US20100109510A1 - Functionalized carbon nanotubes - Google Patents

Functionalized carbon nanotubes Download PDF

Info

Publication number
US20100109510A1
US20100109510A1 US12/564,750 US56475009A US2010109510A1 US 20100109510 A1 US20100109510 A1 US 20100109510A1 US 56475009 A US56475009 A US 56475009A US 2010109510 A1 US2010109510 A1 US 2010109510A1
Authority
US
United States
Prior art keywords
cnts
recited
substrate
biological
functionalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/564,750
Inventor
Zvi Yaniv
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Nanotech Holdings Inc
Original Assignee
Applied Nanotech Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Nanotech Holdings Inc filed Critical Applied Nanotech Holdings Inc
Priority to US12/564,750 priority Critical patent/US20100109510A1/en
Publication of US20100109510A1 publication Critical patent/US20100109510A1/en
Assigned to NANO-PROPRIETARY, INC. reassignment NANO-PROPRIETARY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YANIV, ZVI
Assigned to APPLIED NANOTECH HOLDINGS, INC. reassignment APPLIED NANOTECH HOLDINGS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NANO-PROPRIETARY, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/702Integrated with dissimilar structures on a common substrate having biological material component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/707Integrated with dissimilar structures on a common substrate having different types of nanoscale structures or devices on a common substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • Y10S977/746Modified with biological, organic, or hydrocarbon material

Definitions

  • the present invention relates in general to carbon nanotubes, and in particular, to the functionalization of carbon nanotubes.
  • Carbon Nanotubes are used in their electron emission mode for many applications.
  • the CNTs are deposited on a substrate, resulting in the field emission cathode.
  • the CNTs are operated at high fields, and their adherence to the cathode substrate is very important.
  • CVD chemical vapor deposition
  • the other method is the use of CNTs that are already manufactured, in which case, in order to secure the adherence of the CNTs to the cathode substrate, inks and pastes, etc., may be utilized. Although these inks and pastes assist in adherence of these types of CNTs to the substrate, the emission characteristics of the carbon nanotubes are changed, and an activation process may be required to free the carbon nanotubes from the adhesion layer constituted of inks or pastes. These inks or pastes are based on a mixture of organic and inorganic materials. In general, the CNTs in inks and pastes have a higher threshold voltage, their electron emission is not uniform, and as a result, it is very difficult to produce high quality CNT televisions. Furthermore, the organic materials may disturb the high vacuum necessary for electron emission operation.
  • FIG. 1 illustrates carbon nanotubes grown on a substrate and having different lengths
  • FIG. 2 illustrates immersion of the CNTs in streptavidin
  • FIG. 3 illustrates a functionalized CNT
  • FIG. 4 illustrates a substrate coated with biotin
  • FIG. 5 illustrates streptavidin-absorbed CNTs having a high affinity for biotin
  • FIG. 6 illustrates a field emission device
  • FIG. 7 illustrates DNA utilized to bind CNTs to a substrate
  • FIG. 8 illustrates another embodiment of the present invention.
  • an embodiment of the present invention is described around one example of making cathodes for CNT televisions, this invention is not limited to these types of devices.
  • embodiments of the present invention are applicable to other bodies, antibodies or chemicals that have specific abilities to bind between them or bind in a localized fashion along the length of the CNT.
  • At least one embodiment of the present invention uses precise location functionalization of CNTs over the length of the CNTs. For example, in some cases one would like to functionalize only a small portion in one of the ends of a CNT or both ends. In other situations, one may want to functionalize the CNT in the middle part of its length. If, for example, one were able to functionalize only one end of the CNT, and not its entire length, and then find a way to anchor this localized functionalized CNT on the substrate, a situation is achieved where a multitude of CNTs are all anchored in one end to the substrate, having the majority of their length available to direct themselves toward the anode when an electric field is applied.
  • This method in this case solves the issue of activation, the use of inks or pastes (improving the vacuum necessary in the device), and also can be utilized to screen the very long or very short CNTs with respect to the average desired length. Furthermore, it is easier to control the density of carbon nanotubes on the substrate.
  • CNT cathode may be used for electron emission in a CNT TV or other products.
  • These cathodes may be made such that the CNTs are strongly attached to the substrate only at one of their ends and when they bend in the field they are substantially the same length, achieving in such a way a very uniform electron emission pattern, and as a result light emission uniformity from the anode.
  • a process of the present invention begins with CNTs 101 grown on a wafer 102 by one of various methods known in the industry.
  • perpendicular CNTs 101 may be grown by a CVD process on a wafer 102 such that the CNTs 101 are parallel to each other having more or less an average height, h, with CNTs 101 longer and shorter than h.
  • the maximum length is L and the minimum length is l.
  • the wafer 102 with the CNTs 101 grown on it may be immersed into a functionalizing agent 203 with nanometric precision through a precise immersion apparatus, and wafer holder 204 as shown in FIG. 2 . Because it may be desired to have the height of the CNTs 101 on the final cathode to be approximately h in the electric field, the wafer 102 may be immersed such that only the ends of the CNTs 101 having a length h or greater will be immersed in the functionalizing agent 203 .
  • streptavidin may be used, which has very specific binding properties to another chemical, biotin. Referring to FIG.
  • streptavidin homogeneously covers the immersed parts of the CNTs by adsorption as was indicated by fluorescence microscopy (see, Braun et al., DNA - Templated Carbon Nanotube Field - Effect Transistor, Science, Vol. 302, Nov. 21, 2003).
  • fluorescence microscopy see, Braun et al., DNA - Templated Carbon Nanotube Field - Effect Transistor, Science, Vol. 302, Nov. 21, 2003.
  • the CNTs 101 on the water 102 are harvested by controlled chemical etching (using piranha and ammonium persulfate solutions), laser, microtome or other method.
  • a substrate 301 e.g., glass
  • a material that has high affinity to streptavidin in the present example, biotin 302 may be used.
  • biotin 302 may be used.
  • These coating can be covalently attached to the substrate surface through thiol-, sulfhydryl- or amine-based surface modifications.
  • a silanized glass or indium-tin oxide (ITO) surface presenting amine groups can be reacted with the N-hydroxysuccinimide (NHS) ester group of biotin-NHS creating a covalent linkage between the substrate and biotin.
  • ITO indium-tin oxide
  • the substrate 301 coated with biotin 302 localizes the streptavidin-adsorbed CNTs 401 to the cathode surface.
  • the functionalized CNTs are deposited on the cathode substrate. Due to the strong specific binding between streptavidin and biotin, all the CNTs that were functionalized with streptavidin will bind to the substrate while all the CNTs not functionalized with streptavidin will not be bound to the substrate and will be washed off as shown in FIG. 5 .
  • height h is defined and controlled by the depth of precise wafer insertion into the functionalizing agent (e.g., streptavidin), and is effectively uniform across the population of CNTs harvested from the wafer.
  • the functionalized area of the free-end region of the CNTs is variable due to the variable native length of the CNTs as grown on the wafer.
  • This variable functionalized region will adhere to the surface (e.g., at biotin layer), leaving h available to bend in the electric field toward the anode, as depicted in FIG. 6 .
  • the streptavidin-biotin linkage 601 is depicted as a simplified rectangle on the surface of the substrate.
  • the rectangle 601 illustrates the variable area of binding between the CNT 401 and the biotin layer.
  • FIG. 6 also illustrates how a field emission device, such as a display, may be created.
  • a phosphor (not shown) may be added to the anode.
  • biotin-streptavidin linkage may be reversed in this process so that the streptavidin is on the second substrate in FIG. 4 .
  • this process can be modified, for example by using complementary strands of short deoxyribonucleic acid (DNA) oligomers.
  • DNA short deoxyribonucleic acid
  • One single-stranded oligomer (Strand 1 ) is covalently attached to the cathode surface using numerous available chemistries including but not limited to disulfide bonding, esterification, or amidation.
  • DNA oligomers generally of length less than 100 nucleotides, can be designed with assorted 3′ or 5′ end-modifications that allow for covalent attachment to surfaces, for example a 5′ amine (NH2) terminus.
  • NH2 5′ amine
  • the substrate is derivatized with a carboxyl(COOH)-terminated silane, a condensation reaction will covalently link the DNA oligomer to the surface through an amide bond.
  • the ability of each derivatized surface to attach nucleic acid oligomers varies, depending on the functional groups and the attachment condition. The chemistries of these interactions can be exploited following well-established genetic microarray and biosensor techniques (Beier and Hoheisel, Versatile derivatization of solid support media for covalent bonding on DNA-microchips, Nucleic Acids Research, Vol. 27, pp. 1970-1977).
  • This strand can even be patterned on the cathode if needed by DNA microarray printing techniques which utilize automated micro-volume printers to achieve high-density gridded arrays of DNA or similar biological material; mask fabrication which can control patterning of an e-beam deposited oxide to protect specified regions from DNA or biotin conjugation; or other method.
  • the complementary “sequence” oligomer (Strand 2 ) is covalently attached specifically to the CNT terminus by “precise insertion” method by the process described in FIG. 2 , where the functionalizing solution is DNA oligomer.
  • the CNTs can be carboxyl-functionalized (CNT-COOH) by acid treatment via precise insertion described here in H 2 SO 4 —HNO 3 solution or commercially purchased as-modified.
  • the NH 2 -terminated DNA can be covalently linked to the CNT-COOH by condensation reaction, resulting in CNT-Strand 2 complexes.
  • the DNA Strand 2 functionalized CNTs can now be localized to the Strand 1 derivatized cathode by the inherent annealing of complementary nucleic acid strands. In this case, the length of the double-stranded DNA complex is on the nanometer scale, while the CNT itself is microns in length.
  • an alternate mechanism using long DNA may be designed using homologous DNA recombination via the RecA protein, as partially described by Erez Braun and associates (Braun et al., DNA-Templated Carbon Nanotube Field-Effect Transistor, Science, Vol. 302, Nov. 21, 2003.)
  • ssDNA single-stranded DNA
  • PCR polymerase chain reaction
  • linear double-stranded lambda phage genome is covalently attached to the cathode surface through standard surface chemistry, examples of which are described above.
  • the RecA polymerized ssDNA is incubated with the ds-lambda-DNA-derivatized cathode and homologous recombination occurs, mediated by RecA. Now the RecA resides with the dsDNA complex on the cathode surface.
  • anti-RecA antibody is added to the cathode-dsDNA-RecA complex. The anti-RecA antibody binds RecA.
  • a biotinylated secondary antibody e.g., commercially available anti-mouse, anti-rabbit, etc.
  • Streptavidin-adsorbed CNTs (as in FIG. 2 ) are then localized to the cathode via the biotin moiety, and the process continues accordingly.
  • the length of the double-stranded DNA-antibody complex is similar to the CNT itself.

Abstract

Carbon nanotubes are grown on a first substrate. The CNTs grown on the first substrate are immersed in a biological solution at a predetermined depth to functionalize ends of the CNTs with a biological molecule. The functionalized CNTs are harvested from the first substrate. A second substrate is functionalized with a complementary biological modification, which is a complementary binding partner to the biological molecule functionalized to the ends of the CNTs. The functionalized CNTs are attached to the second substrate by way of the complementary binding partner.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 11/625,653 filed Jan. 22, 2007 and claims priority to U.S. provisional patent application Ser. No. 60/761,113 filed Jan. 23, 2006, both of which are incorporated by reference herein.
  • TECHNICAL FIELD
  • The present invention relates in general to carbon nanotubes, and in particular, to the functionalization of carbon nanotubes.
  • BACKGROUND INFORMATION
  • Carbon Nanotubes (CNTs) are used in their electron emission mode for many applications. In some of these applications, the CNTs are deposited on a substrate, resulting in the field emission cathode. In their electron emission mode, the CNTs are operated at high fields, and their adherence to the cathode substrate is very important. There are mainly two methods for CNTs to be deposited on cathodes. One is direct deposition by chemical vapor deposition (CVD) on the substrate that requires, in general, high temperatures, and as a result, is not compatible with low cost substrates. The other method is the use of CNTs that are already manufactured, in which case, in order to secure the adherence of the CNTs to the cathode substrate, inks and pastes, etc., may be utilized. Although these inks and pastes assist in adherence of these types of CNTs to the substrate, the emission characteristics of the carbon nanotubes are changed, and an activation process may be required to free the carbon nanotubes from the adhesion layer constituted of inks or pastes. These inks or pastes are based on a mixture of organic and inorganic materials. In general, the CNTs in inks and pastes have a higher threshold voltage, their electron emission is not uniform, and as a result, it is very difficult to produce high quality CNT televisions. Furthermore, the organic materials may disturb the high vacuum necessary for electron emission operation.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates carbon nanotubes grown on a substrate and having different lengths;
  • FIG. 2 illustrates immersion of the CNTs in streptavidin;
  • FIG. 3 illustrates a functionalized CNT;
  • FIG. 4 illustrates a substrate coated with biotin;
  • FIG. 5 illustrates streptavidin-absorbed CNTs having a high affinity for biotin;
  • FIG. 6 illustrates a field emission device;
  • FIG. 7 illustrates DNA utilized to bind CNTs to a substrate; and
  • FIG. 8 illustrates another embodiment of the present invention.
  • DETAILED DESCRIPTION
  • In the following description, numerous specific details are set forth such as specific cathode materials, etc. to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. In other instances, well-known circuits have been shown in block diagram form in order not to obscure the present invention in unnecessary detail. For the most part, details concerning timing considerations and the like have been omitted inasmuch as such details are not necessary to obtain a complete understanding of the present invention and are within the skills of persons of ordinary skill in the relevant art.
  • Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.
  • It has been demonstrated that CNTs align in an electric field toward an anode when a high electric field is applied. As a result, the theories that CNTs must be previously aligned are not adequate.
  • Furthermore, it has been demonstrated that electron emission uniformity is improved if carbon nanotubes are substantially equal in length such that no hot spot of higher electric fields are created destroying the uniformity.
  • Although, an embodiment of the present invention is described around one example of making cathodes for CNT televisions, this invention is not limited to these types of devices. In addition to making CNT TV cathodes, embodiments of the present invention are applicable to other bodies, antibodies or chemicals that have specific abilities to bind between them or bind in a localized fashion along the length of the CNT. By functionalizing the CNTs on specific locations along the axis of the CNT, a multiple of to optoelectronic devices can be realized solving some of the processing and reliability issues created by the use of usual types of microelectronic processes.
  • At least one embodiment of the present invention uses precise location functionalization of CNTs over the length of the CNTs. For example, in some cases one would like to functionalize only a small portion in one of the ends of a CNT or both ends. In other situations, one may want to functionalize the CNT in the middle part of its length. If, for example, one were able to functionalize only one end of the CNT, and not its entire length, and then find a way to anchor this localized functionalized CNT on the substrate, a situation is achieved where a multitude of CNTs are all anchored in one end to the substrate, having the majority of their length available to direct themselves toward the anode when an electric field is applied.
  • This method in this case solves the issue of activation, the use of inks or pastes (improving the vacuum necessary in the device), and also can be utilized to screen the very long or very short CNTs with respect to the average desired length. Furthermore, it is easier to control the density of carbon nanotubes on the substrate.
  • As an example, the following describes how a CNT cathode may be used for electron emission in a CNT TV or other products. These cathodes may be made such that the CNTs are strongly attached to the substrate only at one of their ends and when they bend in the field they are substantially the same length, achieving in such a way a very uniform electron emission pattern, and as a result light emission uniformity from the anode.
  • Referring to FIG. 1, a process of the present invention begins with CNTs 101 grown on a wafer 102 by one of various methods known in the industry. For example, perpendicular CNTs 101 may be grown by a CVD process on a wafer 102 such that the CNTs 101 are parallel to each other having more or less an average height, h, with CNTs 101 longer and shorter than h. Assume that the maximum length is L and the minimum length is l.
  • The wafer 102 with the CNTs 101 grown on it may be immersed into a functionalizing agent 203 with nanometric precision through a precise immersion apparatus, and wafer holder 204 as shown in FIG. 2. Because it may be desired to have the height of the CNTs 101 on the final cathode to be approximately h in the electric field, the wafer 102 may be immersed such that only the ends of the CNTs 101 having a length h or greater will be immersed in the functionalizing agent 203. As an example of a functionalizing agent 203, streptavidin may be used, which has very specific binding properties to another chemical, biotin. Referring to FIG. 3, streptavidin homogeneously covers the immersed parts of the CNTs by adsorption as was indicated by fluorescence microscopy (see, Braun et al., DNA-Templated Carbon Nanotube Field-Effect Transistor, Science, Vol. 302, Nov. 21, 2003). After the functionalization as described above, the CNTs 101 on the water 102 are harvested by controlled chemical etching (using piranha and ammonium persulfate solutions), laser, microtome or other method.
  • Referring to FIG. 4, a substrate 301 (e.g., glass), which will be the base of the cathode, is coated with a material that has high affinity to streptavidin (in the present example, biotin 302 may be used). These coating can be covalently attached to the substrate surface through thiol-, sulfhydryl- or amine-based surface modifications. In one example, a silanized glass or indium-tin oxide (ITO) surface presenting amine groups can be reacted with the N-hydroxysuccinimide (NHS) ester group of biotin-NHS creating a covalent linkage between the substrate and biotin. Referring to FIG. 5, the substrate 301 coated with biotin 302 localizes the streptavidin-adsorbed CNTs 401 to the cathode surface. Each streptavidin protein has four binding sites for biotin. The interaction of this binding pair results in extremely tight binding affinity, Kd=10−14 (Savage et al., 1992, Avidin-Biotin Chemistry: A Handbook, Rockford, Ill.: Pierce Chemical Company).
  • At this stage, the functionalized CNTs are deposited on the cathode substrate. Due to the strong specific binding between streptavidin and biotin, all the CNTs that were functionalized with streptavidin will bind to the substrate while all the CNTs not functionalized with streptavidin will not be bound to the substrate and will be washed off as shown in FIG. 5. Here, height h is defined and controlled by the depth of precise wafer insertion into the functionalizing agent (e.g., streptavidin), and is effectively uniform across the population of CNTs harvested from the wafer. The functionalized area of the free-end region of the CNTs is variable due to the variable native length of the CNTs as grown on the wafer. This variable functionalized region will adhere to the surface (e.g., at biotin layer), leaving h available to bend in the electric field toward the anode, as depicted in FIG. 6. Here, the streptavidin-biotin linkage 601 is depicted as a simplified rectangle on the surface of the substrate. The rectangle 601 illustrates the variable area of binding between the CNT 401 and the biotin layer. FIG. 6 also illustrates how a field emission device, such as a display, may be created. A phosphor (not shown) may be added to the anode.
  • Alternatively, the biotin-streptavidin linkage may be reversed in this process so that the streptavidin is on the second substrate in FIG. 4.
  • Referring to FIG. 7, this process can be modified, for example by using complementary strands of short deoxyribonucleic acid (DNA) oligomers. One single-stranded oligomer (Strand 1) is covalently attached to the cathode surface using numerous available chemistries including but not limited to disulfide bonding, esterification, or amidation. DNA oligomers, generally of length less than 100 nucleotides, can be designed with assorted 3′ or 5′ end-modifications that allow for covalent attachment to surfaces, for example a 5′ amine (NH2) terminus. If the substrate is derivatized with a carboxyl(COOH)-terminated silane, a condensation reaction will covalently link the DNA oligomer to the surface through an amide bond. The ability of each derivatized surface to attach nucleic acid oligomers varies, depending on the functional groups and the attachment condition. The chemistries of these interactions can be exploited following well-established genetic microarray and biosensor techniques (Beier and Hoheisel, Versatile derivatization of solid support media for covalent bonding on DNA-microchips, Nucleic Acids Research, Vol. 27, pp. 1970-1977). This strand can even be patterned on the cathode if needed by DNA microarray printing techniques which utilize automated micro-volume printers to achieve high-density gridded arrays of DNA or similar biological material; mask fabrication which can control patterning of an e-beam deposited oxide to protect specified regions from DNA or biotin conjugation; or other method. The complementary “sequence” oligomer (Strand 2) is covalently attached specifically to the CNT terminus by “precise insertion” method by the process described in FIG. 2, where the functionalizing solution is DNA oligomer. For example, the CNTs can be carboxyl-functionalized (CNT-COOH) by acid treatment via precise insertion described here in H2SO4—HNO3 solution or commercially purchased as-modified. The NH2-terminated DNA can be covalently linked to the CNT-COOH by condensation reaction, resulting in CNT-Strand 2 complexes. The DNA Strand 2 functionalized CNTs can now be localized to the Strand 1 derivatized cathode by the inherent annealing of complementary nucleic acid strands. In this case, the length of the double-stranded DNA complex is on the nanometer scale, while the CNT itself is microns in length.
  • Referring to FIG. 8, an alternate mechanism using long DNA may be designed using homologous DNA recombination via the RecA protein, as partially described by Erez Braun and associates (Braun et al., DNA-Templated Carbon Nanotube Field-Effect Transistor, Science, Vol. 302, Nov. 21, 2003.) In this scenario, a single-stranded DNA (ssDNA) on the order of hundreds of nucleotides in length corresponding to the terminal sequence of the lambda phage genome is generated by polymerase chain reaction (PCR). This PCR fragment is polymerized with the RecA protein. RecA functions to homologously recombine ssDNA with complementary double-stranded DNA (dsDNA). In a separate reaction, linear double-stranded lambda phage genome is covalently attached to the cathode surface through standard surface chemistry, examples of which are described above. The RecA polymerized ssDNA is incubated with the ds-lambda-DNA-derivatized cathode and homologous recombination occurs, mediated by RecA. Now the RecA resides with the dsDNA complex on the cathode surface. Next, anti-RecA antibody is added to the cathode-dsDNA-RecA complex. The anti-RecA antibody binds RecA. A biotinylated secondary antibody (e.g., commercially available anti-mouse, anti-rabbit, etc.) is then added to the cathode complex which binds specifically to the anti-RecA antibody. Streptavidin-adsorbed CNTs (as in FIG. 2) are then localized to the cathode via the biotin moiety, and the process continues accordingly. In this case, the length of the double-stranded DNA-antibody complex is similar to the CNT itself. These materials are examples and there are many other possibilities depending on the adherence of the chemical layers to the cathode substrate and the strength of the binding between the functionalized CNTs and the intermediate layers.
  • Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (16)

1. A method comprising:
growing carbon nanotubes (CNTs) on a first substrate;
immersing the CNTs grown on the first substrate in a biological solution at predetermined depth to functionalize ends of the CNTs with a biological molecule;
harvesting the functionalized CNTs from the first substrate;
functionalizing a second substrate with a complementary biological modification, which is a complementary binding partner to the biological molecule functionalized to the ends of the CNTs; and;
to attaching the functionalized CNTs to the second substrate by way of the complementary binding partner.
2. The method as recited in claim 1, wherein the biological solution comprises a protein.
3. The method as recited in claim 1, wherein the biological solution comprises DNA.
4. The method as recited in claim 1, wherein the biological solution comprises a carbohydrate.
5. The method as recited in claim 2, wherein the complementary biological modification comprises a protein.
6. The method as recited in claim 3, wherein the complementary biological modification comprises DNA.
7. The method as recited in claim 4, wherein the complementary biological modification comprises a carbohydrate.
8. The method as recited in claim 1, wherein the CNTs gown on the first substrate have varying lengths, and only CNTs having lengths of at least a predetermined length are functionalized with the biological molecule.
9. The method as recited in claim 1, further comprising:
Positioning an anode a predetermined distance from the second substrate with the attached functionalized CNTs.
10. A field emission device comprising a cathode comprising a substrate with functionalized CNTs attached thereto by way of biological complementary binding pairs.
11. The field emission device as recited in claim 10, further comprising an anode positioned a predetermined distance from the cathode.
12. The field emission device as recited in claim 11, wherein the anode further comprises a phosphor deposited on a substrate that emits light in response to bombardment of electrons emitted from the cathode under an influence of an electric field.
13. The field emission device as recited in claim 10, wherein the biological complementary binding pairs comprise DNA.
14. The field emission device as recited in claim 10, wherein the biological complementary binding pairs comprise biotin and streptavidin.
15. The method as recited in claim 1, wherein the biological solution comprises streptavidin, and the complementary binding partner comprises biotin.
16. The method as recited in claim 1, wherein the biological solution comprises biotin, and the complementary binding partner comprises streptavidin.
US12/564,750 2006-01-23 2009-09-22 Functionalized carbon nanotubes Abandoned US20100109510A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/564,750 US20100109510A1 (en) 2006-01-23 2009-09-22 Functionalized carbon nanotubes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US76111306P 2006-01-23 2006-01-23
US11/625,653 US7611906B2 (en) 2006-01-23 2007-01-22 Functionalized carbon nanotubes
US12/564,750 US20100109510A1 (en) 2006-01-23 2009-09-22 Functionalized carbon nanotubes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/625,653 Division US7611906B2 (en) 2006-01-23 2007-01-22 Functionalized carbon nanotubes

Publications (1)

Publication Number Publication Date
US20100109510A1 true US20100109510A1 (en) 2010-05-06

Family

ID=38285982

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/625,653 Expired - Fee Related US7611906B2 (en) 2006-01-23 2007-01-22 Functionalized carbon nanotubes
US12/564,750 Abandoned US20100109510A1 (en) 2006-01-23 2009-09-22 Functionalized carbon nanotubes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/625,653 Expired - Fee Related US7611906B2 (en) 2006-01-23 2007-01-22 Functionalized carbon nanotubes

Country Status (5)

Country Link
US (2) US7611906B2 (en)
JP (1) JP2009523699A (en)
CN (1) CN101473445B (en)
TW (1) TW200744945A (en)
WO (1) WO2008057614A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
WO2010019272A2 (en) * 2008-08-15 2010-02-18 Massachusetts Institute Of Technology Layer-by-layer assemblies of carbon-based nanostructures and their applications in energy storage and generation devices
US8702897B2 (en) * 2009-05-26 2014-04-22 Georgia Tech Research Corporation Structures including carbon nanotubes, methods of making structures, and methods of using structures
US8354323B2 (en) * 2010-02-02 2013-01-15 Searete Llc Doped graphene electronic materials
US8278643B2 (en) * 2010-02-02 2012-10-02 Searete Llc Doped graphene electronic materials
US8426842B2 (en) * 2010-02-02 2013-04-23 The Invention Science Fund I, Llc Doped graphene electronic materials
US8563965B2 (en) * 2010-02-02 2013-10-22 The Invention Science Fund I, Llc Doped graphene electronic materials
US8455981B2 (en) * 2010-02-02 2013-06-04 The Invention Science Fund I, Llc Doped graphene electronic materials
US8557956B2 (en) 2010-06-11 2013-10-15 Southwest Research Institute Aligned polymers including bonded substrates
JP5826047B2 (en) * 2012-01-19 2015-12-02 セイコーインスツル株式会社 Method for producing multilayer structure
WO2013154490A2 (en) * 2012-04-12 2013-10-17 Sol Voltaics Ab Methods of nanowire functionalization, dispersion and attachment
US9806265B1 (en) 2016-04-07 2017-10-31 International Business Machines Corporation Heterogeneous nanostructures for hierarchal assembly

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090190A1 (en) * 2001-06-14 2003-05-15 Hyperion Catalysis International, Inc. Field emission devices using modified carbon nanotubes
US20030098488A1 (en) * 2001-11-27 2003-05-29 O'keeffe James Band-structure modulation of nano-structures in an electric field
US20030148086A1 (en) * 2001-12-18 2003-08-07 Lisa Pfefferle Controlled growth of single-wall carbon nanotubes
US20030148562A1 (en) * 2000-07-04 2003-08-07 Luyken Richard Johannes Field effect transistor
US20030186522A1 (en) * 2002-04-02 2003-10-02 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US20030218224A1 (en) * 2002-04-12 2003-11-27 Rudiger Schlaf Carbon nanotube sensor and method of producing the same
US20040213910A1 (en) * 2002-12-20 2004-10-28 University Of Houston Modification of silicon-containing scanning probe microscopy tips and growth of oligo-or poly (ethylene glycol) films on silicon surfaces through formation of Si-C bonds
US20040235016A1 (en) * 2003-02-07 2004-11-25 Wisconsin Alumni Research Foundation Nanocylinder-modified surfaces
US20040238887A1 (en) * 2001-07-05 2004-12-02 Fumiyuki Nihey Field-effect transistor constituting channel by carbon nano tubes
US20050054004A1 (en) * 2003-09-10 2005-03-10 The Regents Of The University Of California Graded core/shell semiconductor nanorods and nanorod barcodes
US20050184294A1 (en) * 2004-01-21 2005-08-25 Yuegang Zhang End functionalization of carbon nanotubes
US20060024738A1 (en) * 2002-03-12 2006-02-02 Enzo Life Sciences, Inc. Site- or sequence-specific process for cleaving analytes and library of analytes
US20060246438A1 (en) * 2002-08-30 2006-11-02 Mccall Maxine Methods for the chemical and physical modification of nanotubes, methods for linking the nanotubes, methods for the directed positioning of nanotubes, and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972616B2 (en) * 2003-04-17 2011-07-05 Nanosys, Inc. Medical device applications of nanostructured surfaces

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148562A1 (en) * 2000-07-04 2003-08-07 Luyken Richard Johannes Field effect transistor
US20030090190A1 (en) * 2001-06-14 2003-05-15 Hyperion Catalysis International, Inc. Field emission devices using modified carbon nanotubes
US20040238887A1 (en) * 2001-07-05 2004-12-02 Fumiyuki Nihey Field-effect transistor constituting channel by carbon nano tubes
US20030098488A1 (en) * 2001-11-27 2003-05-29 O'keeffe James Band-structure modulation of nano-structures in an electric field
US20030148086A1 (en) * 2001-12-18 2003-08-07 Lisa Pfefferle Controlled growth of single-wall carbon nanotubes
US20060024738A1 (en) * 2002-03-12 2006-02-02 Enzo Life Sciences, Inc. Site- or sequence-specific process for cleaving analytes and library of analytes
US20030186522A1 (en) * 2002-04-02 2003-10-02 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US20030218224A1 (en) * 2002-04-12 2003-11-27 Rudiger Schlaf Carbon nanotube sensor and method of producing the same
US20060246438A1 (en) * 2002-08-30 2006-11-02 Mccall Maxine Methods for the chemical and physical modification of nanotubes, methods for linking the nanotubes, methods for the directed positioning of nanotubes, and uses thereof
US20040213910A1 (en) * 2002-12-20 2004-10-28 University Of Houston Modification of silicon-containing scanning probe microscopy tips and growth of oligo-or poly (ethylene glycol) films on silicon surfaces through formation of Si-C bonds
US20040235016A1 (en) * 2003-02-07 2004-11-25 Wisconsin Alumni Research Foundation Nanocylinder-modified surfaces
US20050054004A1 (en) * 2003-09-10 2005-03-10 The Regents Of The University Of California Graded core/shell semiconductor nanorods and nanorod barcodes
US20050184294A1 (en) * 2004-01-21 2005-08-25 Yuegang Zhang End functionalization of carbon nanotubes

Also Published As

Publication number Publication date
TW200744945A (en) 2007-12-16
US7611906B2 (en) 2009-11-03
WO2008057614A2 (en) 2008-05-15
US20070172851A1 (en) 2007-07-26
CN101473445B (en) 2011-06-29
JP2009523699A (en) 2009-06-25
CN101473445A (en) 2009-07-01
WO2008057614A3 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
US7611906B2 (en) Functionalized carbon nanotubes
JP5743974B2 (en) Nanotube sensor device for DNA detection
US9340416B2 (en) Polynucleotides and related nanoassemblies, structures, arrangements, methods and systems
Martins et al. Femtomolar limit of detection with a magnetoresistive biochip
Tjong et al. “Smart” DNA interfaces
EP1370690B1 (en) Arrays and methods of use
US7157269B2 (en) On-spot hydrophilic enhanced slide and preparation thereof
US7692249B2 (en) End functionalization of carbon nanotubes
US20060194263A1 (en) Small molecule mediated, heterogeneous, carbon nanotube biosensing
EP1556506A1 (en) Molecular arrays and single molecule detection
CA2516820A1 (en) Nanocylinder-modified surfaces
JP2006201178A (en) Fet type biosensor
KR100991011B1 (en) Biosensor comprising metal immobilized carbon nanotube and a preparing method thereof
Sajfutdinow et al. Nanoscale patterning of self-assembled monolayer (SAM)-functionalised substrates with single molecule contact printing
US20150171326A1 (en) Systems and methods for integrating a single dna molecule into a molecular electronic device
US20140309126A1 (en) Peptide binding to graphitic materials and phage including same
Wang et al. Characterization and application of hydrophobin-dispersed multi-walled carbon nanotubes
KR101990503B1 (en) Method of Preparing Nuclease-Resistant DNA-Inorganic Hybrid Nanoflowers
Yoo et al. Single walled carbon nanotube-based electrical biosensor for the label-free detection of pathogenic bacteria
US7927802B2 (en) DNA-based functionalization of single walled carbon nanotubes for directed assembly
Fletcher et al. Biochemical functionalization of vertically aligned carbon nanofibres
US8110976B2 (en) Method of preparing field electron emitter and field electron emission device including field electron emitter prepared by the method
US7795182B2 (en) Method for making biochips
JP4170082B2 (en) Microarray and manufacturing method thereof
Ma Electrical detection of DNA hybridization

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANO-PROPRIETARY, INC.,TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YANIV, ZVI;REEL/FRAME:024376/0179

Effective date: 20070122

Owner name: APPLIED NANOTECH HOLDINGS, INC.,TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:NANO-PROPRIETARY, INC.;REEL/FRAME:024376/0400

Effective date: 20080610

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION