
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
WO1997014375A1 (en) 1995-10-20 1997-04-24 Bandula Wijay Vascular stent
US5669924A (en) 1995-10-26 1997-09-23 Shaknovich; Alexander Y-shuttle stent assembly for bifurcating vessels and method of using the same
US5628788A (en) 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US6045557A (en) 1995-11-10 2000-04-04 Baxter International Inc. Delivery catheter and method for positioning an intraluminal graft
US5665117A (en) 1995-11-27 1997-09-09 Rhodes; Valentine J. Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6576009B2 (en) 1995-12-01 2003-06-10 Medtronic Ave, Inc. Bifurcated intraluminal prostheses construction and methods
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
JP2000503559A (en) 1995-12-14 2000-03-28 ゴア エンタープライズ ホールディングス,インコーポレイティド Apparatus and method for deploying a stent-graft
US5752974A (en) 1995-12-18 1998-05-19 Collagen Corporation Injectable or implantable biomaterials for filling or blocking lumens and voids of the body
ATE330644T1 (en) 1995-12-18 2006-07-15 Angiotech Biomaterials Corp CROSS-LINKED POLYMER MATERIALS AND METHODS FOR USE THEREOF
US5800407A (en) 1995-12-21 1998-09-01 Eldor; Joseph Multiple hole epidural catheter
US5693066A (en) 1995-12-21 1997-12-02 Medtronic, Inc. Stent mounting and transfer device and method
WO1997025002A1 (en) 1996-01-05 1997-07-17 Medtronic, Inc. Expansible endoluminal prostheses
US5690642A (en) 1996-01-18 1997-11-25 Cook Incorporated Rapid exchange stent delivery balloon catheter
US5800512A (en) 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US6168622B1 (en) 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
AUPN775296A0 (en) 1996-01-25 1996-02-22 Endogad Research Pty Limited Directional catheter
CN1218414A (en) 1996-02-02 1999-06-02 血管转换公司 Methods and apparatus for blocking flow through blood vessels
US5690643A (en) 1996-02-20 1997-11-25 Leocor, Incorporated Stent delivery system
US5695516A (en) 1996-02-21 1997-12-09 Iso Stent, Inc. Longitudinally elongating balloon expandable stent
US5810836A (en) 1996-03-04 1998-09-22 Myocardial Stents, Inc. Device and method for trans myocardial revascularization (TMR)
ATE193820T1 (en) 1996-03-13 2000-06-15 Medtronic Inc ENDOLUMINAL PROSTHESIS FOR MULTIPLE BRANCH BODY LUMEN SYSTEMS
US6458096B1 (en) 1996-04-01 2002-10-01 Medtronic, Inc. Catheter with autoinflating, autoregulating balloon
US5843160A (en) 1996-04-01 1998-12-01 Rhodes; Valentine J. Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen
US5630830A (en) 1996-04-10 1997-05-20 Medtronic, Inc. Device and method for mounting stents on delivery systems
US6096053A (en) 1996-05-03 2000-08-01 Scimed Life Systems, Inc. Medical retrieval basket
US5921954A (en) 1996-07-10 1999-07-13 Mohr, Jr.; Lawrence G. Treating aneurysms by applying hardening/softening agents to hardenable/softenable substances
US6544276B1 (en) 1996-05-20 2003-04-08 Medtronic Ave. Inc. Exchange method for emboli containment
FR2749160B1 (en) 1996-05-28 1999-05-21 Patrice Bergeron MODULAR BIFURCED VASCULAR PROSTHESIS
US6190402B1 (en) 1996-06-21 2001-02-20 Musc Foundation For Research Development Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
US5928279A (en) 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
GB9614950D0 (en) 1996-07-16 1996-09-04 Anson Medical Ltd A ductus stent and delivery catheter
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US5725535A (en) 1996-09-20 1998-03-10 Hegde; Anant V. Multiple balloon stent delivery catheter and method
EP0934035B8 (en) 1996-09-26 2006-01-18 Boston Scientific Scimed, Inc. Support structure/membrane composite medical device
US6395017B1 (en) 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
US6015431A (en) 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6203735B1 (en) 1997-02-03 2001-03-20 Impra, Inc. Method of making expanded polytetrafluoroethylene products
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US6090128A (en) 1997-02-20 2000-07-18 Endologix, Inc. Bifurcated vascular graft deployment device
US6951572B1 (en) 1997-02-20 2005-10-04 Endologix, Inc. Bifurcated vascular graft and method and apparatus for deploying same
US5855565A (en) 1997-02-21 1999-01-05 Bar-Cohen; Yaniv Cardiovascular mechanically expanding catheter
EP1011529B1 (en) 1997-03-05 2005-01-26 Boston Scientific Limited Conformal laminate stent device
US5814064A (en) 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US5824053A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US6059812A (en) 1997-03-21 2000-05-09 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
AUPO700897A0 (en) 1997-05-26 1997-06-19 William A Cook Australia Pty Ltd A method and means of deploying a graft
US5906641A (en) 1997-05-27 1999-05-25 Schneider (Usa) Inc Bifurcated stent graft
CA2235911C (en) 1997-05-27 2003-07-29 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
US6007575A (en) 1997-06-06 1999-12-28 Samuels; Shaun Laurence Wilkie Inflatable intraluminal stent and method for affixing same within the human body
EP0884029B1 (en) 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
GB9713624D0 (en) 1997-06-28 1997-09-03 Anson Medical Ltd Expandable device
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US6086611A (en) 1997-09-25 2000-07-11 Ave Connaught Bifurcated stent
US5893887A (en) 1997-10-14 1999-04-13 Iowa-India Investments Company Limited Stent for positioning at junction of bifurcated blood vessel and method of making
US5957901A (en) 1997-10-14 1999-09-28 Merit Medical Systems, Inc. Catheter with improved spray pattern for pharmaco-mechanical thrombolysis therapy
ES1038606Y (en) 1997-10-28 1999-01-01 Costilla Garcia Serafin Marcos FORKED SELF-EXPANDING PROSTHESIS CONVEYOR EQUIPMENT.
US5961548A (en) 1997-11-18 1999-10-05 Shmulewitz; Ascher Bifurcated two-part graft and methods of implantation
US6626939B1 (en) 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US6475170B1 (en) 1997-12-30 2002-11-05 Remon Medical Technologies Ltd Acoustic biosensor for monitoring physiological conditions in a body implantation site
US6074398A (en) 1998-01-13 2000-06-13 Datascope Investment Corp. Reduced diameter stent/graft deployment catheter
AU737035B2 (en) 1998-01-26 2001-08-09 Anson Medical Limited Reinforced graft
US6395018B1 (en) 1998-02-09 2002-05-28 Wilfrido R. Castaneda Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
WO1999039649A1 (en) 1998-02-10 1999-08-12 Dubrul William R Occlusion, anchoring, tensioning and flow direction apparatus and methods for use
US5931866A (en) 1998-02-24 1999-08-03 Frantzen; John J. Radially expandable stent featuring accordion stops
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US6077296A (en) 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
CA2322639C (en) 1998-03-18 2006-10-10 Boston Scientific Limited Improved ptfe vascular prosthesis and method of manufacture
US6887268B2 (en) 1998-03-30 2005-05-03 Cordis Corporation Extension prosthesis for an arterial repair
AU3454999A (en) 1998-03-30 1999-10-18 University Of Virginia Patent Foundation Flow arrest, double balloon technique for occluding aneurysms or blood vessels
US6063111A (en) 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
US6093203A (en) * 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US6463317B1 (en) 1998-05-19 2002-10-08 Regents Of The University Of Minnesota Device and method for the endovascular treatment of aneurysms
US6296603B1 (en) 1998-05-26 2001-10-02 Isostent, Inc. Radioactive intraluminal endovascular prosthesis and method for the treatment of aneurysms
ATE342014T1 (en) 1998-06-19 2006-11-15 Endologix Inc SELF-EXPANDING BRANCHING ENDOVASCULAR PROSTHESIS
US6093199A (en) 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US6152943A (en) 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
US6196230B1 (en) 1998-09-10 2001-03-06 Percardia, Inc. Stent delivery system and method of use
US6245099B1 (en) 1998-09-30 2001-06-12 Impra, Inc. Selective adherence of stent-graft coverings, mandrel and method of making stent-graft device
US6368345B1 (en) 1998-09-30 2002-04-09 Edwards Lifesciences Corporation Methods and apparatus for intraluminal placement of a bifurcated intraluminal garafat
US6273909B1 (en) 1998-10-05 2001-08-14 Teramed Inc. Endovascular graft system
US6051014A (en) 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6183496B1 (en) 1998-11-02 2001-02-06 Datascope Investment Corp. Collapsible hemostatic plug
US6083259A (en) 1998-11-16 2000-07-04 Frantzen; John J. Axially non-contracting flexible radially expandable stent
US6413273B1 (en) 1998-11-25 2002-07-02 Israel Aircraft Industries Ltd. Method and system for temporarily supporting a tubular organ
US6197049B1 (en) 1999-02-17 2001-03-06 Endologix, Inc. Articulating bifurcation graft
EP1146833B1 (en) 1998-12-11 2005-08-31 Endologix, Inc. Endoluminal vascular prosthesis
US20100318174A1 (en) 1998-12-11 2010-12-16 Endologix, Inc. Implantable vascular graft
US6733523B2 (en) 1998-12-11 2004-05-11 Endologix, Inc. Implantable vascular graft
US6187034B1 (en) 1999-01-13 2001-02-13 John J. Frantzen Segmented stent for flexible stent delivery system
US6022359A (en) 1999-01-13 2000-02-08 Frantzen; John J. Stent delivery system featuring a flexible balloon
DK1148839T3 (en) 1999-02-01 2008-12-15 Univ Texas Woven two-branched and three-branched stents and methods of making them
US6558414B2 (en) 1999-02-02 2003-05-06 Impra, Inc. Partial encapsulation of stents using strips and bands
US6361557B1 (en) 1999-02-05 2002-03-26 Medtronic Ave, Inc. Staplebutton radiopaque marker
US6120524A (en) 1999-02-16 2000-09-19 Taheri; Syde A. Device for closing an arterial puncture and method
US20030225453A1 (en) 1999-03-03 2003-12-04 Trivascular, Inc. Inflatable intraluminal graft
GB9904722D0 (en) 1999-03-03 1999-04-21 Murch Clifford R A tubular intraluminal graft
US8034100B2 (en) 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US6537299B1 (en) 1999-04-05 2003-03-25 Ethicon, Inc. Intravascular hemostasis device and method
NL1011779C2 (en) 1999-04-13 2000-10-16 Elephant Dental Bv Biomedical device or implant.
US6614026B1 (en) 1999-04-15 2003-09-02 Applied Materials, Inc. Charged particle beam column
WO2000067674A1 (en) 1999-05-06 2000-11-16 Kanji Inoue Apparatus for folding instrument and use of the same apparatus
US6206907B1 (en) 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US6440161B1 (en) 1999-07-07 2002-08-27 Endologix, Inc. Dual wire placement catheter
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
US6565597B1 (en) 1999-07-16 2003-05-20 Med Institute, Inc. Stent adapted for tangle-free deployment
US7341595B2 (en) 1999-09-13 2008-03-11 Rex Medical, L.P Vascular hole closure device
EP1211983B1 (en) 1999-09-13 2007-03-07 Rex Medical, LP Vascular closure
US7267679B2 (en) 1999-09-13 2007-09-11 Rex Medical, L.P Vascular hole closure device
US6409757B1 (en) 1999-09-15 2002-06-25 Eva Corporation Method and apparatus for supporting a graft assembly
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6312462B1 (en) 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
AUPQ302899A0 (en) 1999-09-23 1999-10-21 Endogad Research Pty Limited Implants for the use in the treatment of aneurysmal disease
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US6610087B1 (en) 1999-11-16 2003-08-26 Scimed Life Systems, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
AU1723201A (en) 1999-11-18 2001-05-30 Petrus Besselink Method for placing bifurcated stents
US6375666B1 (en) 1999-12-09 2002-04-23 Hans Alois Mische Methods and devices for treatment of neurological disorders
US6673042B1 (en) 1999-11-22 2004-01-06 Wilfred J. Samson Expandable venous cannula and method of use
US20010041914A1 (en) 1999-11-22 2001-11-15 Frazier Andrew G.C. Tissue patch deployment catheter
US6533763B1 (en) 1999-12-06 2003-03-18 James A. Schneiter Harmonic flow catheter
US6331184B1 (en) 1999-12-10 2001-12-18 Scimed Life Systems, Inc. Detachable covering for an implantable medical device
US6663667B2 (en) 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6540722B1 (en) 1999-12-30 2003-04-01 Advanced Cardiovascular Systems, Inc. Embolic protection devices
US6398807B1 (en) 2000-01-31 2002-06-04 Scimed Life Systems, Inc. Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
US6312463B1 (en) 2000-02-01 2001-11-06 Endotex Interventional Systems, Inc. Micro-porous mesh stent with hybrid structure
EP1259192B1 (en) 2000-03-03 2003-12-10 Cook Incorporated Endovascular device having a stent
US6416474B1 (en) 2000-03-10 2002-07-09 Ramon Medical Technologies Ltd. Systems and methods for deploying a biosensor in conjunction with a prosthesis
CA2400072C (en) 2000-03-14 2010-01-19 Cook Incorporated Endovascular stent graft
US7201770B2 (en) 2000-03-21 2007-04-10 Cordis Corporation Everting balloon stent delivery system having tapered leading edge
US6468301B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
AU2001245687A1 (en) * 2000-03-30 2001-10-15 Advanced Cardiovascular Systems Inc. Bifurcated stent system
US20020026217A1 (en) 2000-04-26 2002-02-28 Steven Baker Apparatus and method for repair of perigraft flow
US6942691B1 (en) 2000-04-27 2005-09-13 Timothy A. M. Chuter Modular bifurcated graft for endovascular aneurysm repair
US6729356B1 (en) 2000-04-27 2004-05-04 Endovascular Technologies, Inc. Endovascular graft for providing a seal with vasculature
US6692486B2 (en) 2000-05-10 2004-02-17 Minnesota Medical Physics, Llc Apparatus and method for treatment of cerebral aneurysms, arterial-vascular malformations and arterial fistulas
WO2001087184A1 (en) 2000-05-16 2001-11-22 Frantzen John J Radially expandable stent featuring aneurysm covering surface
WO2001093782A1 (en) 2000-06-08 2001-12-13 Frantzen John J Radially expandable stent featuring covering tip primarily for bifurcated artery aneurysms
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US6572648B1 (en) 2000-06-30 2003-06-03 Vascular Architects, Inc. Endoluminal prosthesis and tissue separation condition treatment method
US6773454B2 (en) 2000-08-02 2004-08-10 Michael H. Wholey Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
US20060030881A1 (en) 2004-08-05 2006-02-09 Cardiokinetix, Inc. Ventricular partitioning device
US6475166B1 (en) 2000-08-18 2002-11-05 Endovascular Technologies, Inc. Guidewire placement system for delivery of an aneurysm graft limb
DE60115712T2 (en) 2000-08-23 2006-09-07 Thoratec Corp., Pleasanton COATED TUBE TRANSPLANTS AND USE METHOD
US6695833B1 (en) 2000-09-27 2004-02-24 Nellix, Inc. Vascular stent-graft apparatus and forming method
US6730119B1 (en) 2000-10-06 2004-05-04 Board Of Regents Of The University Of Texas System Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity
US6565601B2 (en) 2000-11-15 2003-05-20 Micro Therapeutics, Inc. Methods for vascular reconstruction of diseased arteries
WO2002039888A2 (en) 2000-11-15 2002-05-23 Endologix, Inc. Implantable vascular graft
US6942692B2 (en) 2000-11-16 2005-09-13 Cordis Corporation Supra-renal prosthesis and renal artery bypass
US7267685B2 (en) 2000-11-16 2007-09-11 Cordis Corporation Bilateral extension prosthesis and method of delivery
US6582460B1 (en) 2000-11-20 2003-06-24 Advanced Cardiovascular Systems, Inc. System and method for accurately deploying a stent
US20020082620A1 (en) 2000-12-27 2002-06-27 Elaine Lee Bioactive materials for aneurysm repair
US20020169497A1 (en) 2001-01-02 2002-11-14 Petra Wholey Endovascular stent system and method of providing aneurysm embolization
US6858019B2 (en) 2001-01-09 2005-02-22 Rex Medical, L.P. Dialysis catheter and methods of insertion
WO2002067653A2 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
US6602269B2 (en) 2001-03-30 2003-08-05 Scimed Life Systems Embolic devices capable of in-situ reinforcement
US6673105B1 (en) 2001-04-02 2004-01-06 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
US6756007B2 (en) 2001-04-04 2004-06-29 Bard Peripheral Vascular, Inc. Method for preparing an implantable prosthesis for loading into a delivery apparatus
US20040138734A1 (en) 2001-04-11 2004-07-15 Trivascular, Inc. Delivery system and method for bifurcated graft
US6969373B2 (en) 2001-04-13 2005-11-29 Tricardia, Llc Syringe system
US6796960B2 (en) 2001-05-04 2004-09-28 Wit Ip Corporation Low thermal resistance elastic sleeves for medical device balloons
GB0114918D0 (en) 2001-06-19 2001-08-08 Vortex Innovation Ltd Devices for repairing aneurysms
US20030014075A1 (en) 2001-07-16 2003-01-16 Microvention, Inc. Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation
ATE294535T1 (en) 2001-07-26 2005-05-15 Univ Oregon Health Sciences CLOSURE DEVICE FOR A VESSEL AND ATTACHMENT DEVICE
US8465516B2 (en) 2001-07-26 2013-06-18 Oregon Health Science University Bodily lumen closure apparatus and method
US6811560B2 (en) 2001-09-20 2004-11-02 Cordis Neurovascular, Inc. Stent aneurysm embolization method and device
US6802851B2 (en) 2001-09-20 2004-10-12 Gordia Neurovascular, Inc. Stent aneurysm embolization method using collapsible member and embolic coils
US6767359B2 (en) 2001-09-28 2004-07-27 Ethicon, Inc. Prosthesis for the repair of thoracic or abdominal aortic aneurysms and method therefor
US7033389B2 (en) 2001-10-16 2006-04-25 Scimed Life Systems, Inc. Tubular prosthesis for external agent delivery
US7192441B2 (en) 2001-10-16 2007-03-20 Scimed Life Systems, Inc. Aortic artery aneurysm endovascular prosthesis
AUPR847201A0 (en) 2001-10-26 2001-11-15 Cook Incorporated Endoluminal graft
US7029496B2 (en) 2001-11-07 2006-04-18 Scimed Life Systems, Inc. Interlocking endoluminal device
US20060292206A1 (en) 2001-11-26 2006-12-28 Kim Steven W Devices and methods for treatment of vascular aneurysms
US7823267B2 (en) 2001-11-28 2010-11-02 Aptus Endosystems, Inc. Devices, systems, and methods for prosthesis delivery and implantation, including the use of a fastener tool
US20090099650A1 (en) 2001-11-28 2009-04-16 Lee Bolduc Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
CA2464048C (en) 2001-11-28 2010-06-15 Lee Bolduc Endovascular aneurysm repair system
US6929661B2 (en) 2001-11-28 2005-08-16 Aptus Endosystems, Inc. Multi-lumen prosthesis systems and methods
US7799046B2 (en) 2001-12-14 2010-09-21 The General Hospital Corporation Dynamic cannula
US7014653B2 (en) 2001-12-20 2006-03-21 Cleveland Clinic Foundation Furcated endovascular prosthesis
US7125464B2 (en) 2001-12-20 2006-10-24 Boston Scientific Santa Rosa Corp. Method for manufacturing an endovascular graft section
FR2834199B1 (en) 2001-12-27 2004-10-15 Doron Carmi ENDOPROSTHESIS ADAPTED TO THE ENDOLUMINAL ENVIRONMENT
US20030130725A1 (en) 2002-01-08 2003-07-10 Depalma Donald F. Sealing prosthesis
US20030135269A1 (en) 2002-01-16 2003-07-17 Swanstrom Lee L. Laparoscopic-assisted endovascular/endoluminal graft placement
US7029494B2 (en) 2002-02-08 2006-04-18 Scimed Life Systems, Inc. Braided modular stent with hourglass-shaped interfaces
US7235095B2 (en) 2002-02-22 2007-06-26 Scimed Life Systems, Inc. Method and system for deploying multi-part endoluminal devices
AU2003220066A1 (en) 2002-03-06 2003-09-22 Boston Scientific Limited Medical retrieval device
US20030216710A1 (en) 2002-03-26 2003-11-20 Hurt Robert F. Catheter
US7131991B2 (en) 2002-04-24 2006-11-07 Medtronic Vascular, Inc. Endoluminal prosthetic assembly and extension method
US20030204249A1 (en) 2002-04-25 2003-10-30 Michel Letort Endovascular stent graft and fixation cuff
US6918926B2 (en) 2002-04-25 2005-07-19 Medtronic Vascular, Inc. System for transrenal/intraostial fixation of endovascular prosthesis
US7270675B2 (en) 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US7189256B2 (en) 2002-05-10 2007-03-13 Scimed Life Systems, Inc. Endoluminal device and system and method for detecting a change in pressure differential across an endoluminal device
US6780170B2 (en) 2002-05-15 2004-08-24 Liebel-Flarsheim Company Hydraulic remote for a medical fluid injector
US7261733B1 (en) 2002-06-07 2007-08-28 Endovascular Technologies, Inc. Endovascular graft with sensors design and attachment methods
US7264632B2 (en) 2002-06-07 2007-09-04 Medtronic Vascular, Inc. Controlled deployment delivery system
US6748953B2 (en) 2002-06-11 2004-06-15 Scimed Life Systems, Inc. Method for thermal treatment of type II endoleaks in arterial aneurysms
US6833003B2 (en) 2002-06-24 2004-12-21 Cordis Neurovascular Expandable stent and delivery system
US7122051B1 (en) 2002-07-12 2006-10-17 Endovascular Technologies, Inc. Universal length sizing and dock for modular bifurcated endovascular graft
JP2004063081A (en) 2002-07-24 2004-02-26 Renesas Technology Corp Socket for semiconductor package
US7722657B2 (en) 2002-08-23 2010-05-25 William A. Cook Australia Pty. Ltd. Asymmetric stent graft attachment
US7264631B2 (en) 2002-09-16 2007-09-04 Scimed Life Systems, Inc. Devices and methods for AAA management
EP1542616B1 (en) 2002-09-20 2015-04-22 Endologix, Inc. Stent-graft with positioning anchor
US20040098096A1 (en) 2002-10-22 2004-05-20 The University Of Miami Endograft device to inhibit endoleak and migration
EP1558144A2 (en) 2002-10-23 2005-08-03 The Biomerix Corporation Aneurysm treatment devices and methods
US7588825B2 (en) 2002-10-23 2009-09-15 Boston Scientific Scimed, Inc. Embolic compositions
US6923829B2 (en) 2002-11-25 2005-08-02 Advanced Bio Prosthetic Surfaces, Ltd. Implantable expandable medical devices having regions of differential mechanical properties and methods of making same
US20040106199A1 (en) 2002-12-02 2004-06-03 Eliseev Alexey V. Charged cyclodextrin derivatives and their use in plant cell and tissue culture growth media
DK1567093T3 (en) 2002-12-04 2009-04-06 Cook Inc Method and apparatus for treating aortic dissection
US6849084B2 (en) 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
FR2849602B1 (en) 2003-01-06 2008-09-05 Assist Publ Hopitaux De Paris INJECTABLE GELIFYING SOLUTIONS BASED ON RETICULATED AND NON-RETICULATED POLYMERS, AND THEIR APPLICATIONS
US7025779B2 (en) 2003-02-26 2006-04-11 Scimed Life Systems, Inc. Endoluminal device having enhanced affixation characteristics
WO2004093746A1 (en) 2003-03-26 2004-11-04 The Foundry Inc. Devices and methods for treatment of abdominal aortic aneurysm
US8109987B2 (en) 2003-04-14 2012-02-07 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7241308B2 (en) 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US20050028484A1 (en) 2003-06-20 2005-02-10 Littlewood Richard W. Method and apparatus for sleeving compressed bale materials
US20050060025A1 (en) 2003-09-12 2005-03-17 Mackiewicz David A. Radiopaque markers for medical devices
US20050059994A1 (en) 2003-09-17 2005-03-17 Steven Walak Fatigue resistant medical devices
US20050065592A1 (en) 2003-09-23 2005-03-24 Asher Holzer System and method of aneurism monitoring and treatment
WO2005032340A2 (en) 2003-09-29 2005-04-14 Secant Medical, Llc Integral support stent graft assembly
US20050113693A1 (en) 2003-10-03 2005-05-26 Smith Stephen W. Kits including 3-D ultrasound imaging catheters, connectable deployable tools, and deployment devices for use in deployment of such tools
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
DE602004022842D1 (en) 2003-10-10 2009-10-08 Cleveland Clinic Foundation ENDOLUMINAL PROSTHESIS WITH COMPOUND MODULES
US7553324B2 (en) 2003-10-14 2009-06-30 Xtent, Inc. Fixed stent delivery devices and methods
US20050090804A1 (en) 2003-10-22 2005-04-28 Trivascular, Inc. Endoluminal prosthesis endoleak management
WO2005046526A1 (en) 2003-11-08 2005-05-26 Cook Incorporated Aorta and branch vessel stent grafts, system and methods
US7597705B2 (en) 2003-12-03 2009-10-06 St. Jude Medical Puerto Rico Llc Vascular puncture seal anchor nest
CA2552649A1 (en) 2004-01-07 2005-07-28 Boston Scientific Santa Rosa Corporation Methods, compositions, and devices for embolizing body lumens
ATE434991T1 (en) 2004-01-20 2009-07-15 Cook Inc ENDOLUMINAL STENT-GRAFT WITH SEWN ATTACHMENT
US20050165480A1 (en) 2004-01-23 2005-07-28 Maybelle Jordan Endovascular treatment devices and methods
US20050240153A1 (en) 2004-01-23 2005-10-27 Opie John C Vascular sheath
WO2005072652A1 (en) 2004-01-27 2005-08-11 Med Institute, Inc. Anchoring barb for attachment to a medical prosthesis
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US7727228B2 (en) 2004-03-23 2010-06-01 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters
JP4443278B2 (en) 2004-03-26 2010-03-31 テルモ株式会社 Catheter with expansion body
DE602005020754D1 (en) 2004-03-31 2010-06-02 Cook Inc TRANSPLANT MATERIAL AND VASCOPY THERAPY WITH EXTRACELLULAR COLLAGEN MATRIX AND ITS MANUFACTURING PROCESS
US7674284B2 (en) 2004-03-31 2010-03-09 Cook Incorporated Endoluminal graft
US20070078506A1 (en) 2004-04-13 2007-04-05 Mccormick Paul Method and apparatus for decompressing aneurysms
WO2005099807A2 (en) 2004-04-13 2005-10-27 Endologix, Inc. Method and apparatus for decompressing aneurysms
US7311861B2 (en) 2004-06-01 2007-12-25 Boston Scientific Scimed, Inc. Embolization
US20050271727A1 (en) 2004-06-07 2005-12-08 Callisyn Pharmaceuticals, Inc. Biodegradable and biocompatible crosslinked polymer hydrogel prepared from PVA and/or PEG macromer mixtures
US8048145B2 (en) 2004-07-22 2011-11-01 Endologix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
EP1778131B1 (en) 2004-07-22 2012-01-11 Nellix, Inc. Systems for endovascular aneurysm treatment
US20060030911A1 (en) 2004-08-03 2006-02-09 Medtronic Vascular, Inc. Stabilization of aortic iliac neck diameter by use of radio frequency
ATE486542T1 (en) 2004-09-28 2010-11-15 Cook William A Australia DEVICE FOR TREATING AORTIC DISSECTION
US20060074481A1 (en) 2004-10-04 2006-04-06 Gil Vardi Graft including expandable cuff
US7699883B2 (en) * 2004-10-25 2010-04-20 Myles Douglas Vascular graft and deployment system
US20060167538A1 (en) 2004-12-23 2006-07-27 Rucker Brian K Inflatable biliary stent
US7476232B2 (en) 2005-03-04 2009-01-13 Boston Scientific Scimed, Inc. Access catheter having dilation capability and related methods
US7766959B2 (en) 2005-03-25 2010-08-03 Scimed Life Systems, Inc. Variable length endovascular graft prosthesis adapted to prevent endoleaks
US7402168B2 (en) 2005-04-11 2008-07-22 Xtent, Inc. Custom-length stent delivery system with independently operable expansion elements
US20060233990A1 (en) 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
US20060233991A1 (en) 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
US20070016243A1 (en) 2005-06-28 2007-01-18 Venkatesh Ramaiah Non-occlusive, retrievable dilation system
EP1903985A4 (en) 2005-07-07 2010-04-28 Nellix Inc Systems and methods for endovascular aneurysm treatment
US7833259B2 (en) 2005-07-25 2010-11-16 Cook Incorporated Fenestrated endoluminal stent system
US8133249B2 (en) 2005-07-28 2012-03-13 Ethicon Endo-Surgery, Inc. Devices and methods for stricture dilation
WO2007016261A2 (en) 2005-07-29 2007-02-08 Cvdevices, Llc Magnetic devices and methods for septal occlusion
US8343204B2 (en) 2005-10-31 2013-01-01 Cook Medical Technologies Llc Composite stent graft
AU2006321912B2 (en) 2005-12-06 2012-07-12 Covidien Lp Carbodiimide crosslinking of functionalized polethylene glycols
US20070150041A1 (en) 2005-12-22 2007-06-28 Nellix, Inc. Methods and systems for aneurysm treatment using filling structures
ES2524778T3 (en) 2006-02-01 2014-12-12 The Cleveland Clinic Foundation An apparatus to increase blood flow through a clogged blood vessel
US9155641B2 (en) 2006-03-09 2015-10-13 Cook Medical Technologies Llc Expandable stent grafts
US8828074B2 (en) 2006-04-21 2014-09-09 Medtronic Vascular, Inc. Stent graft having short tube graft for branch vessel
WO2007131189A2 (en) 2006-05-05 2007-11-15 Eidosmed Llc Stent device for anastomoses of tubular organs
US7790273B2 (en) 2006-05-24 2010-09-07 Nellix, Inc. Material for creating multi-layered films and methods for making the same
GB0616738D0 (en) 2006-08-23 2006-10-04 Evexar Medical Ltd Improvements in and relating to medical devices
US20080071343A1 (en) 2006-09-15 2008-03-20 Kevin John Mayberry Multi-segmented graft deployment system
US20080091057A1 (en) 2006-10-11 2008-04-17 Cardiac Pacemakers, Inc. Method and apparatus for passive left atrial support
US20080109055A1 (en) 2006-11-02 2008-05-08 Sage Medical Technologies, Inc. Implant for aortic dissection and methods of use
US20080114440A1 (en) 2006-11-13 2008-05-15 Sage Medical Technologies, Inc Methods and devices for deploying an implant in curved anatomy
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
US20080228259A1 (en) 2007-03-16 2008-09-18 Jack Fa-De Chu Endovascular devices and methods to protect aneurysmal wall
US20080275536A1 (en) 2007-04-30 2008-11-06 Zarins Christopher K Prevention of displacement of prosthetic devices within aneurysms
US20090068279A1 (en) 2007-09-12 2009-03-12 Boston Scientific Scimed, Inc. Microspheres with surface projections
CA2699685A1 (en) 2007-09-25 2009-04-02 Surmodics, Inc. Durable swellable hydrogel matrix and methods
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US20090105806A1 (en) 2007-10-23 2009-04-23 Endologix, Inc Stent
US8002816B2 (en) 2007-12-21 2011-08-23 Cleveland Clinic Foundation Prosthesis for implantation in aorta and method of using same
US8574284B2 (en) 2007-12-26 2013-11-05 Cook Medical Technologies Llc Low profile non-symmetrical bare alignment stents with graft
JP2011511701A (en) 2008-02-13 2011-04-14 ネリックス・インコーポレーテッド Graft inner frame with axially variable properties
US8221494B2 (en) 2008-02-22 2012-07-17 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
US20090264993A1 (en) 2008-04-18 2009-10-22 Medtronic Vascular, Inc. Endovascular Prosthesis for Ascending Aorta
US20090270965A1 (en) 2008-04-24 2009-10-29 Medtronic Vascular, Inc. Endovascular Prosthesis for Ascending Aorta
AU2009240419A1 (en) 2008-04-25 2009-10-29 Nellix, Inc. Stent graft delivery system
US20090287145A1 (en) 2008-05-15 2009-11-19 Altura Interventional, Inc. Devices and methods for treatment of abdominal aortic aneurysms
CA2726596A1 (en) 2008-06-04 2009-12-10 Nellix, Inc. Sealing apparatus and methods of use
AU2009262832A1 (en) 2008-06-04 2009-12-30 Nellix, Inc. Docking apparatus and methods of use
GB2464977B (en) 2008-10-31 2010-11-03 William Cook Europe As Introducer for deploying a stent graft in a curved lumen and stent graft therefor
EP2429452B1 (en) 2009-04-28 2020-01-15 Endologix, Inc. Endoluminal prosthesis system
WO2010127305A2 (en) 2009-05-01 2010-11-04 Endologix, Inc. Percutaneous method and device to treat dissections
US8876849B2 (en) 2010-07-20 2014-11-04 Cook Medical Technologies Llc False lumen occluder
US9393100B2 (en) 2010-11-17 2016-07-19 Endologix, Inc. Devices and methods to treat vascular dissections
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US8911468B2 (en) 2011-01-31 2014-12-16 Vatrix Medical, Inc. Devices, therapeutic compositions and corresponding percutaneous treatment methods for aortic dissection

Patent Citations (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437542A (en) * 1944-05-05 1948-03-09 American Catheter Corp Catheter-type instrument
US4497074A (en) * 1976-04-05 1985-02-05 Agence National De Valorisation De La Recherche (Anvar) Organ prostheses
US4503568A (en) * 1981-11-25 1985-03-12 New England Deaconess Hospital Small diameter vascular bypass and method
US4501263A (en) * 1982-03-31 1985-02-26 Harbuck Stanley C Method for reducing hypertension of a liver
US5275622A (en) * 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
USRE34866E (en) * 1987-02-17 1995-02-21 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US4816028A (en) * 1987-07-01 1989-03-28 Indu Kapadia Woven vascular graft
US4981947A (en) * 1987-12-24 1991-01-01 Tosoh Corporation Aromatic sulfideamide polymer and method for producing the same
US4981478A (en) * 1988-09-06 1991-01-01 Advanced Cardiovascular Systems Composite vascular catheter
US5078726A (en) * 1989-02-01 1992-01-07 Kreamer Jeffry W Graft stent and method of repairing blood vessels
US5178634A (en) * 1989-03-31 1993-01-12 Wilson Ramos Martinez Aortic valved tubes for human implants
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5593422A (en) * 1989-05-29 1997-01-14 Muijs Van De Moer; Wouter M. Occlusion assembly for sealing openings in blood vessels and a method for sealing openings in blood vessels
US5591229A (en) * 1990-06-11 1997-01-07 Parodi; Juan C. Aortic graft for repairing an abdominal aortic aneurysm
US5282824A (en) * 1990-10-09 1994-02-01 Cook, Incorporated Percutaneous stent assembly
US5609625A (en) * 1991-04-11 1997-03-11 Endovascular Technologies, Inc. Endovascular graft having bifurcation and apparatus and method for deploying the same
US5489295A (en) * 1991-04-11 1996-02-06 Endovascular Technologies, Inc. Endovascular graft having bifurcation and apparatus and method for deploying the same
US5197976A (en) * 1991-09-16 1993-03-30 Atrium Medical Corporation Manually separable multi-lumen vascular graft
US5282860A (en) * 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
US5387235A (en) * 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5720776A (en) * 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5607445A (en) * 1992-06-18 1997-03-04 American Biomed, Inc. Stent for supporting a blood vessel
US5496365A (en) * 1992-07-02 1996-03-05 Sgro; Jean-Claude Autoexpandable vascular endoprosthesis
US5383897A (en) * 1992-10-19 1995-01-24 Shadyside Hospital Method and apparatus for closing blood vessel punctures
US5484444A (en) * 1992-10-31 1996-01-16 Schneider (Europe) A.G. Device for the implantation of self-expanding endoprostheses
US6027811A (en) * 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall intraluminal graft
US5718973A (en) * 1993-08-18 1998-02-17 W. L. Gore & Associates, Inc. Tubular intraluminal graft
US6027779A (en) * 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US5723004A (en) * 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5733325A (en) * 1993-11-04 1998-03-31 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system
US5871536A (en) * 1993-11-08 1999-02-16 Lazarus; Harrison M. Intraluminal vascular graft and method
US5716365A (en) * 1994-02-09 1998-02-10 Boston Scientific Technologies, Inc. Bifurcated endoluminal prosthesis
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5718724A (en) * 1994-02-09 1998-02-17 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US6039749A (en) * 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
US6168610B1 (en) * 1994-02-10 2001-01-02 Endovascular Systems, Inc. Method for endoluminally excluding an aortic aneurysm
US5716393A (en) * 1994-05-26 1998-02-10 Angiomed Gmbh & Co. Medizintechnik Kg Stent with an end of greater diameter than its main body
US6350278B1 (en) * 1994-06-08 2002-02-26 Medtronic Ave, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5397355A (en) * 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5591230A (en) * 1994-09-07 1997-01-07 Global Therapeutics, Inc. Radially expandable stent
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5609628A (en) * 1995-04-20 1997-03-11 Keranen; Victor J. Intravascular graft and catheter
US6171281B1 (en) * 1995-04-21 2001-01-09 Medtronic Ave, Inc. Interlocking catheter assembly
US5591198A (en) * 1995-04-27 1997-01-07 Medtronic, Inc. Multiple sinusoidal wave configuration stent
US6183509B1 (en) * 1995-05-04 2001-02-06 Alain Dibie Endoprosthesis for the treatment of blood-vessel bifurcation stenosis and purpose-built installation device
US5713917A (en) * 1995-10-30 1998-02-03 Leonhardt; Howard J. Apparatus and method for engrafting a blood vessel
US6348066B1 (en) * 1995-11-07 2002-02-19 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
US5709703A (en) * 1995-11-14 1998-01-20 Schneider (Europe) A.G. Stent delivery device and method for manufacturing same
US5593417A (en) * 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
US5604435A (en) * 1995-12-29 1997-02-18 General Electric Company Spiral scanning method for monitoring physiological changes
US7491230B2 (en) * 1996-02-13 2009-02-17 Boston Scientific Scimed, Inc. Endovascular apparatus
US5867432A (en) * 1996-04-23 1999-02-02 Kabushiki Kaisha Toshiba Clock control circuit
US5860998A (en) * 1996-11-25 1999-01-19 C. R. Bard, Inc. Deployment device for tubular expandable prosthesis
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US5879321A (en) * 1997-01-22 1999-03-09 The University Of Kentucky Research Foundation Portocaval-right atrial shunt
US6030415A (en) * 1997-01-29 2000-02-29 Endovascular Technologies, Inc. Bell-bottom modular stent-graft
US6039755A (en) * 1997-02-05 2000-03-21 Impra, Inc., A Division Of C.R. Bard, Inc. Radially expandable tubular polytetrafluoroethylene grafts and method of making same
US5720735A (en) * 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
US5868783A (en) * 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
US6027520A (en) * 1997-05-08 2000-02-22 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US5855599A (en) * 1997-09-02 1999-01-05 Sitek, Inc. Silicon micro machined occlusion implant
US6017363A (en) * 1997-09-22 2000-01-25 Cordis Corporation Bifurcated axially flexible stent
US6520988B1 (en) * 1997-09-24 2003-02-18 Medtronic Ave, Inc. Endolumenal prosthesis and method of use in bifurcation regions of body lumens
US6524335B1 (en) * 1997-12-10 2003-02-25 William A. Cook Australia Pty. Ltd. Endoluminal aortic stents
US20020013618A1 (en) * 1998-02-12 2002-01-31 Marotta Thomas R. Endovascular prosthesis
US6511325B1 (en) * 1998-05-04 2003-01-28 Advanced Research & Technology Institute Aortic stent-graft calibration and training model
US6508833B2 (en) * 1998-06-02 2003-01-21 Cook Incorporated Multiple-sided intraluminal medical device
US6192944B1 (en) * 1998-08-14 2001-02-27 Prodesco, Inc. Method of forming a textile member with undulating wire
US6514281B1 (en) * 1998-09-04 2003-02-04 Scimed Life Systems, Inc. System for delivering bifurcation stents
US6508835B1 (en) * 1998-12-11 2003-01-21 Endologix, Inc. Endoluminal vascular prosthesis
US6187036B1 (en) * 1998-12-11 2001-02-13 Endologix, Inc. Endoluminal vascular prosthesis
US20060020320A1 (en) * 1998-12-11 2006-01-26 Shaolian Samuel M Bifurcation graft deployment catheter
US6981982B2 (en) * 1999-01-22 2006-01-03 Gore Enterprise Holdings, Inc. Method of producing low profile stent and graft combination
US6231597B1 (en) * 1999-02-16 2001-05-15 Mark E. Deem Apparatus and methods for selectively stenting a portion of a vessel wall
US6309367B1 (en) * 1999-07-23 2001-10-30 Neurovasx, Inc. Aneurysm shield
US6183481B1 (en) * 1999-09-22 2001-02-06 Endomed Inc. Delivery system for self-expanding stents and grafts
US6514282B1 (en) * 1999-10-04 2003-02-04 Kanji Inoue Method of folding transplanting instrument and transplanting instrument
US6517572B2 (en) * 1999-12-03 2003-02-11 Teramaed, Inc. Endovascular graft system
US7004967B2 (en) * 2000-01-31 2006-02-28 Scimed Life Systems, Inc. Process for manufacturing a braided bifurcated stent
US6517573B1 (en) * 2000-04-11 2003-02-11 Endovascular Technologies, Inc. Hook for attaching to a corporeal lumen and method of manufacturing
US7314483B2 (en) * 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US7160318B2 (en) * 2001-03-28 2007-01-09 Cook Incorporated Modular stent graft assembly and use thereof
US20030004560A1 (en) * 2001-04-11 2003-01-02 Trivascular, Inc. Delivery system and method for bifurcated graft
US7163715B1 (en) * 2001-06-12 2007-01-16 Advanced Cardiovascular Systems, Inc. Spray processing of porous medical devices
US6994722B2 (en) * 2001-07-03 2006-02-07 Scimed Life Systems, Inc. Implant having improved fixation to a body lumen and method for implanting the same
US7004964B2 (en) * 2002-02-22 2006-02-28 Scimed Life Systems, Inc. Apparatus and method for deployment of an endoluminal device
US7879081B2 (en) * 2002-05-03 2011-02-01 Boston Scientific Scimed, Inc. Hypotube endoluminal device and method
US7320703B2 (en) * 2002-06-21 2008-01-22 Dimatteo Kristian Method for inserting a prosthesis
US7175652B2 (en) * 2002-08-20 2007-02-13 Cook Incorporated Stent graft with improved proximal end
US6984244B2 (en) * 2003-03-27 2006-01-10 Endovascular Technologies, Inc. Delivery system for endoluminal implant
US20050038494A1 (en) * 2003-08-15 2005-02-17 Scimed Life Systems, Inc. Clutch driven stent delivery system
US7651519B2 (en) * 2003-09-16 2010-01-26 Cook Incorporated Prosthesis deployment system
US7175657B2 (en) * 2004-07-28 2007-02-13 Cordis Corporation AAA device having connected bifurcated legs
US20070014868A1 (en) * 2005-07-15 2007-01-18 Cormatrix Cardiovascular, Inc. Patch for reconstruction, replacement or repair of the pericardial sac
US20070168013A1 (en) * 2006-01-19 2007-07-19 Myles Douglas Vascular graft and deployment system
US20080221600A1 (en) * 2006-08-17 2008-09-11 Dieck Martin S Isolation devices for the treatment of aneurysms
US20080114436A1 (en) * 2006-08-17 2008-05-15 Dieck Martin S Aneurysm covering devices and delivery devices
US20090018638A1 (en) * 2007-07-10 2009-01-15 Cook Incorporated Minimally invasive medical device and method for delivery of therapeutic or diagnostic agents into a vessel wall
US20090018635A1 (en) * 2007-07-10 2009-01-15 Boston Scientific Scimed, Inc. Stent protector
US20090264914A1 (en) * 2007-12-11 2009-10-22 Howard Riina Method and apparatus for sealing an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while maintaining substantially normal flow through the body lumen
US20090228029A1 (en) * 2008-03-05 2009-09-10 Neuro Vasx, Inc. Aneurysm shield anchoring device
US20100004730A1 (en) * 2008-07-01 2010-01-07 Endologix, Inc. Catheter system and methods of using same
US20100094335A1 (en) * 2008-09-05 2010-04-15 Pulsar Vascular, Inc. Systems and methods for supporting or occluding a physiological opening or cavity
US20110015718A1 (en) * 2009-07-15 2011-01-20 Endologix, Inc. Stent graft
US20110022153A1 (en) * 2009-07-27 2011-01-27 Endologix, Inc. Stent graft

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
US9579103B2 (en) 2009-05-01 2017-02-28 Endologix, Inc. Percutaneous method and device to treat dissections
US8491646B2 (en) 2009-07-15 2013-07-23 Endologix, Inc. Stent graft
US9757262B2 (en) 2009-07-15 2017-09-12 Endologix, Inc. Stent graft
US9393100B2 (en) 2010-11-17 2016-07-19 Endologix, Inc. Devices and methods to treat vascular dissections
US8911468B2 (en) * 2011-01-31 2014-12-16 Vatrix Medical, Inc. Devices, therapeutic compositions and corresponding percutaneous treatment methods for aortic dissection
US20120197284A1 (en) * 2011-01-31 2012-08-02 Ogle Matthew F Devices, therapeutic compositions and corresponding percutaneous treatment methods for aortic dissection
US20150065945A1 (en) * 2012-03-08 2015-03-05 Denise Zarins Spinal neuromodulation and associated systems and methods
GB2523291A (en) * 2013-10-16 2015-08-26 Cook Medical Technologies Llc Vascular Occluder with Crossing Frame Elements
GB2523291B (en) * 2013-10-16 2016-02-24 Cook Medical Technologies Llc Vascular occluder with crossing frame elements
EP2862524A1 (en) * 2013-10-16 2015-04-22 Cook Medical Technologies LLC Vascular occluder with crossing frame elements
US9844653B2 (en) 2013-10-16 2017-12-19 Cook Medical Technologies Llc Vascular occluder with crossing frame elements
US11559386B2 (en) 2017-07-07 2023-01-24 Endologix Llc Endovascular graft systems and methods for deployment in main and branch arteries

Also Published As

Publication number Publication date
EP2424447A2 (en) 2012-03-07
US9579103B2 (en) 2017-02-28
WO2010127305A3 (en) 2011-03-10
WO2010127305A2 (en) 2010-11-04
JP2012525239A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
US9579103B2 (en) Percutaneous method and device to treat dissections
US10842618B2 (en) Endoluminal prosthesis comprising a valve and an axially extendable segment
EP2491892B1 (en) Stent graft with valve arrangement and introducer assembly therefor
EP1401357B1 (en) Implant having means for fixation to a body lumen
EP2965722B1 (en) Branched covered stent, conveying system comprising same and manufacturing method thereof
JP5458324B2 (en) Thin medical device
EP1278482B1 (en) Endovascular stent graft
US7674284B2 (en) Endoluminal graft
JP4405262B2 (en) Intravascular aneurysm repair system
EP2007313B1 (en) Stent graft
US20160302798A1 (en) Devices and methods to treat vascular dissections
US20070162109A1 (en) Intraluminal stent graft
US10952881B2 (en) Branch endograft delivery
JPH09117511A (en) Combining assembly of stend and blood vessel transplant piece
WO2010120417A1 (en) Prosthesis for antegrade deployment
US7815656B2 (en) Method for endovascular bypass stent graft delivery
JP2013500748A (en) One piece branch graft
US11571291B2 (en) Percutaneous method and device to treat dissections
US10149777B2 (en) Orientation marker on pusher for deployment of endoluminal prostheses

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENDOLOGIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHRECK, STEFAN G.;REEL/FRAME:024653/0956

Effective date: 20100630

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT,

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:042141/0354

Effective date: 20170403

Owner name: DEERFIELD ELGX REVOLVER, LLC, AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:042146/0454

Effective date: 20170403

Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:042141/0354

Effective date: 20170403

AS Assignment

Owner name: ENDOLOGIX, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEERFIELD ELGX REVOLVER, LLC, AS AGENT;REEL/FRAME:045059/0971

Effective date: 20180112

Owner name: TRIVASCULAR, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEERFIELD ELGX REVOLVER, LLC, AS AGENT;REEL/FRAME:045059/0971

Effective date: 20180112

Owner name: NELLIX, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEERFIELD ELGX REVOLVER, LLC, AS AGENT;REEL/FRAME:045059/0971

Effective date: 20180112

AS Assignment

Owner name: DEERFIELD ELGX REVOLVER, LLC, AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:046762/0169

Effective date: 20180809

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, MINNESOTA

Free format text: SECURITY INTEREST;ASSIGNOR:ENDOLOGIX, INC.;REEL/FRAME:052918/0530

Effective date: 20200224

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

AS Assignment

Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX LLC (F/K/A ENDOLOGIX, INC.);NELLIX, INC.;TRIVASCULAR TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:053971/0052

Effective date: 20201001

Owner name: ENDOLOGIX LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ENDOLOGIX, INC.;REEL/FRAME:053971/0135

Effective date: 20201001

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:ENDOLOGIX LLC;REEL/FRAME:055794/0911

Effective date: 20210330