US20090240265A1 - Eversion apparatus and methods - Google Patents

Eversion apparatus and methods Download PDF

Info

Publication number
US20090240265A1
US20090240265A1 US12/235,445 US23544508A US2009240265A1 US 20090240265 A1 US20090240265 A1 US 20090240265A1 US 23544508 A US23544508 A US 23544508A US 2009240265 A1 US2009240265 A1 US 2009240265A1
Authority
US
United States
Prior art keywords
vessel
eversion
handle
graft
everting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/235,445
Inventor
Tom Breton
Steve Golden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US12/235,445 priority Critical patent/US20090240265A1/en
Publication of US20090240265A1 publication Critical patent/US20090240265A1/en
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COALESCENT SURGICAL, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery

Definitions

  • This invention relates to apparatus and methods for preparing a tubular graft for an anastomosis procedure. More particularly, the invention involves apparatus and methods for everting a graft prior to anastomosing the graft to another tubular structure such as an aorta.
  • occlusion of the arteries can lead to insufficient blood flow resulting in discomfort and risks of angina and ischemia.
  • Significant blockage of blood flow in the coronary artery can result in damage to the myocardial tissue or death of the patient.
  • occlusion of the artery results from progressive long term deposits of plaque along the artery wall. While such deposits may be concentrated and occlude the artery at a particular site, the deposits are most certainly present throughout the arteries and the vascular system.
  • Coronary artery bypass graft (CABG) surgery is a surgical procedure performed in severe cases of coronary blockages.
  • CABG procedures involve anastomosing an artery to a graft, such as a vascular graft, which restores the flow of blood by establishing another pathway around the occluded vasculature.
  • a vein or other conduit can be attached proximally to the patient's aorta. The other end is attached to the blocked artery, downstream from the obstruction, thus bypassing the coronary occlusion.
  • CABG procedures can be done by placing the patient on a heart-lung machine and stopping the heart from beating or they can be done on a beating heart without a heart lung machine.
  • Vessel eversion apparatus have been disclosed to prepare vascular grafts for anastomosis.
  • vessel everting apparatus is described in U.S. Pat. No. 5,076,161 to Kirsch, et al. and U.S. Pat. No. 6,176,413 to Heck, et al.
  • the present invention involves improvements in anastomosis apparatus and methods for anastomosing a first tubular structure to a second tubular structure.
  • eversion apparatus for preparing a conduit, such as a vessel, for anastomosis in a human patient comprises an everting member having a loop shaped portion adapted to be inserted into an end portion of a conduit from a human patient and configured to fold a portion of the conduit end portion over itself when it is moved away from the conduit end and along the conduit while a portion of the conduit is held fixed relative thereto.
  • the eversion apparatus facilitates eversion of a vascular or nonvascular graft, for example, so that the intimal surface of the graft and the intimal surface of the target conduit, such as a vessel, can be placed in contact with one another for the anastomosis.
  • the eversion apparatus also facilitates rapid graft eversion which can expedite the anastomosis procedure. In cases where the surgeon must complete the graft in as little time as possible due to the absence of blood flowing through a vessel such as the aorta in a CABG procedure, this can be especially advantageous. If blood flow is not promptly restored, sometimes in as little as 30 minutes, the tissues the artery supplies may experience significant damage or necrosis.
  • a conduit or vessel eversion system for preparing a conduit or vessel for anastomosis in a human patient comprises a conduit or vessel support device having a proximal end and a distal end; and everting apparatus comprising an everting member, the everting member having a loop shaped portion adapted to be inserted into a portion of a conduit or vessel to be prepared for an anastomosis in a human patient and evert the portion of the conduit or vessel over the conduit or vessel support device when the conduit or vessel is coupled to the support device with an end portion thereof extending from the distal end of the support device.
  • a method of everting a graft comprises positioning a graft in a support device such that an end portion of the graft extends therefrom; introducing a generally looped shaped member into the end portion of the graft extending from said support device; and moving the looped shaped member over the support device to fold at least a portion of the end portion of the graft over the support device.
  • FIG. 1 is a perspective view of an eversion tool constructed according to the principles of the present invention
  • FIG. 2 is a side elevational view of the eversion tool of FIG. 1 ;
  • FIGS. 3A and 3B are top plan views of the eversion tool of FIG. 1 where FIG. 3A shows the everting member or loop adjusted to a first diameter and FIG. 3B shows the everting member or loop adjusted to a second larger diameter;
  • FIGS. 4A and 4B illustrate another embodiment of the eversion tool where FIG. 4A shows the everting member or loop adjusted to a first diameter and FIG. 4B shows the everting member or loop adjusted to a second larger diameter;
  • FIG. 5 illustrates another embodiment of the eversion tool
  • FIGS. 6A-6D schematically illustrate everting a graft vessel using the eversion tool of any one of FIGS. 1-5 , where FIG. 6A illustrates presenting the distal end portion of the graft vessel in a graft support device, FIG. 6B illustrates insertion of the eversion tool in the distal end portion of the graft vessel, FIG. 6C illustrates everting the distal end portion of the graft vessel, and FIG. 6D illustrates removing the eversion tool from the everted graft and graft support device;
  • FIGS. 7A-7D depicts another support or anastomosis device apparatus with which the eversion tool can be used, where FIG. 7A is a partial sectional view of the support device, FIG. 7B is an enlarged partial sectional view of the apparatus of FIG. 7A taken generally along line 7 B- 7 B;
  • FIG. 7C shows the apparatus of FIG. 7A in a radially collapsed state with the mandrel or slide retracted allowing the arms to progressively move radially inward along the distal portion thereof
  • FIG. 7D shows the apparatus of FIG. 7A in a radially expanded state with the mandrel longitudinally extended toward the distal end of the apparatus urging the arms radially outward;
  • FIGS. 7E-7H illustrate everting a graft vessel using the eversion tool of any one of FIGS. 1-5 , where FIG. 7E illustrates presenting the distal end portion of the graft vessel in the graft support device of FIG. 7A , FIG. 7F illustrates insertion of the eversion tool in the distal end portion of the graft vessel, FIG. 7C illustrates everting the distal end portion of the graft vessel with the eversion tool, and FIG. 7D illustrates extending piercing member through the distal end portion of the graft vessel after the eversion tool has been removed.
  • the apparatus, systems, and methods described herein can be used to connect or anastomose tubular structures or conduits together.
  • the tubular structures can be vascular or nonvascular structures.
  • the apparatus, systems, and methods described herein can be used in connection with coronary artery bypass grafting procedures during which a vascular conduit or graft structure, such as a vein (e.g., a saphenous vein), artery (e.g., an internal mammary artery), or an artificial conduit or graft structure, is anastomosed to an aorta, the example target structure.
  • a vascular conduit or graft structure such as a vein (e.g., a saphenous vein), artery (e.g., an internal mammary artery), or an artificial conduit or graft structure, is anastomosed to an aorta, the example target structure.
  • nonvascular lumens can include, but are not intended to be limited to, the bile duct, the urethra, the urinary bladder, intestines, esophagus, stomach, and bowel.
  • the ideal anastomotic connection can be created when the component vessels are arranged in a situation that provides intima-to-intima contact.
  • Standard suturing techniques provide some degree of this attribute, but there are inconsistencies owing to, for example, variation in operator technique and vessel preparation.
  • the vessel can be everted (or cuffed). This involves manipulation of the vessel to turn a defined section inside-out to expose the internal lumen and intimal surface.
  • This everted section can also be utilized to create a seal (or gasket) between the graft and the native vessel.
  • the everted section can be used to form the interface at the anastomotic site that also provides a medium for desired tissue healing.
  • One difficulty of vessel eversion arises when attempting to manually manipulate the tissue to create the everted section or cuff. As the tissue is semi-elastic, it has a tendency to resist manual eversion.
  • the invention involves graft or vessel everting apparatus, systems and methods to prepare grafts and vessels for anastomosis and assist with the anastomosis.
  • the eversion tool or apparatus of the present invention generally comprises an everting member, which comprises a flexible or pliable member or portion.
  • the flexible or pliable member or portion can be semi-rigid and can be generally oval or circular with a closed or nearly closed turn. In other words, the flexible or pliable member or portion can be in the form of a loop.
  • the everting member loop is inserted into one end of a graft or vessel and then manipulated to expand the graft or vessel radially outward so that the graft or vessel can be everted or draped over a vessel holder or support device, which will be described in more detail below.
  • the everting member loop can have variable shapes and/or diameters to accommodate variously sized vessel support devices and to facilitate ease of its removal therefrom.
  • the eversion tool also can include a handle to support the everting member.
  • Eversion tool 100 generally comprises an everting member 104 , which comprises a flexible or pliable member having a portion that is in the form of a circular loop.
  • the generally circular loop can be nearly closed or closed. It should be understood, however, the flexible and/or pliable characteristics allow the loop to be readily reshaped.
  • One suitable material for flexible or pliable member 104 can be stainless steel wire, such as 304 series stainless steel wire, or nitinol wire. The wire typically will have a diameter ranging from about 0.002 to 0.015 inch.
  • eversion tool 100 includes handle 102 for supporting everting member 104 .
  • handle 102 can be tubular. It also can have a collar at its distal end as shown in FIGS. 7E-G .
  • the handle can be made from any suitable material such as a machined metal (e.g., stainless steel) or injection molded plastic.
  • everting member 104 is slidably mounted in handle 102 . More specifically, the ends of a straight wire (e.g., a nitinol wire) can be brought together and inserted into the handle without platically deforming the wire. This facilitates adjustment of the size of the everting member loop extending from handle 102 by moving the ends of the wire. One can move proximally located everting member ends 104 a and 104 b relative to handle 102 to adjust the length of the elongated everting member portion extending from the distal end of handle 102 to adjust the loop size. In FIG. 3A , the distal ends 104 a and 104 b are in first position and in FIG.
  • a straight wire e.g., a nitinol wire
  • Eversion tool 100 ′ is the same as eversion tool 100 with the exception that one portion of everting member 104 is fixedly secured to handle 102 .
  • everting member 104 b is fixedly secured to handle 102 .
  • the loop can be preformed with other shapes such as oblong, oval or teardrop shapes.
  • Eversion tool 100 ′′ is the same as eversion tool 100 with the exception that two portions of everting member 104 are fixedly secured to handle 102 so that the length of the loop extending from the distal end of the handle is fixed.
  • everting member ends 104 a and 104 b can be fixedly secured to handle 102 .
  • graft support device 200 In order to assist in the understanding of the operation of the eversion tool, graft support device 200 will first be described.
  • Anastomosis or support device 200 is used to hold the everted graft tubular structure (e.g., graft vessel) adjacent to or in an opening formed in a target tubular structure (e.g., target vessel) to which the graft tubular structure is to be anastomosed. More specifically, the support device supports or holds the graft tubular structure in a position relative to the target tubular structure so that the graft and target tubular structure can be secured to one another with known fasteners such as sutures or surgical clips.
  • graft tubular structure e.g., graft vessel
  • target tubular structure e.g., target vessel
  • Anastomosis or support device 200 comprises a proximal portion and a distal portion.
  • the distal portion has a plurality of arms (or fingers) 206 that are configured to hold the everted portion or flap “E” of a tubular graft structure “G” as shown in FIGS. 6C and 6D .
  • Adjacent arms are configured and arranged to form spaces, such as spaces 208 , suitable for receiving surgical fasteners therethrough.
  • Support device 200 can be described as a slotted tubular member, each slot having an open distal end and a closed end. After the support device has been positioned in the desired position and fasteners passed through a desired number of the slots through graft tubular structure and the target tubular structure, the open ends allow removal of the anastomosis or support device without disrupting the fasteners.
  • Anastomosis device or support 200 can be made from any suitable plastic or metal.
  • the device can be made from ABS plastic material or stainless steel tubing such as 304 stainless steel tubing.
  • the length of the device typically ranges from about 25 mm to about 125 mm depending on the application. In aortic applications, it typically ranges from about 25 mm to about 70 mm.
  • the inner diameter of the tube typically ranges from about 1 mm to about 25 mm also depending on the application. For example, the inner diameter typically can vary from about 3 mm to about 6 mm when sized for an aortic anastomosis where the tube thickness can range from 0.1 mm to 2 mm.
  • the tube inner diameter can be up to about 25 mm when sized for applications concerning the bowel.
  • the tube can have any number of slots or openings, but typically will have 4 to 12 slots cut into its side or the number of arms selected and arranged to form 4 to 12 openings.
  • the slots or openings typically extend a length of about 2 mm to about 25 mm and have a width of about 0.2 mm to about 5 mm. In aortic applications, the slot length typically can range from about 5 mm to about 25 mm and the slot width typically can range from about 0.2 mm to 2.5 mm.
  • the desired number of sutures or clips to be used for a particular anastomosis can determine the number of spaces or slots that the anastomosis device should have. That is the number of openings can match the number desired fasteners. However, it should be understood that the number of openings need not necessarily match the number of fasteners.
  • the tube can be split down the side to facilitate its placement in and removal from the tubular graft structure.
  • the split allows the tube to be compressed and deformed to fit into small openings in the target vessel.
  • the split can be expanded to assist in removing the graft from the device.
  • the tube can comprise or be made of shape memory material or alloy so that the compressed split tube returns to a shape memory tubular shape that is approximately equal to or slightly larger the opening into which it is inserted.
  • the tube construction can provide for some elastic deformation in the radial direction if radially compressed so that its annular dimension can be decreased to some degree, which can be desirable when introducing the device into an opening formed in a vessel where the opening is slightly smaller in diameter than the diameter of device 200 in the uncompressed state.
  • the wall thickness can be selected (e.g., reduced) to provide such elastic deformation.
  • Other factors that can be used to achieve this effect include, but are not limited to a slot number, slit width, and material selection as would be apparent to one of skill in the art.
  • the tubular member can comprise or be made of nitinol.
  • Support device 200 can be cylindrical as shown in the drawings or it can have other shapes suitable for the intended purpose. For example, it can have a rectangular or oval configuration. Other construction examples include, but are not limited to, mesh tubes, wire framed constructions, or other nonsolid wall constructions.
  • tubular graft structure (e.g., graft vessel) “G” is passed between adjacent fingers 206 of support device 200 and the distal end thereof positioned to extend distally from the support device lumen.
  • the tubular graft structure can be presented through the proximal end of support device 200 so that it passes along the length of the support device and extends from both the distal and proximal ends thereof.
  • Eversion tool 100 or 100 ′ is prepared for insertion into the distal end of the tubular graft structure. This can include bending the everting member portion that extends from handle 102 so that the plane in which the everting member loop lies forms an angle of about 90 degrees with the longitudinal axis of the handle as shown in FIG. 6A .
  • the everting member loop is adjusted to have a diameter that allows it to be readily inserted into the end of graft G.
  • the loop diameter can be selected to be less than the inner diameter of the end of graft G as shown in FIG. 6A .
  • the everting member loop diameter is then enlarged to mechanically expand graft G, which in this example is semi-elastic, and increase the diameter of the graft as shown in FIG. 6B .
  • the eversion tool is then moved so that the everting member passes over the distal end of the support device, thereby mechanically draping the expanded end of the graft over the support device distal end as shown in FIG. 6C .
  • the eversion tool can be retracted as shown in FIG. 6D .
  • eversion tool 100 ′ When eversion tool 100 ′ is used with a fixed loop length, one typically does not bend the everting member to form an angle with handle 102 . In this case, the loop is inserted into the graft and pulled over the graft support device as shown in FIGS. 7E-G , which will be described in detail below.
  • FIGS. 7A-D illustrate a support device 700 that also can be used in conjunction with eversion tool or apparatus 100 , 100 ′, or 100 ′′′ in accordance with the principles of the present invention.
  • Support device 700 is described in co-pending U.S. patent application Ser. Nos. 10/340,161 and 10/340,164, both of which were filed on Jan. 10, 2003 and entitled Anastomosis Apparatus and Methods.
  • Anastomosis or graft support device 700 generally includes a proximal portion and a distal portion, which includes a plurality of arms 706 in which piercing members 710 can be slidably mounted. More specifically, each arm forms a pathway in which a piercing member 710 is slidably mounted. Arms 706 can be tubular members (e.g., hypotubes) each having a lumen through which a piercing member 706 can slide.
  • tubular members e.g., hypotubes
  • Arms 706 are biased radially inward and have outer diameters that can range from 0.5 mm to 2 mm, for example, in aortic applications.
  • anastomosis apparatus 700 includes a mandrel or slide 722 for radially expanding the piercing member carrying or support arms 706 .
  • Each arm 706 has a proximal end secured to tubular member or arm support 720 which tapers so that the annular dimension of the arms, taken collectively, progressively decreases in the distal direction when the slide 722 is in a retracted position adjacent to arm support 720 as shown in FIG. 7A .
  • the arms can be secured in circumferentially spaced longitudinal grooves formed in arm support 720 by gluing or other suitable means.
  • the arms also extend along longitudinal grooves formed in mandrel or slide 722 .
  • Actuator or plunger 718 extends through the device with its end secured to mandrel or slide 722 so that when the pusher is moved forwardly, it pushes the mandrel or slide 722 distally and radially expands the arms.
  • a graft is everted over the distal ends of the arms as will be described below, it can be desirable to radially expand the arms when graft holder or support 700 is positioned in an opening in a target tubular structure (e.g., target vessel) to which the tubular graft structure (e.g., graft vessel) is to be anatomosed.
  • a target tubular structure e.g., target vessel
  • the tubular graft structure e.g., graft vessel
  • the radial expansion of the arms can enhance or form a seal between the graft and the target tubular structure (e.g., an aorta).
  • apparatus or device 700 further includes piercing members 710 , which are slidably mounted in arms 706 .
  • Piercing members 710 have proximal portions 710 a and distal portions 710 b.
  • Piercing members 710 extend from arms 706 proximally toward cylindrical piercing member support 721 where proximal portions 710 a are secured in grooves formed in cylindrical piercing member support 721 .
  • Support 721 is slidably mounted on actuator or pusher 718 and secured to cylindrical knob or finger grip 714 by fastener or screw 716 ( FIG. 7B ). When knob 714 is pushed forwardly in a distal direction, the piercing members are extended as shown in FIGS.
  • Housing or tubular body 712 can have a longitudinal slot 717 through which screw 716 can slide so that knob 714 can move independently from housing 712 .
  • the radius of curvature of the memory shaped distal portions 710 b of the piercing members can vary. For example, a larger radius of curvature may be desired if the user wants to insert part of the device into the opening in the target structure or vessel to which the graft is to be anastomosed. On the other hand, a smaller radius of curvature may be desired if the user wants to tack the device down around the opening in the target structure or vessel, thereby seating the device on the outer wall and covering the opening with the graft.
  • Distal portions 710 b have the desired memory shape to pierce the graft and vessel to which the graft is to be anastomosed when the piercing members are advanced.
  • the piercing members comprise shape memory material so that the distal portions 710 b can be provided with a hook configured memory shape, which is one suitable shape for holding the graft and vessel together during the anastomosis.
  • the piercing members can be made of nitinol wire and the distal portions provided with the desired memory shape as is known in the art so that they return to their memory shape when in an unbiased state (e.g., extended from arms 706 ).
  • the shape memory alloy distal portions exhibit pseudoelastic (superelastic) behavior.
  • Graft structure e.g., graft vessel
  • the everting member loop of eversion tool 100 is introduced through the distal end of the graft structure and inserted into the graft lumen shown in FIG. 7F .
  • the diameter of the everting member or loop can be increased as described above in connection with embodiments 100 and 100 ′ to expand or increase the diameter of the graft vessel to make it easier to evert the distal end portion of the graft structure over the distal end of the graft holding device.
  • the everting member loop is then turned or oriented so that it can pass over the distal end portion of the support member and moved to pass over the support member distal end portion or arms 706 , thereby everting graft structure G over the support member distal end portion and forming everted portion E with the intimal surface of the graft lumen exposed and facing radially outward.
  • the support device can be positioned in an opening formed in the target tubular structure and the piercing members extended as shown in FIG. 7H to hold the graft and target tubular structures together, while fasteners are used to secure the graft and target structures together.
  • the surgeon cuts a hole or opening in the target tubular structure or vessel (e.g., the aorta) using a scalpel and an aorta cutting device or punch
  • the surgeon covers the hole with either a finger or other suitable tool.
  • the distal portion of the support device and the portion of the graft everted thereover are positioned in the vessel opening.
  • the distal portions of the piercing members are extended and the mandrel is moved distally to expand the arms and everted graft against the tissue surrounding the opening so as to form a seal therewith.
  • the arms can be expanded to urge the everted graft against the tissue surrounding the target vessel opening to seal the connection between the graft and target vessel.
  • the piercing members are retracted and anastomosis device 700 pulled off of the graft and target structures. Additional fasteners or clips can be placed at the connection, if any blood appears to be seeping out from the graft and target vessel.
  • any fastener can be used to secure the tubular graft and target structures together.
  • suitable fasteners include conventional sutures and surgical clips such as the surgical clips disclosed in U.S. Pat. Nos. 5,972,024 to Northrup, et al., 6,607,541 to Gardiner, et al., 6,514,265 to Ho, et al., U.S. Patent Publication No. 2002-0010490 of U.S. patent application Ser. No. 09/260,623 filed Mar. 1, 1999 and entitled Tissue Connector Methods and Apparatus and U.S. patent application Ser. No. 09/090,305 filed Jun. 3, 1998 and entitled Tissue Connector Apparatus and Methods.

Abstract

Surgical eversion apparatus for preparing a conduit for anastomosis in a human patient comprises an everting member having a loop shaped portion adapted to be inserted into an end portion of a conduit harvested from a human patient and configured to fold a portion of the conduit end portion over itself when moved proximally away from the end of the conduit and along the conduit while a portion of the conduit is held fixed relative thereto. A method of everting a graft comprises positioning a graft in a support device such that an end portion of the graft extends therefrom; introducing a generally looped shaped member into the end portion of the graft extending from said support device; and moving the looped shaped member over the support device to fold at least a portion of the end portion of the graft over the support device.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. Ser. No. 10/646,254, filed Aug. 22, 2003, entitled “Eversion Apparatus and Methods”, and bearing Attorney Docket No. P0022020.00; and the entire teachings of which are incorporated herein by reference.
  • FIELD
  • This invention relates to apparatus and methods for preparing a tubular graft for an anastomosis procedure. More particularly, the invention involves apparatus and methods for everting a graft prior to anastomosing the graft to another tubular structure such as an aorta.
  • BACKGROUND
  • The occlusion of the arteries can lead to insufficient blood flow resulting in discomfort and risks of angina and ischemia. Significant blockage of blood flow in the coronary artery can result in damage to the myocardial tissue or death of the patient. In most cases, occlusion of the artery results from progressive long term deposits of plaque along the artery wall. While such deposits may be concentrated and occlude the artery at a particular site, the deposits are most certainly present throughout the arteries and the vascular system.
  • Coronary artery bypass graft (CABG) surgery is a surgical procedure performed in severe cases of coronary blockages. CABG procedures involve anastomosing an artery to a graft, such as a vascular graft, which restores the flow of blood by establishing another pathway around the occluded vasculature. During coronary artery bypass graft surgery, a vein or other conduit can be attached proximally to the patient's aorta. The other end is attached to the blocked artery, downstream from the obstruction, thus bypassing the coronary occlusion. CABG procedures can be done by placing the patient on a heart-lung machine and stopping the heart from beating or they can be done on a beating heart without a heart lung machine.
  • Vessel eversion apparatus have been disclosed to prepare vascular grafts for anastomosis. For example, vessel everting apparatus is described in U.S. Pat. No. 5,076,161 to Kirsch, et al. and U.S. Pat. No. 6,176,413 to Heck, et al. However, there remains a need to provide improved everting apparatus and methods.
  • SUMMARY
  • The present invention involves improvements in anastomosis apparatus and methods for anastomosing a first tubular structure to a second tubular structure.
  • According to one embodiment of the invention, eversion apparatus for preparing a conduit, such as a vessel, for anastomosis in a human patient comprises an everting member having a loop shaped portion adapted to be inserted into an end portion of a conduit from a human patient and configured to fold a portion of the conduit end portion over itself when it is moved away from the conduit end and along the conduit while a portion of the conduit is held fixed relative thereto.
  • The eversion apparatus facilitates eversion of a vascular or nonvascular graft, for example, so that the intimal surface of the graft and the intimal surface of the target conduit, such as a vessel, can be placed in contact with one another for the anastomosis. The eversion apparatus also facilitates rapid graft eversion which can expedite the anastomosis procedure. In cases where the surgeon must complete the graft in as little time as possible due to the absence of blood flowing through a vessel such as the aorta in a CABG procedure, this can be especially advantageous. If blood flow is not promptly restored, sometimes in as little as 30 minutes, the tissues the artery supplies may experience significant damage or necrosis.
  • According to another embodiment of the invention, a conduit or vessel eversion system for preparing a conduit or vessel for anastomosis in a human patient comprises a conduit or vessel support device having a proximal end and a distal end; and everting apparatus comprising an everting member, the everting member having a loop shaped portion adapted to be inserted into a portion of a conduit or vessel to be prepared for an anastomosis in a human patient and evert the portion of the conduit or vessel over the conduit or vessel support device when the conduit or vessel is coupled to the support device with an end portion thereof extending from the distal end of the support device.
  • According to another embodiment of the invention, a method of everting a graft comprises positioning a graft in a support device such that an end portion of the graft extends therefrom; introducing a generally looped shaped member into the end portion of the graft extending from said support device; and moving the looped shaped member over the support device to fold at least a portion of the end portion of the graft over the support device.
  • The above is a brief description of some deficiencies in the prior art and advantages of the present invention. Other features, advantages, and embodiments of the invention will be apparent to those skilled in the art from the following description, accompanying drawings, wherein, for purposes of illustration only, specific forms of the invention are set forth in detail.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an eversion tool constructed according to the principles of the present invention;
  • FIG. 2 is a side elevational view of the eversion tool of FIG. 1;
  • FIGS. 3A and 3B are top plan views of the eversion tool of FIG. 1 where FIG. 3A shows the everting member or loop adjusted to a first diameter and FIG. 3B shows the everting member or loop adjusted to a second larger diameter;
  • FIGS. 4A and 4B illustrate another embodiment of the eversion tool where FIG. 4A shows the everting member or loop adjusted to a first diameter and FIG. 4B shows the everting member or loop adjusted to a second larger diameter;
  • FIG. 5 illustrates another embodiment of the eversion tool;
  • FIGS. 6A-6D schematically illustrate everting a graft vessel using the eversion tool of any one of FIGS. 1-5, where FIG. 6A illustrates presenting the distal end portion of the graft vessel in a graft support device, FIG. 6B illustrates insertion of the eversion tool in the distal end portion of the graft vessel, FIG. 6C illustrates everting the distal end portion of the graft vessel, and FIG. 6D illustrates removing the eversion tool from the everted graft and graft support device;
  • FIGS. 7A-7D depicts another support or anastomosis device apparatus with which the eversion tool can be used, where FIG. 7A is a partial sectional view of the support device, FIG. 7B is an enlarged partial sectional view of the apparatus of FIG. 7A taken generally along line 7B-7B;
  • FIG. 7C shows the apparatus of FIG. 7A in a radially collapsed state with the mandrel or slide retracted allowing the arms to progressively move radially inward along the distal portion thereof, and FIG. 7D shows the apparatus of FIG. 7A in a radially expanded state with the mandrel longitudinally extended toward the distal end of the apparatus urging the arms radially outward; and
  • FIGS. 7E-7H illustrate everting a graft vessel using the eversion tool of any one of FIGS. 1-5, where FIG. 7E illustrates presenting the distal end portion of the graft vessel in the graft support device of FIG. 7A, FIG. 7F illustrates insertion of the eversion tool in the distal end portion of the graft vessel, FIG. 7C illustrates everting the distal end portion of the graft vessel with the eversion tool, and FIG. 7D illustrates extending piercing member through the distal end portion of the graft vessel after the eversion tool has been removed.
  • DETAILED DESCRIPTION
  • Before the present invention is described, it is to be understood that this invention is not limited to the particular embodiments or examples described herein, as such may, of course, vary. Further, when referring to the drawings, like numerals indicate like elements.
  • The apparatus, systems, and methods described herein can be used to connect or anastomose tubular structures or conduits together. The tubular structures can be vascular or nonvascular structures. Thus, the apparatus, systems, and methods described herein can be used in connection with coronary artery bypass grafting procedures during which a vascular conduit or graft structure, such as a vein (e.g., a saphenous vein), artery (e.g., an internal mammary artery), or an artificial conduit or graft structure, is anastomosed to an aorta, the example target structure. They also can be used in connection with the anastomosis of internal mammary arteries to coronary arteries, and saphenous veins to coronary, femoral or popliteal arteries. The apparatus, systems, and methods described herein also can be used in connection with connecting other body lumens including nonvascular lumens, which can include, but are not intended to be limited to, the bile duct, the urethra, the urinary bladder, intestines, esophagus, stomach, and bowel.
  • The ideal anastomotic connection can be created when the component vessels are arranged in a situation that provides intima-to-intima contact. Standard suturing techniques provide some degree of this attribute, but there are inconsistencies owing to, for example, variation in operator technique and vessel preparation. To ensure providing exposure of the graft vessel intima, the vessel can be everted (or cuffed). This involves manipulation of the vessel to turn a defined section inside-out to expose the internal lumen and intimal surface. This everted section can also be utilized to create a seal (or gasket) between the graft and the native vessel. The everted section can be used to form the interface at the anastomotic site that also provides a medium for desired tissue healing. One difficulty of vessel eversion arises when attempting to manually manipulate the tissue to create the everted section or cuff. As the tissue is semi-elastic, it has a tendency to resist manual eversion.
  • The invention involves graft or vessel everting apparatus, systems and methods to prepare grafts and vessels for anastomosis and assist with the anastomosis. The eversion tool or apparatus of the present invention generally comprises an everting member, which comprises a flexible or pliable member or portion. The flexible or pliable member or portion can be semi-rigid and can be generally oval or circular with a closed or nearly closed turn. In other words, the flexible or pliable member or portion can be in the form of a loop. In operation, the everting member loop is inserted into one end of a graft or vessel and then manipulated to expand the graft or vessel radially outward so that the graft or vessel can be everted or draped over a vessel holder or support device, which will be described in more detail below. The everting member loop can have variable shapes and/or diameters to accommodate variously sized vessel support devices and to facilitate ease of its removal therefrom. The eversion tool also can include a handle to support the everting member.
  • Referring to FIGS. 1, 2, 3A, and 3B, one embodiment of an eversion tool constructed in accordance with the principles of the present invention is shown and generally designated with reference numeral 100. Eversion tool 100 generally comprises an everting member 104, which comprises a flexible or pliable member having a portion that is in the form of a circular loop. The generally circular loop can be nearly closed or closed. It should be understood, however, the flexible and/or pliable characteristics allow the loop to be readily reshaped. One suitable material for flexible or pliable member 104 can be stainless steel wire, such as 304 series stainless steel wire, or nitinol wire. The wire typically will have a diameter ranging from about 0.002 to 0.015 inch.
  • In the illustrative embodiment, eversion tool 100 includes handle 102 for supporting everting member 104. As shown in the illustrative embodiments, handle 102 can be tubular. It also can have a collar at its distal end as shown in FIGS. 7E-G. The handle can be made from any suitable material such as a machined metal (e.g., stainless steel) or injection molded plastic.
  • In the embodiment illustrated in FIGS. 3A and 3B, everting member 104 is slidably mounted in handle 102. More specifically, the ends of a straight wire (e.g., a nitinol wire) can be brought together and inserted into the handle without platically deforming the wire. This facilitates adjustment of the size of the everting member loop extending from handle 102 by moving the ends of the wire. One can move proximally located everting member ends 104 a and 104 b relative to handle 102 to adjust the length of the elongated everting member portion extending from the distal end of handle 102 to adjust the loop size. In FIG. 3A, the distal ends 104 a and 104 b are in first position and in FIG. 3B they have been moved in a distal direction as shown with arrows to enlarge the loop diameter from a first diameter D1 to a second larger diameter D2. From the position shown in FIG. 3B, either one or both of the distal ends can be moved proximally to return the loop diameter toward or to DI or make the loop smaller than D1.
  • Referring to FIGS. 4A and 4B another embodiment of the eversion tool is shown and generally designated with reference numeral 100′. Eversion tool 100′ is the same as eversion tool 100 with the exception that one portion of everting member 104 is fixedly secured to handle 102. In the example illustrated in FIGS. 4A and 4B, everting member 104 b is fixedly secured to handle 102. Accordingly, one can enlarge the everting member loop diameter DI as shown in FIG. 4A by moving or sliding everting member end 104 a in a distal direction as shown with the arrow in FIG. 4B to enlarge the diameter D1 to D2. One can retract everting member end 104 a to return the loop diameter toward or to D1 or reduce the loop diameter to a diameter less than D1. According to further variations, the loop can be preformed with other shapes such as oblong, oval or teardrop shapes.
  • Referring to FIG. 5, another embodiment of the eversion tool is shown and generally designated with reference numeral 100″. Eversion tool 100″ is the same as eversion tool 100 with the exception that two portions of everting member 104 are fixedly secured to handle 102 so that the length of the loop extending from the distal end of the handle is fixed. In the illustrative embodiment, everting member ends 104 a and 104 b can be fixedly secured to handle 102.
  • Referring to FIGS. 6A-D, operation of the eversion tool will be described in conjunction with a graft support device which is schematically shown and generally indicated with reference numeral 200. In order to assist in the understanding of the operation of the eversion tool, graft support device 200 will first be described.
  • Anastomosis or support device 200 is used to hold the everted graft tubular structure (e.g., graft vessel) adjacent to or in an opening formed in a target tubular structure (e.g., target vessel) to which the graft tubular structure is to be anastomosed. More specifically, the support device supports or holds the graft tubular structure in a position relative to the target tubular structure so that the graft and target tubular structure can be secured to one another with known fasteners such as sutures or surgical clips.
  • Anastomosis or support device 200 comprises a proximal portion and a distal portion. The distal portion has a plurality of arms (or fingers) 206 that are configured to hold the everted portion or flap “E” of a tubular graft structure “G” as shown in FIGS. 6C and 6D. Adjacent arms are configured and arranged to form spaces, such as spaces 208, suitable for receiving surgical fasteners therethrough. Support device 200 can be described as a slotted tubular member, each slot having an open distal end and a closed end. After the support device has been positioned in the desired position and fasteners passed through a desired number of the slots through graft tubular structure and the target tubular structure, the open ends allow removal of the anastomosis or support device without disrupting the fasteners.
  • Anastomosis device or support 200 can be made from any suitable plastic or metal. For example, the device can be made from ABS plastic material or stainless steel tubing such as 304 stainless steel tubing. The length of the device typically ranges from about 25 mm to about 125 mm depending on the application. In aortic applications, it typically ranges from about 25 mm to about 70 mm. The inner diameter of the tube typically ranges from about 1 mm to about 25 mm also depending on the application. For example, the inner diameter typically can vary from about 3 mm to about 6 mm when sized for an aortic anastomosis where the tube thickness can range from 0.1 mm to 2 mm. On the other hand, the tube inner diameter can be up to about 25 mm when sized for applications concerning the bowel. The tube can have any number of slots or openings, but typically will have 4 to 12 slots cut into its side or the number of arms selected and arranged to form 4 to 12 openings. The slots or openings typically extend a length of about 2 mm to about 25 mm and have a width of about 0.2 mm to about 5 mm. In aortic applications, the slot length typically can range from about 5 mm to about 25 mm and the slot width typically can range from about 0.2 mm to 2.5 mm. The desired number of sutures or clips to be used for a particular anastomosis can determine the number of spaces or slots that the anastomosis device should have. That is the number of openings can match the number desired fasteners. However, it should be understood that the number of openings need not necessarily match the number of fasteners.
  • The tube can be split down the side to facilitate its placement in and removal from the tubular graft structure. Regarding the former, the split allows the tube to be compressed and deformed to fit into small openings in the target vessel. On the other hand, the split can be expanded to assist in removing the graft from the device. The tube can comprise or be made of shape memory material or alloy so that the compressed split tube returns to a shape memory tubular shape that is approximately equal to or slightly larger the opening into which it is inserted. The tube construction can provide for some elastic deformation in the radial direction if radially compressed so that its annular dimension can be decreased to some degree, which can be desirable when introducing the device into an opening formed in a vessel where the opening is slightly smaller in diameter than the diameter of device 200 in the uncompressed state. The wall thickness can be selected (e.g., reduced) to provide such elastic deformation. Other factors that can be used to achieve this effect include, but are not limited to a slot number, slit width, and material selection as would be apparent to one of skill in the art. For example, the tubular member can comprise or be made of nitinol.
  • Support device 200 can be cylindrical as shown in the drawings or it can have other shapes suitable for the intended purpose. For example, it can have a rectangular or oval configuration. Other construction examples include, but are not limited to, mesh tubes, wire framed constructions, or other nonsolid wall constructions.
  • Referring to FIG. 6A, tubular graft structure (e.g., graft vessel) “G” is passed between adjacent fingers 206 of support device 200 and the distal end thereof positioned to extend distally from the support device lumen. Alternatively, the tubular graft structure can be presented through the proximal end of support device 200 so that it passes along the length of the support device and extends from both the distal and proximal ends thereof. Eversion tool 100 or 100′ is prepared for insertion into the distal end of the tubular graft structure. This can include bending the everting member portion that extends from handle 102 so that the plane in which the everting member loop lies forms an angle of about 90 degrees with the longitudinal axis of the handle as shown in FIG. 6A. The everting member loop is adjusted to have a diameter that allows it to be readily inserted into the end of graft G. The loop diameter can be selected to be less than the inner diameter of the end of graft G as shown in FIG. 6A. The everting member loop diameter is then enlarged to mechanically expand graft G, which in this example is semi-elastic, and increase the diameter of the graft as shown in FIG. 6B. The eversion tool is then moved so that the everting member passes over the distal end of the support device, thereby mechanically draping the expanded end of the graft over the support device distal end as shown in FIG. 6C. With the graft everted over support device 200, the eversion tool can be retracted as shown in FIG. 6D. Optionally, one can detach one end of everting member 104 from handle 102 for easier removal (FIG. 6D).
  • When eversion tool 100′ is used with a fixed loop length, one typically does not bend the everting member to form an angle with handle 102. In this case, the loop is inserted into the graft and pulled over the graft support device as shown in FIGS. 7E-G, which will be described in detail below.
  • FIGS. 7A-D illustrate a support device 700 that also can be used in conjunction with eversion tool or apparatus 100, 100′, or 100′″ in accordance with the principles of the present invention. Support device 700 is described in co-pending U.S. patent application Ser. Nos. 10/340,161 and 10/340,164, both of which were filed on Jan. 10, 2003 and entitled Anastomosis Apparatus and Methods.
  • Anastomosis or graft support device 700 generally includes a proximal portion and a distal portion, which includes a plurality of arms 706 in which piercing members 710 can be slidably mounted. More specifically, each arm forms a pathway in which a piercing member 710 is slidably mounted. Arms 706 can be tubular members (e.g., hypotubes) each having a lumen through which a piercing member 706 can slide.
  • Arms 706 are biased radially inward and have outer diameters that can range from 0.5 mm to 2 mm, for example, in aortic applications. In the illustrative embodiment, anastomosis apparatus 700 includes a mandrel or slide 722 for radially expanding the piercing member carrying or support arms 706.
  • Each arm 706 has a proximal end secured to tubular member or arm support 720 which tapers so that the annular dimension of the arms, taken collectively, progressively decreases in the distal direction when the slide 722 is in a retracted position adjacent to arm support 720 as shown in FIG. 7A. The arms can be secured in circumferentially spaced longitudinal grooves formed in arm support 720 by gluing or other suitable means. The arms also extend along longitudinal grooves formed in mandrel or slide 722. Actuator or plunger 718 extends through the device with its end secured to mandrel or slide 722 so that when the pusher is moved forwardly, it pushes the mandrel or slide 722 distally and radially expands the arms. After a graft is everted over the distal ends of the arms as will be described below, it can be desirable to radially expand the arms when graft holder or support 700 is positioned in an opening in a target tubular structure (e.g., target vessel) to which the tubular graft structure (e.g., graft vessel) is to be anatomosed. The radial expansion of the arms can enhance or form a seal between the graft and the target tubular structure (e.g., an aorta).
  • Referring to FIGS. 7C and 7D, apparatus or device 700 further includes piercing members 710, which are slidably mounted in arms 706. Piercing members 710 have proximal portions 710 a and distal portions 710 b. Piercing members 710 extend from arms 706 proximally toward cylindrical piercing member support 721 where proximal portions 710 a are secured in grooves formed in cylindrical piercing member support 721. Support 721 is slidably mounted on actuator or pusher 718 and secured to cylindrical knob or finger grip 714 by fastener or screw 716 (FIG. 7B). When knob 714 is pushed forwardly in a distal direction, the piercing members are extended as shown in FIGS. 7C and 7D. Moving the knob 714 proximally retracts the piercing members as shown in FIG. 7A. Housing or tubular body 712 can have a longitudinal slot 717 through which screw 716 can slide so that knob 714 can move independently from housing 712.
  • The radius of curvature of the memory shaped distal portions 710 b of the piercing members can vary. For example, a larger radius of curvature may be desired if the user wants to insert part of the device into the opening in the target structure or vessel to which the graft is to be anastomosed. On the other hand, a smaller radius of curvature may be desired if the user wants to tack the device down around the opening in the target structure or vessel, thereby seating the device on the outer wall and covering the opening with the graft.
  • Distal portions 710 b have the desired memory shape to pierce the graft and vessel to which the graft is to be anastomosed when the piercing members are advanced. In the illustrative embodiment, the piercing members comprise shape memory material so that the distal portions 710 b can be provided with a hook configured memory shape, which is one suitable shape for holding the graft and vessel together during the anastomosis. Thus, the piercing members can be made of nitinol wire and the distal portions provided with the desired memory shape as is known in the art so that they return to their memory shape when in an unbiased state (e.g., extended from arms 706). In other words, the shape memory alloy distal portions exhibit pseudoelastic (superelastic) behavior.
  • Referring to FIGS. 7E-G, eversion of a graft over the distal end portion of support member or apparatus 700 using any one of the eversion tools 100, 100′, or 100″ will be described. Graft structure (e.g., graft vessel) G is positioned in the graft support device or apparatus 700 with the distal end of graft structure G extending from the distal end of the support device as shown in FIG. 7E. The everting member loop of eversion tool 100 is introduced through the distal end of the graft structure and inserted into the graft lumen shown in FIG. 7F. The diameter of the everting member or loop can be increased as described above in connection with embodiments 100 and 100′ to expand or increase the diameter of the graft vessel to make it easier to evert the distal end portion of the graft structure over the distal end of the graft holding device. The everting member loop is then turned or oriented so that it can pass over the distal end portion of the support member and moved to pass over the support member distal end portion or arms 706, thereby everting graft structure G over the support member distal end portion and forming everted portion E with the intimal surface of the graft lumen exposed and facing radially outward. In this manner the graft is prepared for an anastomosis where an intima-to-intima connection can be readily achieved. The support device can be positioned in an opening formed in the target tubular structure and the piercing members extended as shown in FIG. 7H to hold the graft and target tubular structures together, while fasteners are used to secure the graft and target structures together.
  • More specifically, after the surgeon cuts a hole or opening in the target tubular structure or vessel (e.g., the aorta) using a scalpel and an aorta cutting device or punch, the surgeon covers the hole with either a finger or other suitable tool. The distal portion of the support device and the portion of the graft everted thereover are positioned in the vessel opening. The distal portions of the piercing members are extended and the mandrel is moved distally to expand the arms and everted graft against the tissue surrounding the opening so as to form a seal therewith. In other words, the arms can be expanded to urge the everted graft against the tissue surrounding the target vessel opening to seal the connection between the graft and target vessel. After the fasteners have been placed to connect the graft and target tubular structures, the piercing members are retracted and anastomosis device 700 pulled off of the graft and target structures. Additional fasteners or clips can be placed at the connection, if any blood appears to be seeping out from the graft and target vessel.
  • Any fastener can be used to secure the tubular graft and target structures together. Examples of suitable fasteners include conventional sutures and surgical clips such as the surgical clips disclosed in U.S. Pat. Nos. 5,972,024 to Northrup, et al., 6,607,541 to Gardiner, et al., 6,514,265 to Ho, et al., U.S. Patent Publication No. 2002-0010490 of U.S. patent application Ser. No. 09/260,623 filed Mar. 1, 1999 and entitled Tissue Connector Methods and Apparatus and U.S. patent application Ser. No. 09/090,305 filed Jun. 3, 1998 and entitled Tissue Connector Apparatus and Methods.
  • Variations and modifications of the devices and methods disclosed herein will be readily apparent to persons skilled in the art. As such, it should be understood that the foregoing detailed description and the accompanying illustrations, are made for purposes of clarity and understanding, and are not intended to limit the scope of the invention, which is defined by the claims appended hereto.

Claims (14)

1. Surgical eversion apparatus for preparing a conduit for anastomosis in a human patient using a device with multiple piercing members, said eversion apparatus comprising a handle coupled to an everting member having a loop shaped portion adapted to be inserted into an end portion of a conduit from a human patient and configured to fold a portion of the conduit over itself when it is moved away from the conduit end portion and along the conduit while a portion of the conduit is held fixed relative thereto, wherein said handle defines a major longitudinal axis and further wherein said eversion apparatus is configured to provide a first state in which said loop shaped portion extends from said handle in a plane parallel with said major longitudinal axis.
2. The eversion apparatus of claim 1 wherein said everting member comprises a flexible member having two ends, said two ends being movable relative to said handle and portions of said flexible member being slidably mounted to said handle.
3. The eversion apparatus of claim 1 wherein said everting member comprises a flexible member having two ends, one of said ends being movable relative to said handle, the other one of said two ends being fixedly secured to said handle.
4. The eversion apparatus of claim 1 wherein said everting member comprises a flexible member having two ends, both of said ends being fixedly attached to said handle.
5. The eversion apparatus of any one of claims 2-4 wherein said flexible member comprises a pliable wire.
6. The eversion apparatus of claim 1 wherein said loop shaped portion has an adjustable diameter.
7. The eversion apparatus of claim 1, wherein said overting member is bendable from said first state such that said eversion apparatus is configured to be transitionable to a second state in which said loop shaped portion extends from said handle in a plane forming an angle of about 90 degrees with said major longitudinal axis.
8. A vessel eversion system for preparing a vessel for anastomosis in a human patient, said vessel eversion system comprising: a vessel support device having a proximal end and a distal end forming a plurality of piercing members; and an everting apparatus comprising an everting member, said everting member having a loop shaped portion adapted to be inserted into a portion of a vessel to be prepared for an anastomosis in a human patient and evert the portion of the vessel over said plurality of piercing members when said vessel is coupled to said support device with an end portion thereof extending from said distal end of said support device.
9. The vessel eversion system of claim 8 wherein said everting apparatus includes a handle and said everting member is coupled to said handle.
10. The vessel eversion system of claim 9 wherein said everting member comprises a flexible member having two ends, said two ends being movable relative to said handle and portions of said flexible member being slidably mounted to said handle.
11. The vessel eversion system of claim 9 wherein said everting member comprises a flexible member having two ends, one of said ends being movable relative to said handle, the other one of said two ends being fixedly secured to said handle.
12. The vessel eversion system of claim 9 wherein said everting member comprises a flexible member having two ends, both of said ends being fixedly attached to said handle.
13. The vessel eversion system of any one of claims 10-12 wherein said flexible member comprises a pliable wire.
14. The vessel eversion system of claim 8 wherein said loop shaped portion has an adjustable diameter.
US12/235,445 2003-08-22 2008-09-22 Eversion apparatus and methods Abandoned US20090240265A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/235,445 US20090240265A1 (en) 2003-08-22 2008-09-22 Eversion apparatus and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/646,254 US20050043749A1 (en) 2003-08-22 2003-08-22 Eversion apparatus and methods
US12/235,445 US20090240265A1 (en) 2003-08-22 2008-09-22 Eversion apparatus and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/646,254 Continuation US20050043749A1 (en) 2003-08-22 2003-08-22 Eversion apparatus and methods

Publications (1)

Publication Number Publication Date
US20090240265A1 true US20090240265A1 (en) 2009-09-24

Family

ID=34194487

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/646,254 Abandoned US20050043749A1 (en) 2003-08-22 2003-08-22 Eversion apparatus and methods
US11/521,152 Expired - Fee Related US8029519B2 (en) 2003-08-22 2006-09-14 Eversion apparatus and methods
US12/235,445 Abandoned US20090240265A1 (en) 2003-08-22 2008-09-22 Eversion apparatus and methods

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/646,254 Abandoned US20050043749A1 (en) 2003-08-22 2003-08-22 Eversion apparatus and methods
US11/521,152 Expired - Fee Related US8029519B2 (en) 2003-08-22 2006-09-14 Eversion apparatus and methods

Country Status (1)

Country Link
US (3) US20050043749A1 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641593B1 (en) 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6945980B2 (en) * 1998-06-03 2005-09-20 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US6613059B2 (en) * 1999-03-01 2003-09-02 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6607541B1 (en) * 1998-06-03 2003-08-19 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US8118822B2 (en) * 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
US6695859B1 (en) * 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US8529583B1 (en) 1999-09-03 2013-09-10 Medtronic, Inc. Surgical clip removal apparatus
US6926730B1 (en) * 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US6551332B1 (en) * 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
US20060293701A1 (en) * 2001-05-02 2006-12-28 Medtronic, Inc. Self-closing surgical clip for tissue
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US20030199974A1 (en) * 2002-04-18 2003-10-23 Coalescent Surgical, Inc. Annuloplasty apparatus and methods
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US7155273B2 (en) * 2002-07-29 2006-12-26 Taylor Geoffrey L Blanching response pressure sore detector apparatus and method
US8066724B2 (en) 2002-09-12 2011-11-29 Medtronic, Inc. Anastomosis apparatus and methods
US8105345B2 (en) * 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
US9060844B2 (en) 2002-11-01 2015-06-23 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US20050075659A1 (en) * 2003-03-30 2005-04-07 Fidel Realyvasquez Apparatus and methods for minimally invasive valve surgery
US7182769B2 (en) * 2003-07-25 2007-02-27 Medtronic, Inc. Sealing clip, delivery systems, and methods
US8021421B2 (en) * 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US20050043749A1 (en) * 2003-08-22 2005-02-24 Coalescent Surgical, Inc. Eversion apparatus and methods
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
US7556647B2 (en) * 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
US7763037B2 (en) * 2005-03-18 2010-07-27 Castlewood Surgical, Inc. System and method for attaching a vein, an artery, or a tube in a vascular environment
US7513909B2 (en) * 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
EP1998719A1 (en) * 2006-03-10 2008-12-10 Arbor Surgical Technologies, Inc. Valve introducers and methods for making and using them
WO2007130881A2 (en) * 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
US20080167610A1 (en) * 2006-09-25 2008-07-10 Valentx, Inc. Toposcopic methods and devices for delivering a sleeve having axially compressed and elongate configurations
US7914552B2 (en) * 2006-11-09 2011-03-29 Ethicon Endo-Surgery, Inc. Method of performing an end-to-end anastomosis using a stent and an adhesive
CA2671030C (en) * 2006-11-30 2013-10-08 Wilson-Cook Medical, Inc. Visceral anchors for purse-string closure of perforations
EP2120732A2 (en) * 2007-01-05 2009-11-25 Medtronic, Inc. Anastomosis systems and methods
US20080262597A1 (en) * 2007-04-17 2008-10-23 Medtronic Vascular, Inc. Prosthesis Fixation Apparatus and Methods
US8728101B2 (en) * 2007-08-21 2014-05-20 Castlewood Surgical, Inc. System and method for providing an obturator for enhanced directional capabilities in a vascular environment
US8486094B2 (en) 2007-08-21 2013-07-16 Castlewood Surgical, Inc. System and method for providing an obturator for enhanced directional capabilities in a vascular environment
US20090307066A1 (en) * 2007-12-11 2009-12-10 Interactive Marketing, Incorporate Coupon dispensing methods and systems
US8177836B2 (en) * 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
WO2009132111A1 (en) * 2008-04-23 2009-10-29 Wilson-Cook Medical Inc. Tacking device
JP2012500098A (en) * 2008-08-19 2012-01-05 ウィルソン−クック・メディカル・インコーポレーテッド Instrument for excision of lymph nodes or attachment to tissue during transluminal procedures
US8192461B2 (en) * 2008-09-11 2012-06-05 Cook Medical Technologies Llc Methods for facilitating closure of a bodily opening using one or more tacking devices
US20100076376A1 (en) * 2008-09-19 2010-03-25 Sorin Biomedica Cardio S. r. l. Surgical tool for vascular exposure and access
CA2747172C (en) * 2008-12-05 2015-04-14 Vihar C. Surti Tissue anchors for purse-string closure of perforations
US8500760B2 (en) 2008-12-09 2013-08-06 Cook Medical Technologies Llc Retractable tacking device
WO2010077608A1 (en) * 2008-12-09 2010-07-08 Wilson-Cook Medical Inc. Apparatus and methods for controlled release of tacking devices
EP2375997B1 (en) * 2008-12-19 2013-06-19 Cook Medical Technologies LLC Variable thickness tacking devices
WO2010080386A2 (en) * 2008-12-19 2010-07-15 Wilson-Cook Medical Inc. Clip devices and methods of delivery and deployment
WO2010115072A1 (en) 2009-04-03 2010-10-07 Wilson-Cook Medical, Inc. Tissue anchors and medical devices for rapid deployment of tissue anchors
CA2757494C (en) * 2009-04-03 2013-11-12 Cook Medical Technologies Llc Medical devices, systems, and methods for rapid deployment and fixation of tissue anchors
US8518060B2 (en) 2009-04-09 2013-08-27 Medtronic, Inc. Medical clip with radial tines, system and method of using same
US8668704B2 (en) 2009-04-24 2014-03-11 Medtronic, Inc. Medical clip with tines, system and method of using same
JP2012527970A (en) * 2009-05-28 2012-11-12 クック メディカル テクノロジーズ エルエルシー Hail-fastening device and hail-fastening device deployment method
US8740970B2 (en) * 2009-12-02 2014-06-03 Castlewood Surgical, Inc. System and method for attaching a vessel in a vascular environment
CN102247186A (en) * 2011-04-12 2011-11-23 西安交通大学 Auxiliary device suitable for vascular magnetic anastomosis rings
US20130324906A1 (en) 2012-05-31 2013-12-05 Valen Tx, Inc. Devices and methods for gastrointestinal bypass
US9681975B2 (en) 2012-05-31 2017-06-20 Valentx, Inc. Devices and methods for gastrointestinal bypass
US9173759B2 (en) 2012-05-31 2015-11-03 Valentx, Inc. Devices and methods for gastrointestinal bypass
US9757264B2 (en) 2013-03-13 2017-09-12 Valentx, Inc. Devices and methods for gastrointestinal bypass

Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US424518A (en) * 1890-04-01 Needle-threader
US1087186A (en) * 1909-03-22 1914-02-17 Socrates Scholfield Illustrative educational device.
US1167014A (en) * 1915-06-25 1916-01-04 William R O'brien Veterinary surgical instrument.
US2042403A (en) * 1935-02-27 1936-05-26 Hrivnak Andrew Needle threader
US3082426A (en) * 1960-06-17 1963-03-26 George Oliver Halsted Surgical stapling device
US3404707A (en) * 1966-06-29 1968-10-08 Henry Heckmann Thread pulling needle devices
US3570497A (en) * 1969-01-16 1971-03-16 Gerald M Lemole Suture apparatus and methods
US3638654A (en) * 1969-07-11 1972-02-01 Uche Akuba Suturing instrument
US4006747A (en) * 1975-04-23 1977-02-08 Ethicon, Inc. Surgical method
US4073179A (en) * 1976-06-01 1978-02-14 Codman & Shurtleff, Inc. Clip removing device
US4102478A (en) * 1976-12-27 1978-07-25 Constantin Samoilov Needle threader
US4140125A (en) * 1976-02-25 1979-02-20 Med-Pro, Ltd. Surgical tape device
US4185636A (en) * 1977-12-29 1980-01-29 Albert Einstein College Of Medicine Of Yeshiva University Suture organizer, prosthetic device holder, and related surgical procedures
US4192315A (en) * 1976-12-23 1980-03-11 Aesculap-Werke Aktiengesellschaft Vormals Jetter & Scheerer Clip for surgical purposes
US4243048A (en) * 1976-09-21 1981-01-06 Jim Zegeer Biopsy device
US4366819A (en) * 1980-11-17 1983-01-04 Kaster Robert L Anastomotic fitting
US4492229A (en) * 1982-09-03 1985-01-08 Grunwald Ronald P Suture guide holder
US4523592A (en) * 1983-04-25 1985-06-18 Rollin K. Daniel P.S.C. Anastomotic coupling means capable of end-to-end and end-to-side anastomosis
US4576605A (en) * 1985-03-01 1986-03-18 Nauchno-Issledovatelsky Institut Khirurgii Imeni A.V. Vishnevskogo Cardiac valve prosthesis
US4637380A (en) * 1985-06-24 1987-01-20 Orejola Wilmo C Surgical wound closures
US4641652A (en) * 1984-04-12 1987-02-10 Richard Wolf Gmbh Applicator for tying sewing threads
US4719917A (en) * 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US4719924A (en) * 1986-09-09 1988-01-19 C. R. Bard, Inc. Small diameter steerable guidewire with adjustable tip
US4730615A (en) * 1986-03-03 1988-03-15 Pfizer Hospital Products Group, Inc. Sternum closure device
US4732151A (en) * 1986-10-08 1988-03-22 Patent Research & Development Corp. Low trauma suturing
US4779616A (en) * 1986-02-04 1988-10-25 Johnson Lanny L Surgical suture-snagging method
US4809695A (en) * 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4890615A (en) * 1987-11-05 1990-01-02 Concept, Inc. Arthroscopic suturing instrument
US4896668A (en) * 1986-04-10 1990-01-30 Peters Plate set for osteal fixation, equipped with suture strands
US4899744A (en) * 1988-12-15 1990-02-13 Tatsuo Fujitsuka Apparatus for anastomosing digestive tract
US4901721A (en) * 1988-08-02 1990-02-20 Hakki Samir I Suturing device
US5088692A (en) * 1990-09-04 1992-02-18 Weiler Raywood C Heavy duty staple remover
US5100421A (en) * 1991-02-05 1992-03-31 Cyprus Endosurgical Tools, Inc. Christoudias curved needle suture assembly
US5100418A (en) * 1987-05-14 1992-03-31 Inbae Yoon Suture tie device system and applicator therefor
US5178634A (en) * 1989-03-31 1993-01-12 Wilson Ramos Martinez Aortic valved tubes for human implants
US5192294A (en) * 1989-05-02 1993-03-09 Blake Joseph W Iii Disposable vascular punch
US5196022A (en) * 1988-12-12 1993-03-23 Ethicon, Inc. Ligature system for use in endoscopic surgery, ligature and handling instrument for said system
US5282825A (en) * 1993-06-02 1994-02-01 Muck Kin C Surgical ligaturing and animal restraining device
US5290289A (en) * 1990-05-22 1994-03-01 Sanders Albert E Nitinol spinal instrumentation and method for surgically treating scoliosis
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5383904A (en) * 1992-10-13 1995-01-24 United States Surgical Corporation Stiffened surgical device
US5387227A (en) * 1992-09-10 1995-02-07 Grice; O. Drew Method for use of a laparo-suture needle
US5480405A (en) * 1987-05-14 1996-01-02 Yoon; Inbae Anchor applier instrument for use in suturing tissue
US5486197A (en) * 1994-03-24 1996-01-23 Ethicon, Inc. Two-piece suture anchor with barbs
US5486187A (en) * 1994-01-04 1996-01-23 Schenck; Robert R. Anastomosis device and method
US5488958A (en) * 1992-11-09 1996-02-06 Vance Products Incorporated Surgical cutting instrument for coring tissue affixed thereto
US5496334A (en) * 1993-03-31 1996-03-05 J. Stro/ bel & Sohne GmbH & Co. Suturing apparatus
US5500000A (en) * 1993-07-01 1996-03-19 United States Surgical Corporation Soft tissue repair system and method
US5499990A (en) * 1992-05-23 1996-03-19 Forschungszentrum Karlsruhe Gmbh Suturing instrument
US5501692A (en) * 1994-01-28 1996-03-26 Riza; Erol D. Laparoscopic suture snare
US5707380A (en) * 1996-07-23 1998-01-13 United States Surgical Corporation Anastomosis instrument and method
US5707362A (en) * 1992-04-15 1998-01-13 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5709695A (en) * 1994-08-10 1998-01-20 Segmed, Inc. Apparatus for reducing the circumference of a vascular structure
US5709693A (en) * 1996-02-20 1998-01-20 Cardiothoracic System, Inc. Stitcher
US5715987A (en) * 1994-04-05 1998-02-10 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
US5720755A (en) * 1995-01-18 1998-02-24 Dakov; Pepi Tubular suturing device and methods of use
US5725539A (en) * 1993-12-01 1998-03-10 Klinikum Der Albert-Ludwigs-Universitat Freiburg Surgical instrument used to clamp a vessel or the like
US5725542A (en) * 1995-03-09 1998-03-10 Yoon; Inbae Multifunctional spring clips and cartridges and applicators therefor
US5728135A (en) * 1996-02-09 1998-03-17 Ethicon, Inc. Stiffened suture for use in a suturing device
US5732872A (en) * 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US5855614A (en) * 1993-02-22 1999-01-05 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
US5868763A (en) * 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US5868702A (en) * 1991-07-16 1999-02-09 Heartport, Inc. System for cardiac procedures
US5871528A (en) * 1996-06-28 1999-02-16 Medtronic, Inc. Temporary bipolar heart wire
US5879371A (en) * 1997-01-09 1999-03-09 Elective Vascular Interventions, Inc. Ferruled loop surgical fasteners, instruments, and methods for minimally invasive vascular and endoscopic surgery
US5881943A (en) * 1994-06-17 1999-03-16 Heartport, Inc. Surgical anastomosis apparatus and method thereof
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US6013084A (en) * 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6022367A (en) * 1997-06-18 2000-02-08 United States Surgical Surgical apparatus for forming a hole in a blood vessel
US6024748A (en) * 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US6032849A (en) * 1995-08-28 2000-03-07 United States Surgical Surgical stapler
US6033419A (en) * 1998-05-15 2000-03-07 Sulzer Carbomedics Inc. Apparatus and method for cutting a heart valve annulus
US6036703A (en) * 1998-02-06 2000-03-14 Ethicon Endo-Surgery Inc. Method and apparatus for establishing anastomotic passageways
US6036699A (en) * 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
US6036710A (en) * 1996-10-04 2000-03-14 United States Surgical Apparatus for formation of a hole in a blood vessel
US6042607A (en) * 1996-02-23 2000-03-28 Cardiovascular Technologies Llc Means and method of replacing a heart valve in a minimally invasive manner
US6171321B1 (en) * 1995-02-24 2001-01-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6171320B1 (en) * 1996-12-25 2001-01-09 Niti Alloys Technologies Ltd. Surgical clip
US6176864B1 (en) * 1998-03-09 2001-01-23 Corvascular, Inc. Anastomosis device and method
US6179849B1 (en) * 1999-06-10 2001-01-30 Vascular Innovations, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US6179840B1 (en) * 1999-07-23 2001-01-30 Ethicon, Inc. Graft fixation device and method
US6179848B1 (en) * 1996-07-24 2001-01-30 Jan Otto Solem Anastomotic fitting
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6190373B1 (en) * 1992-11-13 2001-02-20 Scimed Life Systems, Inc. Axially detachable embolic coil assembly
US6193733B1 (en) * 1997-06-20 2001-02-27 Boston Scientific Corporation Hemostatic clips
US6193734B1 (en) * 1998-01-23 2001-02-27 Heartport, Inc. System for performing vascular anastomoses
US6197037B1 (en) * 1999-07-29 2001-03-06 John Hunter Hair Surgical fastener for joining adjacent bone portions
US20020010490A1 (en) * 1999-03-01 2002-01-24 Laurent Schaller Tissue connector apparatus and methods
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US6350269B1 (en) * 1999-03-01 2002-02-26 Apollo Camera, L.L.C. Ligation clip and clip applier
US6514265B2 (en) * 1999-03-01 2003-02-04 Coalescent Surgical, Inc. Tissue connector apparatus with cable release
US6517558B2 (en) * 1999-01-15 2003-02-11 Ventrica, Inc. Methods and devices for forming vascular anastomoses
US6524338B1 (en) * 2000-08-25 2003-02-25 Steven R. Gundry Method and apparatus for stapling an annuloplasty band in-situ
US6682540B1 (en) * 1999-11-05 2004-01-27 Onux Medical, Inc. Apparatus and method for placing multiple sutures
US6695859B1 (en) * 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US20050004582A1 (en) * 2002-12-16 2005-01-06 Edoga John K. Endovascular stapler
US20050021054A1 (en) * 2003-07-25 2005-01-27 Coalescent Surgical, Inc. Sealing clip, delivery systems, and methods
US20050043749A1 (en) * 2003-08-22 2005-02-24 Coalescent Surgical, Inc. Eversion apparatus and methods
US20060004389A1 (en) * 1998-06-03 2006-01-05 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US20070027461A1 (en) * 1998-06-03 2007-02-01 Barry Gardiner Tissue connector apparatus and methods

Family Cites Families (432)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715486A (en) 1955-08-16 Fast-threading needls with trailing flexible link
US43098A (en) 1864-06-14 Improvement in suture-instruments
US636728A (en) 1899-05-24 1899-11-07 George J Kindel Tape-needle.
US655190A (en) 1899-11-27 1900-08-07 Louis Bramson Suturating instrument.
US1539221A (en) 1923-10-30 1925-05-26 Tennant John William Welder's rod holder
US1583271A (en) 1925-01-14 1926-05-04 Biro Ladislaus Surgical instrument
US1625602A (en) 1926-04-06 1927-04-19 Harold G Gould Surgical appliance
US1867624A (en) 1930-04-01 1932-07-19 Memorial Hospital For The Trea Device for obtaining biopsy specimens
US2201610A (en) 1938-05-20 1940-05-21 Jr James C Dawson Wound clip
US2240330A (en) 1938-07-11 1941-04-29 Andrew B Flagg Surgical needle or the like
US2256382A (en) 1939-03-06 1941-09-16 Edward H Kruse Surgical ligature applicator
US2264679A (en) 1940-10-29 1941-12-02 Ravel Vincent Marvin Surgical instrument
US2430293A (en) 1944-10-21 1947-11-04 John N M Howells Means for applying fastening devices
US2413142A (en) 1945-06-11 1946-12-24 Edwin M Jones Suturing assembly and method
US2516710A (en) 1947-05-12 1950-07-25 Delfino P Mascolo Double point surgical needle
US2505358A (en) 1949-04-20 1950-04-25 Sklar Mfg Co Inc J Double-cutting biopsy bistoury
US2890519A (en) 1955-08-01 1959-06-16 Storz Instr Co Surgical spring clip forceps
US2940452A (en) * 1958-11-07 1960-06-14 Ca Nat Research Council Vascular evertor
US3055689A (en) 1960-06-29 1962-09-25 Clarence H Jorgensen Holding device for doors and the like
US3057355A (en) * 1960-07-08 1962-10-09 Canadian Patents Dev Vascular everter
US3150379A (en) 1962-03-01 1964-09-29 Ernest C Wood Single clip disposable applicator
US3143742A (en) 1963-03-19 1964-08-11 Surgitool Inc Prosthetic sutureless heart valve
US3180337A (en) * 1963-04-25 1965-04-27 Ca Nat Research Council Vascular everting device
US3249104A (en) 1963-06-21 1966-05-03 George J Hohnstein Surgical needle
GB1021589A (en) 1963-12-05 1966-03-02 Down Brothers And Mayer And Ph Improvements in and relating to clamping devices
US3547103A (en) 1965-10-29 1970-12-15 William A Cook Coil spring guide
US3452740A (en) 1966-05-31 1969-07-01 Us Catheter & Instr Corp Spring guide manipulator
US3506012A (en) 1967-08-01 1970-04-14 Ivan E Brown Polyp clamp and applier therefor
US3509882A (en) 1967-09-18 1970-05-05 American Hospital Supply Corp Parallel jaw spring clip and applicator
NL143127B (en) 1969-02-04 1974-09-16 Rhone Poulenc Sa REINFORCEMENT DEVICE FOR A DEFECTIVE HEART VALVE.
US3674304A (en) * 1970-01-02 1972-07-04 Raymond W Swanson Releasable automatic fastener for a truck stake and like
US3608095A (en) 1970-03-05 1971-09-28 Federal Tool Eng Co Method of fixing hair pieces to scalps
USRE27391E (en) 1970-10-12 1972-06-20 Connector for holding articles together
US3802438A (en) 1972-03-31 1974-04-09 Technibiotics Surgical instrument
US3753438A (en) 1972-04-25 1973-08-21 E Wood Suture clip
US3776237A (en) 1972-05-11 1973-12-04 Tecna Corp Surgical tool and method of providing a surgical opening
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3825009A (en) 1973-03-19 1974-07-23 J Williams Method of surgically repairing damaged ear drums
US3875648A (en) 1973-04-04 1975-04-08 Dennison Mfg Co Fastener attachment apparatus and method
GB1413191A (en) * 1973-07-04 1975-11-12 Vnii Khirurgicheskoi Apparatur Device for the eversion of hollow organs and vascular stapling instrument incorporating same
US3837345A (en) 1973-08-31 1974-09-24 A Matar Venous valve snipper
US3910281A (en) 1973-10-09 1975-10-07 Bio Medicus Inc Suture anchor
JPS5320957Y2 (en) 1973-11-14 1978-06-01
US3905403A (en) 1973-12-26 1975-09-16 Kuhlman Corp Methods of manufacturing dual interlocked safety spring assemblies
US3976079A (en) 1974-08-01 1976-08-24 Samuels Peter B Securing devices for sutures
US4129059A (en) 1974-11-07 1978-12-12 Eck William F Van Staple-type fastener
US4018228A (en) 1975-02-24 1977-04-19 Goosen Carl C Surgical punch apparatus
US4038725A (en) 1975-03-20 1977-08-02 Monarch Marking Systems, Inc. Fastener and method of using same
SU566574A1 (en) 1975-05-04 1977-07-30 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for applying linear agraffe suture on organs and tissue
US3995619A (en) 1975-10-14 1976-12-07 Glatzer Stephen G Combination subcutaneous suture remover, biopsy sampler and syringe
SU577022A1 (en) 1976-06-25 1977-10-30 Всесоюзный Научно-Исследовательский Институт Клинической И Экспериментальной Хирургии Cardiac valve prosthesis
US4042979A (en) 1976-07-12 1977-08-23 Angell William W Valvuloplasty ring and prosthetic method
DE2703529A1 (en) 1977-01-28 1978-08-03 Krupp Gmbh IMPLANT TO CONNECT SEPARATION SITES IN LIVING TISSUE
US4170990A (en) 1977-01-28 1979-10-16 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Method for implanting and subsequently removing mechanical connecting elements from living tissue
US4103690A (en) 1977-03-21 1978-08-01 Cordis Corporation Self-suturing cardiac pacer lead
US4217902A (en) 1977-05-02 1980-08-19 March Alfred L Hemostatic clip
US4222594A (en) * 1978-07-10 1980-09-16 Daymond Limited Swivel couplings
US4214587A (en) * 1979-02-12 1980-07-29 Sakura Chester Y Jr Anastomosis device and method
US4352358A (en) * 1979-12-28 1982-10-05 Angelchik Jean P Apparatus for effecting anastomotic procedures
US4396139A (en) 1980-02-15 1983-08-02 Technalytics, Inc. Surgical stapling system, apparatus and staple
US4345601A (en) 1980-04-07 1982-08-24 Mamoru Fukuda Continuous suturing device
US4324248A (en) 1980-05-30 1982-04-13 Metatech Corporation Microsurgical clip
US4522207A (en) 1981-02-06 1985-06-11 Charles H. Klieman Spring activated hemostatic clip applicator
DD158084A1 (en) 1981-05-08 1982-12-29 Joachim Heinke CLOSURE BODY AND METHOD FOR ITS MANUFACTURE
US4416266A (en) 1981-05-15 1983-11-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Medical clip
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
AU8679382A (en) 1981-08-10 1983-02-17 Ethicon Inc. Polyolefin surgical device
US4465071A (en) 1981-10-26 1984-08-14 Samuels Peter B Method of applying skin clips
US4586502A (en) 1982-02-03 1986-05-06 Ethicon, Inc. Surgical instrument actuator with non-collinear hydraulic pistons
US4624255A (en) * 1982-02-18 1986-11-25 Schenck Robert R Apparatus for anastomosing living vessels
US4474181A (en) * 1982-02-18 1984-10-02 Schenck Robert R Method and apparatus for anastomosing small blood vessels
DE3227984C2 (en) 1982-07-27 1985-10-17 Abdoll-Hossein Dr. med. 4330 Mülheim Towfigh Device for producing a tendon butt seam
US4470533A (en) 1982-08-13 1984-09-11 Ethicon, Inc. Surgical instrument for suturing tissues and organs
US4470415A (en) * 1982-08-19 1984-09-11 The Johns Hopkins University Sutureless vascular anastomosis means and method
US4456017A (en) 1982-11-22 1984-06-26 Cordis Corporation Coil spring guide with deflectable tip
SU1186199A1 (en) 1983-02-15 1985-10-23 Tyumenskij Med I Method of making anastomoses
JPS59168848A (en) 1983-03-11 1984-09-22 エチコン・インコ−ポレ−テツド Antiseptic surgical apparatus made of nonmetal having affinity to organism
US4595007A (en) 1983-03-14 1986-06-17 Ethicon, Inc. Split ring type tissue fastener
US4535764A (en) 1983-04-15 1985-08-20 Tayco Developments, Inc. Surgical bone tie
US4532927A (en) 1983-06-20 1985-08-06 Ethicon, Inc. Two-piece tissue fastener with non-reentry bent leg staple and retaining receiver
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4573469A (en) 1983-06-20 1986-03-04 Ethicon, Inc. Two-piece tissue fastener with coinable leg staple and retaining receiver and method and instrument for applying same
EP0140557A3 (en) 1983-09-12 1986-09-03 Edward Lee Blackwood Surgical instrument
DE3335985C2 (en) 1983-10-04 1986-12-04 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Magazine for holding C-shaped scalp clips
US5190546A (en) * 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4929240A (en) 1983-12-01 1990-05-29 University Of New Mexico Surgical clip and applier
US4586503A (en) 1983-12-01 1986-05-06 University Of New Mexico Surgical microclip
DE3504202A1 (en) 1984-02-07 1985-08-29 Michael M. Dr. 2000 Wedel Schikorski Ligation material for ligating tubular organs in human or animal bodies during surgical interventions
US4549545A (en) 1984-03-05 1985-10-29 Ethicon Inc. Segmented polyurethane surgical buttressing pledgets
US4873975A (en) 1984-04-10 1989-10-17 Walsh Manufacturing (Mississauga) Limited Anastomosis device and method
US6106538A (en) 1984-05-14 2000-08-22 Shiber; Samuel Method for forming an internal coronary bypass
US4932955A (en) 1984-06-29 1990-06-12 Baxter International Inc. Clip
US4706362A (en) 1984-09-25 1987-11-17 Monarch Marking Systems, Inc. Method of attaching tags
US4665917A (en) 1985-01-28 1987-05-19 Ethicon, Inc. Tissue gripper for use with intraluminal stapling device
US4593693A (en) * 1985-04-26 1986-06-10 Schenck Robert R Methods and apparatus for anastomosing living vessels
US4683895A (en) 1985-07-25 1987-08-04 Cordis Corporation Suture sleeve anchoring device
US4622970A (en) * 1985-08-29 1986-11-18 The Johns Hopkins University Vascular everting instrument
SU1456109A1 (en) 1986-07-23 1989-02-07 Сибирский физико-технический институт им.В.Д.Кузнецова при Томском государственном университете Arrangement for bringing together the wound edges
US5258011A (en) 1987-01-12 1993-11-02 Drews Robert C Corneal rivet
US5119983A (en) 1987-05-26 1992-06-09 United States Surgical Corporation Surgical stapler apparatus
US5366459A (en) 1987-05-14 1994-11-22 Inbae Yoon Surgical clip and clip application procedures
US5171250A (en) 1987-05-14 1992-12-15 Inbae Yoon Surgical clips and surgical clip applicator and cutting and transection device
US4957498A (en) 1987-11-05 1990-09-18 Concept, Inc. Suturing instrument
US4820298A (en) 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US4968315A (en) 1987-12-15 1990-11-06 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
US5084057A (en) 1989-07-18 1992-01-28 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
JP2561853B2 (en) 1988-01-28 1996-12-11 株式会社ジェイ・エム・エス Shaped memory molded article and method of using the same
US4926860A (en) 1988-02-05 1990-05-22 Flexmedics Corporation ARthroscopic instrumentation and method
US5154189A (en) 1988-06-03 1992-10-13 Oberlander Michael A Method for repairing a torn meniscus
US5002562A (en) * 1988-06-03 1991-03-26 Oberlander Michael A Surgical clip
SU1560133A1 (en) 1988-07-11 1990-04-30 Сибирский Физико-Технический Институт При Томском Государственном Университете Им.В.В.Куйбышева Device for connecting lips of wound
GB2223410A (en) 1988-08-31 1990-04-11 Fixit Surgical device for wound closure and retraction
US4844318A (en) 1988-09-06 1989-07-04 Kunreuther Steven J Needle assembly
US4990152A (en) * 1988-10-12 1991-02-05 Inbae Yoon Applicator device housing multiple elastic ligatures in series and for dilating and applying elastic ligatures onto anatomical tissue
US5047047A (en) 1988-10-26 1991-09-10 Inbae Yoon Wound closing device
US4924866A (en) 1988-10-26 1990-05-15 Inbae Yoon Wound-closing device
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4950283A (en) 1988-12-29 1990-08-21 John Lezdey Surgical clip
US4950015A (en) 1989-01-23 1990-08-21 Design Specialties Laboratories, Inc. Syringe cap clamp tool
US4997439A (en) * 1989-01-26 1991-03-05 Chen Fusen H Surgical closure or anastomotic device
US5336233A (en) * 1989-01-26 1994-08-09 Chen Fusen H Anastomotic device
EP0595791B1 (en) 1989-02-13 1999-06-30 Baxter International Inc. Anuloplasty ring prosthesis
US4930674A (en) * 1989-02-24 1990-06-05 Abiomed, Inc. Surgical stapler
US4983176A (en) * 1989-03-06 1991-01-08 University Of New Mexico Deformable plastic surgical clip
US5007920A (en) 1989-03-24 1991-04-16 Torre Randall J Tendon sectioning support clamp
US5020713A (en) 1989-05-04 1991-06-04 Kunreuther Steven J Assembly of attachments and device for attaching same
US5053047A (en) 1989-05-16 1991-10-01 Inbae Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
US5222976A (en) 1989-05-16 1993-06-29 Inbae Yoon Suture devices particularly useful in endoscopic surgery
US5074874A (en) 1989-05-16 1991-12-24 Inbae Yoon Suture devices particularly useful in endoscopic surgery
US5002550A (en) * 1989-06-06 1991-03-26 Mitek Surgical Products, Inc. Suture anchor installation tool
US5011481A (en) 1989-07-17 1991-04-30 Medtronic, Inc. Holder for annuloplasty ring
US5290300A (en) 1989-07-31 1994-03-01 Baxter International Inc. Flexible suture guide and holder
US5350420A (en) 1989-07-31 1994-09-27 Baxter International Inc. Flexible annuloplasty ring and holder
US5632746A (en) * 1989-08-16 1997-05-27 Medtronic, Inc. Device or apparatus for manipulating matter
US4935027A (en) 1989-08-21 1990-06-19 Inbae Yoon Surgical suture instrument with remotely controllable suture material advancement
US5123913A (en) 1989-11-27 1992-06-23 Wilk Peter J Suture device
US4950285A (en) 1989-11-27 1990-08-21 Wilk Peter J Suture device
US5026379A (en) 1989-12-05 1991-06-25 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
CA2029671A1 (en) 1989-12-11 1991-06-12 Paul M. Vernon Grip surgical clip
US5222961A (en) 1989-12-26 1993-06-29 Naomi Nakao Endoscopic stapling device and related staple
IT1238173B (en) 1990-01-15 1993-07-09 FOUR-TWO-TWO-TWO-CONVERGENT METAL STITCH SUITABLE FOR CONTEMPORARY SUTURE OF THE SKIN AND SUB-SKIN FABRIC
US4991567A (en) * 1990-01-16 1991-02-12 Mccuen Ii Brooks W Micro-iris retractor
US5035692A (en) 1990-02-13 1991-07-30 Nicholas Herbert Hemostasis clip applicator
US5002563A (en) * 1990-02-22 1991-03-26 Raychem Corporation Sutures utilizing shape memory alloys
US5032127A (en) 1990-03-07 1991-07-16 Frazee John G Hemostatic clip and applicator therefor
US5035702A (en) 1990-06-18 1991-07-30 Taheri Syde A Method and apparatus for providing an anastomosis
US5269809A (en) 1990-07-02 1993-12-14 American Cyanamid Company Locking mechanism for use with a slotted suture anchor
US5127413A (en) 1990-08-09 1992-07-07 Ebert Edward A Sinous suture
US5366462A (en) * 1990-08-28 1994-11-22 Robert L. Kaster Method of side-to-end vascular anastomotic stapling
US5234447A (en) * 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
CA2049103C (en) 1990-09-06 1996-10-01 Royce Lewis Implant assist apparatus
US5353804A (en) 1990-09-18 1994-10-11 Peb Biopsy Corporation Method and device for percutaneous exisional breast biopsy
US5129913A (en) 1990-10-04 1992-07-14 Norbert Ruppert Surgical punch apparatus
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5108422A (en) 1990-10-22 1992-04-28 United States Surgical Corporation Skin fastener
FR2668361A1 (en) 1990-10-30 1992-04-30 Mai Christian OSTEOSYNTHESIS CLIP AND PLATE WITH SELF-RETENTIVE DYNAMIC COMPRESSION.
US5519937A (en) * 1990-11-14 1996-05-28 Soriano; Louis Guiding method and device for the automatic introduction of a male piece into a female piece
CA2055985A1 (en) 1990-12-20 1992-06-21 Daniel Shichman Fascia clip
US5221259A (en) 1990-12-27 1993-06-22 Novoste Corporation Wound treating device and method of using same
US5259846A (en) 1991-01-07 1993-11-09 United States Surgical Corporation Loop threaded combined surgical needle-suture device
US5064431A (en) 1991-01-16 1991-11-12 St. Jude Medical Incorporated Annuloplasty ring
US5171252A (en) 1991-02-05 1992-12-15 Friedland Thomas W Surgical fastening clip formed of a shape memory alloy, a method of making such a clip and a method of using such a clip
US5269783A (en) 1991-05-13 1993-12-14 United States Surgical Corporation Device and method for repairing torn tissue
US5217027A (en) 1991-05-30 1993-06-08 Medtronic, Inc. Temporary cardiac lead
GB9111972D0 (en) 1991-06-04 1991-07-24 Clinical Product Dev Ltd Medical/surgical devices
US5452733A (en) 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5735290A (en) 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5236435A (en) 1991-07-22 1993-08-17 Sewell Jr Frank Laparoscopic surgical staple system
US5219358A (en) 1991-08-29 1993-06-15 Ethicon, Inc. Shape memory effect surgical needles
DE4133800C1 (en) 1991-10-12 1993-01-21 Ethicon Gmbh & Co Kg, 2000 Norderstedt, De
US5289963A (en) 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5152769A (en) 1991-11-04 1992-10-06 Will Baber Apparatus for laparoscopic suturing with improved suture needle
US5242456A (en) 1991-11-21 1993-09-07 Kensey Nash Corporation Apparatus and methods for clamping tissue and reflecting the same
US5163942A (en) * 1991-12-09 1992-11-17 Everest Medical Corporation Surgical instrument with grasping loop for laparoscopic procedures
IL100721A (en) 1992-01-21 1996-12-05 Milo Simcha Punch for opening passages between two compartments
JP3393383B2 (en) 1992-01-21 2003-04-07 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Septal defect closure device
US5306296A (en) 1992-08-21 1994-04-26 Medtronic, Inc. Annuloplasty and suture rings
US5201880A (en) 1992-01-27 1993-04-13 Pioneering Technologies, Inc. Mitral and tricuspid annuloplasty rings
US5628757A (en) 1992-02-04 1997-05-13 Hasson; Harrith M. Surgical instrument for holding a needle
US5174087A (en) 1992-02-19 1992-12-29 Mitek Surgical Products, Inc. Suture anchor assembly packaging system
US5261917A (en) 1992-02-19 1993-11-16 Hasson Harrith M Suture tying forceps with a plurality of suture holders and method of tying a suture
US5178629A (en) 1992-03-03 1993-01-12 Ethicon, Inc. Method of forming a suture knot
DE4303374A1 (en) 1992-03-12 1993-09-23 Wolf Gmbh Richard
US5417700A (en) 1992-03-30 1995-05-23 Thomas D. Egan Automatic suturing and ligating device
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
US5355897A (en) 1992-04-16 1994-10-18 Ethicon, Inc. Method of performing a pyloroplasty/pylorectomy using a stapler having a shield
US5484451A (en) 1992-05-08 1996-01-16 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
US5242457A (en) 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
DE4215449C1 (en) 1992-05-11 1993-09-02 Ethicon Gmbh & Co Kg, 2000 Norderstedt, De
US5250053A (en) 1992-05-29 1993-10-05 Linvatec Corporation Suture shuttle device
US5207694A (en) 1992-06-18 1993-05-04 Surgical Invent Ab Method for performing a surgical occlusion, and kit and applicator for carrying out the method
US5653718A (en) 1994-05-16 1997-08-05 Yoon; Inbae Cannula anchoring system
US5334196A (en) 1992-10-05 1994-08-02 United States Surgical Corporation Endoscopic fastener remover
EP0673230A1 (en) 1992-10-05 1995-09-27 Albert E. Sanders Nitinol instrumentation and method for treating scoliosis
CA2133687C (en) 1992-10-09 2007-03-27 David T. Green Surgical clip applier
US5725538A (en) 1992-10-09 1998-03-10 United States Surgical Corporation Surgical clip applier
US5409498A (en) 1992-11-05 1995-04-25 Ethicon, Inc. Rotatable articulating endoscopic fastening instrument
US5304117A (en) 1992-11-27 1994-04-19 Wilk Peter J Closure method for use in laparoscopic surgery
US5632753A (en) 1992-12-31 1997-05-27 Loeser; Edward A. Surgical procedures
US5403346A (en) 1992-12-31 1995-04-04 Loeser; Edward A. Self-affixing suture assembly
US5336239A (en) 1993-01-15 1994-08-09 Gimpelson Richard J Surgical needle
US5366461A (en) 1993-01-25 1994-11-22 William Blasnik Sternum banding assembly
US5356424A (en) 1993-02-05 1994-10-18 American Cyanamid Co. Laparoscopic suturing device
US5304204A (en) 1993-02-09 1994-04-19 Ethicon, Inc. Receiverless surgical fasteners
US5522884A (en) 1993-02-19 1996-06-04 Medtronic, Inc. Holder for adjustable mitral & tricuspid annuloplasty rings
US5799661A (en) 1993-02-22 1998-09-01 Heartport, Inc. Devices and methods for port-access multivessel coronary artery bypass surgery
US5569274A (en) 1993-02-22 1996-10-29 Heartport, Inc. Endoscopic vascular clamping system and method
US5312436A (en) 1993-03-11 1994-05-17 Coffey William R Suture for use in endoscopic surgery
EP0688184A4 (en) 1993-03-11 1997-05-07 Greatbatch W Ltd Laparoscopic surgical grasper
US5403331A (en) 1993-03-12 1995-04-04 United States Surgical Corporation Looped suture ligating device containing a heat-shrinkable element
US5346459A (en) 1993-04-14 1994-09-13 Minnesota Mining And Manufacturing Company Trocar
JP3180219B2 (en) 1993-07-09 2001-06-25 ニプロ株式会社 Trocar
US5462561A (en) 1993-08-05 1995-10-31 Voda; Jan K. Suture device
WO1995005778A1 (en) * 1993-08-25 1995-03-02 Life Surgery, Inc. Surgical ligation clip
US5450860A (en) 1993-08-31 1995-09-19 W. L. Gore & Associates, Inc. Device for tissue repair and method for employing same
FR2710254B1 (en) 1993-09-21 1995-10-27 Mai Christian Multi-branch osteosynthesis clip with self-retaining dynamic compression.
CA2132917C (en) 1993-10-07 2004-12-14 John Charles Robertson Circular anastomosis device
US5569301A (en) 1993-10-08 1996-10-29 United States Surgical Corporation Surgical incision members for endoscopic suturing apparatus
US5632752A (en) 1993-10-12 1997-05-27 Urohealth Systems, Inc. Surgical suturing device
WO1995011630A1 (en) 1993-10-25 1995-05-04 Children's Medical Center Corporation Retractable suture needle with self-contained driver
US5503635A (en) 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
WO1995016407A1 (en) 1993-12-13 1995-06-22 Brigham And Women's Hospital Aortic valve supporting device
US5527342A (en) 1993-12-14 1996-06-18 Pietrzak; William S. Method and apparatus for securing soft tissues, tendons and ligaments to bone
US5376096A (en) 1993-12-17 1994-12-27 Vance Products Inc. Medical instrument for driving a suture needle
DK145593A (en) 1993-12-23 1995-06-24 Joergen A Rygaard Surgical double instrument for performing connection mlm. arteries (end-to-side anastomosis)
WO1995018572A1 (en) 1994-01-04 1995-07-13 Alpha Surgical Technologies, Inc. Stapling device
US5437681A (en) 1994-01-13 1995-08-01 Suturtek Inc. Suturing instrument with thread management
US5423821A (en) 1994-01-18 1995-06-13 Pasque; Michael K. Sternal closure device
DE4402058C1 (en) 1994-01-25 1995-04-13 Andreas Dr Med Asch Implantable temporary electrode cable
US5538509A (en) 1994-01-31 1996-07-23 Richard-Allan Medical Industries, Inc. Trocar assembly
US5456246A (en) 1994-02-23 1995-10-10 Arthrex, Inc. Fat pad retractor
US5431666A (en) 1994-02-24 1995-07-11 Lasersurge, Inc. Surgical suture instrument
US5451231A (en) 1994-03-11 1995-09-19 Ryder International Corporation Surgical staple remover
JP3526609B2 (en) * 1994-03-31 2004-05-17 テルモ株式会社 Suture instrument
US5601571A (en) * 1994-05-17 1997-02-11 Moss; Gerald Surgical fastener implantation device
CA2192819A1 (en) 1994-06-17 1995-12-28 Christopher Francis Heck Surgical stapling instrument and method thereof
US5569205A (en) 1994-07-14 1996-10-29 Hart; Charles C. Multiport trocar
US5582616A (en) 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
US5562685A (en) 1994-09-16 1996-10-08 General Surgical Innovations, Inc. Surgical instrument for placing suture or fasteners
CA2157744C (en) 1994-10-07 2005-08-23 Charles R. Sherts Endoscopic vascular suturing apparatus
US5571090A (en) 1994-10-07 1996-11-05 United States Surgical Corporation Vascular suturing apparatus
CA2162620A1 (en) 1994-11-11 1996-05-12 Gene Samson Microcatheter-less coil delivery device
US5643305A (en) 1994-11-18 1997-07-01 Al-Tameem; Moshin Device for excision of a fistula
US5665109A (en) 1994-12-29 1997-09-09 Yoon; Inbae Methods and apparatus for suturing tissue
US5643295A (en) 1994-12-29 1997-07-01 Yoon; Inbae Methods and apparatus for suturing tissue
US5653716A (en) 1994-12-29 1997-08-05 Acufex Microsurgical, Inc. Suture manipulating instrument with grasping members
US5695504A (en) * 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5976159A (en) 1995-02-24 1999-11-02 Heartport, Inc. Surgical clips and methods for tissue approximation
US5797933A (en) 1996-07-16 1998-08-25 Heartport, Inc. Coronary shunt and method of use
US5795308A (en) 1995-03-09 1998-08-18 Russin; Lincoln D. Apparatus for coaxial breast biopsy
DE19509115C2 (en) 1995-03-16 1997-11-27 Deutsche Forsch Luft Raumfahrt Surgical device for preparing an anastomosis using minimally invasive surgical techniques
DE69624525T2 (en) 1995-03-30 2003-03-20 Boston Scient Ltd System for implanting liquid spirals with a secondary structure
US5591179A (en) * 1995-04-19 1997-01-07 Applied Medical Resources Corporation Anastomosis suturing device and method
US5609608A (en) 1995-10-27 1997-03-11 Regents Of The University Of California Miniature plastic gripper and fabrication method
US5630540A (en) 1995-05-24 1997-05-20 United States Surgical Corporation Surgical staple and staple drive member
US5571175A (en) 1995-06-07 1996-11-05 St. Jude Medical, Inc. Suture guard for prosthetic heart valve
US6132438A (en) 1995-06-07 2000-10-17 Ep Technologies, Inc. Devices for installing stasis reducing means in body tissue
US5660186A (en) 1995-06-07 1997-08-26 Marshfield Clinic Spiral biopsy stylet
US5989242A (en) 1995-06-26 1999-11-23 Trimedyne, Inc. Therapeutic appliance releasing device
US5582619A (en) 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5533236A (en) 1995-08-08 1996-07-09 Chun-Hsiung Hsu Paper holder
US5601600A (en) * 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
CA2184958A1 (en) 1995-09-22 1997-03-23 John S. Gentelia Improved trocar-cannulla device
US5702412A (en) 1995-10-03 1997-12-30 Cedars-Sinai Medical Center Method and devices for performing vascular anastomosis
US5690662A (en) 1995-10-12 1997-11-25 The Trustees Of Columbia University In The City Of New York Device and method to create a smooth opening on a tubular structure such as an artery or a vein
EP0955933B1 (en) 1995-10-13 2009-08-26 Medtronic Vascular, Inc. A device for interstitial transvascular intervention
US5700270A (en) 1995-10-20 1997-12-23 United States Surgical Corporation Surgical clip applier
US5700271A (en) 1995-10-20 1997-12-23 United States Surgical Corporation Apparatus for applying surgical clips
US5941442A (en) 1995-10-27 1999-08-24 United States Surgical Surgical stapler
ATE188862T1 (en) * 1995-10-31 2000-02-15 Oticon As ANASTOMOTIC INSTRUMENT FOR USE IN A TERMINOLATERAL ANASTOMOSIS
BE1009746A3 (en) 1995-11-07 1997-07-01 Dereume Jean Pierre Georges Em Capture device introduced in a cavity of a human or animal body.
US5645568A (en) 1995-11-20 1997-07-08 Medicinelodge, Inc. Expandable body suture
US5658308A (en) 1995-12-04 1997-08-19 Target Therapeutics, Inc. Bioactive occlusion coil
DE19547617C1 (en) 1995-12-20 1997-09-18 Malte Neus Appliance for inserting and replacing surgical implant
US5810853A (en) 1996-01-16 1998-09-22 Yoon; Inbae Knotting element for use in suturing anatomical tissue and methods therefor
RU2110222C1 (en) 1996-01-18 1998-05-10 Устинова Елена Юрьевна Device for forming of intestinal end-to-end anastomosis
US5827265A (en) 1996-02-07 1998-10-27 Regents Of The University Of California Intraluminal tissue welding for anastomosis
US5769870A (en) 1996-02-20 1998-06-23 Cardiothoracic Systems, Inc. Perfusion device for maintaining blood flow in a vessel while isolating an anastomosis
US5891160A (en) 1996-02-23 1999-04-06 Cardiovascular Technologies, Llc Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
JP3209430B2 (en) * 1996-02-29 2001-09-17 オチコン アクツイエセルスカプ Anastomotic device for use when performing end-to-end anastomosis
JP3776529B2 (en) 1996-02-29 2006-05-17 オリンパス株式会社 Clip device
US5810851A (en) 1996-03-05 1998-09-22 Yoon; Inbae Suture spring device
US5782844A (en) 1996-03-05 1998-07-21 Inbae Yoon Suture spring device applicator
EP0904019B1 (en) * 1996-04-30 2002-05-22 Oticon A/S Anastomotic instrument for use when performing an end-to-side anastomosis
US5746753A (en) 1996-05-13 1998-05-05 Boston Scientific Corporation Needle grasping apparatus
US5800421A (en) 1996-06-12 1998-09-01 Lemelson; Jerome H. Medical devices using electrosensitive gels
US5797920A (en) 1996-06-14 1998-08-25 Beth Israel Deaconess Medical Center Catheter apparatus and method using a shape-memory alloy cuff for creating a bypass graft in-vivo
US6007544A (en) 1996-06-14 1999-12-28 Beth Israel Deaconess Medical Center Catheter apparatus having an improved shape-memory alloy cuff and inflatable on-demand balloon for creating a bypass graft in-vivo
US5676670A (en) * 1996-06-14 1997-10-14 Beth Israel Deaconess Medical Center Catheter apparatus and method for creating a vascular bypass in-vivo
JP3304346B2 (en) 1996-06-20 2002-07-22 ニプロ株式会社 Suture for endocardial suture surgery
US5833698A (en) * 1996-07-23 1998-11-10 United States Surgical Corporation Anastomosis instrument and method
US5820631A (en) 1996-08-01 1998-10-13 Nr Medical, Inc. Device and method for suturing tissue adjacent to a blood vessel
FR2751867B1 (en) 1996-08-05 1999-05-21 Leriche Rene Ass PROSTHESIS COLLERETTE
US5697913A (en) 1996-08-09 1997-12-16 Ethicon Endo-Surgery, Inc. Trocar including cannula with stepped region
US5683417A (en) 1996-08-14 1997-11-04 Cooper; William I. Suture and method for endoscopic surgery
US5810848A (en) 1996-08-21 1998-09-22 Hayhurst; John O. Suturing system
US5976164A (en) 1996-09-13 1999-11-02 Eclipse Surgical Technologies, Inc. Method and apparatus for myocardial revascularization and/or biopsy of the heart
US5871495A (en) 1996-09-13 1999-02-16 Eclipse Surgical Technologies, Inc. Method and apparatus for mechanical transmyocardial revascularization of the heart
US5830221A (en) 1996-09-20 1998-11-03 United States Surgical Corporation Coil fastener applier
DE29616632U1 (en) 1996-09-24 1996-11-28 Aesculap Ag Surgical application device for U-shaped clips
US5762646A (en) * 1996-09-30 1998-06-09 Duxbury Scientific, Inc. Blood collection system and coupling
US5941434A (en) 1996-10-11 1999-08-24 Green; Mark R. Multi-strap holder
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
US5941908A (en) 1997-04-23 1999-08-24 Vascular Science, Inc. Artificial medical graft with a releasable retainer
US5976178A (en) 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
AU721415B2 (en) 1996-11-08 2000-07-06 Converge Medical, Inc. Percutaneous bypass graft and securing system
CA2224366C (en) 1996-12-11 2006-10-31 Ethicon, Inc. Meniscal repair device
US5911352A (en) 1996-12-17 1999-06-15 United States Surgical Corporation Surgical stapling apparatus
US5972024A (en) 1996-12-24 1999-10-26 Metacardia, Inc. Suture-staple apparatus and method
US6074401A (en) 1997-01-09 2000-06-13 Coalescent Surgical, Inc. Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US6149658A (en) 1997-01-09 2000-11-21 Coalescent Surgical, Inc. Sutured staple surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US5961539A (en) 1997-01-17 1999-10-05 Segmed, Inc. Method and apparatus for sizing, stabilizing and/or reducing the circumference of an anatomical structure
US5957938A (en) * 1997-02-05 1999-09-28 United States Surgical Corporation Tissue everting needle
US5893369A (en) 1997-02-24 1999-04-13 Lemole; Gerald M. Procedure for bypassing an occlusion in a blood vessel
US6409739B1 (en) 1997-05-19 2002-06-25 Cardio Medical Solutions, Inc. Device and method for assisting end-to side anastomosis
US5944730A (en) 1997-05-19 1999-08-31 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
US5908428A (en) 1997-05-27 1999-06-01 United States Surgical Corporation Stitching devices for heart valve replacement surgery
US5827316A (en) 1997-06-05 1998-10-27 Atrion Medical Products, Inc. Rotating aortic punch
WO1999000059A1 (en) 1997-06-27 1999-01-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
US6071292A (en) 1997-06-28 2000-06-06 Transvascular, Inc. Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US5997556A (en) 1997-06-30 1999-12-07 Eva Corporation Surgical fastener
US5957940A (en) 1997-06-30 1999-09-28 Eva Corporation Fasteners for use in the surgical repair of aneurysms
DE19732234A1 (en) 1997-07-26 1999-01-28 Georg Dr Med Quatchadze Surgical endoscopic instrument
US6063070A (en) 1997-08-05 2000-05-16 Target Therapeutics, Inc. Detachable aneurysm neck bridge (II)
US5964782A (en) 1997-09-18 1999-10-12 Scimed Life Systems, Inc. Closure device and method
US5984959A (en) 1997-09-19 1999-11-16 United States Surgical Heart valve replacement tools and procedures
US5893865A (en) 1997-09-23 1999-04-13 Baxter Research Medical, Inc. Apparatus and method for improved aortic incision
US6074416A (en) 1997-10-09 2000-06-13 St. Jude Medical Cardiovascular Group, Inc. Wire connector structures for tubular grafts
NL1007349C2 (en) * 1997-10-24 1999-04-27 Suyker Wilhelmus Joseph Leonardus System for the mechanical production of anastomoses between hollow structures; as well as device and applicator for use therewith.
US5989268A (en) 1997-10-28 1999-11-23 Boston Scientific Corporation Endoscopic hemostatic clipping device
US6139540A (en) 1997-10-30 2000-10-31 Lake Region Manufacturing, Inc. Guidewire with disposition to coil
US6159165A (en) 1997-12-05 2000-12-12 Micrus Corporation Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand
US6241691B1 (en) 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US5976161A (en) * 1998-01-07 1999-11-02 University Of New Mexico Tissue everting apparatus and method
US5919199A (en) 1998-01-14 1999-07-06 Mers Kelly; William Charles Suture device
IT1304761B1 (en) 1998-01-20 2001-03-29 Nardino Righi DISPOSABLE SAFETY SYRINGE.
US6416527B1 (en) 1998-01-28 2002-07-09 St. Jude Medical Cardiovascular Group, Inc. Vessel cutting device
ATE320229T1 (en) 1998-01-30 2006-04-15 St Jude Medical Atg Inc MEDICAL TRANSPLANT CONNECTOR OR PLUG AND METHOD FOR PRODUCING THE SAME
US6280460B1 (en) 1998-02-13 2001-08-28 Heartport, Inc. Devices and methods for performing vascular anastomosis
US6352543B1 (en) * 2000-04-29 2002-03-05 Ventrica, Inc. Methods for forming anastomoses using magnetic force
US6651670B2 (en) 1998-02-13 2003-11-25 Ventrica, Inc. Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication
US5941888A (en) 1998-02-18 1999-08-24 Target Therapeutics, Inc. Vaso-occlusive member assembly with multiple detaching points
US5951576A (en) * 1998-03-02 1999-09-14 Wakabayashi; Akio End-to-side vascular anastomosing stapling device
US6241741B1 (en) * 1998-03-09 2001-06-05 Corvascular Surgical Systems, Inc. Anastomosis device and method
US6110188A (en) * 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
NO981277D0 (en) 1998-03-20 1998-03-20 Erik Fosse Method and apparatus for suture-free anastomosis
US6056751A (en) 1998-04-16 2000-05-02 Axya Medical, Inc. Sutureless soft tissue fixation assembly
US6074418A (en) 1998-04-20 2000-06-13 St. Jude Medical, Inc. Driver tool for heart valve prosthesis fasteners
US6113611A (en) 1998-05-28 2000-09-05 Advanced Vascular Technologies, Llc Surgical fastener and delivery system
US7063711B1 (en) * 1998-05-29 2006-06-20 By-Pass, Inc. Vascular surgery
JP2002516696A (en) * 1998-05-29 2002-06-11 バイ−パス・インク. Methods and devices for vascular surgery
US6979338B1 (en) * 1998-05-29 2005-12-27 By-Pass Inc. Low profile anastomosis connector
US5919207A (en) 1998-06-02 1999-07-06 Taheri; Syde A. Percutaneous arterial closure with staples
US6641593B1 (en) 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
WO2000015144A1 (en) * 1998-06-10 2000-03-23 Advanced Bypass Technologies, Inc. Aortic aneurysm treatment systems
US6250308B1 (en) 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6165183A (en) 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6418597B1 (en) 1998-07-15 2002-07-16 Avery Dennison Corporation Plastic fastener, fastener clip, fastener dispensing tool and method of fastening objects
US6461320B1 (en) * 1998-08-12 2002-10-08 Cardica, Inc. Method and system for attaching a graft to a blood vessel
US6206913B1 (en) * 1998-08-12 2001-03-27 Vascular Innovations, Inc. Method and system for attaching a graft to a blood vessel
US6143004A (en) 1998-08-18 2000-11-07 Atrion Medical Products, Inc. Suturing device
US6296622B1 (en) 1998-12-21 2001-10-02 Micrus Corporation Endoluminal device delivery system using axially recovering shape memory material
US6083237A (en) 1998-10-23 2000-07-04 Ethico Endo-Surgery, Inc. Biopsy instrument with tissue penetrating spiral
US6113612A (en) 1998-11-06 2000-09-05 St. Jude Medical Cardiovascular Group, Inc. Medical anastomosis apparatus
US6475222B1 (en) * 1998-11-06 2002-11-05 St. Jude Medical Atg, Inc. Minimally invasive revascularization apparatus and methods
US6152937A (en) 1998-11-06 2000-11-28 St. Jude Medical Cardiovascular Group, Inc. Medical graft connector and methods of making and installing same
US6221083B1 (en) 1998-11-16 2001-04-24 Paul W. Mayer Synchronized stapler/needle driver/forceps for motion in all planes
GB9827415D0 (en) 1998-12-11 1999-02-03 Wild Andrew M Surgical apparatus and method for occluding a body passageway
US6120524A (en) 1999-02-16 2000-09-19 Taheri; Syde A. Device for closing an arterial puncture and method
US8118822B2 (en) 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
US6406492B1 (en) 1999-04-08 2002-06-18 Sulzer Carbomedics Inc. Annuloplasty ring holder
US6248117B1 (en) 1999-04-16 2001-06-19 Vital Access Corp Anastomosis apparatus for use in intraluminally directed vascular anastomosis
US6623494B1 (en) 1999-04-16 2003-09-23 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Methods and systems for intraluminally directed vascular anastomosis
US6743244B2 (en) 1999-04-16 2004-06-01 Integrated Vascular Interventional Technologies, L.C. Soft anvil apparatus for cutting anastomosis fenestra
US6428550B1 (en) * 1999-05-18 2002-08-06 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
WO2000069364A2 (en) * 1999-05-18 2000-11-23 Vascular Innovations, Inc. Implantable medical device such as an anastomosis device
US6217611B1 (en) 1999-05-26 2001-04-17 Sulzer Carbomedics Inc. Modular heart valve prothesis
US6699256B1 (en) 1999-06-04 2004-03-02 St. Jude Medical Atg, Inc. Medical grafting apparatus and methods
US7192442B2 (en) 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6391038B2 (en) * 1999-07-28 2002-05-21 Cardica, Inc. Anastomosis system and method for controlling a tissue site
US6165185A (en) 1999-07-28 2000-12-26 Vasconnect, Inc. Method for interconnecting vessels in a patient
US6635214B2 (en) * 1999-09-10 2003-10-21 Ventrica, Inc. Manufacturing conduits for use in placing a target vessel in fluid communication with a source of blood
CA2381818C (en) 1999-09-13 2009-08-04 Rex Medical, L.P. Vascular closure
US6358258B1 (en) 1999-09-14 2002-03-19 Abbott Laboratories Device and method for performing end-to-side anastomosis
US6926730B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US6402764B1 (en) * 1999-11-15 2002-06-11 Cardica, Inc. Everter and threadthrough system for attaching graft vessel to anastomosis device
US6428555B1 (en) 2000-01-28 2002-08-06 J. Kenneth Koster, Jr. Anastomosis punch device and method
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US6551332B1 (en) 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
US6802847B1 (en) * 2000-04-29 2004-10-12 Ventrica, Inc. Devices and methods for forming magnetic anastomoses and ports in vessels
US6368348B1 (en) 2000-05-15 2002-04-09 Shlomo Gabbay Annuloplasty prosthesis for supporting an annulus of a heart valve
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6869444B2 (en) 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US6406493B1 (en) 2000-06-02 2002-06-18 Hosheng Tu Expandable annuloplasty ring and methods of use
US6702826B2 (en) 2000-06-23 2004-03-09 Viacor, Inc. Automated annular plication for mitral valve repair
US6409758B2 (en) 2000-07-27 2002-06-25 Edwards Lifesciences Corporation Heart valve holder for constricting the valve commissures and methods of use
WO2002017796A1 (en) 2000-09-01 2002-03-07 Advanced Vascular Technologies, Llc Vascular bypass grafting instrument and method
US6918917B1 (en) 2000-10-10 2005-07-19 Medtronic, Inc. Minimally invasive annuloplasty procedure and apparatus
US6776785B1 (en) 2000-10-12 2004-08-17 Cardica, Inc. Implantable superelastic anastomosis device
US6425900B1 (en) 2000-10-19 2002-07-30 Ethicon Endo-Surgery Method for attaching hernia mesh
US7070618B2 (en) 2000-10-25 2006-07-04 Viacor, Inc. Mitral shield
EP1210912A3 (en) * 2000-11-27 2003-12-17 Terumo Kabushiki Kaisha Instrument for extroverting blood vessel
US6537286B2 (en) 2001-01-19 2003-03-25 Sergio Acampora Device for fastening a cranial flap to the cranial vault
JP4097924B2 (en) 2001-02-05 2008-06-11 オリンパス株式会社 Biological tissue clip device
US20020173803A1 (en) 2001-05-01 2002-11-21 Stephen Ainsworth Self-closing surgical clip for tissue
US20060293701A1 (en) 2001-05-02 2006-12-28 Medtronic, Inc. Self-closing surgical clip for tissue
US6562053B2 (en) * 2001-05-21 2003-05-13 Ethicon, Inc. Curved mandrel for assisting vessel eversion
US6547799B2 (en) * 2001-06-26 2003-04-15 Ethicon, Inc. Vessel eversion instrument with pressurizable membrane
US6776782B2 (en) * 2001-06-26 2004-08-17 Ethicon, Inc. Vessel eversion instrument with wiping element
US6589255B2 (en) * 2001-06-28 2003-07-08 Ethicon, Inc. Vessel eversion instrument with filament elements
US6629988B2 (en) 2001-08-28 2003-10-07 Ethicon, Inc. Composite staple for completing an anastomosis
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6575985B2 (en) * 2001-09-10 2003-06-10 Ethicon, Inc. Vessel eversion instrument with conical holder
US6712829B2 (en) * 2001-09-10 2004-03-30 Ethicon, Inc. Vessel eversion instrument with conical, expandable mandrel
US6821286B1 (en) * 2002-01-23 2004-11-23 Cardica, Inc. System for preparing a graft vessel for anastomosis
US20030199974A1 (en) 2002-04-18 2003-10-23 Coalescent Surgical, Inc. Annuloplasty apparatus and methods
US7056330B2 (en) 2002-05-31 2006-06-06 Ethicon Endo-Surgery, Inc. Method for applying tissue fastener
US8066724B2 (en) 2002-09-12 2011-11-29 Medtronic, Inc. Anastomosis apparatus and methods
US8105345B2 (en) 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
US7399310B2 (en) 2002-12-16 2008-07-15 Edrich Vascular Devices, Inc. Endovascular stapler
US8377082B2 (en) 2003-01-14 2013-02-19 Medtronic, Inc. Methods and apparatus for making precise incisions in body vessels
US20040193259A1 (en) 2003-03-25 2004-09-30 Shlomo Gabbay Sizing apparatus for cardiac prostheses and method of using same
US20060271081A1 (en) 2003-03-30 2006-11-30 Fidel Realyvasquez Apparatus and methods for valve repair
US20050107871A1 (en) 2003-03-30 2005-05-19 Fidel Realyvasquez Apparatus and methods for valve repair
US20050075659A1 (en) 2003-03-30 2005-04-07 Fidel Realyvasquez Apparatus and methods for minimally invasive valve surgery
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
EP2433591B1 (en) 2004-05-14 2016-04-27 St. Jude Medical, Inc. Apparatus for holding an annuloplasty ring

Patent Citations (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US424518A (en) * 1890-04-01 Needle-threader
US1087186A (en) * 1909-03-22 1914-02-17 Socrates Scholfield Illustrative educational device.
US1167014A (en) * 1915-06-25 1916-01-04 William R O'brien Veterinary surgical instrument.
US2042403A (en) * 1935-02-27 1936-05-26 Hrivnak Andrew Needle threader
US3082426A (en) * 1960-06-17 1963-03-26 George Oliver Halsted Surgical stapling device
US3404707A (en) * 1966-06-29 1968-10-08 Henry Heckmann Thread pulling needle devices
US3570497A (en) * 1969-01-16 1971-03-16 Gerald M Lemole Suture apparatus and methods
US3638654A (en) * 1969-07-11 1972-02-01 Uche Akuba Suturing instrument
US4006747A (en) * 1975-04-23 1977-02-08 Ethicon, Inc. Surgical method
US4140125A (en) * 1976-02-25 1979-02-20 Med-Pro, Ltd. Surgical tape device
US4073179A (en) * 1976-06-01 1978-02-14 Codman & Shurtleff, Inc. Clip removing device
US4243048A (en) * 1976-09-21 1981-01-06 Jim Zegeer Biopsy device
US4192315A (en) * 1976-12-23 1980-03-11 Aesculap-Werke Aktiengesellschaft Vormals Jetter & Scheerer Clip for surgical purposes
US4102478A (en) * 1976-12-27 1978-07-25 Constantin Samoilov Needle threader
US4185636A (en) * 1977-12-29 1980-01-29 Albert Einstein College Of Medicine Of Yeshiva University Suture organizer, prosthetic device holder, and related surgical procedures
US4366819A (en) * 1980-11-17 1983-01-04 Kaster Robert L Anastomotic fitting
US4809695A (en) * 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4492229A (en) * 1982-09-03 1985-01-08 Grunwald Ronald P Suture guide holder
US4523592A (en) * 1983-04-25 1985-06-18 Rollin K. Daniel P.S.C. Anastomotic coupling means capable of end-to-end and end-to-side anastomosis
US4641652A (en) * 1984-04-12 1987-02-10 Richard Wolf Gmbh Applicator for tying sewing threads
US4576605A (en) * 1985-03-01 1986-03-18 Nauchno-Issledovatelsky Institut Khirurgii Imeni A.V. Vishnevskogo Cardiac valve prosthesis
US4637380A (en) * 1985-06-24 1987-01-20 Orejola Wilmo C Surgical wound closures
US4779616A (en) * 1986-02-04 1988-10-25 Johnson Lanny L Surgical suture-snagging method
US4730615A (en) * 1986-03-03 1988-03-15 Pfizer Hospital Products Group, Inc. Sternum closure device
US4896668A (en) * 1986-04-10 1990-01-30 Peters Plate set for osteal fixation, equipped with suture strands
US4719924A (en) * 1986-09-09 1988-01-19 C. R. Bard, Inc. Small diameter steerable guidewire with adjustable tip
US4732151A (en) * 1986-10-08 1988-03-22 Patent Research & Development Corp. Low trauma suturing
US4719917A (en) * 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US5100418A (en) * 1987-05-14 1992-03-31 Inbae Yoon Suture tie device system and applicator therefor
US5480405A (en) * 1987-05-14 1996-01-02 Yoon; Inbae Anchor applier instrument for use in suturing tissue
US4890615A (en) * 1987-11-05 1990-01-02 Concept, Inc. Arthroscopic suturing instrument
US4890615B1 (en) * 1987-11-05 1993-11-16 Linvatec Corporation Arthroscopic suturing instrument
US4901721A (en) * 1988-08-02 1990-02-20 Hakki Samir I Suturing device
US5196022A (en) * 1988-12-12 1993-03-23 Ethicon, Inc. Ligature system for use in endoscopic surgery, ligature and handling instrument for said system
US4899744A (en) * 1988-12-15 1990-02-13 Tatsuo Fujitsuka Apparatus for anastomosing digestive tract
US5178634A (en) * 1989-03-31 1993-01-12 Wilson Ramos Martinez Aortic valved tubes for human implants
US5192294A (en) * 1989-05-02 1993-03-09 Blake Joseph W Iii Disposable vascular punch
US5290289A (en) * 1990-05-22 1994-03-01 Sanders Albert E Nitinol spinal instrumentation and method for surgically treating scoliosis
US5088692A (en) * 1990-09-04 1992-02-18 Weiler Raywood C Heavy duty staple remover
US5100421A (en) * 1991-02-05 1992-03-31 Cyprus Endosurgical Tools, Inc. Christoudias curved needle suture assembly
US5868702A (en) * 1991-07-16 1999-02-09 Heartport, Inc. System for cardiac procedures
US5707362A (en) * 1992-04-15 1998-01-13 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5882340A (en) * 1992-04-15 1999-03-16 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5499990A (en) * 1992-05-23 1996-03-19 Forschungszentrum Karlsruhe Gmbh Suturing instrument
US5387227A (en) * 1992-09-10 1995-02-07 Grice; O. Drew Method for use of a laparo-suture needle
US5383904A (en) * 1992-10-13 1995-01-24 United States Surgical Corporation Stiffened surgical device
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5488958A (en) * 1992-11-09 1996-02-06 Vance Products Incorporated Surgical cutting instrument for coring tissue affixed thereto
US6190373B1 (en) * 1992-11-13 2001-02-20 Scimed Life Systems, Inc. Axially detachable embolic coil assembly
US6036699A (en) * 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US5855614A (en) * 1993-02-22 1999-01-05 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US5496334A (en) * 1993-03-31 1996-03-05 J. Stro/ bel & Sohne GmbH & Co. Suturing apparatus
US5282825A (en) * 1993-06-02 1994-02-01 Muck Kin C Surgical ligaturing and animal restraining device
US5500000A (en) * 1993-07-01 1996-03-19 United States Surgical Corporation Soft tissue repair system and method
US5725539A (en) * 1993-12-01 1998-03-10 Klinikum Der Albert-Ludwigs-Universitat Freiburg Surgical instrument used to clamp a vessel or the like
US5486187A (en) * 1994-01-04 1996-01-23 Schenck; Robert R. Anastomosis device and method
US5501692A (en) * 1994-01-28 1996-03-26 Riza; Erol D. Laparoscopic suture snare
US5486197A (en) * 1994-03-24 1996-01-23 Ethicon, Inc. Two-piece suture anchor with barbs
US5715987A (en) * 1994-04-05 1998-02-10 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
US6176413B1 (en) * 1994-06-17 2001-01-23 Heartport, Inc. Surgical anastomosis apparatus and method thereof
US5881943A (en) * 1994-06-17 1999-03-16 Heartport, Inc. Surgical anastomosis apparatus and method thereof
US5732872A (en) * 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US5709695A (en) * 1994-08-10 1998-01-20 Segmed, Inc. Apparatus for reducing the circumference of a vascular structure
US5720755A (en) * 1995-01-18 1998-02-24 Dakov; Pepi Tubular suturing device and methods of use
US6171321B1 (en) * 1995-02-24 2001-01-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5725542A (en) * 1995-03-09 1998-03-10 Yoon; Inbae Multifunctional spring clips and cartridges and applicators therefor
US6013084A (en) * 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6032849A (en) * 1995-08-28 2000-03-07 United States Surgical Surgical stapler
US5728135A (en) * 1996-02-09 1998-03-17 Ethicon, Inc. Stiffened suture for use in a suturing device
US5709693A (en) * 1996-02-20 1998-01-20 Cardiothoracic System, Inc. Stitcher
US6042607A (en) * 1996-02-23 2000-03-28 Cardiovascular Technologies Llc Means and method of replacing a heart valve in a minimally invasive manner
US5871528A (en) * 1996-06-28 1999-02-16 Medtronic, Inc. Temporary bipolar heart wire
US6024748A (en) * 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US5707380A (en) * 1996-07-23 1998-01-13 United States Surgical Corporation Anastomosis instrument and method
US6179848B1 (en) * 1996-07-24 2001-01-30 Jan Otto Solem Anastomotic fitting
US5868763A (en) * 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US6036710A (en) * 1996-10-04 2000-03-14 United States Surgical Apparatus for formation of a hole in a blood vessel
US6171320B1 (en) * 1996-12-25 2001-01-09 Niti Alloys Technologies Ltd. Surgical clip
US5879371A (en) * 1997-01-09 1999-03-09 Elective Vascular Interventions, Inc. Ferruled loop surgical fasteners, instruments, and methods for minimally invasive vascular and endoscopic surgery
US6022367A (en) * 1997-06-18 2000-02-08 United States Surgical Surgical apparatus for forming a hole in a blood vessel
US6346112B2 (en) * 1997-06-20 2002-02-12 Boston Scientific Corporation Hemostatic clips
US6193733B1 (en) * 1997-06-20 2001-02-27 Boston Scientific Corporation Hemostatic clips
US6193734B1 (en) * 1998-01-23 2001-02-27 Heartport, Inc. System for performing vascular anastomoses
US6036703A (en) * 1998-02-06 2000-03-14 Ethicon Endo-Surgery Inc. Method and apparatus for establishing anastomotic passageways
US6176864B1 (en) * 1998-03-09 2001-01-23 Corvascular, Inc. Anastomosis device and method
US6033419A (en) * 1998-05-15 2000-03-07 Sulzer Carbomedics Inc. Apparatus and method for cutting a heart valve annulus
US20060004389A1 (en) * 1998-06-03 2006-01-05 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US20070027461A1 (en) * 1998-06-03 2007-02-01 Barry Gardiner Tissue connector apparatus and methods
US6517558B2 (en) * 1999-01-15 2003-02-11 Ventrica, Inc. Methods and devices for forming vascular anastomoses
US6350269B1 (en) * 1999-03-01 2002-02-26 Apollo Camera, L.L.C. Ligation clip and clip applier
US6514265B2 (en) * 1999-03-01 2003-02-04 Coalescent Surgical, Inc. Tissue connector apparatus with cable release
US20020010490A1 (en) * 1999-03-01 2002-01-24 Laurent Schaller Tissue connector apparatus and methods
US6695859B1 (en) * 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6179849B1 (en) * 1999-06-10 2001-01-30 Vascular Innovations, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US6179840B1 (en) * 1999-07-23 2001-01-30 Ethicon, Inc. Graft fixation device and method
US6197037B1 (en) * 1999-07-29 2001-03-06 John Hunter Hair Surgical fastener for joining adjacent bone portions
US6682540B1 (en) * 1999-11-05 2004-01-27 Onux Medical, Inc. Apparatus and method for placing multiple sutures
US6524338B1 (en) * 2000-08-25 2003-02-25 Steven R. Gundry Method and apparatus for stapling an annuloplasty band in-situ
US20050004582A1 (en) * 2002-12-16 2005-01-06 Edoga John K. Endovascular stapler
US20050021054A1 (en) * 2003-07-25 2005-01-27 Coalescent Surgical, Inc. Sealing clip, delivery systems, and methods
US7182769B2 (en) * 2003-07-25 2007-02-27 Medtronic, Inc. Sealing clip, delivery systems, and methods
US20050043749A1 (en) * 2003-08-22 2005-02-24 Coalescent Surgical, Inc. Eversion apparatus and methods
US20070010835A1 (en) * 2003-08-22 2007-01-11 Tom Breton Eversion apparatus and methods

Also Published As

Publication number Publication date
US20050043749A1 (en) 2005-02-24
US8029519B2 (en) 2011-10-04
US20070010835A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US8029519B2 (en) Eversion apparatus and methods
US7763041B2 (en) Surgical clips and methods for tissue approximation
US6402764B1 (en) Everter and threadthrough system for attaching graft vessel to anastomosis device
US6171321B1 (en) Devices and methods for performing a vascular anastomosis
US8105345B2 (en) Anastomosis apparatus and methods
US7976556B2 (en) Anastomosis apparatus and methods
AU735199B2 (en) Coronary shunt and method of use
US6893449B2 (en) Device for cutting and anastomosing tissue
US7175637B2 (en) Sutureless closure and deployment system for connecting blood vessels
WO1996025886A9 (en) Devices and methods for performing a vascular anastomosis
US6596003B1 (en) Vascular anastomosis device
JP2004528120A (en) Medical implantation method and device
US20050267498A1 (en) Tissue everting device and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COALESCENT SURGICAL, INC.;REEL/FRAME:026680/0626

Effective date: 20040910

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION