US20090270871A1 - Impulsive percussion instruments for endplate preparation - Google Patents

Impulsive percussion instruments for endplate preparation Download PDF

Info

Publication number
US20090270871A1
US20090270871A1 US12/459,251 US45925109A US2009270871A1 US 20090270871 A1 US20090270871 A1 US 20090270871A1 US 45925109 A US45925109 A US 45925109A US 2009270871 A1 US2009270871 A1 US 2009270871A1
Authority
US
United States
Prior art keywords
distractor
frame
cutter
side members
wedge portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/459,251
Inventor
Mingyan Liu
Loic Josse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/459,251 priority Critical patent/US20090270871A1/en
Publication of US20090270871A1 publication Critical patent/US20090270871A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1604Chisels; Rongeurs; Punches; Stamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine

Definitions

  • This invention relates generally to surgery tools and more particularly to power cutting instruments for vertebral endplate preparation in spinal surgery.
  • the present invention is directed to providing an additional option for surgeons for improvement in these regards.
  • the present invention provides power-operated, hand-held instruments adapted to reception of different types of tissue treatment tools, and drives them in a reciprocating motion.
  • the invention provides for conversion from a rotary input power source to a reciprocating source, and percussion action in the forward direction in one embodiment, and percussion action in the reverse direction in another embodiment. More specifically, in one embodiment the invention enables use with treatment tools expected to perform more effectively during a forward motion and, in another embodiment, the invention enables use with treatment tools expected to perform more effectively during a reverse motion. Such tools have preferred performance directions, forward or reverse.
  • the invention further comprises treatment tool configurations particularly suitable to the direction and type of cutting action sought. For tools that perform well in either direction, either of the embodiments of the invention may be used.
  • the invention further provides a distractor and keeper arrangement for maintaining distracted disc space height during endplate preparation, the keeper being shaped for convenient use with the powered instruments according to the present invention.
  • FIG. 1 is an elevation view of a percussion instrument according to one embodiment of the present invention.
  • FIG. 1A is a perspective view of the embodiment shown in FIG. 1 and showing, schematically, an example of an air powered rotary motor and air supply line from a foot pedal operated compressor.
  • FIG. 2 is a partial section through it taken at line 2 - 2 in FIG. 1 and viewed in the direction of the arrows.
  • FIG. 2A is a perspective view of the instrument with a quarter section.
  • FIG. 2B is an enlarged perspective view of the proximal end portion of FIG. 2 .
  • FIG. 3 is a left-hand end view thereof.
  • FIG. 4 is an enlarged elevation view of the camshaft thereof.
  • FIG. 5 is a section taken at line 5 - 5 in FIG. 4 and viewed in the direction of the arrows and showing a square cam cross-section.
  • FIG. 6 is an enlarged sectional view of the spring guide and seat member of FIG. 2 .
  • FIG. 7 is an enlarged elevation view of one type of cutter-shaft combination of the embodiment of FIGS. 1 and 2 but on a larger scale, and with a portion broken out to conserve space in the drawing.
  • FIG. 8 is a section taken at line 8 - 8 in FIG. 7 and viewed in the direction of the arrows.
  • FIG. 9 is an enlarged view of the shaft guide and spring chamber.
  • FIG. 10 is a left-hand end view thereof.
  • FIG. 11 is a sectional view of the end closure ring for the spring chamber.
  • FIG. 12 is a fragmentary elevation view of the proximal end portion of the instrument body of FIG. 1 but on a larger scale and without the end cap and internal parts.
  • FIG. 13 is a left-hand end view thereof.
  • FIG. 14 is an elevation view of a second embodiment of the present invention featuring reversed percussion movements (pull back impacts).
  • FIG. 15 is a view, partially in section taken at line 15 - 15 in FIG. 14 , and viewed in the direction of the arrows.
  • FIG. 16 is an enlarged elevation view of the camshaft.
  • FIG. 17 is an end view of the camshaft.
  • FIG. 18 is a top (overhead) view of the cutter drive shaft.
  • FIG. 19 is a view of the version of reversed percussion cutter shaft as shown in FIGS. 14 and 15 , but with a portion of the length thereof broken away to conserve space in the drawing.
  • FIG. 20 is an axial view of the camshaft end bearing.
  • FIG. 22 is an inside face view of the proximal end cap usable in the FIG. 2 and FIG. 15 embodiments of the invention.
  • FIG. 23 is a section taken at line 23 - 23 in FIG. 22 and viewed in the direction of the arrows.
  • FIG. 24 is a top (overhead) view of a combination distractor and distractor blade housing used to establish and maintain the desired disc space during use of the instruments of FIGS. 1-23 .
  • FIG. 25 is a section taken at line 25 - 25 in FIG. 24 and viewed in the direction of the arrows and showing application into the disc space.
  • FIG. 26 is a top (overhead) view of the distractor itself with a portion broken away from the middle to conserve space in the drawing.
  • FIG. 27 is a section taken at line 27 - 27 in FIG. 26 and viewed in the direction of the arrows.
  • FIG. 28 is a left-hand end view thereof.
  • FIG. 29 is a top (overhead) view of the distractor blade housing which serves also as the disc space keeper.
  • FIG. 30 is a section view taken at line 30 - 30 in FIG. 29 and viewed in the direction of the arrows.
  • FIG. 31 is a left-hand view thereof.
  • FIG. 32 is a right-hand view thereof.
  • FIG. 33 is an enlarged perspective view of the cutter illustrated in the FIGS. 1 , 2 , 7 and 8 illustrations.
  • FIG. 34 is a perspective view of another type of cutter.
  • FIG. 35 is an elevation view of the cutter and shaft for the cutter of FIG. 34 , with a portion broken away to conserve space in the drawing.
  • FIG. 36 is a perspective view of another embodiment of cutter useful in the FIG. 1 embodiment of the invention.
  • FIG. 37 is an enlarged overhead view of the complete cutter and shaft for the cutter of FIG. 36 with a portion broken away to conserve space in the drawing.
  • FIG. 38 is an end view thereof.
  • FIG. 39 is a section therethrough taken at line 39 - 39 in FIG. 37 and viewed in the direction of the arrows.
  • FIG. 40 is a perspective view of another cutter useful with the FIG. 1 embodiment of the invention.
  • FIG. 41 is a perspective view of still another cutter similar to that of FIG. 33 but narrower.
  • FIG. 42 is a perspective view of the cutter shown in the illustrations of FIGS. 14 , 15 and 19 for the pull-back embodiment of the invention.
  • FIG. 43 is an elevation view of another embodiment of the cutter and shaft used with the pull-back embodiment of the invention of FIGS. 14 and 15 .
  • FIG. 44 is a section therethrough taken at line 44 - 44 in FIG. 43 and viewed in the direction of the arrows.
  • the instrument has a one-piece elongated body 11 having a cam housing portion 12 , a spring chamber portion 13 , guide barrel portion 14 , and end cap 16 .
  • a camshaft 17 is received in the cam housing portion.
  • a cutter-shaft 21 is received in the guide barrel and has a shaft portion with proximal end 22 and a cutter portion with distal end 23 .
  • a spring housing 26 ( FIGS. 2 , 9 and 10 ) is received in the bore 27 of the spring chamber portion of the body 11 . As best shown in FIGS. 9 and 10 , this spring housing has one end wall 29 with a central aperture 31 which receives and guides the proximal end portion of the cutter shaft 21 . Housing 26 has stop tabs 32 and 33 at the end wall and which are received in grooves 34 and 36 ( FIG. 13 , and dashed lines in FIG. 1 ). These grooves extend longitudinally forward from the proximal end 37 ( FIGS.
  • the hole 31 in the proximal end wall 29 serves as a proximal end bearing for the cutter shaft 21 .
  • Forward portions of the shaft 21 are slidably received and guided by contact of the outer wall of the shaft with the inner wall of the guide barrel portion 14 of the body 1 .
  • a spring guide and end stop 38 ( FIGS. 2 and 6 ) is slidably received on the proximal end portion of the shaft 21 . Its outer rim 39 is slidably received in the bore 41 ( FIG. 9 ) of the housing 26 .
  • a coil spring 42 ( FIG. 2 ) is received around the stepped-down portion 43 of the member 38 .
  • the shoulder 44 at the step from the cylindrical surface 39 to the cylindrical surface 43 serves as a seat for the distal end of the spring 42 .
  • the inside face 46 of the end wall 29 of the housing 26 serves as a spring seat for the proximal end of spring 42 .
  • housing 26 The right-hand end portion 47 of housing 26 is internally threaded at 48 and receives end closure ring 49 ( FIG. 11 ) which is screwed into the housing 26 . This prevents the member 38 and spring therewith, from sliding out of the assembly when one cutter shaft is removed and replaced by another one having a different type of cutter.
  • a screw 51 FIGS. 1 and 2
  • This screw normally retains the shaft 21 in the body.
  • the length of hole 52 in the axial direction permits a range of shaft reciprocation from engagement with low points on the cam surface to slightly beyond the maximum height of the cam surface.
  • the screw must be removed and then the shaft 21 can be dropped or pulled out from the distal end 53 of the guide barrel 14 followed by installation of the replacement cutter shaft.
  • the camshaft 17 is generally cylindrical about the axis 56 and has cylindrical flanges 57 and 58 which abut flanged bushings 59 and 61 received in upper and lower, rearwardly opening yokes 62 in the cam housing portion of the body 11 ( FIGS. 1 and 12 ).
  • end cap 16 FIGS. 22 and 23
  • end cap 16 has yoke portions which receive the bushings 59 and 61 when the end cap is fastened to the body with the four screws 66 ( FIG. 3 ).
  • the bushings 59 and 61 can be engaged by the outboard faces of the flanges 57 and 58 of the camshaft, so they provide location and thrust bearings for the camshaft as well as radial bearings for the smooth cylindrical surfaces 67 and 68 ( FIG. 4 ) of the camshaft. It is seen that the yokes 62 of the body and 64 of the end cap 16 , capture the bushings 59 and 61 and thereby capture the cam shaft in the assembly for centering the camshaft axis 56 colinear with the axes of bushings 59 and 61 , when the end cap is secured in place by the screws 66 .
  • the cam surface itself shown generally at 71 in FIGS. 4 and 5 is square shaped, having four low areas 72 and four high points 73 .
  • Other cam surface profiles may also be used.
  • One example is shown in dotted lines in FIG. 5 in the form of a hexagon. It is the square cam shape which is shown in FIG. 2 , with the shaft end 22 (rounded as shown in FIG. 8 ) engaging a low point on the cam and serving as the cam follower surface.
  • spring 42 urges the spring seat 44 on member 38 ( FIG. 6 ) to the right (in the direction of arrow 78 ). Abutting engagement of the wall 76 of member 38 with the annular shoulder 77 ( FIGS.
  • the cam shaft has flat surfaces 81 for reception of a coupler, and a circular notch 82 for reception of a spring clip or clamp of a coupler from an external rotary power source.
  • This may be any of a variety of power sources such as, electric, hydraulic or more likely an air or nitrogen powered turbine motor 85 ( FIG. 1A ) coupled to the camshaft.
  • Air may be supplied through tubing 85 A from a compressor 85 B with speed control pedal 85 C. Any other available source of air or other gas with pressure and/or volume control may be used.
  • the user may select the treatment tool to be used, insert it in the barrel 14 and install the screw 51 .
  • the tissue treatment tool referred to above and hereinafter is referred to broadly hereinafter as a cutter, and this term is intended to include tools which chisel, file, shape, rasp, polish, broach or otherwise perform the intended effect on or with the body tissue treated.
  • the user Before or after installation of the cutter shaft, the user may connect the power source to the camshaft. After positioning the distal end 23 of the cutter at the endplate treatment site and engaging the tissue to be treated, the user may apply force in the forward direction of arrow 78 , which is the forward cutting direction of the cutters to be used with this embodiment of the invention. The forward force will compress the spring 42 and move the cam surface toward the shaft end (the cam follower surface) 22 . If the camshaft is rotating, percussion action will begin as soon as the shaft end is touched by the high points of the rotating cam, and reciprocating action of the cutter will begin. The speed of such action can be controlled by speed control of the power source, whether by a motor at the instrument (as shown in FIG.
  • cutter shafts other than shaft 21 shown specifically in FIGS. 1 , 2 , 7 and 8 may be used in the practice of the present invention.
  • Examples are different types of chisels, shavers and rasps to decorticate the endplate from the disc materials and the cartilage layer. Some are shown in FIGS. 34 , 35 , 36 - 39 , 40 and 41 . It is only necessary to remove the screw 51 and drop or pull cutter shaft 21 , select a cutter shaft having a different distal end cutter (the shaft portion from the cutter to the proximal end 22 being of the same configuration as shown in FIGS.
  • the power source turned off or disconnected from the camshaft during the cutter shaft installation to avoid the risk of having the proximal end 22 struck by the cam and driving the tool back out of the barrel before the limit screw has been installed. Such event might otherwise occur, depending upon whether the cutter shaft is pushed in with enough force to compress the spring 42 .
  • the body 86 has a cam housing portion 87 , a spring housing 88 and a guide barrel portion 89 .
  • the body 86 is very similar to the body 11 of the first embodiment, and the end cap 91 is virtually identical to the end cap 16 of the first embodiment.
  • the direction of impulse from the cam in this second embodiment is in the reverse direction so that it pulls the cutter edge 93 in the rearward direction of arrow 92 .
  • a cam shaft 94 mounted for rotation in the cam housing portion 87 of the body. It operates a cutter drive shaft 96 slidably received in the guide barrel portion 89 . Its proximal end portion 97 is associated with the camshaft, while its distal end portion 98 receives a proximal end portion 99 of a cutter shaft having the cutter 93 at its distal end.
  • the camshaft 74 is mounted in the body in bushings 101 and 102 which are received and located in the housing in essentially the same way as are bushings 59 and 61 described above with reference to the first embodiment.
  • the camshaft itself has a smooth cylindrical surface at 103 receiving radial bearing support by bushing 102 . It also has a cylindrical flange 104 having outer face 106 engaging bushing 102 for thrust bearing support.
  • the outer end portion of the camshaft has a pair of diametrically opposed flat surfaces 108 on the otherwise cylindrical surface 103 which provide anti-rotation cooperation with a connector of a rotary power source in the same manner as for the first described embodiment.
  • it has a stem with annular groove 109 and head 111 to cooperate with the power source connector and retain it in place. Accordingly, the drive for this camshaft is like that for the first embodiment.
  • the cam surface itself is shown at 112 as a square, having four high points 113 and four flat surfaces 114 , the center of each flat 114 , as in the square cam of the first embodiment, being a low point in the cam travel.
  • the cam can have other cross sectional shapes as mentioned above. One of several possible shapes could be hexagonal as designated by the dash line 116 in FIG. 17 .
  • a hexagonal post 118 At the end face 117 of the cam 112 , there is a step inward to a hexagonal post 118 non-rotatably received in bearing 119 ( FIGS. 20 and 21 ) and secured to the bearing by a socket head screw 121 screwed into the end of the camshaft.
  • the hexagonal post 118 on the camshaft is received in the hexagonal aperture 122 of the bearing 119 which is rotatably received in bushing 101 .
  • the cylindrical surface 123 of the bearing 119 rotating in the bushing 101 provides radial bearing support for the camshaft, and the circular face 124 of the bearing 119 slidingly engaging the lower face of bushing 101 provides thrust bearing support for the camshaft.
  • the cutter drive shaft 96 for the cutter shaft has a cam follower end portion 97 configured for following the cam 112 . It is illustrated in the form of an elongate hole 126 with straight parallel sidewalls 127 and 128 and a semi-circular end wall 129 having a radius equal to half the distance between the sidewalls 127 and 128 and centered at 131 . This radius is slightly greater than the distance diametrically across the high points 113 of the cam and is centered on the cam axis 130 .
  • the follower end portion 97 framing the hole 126 has a shoulder 133 .
  • a spring 134 ( FIG.
  • An elongate hole 141 through shaft 96 receives travel limit screw 142 , which is screwed into the instrument body 86 .
  • the spring 134 moves the drive shaft 96 to the left until the right-hand end 143 of the hole 141 engages and is stopped by the screw 142 .
  • This is the normal rest position of the shaft and places it such that the center 131 of the curved surface 129 of the cam shaft frame hole 126 is spaced slightly outboard of the circle defined by the four high points of the cam when the camshaft is rotated.
  • the left-hand end wall 146 of the cam follower portion 97 is provided with extra thickness resulting in a bulge 147 at the longitudinal axis 148 of the cutter drive shaft 96 and serves as the cam follower surface of cutter drive shaft 96 .
  • This embodiment of the invention can be provided with a variety of cutters of various configurations and types useful, particularly when pulled toward the surgeon. Some examples are different types of curettes, scrapers and pull shavers.
  • One example is the cutter shaft 99 shown in elevation view in FIG. 19 and partially shown in FIGS. 14 and 42 and shown partially in section in FIG. 15 .
  • This cutter shaft 99 has a cylindrical body portion 151 slidably received on the inside bore of the barrel 89 of the instrument.
  • a stem portion 152 of the tool has less diameter than the body portion 151 and is slidably received in a bore 153 in the distal end portion of the cutter drive shaft 96 .
  • the barrel 89 of the instrument has an elongate hole 154 at one location in the wall.
  • a hole 156 ( FIG.
  • cutter drive shaft 96 is normally aligned or in registry with the hole 154 in the housing when the cutter drive shaft is in rest position dictated by the engagement of the stop screw 142 with the end wall 143 of hole 141 in the cutter drive shaft. This is under the urging of the spring 134 . So when the cutter shaft is installed in the direction of arrow 92 into the open end 157 of the instrument body, it can be advanced to the left so that the cutter stem 152 received in bore 153 has the threaded hole 158 of the cutter stem 152 located in registry or lined up with the hole 156 in the cutter drive shaft 96 .
  • screw 159 can be inserted through the hole 154 in the guide barrel 89 and screwed into the cutter shaft hole 158 to fasten the cutter shaft 99 to the cutter drive shaft 96 .
  • the screw head is stopped so that it resides in the hole 156 in the cutter drive shaft, retaining the cutter shaft in place but recessed slightly from the inside wall of the barrel 89 to avoid interference with reciprocation of the cutter shaft.
  • the hole 154 in the wall 89 is long enough that the screw can move forward and backward in the direction of arrow 92 within the hole 154 during reciprocation of the drive shaft 96 . With this arrangement, the cutter shaft 99 can be readily removed from the guide barrel by simply removing screw 159 and pulling the cutter shaft out of the barrel.
  • the surgeon can run the cam constantly if desired, or can start it and stop it at the beginning and end of a cutting operation.
  • the speed of rotation may be varied and thus, the speed of the cutter strokes would vary.
  • a reciprocating action begins when the surgeon has engaged the cutter with the surface to be treated and pulls the instrument in the direction of arrow 92 with the cutter edge 93 engaging the surface to be prepared.
  • the force of impact between the cutter edge 93 and material to be cut, is determined largely by the force with which the instrument is pulled in the direction of arrow 92 , which thereby compresses the spring 134 and enables the cam engaging follower surface 147 of the cam follower to impinge on the path of rotation of the high points of the cam.
  • the rate of impulses depends upon the speed of the camshaft as determined by the surgeon.
  • cutters may be useful and which can treat the tissue in a useful way regardless of whether the cutter is driven in the forward or reverse direction.
  • Such cutters can be used in either the forward or reverse percussion type instrument described above, if the proximal end portion of the cutter shaft is shaped and located to work with the cam and follower arrangement provided in the instrument.
  • One example is a cutter as shown in FIGS. 34 and 35 . With the shaft as shown in those figures, the cutter will work with the forward percussion instrument. If the shaft is made as shown in FIGS. 43 and 44 , the cutter will work with the reverse percussion instrument.
  • FIGS. 24-30 there is shown apparatus used according to the present invention to facilitate use of either of the two previously described embodiments.
  • the illustrated distractor 171 includes a handle portion 172 , shaft portion 173 , head portion 174 , and wedge portion 176 .
  • a forwardly opening hook 177 is fixed atop the shaft portion near the head portion.
  • the wedge portion has a transverse groove 178 at the tip.
  • Abutments 179 are provided at the transition from tip portion to head portion and are slightly arcuate in shape, as shown in FIG. 26 .
  • a distractor blade housing 186 and which serves as the disc space keeper, is made in the form of a frame and includes parallel side members 187 , a rear cross member 188 , an intermediate cross member 189 serving as a hinge pin, and a front cross member 191 .
  • the distractor 171 is assembled with the blade housing 186 by inserting the wedge portion between the housing side members and moving it forward to engagement of the groove 178 of the distractor tip with the front cross member 191 of the blade housing and simultaneously receiving the hinge pin 189 in the hook 177 , as shown in FIG. 25 .
  • the handle 172 is pushed in that direction to open up the space to approximately eight or ten millimeters, or to such other extent as desired, and by hammer or other impulses on the handle end 194 , if needed.
  • the distractor handle is pulled out in the direction of arrow 196 , while the blade housing 186 remains in place and maintains the disc height as desired, thus serving as the disc space keeper. Because of the offset between the plane 197 ( FIG.
  • FIGS. 24 and 25 show the combination with the hook 177 of the distractor and the rear cross member 188 of the keeper above the axis 181 of the distractor
  • the assembly can be used with the orientation inverted relative to that shown in FIG. 25 .
  • the orientation will depend upon the preferences of the surgeon.
  • the preferred material for the larger components is stainless steel; however, the used of other materials suitable for the intended functions are also contemplated as falling within the scope of the invention.

Abstract

A hand-held instrument, with a rotary power input to a camshaft, has cam and follower arrangement to provide a reciprocating shaft output. A cutter is provided on the output shaft. In one example, rotating cam percussion is transmitted to the cutter by engaging the cutter with the tissue to be cut, and pushing the instrument forward toward the cutter. In another example, rotating cam percussion is transmitted to the cutter by engaging the cutter with the tissue to be cut, and pulling the instrument back toward the user while maintaining engagement of the cutter with the tissue. In both examples, the cutter remains in idle condition until an axially directed load, forward in the one example, or backward on the other example, is placed on the cutter by moving the instrument forward or backward, respectively, while the camshaft is rotating. A distractor with frame is used to spread and maintain space between vertebral bodies, enabling entrance of the cutter.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present Application claims foreign priority benefits of European Patent Application Number 03292241.1, filed Sep. 11, 2003, the contents of which are hereby incorporated by reference.
  • BACKGROUND
  • This invention relates generally to surgery tools and more particularly to power cutting instruments for vertebral endplate preparation in spinal surgery.
  • Following removal of some disc materials during spinal surgery, it is important to prepare the endplates of the vertebral bodies for reception of inter-body implant materials. It is desirable to provide devices and procedures for safer, more controlled and more efficient disc space cleaning and endplate preparation. The present invention is directed to providing an additional option for surgeons for improvement in these regards.
  • SUMMARY
  • In general, the present invention provides power-operated, hand-held instruments adapted to reception of different types of tissue treatment tools, and drives them in a reciprocating motion.
  • Further, the invention provides for conversion from a rotary input power source to a reciprocating source, and percussion action in the forward direction in one embodiment, and percussion action in the reverse direction in another embodiment. More specifically, in one embodiment the invention enables use with treatment tools expected to perform more effectively during a forward motion and, in another embodiment, the invention enables use with treatment tools expected to perform more effectively during a reverse motion. Such tools have preferred performance directions, forward or reverse. The invention further comprises treatment tool configurations particularly suitable to the direction and type of cutting action sought. For tools that perform well in either direction, either of the embodiments of the invention may be used. The invention further provides a distractor and keeper arrangement for maintaining distracted disc space height during endplate preparation, the keeper being shaped for convenient use with the powered instruments according to the present invention.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an elevation view of a percussion instrument according to one embodiment of the present invention.
  • FIG. 1A is a perspective view of the embodiment shown in FIG. 1 and showing, schematically, an example of an air powered rotary motor and air supply line from a foot pedal operated compressor.
  • FIG. 2 is a partial section through it taken at line 2-2 in FIG. 1 and viewed in the direction of the arrows.
  • FIG. 2A is a perspective view of the instrument with a quarter section.
  • FIG. 2B is an enlarged perspective view of the proximal end portion of FIG. 2.
  • FIG. 3 is a left-hand end view thereof.
  • FIG. 4 is an enlarged elevation view of the camshaft thereof.
  • FIG. 5 is a section taken at line 5-5 in FIG. 4 and viewed in the direction of the arrows and showing a square cam cross-section.
  • FIG. 6 is an enlarged sectional view of the spring guide and seat member of FIG. 2.
  • FIG. 7 is an enlarged elevation view of one type of cutter-shaft combination of the embodiment of FIGS. 1 and 2 but on a larger scale, and with a portion broken out to conserve space in the drawing.
  • FIG. 8 is a section taken at line 8-8 in FIG. 7 and viewed in the direction of the arrows.
  • FIG. 9 is an enlarged view of the shaft guide and spring chamber.
  • FIG. 10 is a left-hand end view thereof.
  • FIG. 11 is a sectional view of the end closure ring for the spring chamber.
  • FIG. 12 is a fragmentary elevation view of the proximal end portion of the instrument body of FIG. 1 but on a larger scale and without the end cap and internal parts.
  • FIG. 13 is a left-hand end view thereof.
  • FIG. 14 is an elevation view of a second embodiment of the present invention featuring reversed percussion movements (pull back impacts).
  • FIG. 15 is a view, partially in section taken at line 15-15 in FIG. 14, and viewed in the direction of the arrows.
  • FIG. 16 is an enlarged elevation view of the camshaft.
  • FIG. 17 is an end view of the camshaft.
  • FIG. 18 is a top (overhead) view of the cutter drive shaft.
  • FIG. 19 is a view of the version of reversed percussion cutter shaft as shown in FIGS. 14 and 15, but with a portion of the length thereof broken away to conserve space in the drawing.
  • FIG. 20 is an axial view of the camshaft end bearing.
  • FIG. 21 is a cross section at line 21-21 in FIG. 20 and viewed in the direction of the arrows.
  • FIG. 22 is an inside face view of the proximal end cap usable in the FIG. 2 and FIG. 15 embodiments of the invention.
  • FIG. 23 is a section taken at line 23-23 in FIG. 22 and viewed in the direction of the arrows.
  • FIG. 24 is a top (overhead) view of a combination distractor and distractor blade housing used to establish and maintain the desired disc space during use of the instruments of FIGS. 1-23.
  • FIG. 25 is a section taken at line 25-25 in FIG. 24 and viewed in the direction of the arrows and showing application into the disc space.
  • FIG. 26 is a top (overhead) view of the distractor itself with a portion broken away from the middle to conserve space in the drawing.
  • FIG. 27 is a section taken at line 27-27 in FIG. 26 and viewed in the direction of the arrows.
  • FIG. 28 is a left-hand end view thereof.
  • FIG. 29 is a top (overhead) view of the distractor blade housing which serves also as the disc space keeper.
  • FIG. 30 is a section view taken at line 30-30 in FIG. 29 and viewed in the direction of the arrows.
  • FIG. 31 is a left-hand view thereof.
  • FIG. 32 is a right-hand view thereof.
  • FIG. 33 is an enlarged perspective view of the cutter illustrated in the FIGS. 1, 2, 7 and 8 illustrations.
  • FIG. 34 is a perspective view of another type of cutter.
  • FIG. 35 is an elevation view of the cutter and shaft for the cutter of FIG. 34, with a portion broken away to conserve space in the drawing.
  • FIG. 36 is a perspective view of another embodiment of cutter useful in the FIG. 1 embodiment of the invention.
  • FIG. 37 is an enlarged overhead view of the complete cutter and shaft for the cutter of FIG. 36 with a portion broken away to conserve space in the drawing.
  • FIG. 38 is an end view thereof.
  • FIG. 39 is a section therethrough taken at line 39-39 in FIG. 37 and viewed in the direction of the arrows.
  • FIG. 40 is a perspective view of another cutter useful with the FIG. 1 embodiment of the invention.
  • FIG. 41 is a perspective view of still another cutter similar to that of FIG. 33 but narrower.
  • FIG. 42 is a perspective view of the cutter shown in the illustrations of FIGS. 14, 15 and 19 for the pull-back embodiment of the invention.
  • FIG. 43 is an elevation view of another embodiment of the cutter and shaft used with the pull-back embodiment of the invention of FIGS. 14 and 15.
  • FIG. 44 is a section therethrough taken at line 44-44 in FIG. 43 and viewed in the direction of the arrows.
  • DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is hereby intended, such alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated herein being contemplated as would normally occur to one skilled in the art to which the invention relates.
  • Forward Percussion Embodiment
  • Referring now to the drawings in detail, particularly FIGS. 1-3, 12 and 13, the instrument has a one-piece elongated body 11 having a cam housing portion 12, a spring chamber portion 13, guide barrel portion 14, and end cap 16. A camshaft 17 is received in the cam housing portion.
  • A cutter-shaft 21 is received in the guide barrel and has a shaft portion with proximal end 22 and a cutter portion with distal end 23. A spring housing 26 (FIGS. 2, 9 and 10) is received in the bore 27 of the spring chamber portion of the body 11. As best shown in FIGS. 9 and 10, this spring housing has one end wall 29 with a central aperture 31 which receives and guides the proximal end portion of the cutter shaft 21. Housing 26 has stop tabs 32 and 33 at the end wall and which are received in grooves 34 and 36 (FIG. 13, and dashed lines in FIG. 1). These grooves extend longitudinally forward from the proximal end 37 (FIGS. 1 and 12) of the body, and end at plane 35 as shown in FIG. 1. They provide abutments to prevent movement of the housing 26 in the direction of arrow 78, beyond the location shown in FIG. 2. Also, the tabs 32 and 33 in grooves 34 and 36, respectively, prevent rotational movement of the spring housing within the body 11.
  • The hole 31 in the proximal end wall 29 serves as a proximal end bearing for the cutter shaft 21. Forward portions of the shaft 21 are slidably received and guided by contact of the outer wall of the shaft with the inner wall of the guide barrel portion 14 of the body 1.
  • A spring guide and end stop 38 (FIGS. 2 and 6) is slidably received on the proximal end portion of the shaft 21. Its outer rim 39 is slidably received in the bore 41 (FIG. 9) of the housing 26. A coil spring 42 (FIG. 2) is received around the stepped-down portion 43 of the member 38. The shoulder 44 at the step from the cylindrical surface 39 to the cylindrical surface 43 serves as a seat for the distal end of the spring 42. The inside face 46 of the end wall 29 of the housing 26 serves as a spring seat for the proximal end of spring 42.
  • The right-hand end portion 47 of housing 26 is internally threaded at 48 and receives end closure ring 49 (FIG. 11) which is screwed into the housing 26. This prevents the member 38 and spring therewith, from sliding out of the assembly when one cutter shaft is removed and replaced by another one having a different type of cutter. Normally, however, a screw 51 (FIGS. 1 and 2) is screwed into the body 11 and extends through an elongated hole 52 in the shaft 21. This screw normally retains the shaft 21 in the body. The length of hole 52 in the axial direction permits a range of shaft reciprocation from engagement with low points on the cam surface to slightly beyond the maximum height of the cam surface. To change cutters, the screw must be removed and then the shaft 21 can be dropped or pulled out from the distal end 53 of the guide barrel 14 followed by installation of the replacement cutter shaft.
  • Referring now more particularly to FIGS. 4 and 5 along with FIG. 2, the camshaft 17 is generally cylindrical about the axis 56 and has cylindrical flanges 57 and 58 which abut flanged bushings 59 and 61 received in upper and lower, rearwardly opening yokes 62 in the cam housing portion of the body 11 (FIGS. 1 and 12). Similarly, end cap 16 (FIGS. 22 and 23) has yoke portions which receive the bushings 59 and 61 when the end cap is fastened to the body with the four screws 66 (FIG. 3). The bushings 59 and 61 can be engaged by the outboard faces of the flanges 57 and 58 of the camshaft, so they provide location and thrust bearings for the camshaft as well as radial bearings for the smooth cylindrical surfaces 67 and 68 (FIG. 4) of the camshaft. It is seen that the yokes 62 of the body and 64 of the end cap 16, capture the bushings 59 and 61 and thereby capture the cam shaft in the assembly for centering the camshaft axis 56 colinear with the axes of bushings 59 and 61, when the end cap is secured in place by the screws 66.
  • The cam surface itself shown generally at 71 in FIGS. 4 and 5, is square shaped, having four low areas 72 and four high points 73. Other cam surface profiles may also be used. One example is shown in dotted lines in FIG. 5 in the form of a hexagon. It is the square cam shape which is shown in FIG. 2, with the shaft end 22 (rounded as shown in FIG. 8) engaging a low point on the cam and serving as the cam follower surface. Normally, however, spring 42 urges the spring seat 44 on member 38 (FIG. 6) to the right (in the direction of arrow 78). Abutting engagement of the wall 76 of member 38 with the annular shoulder 77 (FIGS. 7 and 8) of the cutter shaft 21 urges the shaft in the outward direction of arrow 78 (FIG. 2) to an extent limited by the engagement of the proximal end 79 of hole 52 with the stop screw 51. Therefore, in this normal rest position of the cutter shaft, the proximal end 22 thereof will be located, as shown by the dotted line 22R (FIG. 2), spaced away from the circular path of the high points of the cam.
  • Since this is a power operated instrument, converting rotary motion to reciprocating motion, the cam shaft has flat surfaces 81 for reception of a coupler, and a circular notch 82 for reception of a spring clip or clamp of a coupler from an external rotary power source. This may be any of a variety of power sources such as, electric, hydraulic or more likely an air or nitrogen powered turbine motor 85 (FIG. 1A) coupled to the camshaft. Air may be supplied through tubing 85A from a compressor 85B with speed control pedal 85C. Any other available source of air or other gas with pressure and/or volume control may be used.
  • Operation Forward Percussion Embodiment
  • As an example of the operation of this embodiment of the invention, the user may select the treatment tool to be used, insert it in the barrel 14 and install the screw 51. The tissue treatment tool referred to above and hereinafter is referred to broadly hereinafter as a cutter, and this term is intended to include tools which chisel, file, shape, rasp, polish, broach or otherwise perform the intended effect on or with the body tissue treated.
  • Before or after installation of the cutter shaft, the user may connect the power source to the camshaft. After positioning the distal end 23 of the cutter at the endplate treatment site and engaging the tissue to be treated, the user may apply force in the forward direction of arrow 78, which is the forward cutting direction of the cutters to be used with this embodiment of the invention. The forward force will compress the spring 42 and move the cam surface toward the shaft end (the cam follower surface) 22. If the camshaft is rotating, percussion action will begin as soon as the shaft end is touched by the high points of the rotating cam, and reciprocating action of the cutter will begin. The speed of such action can be controlled by speed control of the power source, whether by a motor at the instrument (as shown in FIG. 1A), or through a cable or hose and foot control or whatever speed control is desired or available. The percussion impact will depend on how much force the user applies in the direction of arrow 78, as the spring 38 is compressed by increasing force and thereby permits the end of the shaft 22 to project farther into the path of the cam surface as the cam surface moves about the rotational axis 56 of the camshaft.
  • From the foregoing discussion, it can be recognized that cutter shafts other than shaft 21 shown specifically in FIGS. 1, 2, 7 and 8, may be used in the practice of the present invention. Examples are different types of chisels, shavers and rasps to decorticate the endplate from the disc materials and the cartilage layer. Some are shown in FIGS. 34, 35, 36-39, 40 and 41. It is only necessary to remove the screw 51 and drop or pull cutter shaft 21, select a cutter shaft having a different distal end cutter (the shaft portion from the cutter to the proximal end 22 being of the same configuration as shown in FIGS. 7 and 8), and insert the proximal end of the cutter shaft through the distal end of the barrel 14 and through the bore and spring seat member 38 and into the bore 31 of the housing 26. Of course, it is preferable to have the power source turned off or disconnected from the camshaft during the cutter shaft installation to avoid the risk of having the proximal end 22 struck by the cam and driving the tool back out of the barrel before the limit screw has been installed. Such event might otherwise occur, depending upon whether the cutter shaft is pushed in with enough force to compress the spring 42.
  • Reverse Percussion Embodiment
  • This embodiment is discussed with reference to FIGS. 14 through 23, although it will be seen that several of the components described above with reference to the first (forward percussion) embodiment also are used in the reversed percussion embodiment. In this second embodiment of the invention illustrated in FIGS. 14 through 23, some of the components are very similar to those in the first described embodiment. For example, the body 86 has a cam housing portion 87, a spring housing 88 and a guide barrel portion 89. The body 86 is very similar to the body 11 of the first embodiment, and the end cap 91 is virtually identical to the end cap 16 of the first embodiment.
  • Referring particularly to FIGS. 14-23, and in contrast to the direction of percussion impulse from the cam in the first embodiment, the direction of impulse from the cam in this second embodiment is in the reverse direction so that it pulls the cutter edge 93 in the rearward direction of arrow 92. For that purpose, there is a cam shaft 94 mounted for rotation in the cam housing portion 87 of the body. It operates a cutter drive shaft 96 slidably received in the guide barrel portion 89. Its proximal end portion 97 is associated with the camshaft, while its distal end portion 98 receives a proximal end portion 99 of a cutter shaft having the cutter 93 at its distal end.
  • Referring now to FIGS. 16 and 17 along with FIG. 15, the camshaft 74 is mounted in the body in bushings 101 and 102 which are received and located in the housing in essentially the same way as are bushings 59 and 61 described above with reference to the first embodiment. The camshaft itself has a smooth cylindrical surface at 103 receiving radial bearing support by bushing 102. It also has a cylindrical flange 104 having outer face 106 engaging bushing 102 for thrust bearing support. The outer end portion of the camshaft has a pair of diametrically opposed flat surfaces 108 on the otherwise cylindrical surface 103 which provide anti-rotation cooperation with a connector of a rotary power source in the same manner as for the first described embodiment. Likewise, it has a stem with annular groove 109 and head 111 to cooperate with the power source connector and retain it in place. Accordingly, the drive for this camshaft is like that for the first embodiment.
  • In this embodiment, the cam surface itself is shown at 112 as a square, having four high points 113 and four flat surfaces 114, the center of each flat 114, as in the square cam of the first embodiment, being a low point in the cam travel. The cam can have other cross sectional shapes as mentioned above. One of several possible shapes could be hexagonal as designated by the dash line 116 in FIG. 17. At the end face 117 of the cam 112, there is a step inward to a hexagonal post 118 non-rotatably received in bearing 119 (FIGS. 20 and 21) and secured to the bearing by a socket head screw 121 screwed into the end of the camshaft. The hexagonal post 118 on the camshaft is received in the hexagonal aperture 122 of the bearing 119 which is rotatably received in bushing 101. Thus, the cylindrical surface 123 of the bearing 119 rotating in the bushing 101 provides radial bearing support for the camshaft, and the circular face 124 of the bearing 119 slidingly engaging the lower face of bushing 101 provides thrust bearing support for the camshaft.
  • Referring now particularly to FIGS. 15 and 18, the cutter drive shaft 96 for the cutter shaft has a cam follower end portion 97 configured for following the cam 112. It is illustrated in the form of an elongate hole 126 with straight parallel sidewalls 127 and 128 and a semi-circular end wall 129 having a radius equal to half the distance between the sidewalls 127 and 128 and centered at 131. This radius is slightly greater than the distance diametrically across the high points 113 of the cam and is centered on the cam axis 130. The follower end portion 97 framing the hole 126 has a shoulder 133. A spring 134 (FIG. 15) is a compression spring having a right-hand end 136 bearing on wall 137 of the spring chamber portion of the body 86. The left-hand end of the spring abuttingly engages the shoulder 133 of the follower end portion of the shaft 96. Therefore, the spring normally pushes the shaft 96 to the left in the direction of arrow 92.
  • An elongate hole 141 through shaft 96 receives travel limit screw 142, which is screwed into the instrument body 86. When the instrument is idle, the spring 134 moves the drive shaft 96 to the left until the right-hand end 143 of the hole 141 engages and is stopped by the screw 142. This is the normal rest position of the shaft and places it such that the center 131 of the curved surface 129 of the cam shaft frame hole 126 is spaced slightly outboard of the circle defined by the four high points of the cam when the camshaft is rotated.
  • The left-hand end wall 146 of the cam follower portion 97 is provided with extra thickness resulting in a bulge 147 at the longitudinal axis 148 of the cutter drive shaft 96 and serves as the cam follower surface of cutter drive shaft 96.
  • This embodiment of the invention can be provided with a variety of cutters of various configurations and types useful, particularly when pulled toward the surgeon. Some examples are different types of curettes, scrapers and pull shavers. One example is the cutter shaft 99 shown in elevation view in FIG. 19 and partially shown in FIGS. 14 and 42 and shown partially in section in FIG. 15. This cutter shaft 99 has a cylindrical body portion 151 slidably received on the inside bore of the barrel 89 of the instrument. A stem portion 152 of the tool has less diameter than the body portion 151 and is slidably received in a bore 153 in the distal end portion of the cutter drive shaft 96. The barrel 89 of the instrument has an elongate hole 154 at one location in the wall. A hole 156 (FIG. 18) in cutter drive shaft 96 is normally aligned or in registry with the hole 154 in the housing when the cutter drive shaft is in rest position dictated by the engagement of the stop screw 142 with the end wall 143 of hole 141 in the cutter drive shaft. This is under the urging of the spring 134. So when the cutter shaft is installed in the direction of arrow 92 into the open end 157 of the instrument body, it can be advanced to the left so that the cutter stem 152 received in bore 153 has the threaded hole 158 of the cutter stem 152 located in registry or lined up with the hole 156 in the cutter drive shaft 96. Then screw 159 can be inserted through the hole 154 in the guide barrel 89 and screwed into the cutter shaft hole 158 to fasten the cutter shaft 99 to the cutter drive shaft 96. The screw head is stopped so that it resides in the hole 156 in the cutter drive shaft, retaining the cutter shaft in place but recessed slightly from the inside wall of the barrel 89 to avoid interference with reciprocation of the cutter shaft. Besides, the hole 154 in the wall 89 is long enough that the screw can move forward and backward in the direction of arrow 92 within the hole 154 during reciprocation of the drive shaft 96. With this arrangement, the cutter shaft 99 can be readily removed from the guide barrel by simply removing screw 159 and pulling the cutter shaft out of the barrel. Another cutter shaft with a different configuration of the cutter portion but with the same configuration otherwise, can then be inserted through the end 157 in the direction of arrow 92. When the anchor hole 158 thereof is lined up with the hole 154, the screw 159 is installed to fix the new cutter shaft to the drive shaft 96 in preparation for using the new cutter.
  • Operation Reverse Percussion Embodiment
  • As mentioned above, the surgeon can run the cam constantly if desired, or can start it and stop it at the beginning and end of a cutting operation. Depending upon the power source available, the speed of rotation may be varied and thus, the speed of the cutter strokes would vary. A reciprocating action begins when the surgeon has engaged the cutter with the surface to be treated and pulls the instrument in the direction of arrow 92 with the cutter edge 93 engaging the surface to be prepared. The force of impact between the cutter edge 93 and material to be cut, is determined largely by the force with which the instrument is pulled in the direction of arrow 92, which thereby compresses the spring 134 and enables the cam engaging follower surface 147 of the cam follower to impinge on the path of rotation of the high points of the cam. The rate of impulses depends upon the speed of the camshaft as determined by the surgeon.
  • It can be understood that some cutters may be useful and which can treat the tissue in a useful way regardless of whether the cutter is driven in the forward or reverse direction. Such cutters can be used in either the forward or reverse percussion type instrument described above, if the proximal end portion of the cutter shaft is shaped and located to work with the cam and follower arrangement provided in the instrument. One example is a cutter as shown in FIGS. 34 and 35. With the shaft as shown in those figures, the cutter will work with the forward percussion instrument. If the shaft is made as shown in FIGS. 43 and 44, the cutter will work with the reverse percussion instrument.
  • Disc Height Maintenance
  • Referring now to FIGS. 24-30, there is shown apparatus used according to the present invention to facilitate use of either of the two previously described embodiments. Referring first to FIGS. 24 and 25, a combination distractor and disc space keeper is shown. As shown specifically in FIGS. 26-28, the illustrated distractor 171 includes a handle portion 172, shaft portion 173, head portion 174, and wedge portion 176. A forwardly opening hook 177 is fixed atop the shaft portion near the head portion. The wedge portion has a transverse groove 178 at the tip. Abutments 179 are provided at the transition from tip portion to head portion and are slightly arcuate in shape, as shown in FIG. 26. The upper and lower surfaces of the tip portion converge at a five degree total angle, half above and half below a plane containing the axis 181 of the shaft and handle portions. Referring particularly to FIGS. 29-32, a distractor blade housing 186 and which serves as the disc space keeper, is made in the form of a frame and includes parallel side members 187, a rear cross member 188, an intermediate cross member 189 serving as a hinge pin, and a front cross member 191.
  • In the use of this device, and after the removal of the disc from the space between vertebral bodies shown schematically at 191 and 192 in FIGS. 24 and 25, the distractor 171 is assembled with the blade housing 186 by inserting the wedge portion between the housing side members and moving it forward to engagement of the groove 178 of the distractor tip with the front cross member 191 of the blade housing and simultaneously receiving the hinge pin 189 in the hook 177, as shown in FIG. 25. Then, approaching from the anterior side of the spine, the space from which the disc material has been previously removed is approached in the direction of the arrow 193, and the handle 172 is pushed in that direction to open up the space to approximately eight or ten millimeters, or to such other extent as desired, and by hammer or other impulses on the handle end 194, if needed. After the desired disc height is established in this manner, the distractor handle is pulled out in the direction of arrow 196, while the blade housing 186 remains in place and maintains the disc height as desired, thus serving as the disc space keeper. Because of the offset between the plane 197 (FIG. 30) containing the frame cross member 191, and the parallel plane 198 containing the axis of the rear cross member 188, there is ample room for entry and manipulation of a cutter in the space between the vertebral bodies and entry of the percussion instrument in the space between the plane 197 and the pivot pin 189 and rear cross member 188 of the keeper frame.
  • While the views in FIGS. 24 and 25 show the combination with the hook 177 of the distractor and the rear cross member 188 of the keeper above the axis 181 of the distractor, the assembly can be used with the orientation inverted relative to that shown in FIG. 25. As with the cutting instruments themselves, the orientation will depend upon the preferences of the surgeon.
  • The preferred material for the larger components is stainless steel; however, the used of other materials suitable for the intended functions are also contemplated as falling within the scope of the invention.
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (21)

1.-34. (canceled)
35. A surgical method for treating vertebral endplates, comprising:
selecting an elongate disc space keeper frame having two side members and front, intermediate and rear cross members;
engaging with the frame a distractor having a wedge portion, head portion, handle portion and a hook;
receiving the front cross member of the frame in a groove defined in a front tip of the wedge portion of the distractor;
receiving the intermediate cross member of the frame in the hook on the distractor; and
inserting the frame into the intervertebral disc space from an anterior approach by displacing the distractor.
36. The method of claim 35 and further comprising:
removing the distractor from the frame while leaving the distractor front cross member and portions of the side members in the disc space to maintain the disc space for insertion of cutter instruments adapted for the preparation of vertebral endplates for receipt of an interbody fusion device.
37. A combination distractor and disc space keeper for use in spinal surgery, comprising:
an elongate frame having two side members and front, intermediate and rear cross members; and
a distractor having a wedge portion, head portion, handle portion and a forward facing hook;
the wedge portion of the distractor having a tip at the front of the wedge portion and having a forward facing groove in the tip; and
the front cross member of the frame being received in the groove in the tip of the wedge portion, and the intermediate cross member of the frame being received in the hook of the distractor.
38. The combination of claim 37 and wherein:
the wedge portion of the distractor is located between the frame side members.
39. The combination of claim 38 and wherein:
the head portion of the distractor is located between portions of the side members of the frame.
40. The combination of claim 38 and wherein:
portions of the wedge portion are adjacent frontal portions of the side members and diverge vertically in a rearward direction from a rounded tip to a shoulder at the head portion.
41. The combination of claim 40 and wherein:
the frontal portions of the side members of the frame adjacent the wedge portion diverge in a manner similar to the wedge portion from the front cross member rearward.
42. The combination of claim 41 and wherein:
the handle portion and wedge portion and front cross member lie in a first plane; and
the side members have portions intermediate the frontal portions and extending rearward from the frontal portions and away from the first plane to the rear cross member in a second plane offset from the first plane to admit a powered instrument to the space between the planes upon separation of the distractor from the frame.
43. The combination of claim 42 and wherein:
the departure of the intermediate portions of the side members from the first plane to the second plane is sufficient to admit a cutter instrument into the space between the planes.
44. A combination distractor and disc space keeper for use in spinal surgery, comprising:
a distractor extending along a longitudinal axis and including a wedge portion, an elongate shaft portion, and a forward facing engagement portion, the wedge portion having a distal tip and upper and lower surfaces that diverge away from one another from the distal tip in a rearward direction toward the shaft portion;
an elongate frame having two side members laterally offset from one another to define a housing space therebetween, the frame including a transverse cross member between the side members; and
wherein the distractor and the frame are removably assembled together with the wedge portion of the distractor positioned within the housing space between the side members of the frame and with the forward facing engagement portion of the distractor engaged with the transverse cross member of the frame.
45. The combination of claim 44, wherein the frame includes a front transverse cross member and a rear transverse cross member each extending between the side members.
46. The combination of claim 44, wherein the distal tip of the wedge portion of the distractor has a forward facing transverse groove; and
wherein the frame includes a front transverse cross member extending between the side members; and
wherein the front transverse cross member of the frame is received in the transverse groove in the distal tip of the wedge portion when the wedge portion is positioned within the housing space between the side members of the frame.
47. The combination of claim 44, wherein the forward facing engagement portion of the distractor comprises a forward facing hook; and
wherein the transverse cross member of the frame comprises a transverse pin; and
wherein the transverse pin is received in the forward facing hook when the wedge portion of the distractor is positioned within the housing space between the side members of the frame.
48. The combination of claim 47, wherein the forward facing hook of the distractor extends transversely from the shaft portion of the distractor.
49. The combination of claim 44, wherein the distractor further includes a head portion between the wedge portion and the shaft portion, the distractor defining abutment shoulders at the transition from the wedge portion to the head portion and extending outward from the upper and lower surfaces of the wedge portion, respectively.
50. The combination of claim 49, wherein the abutment shoulders have an arcuate shape.
51. The combination of claim 44, further comprising a cutter instrument having a cutting head sized for insertion into the housing space between the side members of the frame and adapted for preparation of vertebral endplates.
52. The combination of claim 44, wherein the wedge portion is positioned adjacent frontal portions of the side members of the frame; and
wherein the frontal portions of the side members include upper and lower frame surfaces that diverge in a manner similar to the upper and lower surfaces of the wedge portion in the rearward direction.
53. The combination of claim 44, wherein the side members have frontal portions positioned adjacent the wedge portion of the distractor and lying in a first plane, intermediate portions extending rearward from the frontal portions away from the first plate, and rear portions extending rearward from the intermediate portions and lying in a second plane offset from the first plane, the first and second planes spaced apart to admit a cutter instrument in a space between the first and second planes upon removal of the distractor from the frame.
54. The combination of claim 53, wherein the transverse cross member of the frame is offset from the first plane.
US12/459,251 2003-09-11 2009-06-29 Impulsive percussion instruments for endplate preparation Abandoned US20090270871A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/459,251 US20090270871A1 (en) 2003-09-11 2009-06-29 Impulsive percussion instruments for endplate preparation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP03292241A EP1514518A1 (en) 2003-09-11 2003-09-11 Impulsive percussion instruments for endplate preparation
EP03292241.1 2003-09-11
US10/937,159 US7569057B2 (en) 2003-09-11 2004-09-09 Impulsive percussion instruments for endplate preparation
US12/459,251 US20090270871A1 (en) 2003-09-11 2009-06-29 Impulsive percussion instruments for endplate preparation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/937,159 Division US7569057B2 (en) 2003-09-11 2004-09-09 Impulsive percussion instruments for endplate preparation

Publications (1)

Publication Number Publication Date
US20090270871A1 true US20090270871A1 (en) 2009-10-29

Family

ID=34130376

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/937,159 Active 2026-05-31 US7569057B2 (en) 2003-09-11 2004-09-09 Impulsive percussion instruments for endplate preparation
US12/459,251 Abandoned US20090270871A1 (en) 2003-09-11 2009-06-29 Impulsive percussion instruments for endplate preparation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/937,159 Active 2026-05-31 US7569057B2 (en) 2003-09-11 2004-09-09 Impulsive percussion instruments for endplate preparation

Country Status (2)

Country Link
US (2) US7569057B2 (en)
EP (1) EP1514518A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment

Families Citing this family (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
EP1514518A1 (en) * 2003-09-11 2005-03-16 SDGI Holdings, Inc. Impulsive percussion instruments for endplate preparation
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
JP5009159B2 (en) 2004-10-08 2012-08-22 エシコン・エンド−サージェリィ・インコーポレイテッド Ultrasonic surgical instrument
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US20080161929A1 (en) 2006-12-29 2008-07-03 Mccormack Bruce Cervical distraction device
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8226675B2 (en) * 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US20090112263A1 (en) 2007-10-30 2009-04-30 Scott Pool Skeletal manipulation system
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9005288B2 (en) 2008-01-09 2015-04-14 Providence Medical Techonlogy, Inc. Methods and apparatus for accessing and treating the facet joint
US8262663B2 (en) * 2008-05-05 2012-09-11 Ranier Limited Endplate preparation instrument
US8267966B2 (en) 2008-06-06 2012-09-18 Providence Medical Technology, Inc. Facet joint implants and delivery tools
EP2361046B1 (en) 2008-06-06 2019-04-24 Providence Medical Technology, Inc. Cervical distraction/implant delivery device
US8361152B2 (en) 2008-06-06 2013-01-29 Providence Medical Technology, Inc. Facet joint implants and delivery tools
US11224521B2 (en) 2008-06-06 2022-01-18 Providence Medical Technology, Inc. Cervical distraction/implant delivery device
CA2725811A1 (en) 2008-06-06 2009-12-10 Providence Medical Technology, Inc. Facet joint implants and delivery tools
US9381049B2 (en) 2008-06-06 2016-07-05 Providence Medical Technology, Inc. Composite spinal facet implant with textured surfaces
US9333086B2 (en) 2008-06-06 2016-05-10 Providence Medical Technology, Inc. Spinal facet cage implant
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US11241257B2 (en) 2008-10-13 2022-02-08 Nuvasive Specialized Orthopedics, Inc. Spinal distraction system
US8197490B2 (en) 2009-02-23 2012-06-12 Ellipse Technologies, Inc. Non-invasive adjustable distraction system
US8876828B2 (en) * 2009-04-23 2014-11-04 Ranier Limited Vertebral surface preparation instrument
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
EP2451404B1 (en) 2009-07-09 2015-12-16 R Tree Innovations, LLC Flexible inter-body implant
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
CN105011997B (en) * 2009-09-04 2019-04-26 诺威适骨科专科公司 Bone uptake device and method
RU2016101629A (en) * 2009-09-04 2018-12-04 Нувэйсив Спешилайзд Ортопэдикс, Инк. DEVICE AND METHOD FOR BONE EXTENSION
US9198675B2 (en) 2009-09-24 2015-12-01 Imds Llc Reciprocating surgical instrument
US9005203B2 (en) 2009-09-24 2015-04-14 Imds, Llc Reciprocating surgical instruments
US9033986B2 (en) 2009-09-24 2015-05-19 Imds, Llc Reciprocating surgical instrument
EP2480143A4 (en) * 2009-09-24 2014-11-19 Medicinelodge Inc Dba Imds Co Innovation Surgical rasping systems and methods
US8986302B2 (en) 2009-10-09 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8926665B2 (en) * 2010-03-18 2015-01-06 Facsecure, Llc Cortical, anti-migration, facet dowel for fusion of facet joints in the spine and devices for setting the same in place
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
WO2012021378A2 (en) 2010-08-09 2012-02-16 Ellipse Technologies, Inc. Maintenance feature in magnetic implant
US8695726B2 (en) 2010-12-29 2014-04-15 Medical Enterprises LLC Electric motor driven tool for orthopedic impacting
AU2013260169B2 (en) 2010-12-29 2017-06-29 Medical Enterprises Distribution, Llc Electric motor driven tool for orthopedic impacting
US8936603B2 (en) 2011-03-07 2015-01-20 Frederic Mani Pneumatic surgical instrument and corresponding methods for penetrating, resecting and microfracturing bone
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US8968326B2 (en) 2012-02-07 2015-03-03 Frederic Mani Pneumatic surgical instrument and corresponding methods for implanting orthopedic implants in bone
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US10149711B2 (en) 2012-03-30 2018-12-11 Depuy Mitek, Llc Surgical impact tool
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20130338714A1 (en) 2012-06-15 2013-12-19 Arvin Chang Magnetic implants with improved anatomical compatibility
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
BR112015007010B1 (en) 2012-09-28 2022-05-31 Ethicon Endo-Surgery, Inc end actuator
US9044281B2 (en) 2012-10-18 2015-06-02 Ellipse Technologies, Inc. Intramedullary implants for replacing lost bone
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
USD732667S1 (en) 2012-10-23 2015-06-23 Providence Medical Technology, Inc. Cage spinal implant
USD745156S1 (en) 2012-10-23 2015-12-08 Providence Medical Technology, Inc. Spinal implant
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9179938B2 (en) 2013-03-08 2015-11-10 Ellipse Technologies, Inc. Distraction devices and method of assembling the same
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US10226242B2 (en) 2013-07-31 2019-03-12 Nuvasive Specialized Orthopedics, Inc. Noninvasively adjustable suture anchors
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
WO2015109203A2 (en) * 2014-01-16 2015-07-23 Archer Sciences, LLC Impactor and remover devices
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9861373B2 (en) * 2014-04-14 2018-01-09 Efraim Kfir Assembly for manipulating bones
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
WO2015184018A1 (en) 2014-05-28 2015-12-03 Providence Medical Technology, Inc. Lateral mass fixation system
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
JP6672289B2 (en) 2014-10-23 2020-03-25 ニューベイシブ スペシャライズド オーソペディックス,インコーポレイテッド Teleadjustable interactive bone remodeling implant
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
KR102564585B1 (en) * 2015-01-09 2023-08-09 디퍼이 신테스 프로덕츠, 인코포레이티드 Electric motor driven tool for orthopedic impacting
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
USD841165S1 (en) 2015-10-13 2019-02-19 Providence Medical Technology, Inc. Cervical cage
EP3361966A4 (en) 2015-10-13 2019-07-24 Providence Medical Technology, Inc. Spinal joint implant delivery device and system
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
WO2017139548A1 (en) 2016-02-10 2017-08-17 Nuvasive Specialized Orthopedics, Inc. Systems and methods for controlling multiple surgical variables
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
WO2018005548A1 (en) 2016-06-28 2018-01-04 Providence Medical Technology, Inc. Spinal implant and methods of using the same
USD887552S1 (en) 2016-07-01 2020-06-16 Providence Medical Technology, Inc. Cervical cage
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
EP3624708A1 (en) 2017-05-19 2020-03-25 Providence Medical Technology, Inc. Spinal fixation access and delivery system
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10695073B2 (en) 2017-08-22 2020-06-30 Arthrex, Inc. Control system for retrograde drill medical device
JP2021506406A (en) 2017-12-15 2021-02-22 デピュイ・シンセス・プロダクツ・インコーポレイテッド Orthopedic adapter for electrical shock equipment
WO2019136263A1 (en) 2018-01-04 2019-07-11 Providence Medical Technology, Inc. Facet screw and delivery device
CN108498133B (en) * 2018-06-22 2024-01-05 王志荣 Multifunctional vertebral endplate processor
EP3922039A1 (en) 2019-02-07 2021-12-15 NuVasive Specialized Orthopedics, Inc. Ultrasonic communication in medical devices
US11589901B2 (en) 2019-02-08 2023-02-28 Nuvasive Specialized Orthopedics, Inc. External adjustment device
USD933230S1 (en) 2019-04-15 2021-10-12 Providence Medical Technology, Inc. Cervical cage
USD911525S1 (en) 2019-06-21 2021-02-23 Providence Medical Technology, Inc. Spinal cage
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US20210196361A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with monopolar and bipolar energy capabilities
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
USD945621S1 (en) 2020-02-27 2022-03-08 Providence Medical Technology, Inc. Spinal cage
AU2022225229A1 (en) 2021-02-23 2023-09-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11737787B1 (en) 2021-05-27 2023-08-29 Nuvasive, Inc. Bone elongating devices and methods of use

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2100319A (en) * 1932-06-07 1937-11-30 Harold J Brown Dental or surgical instrument
US2124024A (en) * 1936-01-22 1938-07-19 Alkin Thomas Turner Power chisel apparatus
US2588006A (en) * 1947-04-21 1952-03-04 Fred M Hufnagel Dental and surgical percussion tool
US3561429A (en) * 1968-05-23 1971-02-09 Eversharp Inc Instrument for obtaining a biopsy specimen
US3995619A (en) * 1975-10-14 1976-12-07 Glatzer Stephen G Combination subcutaneous suture remover, biopsy sampler and syringe
US4108182A (en) * 1977-02-16 1978-08-22 Concept Inc. Reciprocation vitreous suction cutter head
US4210146A (en) * 1978-06-01 1980-07-01 Anton Banko Surgical instrument with flexible blade
US4246902A (en) * 1978-03-10 1981-01-27 Miguel Martinez Surgical cutting instrument
US4298074A (en) * 1976-08-09 1981-11-03 American Safety Equipment Corporation Surgical device using impulse motor
US4299571A (en) * 1979-08-03 1981-11-10 Inventive Technology International, Inc. Dental file
US4358230A (en) * 1980-04-04 1982-11-09 Rohlin Robert W Chuck operating device for hand drill
US4512344A (en) * 1982-05-12 1985-04-23 Barber Forest C Arthroscopic surgery dissecting apparatus
US4589414A (en) * 1983-04-27 1986-05-20 Olympus Optical Co., Ltd. Surgical cutting instrument
US4782588A (en) * 1986-11-19 1988-11-08 Ruvo Automation Corp. Door hinge applicator
US5057112A (en) * 1990-01-04 1991-10-15 Intermedics Orthopedics, Inc. Pneumatically powered orthopedic broach
US5152352A (en) * 1990-04-20 1992-10-06 Imt Integral Medizintechnik Ag Pneumatic percussion tool, especially for the preparation of bones
US5269794A (en) * 1987-02-18 1993-12-14 Linvatec Corporation Cutting blade assembly for an arthroscopic surgical instrument drive system
US5324297A (en) * 1989-01-31 1994-06-28 Advanced Osseous Technologies, Inc. Ultrasonic tool connector
US5352230A (en) * 1992-02-19 1994-10-04 Biomet, Inc. Pneumatic impulse tool
US5431658A (en) * 1994-02-14 1995-07-11 Moskovich; Ronald Facilitator for vertebrae grafts and prostheses
US5509918A (en) * 1993-05-11 1996-04-23 David Romano Method and apparatus for drilling a curved bore in an object
US5571109A (en) * 1993-08-26 1996-11-05 Man Ceramics Gmbh System for the immobilization of vertebrae
US5591170A (en) * 1994-10-14 1997-01-07 Genesis Orthopedics Intramedullary bone cutting saw
US5618293A (en) * 1995-06-06 1997-04-08 Smith & Nephews Dyonics, Inc. Surgical instrument
US5741263A (en) * 1997-04-18 1998-04-21 Midas Rex Pneumatic Tools, Inc. Mutiple flat quick release coupling
US5782836A (en) * 1996-07-30 1998-07-21 Midas Rex Pneumatic Tools, Inc. Resecting tool for magnetic field environment
US6083228A (en) * 1998-06-09 2000-07-04 Michelson; Gary K. Device and method for preparing a space between adjacent vertebrae to receive an insert
US6209659B1 (en) * 1998-07-22 2001-04-03 Hilti Aktiengesellschaft Hand-held drill with a compressed air-operated hammer mechanism
US6224599B1 (en) * 1999-05-19 2001-05-01 Matthew G. Baynham Viewable wedge distractor device
US6233833B1 (en) * 1997-06-05 2001-05-22 Black & Decker Inc. Reciprocating saw with clamp for receiving blade in multiple orientations
US20010037114A1 (en) * 1999-09-24 2001-11-01 Dinger Fred B. Osteotome and handpiece adapter assembly and powered surgical handpiece assembly including an osteotome
US6508151B1 (en) * 1996-08-19 2003-01-21 Milwaukee Electric Tool Corporation Reciprocating saw with rocker motion
US6530936B1 (en) * 1998-06-03 2003-03-11 Yeong Seok Yun Apparatus for harvesting cartilage
US20040010258A1 (en) * 2002-07-13 2004-01-15 Steven Carusillo Surgical tool system
US20040059338A1 (en) * 2002-09-23 2004-03-25 Maxilon Laboratories, Inc. Apparatus and method for harvesting bone
US6742266B2 (en) * 2001-10-04 2004-06-01 Robson L. Splane, Jr. Miniature reciprocating saw device
US20040267274A1 (en) * 2003-06-27 2004-12-30 Tushar Patel Tissue retractor and drill guide
US20050065529A1 (en) * 2003-09-11 2005-03-24 Mingyan Liu Impulsive percussion instruments for endplate preparation
US20050113838A1 (en) * 2003-09-03 2005-05-26 Kyphon Inc. Devices for creating voids in interior body regions and related methods
US20060129160A1 (en) * 2003-03-13 2006-06-15 Sdgi Holdings, Inc. Vertebral endplate preparation tool kit
US7083623B2 (en) * 1996-07-31 2006-08-01 Sdgi Holdings, Inc. Milling instrumentation and method for preparing a space between adjacent vertebral bodies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176679A (en) * 1991-09-23 1993-01-05 Lin Chih I Vertebral locking and retrieving system
US5499983A (en) * 1994-02-23 1996-03-19 Smith & Nephew Richards, Inc. Variable angle spinal screw
US6520967B1 (en) * 1999-10-20 2003-02-18 Cauthen Research Group, Inc. Spinal implant insertion instrument for spinal interbody prostheses
US7220262B1 (en) * 2001-03-16 2007-05-22 Sdgi Holdings, Inc. Spinal fixation system and related methods

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2100319A (en) * 1932-06-07 1937-11-30 Harold J Brown Dental or surgical instrument
US2124024A (en) * 1936-01-22 1938-07-19 Alkin Thomas Turner Power chisel apparatus
US2588006A (en) * 1947-04-21 1952-03-04 Fred M Hufnagel Dental and surgical percussion tool
US3561429A (en) * 1968-05-23 1971-02-09 Eversharp Inc Instrument for obtaining a biopsy specimen
US3995619A (en) * 1975-10-14 1976-12-07 Glatzer Stephen G Combination subcutaneous suture remover, biopsy sampler and syringe
US4298074A (en) * 1976-08-09 1981-11-03 American Safety Equipment Corporation Surgical device using impulse motor
US4108182A (en) * 1977-02-16 1978-08-22 Concept Inc. Reciprocation vitreous suction cutter head
US4246902A (en) * 1978-03-10 1981-01-27 Miguel Martinez Surgical cutting instrument
US4210146A (en) * 1978-06-01 1980-07-01 Anton Banko Surgical instrument with flexible blade
US4299571A (en) * 1979-08-03 1981-11-10 Inventive Technology International, Inc. Dental file
US4358230A (en) * 1980-04-04 1982-11-09 Rohlin Robert W Chuck operating device for hand drill
US4512344A (en) * 1982-05-12 1985-04-23 Barber Forest C Arthroscopic surgery dissecting apparatus
US4589414A (en) * 1983-04-27 1986-05-20 Olympus Optical Co., Ltd. Surgical cutting instrument
US4782588A (en) * 1986-11-19 1988-11-08 Ruvo Automation Corp. Door hinge applicator
US5269794A (en) * 1987-02-18 1993-12-14 Linvatec Corporation Cutting blade assembly for an arthroscopic surgical instrument drive system
US5632759A (en) * 1987-02-18 1997-05-27 Linvatec Corporation Cutting blade assembly for an arthroscopic surgical instrument drive system
US5324297A (en) * 1989-01-31 1994-06-28 Advanced Osseous Technologies, Inc. Ultrasonic tool connector
US5057112A (en) * 1990-01-04 1991-10-15 Intermedics Orthopedics, Inc. Pneumatically powered orthopedic broach
US5152352A (en) * 1990-04-20 1992-10-06 Imt Integral Medizintechnik Ag Pneumatic percussion tool, especially for the preparation of bones
US5352230A (en) * 1992-02-19 1994-10-04 Biomet, Inc. Pneumatic impulse tool
US5509918A (en) * 1993-05-11 1996-04-23 David Romano Method and apparatus for drilling a curved bore in an object
US5571109A (en) * 1993-08-26 1996-11-05 Man Ceramics Gmbh System for the immobilization of vertebrae
US5431658A (en) * 1994-02-14 1995-07-11 Moskovich; Ronald Facilitator for vertebrae grafts and prostheses
US5591170A (en) * 1994-10-14 1997-01-07 Genesis Orthopedics Intramedullary bone cutting saw
US5618293A (en) * 1995-06-06 1997-04-08 Smith & Nephews Dyonics, Inc. Surgical instrument
US5782836A (en) * 1996-07-30 1998-07-21 Midas Rex Pneumatic Tools, Inc. Resecting tool for magnetic field environment
US7083623B2 (en) * 1996-07-31 2006-08-01 Sdgi Holdings, Inc. Milling instrumentation and method for preparing a space between adjacent vertebral bodies
US6508151B1 (en) * 1996-08-19 2003-01-21 Milwaukee Electric Tool Corporation Reciprocating saw with rocker motion
US5741263A (en) * 1997-04-18 1998-04-21 Midas Rex Pneumatic Tools, Inc. Mutiple flat quick release coupling
US6233833B1 (en) * 1997-06-05 2001-05-22 Black & Decker Inc. Reciprocating saw with clamp for receiving blade in multiple orientations
US6530936B1 (en) * 1998-06-03 2003-03-11 Yeong Seok Yun Apparatus for harvesting cartilage
US6083228A (en) * 1998-06-09 2000-07-04 Michelson; Gary K. Device and method for preparing a space between adjacent vertebrae to receive an insert
US6209659B1 (en) * 1998-07-22 2001-04-03 Hilti Aktiengesellschaft Hand-held drill with a compressed air-operated hammer mechanism
US6224599B1 (en) * 1999-05-19 2001-05-01 Matthew G. Baynham Viewable wedge distractor device
US20010037114A1 (en) * 1999-09-24 2001-11-01 Dinger Fred B. Osteotome and handpiece adapter assembly and powered surgical handpiece assembly including an osteotome
US6742266B2 (en) * 2001-10-04 2004-06-01 Robson L. Splane, Jr. Miniature reciprocating saw device
US20040010258A1 (en) * 2002-07-13 2004-01-15 Steven Carusillo Surgical tool system
US6958071B2 (en) * 2002-07-13 2005-10-25 Stryker Corporation Surgical tool system
US6755837B2 (en) * 2002-09-23 2004-06-29 Maxilon Laboratories, Inc. Apparatus and method for harvesting bone
US20040059338A1 (en) * 2002-09-23 2004-03-25 Maxilon Laboratories, Inc. Apparatus and method for harvesting bone
US20060129160A1 (en) * 2003-03-13 2006-06-15 Sdgi Holdings, Inc. Vertebral endplate preparation tool kit
US20040267274A1 (en) * 2003-06-27 2004-12-30 Tushar Patel Tissue retractor and drill guide
US20050113838A1 (en) * 2003-09-03 2005-05-26 Kyphon Inc. Devices for creating voids in interior body regions and related methods
US20050065529A1 (en) * 2003-09-11 2005-03-24 Mingyan Liu Impulsive percussion instruments for endplate preparation

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11672684B2 (en) 2006-10-20 2023-06-13 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US11123107B2 (en) 2011-11-01 2021-09-21 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11213330B2 (en) 2012-10-29 2022-01-04 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport

Also Published As

Publication number Publication date
EP1514518A1 (en) 2005-03-16
US20050065529A1 (en) 2005-03-24
US7569057B2 (en) 2009-08-04

Similar Documents

Publication Publication Date Title
US20090270871A1 (en) Impulsive percussion instruments for endplate preparation
US6083228A (en) Device and method for preparing a space between adjacent vertebrae to receive an insert
EP2848214B1 (en) Improved osteotome
US5057112A (en) Pneumatically powered orthopedic broach
US7611514B2 (en) Spinal interspace shaper
US5658304A (en) Wrenchless and adapterless collet system for surgical blades
US20070233131A1 (en) Apparatus and method of creating an intervertebral cavity with a vibrating cutter
US20180235767A1 (en) Devices, Methods and Systems to Implant and Secure an Intervertebral Implant for Spinal Treatment
EP2961354B1 (en) Acetabular cup remover with indexing assembly for rotating the removal blade around the cup
US20130282013A1 (en) Discectomy Instrument
US20040147934A1 (en) Oscillating, steerable, surgical burring tool and method of using the same
US9724209B2 (en) Spherical-arc rotating saw blade power tool for acetabular cup extraction
KR200487712Y1 (en) Shaver For Surgery
US9572585B2 (en) Surgical sagittal saw blade with features that facilitate driving the blade in a crossed loop pattern
EP1372496A1 (en) Circumferential resecting reamer tool
JP2004130076A (en) End plate forming device
US20180256175A1 (en) Bone cleaning tool
US20210219964A1 (en) Powered bone-graft harvester
AU2002314735A1 (en) Circumferential resecting reamer tool

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION