US20080274278A1 - Method for Depositing in Particular Metal Oxides by Means of Discontinuous Precursor Injection - Google Patents

Method for Depositing in Particular Metal Oxides by Means of Discontinuous Precursor Injection Download PDF

Info

Publication number
US20080274278A1
US20080274278A1 US10/599,323 US59932305A US2008274278A1 US 20080274278 A1 US20080274278 A1 US 20080274278A1 US 59932305 A US59932305 A US 59932305A US 2008274278 A1 US2008274278 A1 US 2008274278A1
Authority
US
United States
Prior art keywords
starting material
process chamber
liquid
gas
chemically reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/599,323
Inventor
Peter Baumann
Marcus Schumacher
Johannes Lindner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron Inc
Original Assignee
Aixtron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron Inc filed Critical Aixtron Inc
Assigned to AIXTRON INC. reassignment AIXTRON INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAUMANN, PETER, LINDNER, JOHANNES, SCHUMACHER, MARCUS
Publication of US20080274278A1 publication Critical patent/US20080274278A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the invention relates to a method for depositing at least one layer on at least one substrate in a process chamber, the layer comprising at least two components, at least a first metallic component being vaporized into a carrier gas, in particular a heated carrier gas, by means of a discontinuous injection of a first starting material in the form of a liquid or a first starting material dissolved in a liquid, and a second component being supplied as a chemically reactive starting material, characterized in that the starting materials are introduced alternately into the process chamber.
  • MBE Molecular Beam Epitaxy
  • MOCVD Metal-Organic Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • MOCVD and ALD methods ensure good edge coverage when depositing on structured substrates.
  • MOCVD methods which are based on vaporization of liquid or solid precursors, usually use heated precursor containers (bubblers) for transforming the starting substances into the gas phase by means of a carrier gas.
  • precursor containers bubblers
  • Most precursors for oxidic materials (or corresponding dilute solutions) are usually relatively nonvolatile and chemically and thermally unstable, and change or decompose under these thermal conditions, which has the effect that the deposition is not reproducible. In particular, complete saturation of the gas phase, and consequently high growth rates, can only be achieved with difficulty by means of such arrangements.
  • ALD methods rely on a very small number of available precursors, which are often based on chlorine compounds.
  • the alternating introduction of gaseous H 2 O, for example, into the process chamber as an oxidant thereby produces HCl, which however is quite difficult to handle safely as a waste gas constituent.
  • ALD methods which rely on sources of solid substances (bubblers), usually have problems with inadequately achievable gas phase saturation, since bubbler systems cannot always generate sufficient starting substance on account of limited sublimation processes. In the case of systems with more than one substrate to be coated and relatively large reaction chamber volumes, this problem is particularly marked. This phenomenon results in a growth rate that is inadequate for production purposes, and possibly inhomogeneous coating of the substrates.
  • ALD relies in principle on alternating, self-limiting chemical reactions for the successive deposition of monolayers. This is carried out by complicated switching of valves. Pumping and purging cycles are introduced between the supplying of the individual reagents. This leads to low throughputs and is a disadvantage, in particular in the case of single-wafer ALD systems.
  • ALD methods are unable in principle to produce layers that allow mixtures of a number of metal oxides of different types of material to change in situ during the growth process with a gradient-like variation.
  • ALD also exhibits a non-linear growth in dependence on the layer thickness, which specifically makes it much more difficult to maintain control over the processes in the case of very small layer thicknesses.
  • high-k materials inter alia are sought as alternatives to SiO 2 as dielectric.
  • aluminum oxide, hafnium oxide or praseodymium oxide, but specifically also multi-component oxides are of especially great interest, since they have outstanding properties with regard to the dielectric constant and leakage currents.
  • Recent findings even demonstrate improved material properties by laminating or mixing these metal oxides with one another or, to improve the thermal stability, also by adding silicon.
  • Atomic layer thickness controllability, high growth rate as a result of freely adjustable, adequate gas phase saturation and the possibility of normal deposition on highly structured topographies are to be achieved while at the same time avoiding inadequate gas phase saturation, complicated valve switching operations for growing or purging cycles, limited possibilities in the deposition of multi-component material systems and at the same time little choice of source materials.
  • DE 103 42 890 describes an apparatus and a method with which the pulse width or the pauses between the pulses are varied to vary the mass flow of the precursors.
  • An object of the invention is to improve the generic method further to the extent that the weaknesses described above are avoided to the greatest extent, and an atomic layer deposition is nevertheless possible.
  • Claim 1 provides first and foremost that the starting materials are introduced alternately into the process chamber.
  • the invention consequently relates to a method in which a starting substance in the form of a liquid or in the form of a solid dissolved in a liquid is introduced into a heated volume by means of discontinuous injection. This can take place by atomizing with a suitable, valve-controlled nozzle.
  • the liquid is introduced into the heated volume of a carrier gas, the energy of vaporization is extracted from the carrier gas.
  • the mass flow is in this case set per pulse in such a way that the carrier gas in the vaporization chamber is saturated.
  • at least one vaporized metal starting substance and at least one reactive gas are used in alternation here.
  • the process chamber or the vaporization chamber may be purged with a carrier gas.
  • the process chamber or the vaporization chamber is evacuated by pumping between the two gas pulses. If the two starting materials are vaporized in a common vaporization chamber, it proves to be advantageous also to purge or evacuate this chamber between the pulses.
  • the vaporization of the individual starting materials is performed in separate vaporization chambers. Here it is not necessary to purge or evacuate the vaporization chamber between the pulses, but the process chamber should in this case also be purged or evacuated between the pulses. Here, too, a pause can be left between switching over from one starting substance to the other.
  • an inert carrier gas may be fed in.
  • the apparatus in particular the process chamber, is evacuated within the pauses.
  • the purging of the process chamber or the evacuation of the process chamber takes place with the substrate holder heated.
  • One or more substrates that are coated when the method is carried out, lie on the substrate holder.
  • the mass flow may in this case be set such that monolayer on monolayer is deposited on the substrate in a pulsed manner.
  • the molecules attached on the surface have time to arrange themselves.
  • the direct injection of liquid or dissolved starting substances into one or more heated volumes achieves complete saturation of the gas phase, while at the same time making it possible to dispense with complicated valve switching operations to accomplish the growing or purging cycles.
  • the claimed method and the claimed apparatus consequently not only make the contactless vaporizing of metal or metal-oxide source materials possible.
  • a high gas phase saturation in the process chamber is also achieved. This ensures the efficient, reproducible and particle-free deposition of metal oxides, metal nitrides or metals, with a high throughput.
  • the complete gas phase saturation also makes simultaneous deposition on a number of substrates possible. These substrates may be stacked one above the other or lie side by side. The substrates may in this case be horizontally oriented or vertically oriented.
  • the component of one layer is forming on the substrate surface after an injection pulse
  • the starting material of the other component can be supplied.
  • further metal oxides can be admixed. This also takes place by means of liquid injection.
  • the injection rate or the pulse-pause ratio can in this case be freely selected to the greatest extent.
  • the admission pressure in the supply line to the injection nozzle or the mass flow per unit of time can also be varied. It is regarded as advantageous that simple or mixed or doped metal oxides or metal nitrides can be deposited by the method.
  • Variation of the injection admission pressure or the induction frequency or the pulse/pause ratio allows layers of different qualities to be deposited directly one on top of the another, without longer pauses being required between the depositing of the successive layers.
  • the method according to the invention can also be used for depositing gradient structures. This takes place by continuous variation of the masses and parameters during the depositing of a layer. As a result, a layer composition that changes continuously in the vertical direction is formed. With this method, continuous transitions between two deposited layers can consequently also be achieved. This may take place both on planar surfaces and on highly structured surfaces, particularly those having three-dimensional structures such as trenches.
  • the mass flows of the starting materials in the supply lines to the injector nozzles are determined by means of mass flow measurement.
  • the following metals come into consideration in particular as metallic components: Al, Si, Pr, Ge, Ti, Zr, Hf, Y, La, Ce, Nb, Ta, Mo, Bi, Nd, Ba, Gd, Sr.
  • the method not only allows layers comprising a number of components to be deposited, it is also possible to deposit layers which comprise one component.
  • metallic electrodes which consist of Pt or Ro.
  • the metallic component is introduced as a metalorganic starting material.
  • the chemically reactive starting material may in this case be oxygen or water.
  • the organic part of the metalorganic compound is removed with it.
  • the apparatus with which the claimed method is performed corresponds to that described by DE 103 42 890.
  • FIG. 1 shows the construction of an apparatus according to the invention in a schematic representation
  • FIG. 2 shows an extract of the variation of the gas flows of the precursor ( 3 a ), reactive gas ( 3 b ) and carrier gas ( 3 c ), in dependence on the process time, and
  • FIG. 3 shows a representation according to FIG. 2 of a second exemplary embodiment.
  • FIG. 1 shows the main elements of an apparatus for the discontinuous injection of liquid or dissolved metal starting substances by means of a multi-channel injection unit 6 in a roughly schematic form.
  • the multi-channel injection unit has a number of channels 5 .
  • the exemplary embodiment shows a total of three vaporization chambers 4 , each with an injection unit 6 .
  • This apparatus is intended to be used specifically for the depositing of single-component or multi-component oxides (hafnium oxide, aluminum oxide, strontium or praseodymium oxide, etc.), laminated and mixed oxidic materials and single-component or multi-component electrically conducting materials such as metal, metal oxides and electrically conducting semiconductor compounds. Then the method described above and below in detail allows the production of complex structures from passivation layers, dielectric and electrically conducting electrode materials on highly structured substrates by in-situ mass flow control of the individual sources with atomic layer thickness control, without interrupting the processing frequency.
  • single-component or multi-component oxides hafnium oxide, aluminum oxide, strontium or praseodymium oxide, etc.
  • laminated and mixed oxidic materials such as metal, metal oxides and electrically conducting semiconductor compounds.
  • FIG. 1 shows a reactor which has a reactor chamber 14 .
  • peripheral devices that are not represented, for example a vacuum pump, for evacuating the reactor chamber 14 and the units arranged upstream of the reactor chamber.
  • Inside the reactor chamber there is a heater 13 .
  • the substrate which is indicated by the reference numeral 1 .
  • the substrate 1 rests on a substrate holder that is not represented in the drawing. Said substrate holder may be rotationally driven.
  • the process chamber 2 into which the starting materials are introduced.
  • a gas inlet member 15 Serving for this purpose is a gas inlet member 15 , which is disposed above the process chamber 2 and formed in the manner of a shower head.
  • the gas inlet member 15 provides the upward delimitation of the process chamber 2 .
  • the substrate or the substrate holder (not represented) provides the downward delimitation of the process chamber 2 .
  • the reactive gases or liquids dissolved in gases and carrier gases which flow into the process chamber 2 from above flow out of the process chamber 2 via the peripheral devices. They are pumped out of the reactor chamber 14 .
  • a supply line 12 opens out into the gas inlet member. Vaporized starting materials 3 can be introduced together with a carrier gas 7 into the gas inlet member 15 through the supply line 12 .
  • the pipelines 12 may be heated to prevent condensation.
  • the supply lines 12 emerge from the aforementioned vaporization chambers 4 .
  • Each of the vaporization chambers 4 has at least one injector nozzle 5 .
  • injector nozzle By means of the injector nozzle, liquids are sprayed into the heated gas located inside the vaporization chamber 4 .
  • the aerosol or the mist thereby produced absorbs thermal energy from the inert gas located in the vaporization chamber 4 to convert itself into the gas form.
  • the inert gas is introduced into the vaporization chamber 4 via a mass flow regulator 8 .
  • the inert gas 7 may be nitrogen, hydrogen or a noble gas.
  • Each injection nozzle 5 has an individual supply line, through which an individual liquid or a starting material dissolved in a liquid or a chemically reactive liquid flows. The mass flows of these liquids are measured by mass flow meters 9 . Disposed upstream of the mass flow meters 9 are the liquid sources, in which the liquids 3 are located. Upstream of the liquid reservoirs are pressure controllers 10 . The pressure controllers 10 are subjected to an inert gas 11 . By means of the injector nozzles 5 , the liquid components are sprayed into the vaporization chamber in a pulsed manner. The pulse widths may be varied between several seconds and a few milliseconds. The pauses between the pulses may also be varied in the same range. Accordingly, pulse frequencies of between 0.1 and 100 Hz are possible.
  • the apparatus serves for coating a highly structured substrate. It is also possible for a number of substrates to be disposed in the process chamber. It is then formed differently than is shown in FIG. 1 . In particular, a number of substrates may be disposed parallel to one another as an assembly. The substrates may extend horizontally or vertically.
  • FIG. 2 shows the typical variation of the pulses with which the precursors 3 a , that is to say the metallic components and the reactive starting materials 3 b , that is to say a chemically reactive gas or a chemically reactive liquid, are introduced into the respective vaporization chamber 4 . Also shown in FIG. 2 is the variation over time of the flow of the carrier gas 3 c , which is an inert gas.
  • the inert carrier gas 3 c is introduced into the vaporization chamber 4 .
  • the carrier gas stream 3 c may in this case be so great that a complete gas change takes place during the pause, and particularly during the pulse, inside the vaporization chamber 4 .
  • the pulse pause is followed by the spraying-in of the chemically reactive liquid 3 b .
  • a chemically reactive liquid 3 b it is also possible, however, for a chemically reactive gas to be introduced.
  • the pulse length within which the chemically reactive substance is introduced into the vaporization chamber is shorter than the pulse width of the metallic substance.
  • the precursor 3 a or the reactive substance 3 b may be introduced into one and the same vaporization chamber 4 . However, it is also provided that the two substances 3 a , 3 b are introduced into different vaporization chambers 4 .
  • the pulses in the range of seconds are frequency-modulated from a multiplicity of pulses in the subsecond range.
  • the carrier gas inside the vaporization chamber 4 is completely saturated during the pulsed introduction.
  • the gas change takes place in times of less than one second.
  • the pulse widths and pulse shapes with which the precursor 3 a and the reactive substances 3 b are introduced into the vaporization chamber correspond to those shown in FIG. 2 .
  • the carrier gas supply is switched off after introduction of a precursor pulse 3 a .
  • the vaporization chamber is evacuated. Evacuation may take place via the process chamber.
  • the carrier gas 3 c is again added.
  • the vaporization chamber 4 is preferably flooded with carrier gas before the introduction of the reactive substance 3 b , in order that the heat required for the vaporization can be extracted from said carrier gas.
  • a gaseous reactive substance 3 b it may be introduced into the evacuated vaporization chamber 4 .
  • the vaporization chamber 4 is evacuated via the process chamber once the adding of the reactive substance 3 b is completed.
  • a reactive gas is introduced directly into the gas inlet member 15 via a supply line 16 . It is also provided that an inert gas 18 is introduced directly into the gas inlet member 15 .
  • the introduction of the chemically reactive gas 16 also preferably takes place in a pulsed manner.
  • the chemically reactive starting materials may be oxygen or an oxygen compound such as N 2 O, H 2 O or ozone. Nitrogen may also be used, however, as the reactive starting material. This is preferably brought into the vaporization chamber as N 2 O or NH 3 .
  • the liquid starting materials of the metallic type may contain the metals Al, Si, Pr, Ge, Ti, Zr, Hf, Y, La, Ce, Nb, Ta, Mo, Bi, Nd, Ba, W or Gd.

Abstract

The invention relates to a method for the deposition of at least one layer on at least one substrate in a process chamber, whereby the layer comprises at least one component. The at least one first metal component is vaporised in a particularly conditioned carrier gas by means of a non-continuous injection of a starting material in the form of a liquid or dissolve in a liquid and at least one second component as chemically-reactive starting material. The starting materials are alternately introduced into the process chamber and the second starting material is a chemically-reactive gas or a chemically-reactive liquid.

Description

  • The invention relates to a method for depositing at least one layer on at least one substrate in a process chamber, the layer comprising at least two components, at least a first metallic component being vaporized into a carrier gas, in particular a heated carrier gas, by means of a discontinuous injection of a first starting material in the form of a liquid or a first starting material dissolved in a liquid, and a second component being supplied as a chemically reactive starting material, characterized in that the starting materials are introduced alternately into the process chamber.
  • For depositing metal-oxidic layers such as hafnium oxide, or aluminum oxide, or else praseodymium oxide, methods such as Molecular Beam Epitaxy (MBE), Metal-Organic Chemical Vapor Deposition (MOCVD) and Atomic Layer Deposition (ALD) are presented in the literature.
  • MBE does not achieve conformal edge coverage when thin layers are deposited, while MOCVD and ALD methods ensure good edge coverage when depositing on structured substrates. Conventional MOCVD methods, which are based on vaporization of liquid or solid precursors, usually use heated precursor containers (bubblers) for transforming the starting substances into the gas phase by means of a carrier gas. Most precursors for oxidic materials (or corresponding dilute solutions) are usually relatively nonvolatile and chemically and thermally unstable, and change or decompose under these thermal conditions, which has the effect that the deposition is not reproducible. In particular, complete saturation of the gas phase, and consequently high growth rates, can only be achieved with difficulty by means of such arrangements. Therefore, various liquid precursor supply systems, based on abrupt vaporization of small amounts of precursor by direct contact with heated surfaces, have been developed for MOCVD. This process entails disadvantages, such as vaporization characteristics that change over time as a result of deposits on the heated surfaces and particle formation. It is reported that periodic injection of liquid precursors into a heated volume with subsequent contactless vaporization can be used to avoid these disadvantages, though not described for a number of sources (U.S. Pat. No. 5,945,162). In the case of conventional MOCVD, the poor atomic precision causes inadequacies with regard to layer thickness control, for example when depositing nanolaminates. By contrast with ALD methods, inadequate edge coverage is also often reported when conventional MOCVD is used for depositing on highly structured substrates.
  • However, ALD methods rely on a very small number of available precursors, which are often based on chlorine compounds. The alternating introduction of gaseous H2O, for example, into the process chamber as an oxidant thereby produces HCl, which however is quite difficult to handle safely as a waste gas constituent.
  • Specifically, ALD methods, which rely on sources of solid substances (bubblers), usually have problems with inadequately achievable gas phase saturation, since bubbler systems cannot always generate sufficient starting substance on account of limited sublimation processes. In the case of systems with more than one substrate to be coated and relatively large reaction chamber volumes, this problem is particularly marked. This phenomenon results in a growth rate that is inadequate for production purposes, and possibly inhomogeneous coating of the substrates.
  • ALD relies in principle on alternating, self-limiting chemical reactions for the successive deposition of monolayers. This is carried out by complicated switching of valves. Pumping and purging cycles are introduced between the supplying of the individual reagents. This leads to low throughputs and is a disadvantage, in particular in the case of single-wafer ALD systems.
  • Even the production of multi-component oxides is made more difficult, or even entirely impossible, when ALD methods are used, since the starting substances are not already mixed in the gas phase as they are in the case of standard MOCVD methods. In particular, therefore, ALD methods are unable in principle to produce layers that allow mixtures of a number of metal oxides of different types of material to change in situ during the growth process with a gradient-like variation. Furthermore, ALD also exhibits a non-linear growth in dependence on the layer thickness, which specifically makes it much more difficult to maintain control over the processes in the case of very small layer thicknesses.
  • In order to ensure the further development of electronic components, for example for CMOS or DRAM applications, high-k materials inter alia are sought as alternatives to SiO2 as dielectric. As candidates for this, aluminum oxide, hafnium oxide or praseodymium oxide, but specifically also multi-component oxides, are of especially great interest, since they have outstanding properties with regard to the dielectric constant and leakage currents. Recent findings even demonstrate improved material properties by laminating or mixing these metal oxides with one another or, to improve the thermal stability, also by adding silicon.
  • In general, pure materials such as pure HfO2, Al2O3 or else Pr2O3 do not appear to satisfy the requirements with regard to the dielectric constant, the leakage current and the thermal stability simultaneously. A mixture of such metal oxides or similar metal oxides or a doping seems to be the solution here. According to the current state of the art, standard ALD or MBE methods are not suitable production solutions for the described layer deposition of multi-component materials owing to very low growth rates. There is therefore a need for a method which ensures on an industrial scale the low-cost, efficient deposition of highly pure, multi-component metal oxides on the basis for example of hafnium oxide, or aluminum oxide, with a good reproducibility, high uniformity and good edge coverage even on highly structured substrates.
  • In this respect, it is intended to develop a method which in principle combines the advantages of the classic MOCVD and ALD methods, while obviating the respective disadvantages. Atomic layer thickness controllability, high growth rate as a result of freely adjustable, adequate gas phase saturation and the possibility of normal deposition on highly structured topographies are to be achieved while at the same time avoiding inadequate gas phase saturation, complicated valve switching operations for growing or purging cycles, limited possibilities in the deposition of multi-component material systems and at the same time little choice of source materials.
  • DE 103 42 890 describes an apparatus and a method with which the pulse width or the pauses between the pulses are varied to vary the mass flow of the precursors.
  • DE 101 14 956 and DE 100 57 491 A1 describe the use of various starting materials for depositing layers by the method mentioned at the beginning.
  • An object of the invention is to improve the generic method further to the extent that the weaknesses described above are avoided to the greatest extent, and an atomic layer deposition is nevertheless possible.
  • The object is achieved by the invention specified in the claims, each of the claims describing an independent solution.
  • Claim 1 provides first and foremost that the starting materials are introduced alternately into the process chamber. The invention consequently relates to a method in which a starting substance in the form of a liquid or in the form of a solid dissolved in a liquid is introduced into a heated volume by means of discontinuous injection. This can take place by atomizing with a suitable, valve-controlled nozzle. When the liquid is introduced into the heated volume of a carrier gas, the energy of vaporization is extracted from the carrier gas. The mass flow is in this case set per pulse in such a way that the carrier gas in the vaporization chamber is saturated. Preferably, at least one vaporized metal starting substance and at least one reactive gas are used in alternation here. Between the two gas pulses, the process chamber or the vaporization chamber may be purged with a carrier gas. However, it is also provided that the process chamber or the vaporization chamber is evacuated by pumping between the two gas pulses. If the two starting materials are vaporized in a common vaporization chamber, it proves to be advantageous also to purge or evacuate this chamber between the pulses. In addition, it may be provided that the vaporization of the individual starting materials is performed in separate vaporization chambers. Here it is not necessary to purge or evacuate the vaporization chamber between the pulses, but the process chamber should in this case also be purged or evacuated between the pulses. Here, too, a pause can be left between switching over from one starting substance to the other. During the pause, an inert carrier gas may be fed in. However, it is also provided in this case that the apparatus, in particular the process chamber, is evacuated within the pauses. The purging of the process chamber or the evacuation of the process chamber takes place with the substrate holder heated. One or more substrates that are coated when the method is carried out, lie on the substrate holder. The mass flow may in this case be set such that monolayer on monolayer is deposited on the substrate in a pulsed manner. In the pauses between the individual growth steps, during which a monolayer is respectively deposited, the molecules attached on the surface have time to arrange themselves. The direct injection of liquid or dissolved starting substances into one or more heated volumes achieves complete saturation of the gas phase, while at the same time making it possible to dispense with complicated valve switching operations to accomplish the growing or purging cycles. The claimed method and the claimed apparatus consequently not only make the contactless vaporizing of metal or metal-oxide source materials possible. A high gas phase saturation in the process chamber is also achieved. This ensures the efficient, reproducible and particle-free deposition of metal oxides, metal nitrides or metals, with a high throughput. The complete gas phase saturation also makes simultaneous deposition on a number of substrates possible. These substrates may be stacked one above the other or lie side by side. The substrates may in this case be horizontally oriented or vertically oriented. Local depletions, and accompanying inhomogeneous layer growth, are avoided. While the component of one layer is forming on the substrate surface after an injection pulse, the starting material of the other component can be supplied. For example, further metal oxides can be admixed. This also takes place by means of liquid injection. The injection rate or the pulse-pause ratio can in this case be freely selected to the greatest extent. To influence the mass flow, the admission pressure in the supply line to the injection nozzle or the mass flow per unit of time can also be varied. It is regarded as advantageous that simple or mixed or doped metal oxides or metal nitrides can be deposited by the method. Variation of the injection admission pressure or the induction frequency or the pulse/pause ratio allows layers of different qualities to be deposited directly one on top of the another, without longer pauses being required between the depositing of the successive layers. The method according to the invention can also be used for depositing gradient structures. This takes place by continuous variation of the masses and parameters during the depositing of a layer. As a result, a layer composition that changes continuously in the vertical direction is formed. With this method, continuous transitions between two deposited layers can consequently also be achieved. This may take place both on planar surfaces and on highly structured surfaces, particularly those having three-dimensional structures such as trenches. The mass flows of the starting materials in the supply lines to the injector nozzles are determined by means of mass flow measurement. The following metals come into consideration in particular as metallic components: Al, Si, Pr, Ge, Ti, Zr, Hf, Y, La, Ce, Nb, Ta, Mo, Bi, Nd, Ba, Gd, Sr. The method not only allows layers comprising a number of components to be deposited, it is also possible to deposit layers which comprise one component. For example, it is possible to deposit metallic electrodes which consist of Pt or Ro. The metallic component is introduced as a metalorganic starting material. The chemically reactive starting material may in this case be oxygen or water. The organic part of the metalorganic compound is removed with it. The apparatus with which the claimed method is performed corresponds to that described by DE 103 42 890.
  • Exemplary embodiments of the invention are explained below with reference to accompanying drawings, in which:
  • FIG. 1 shows the construction of an apparatus according to the invention in a schematic representation,
  • FIG. 2 shows an extract of the variation of the gas flows of the precursor (3 a), reactive gas (3 b) and carrier gas (3 c), in dependence on the process time, and
  • FIG. 3 shows a representation according to FIG. 2 of a second exemplary embodiment.
  • FIG. 1 shows the main elements of an apparatus for the discontinuous injection of liquid or dissolved metal starting substances by means of a multi-channel injection unit 6 in a roughly schematic form. In the exemplary embodiment, the multi-channel injection unit has a number of channels 5. However, it is also provided that in each case only a single channel 5 opens out into a vaporization chamber. The exemplary embodiment shows a total of three vaporization chambers 4, each with an injection unit 6. This apparatus is intended to be used specifically for the depositing of single-component or multi-component oxides (hafnium oxide, aluminum oxide, strontium or praseodymium oxide, etc.), laminated and mixed oxidic materials and single-component or multi-component electrically conducting materials such as metal, metal oxides and electrically conducting semiconductor compounds. Then the method described above and below in detail allows the production of complex structures from passivation layers, dielectric and electrically conducting electrode materials on highly structured substrates by in-situ mass flow control of the individual sources with atomic layer thickness control, without interrupting the processing frequency.
  • FIG. 1 shows a reactor which has a reactor chamber 14. Connected to the reactor chamber 14 are peripheral devices that are not represented, for example a vacuum pump, for evacuating the reactor chamber 14 and the units arranged upstream of the reactor chamber. Inside the reactor chamber there is a heater 13. Located above the heater 13 is the substrate, which is indicated by the reference numeral 1. The substrate 1 rests on a substrate holder that is not represented in the drawing. Said substrate holder may be rotationally driven. Above the substrate is the process chamber 2, into which the starting materials are introduced. Serving for this purpose is a gas inlet member 15, which is disposed above the process chamber 2 and formed in the manner of a shower head. The gas inlet member 15 provides the upward delimitation of the process chamber 2. The substrate or the substrate holder (not represented) provides the downward delimitation of the process chamber 2. The reactive gases or liquids dissolved in gases and carrier gases which flow into the process chamber 2 from above flow out of the process chamber 2 via the peripheral devices. They are pumped out of the reactor chamber 14.
  • A supply line 12 opens out into the gas inlet member. Vaporized starting materials 3 can be introduced together with a carrier gas 7 into the gas inlet member 15 through the supply line 12.
  • The pipelines 12 may be heated to prevent condensation. The supply lines 12 emerge from the aforementioned vaporization chambers 4. Each of the vaporization chambers 4 has at least one injector nozzle 5. By means of the injector nozzle, liquids are sprayed into the heated gas located inside the vaporization chamber 4. The aerosol or the mist thereby produced absorbs thermal energy from the inert gas located in the vaporization chamber 4 to convert itself into the gas form.
  • The inert gas is introduced into the vaporization chamber 4 via a mass flow regulator 8. The inert gas 7 may be nitrogen, hydrogen or a noble gas.
  • Each injection nozzle 5 has an individual supply line, through which an individual liquid or a starting material dissolved in a liquid or a chemically reactive liquid flows. The mass flows of these liquids are measured by mass flow meters 9. Disposed upstream of the mass flow meters 9 are the liquid sources, in which the liquids 3 are located. Upstream of the liquid reservoirs are pressure controllers 10. The pressure controllers 10 are subjected to an inert gas 11. By means of the injector nozzles 5, the liquid components are sprayed into the vaporization chamber in a pulsed manner. The pulse widths may be varied between several seconds and a few milliseconds. The pauses between the pulses may also be varied in the same range. Accordingly, pulse frequencies of between 0.1 and 100 Hz are possible.
  • The apparatus serves for coating a highly structured substrate. It is also possible for a number of substrates to be disposed in the process chamber. It is then formed differently than is shown in FIG. 1. In particular, a number of substrates may be disposed parallel to one another as an assembly. The substrates may extend horizontally or vertically.
  • FIG. 2 shows the typical variation of the pulses with which the precursors 3 a, that is to say the metallic components and the reactive starting materials 3 b, that is to say a chemically reactive gas or a chemically reactive liquid, are introduced into the respective vaporization chamber 4. Also shown in FIG. 2 is the variation over time of the flow of the carrier gas 3 c, which is an inert gas.
  • It can be gathered that, before the first pulse, with which the metallic starting material 3 a is brought into the vaporization chamber 4, the inert carrier gas 3 c is introduced into the vaporization chamber 4. After completion of the pulse with which the metallic starting material 3 a is introduced into the vaporization chamber 4, there is at first a pause. The carrier gas stream 3 c may in this case be so great that a complete gas change takes place during the pause, and particularly during the pulse, inside the vaporization chamber 4.
  • The pulse pause is followed by the spraying-in of the chemically reactive liquid 3 b. Instead of a chemically reactive liquid 3 b, it is also possible, however, for a chemically reactive gas to be introduced. In the exemplary embodiment, the pulse length within which the chemically reactive substance is introduced into the vaporization chamber is shorter than the pulse width of the metallic substance. After completion of the pulse, there is once again a pulse pause, in which only carrier gas 3 c flows into the vaporization chamber 4. Here, too, a complete gas change takes place inside the vaporization chamber 4 during the pulse or the pulse pause.
  • The precursor 3 a or the reactive substance 3 b may be introduced into one and the same vaporization chamber 4. However, it is also provided that the two substances 3 a, 3 b are introduced into different vaporization chambers 4.
  • In a development of the invention, it is provided that the pulses in the range of seconds are frequency-modulated from a multiplicity of pulses in the subsecond range. Here, too, it is provided that the carrier gas inside the vaporization chamber 4 is completely saturated during the pulsed introduction. Also in the case of this variant, the gas change takes place in times of less than one second.
  • In the case of the exemplary embodiment represented in FIG. 3, the pulse widths and pulse shapes with which the precursor 3 a and the reactive substances 3 b are introduced into the vaporization chamber correspond to those shown in FIG. 2. Unlike in the case of the exemplary embodiment of FIG. 2, however, the carrier gas supply is switched off after introduction of a precursor pulse 3 a. In the pulse pause which then follows, the vaporization chamber is evacuated. Evacuation may take place via the process chamber. With the beginning of the pulse of the reactive substance 3 b, the carrier gas 3 c is again added. However, the vaporization chamber 4 is preferably flooded with carrier gas before the introduction of the reactive substance 3 b, in order that the heat required for the vaporization can be extracted from said carrier gas. If, instead of a liquid reactive substance 3 b, a gaseous reactive substance 3 b is used, it may be introduced into the evacuated vaporization chamber 4. Here, too, it is provided that the vaporization chamber 4 is evacuated via the process chamber once the adding of the reactive substance 3 b is completed.
  • In a further variant of the method, it is provided that a reactive gas is introduced directly into the gas inlet member 15 via a supply line 16. It is also provided that an inert gas 18 is introduced directly into the gas inlet member 15. The introduction of the chemically reactive gas 16 also preferably takes place in a pulsed manner.
  • The chemically reactive starting materials may be oxygen or an oxygen compound such as N2O, H2O or ozone. Nitrogen may also be used, however, as the reactive starting material. This is preferably brought into the vaporization chamber as N2O or NH3.
  • The liquid starting materials of the metallic type may contain the metals Al, Si, Pr, Ge, Ti, Zr, Hf, Y, La, Ce, Nb, Ta, Mo, Bi, Nd, Ba, W or Gd.
  • All disclosed features are (in themselves) pertinent to the invention. The disclosure content of the associated/accompanying priority documents (copy of the prior application) is also hereby incorporated in full in the disclosure of the application, including for the purpose of incorporating features of these documents in claims of the present application.

Claims (21)

1. Method for depositing at least one layer on at least one substrate in a process chamber, the layer comprising at least two components, at least a first metallic component being vaporized into a carrier gas, in particular a heated carrier gas, by means of a discontinuous injection of a first starting material in the form of a liquid or a first starting material dissolved in a liquid, and at least a second component being supplied as a chemically reactive starting material, characterized in that the starting materials are introduced alternately into the process chamber.
2. Method according to claim 1 characterized in that the second starting material is a chemically reactive gas or a chemically reactive liquid.
3. Method according to claim 2 characterized in that the chemically reactive liquid is vaporized.
4. Method according to claim 1 characterized in that the at least two starting materials (3) are injected alternately into a vaporization chamber (4).
5. Method according to claim 1 characterized by each starting material (3) being individually associated with a vaporization chamber (4).
6. Method according to claim 5 characterized in that the process chamber (2) and optionally also the vaporization chamber (4) is purged with an inert gas (7) or evacuated after each injection.
7. Method according to claim 4 characterized in that the carrier gas (7) in the vaporization chamber (4) is saturated with the starting material as a result of the injection of the starting material.
8. Method according to claim 4 characterized in that the mass of gas that is brought into the vaporization chamber (4) with each injection pulse is determined by means of the gas admission pressure, the pulse length, the pulse pause or the mass flow.
9. Method according to claim 1 characterized in that at least one inert carrier gas (16) is introduced directly into the process chamber (2).
10. Method according to claim 1 characterized in that the chemically reactive starting material in gaseous form is introduced into the process chamber directly as a gas (18).
11. Method according to claim 1 characterized in that the chemically reactive starting material is an oxygen compound or a nitrogen compound.
12. Method according to claim 1 characterized in that the chemically reactive starting material is O2, O3, N2O, H2O or NH3.
13. Method according to claim 1 characterized in that the process chamber is actively heated and in that the pressure in the process chamber is below or equal to 100 mbar, 50 mbar, 20 mbar or 10 mbar.
14. Method according to claim 1 characterized in that the liquid starting materials or the solid materials or liquids dissolved in a liquid contain one or more of the following metals: Al, Si, Pr, Ge, Ti, Zr, Hf, Y, La, Ce, Nb, Ta, Mo, Bi, Nd, Ba, W or Gd.
15. Method according to claim 1 characterized in that the layers are deposited conformally on highly structured structures, particularly three-dimensionally structured structures.
16. Method according to claim 1 characterized in that the deposited layers are insulating, passivating or electrically conducting.
17. Method according to claim 1 characterized in that the layers consist of metal oxides, metal nitrides or metals.
18. Method according to claim 1 characterized in that the injection occurs by injector nozzles, which can be closed by valves and set in such a way that nanolaminates, hyperstructures, nucleation layers, mixed oxides and gradient layers are produced.
19. Method according to claim 1 characterized in that a number of parallel and/or highly structured substrates are disposed side by side on at least one substrate holder, in particular a rotationally driven substrate holder.
20. Method according to claim 1 characterized in that a number of planar and/or highly structured substrates are disposed in the process chamber vertically oriented one above the other and/or horizontally oriented side by side and/or oriented at angles between vertical and horizontal.
21. Apparatus for depositing at least one layer on at least one substrate in a process chamber, the layer comprising at least two components, at least a first metallic component being vaporized into a carrier gas, in particular a heated carrier gas, by means of a discontinuous injection of a first starting material in the form of a liquid or a first starting material dissolved in a liquid, and at least a second component being supplied as a chemically reactive starting material, characterized in that the starting materials are introduced alternately into the process chamber comprising a process chamber (2), having a gas inlet member (15), with which one or more vaporization chambers (4) are associated upstream, which vaporization chambers (4) each have at least one injector unit (5) for discontinuously supplying a liquid (3).
US10/599,323 2004-03-27 2005-03-09 Method for Depositing in Particular Metal Oxides by Means of Discontinuous Precursor Injection Abandoned US20080274278A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004015174A DE102004015174A1 (en) 2004-03-27 2004-03-27 Process for separating in particular metal oxides by means of non-continuous precursor injection
DE102004015174.1 2004-03-27
PCT/EP2005/051050 WO2005093127A2 (en) 2004-03-27 2005-03-09 Method for the deposition in particular of metal oxides by non-continuous precursor injection

Publications (1)

Publication Number Publication Date
US20080274278A1 true US20080274278A1 (en) 2008-11-06

Family

ID=34961383

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/599,323 Abandoned US20080274278A1 (en) 2004-03-27 2005-03-09 Method for Depositing in Particular Metal Oxides by Means of Discontinuous Precursor Injection

Country Status (7)

Country Link
US (1) US20080274278A1 (en)
EP (1) EP1733073B1 (en)
JP (1) JP2007531256A (en)
KR (1) KR101266153B1 (en)
DE (1) DE102004015174A1 (en)
TW (1) TWI372414B (en)
WO (1) WO2005093127A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670645B1 (en) * 2003-10-29 2010-03-02 Lsi Corporation Method of treating metal and metal salts to enable thin layer deposition in semiconductor processing
US20110076513A1 (en) * 2009-09-28 2011-03-31 National Taiwan University Transparent conductive films and fabrication methods thereof
US20190341304A1 (en) * 2018-05-06 2019-11-07 Applied Materials, Inc. Barrier for Copper Metallization and Methods of Forming

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027932A1 (en) 2006-06-14 2007-12-20 Aixtron Ag Method for the deposition of layers in a process chamber used in the production of electronic components comprises using a first starting material containing two beta-diketones and a diene coordinated with a ruthenium atom
JP4924437B2 (en) * 2007-02-16 2012-04-25 東京エレクトロン株式会社 Film forming method and film forming apparatus
DE102008045982A1 (en) 2008-09-05 2010-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Functionalizing surfaces comprises activating surface to form reactive groups on surface, depositing crosslinkable component e.g. oxirane by e.g. polyaddition and chemically bonding to reactive groups of surface, followed by crosslinking
WO2011019920A1 (en) * 2009-08-12 2011-02-17 Georgia State University Research Foundation, Inc. High pressure chemical vapor deposition apparatuses, methods, and compositions produced therewith
JP5616737B2 (en) * 2009-11-20 2014-10-29 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
US9348339B2 (en) 2010-09-29 2016-05-24 Mks Instruments, Inc. Method and apparatus for multiple-channel pulse gas delivery system
US8997686B2 (en) 2010-09-29 2015-04-07 Mks Instruments, Inc. System for and method of fast pulse gas delivery
JP5646984B2 (en) * 2010-12-24 2014-12-24 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
US10126760B2 (en) 2011-02-25 2018-11-13 Mks Instruments, Inc. System for and method of fast pulse gas delivery
US10031531B2 (en) 2011-02-25 2018-07-24 Mks Instruments, Inc. System for and method of multiple channel fast pulse gas delivery
US10353408B2 (en) 2011-02-25 2019-07-16 Mks Instruments, Inc. System for and method of fast pulse gas delivery
JP2014210946A (en) * 2013-04-17 2014-11-13 三井造船株式会社 Atomic layer deposition apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030124251A1 (en) * 2001-11-15 2003-07-03 Asahi Denka Co., Ltd. Process of forming thin film and precursor for chemical vapor deposition
US20030138562A1 (en) * 2001-12-28 2003-07-24 Subramony Janardhanan Anand Methods for silicon oxide and oxynitride deposition using single wafer low pressure CVD
US20030224578A1 (en) * 2001-12-21 2003-12-04 Hua Chung Selective deposition of a barrier layer on a dielectric material
US20040079286A1 (en) * 2002-07-12 2004-04-29 Sven Lindfors Method and apparatus for the pulse-wise supply of a vaporized liquid reactant
US7410670B2 (en) * 2003-09-17 2008-08-12 Aixtron Ag Process and apparatus for depositing single-component or multi-component layers and layer sequences using discontinuous injection of liquid and dissolved starting substances via a multi-channel injection unit
US20090081853A1 (en) * 2003-09-17 2009-03-26 Marcus Schumacher Process for depositing layers containing silicon and germanium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707671B1 (en) 1993-07-12 1995-09-15 Centre Nat Rech Scient Method and device for introducing precursors into a chemical vapor deposition chamber.
EP1772534A3 (en) * 2000-09-28 2007-04-25 The President and Fellows of Harvard College Tungsten-containing and hafnium-containing precursors for vapor deposition
DE10057491A1 (en) 2000-11-20 2002-05-23 Aixtron Ag Process for introducing a liquid starting material brought into gas form into a chemical vapour deposition (CVD) reactor comprises forming an aerosol, vaporizing the heat supply and removing the heat of vaporization
DE10114956C2 (en) 2001-03-27 2003-06-18 Infineon Technologies Ag Method for producing a dielectric layer as an insulator layer for a trench capacitor
JP3670628B2 (en) * 2002-06-20 2005-07-13 株式会社東芝 Film forming method, film forming apparatus, and semiconductor device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030124251A1 (en) * 2001-11-15 2003-07-03 Asahi Denka Co., Ltd. Process of forming thin film and precursor for chemical vapor deposition
US20030224578A1 (en) * 2001-12-21 2003-12-04 Hua Chung Selective deposition of a barrier layer on a dielectric material
US20030138562A1 (en) * 2001-12-28 2003-07-24 Subramony Janardhanan Anand Methods for silicon oxide and oxynitride deposition using single wafer low pressure CVD
US20040079286A1 (en) * 2002-07-12 2004-04-29 Sven Lindfors Method and apparatus for the pulse-wise supply of a vaporized liquid reactant
US7410670B2 (en) * 2003-09-17 2008-08-12 Aixtron Ag Process and apparatus for depositing single-component or multi-component layers and layer sequences using discontinuous injection of liquid and dissolved starting substances via a multi-channel injection unit
US20090081853A1 (en) * 2003-09-17 2009-03-26 Marcus Schumacher Process for depositing layers containing silicon and germanium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670645B1 (en) * 2003-10-29 2010-03-02 Lsi Corporation Method of treating metal and metal salts to enable thin layer deposition in semiconductor processing
US20110076513A1 (en) * 2009-09-28 2011-03-31 National Taiwan University Transparent conductive films and fabrication methods thereof
US8329253B2 (en) * 2009-09-28 2012-12-11 National Taiwan University Method for forming a transparent conductive film by atomic layer deposition
US20190341304A1 (en) * 2018-05-06 2019-11-07 Applied Materials, Inc. Barrier for Copper Metallization and Methods of Forming
US10930550B2 (en) * 2018-05-06 2021-02-23 Applied Materials, Inc. Barrier for copper metallization and methods of forming

Also Published As

Publication number Publication date
WO2005093127A3 (en) 2006-04-13
EP1733073A2 (en) 2006-12-20
JP2007531256A (en) 2007-11-01
DE102004015174A1 (en) 2005-10-13
TW200534363A (en) 2005-10-16
TWI372414B (en) 2012-09-11
KR20070003982A (en) 2007-01-05
EP1733073B1 (en) 2021-09-08
WO2005093127A2 (en) 2005-10-06
KR101266153B1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
US20080274278A1 (en) Method for Depositing in Particular Metal Oxides by Means of Discontinuous Precursor Injection
US9873942B2 (en) Methods of vapor deposition with multiple vapor sources
JP4546060B2 (en) A passivation method that improves the uniformity and reproducibility of atomic layer deposition and chemical vapor deposition.
US7098150B2 (en) Method for novel deposition of high-k MSiON dielectric films
CN1777697B (en) Transient enhanced atomic layer deposition
KR101332877B1 (en) Method and apparatus for using solution based precursors for atomic layer deposition
US7531467B2 (en) Manufacturing method of semiconductor device and substrate processing apparatus
US7410670B2 (en) Process and apparatus for depositing single-component or multi-component layers and layer sequences using discontinuous injection of liquid and dissolved starting substances via a multi-channel injection unit
CN105810580A (en) Method of plasma-enhanced atomic layer etching
KR20060003895A (en) System and method for forming multi-component dielectric films
US20130078454A1 (en) Metal-Aluminum Alloy Films From Metal Amidinate Precursors And Aluminum Precursors
TW202129064A (en) Semiconductor processing device and method of deposition
KR102337530B1 (en) Pulsed thin film deposition method
JP4719679B2 (en) Membrane manufacturing method and membrane manufacturing apparatus
US20150211126A1 (en) Direct liquid injection of solution based precursors for atomic layer deposition
EP2047009B1 (en) Methods and apparatus for the vaporization and delivery of solution precursors for atomic layer deposition
US8114480B2 (en) Method for self-limiting deposition of one or more monolayers
JP2023502214A (en) Methods and tools for area-selective atomic layer deposition
US20130078455A1 (en) Metal-Aluminum Alloy Films From Metal PCAI Precursors And Aluminum Precursors
JP2007059735A (en) Method for manufacturing semiconductor device, and substrate processing apparatus
Chang High-k gate dielectric deposition technologies

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIXTRON INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAUMANN, PETER;SCHUMACHER, MARCUS;LINDNER, JOHANNES;REEL/FRAME:021235/0143;SIGNING DATES FROM 20060902 TO 20060912

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION