US20080215084A1 - Delivery systems for embolic filter devices - Google Patents

Delivery systems for embolic filter devices Download PDF

Info

Publication number
US20080215084A1
US20080215084A1 US12/102,678 US10267808A US2008215084A1 US 20080215084 A1 US20080215084 A1 US 20080215084A1 US 10267808 A US10267808 A US 10267808A US 2008215084 A1 US2008215084 A1 US 2008215084A1
Authority
US
United States
Prior art keywords
filter device
lumen
guide wire
sheath
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/102,678
Inventor
William J. Boyle
Benjamin C. Huter
Scott J. Huter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Cardiovascular Systems Inc
Original Assignee
Advanced Cardiovascular Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Cardiovascular Systems Inc filed Critical Advanced Cardiovascular Systems Inc
Priority to US12/102,678 priority Critical patent/US20080215084A1/en
Publication of US20080215084A1 publication Critical patent/US20080215084A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/013Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stenting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • A61M25/0668Guide tubes splittable, tear apart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/018Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/008Quadric-shaped paraboloidal

Definitions

  • the present invention relates generally to filtering devices and systems which can be used when an interventional procedure is being performed in a stenosed or occluded region of a blood vessel to capture embolic material that may be created and released into the bloodstream during the procedure.
  • the system of the present invention is particularly useful when performing balloon angioplasty, stenting procedures, laser angioplasty, atherectomy, or other interventional procedures in critical vessels, particularly in vessels such as the carotid arteries, where the release of embolic debris into the bloodstream can occlude the flow of oxygenated blood to the brain or other vital organs, which can cause devastating consequences to the patient.
  • the embolic protection system of the present invention is particularly useful in carotid procedures, the invention can be used in conjunction with any vascular interventional procedure in which there is an embolic risk.
  • a variety of non-surgical interventional procedures have been developed over the years for opening stenosed or occluded blood vessels in a patient caused by the build up of plaque or other substances on the wall of the blood vessel.
  • Such procedures usually involve the percutaneous introduction of the interventional device into the lumen of the artery, usually through a catheter.
  • a guiding catheter or sheath is percutaneously introduced into the cardiovascular system of a patient through the femoral artery and advanced through the vasculature until the distal end of the guiding catheter is in the common carotid artery.
  • a guide wire and a dilatation catheter having a balloon on the distal end are introduced through the guiding catheter with the guide wire sliding within the dilatation catheter.
  • the guide wire is first advanced out of the guiding catheter into the patient's carotid vasculature and is directed across the arterial lesion.
  • the dilatation catheter is subsequently advanced over the previously advanced guide wire until the dilatation balloon is properly positioned across the arterial lesion.
  • the expandable balloon is inflated to a predetermined size with a radiopaque liquid at relatively high pressures to radially compress the atherosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery.
  • the balloon is then deflated to a small profile so that the dilatation catheter can be withdrawn from the patient's vasculature and the blood flow resumed through the dilated artery.
  • the above-described procedure is typical, it is not the only method used in angioplasty.
  • Atherectomy is yet another method of treating a stenosed blood vessel in which cutting blades are rotated to shave the deposited plaque from the arterial wall.
  • a vacuum catheter is usually used to capture the shaved plaque or thrombus from the blood stream during this procedure.
  • abrupt reclosure may occur or restenosis of the artery may develop over time, which may require another angioplasty procedure, a surgical bypass operation, or some other method of repairing or strengthening the area.
  • a physician can implant an intravascular prosthesis for maintaining vascular patency, commonly known as a stent, inside the artery across the lesion.
  • the stent is crimped tightly onto the balloon portion of the catheter and transported in its delivery diameter through the patient's vasculature. At the deployment site, the stent is expanded to a larger diameter, often by inflating the balloon portion of the catheter.
  • Prior art stents typically fall into two general categories of construction.
  • the first type of stent is expandable upon application of a controlled force, as described above, through the inflation of the balloon portion of a dilatation catheter which, upon inflation of the balloon or other expansion means, expands the compressed stent to a larger diameter to be left in place within the artery at the target site.
  • the second type of stent is a self-expanding stent formed from, for example, shape memory metals or super-elastic nickel-titanum (NiTi) alloys, which will automatically expand from a collapsed state when the stent is advanced out of the distal end of the delivery catheter into the body lumen.
  • NiTi super-elastic nickel-titanum
  • the filtering device does not have a suitable mechanism for closing the filter, there is a possibility that trapped embolic debris can backflow through the inlet opening of the filter and enter the blood-stream as the filtering system is being collapsed and removed from the patient. In such a case, the act of collapsing the filter device may actually squeeze trapped embolic material through the opening of the filter and into the bloodstream.
  • Some of the prior art filters which can be expanded within a blood vessel are attached to the distal end of a guide wire or guide wire-like tubing which allows the filtering device to be placed in the patient's vasculature when the guide wire is manipulated in place.
  • the embolic filter can be deployed within the vessel to capture embolic debris.
  • the guide wire can then be used by the physician to deliver interventional devices, such as a balloon angioplasty dilatation catheter or a stent, into the area of treatment.
  • While expandable filters placed on the distal end of a guide wire or guide wire like catheter are generally capable of reaching many stenosis in a patient's vasculature, there still can be some instances encountered by a physician in which the guide wire cannot reach or cross a particularly tight distal lesion. This can sometimes occur when the expandable filter device is to be placed across a tight lesion in the distal carotid arteries when a femoral approach is taken by the physician. In those cases, the physician often can steer the filter device to a location close to the area of treatment, but cannot cross the lesion for one reason or another.
  • the filter device may be then able to cross the lesion and be placed downstream of the area of treatment to capture any embolic debris which can may be created during the subsequent interventional procedure.
  • this procedure causes the physician to perform additional steps which are time-consuming due to the increased number of times that the physician has to maneuver the filtering device and additional guide wire into the patient's vasculature.
  • the system should be relatively easy for a physician to use and should provide a suitable delivery system for placing a filtering device into distal and tight lesions of a patient's anatomy. Moreover, the system should be relatively easy to deploy and remove from the patient's vasculature. The invention disclosed herein satisfies these and other needs.
  • the present invention provides a delivery system which can be utilized to place an expandable filter device past a distal lesion in a patient's vasculature in order to capture embolic debris which may be created during the performance of a therapeutic intereventional procedure, such as a balloon angioplasty or stenting procedure, in order to prevent embolic debris from entering the bloodstream and blocking vessels downstream from the area of treatment.
  • the present invention can be used in conjunction with either a steerable or non-steerable expandable filtering device.
  • the present invention eliminates the need for a physician to remove and re-insert the expandable filtering device in the patient since a separate guide wire is utilized to reach the desired area of treatment.
  • the system creates an over-the-wire delivery system for placing the expandable filter device in the area of treatment. As a result, the present invention should eliminate additional steps when placing an expandable filtering device into certain distal locations in a patient's vasculature.
  • a dual lumen delivery sheath is used with an expandable filter device and a separate guide wire as the delivery system.
  • the dual lumen delivery sheath can be made from an elongate tubular member which is adapted to receive both the expandable filter device and the guide wire which can be used as a primary component for placing the filtering device into the area of treatment.
  • two separate lumens are formed in the delivery sheath, one for receiving the expandable filtering device and the other for the primary guide wire.
  • the primary guide wire is extendable within its own separate lumen so that it can be maneuvered by the physician through the tortuous anatomy of the patient into the area of treatment.
  • the delivery sheath can be placed into the area of treatment using over-the-wire techniques which places both the delivery sheath and the expandable filter device past the lesion to be treated.
  • the primary guide wire can be removed from the patient's vasculature with the delivery sheath and expandable filter device remaining in place downstream from the area of treatment.
  • the delivery sheath can then be retracted to allow the expandable filter device to move into its expanded condition within the body lumen where it will be deployed for capturing any embolic debris which may be collected during the subsequent interventional procedure.
  • an interventional device can be delivered into the area of treatment using over-the-wire techniques.
  • the guide wire lumen extends along the entire length of the delivery sheath.
  • a rapid exchange type delivery sheath can be created which utilizes only a short segment which receives the primary guide wire.
  • the guide wire segment is located at the distal end of the delivery sheath to ensure that both the distal ends of the sheath and filter device will properly track along the primary guide wire.
  • the distal end of the filter lumen has a smaller diameter than the collapsed filter device to prevent the filter device from entering into the guide wire lumen until the expandable filter device is ready to be deployed within the patient's vasculature.
  • This narrow lumen helps prevent the primary guide wire and filter device from possibly becoming “tangled” during delivery with the patient's vasculature.
  • the narrow portion of the lumen should not affect the ability of the sheath to be retracted over the collapsed filter device since the narrower lumen should stretch somewhat over the filter device.
  • the narrow portion of the sheath may be scored or provided with one or more lines of perforations which will cause the sheath to split a controlled amount making it easier to retract the sheath over the filter device.
  • the filter lumen of the present invention also can be made from a short segment to create a rapid exchange type delivery sheath.
  • the filter lumen would be created from a short segment formed adjacent to the guide wire lumen.
  • both the guide wire lumen and filter lumen could be short segments forming a rapid exchange type sheath.
  • the sheath could be mounted to a mandrel or third wire which would be used to retract the sheath from the expandable filter.
  • the delivery sheath made in accordance with the present invention also can be provided with a slit extending substantially along the length of the sheath to provide a slotted exchange sleeve which facilitates exchanges of the delivery sheath during use. As a result, the time needed to remove the delivery sheath from the patient's vasculature can be reduced.
  • the primary guide wire can be utilized in accordance with an expandable filter device which utilizes an obturator for delivering the filter device within the patient's vasculature.
  • An obturator is generally a tapered tip made from a soft pliable material which creates an atraumatic tip which helps prevent trauma from being inflicted on the walls of the patient's vasculature as the filter device is being steered therethrough.
  • the obturator is equipped with a lumen through which the primary guide wire can extend to provide an over-the-wire delivery system that is easy to operate.
  • the guide wire lumen on the obturator could be either set off center from the distal tip of the obturator or could extend substantially through the center portion of the distal tip of the obturator. In use, including its own delivery sheath, rides over the primary guide wire (via the guide lumen of the obturator) and into the desired area of deployment within the patient's vasculature.
  • FIG. 1 is an elevational view, partially in cross-section, of one embodiment of a dual lumen delivery sheath embodying features of the present invention showing an expandable filtering device held in its collapsed position within the delivery sheath along with a primary guide wire extended within the guide wire lumen.
  • FIG. 2 is an exploded elevation view of the expandable filter device of FIG. 1 which depicts just one type of filter device that can be used with the present invention.
  • FIG. 3A is a cross-sectional view of the dual lumen delivery sheath of FIG. 1 taken along lines 3 - 3 .
  • FIG. 3B is a cross-sectional view of another configuration of a dual lumen delivery sheath made in accordance with the present invention.
  • FIG. 4 is an elevational view, partially in cross-section showing the delivery sheath and expandable filter device of FIG. 1 , along with the primary guide wire placed past a stenosis located in a body vessel.
  • FIG. 5 is an elevational view, partially in cross-section, showing the dual lumen delivery sheath of the present invention placed across the stenosis in the body vessel.
  • FIG. 6 is an elevational view, partially in cross-section, showing the dual lumen delivery sheath of the present invention retracted past the expandable filter device allowing the filter device to move into its expanded position within the body vessel.
  • FIG. 7 is an elevational view, partially in cross-section, showing the distal end of a rapid-exchange embodiment of a dual lumen delivery sheath made in accordance with the present invention.
  • FIG. 8 is an elevational view showing a perforation or score line located on the dual lumen delivery sheath which aids in retracting the sheath over the collapsed filter device.
  • FIG. 9 is an elevational view, partially in cross-section, showing another embodiment of a delivery system made in accordance with the present invention.
  • FIG. 10 is an elevational view, partially in cross-section, showing another embodiment of a delivery system made in accordance with the present invention.
  • FIG. 11 is an elevational view, partially in cross-section, showing another embodiment of a dual lumen delivery sheath made in accordance with the present invention.
  • FIG. 12 is a cross-sectional view of the dual lumen delivery sheath of claim 11 taken along lines 12 - 12 .
  • FIG. 13 is an elevational view, partially in cross-section, showing another embodiment of a dual lumen delivery sheath made in accordance with the present invention.
  • FIG. 14 is an elevation view, partially in cross-section, showing another embodiment of a delivery system made in accordance with the present invention.
  • FIG. 15 is a cross-sectional view of the delivery system of FIG. 14 taken along lines 15 - 15 .
  • FIG. 1 represents a dual lumen delivery sheath 10 incorporating features of the present invention.
  • the dual lumen delivery sheath 10 is adapted to receive both an expandable filter device 12 and a primary guide wire 14 .
  • the delivery sheath 10 includes a pair of lumens, namely, a filter lumen 16 which is adapted to receive the expandable filter device 12 and a guide wire lumen 18 which receives the primary guide wire 14 .
  • the delivery sheath 10 can be placed within an artery 20 or other blood vessel of a patient.
  • This portion of the artery 20 has an area of treatment 22 in which arthroscopic plaque 24 has built up against the inside wall 26 of the artery 20 .
  • the filter device 12 is to be placed distal to, and downstream from, the area of treatment 22 , as shown in FIG. 6 . Methods for deploying the system of FIG. 1 will be described in greater detail below.
  • the present invention is described herein in conjunction with a self-expanding filter device 12 which is capable of self-expanding from a contracted or collapsed position to an expanded or deployed position within the patient's vasculature.
  • the filter lumen 16 of the delivery sheath 10 is thus utilized to maintain the expandable filter device 12 in its collapsed state for delivery into the patient's vasculature. Later, when the device is to be deployed at the particular location downstream from the area of treatment, the sheath 10 is retracted to allow the filter device to expand to its open or expanded position within the body vessel.
  • other types of expandable filter devices could be used in conjunction with the present invention in order to deliver the filter device to the desired location in a patient's vasculature.
  • the filter device need not be self-expanding, but could utilized mechanical components to open and close the filter as desired.
  • the type of filter device utilized in accordance with the present invention can include a number of different embodiments and is not limited to the particular filter device disclosed herein.
  • FIG. 2 one particular type of filter device 12 which can be used with the present invention is shown mounted on a separate guide wire 28 that can be utilized by the physician to introduce interventional devices into the area of treatment.
  • This expandable filter device 12 includes an expandable filtering assembly 30 having an expandable strut assembly 32 consisting of a number of struts 34 which expand radially outward to open a filter 36 that is attached to the strut assembly 32 .
  • the expandable strut assembly 32 is attached to the guide wire 28 at its proximal collar 38 which is fixed between two stop fittings 40 and 42 .
  • This arrangement also allows the filter assembly to spin on the guide wire 28 .
  • Attached to the distal end of the strut assembly 30 is an obturator 46 which provides an atraumatic tip which prevents trauma from being inflicted on the walls of the patient's vasculature.
  • the obturator 46 is bonded or otherwise attached to the filtering assembly 30 .
  • a balloon angioplasty catheter (not shown), for example, can be introduced within the patient's vasculature in a conventional SELDINGER technique through a guide wire catheter (not shown).
  • the guide wire 28 of the deployed filter device 12 would be disposed through the area of treatment and the dilitating catheter can be advanced over the guide wire 28 within the artery until the balloon portion is directly in the area of treatment.
  • the balloon of the dilitation catheter can be expanded, expanding the plaque and artery to create a larger opening in the area of treatment to reduce the blockage in the vessel at the position of the plaque and increase blood flow.
  • a stent could also be delivered into the area of treatment using over-the-wire techniques to help hold and maintain this portion of the artery and help prevent re-stenosis from occurring in the area of treatment. Any embolic debris which is created during the intereventional procedure will be released into the blood stream and will enter the filtering assembly located downstream from the area of treatment. Once the procedure is completed, the filter device 12 can be collapsed and removed from the patient's vasculature, taking with it all embolic debris trapped within the filter 36 .
  • the procedure described herein is directed to an angioplasty and stenting procedure which can be performed in the patient's vasculature utilizing the present invention
  • any one of a number of interventional procedures could be utilized in the area of treatment as well.
  • laser angioplasty, atherectomy and still other interventional procedures could be performed in the area of treatment utilizing the present invention.
  • the present invention can be utilized in a number of other body vessels including, but not limited to, the coronary arteries, renal arteries, saphenous vein grafts and other peripheral arteries.
  • the dual lumen delivery sheath 10 of the present invention can be introduced with the filter device placed in its collapsed position within the artery 20 in which the interventional procedure is to be performed.
  • the primary guide wire 14 is placed within the patient's vasculature and is maneuvered by the physician into the area of treatment 20 .
  • the primary guide wire 14 is maneuvered past the area of treatment 22 to a downstream location where the filter device will be deployed.
  • the delivery sheath and filter device can be backloaded onto the proximal end of the guide wire.
  • the physician can then move the delivery sheath 10 and the filter device 12 over the primary guide wire 14 using over-the-wire techniques known in the art. As can be seen in FIG. 5 , the entire delivery sheath 10 and filter device 12 have been placed downstream from the area of treatment 22 to the location where the filter device 12 is to be deployed. Once the delivery sheath and filter device are in the desired location, the physician can remove the primary guide wire 14 from the patient to allow the filter device 12 to expand within the artery without any obstructions. As is shown in FIG. 6 , the primary guide wire 14 has been removed and the delivery sheath 10 has been retracted proximally to allow the expandable filter device 12 to move into its open or expanded position within the artery 20 .
  • the entire delivery sheath 10 can be removed from the guide wire 28 of the filter device 12 allowing interventional devices to be positioned into the area of treatment 22 utilizing over-the-wire techniques.
  • the embolic debris will be released into the blood stream where it should collect within the filter element 36 of the filter device 12 .
  • the physician can remove the interventional device from the guide wire 28 . Thereafter, the physician may wish to leave the filter device 12 in place in the artery to insure that all embolic debris generated during the procedure is driven into the filter portion 36 of the filter device 12 . Thereafter, once the physician is assured that all embolic debris has been collected, he/she can then place another sheath (not shown) over the guide wire 28 which would contact the strut assembly 32 causing the struts and the filter to move back to its collapsed position. Thereafter, the entire filter device 12 could be collapsed within the sheath and removed from the patient's vasculature.
  • the filter lumen 16 extends into the guide wire lumen 18 near the distal end to create a low profile component capable of reaching distal and tight lesions.
  • the distal end of the filter lumen 16 has a region 48 with a diameter less than the diameter of the main portion of the filter lumen 16 .
  • This particular configuration can be utilized to create a small profile diameter at the distal most end 50 of the delivery sheath 10 and to prevent the sheath from “digging” or “snow plowing” into the artery walls as the delivery sheath 10 is being delivered over the primary guide wire 14 .
  • this reduced region 48 on the filter lumen 16 also helps to prevent the filter device 12 from extending into the guide wire lumen and prevent the coil tip 52 of the guide wire 28 from becoming tangled with the primary guide wire 14 as the components are being manipulated into the patient's vasculature.
  • This reduced diameter region 48 of the filter lumen 16 should not prevent the sheath from retracting over the filter device 12 since the delivery sheath 10 can be made from a material which will stretch somewhat as the sheath 10 is being retracted over the filter device.
  • this region 48 of the sheath 10 can be formed or scored with perforations 54 which extend longitudinally along the sheath at this area and will cause the sheath to split a controlled amount as the sheath 10 is being retracted over the filter device 12 .
  • FIG. 8 shows one particular way of scoring the lumen with perforations 54 which will open as the reduced region 48 is being retracted over the filter device. These perforations should assure that the sheath will be properly retracted over the filter device.
  • the guide wire lumen 18 can be formed within the interior of the delivery sheath 10 as is shown in FIG. 3A or it could alternatively be formed as a separate lumen which extends outside the filter lumen 16 as is shown in FIG. 3B . It should be appreciated that other configurations having lumens of different shapes and sizes can be utilized in accordance with the present invention which would not depart from the spirit and scope of the present invention.
  • the delivery sheath includes both a guide wire lumen 62 and a filter lumen 64 , however, the guide wire lumen 66 does not extend along the entire length of the sheath 60 as does the previous embodiment described herein. Rather, the guide wire lumen 62 is a short lumen incorporated into the sheath 60 to create a rapid exchange type delivery sheath.
  • This particular sheath 60 has the same features of the embodiment previously described and would be capable of delivering the filter device 12 into the area of treatment in the same manner described herein.
  • the primary guide wire 14 is not disposed within the delivery sheath itself, but rather, is placed within a lumen created within an obturator 70 located on the distal end of the filter device 12 .
  • the obturator 70 is shown having a guide wire lumen 72 which extends within the obturator and receives the primary guide wire 14 during use.
  • This obturator 70 creates an atraumatic tip as it is made from a soft material such as PEBAX or other soft polymeric material.
  • the obturator 70 is attached to the filter device 12 via the strut assembly 32 and the distal end of the guide wire 28 .
  • This particular embodiment of the filter device 12 is substantially similar to the filter device shown in FIG. 2 . The major difference is that the distal end of the guide wire 28 does not extend through the obturator 70 as does in the filter device shown in FIG. 2 . Rather, the obturator 70 is attached to the strut assembly 32 and the distal end of the guide wire 28 . This allows the guide wire lumen 72 to extend through the main portion of the obturator 70 and out the center of the distal tip 74 of the obturator.
  • the guide wire lumen 76 can alternatively be placed off center from the obturator to create a lumen which extends substantially parallel with the longitudinal axis of the delivery sheath 78 .
  • both of these guide wire lumens 72 and 76 perform the same function of providing a means for delivering the filter device 12 into the desired area utilizing an over-the-wire technique.
  • the delivery system shown in FIGS. 9 and 10 can be used in a similar manner as described herein in that the primary wire would be first positioned across the lesion.
  • the filter device 12 can then be backloaded onto the proximal end of the guide wire (via the obturator) and advanced over the wire to cross the lesion.
  • the primary guide wire would then be removed and the sheath 78 would be retracted to deploy the filter device 12 within the artery.
  • interventional devices could be advanced over the guide wire 28 to perform the interventional procedure.
  • the filter device could be collapsed by the restraining sheath and removed from the patient's vasculature.
  • FIGS. 11 and 12 an alternative embodiment of a delivery sheath 80 made in accordance with the present invention is shown.
  • the expandable filter device 12 is placed within a filter lumen 16 and the primary guide wire 14 is receivable within a guide wire lumen 18 .
  • the guide wire lumen 18 includes a slit 82 and the filter lumen 16 includes a slit 84 which both extend longitudinally along the tubular member forming the sheath 80 .
  • the slit 84 of the filter lumen 16 can extend along the length of the sheath 80 just proximal to the end of the filter device 12 . This will create and maintain a sheath which will hold the filter device 12 in its expanded condition until it is ready to be deployed by the physician.
  • the slit 84 will facilitate the removal of the entire delivery sheath 80 from the patient's vasculature.
  • the slit 82 located along the length of the guide wire lumen 18 could also be used to facilitate the quick removal of the sheath in the event that the primary guide wire 14 is to remain within the patient's vasculature. Thereafter, an exchange of interventional devices can be quickly and easily made. It should be appreciated that either of the guide wire lumen or filter lumen could be provided with this longitudinal slit, or both, and that such a longitudinal slit could be utilized with the other embodiment disclosed herein.
  • a rapid exchange type dual lumen delivery sheath 90 is shown which can be made in accordance with the present invention.
  • the filter lumen 92 is made from a short segment of tubing which creates a pod-like container for storing the collapsed filter device 12 until it is ready to be deployed.
  • the sheath portion which covers the filter 12 can be moved by retracting the proximal end of the guide wire lumen portion of the sheath as needed.
  • This particular configuration can also utilize perforations cut or scored into the sheath, as shown in FIG. 8 , in order to facilitate the easy retraction of the sheath from the filter 12 . Also, as can be seen from FIG.
  • the proximal end of the filter lumen 92 has a narrower diameter than the main portion of the lumen 92 in order to help prevent the filter 12 from “backing out” of its sheath as it is being delivered within the patient's vasculature. This narrowing at the proximal region 94 does not interfere with the sheath's ability to be drawn back and retracted over the filter device 12 .
  • the delivery sheath 100 includes a rapid-type exchange arrangement for both the filter lumen 102 and the primary guide wire lumen 104 .
  • This particular configuration enjoys the benefits of rapid exchange with regard to both the filter device 12 and the primary guide wire 14 .
  • This particular sheath 100 includes a third lumen 106 in which a mandrel or third guide wire 108 is utilized to provide axial stiffness to the structure as the sheath is being retracted past the collapsed filter device 12 . In this manner, a three-wire delivery system can be utilized.
  • the delivery sheath 100 and filter device 12 are delivered into the target area in the same manner as described above, namely, by moving along the primary guide wire 14 in a over-the-wire fashion.
  • the mandrel 108 is also deployed with the delivery sheath 100 since it is adhesively fixed or bonded within the lumen 106 .
  • the primary guide wire 14 can then be removed from the patient's vasculature.
  • the sheath portion of the filter lumen 102 can be retracted over the filter device to deploy it within the patient's vasculature by pulling back on the proximal end of the mandrel 108 .
  • the entire delivery sheath 110 can then be removed from the patient's vasculature and the appropriate interventional devices can be advanced into the target area via the guide wire 28 of the filter device 12 .
  • the filter lumen 102 of the sheath 100 also includes a proximal area 110 in which the diameter is reduced in order to prevent the filter device 12 from backing out of the lumen 102 during usage. Again, this reduced diameter creates a composite pod-like container for the collapsed filter 12 until it is ready to be deployed within the patient's vasculature.
  • the mandrel 108 utilized in accordance with the present invention can be any mandrel well-known in the art or an alternative could be a guide wire which is fixed within the lumen 106 of the delivery sheath 100 .
  • the lumen 106 does not need to extend all the way back to the proximal end of the mandrel 108 , but rather, it could terminate with the proximal end of the filter lumen and guide wire lumen.
  • a composite delivery sheath can be created which provides a low profile device that can be easily advanced into the patient's vasculature.
  • the obturator utilized in conjunction with the present invention can be made from material such as PEBAX 40D, or other polymeric materials or alloys which are capable of providing a soft atromatic tip for the filter device.
  • the material used to make the obturator can be loaded with radiopaque materials, such as bismuth or barium, which will help locate the tip of the device when using visualization equipment during the procedure.
  • the obturator can be attached to the distal end of the strut assembly of the filter device utilizing adhesive or other bonding techniques to provide a strong bond between the components.
  • the guide wire lumen formed in the obturator can be mechanically drilled or drilled utilizing a laser source.
  • the strut assemblies of the filter device can be made in many ways.
  • the one particular method of making the strut assembly is to cut a thin-walled tubular member, such as nickel-titanium hypotube, to remove portions of the tubing in the desired pattern for each strut, leaving relatively untouched the portions of the tubing which are to form each strut.
  • the tubing may be cut into the desired pattern by means of a machine-controlled laser.
  • the tubing used to make the strut assembly may be made of suitable biocompatible material such as stainless steel.
  • the stainless steel tube may be alloy-type: 316L SS, Special Chemistry per ASTM F138-92 or ASTM F139-92 grade 2. Special Chemistry of type 316L per ASTM F138-92 or ASTM F139-92 Stainless Steel for Surgical Implants in weight percent.
  • the strut size is usually very small, so the tubing from which it is made must necessarily also have a small diameter.
  • the tubing has an outer diameter on the order of about 0.020-0.040 inches in the unexpanded condition.
  • the wall thickness of the tubing is about 0.076 mm (0.003-0.006 inches).
  • the dimensions of the tubing maybe correspondingly larger. While it is preferred that the strut assembly be made from laser cut tubing, those skilled in the art will realize that the strut assembly can be laser cut from a flat sheet and then rolled up in a cylindrical configuration with the longitudinal edges welded to form a cylindrical member.
  • the hypotube is put in a rotatable collet fixture of a machine-controlled apparatus for positioning the tubing relative to a laser.
  • the tubing is then rotated and moved longitudinally relative to the laser which is also machine-controlled.
  • the laser selectively removes the material from the tubing by ablation and a pattern is cut into the tube.
  • the tube is therefore cut into the discrete pattern of the finished struts.
  • the strut assembly can thus be laser cut much like a stent is laser cut. Details on how the tubing can be cut by a laser are found in U.S. Pat. Nos. 5,759,192 (Saunders) and U.S. Pat. No. 5,780,807 (Saunders), which have been assigned to Advanced Cardiovascular Systems, Inc.
  • a pattern for the strut assembly into the tubing generally is automated except for loading and unloading the length of tubing.
  • a pattern can be cut in tubing using a CNC-opposing collet fixture for axial rotation of the length of tubing, in conjunction with CNC X/Y table to move the length of tubing axially relative to a machine-controlled laser as described.
  • the entire space between collets can be patterned using the CO 2 or Nd:YAG laser set-up.
  • the program for control of the apparatus is dependent on the particular configuration used and the pattern to be ablated in the coding.
  • a suitable composition of nickel-titanium which can be used to manufacture the strut assembly of the present invention is approximately 55% nickel and 45% titanium (by weight) with trace amounts of other elements making up about 0.5% of the composition.
  • the austenite transformation temperature is between about ⁇ 15° C. and 0° C. in order to achieve superelasticity. The austenite temperature is measured by the bend and free recovery tangent method.
  • the upper plateau strength is about a minimum of 60,000 psi with an ultimate tensile strength of a minimum of about 155,000 psi.
  • the permanent set (after applying 8% strain and unloading), is approximately 0.5%.
  • the breaking elongation is a minimum of 10%. It should be appreciated that other compositions of nickel-titanium can be utilized, as can other self-expanding alloys, to obtain the same features of a self-expanding stent made in accordance with the present invention.
  • the strut assembly of the present invention can be laser cut from a tube of nickel-titanium (Nitinol) whose transformation temperature is below body temperature. After the strut pattern is cut into the hypotube, the tubing is expanded and heat treated to be stable at the desired final diameter. The heat treatment also controls the transformation temperature of the strut assembly such that it is super elastic at body temperature. The transformation temperature is at or below body temperature so that the stent is superelastic at body temperature.
  • the strut assembly is usually implanted into the target vessel which is smaller than the diameter if the strut assembly in the expanded position so that the struts apply a force to the vessel wall to maintain the filter element in the expanded position.
  • the strut assembly could be manufactured to remain in its open position while at body temperature and would move to its collapsed position upon application of a low temperature.
  • One suitable method to allow the strut assembly to assume a change phase which would facilitate the strut and filter assembly being mounted into the delivery sheath include chilling the filter assembly in a cooling chamber maintained at a temperature below the martensite finish temperature through the use of liquid nitrogen. Once the strut assembly is placed in its collapsed state, the restraining sheath can be placed over the device to prevent the device from expanding once the temperature is brought up to body temperature. Thereafter, once the filter device is to be utilized, the delivery sheath is retracted to allow the filter assembly/strut assembly to move to its expanded position within the patient's vasculature.
  • the polymeric material which can be utilized to create the filter element include, but is not limited to, polyurethane and Gortex, a commercially available material. Other possible suitable materials include ePTFE.
  • the material can be elastic or non-elastic.
  • the wall thickness of the filtering element can be about 0.0005-0.005 inches. The wall thickness may vary depending on the particular material selected.
  • the material can be made into a cone or similarly sized shape utilizing blow-mold technology.
  • the perfusion openings can be any different shape or size. A laser, a heated rod or other process can be utilized to create to perfusion openings in the filter material. The holes, would of course be properly sized to catch the particular size of embolic debris of interest.
  • Holes can be laser cut in a spiral pattern with some similar pattern which will aid in the re-wrapping of the media during closure of the vice.
  • the filter material can have a “set” put in it much like the “set” used in dilatation balloons to make the filter element re-wrap more easily when placed in the collapsed position.
  • silicone lubricant such as Microglide® or Dow 360

Abstract

A delivery system for an expandable filter device includes a dual lumen delivery sheath which has a lumen for receiving the expandable filter device and a lumen for receiving a primary guide wire. The primary guide wire is utilized to place the delivery sheath and expandable filter into the desired region of the patient's vasculature via an over-the-wire or rapid-exchange arrangement. The delivery sheath can be protracted over the expandable filter device to allow the filter to be deployed within the patient's vasculature at the desired location. The delivery system can be embodied in an alternative design in which the primary guide wire extends through a guide wire lumen located in an obturator which forms part of the expandable filter device. Again, the primary guide wire is utilized to maneuver the filter device into the desired area via an over-the-wire arrangement. A slit extending longitudinally along the length of the sheath facilitates the removal of the guide wire and delivery sheath from the patient's vasculature.

Description

    BACKGROUND OF THE INVENTION
  • This application is a continuation of application Ser. No. 10/385,162, filed Mar. 10, 2003; which is a continuation of Ser. No. 09/691,463 filed Oct. 17, 2000, U.S. Pat. No. 6,537,294, issue date of Mar. 25, 2003 which is assigned to the same Assignee as the present application.
  • The present invention relates generally to filtering devices and systems which can be used when an interventional procedure is being performed in a stenosed or occluded region of a blood vessel to capture embolic material that may be created and released into the bloodstream during the procedure. The system of the present invention is particularly useful when performing balloon angioplasty, stenting procedures, laser angioplasty, atherectomy, or other interventional procedures in critical vessels, particularly in vessels such as the carotid arteries, where the release of embolic debris into the bloodstream can occlude the flow of oxygenated blood to the brain or other vital organs, which can cause devastating consequences to the patient. While the embolic protection system of the present invention is particularly useful in carotid procedures, the invention can be used in conjunction with any vascular interventional procedure in which there is an embolic risk.
  • A variety of non-surgical interventional procedures have been developed over the years for opening stenosed or occluded blood vessels in a patient caused by the build up of plaque or other substances on the wall of the blood vessel. Such procedures usually involve the percutaneous introduction of the interventional device into the lumen of the artery, usually through a catheter. In typical carotid PTA procedures, a guiding catheter or sheath is percutaneously introduced into the cardiovascular system of a patient through the femoral artery and advanced through the vasculature until the distal end of the guiding catheter is in the common carotid artery. A guide wire and a dilatation catheter having a balloon on the distal end are introduced through the guiding catheter with the guide wire sliding within the dilatation catheter. The guide wire is first advanced out of the guiding catheter into the patient's carotid vasculature and is directed across the arterial lesion. The dilatation catheter is subsequently advanced over the previously advanced guide wire until the dilatation balloon is properly positioned across the arterial lesion. Once in position across the lesion, the expandable balloon is inflated to a predetermined size with a radiopaque liquid at relatively high pressures to radially compress the atherosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery. The balloon is then deflated to a small profile so that the dilatation catheter can be withdrawn from the patient's vasculature and the blood flow resumed through the dilated artery. As should be appreciated by those skilled in the art, while the above-described procedure is typical, it is not the only method used in angioplasty.
  • Another procedure is laser angioplasty which utilizes a laser to ablate the stenosis by super heating and vaporizing the deposited plaque. Atherectomy is yet another method of treating a stenosed blood vessel in which cutting blades are rotated to shave the deposited plaque from the arterial wall. A vacuum catheter is usually used to capture the shaved plaque or thrombus from the blood stream during this procedure.
  • In the procedures of the kind referenced above, abrupt reclosure may occur or restenosis of the artery may develop over time, which may require another angioplasty procedure, a surgical bypass operation, or some other method of repairing or strengthening the area. To reduce the likelihood of the occurrence of abrupt reclosure and to strengthen the area, a physician can implant an intravascular prosthesis for maintaining vascular patency, commonly known as a stent, inside the artery across the lesion. The stent is crimped tightly onto the balloon portion of the catheter and transported in its delivery diameter through the patient's vasculature. At the deployment site, the stent is expanded to a larger diameter, often by inflating the balloon portion of the catheter.
  • Prior art stents typically fall into two general categories of construction. The first type of stent is expandable upon application of a controlled force, as described above, through the inflation of the balloon portion of a dilatation catheter which, upon inflation of the balloon or other expansion means, expands the compressed stent to a larger diameter to be left in place within the artery at the target site. The second type of stent is a self-expanding stent formed from, for example, shape memory metals or super-elastic nickel-titanum (NiTi) alloys, which will automatically expand from a collapsed state when the stent is advanced out of the distal end of the delivery catheter into the body lumen. Such stents manufactured from expandable heat sensitive materials allow for phase transformations of the material to occur, resulting in the expansion and contraction of the stent.
  • The above non-surgical interventional procedures, when successful, avoid the necessity of major surgical operations. However, there is one common problem which can become associated with all of these non-surgical procedures, namely, the potential release of embolic debris into the bloodstream that can occlude distal vasculature and cause significant health problems to the patient. For example, during deployment of a stent, it is possible that the metal struts of the stent can cut into the stenosis and shear off pieces of plaque which become embolic debris that can travel downstream and lodge somewhere in the patient's vascular system. Pieces of plaque material can sometimes dislodge from the stenosis during a balloon angioplasty procedure and become released into the bloodstream. Additionally, while complete vaporization of plaque is the intended goal during a laser angioplasty procedure, quite often particles are not fully vaporized and thus enter the bloodstream. Likewise, not all of the emboli created during an atherectomy procedure may be drawn into the vacuum catheter and, as a result, enter the bloodstream as well.
  • When any of the above-described procedures are performed in the carotid or arteries, the release of emboli into the circulatory system can be extremely dangerous and sometimes fatal to the patient. Debris that is carried by the bloodstream to distal vessels of the brain can cause these cerebral vessels to occlude, resulting in a stroke, and in some cases, death. Therefore, although cerebral percutaneous transluminal angioplasty has been performed in the past, the number of procedures performed has been limited due to the justifiable fear of causing an embolic stroke should embolic debris enter the bloodstream and block vital downstream blood passages.
  • Medical devices have been developed to attempt to deal with the problem created when debris or fragments enter the circulatory system following vessel treatment utilizing any one of the above-identified procedures. One approach which has been attempted is the cutting of any debris into minute sizes which pose little chance of becoming occluded in major vessels within the patient's vasculature. However, it is often difficult to control the size of the fragments which are formed, and the potential risk of vessel occlusion still exists, making such a procedure in the carotid arteries a high-risk proposition.
  • Other techniques which have been developed to address the problem of removing embolic debris include the use of catheters with a vacuum source which provides temporary suction to remove embolic debris from the bloodstream. However, as mentioned above, there have been complications with such systems since the vacuum catheter may not always remove all of the embolic material from the bloodstream, and a powerful suction could cause problems to the patient's vasculature. Other techniques which have had some limited success include the placement of a filter or trap downstream from the treatment site to capture embolic debris before it reaches the smaller blood vessels downstream. However, there have been problems associated with filtering systems, particularly during the expansion and collapsing of the filter within the body vessel. If the filtering device does not have a suitable mechanism for closing the filter, there is a possibility that trapped embolic debris can backflow through the inlet opening of the filter and enter the blood-stream as the filtering system is being collapsed and removed from the patient. In such a case, the act of collapsing the filter device may actually squeeze trapped embolic material through the opening of the filter and into the bloodstream.
  • Some of the prior art filters which can be expanded within a blood vessel are attached to the distal end of a guide wire or guide wire-like tubing which allows the filtering device to be placed in the patient's vasculature when the guide wire is manipulated in place. Once the guide wire is in proper position in the vasculature, the embolic filter can be deployed within the vessel to capture embolic debris. The guide wire can then be used by the physician to deliver interventional devices, such as a balloon angioplasty dilatation catheter or a stent, into the area of treatment.
  • While expandable filters placed on the distal end of a guide wire or guide wire like catheter are generally capable of reaching many stenosis in a patient's vasculature, there still can be some instances encountered by a physician in which the guide wire cannot reach or cross a particularly tight distal lesion. This can sometimes occur when the expandable filter device is to be placed across a tight lesion in the distal carotid arteries when a femoral approach is taken by the physician. In those cases, the physician often can steer the filter device to a location close to the area of treatment, but cannot cross the lesion for one reason or another. Some physicians deal with this situation by removing the filter device from the patient's vasculature and attempting to cross the lesion using a separate guide wire which can be used to somewhat straighten the body vessel, making it easier for the physician to re-attempt the placement of the filter device across the lesion. In such cases, the physician is required to maneuver the steerable filter device back to the area of treatment to re-attempt the crossing of the lesion. The filter device may be then able to cross the lesion and be placed downstream of the area of treatment to capture any embolic debris which can may be created during the subsequent interventional procedure. However, this procedure causes the physician to perform additional steps which are time-consuming due to the increased number of times that the physician has to maneuver the filtering device and additional guide wire into the patient's vasculature.
  • What has been needed is a reliable system for use with an expandable filter device which allows the physician to steer through tortuous anatomy to distal lumens where the filtering device can be deployed to capture or remove embolic debris from the bloodstream. The system should be relatively easy for a physician to use and should provide a suitable delivery system for placing a filtering device into distal and tight lesions of a patient's anatomy. Moreover, the system should be relatively easy to deploy and remove from the patient's vasculature. The invention disclosed herein satisfies these and other needs.
  • SUMMARY OF THE INVENTION
  • The present invention provides a delivery system which can be utilized to place an expandable filter device past a distal lesion in a patient's vasculature in order to capture embolic debris which may be created during the performance of a therapeutic intereventional procedure, such as a balloon angioplasty or stenting procedure, in order to prevent embolic debris from entering the bloodstream and blocking vessels downstream from the area of treatment. The present invention can be used in conjunction with either a steerable or non-steerable expandable filtering device. The present invention eliminates the need for a physician to remove and re-insert the expandable filtering device in the patient since a separate guide wire is utilized to reach the desired area of treatment. The system creates an over-the-wire delivery system for placing the expandable filter device in the area of treatment. As a result, the present invention should eliminate additional steps when placing an expandable filtering device into certain distal locations in a patient's vasculature.
  • In one aspect of the present invention, a dual lumen delivery sheath is used with an expandable filter device and a separate guide wire as the delivery system. The dual lumen delivery sheath can be made from an elongate tubular member which is adapted to receive both the expandable filter device and the guide wire which can be used as a primary component for placing the filtering device into the area of treatment. In one aspect of the present invention, two separate lumens are formed in the delivery sheath, one for receiving the expandable filtering device and the other for the primary guide wire. In this arrangement, the primary guide wire is extendable within its own separate lumen so that it can be maneuvered by the physician through the tortuous anatomy of the patient into the area of treatment. The delivery sheath can be placed into the area of treatment using over-the-wire techniques which places both the delivery sheath and the expandable filter device past the lesion to be treated.
  • Thereafter, the primary guide wire can be removed from the patient's vasculature with the delivery sheath and expandable filter device remaining in place downstream from the area of treatment. The delivery sheath can then be retracted to allow the expandable filter device to move into its expanded condition within the body lumen where it will be deployed for capturing any embolic debris which may be collected during the subsequent interventional procedure. If the filter device is mounted on its own guide wire, an interventional device can be delivered into the area of treatment using over-the-wire techniques.
  • In another aspect of the invention, the guide wire lumen extends along the entire length of the delivery sheath. Alternatively, a rapid exchange type delivery sheath can be created which utilizes only a short segment which receives the primary guide wire. Usually, the guide wire segment is located at the distal end of the delivery sheath to ensure that both the distal ends of the sheath and filter device will properly track along the primary guide wire. In another aspect of the present invention, the distal end of the filter lumen has a smaller diameter than the collapsed filter device to prevent the filter device from entering into the guide wire lumen until the expandable filter device is ready to be deployed within the patient's vasculature. This narrow lumen helps prevent the primary guide wire and filter device from possibly becoming “tangled” during delivery with the patient's vasculature. The narrow portion of the lumen should not affect the ability of the sheath to be retracted over the collapsed filter device since the narrower lumen should stretch somewhat over the filter device. Alternatively, the narrow portion of the sheath may be scored or provided with one or more lines of perforations which will cause the sheath to split a controlled amount making it easier to retract the sheath over the filter device.
  • The filter lumen of the present invention also can be made from a short segment to create a rapid exchange type delivery sheath. In one aspect, the filter lumen would be created from a short segment formed adjacent to the guide wire lumen. In an alternative design, both the guide wire lumen and filter lumen could be short segments forming a rapid exchange type sheath. The sheath could be mounted to a mandrel or third wire which would be used to retract the sheath from the expandable filter.
  • The delivery sheath made in accordance with the present invention also can be provided with a slit extending substantially along the length of the sheath to provide a slotted exchange sleeve which facilitates exchanges of the delivery sheath during use. As a result, the time needed to remove the delivery sheath from the patient's vasculature can be reduced.
  • In an alternative delivery design, the primary guide wire can be utilized in accordance with an expandable filter device which utilizes an obturator for delivering the filter device within the patient's vasculature. An obturator is generally a tapered tip made from a soft pliable material which creates an atraumatic tip which helps prevent trauma from being inflicted on the walls of the patient's vasculature as the filter device is being steered therethrough. In this aspect of the present invention, the obturator is equipped with a lumen through which the primary guide wire can extend to provide an over-the-wire delivery system that is easy to operate. The guide wire lumen on the obturator could be either set off center from the distal tip of the obturator or could extend substantially through the center portion of the distal tip of the obturator. In use, including its own delivery sheath, rides over the primary guide wire (via the guide lumen of the obturator) and into the desired area of deployment within the patient's vasculature.
  • These and other inventions of the present invention will become more apparent from the following detailed description, when taken in conjunction with the accompanying exemplary drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an elevational view, partially in cross-section, of one embodiment of a dual lumen delivery sheath embodying features of the present invention showing an expandable filtering device held in its collapsed position within the delivery sheath along with a primary guide wire extended within the guide wire lumen.
  • FIG. 2 is an exploded elevation view of the expandable filter device of FIG. 1 which depicts just one type of filter device that can be used with the present invention.
  • FIG. 3A is a cross-sectional view of the dual lumen delivery sheath of FIG. 1 taken along lines 3-3.
  • FIG. 3B is a cross-sectional view of another configuration of a dual lumen delivery sheath made in accordance with the present invention.
  • FIG. 4 is an elevational view, partially in cross-section showing the delivery sheath and expandable filter device of FIG. 1, along with the primary guide wire placed past a stenosis located in a body vessel.
  • FIG. 5 is an elevational view, partially in cross-section, showing the dual lumen delivery sheath of the present invention placed across the stenosis in the body vessel.
  • FIG. 6 is an elevational view, partially in cross-section, showing the dual lumen delivery sheath of the present invention retracted past the expandable filter device allowing the filter device to move into its expanded position within the body vessel.
  • FIG. 7 is an elevational view, partially in cross-section, showing the distal end of a rapid-exchange embodiment of a dual lumen delivery sheath made in accordance with the present invention.
  • FIG. 8 is an elevational view showing a perforation or score line located on the dual lumen delivery sheath which aids in retracting the sheath over the collapsed filter device.
  • FIG. 9 is an elevational view, partially in cross-section, showing another embodiment of a delivery system made in accordance with the present invention.
  • FIG. 10 is an elevational view, partially in cross-section, showing another embodiment of a delivery system made in accordance with the present invention.
  • FIG. 11 is an elevational view, partially in cross-section, showing another embodiment of a dual lumen delivery sheath made in accordance with the present invention.
  • FIG. 12 is a cross-sectional view of the dual lumen delivery sheath of claim 11 taken along lines 12-12.
  • FIG. 13 is an elevational view, partially in cross-section, showing another embodiment of a dual lumen delivery sheath made in accordance with the present invention.
  • FIG. 14 is an elevation view, partially in cross-section, showing another embodiment of a delivery system made in accordance with the present invention.
  • FIG. 15 is a cross-sectional view of the delivery system of FIG. 14 taken along lines 15-15.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Turning now to the drawings, in which like reference numerals represent like and corresponding elements in the drawings, FIG. 1 represents a dual lumen delivery sheath 10 incorporating features of the present invention. In the particular embodiment shown in FIG. 1, the dual lumen delivery sheath 10 is adapted to receive both an expandable filter device 12 and a primary guide wire 14. The delivery sheath 10 includes a pair of lumens, namely, a filter lumen 16 which is adapted to receive the expandable filter device 12 and a guide wire lumen 18 which receives the primary guide wire 14. As is shown in FIGS. 4-6, the delivery sheath 10 can be placed within an artery 20 or other blood vessel of a patient. This portion of the artery 20 has an area of treatment 22 in which arthroscopic plaque 24 has built up against the inside wall 26 of the artery 20. In use, the filter device 12 is to be placed distal to, and downstream from, the area of treatment 22, as shown in FIG. 6. Methods for deploying the system of FIG. 1 will be described in greater detail below.
  • The present invention is described herein in conjunction with a self-expanding filter device 12 which is capable of self-expanding from a contracted or collapsed position to an expanded or deployed position within the patient's vasculature. The filter lumen 16 of the delivery sheath 10 is thus utilized to maintain the expandable filter device 12 in its collapsed state for delivery into the patient's vasculature. Later, when the device is to be deployed at the particular location downstream from the area of treatment, the sheath 10 is retracted to allow the filter device to expand to its open or expanded position within the body vessel. It should also be appreciated that other types of expandable filter devices could be used in conjunction with the present invention in order to deliver the filter device to the desired location in a patient's vasculature. Additionally, the filter device need not be self-expanding, but could utilized mechanical components to open and close the filter as desired. For that reason, the type of filter device utilized in accordance with the present invention can include a number of different embodiments and is not limited to the particular filter device disclosed herein.
  • As can be seen best in FIG. 2, one particular type of filter device 12 which can be used with the present invention is shown mounted on a separate guide wire 28 that can be utilized by the physician to introduce interventional devices into the area of treatment. This expandable filter device 12 includes an expandable filtering assembly 30 having an expandable strut assembly 32 consisting of a number of struts 34 which expand radially outward to open a filter 36 that is attached to the strut assembly 32.
  • As can be seen in FIGS. 1 and 2, the expandable strut assembly 32 is attached to the guide wire 28 at its proximal collar 38 which is fixed between two stop fittings 40 and 42. This allows the distal collar 44 of the strut assembly to move axially along the guide wire 28 and allows the struts 34 to expand and collapse as needed. This arrangement also allows the filter assembly to spin on the guide wire 28. Attached to the distal end of the strut assembly 30 is an obturator 46 which provides an atraumatic tip which prevents trauma from being inflicted on the walls of the patient's vasculature. The obturator 46 is bonded or otherwise attached to the filtering assembly 30.
  • In one particular procedure in using the present invention, a balloon angioplasty catheter (not shown), for example, can be introduced within the patient's vasculature in a conventional SELDINGER technique through a guide wire catheter (not shown). The guide wire 28 of the deployed filter device 12 would be disposed through the area of treatment and the dilitating catheter can be advanced over the guide wire 28 within the artery until the balloon portion is directly in the area of treatment. The balloon of the dilitation catheter can be expanded, expanding the plaque and artery to create a larger opening in the area of treatment to reduce the blockage in the vessel at the position of the plaque and increase blood flow. After the dilitating catheter is removed from the patient's vasculature, a stent could also be delivered into the area of treatment using over-the-wire techniques to help hold and maintain this portion of the artery and help prevent re-stenosis from occurring in the area of treatment. Any embolic debris which is created during the intereventional procedure will be released into the blood stream and will enter the filtering assembly located downstream from the area of treatment. Once the procedure is completed, the filter device 12 can be collapsed and removed from the patient's vasculature, taking with it all embolic debris trapped within the filter 36.
  • Although the procedure described herein is directed to an angioplasty and stenting procedure which can be performed in the patient's vasculature utilizing the present invention, it should be appreciated to those skilled in the art that any one of a number of interventional procedures could be utilized in the area of treatment as well. For example, laser angioplasty, atherectomy and still other interventional procedures could be performed in the area of treatment utilizing the present invention. Moreover, the present invention can be utilized in a number of other body vessels including, but not limited to, the coronary arteries, renal arteries, saphenous vein grafts and other peripheral arteries.
  • Referring now to FIGS. 4-6, one method of utilizing the present invention is herein disclosed. The dual lumen delivery sheath 10 of the present invention can be introduced with the filter device placed in its collapsed position within the artery 20 in which the interventional procedure is to be performed. Initially, the primary guide wire 14 is placed within the patient's vasculature and is maneuvered by the physician into the area of treatment 20. As is shown in FIG. 4, the primary guide wire 14 is maneuvered past the area of treatment 22 to a downstream location where the filter device will be deployed. After the primary guide wire is in place, the delivery sheath and filter device can be backloaded onto the proximal end of the guide wire. The physician can then move the delivery sheath 10 and the filter device 12 over the primary guide wire 14 using over-the-wire techniques known in the art. As can be seen in FIG. 5, the entire delivery sheath 10 and filter device 12 have been placed downstream from the area of treatment 22 to the location where the filter device 12 is to be deployed. Once the delivery sheath and filter device are in the desired location, the physician can remove the primary guide wire 14 from the patient to allow the filter device 12 to expand within the artery without any obstructions. As is shown in FIG. 6, the primary guide wire 14 has been removed and the delivery sheath 10 has been retracted proximally to allow the expandable filter device 12 to move into its open or expanded position within the artery 20. Thereafter, the entire delivery sheath 10 can be removed from the guide wire 28 of the filter device 12 allowing interventional devices to be positioned into the area of treatment 22 utilizing over-the-wire techniques. In the event that any embolic debris is created during the interventional procedure, the embolic debris will be released into the blood stream where it should collect within the filter element 36 of the filter device 12.
  • After the interventional procedure is completed, the physician can remove the interventional device from the guide wire 28. Thereafter, the physician may wish to leave the filter device 12 in place in the artery to insure that all embolic debris generated during the procedure is driven into the filter portion 36 of the filter device 12. Thereafter, once the physician is assured that all embolic debris has been collected, he/she can then place another sheath (not shown) over the guide wire 28 which would contact the strut assembly 32 causing the struts and the filter to move back to its collapsed position. Thereafter, the entire filter device 12 could be collapsed within the sheath and removed from the patient's vasculature.
  • Referring specifically now to FIGS. 1 and 8, the distal most end of the delivery sheath 10 is shown. As can be seen in FIG. 1, the filter lumen 16 extends into the guide wire lumen 18 near the distal end to create a low profile component capable of reaching distal and tight lesions. The distal end of the filter lumen 16 has a region 48 with a diameter less than the diameter of the main portion of the filter lumen 16. This particular configuration can be utilized to create a small profile diameter at the distal most end 50 of the delivery sheath 10 and to prevent the sheath from “digging” or “snow plowing” into the artery walls as the delivery sheath 10 is being delivered over the primary guide wire 14. Otherwise, if the distal opening of the delivery sheath 10 is too large, it is possible for the distal end to inflict trauma to the artery walls as it is being pushed up through the anatomy. Moreover, this reduced region 48 on the filter lumen 16 also helps to prevent the filter device 12 from extending into the guide wire lumen and prevent the coil tip 52 of the guide wire 28 from becoming tangled with the primary guide wire 14 as the components are being manipulated into the patient's vasculature.
  • This reduced diameter region 48 of the filter lumen 16 should not prevent the sheath from retracting over the filter device 12 since the delivery sheath 10 can be made from a material which will stretch somewhat as the sheath 10 is being retracted over the filter device. However, this region 48 of the sheath 10 can be formed or scored with perforations 54 which extend longitudinally along the sheath at this area and will cause the sheath to split a controlled amount as the sheath 10 is being retracted over the filter device 12. FIG. 8 shows one particular way of scoring the lumen with perforations 54 which will open as the reduced region 48 is being retracted over the filter device. These perforations should assure that the sheath will be properly retracted over the filter device.
  • Referring now to FIGS. 3A and 3B, it can be seen that the guide wire lumen 18 can be formed within the interior of the delivery sheath 10 as is shown in FIG. 3A or it could alternatively be formed as a separate lumen which extends outside the filter lumen 16 as is shown in FIG. 3B. It should be appreciated that other configurations having lumens of different shapes and sizes can be utilized in accordance with the present invention which would not depart from the spirit and scope of the present invention.
  • Referring now to FIG. 7, an alternative embodiment of a delivery sheath 60 made in accordance with the present invention is shown. In this particular embodiment, the delivery sheath includes both a guide wire lumen 62 and a filter lumen 64, however, the guide wire lumen 66 does not extend along the entire length of the sheath 60 as does the previous embodiment described herein. Rather, the guide wire lumen 62 is a short lumen incorporated into the sheath 60 to create a rapid exchange type delivery sheath. This particular sheath 60 has the same features of the embodiment previously described and would be capable of delivering the filter device 12 into the area of treatment in the same manner described herein.
  • Referring now to FIGS. 9 and 10, an alternative delivery system made in accordance with the present invention is shown. In these particular figures, the primary guide wire 14 is not disposed within the delivery sheath itself, but rather, is placed within a lumen created within an obturator 70 located on the distal end of the filter device 12. Referring initially first to FIG. 9, the obturator 70 is shown having a guide wire lumen 72 which extends within the obturator and receives the primary guide wire 14 during use. This obturator 70 creates an atraumatic tip as it is made from a soft material such as PEBAX or other soft polymeric material. Again this obturator helps prevent trauma to the inner walls of the patient's vasculature as the device is being delivered to the target area. The obturator 70 is attached to the filter device 12 via the strut assembly 32 and the distal end of the guide wire 28. This particular embodiment of the filter device 12 is substantially similar to the filter device shown in FIG. 2. The major difference is that the distal end of the guide wire 28 does not extend through the obturator 70 as does in the filter device shown in FIG. 2. Rather, the obturator 70 is attached to the strut assembly 32 and the distal end of the guide wire 28. This allows the guide wire lumen 72 to extend through the main portion of the obturator 70 and out the center of the distal tip 74 of the obturator.
  • As can be seen in FIG. 10, the guide wire lumen 76 can alternatively be placed off center from the obturator to create a lumen which extends substantially parallel with the longitudinal axis of the delivery sheath 78. However, both of these guide wire lumens 72 and 76 perform the same function of providing a means for delivering the filter device 12 into the desired area utilizing an over-the-wire technique.
  • The delivery system shown in FIGS. 9 and 10 can be used in a similar manner as described herein in that the primary wire would be first positioned across the lesion. The filter device 12 can then be backloaded onto the proximal end of the guide wire (via the obturator) and advanced over the wire to cross the lesion. The primary guide wire would then be removed and the sheath 78 would be retracted to deploy the filter device 12 within the artery. Again, interventional devices could be advanced over the guide wire 28 to perform the interventional procedure. Thereafter, the filter device could be collapsed by the restraining sheath and removed from the patient's vasculature.
  • Referring now to FIGS. 11 and 12, an alternative embodiment of a delivery sheath 80 made in accordance with the present invention is shown. In this particular embodiment, the expandable filter device 12 is placed within a filter lumen 16 and the primary guide wire 14 is receivable within a guide wire lumen 18. The guide wire lumen 18 includes a slit 82 and the filter lumen 16 includes a slit 84 which both extend longitudinally along the tubular member forming the sheath 80. The slit 84 of the filter lumen 16 can extend along the length of the sheath 80 just proximal to the end of the filter device 12. This will create and maintain a sheath which will hold the filter device 12 in its expanded condition until it is ready to be deployed by the physician. Thereafter, once the filter device 12 has been deployed, the slit 84 will facilitate the removal of the entire delivery sheath 80 from the patient's vasculature. In like fashion, the slit 82 located along the length of the guide wire lumen 18 could also be used to facilitate the quick removal of the sheath in the event that the primary guide wire 14 is to remain within the patient's vasculature. Thereafter, an exchange of interventional devices can be quickly and easily made. It should be appreciated that either of the guide wire lumen or filter lumen could be provided with this longitudinal slit, or both, and that such a longitudinal slit could be utilized with the other embodiment disclosed herein.
  • Referring now to FIG. 13, a rapid exchange type dual lumen delivery sheath 90 is shown which can be made in accordance with the present invention. In this particular embodiment, the filter lumen 92 is made from a short segment of tubing which creates a pod-like container for storing the collapsed filter device 12 until it is ready to be deployed. In use, the sheath portion which covers the filter 12 can be moved by retracting the proximal end of the guide wire lumen portion of the sheath as needed. This particular configuration can also utilize perforations cut or scored into the sheath, as shown in FIG. 8, in order to facilitate the easy retraction of the sheath from the filter 12. Also, as can be seen from FIG. 13, the proximal end of the filter lumen 92 has a narrower diameter than the main portion of the lumen 92 in order to help prevent the filter 12 from “backing out” of its sheath as it is being delivered within the patient's vasculature. This narrowing at the proximal region 94 does not interfere with the sheath's ability to be drawn back and retracted over the filter device 12.
  • Referring now to FIG. 14, still another embodiment of the present invention is shown in which the delivery sheath 100 includes a rapid-type exchange arrangement for both the filter lumen 102 and the primary guide wire lumen 104. This particular configuration enjoys the benefits of rapid exchange with regard to both the filter device 12 and the primary guide wire 14. This particular sheath 100 includes a third lumen 106 in which a mandrel or third guide wire 108 is utilized to provide axial stiffness to the structure as the sheath is being retracted past the collapsed filter device 12. In this manner, a three-wire delivery system can be utilized.
  • In use, the delivery sheath 100 and filter device 12 are delivered into the target area in the same manner as described above, namely, by moving along the primary guide wire 14 in a over-the-wire fashion. The mandrel 108 is also deployed with the delivery sheath 100 since it is adhesively fixed or bonded within the lumen 106. Once the delivery sheath 100 reaches the area in which the filter device 12 is to be deployed, the primary guide wire 14 can then be removed from the patient's vasculature. The sheath portion of the filter lumen 102 can be retracted over the filter device to deploy it within the patient's vasculature by pulling back on the proximal end of the mandrel 108. The entire delivery sheath 110 can then be removed from the patient's vasculature and the appropriate interventional devices can be advanced into the target area via the guide wire 28 of the filter device 12. The filter lumen 102 of the sheath 100 also includes a proximal area 110 in which the diameter is reduced in order to prevent the filter device 12 from backing out of the lumen 102 during usage. Again, this reduced diameter creates a composite pod-like container for the collapsed filter 12 until it is ready to be deployed within the patient's vasculature. The mandrel 108 utilized in accordance with the present invention can be any mandrel well-known in the art or an alternative could be a guide wire which is fixed within the lumen 106 of the delivery sheath 100. It should also be appreciated that the lumen 106 does not need to extend all the way back to the proximal end of the mandrel 108, but rather, it could terminate with the proximal end of the filter lumen and guide wire lumen. Thus, a composite delivery sheath can be created which provides a low profile device that can be easily advanced into the patient's vasculature.
  • The obturator utilized in conjunction with the present invention can be made from material such as PEBAX 40D, or other polymeric materials or alloys which are capable of providing a soft atromatic tip for the filter device. The material used to make the obturator can be loaded with radiopaque materials, such as bismuth or barium, which will help locate the tip of the device when using visualization equipment during the procedure. The obturator can be attached to the distal end of the strut assembly of the filter device utilizing adhesive or other bonding techniques to provide a strong bond between the components. The guide wire lumen formed in the obturator can be mechanically drilled or drilled utilizing a laser source.
  • The strut assemblies of the filter device can be made in many ways. However, the one particular method of making the strut assembly is to cut a thin-walled tubular member, such as nickel-titanium hypotube, to remove portions of the tubing in the desired pattern for each strut, leaving relatively untouched the portions of the tubing which are to form each strut. The tubing may be cut into the desired pattern by means of a machine-controlled laser.
  • The tubing used to make the strut assembly may be made of suitable biocompatible material such as stainless steel. The stainless steel tube may be alloy-type: 316L SS, Special Chemistry per ASTM F138-92 or ASTM F139-92 grade 2. Special Chemistry of type 316L per ASTM F138-92 or ASTM F139-92 Stainless Steel for Surgical Implants in weight percent.
  • The strut size is usually very small, so the tubing from which it is made must necessarily also have a small diameter. Typically, the tubing has an outer diameter on the order of about 0.020-0.040 inches in the unexpanded condition. The wall thickness of the tubing is about 0.076 mm (0.003-0.006 inches). For strut assemblies implanted in body lumens, such as PTA applications, the dimensions of the tubing maybe correspondingly larger. While it is preferred that the strut assembly be made from laser cut tubing, those skilled in the art will realize that the strut assembly can be laser cut from a flat sheet and then rolled up in a cylindrical configuration with the longitudinal edges welded to form a cylindrical member.
  • Generally, the hypotube is put in a rotatable collet fixture of a machine-controlled apparatus for positioning the tubing relative to a laser. According to machine-encoded instructions, the tubing is then rotated and moved longitudinally relative to the laser which is also machine-controlled. The laser selectively removes the material from the tubing by ablation and a pattern is cut into the tube. The tube is therefore cut into the discrete pattern of the finished struts. The strut assembly can thus be laser cut much like a stent is laser cut. Details on how the tubing can be cut by a laser are found in U.S. Pat. Nos. 5,759,192 (Saunders) and U.S. Pat. No. 5,780,807 (Saunders), which have been assigned to Advanced Cardiovascular Systems, Inc.
  • The process of cutting a pattern for the strut assembly into the tubing generally is automated except for loading and unloading the length of tubing. For example, a pattern can be cut in tubing using a CNC-opposing collet fixture for axial rotation of the length of tubing, in conjunction with CNC X/Y table to move the length of tubing axially relative to a machine-controlled laser as described. The entire space between collets can be patterned using the CO2 or Nd:YAG laser set-up. The program for control of the apparatus is dependent on the particular configuration used and the pattern to be ablated in the coding.
  • A suitable composition of nickel-titanium which can be used to manufacture the strut assembly of the present invention is approximately 55% nickel and 45% titanium (by weight) with trace amounts of other elements making up about 0.5% of the composition. The austenite transformation temperature is between about −15° C. and 0° C. in order to achieve superelasticity. The austenite temperature is measured by the bend and free recovery tangent method. The upper plateau strength is about a minimum of 60,000 psi with an ultimate tensile strength of a minimum of about 155,000 psi. The permanent set (after applying 8% strain and unloading), is approximately 0.5%. The breaking elongation is a minimum of 10%. It should be appreciated that other compositions of nickel-titanium can be utilized, as can other self-expanding alloys, to obtain the same features of a self-expanding stent made in accordance with the present invention.
  • The strut assembly of the present invention can be laser cut from a tube of nickel-titanium (Nitinol) whose transformation temperature is below body temperature. After the strut pattern is cut into the hypotube, the tubing is expanded and heat treated to be stable at the desired final diameter. The heat treatment also controls the transformation temperature of the strut assembly such that it is super elastic at body temperature. The transformation temperature is at or below body temperature so that the stent is superelastic at body temperature. The strut assembly is usually implanted into the target vessel which is smaller than the diameter if the strut assembly in the expanded position so that the struts apply a force to the vessel wall to maintain the filter element in the expanded position.
  • The strut assembly could be manufactured to remain in its open position while at body temperature and would move to its collapsed position upon application of a low temperature. One suitable method to allow the strut assembly to assume a change phase which would facilitate the strut and filter assembly being mounted into the delivery sheath include chilling the filter assembly in a cooling chamber maintained at a temperature below the martensite finish temperature through the use of liquid nitrogen. Once the strut assembly is placed in its collapsed state, the restraining sheath can be placed over the device to prevent the device from expanding once the temperature is brought up to body temperature. Thereafter, once the filter device is to be utilized, the delivery sheath is retracted to allow the filter assembly/strut assembly to move to its expanded position within the patient's vasculature.
  • The polymeric material which can be utilized to create the filter element include, but is not limited to, polyurethane and Gortex, a commercially available material. Other possible suitable materials include ePTFE. The material can be elastic or non-elastic. The wall thickness of the filtering element can be about 0.0005-0.005 inches. The wall thickness may vary depending on the particular material selected. The material can be made into a cone or similarly sized shape utilizing blow-mold technology. The perfusion openings can be any different shape or size. A laser, a heated rod or other process can be utilized to create to perfusion openings in the filter material. The holes, would of course be properly sized to catch the particular size of embolic debris of interest. Holes can be laser cut in a spiral pattern with some similar pattern which will aid in the re-wrapping of the media during closure of the vice. Additionally, the filter material can have a “set” put in it much like the “set” used in dilatation balloons to make the filter element re-wrap more easily when placed in the collapsed position.
  • The materials which can be utilized for the delivery sheath and can be made from similar polymeric material such as cross-linked HDPE. It can alternatively be made from a material such as polyolifin which has sufficient strength to hold the compressed strut assembly and has relatively low frictional characteristics to minimize any friction between the filtering assembly and the sheath. Friction can be further reduced by applying a coat of silicone lubricant, such as Microglide® or Dow 360, to the inside surface of the restraining sheath before the sheaths are placed over the filtering assembly.
  • In view of the foregoing, it is apparent that the system and device of the present invention substantially enhance the safety of performing certain interventional procedures by significantly reducing the risks associated with embolic material being created and released into the patient's bloodstream. Further modifications and improvements may additionally be made to the system and method disclosed herein without departing from the scope of the present invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.

Claims (24)

1. A system for delivering a filter device within a body vessel, comprising:
a guide wire having a proximal end and a distal end; and
a sheath having a proximal end and a distal end and including a first lumen for receiving the filter device and a second lumen for receiving the guide wire therethrough, the filter device and sheath being moveable along the guide wire for positioning the filter device within the body vessel, the sheath being retractable over the filter device for deploying the filter device within the body vessel for deployment.
2. The delivery system of claim 1, wherein:
the filter device is self-expanding.
3. The delivery system of claim 1, wherein:
the second lumen for receiving the guide wire extends substantially along the length of the sheath.
4. The delivery system of claim 1, wherein:
the second lumen for receiving the guide wire is a short tubular segment located near the distal end of the sheath.
5. The delivery system of claim 1, wherein:
the first lumen for receiving the filter device extends into the second lumen for receiving the guide wire near the distal end of the sheath.
6. The delivery system of claim 5, wherein:
the first lumen for receiving the filter device has a diameter which decreases as the first lumen extends toward the distal end of the sheath.
7. The delivery system of claim 5, wherein:
the distal end of the first lumen is tapered at the region where it connects with the second lumen to reduce the overall diameter of the sheath at its distal end.
8. The delivery system of claim 1, wherein:
the sheath includes perforations located near its distal end which causes at least a portion of the sheath to rupture as the sheath is retracted over the filter device.
9. The delivery system of claim 8, wherein:
the distal end of the sheath includes a line of perforations which extend longitudinally along the length of the sheath in the distal region of the sheath.
10. A delivery sheath for delivering a filter device within a body vessel, comprising:
an elongated tubular member having a proximal end and a distal end and including a first lumen for receiving the filter device and a second lumen for receiving a guide wire therethrough; wherein
the filter device and elongated tubular member are moveable along a guide wire for positioning the vessel within the body vessel and the tubular member retractable over the filter device to deploy the filter device within the body vessel.
11. The delivery sheath of claim 10, wherein:
the filter device is self-expanding and is mounted on a second guide wire.
12. The delivery sheath of claim 10, wherein:
the second lumen for receiving the guide wire extends substantially along the length of the elongated tubular member.
13. The delivery sheath of claim 10, wherein:
the second lumen for receiving the guide wire is a short tubular segment located near the distal end of the tubular member.
14. The delivery sheath of claim 10, wherein:
the first lumen for receiving the filter device extends into the second lumen for receiving the guide wire near the distal end of the tubular member.
15. The delivery sheath of claim 14, wherein:
the first lumen for receiving the filter device has a diameter which decreases as the first lumen extends towards the distal end of the tubular member.
16. The delivery sheath of claim 15, wherein:
the distal end of the first lumen is tapered at a region where it connects with the second lumen to reduce the overall diameter of the tubular member at its distal end.
17. The delivery sheath of claim 10, wherein:
the tubular member includes perforations located near its distal end which cause at least a portion of the tubular member to rupture as a tubular member is retracted over the filter device.
18. The delivery sheath of claim 10, wherein:
the first lumen for receiving the filter device is a short tubular segment located near the distal end of the tubular member.
19. The delivery system of claim 18, wherein:
the first lumen has a first end and a second end and a primary diameter sufficient to receive the filter device in a collapsed position with a narrower diameter near the first and second ends to resist movement of the filter device from the sheath as it is being delivered within the body vessel.
20. The delivery sheath of claim 10, wherein:
the first lumen for receiving the filter device includes a slit extending longitudinally from the proximal end of the tubular member to a region adjacent to the sleeve which houses the filter device for facilitating removal of the second guide wire therethrough.
21. The delivery sheath of claim 10, wherein:
the second lumen for receiving the guide wire includes a slit extending longitudinally from the proximal end to the tubular member to a region adjacent to the portion of the sheath which houses the filter device to facilitate removal of the guide wire therethrough.
22. A system for delivering a filter device within a body vessel, comprising:
a guide wire having a proximal end and a distal end;
a filter device moveable between a collapsed position and an expanded position which includes an obturator located at the distal end of the filter device, the filter device being attached to the guide wire near its distal end; and
a guide wire lumen extending through the obturator which is adapted to receive a second guide wire used to deliver the filter device into the body vessel utilizing an over-the-wire technique.
23. The delivery system of claim 21, wherein
the obturator has a central distal tip and the guide wire lumen extends through the central distal tip.
24. The delivery system of claim 21, wherein:
the obturator has a central distal tip and the guide wire lumen extends through the obturator offset from the central distal tip.
US12/102,678 2000-10-17 2008-04-14 Delivery systems for embolic filter devices Abandoned US20080215084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/102,678 US20080215084A1 (en) 2000-10-17 2008-04-14 Delivery systems for embolic filter devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/691,463 US6537294B1 (en) 2000-10-17 2000-10-17 Delivery systems for embolic filter devices
US10/385,162 US7425215B2 (en) 2000-10-17 2003-03-10 Delivery systems for embolic filter devices
US12/102,678 US20080215084A1 (en) 2000-10-17 2008-04-14 Delivery systems for embolic filter devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/385,162 Continuation US7425215B2 (en) 2000-10-17 2003-03-10 Delivery systems for embolic filter devices

Publications (1)

Publication Number Publication Date
US20080215084A1 true US20080215084A1 (en) 2008-09-04

Family

ID=24776626

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/691,463 Expired - Lifetime US6537294B1 (en) 2000-10-17 2000-10-17 Delivery systems for embolic filter devices
US10/385,162 Expired - Fee Related US7425215B2 (en) 2000-10-17 2003-03-10 Delivery systems for embolic filter devices
US12/102,678 Abandoned US20080215084A1 (en) 2000-10-17 2008-04-14 Delivery systems for embolic filter devices
US12/187,129 Abandoned US20090030445A1 (en) 2000-10-17 2008-08-06 Delivery sysems for embolic filter devices

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/691,463 Expired - Lifetime US6537294B1 (en) 2000-10-17 2000-10-17 Delivery systems for embolic filter devices
US10/385,162 Expired - Fee Related US7425215B2 (en) 2000-10-17 2003-03-10 Delivery systems for embolic filter devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/187,129 Abandoned US20090030445A1 (en) 2000-10-17 2008-08-06 Delivery sysems for embolic filter devices

Country Status (1)

Country Link
US (4) US6537294B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091212A1 (en) * 2009-02-04 2010-08-12 Blatter Duane D Blood filter retrieval devices and methods
WO2011141866A2 (en) * 2010-05-13 2011-11-17 Noel Elman Stent devices for support, controlled drug delivery and pain management after vaginal surgery

Families Citing this family (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0934092A4 (en) * 1997-03-06 2008-03-26 Boston Scient Scimed Inc Distal protection device and method
US7491216B2 (en) * 1997-11-07 2009-02-17 Salviac Limited Filter element with retractable guidewire tip
ATE382309T1 (en) * 1997-11-07 2008-01-15 Salviac Ltd EMBOLIC PROTECTION DEVICE
US7314477B1 (en) 1998-09-25 2008-01-01 C.R. Bard Inc. Removable embolus blood clot filter and filter delivery unit
US6918921B2 (en) * 1999-05-07 2005-07-19 Salviac Limited Support frame for an embolic protection device
US6964672B2 (en) * 1999-05-07 2005-11-15 Salviac Limited Support frame for an embolic protection device
AU4606400A (en) * 1999-05-07 2000-11-21 Salviac Limited Improved filter element for embolic protection device
WO2000067666A1 (en) * 1999-05-07 2000-11-16 Salviac Limited Improved filter element for embolic protection device
US7037320B2 (en) * 2001-12-21 2006-05-02 Salviac Limited Support frame for an embolic protection device
US20060069423A1 (en) * 1999-11-22 2006-03-30 Fischell David R Means and method for treating an intimal dissection after stent implantation
US6402771B1 (en) 1999-12-23 2002-06-11 Guidant Endovascular Solutions Snare
US6575997B1 (en) 1999-12-23 2003-06-10 Endovascular Technologies, Inc. Embolic basket
US6660021B1 (en) 1999-12-23 2003-12-09 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US7918820B2 (en) 1999-12-30 2011-04-05 Advanced Cardiovascular Systems, Inc. Device for, and method of, blocking emboli in vessels such as blood arteries
US6695813B1 (en) 1999-12-30 2004-02-24 Advanced Cardiovascular Systems, Inc. Embolic protection devices
GB2369575A (en) * 2000-04-20 2002-06-05 Salviac Ltd An embolic protection system
US6939362B2 (en) * 2001-11-27 2005-09-06 Advanced Cardiovascular Systems, Inc. Offset proximal cage for embolic filtering devices
US6964670B1 (en) 2000-07-13 2005-11-15 Advanced Cardiovascular Systems, Inc. Embolic protection guide wire
US6506203B1 (en) * 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US7169165B2 (en) * 2001-01-16 2007-01-30 Boston Scientific Scimed, Inc. Rapid exchange sheath for deployment of medical devices and methods of use
US6689151B2 (en) * 2001-01-25 2004-02-10 Scimed Life Systems, Inc. Variable wall thickness for delivery sheath housing
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
US6929652B1 (en) * 2001-06-01 2005-08-16 Advanced Cardiovascular Systems, Inc. Delivery and recovery systems having steerability and rapid exchange operating modes for embolic protection systems
US7179275B2 (en) * 2001-06-18 2007-02-20 Rex Medical, L.P. Vein filter
US6783538B2 (en) 2001-06-18 2004-08-31 Rex Medical, L.P Removable vein filter
US8282668B2 (en) * 2001-06-18 2012-10-09 Rex Medical, L.P. Vein filter
US6793665B2 (en) * 2001-06-18 2004-09-21 Rex Medical, L.P. Multiple access vein filter
AU2002312441B8 (en) * 2001-06-18 2008-08-21 Rex Medical, L.P. Vein Filter
US7789860B2 (en) * 2001-06-27 2010-09-07 Salviac Limited Catheter for delivery and/or retrieval of a medical device
US7780693B2 (en) * 2001-06-27 2010-08-24 Salviac Limited Catheter
US20030125751A1 (en) * 2001-06-27 2003-07-03 Patrick Griffin Catheter
EP3072479B1 (en) * 2001-06-27 2018-09-26 Salviac Limited A catheter
US7338510B2 (en) * 2001-06-29 2008-03-04 Advanced Cardiovascular Systems, Inc. Variable thickness embolic filtering devices and method of manufacturing the same
US6599307B1 (en) * 2001-06-29 2003-07-29 Advanced Cardiovascular Systems, Inc. Filter device for embolic protection systems
US6951570B2 (en) 2001-07-02 2005-10-04 Rubicon Medical, Inc. Methods, systems, and devices for deploying a filter from a filter device
US6962598B2 (en) * 2001-07-02 2005-11-08 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection
US6638294B1 (en) 2001-08-30 2003-10-28 Advanced Cardiovascular Systems, Inc. Self furling umbrella frame for carotid filter
US6592606B2 (en) 2001-08-31 2003-07-15 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
US8262689B2 (en) 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
US20030069597A1 (en) * 2001-10-10 2003-04-10 Scimed Life Systems, Inc. Loading tool
US6641606B2 (en) * 2001-12-20 2003-11-04 Cleveland Clinic Foundation Delivery system and method for deploying an endovascular prosthesis
US7241304B2 (en) 2001-12-21 2007-07-10 Advanced Cardiovascular Systems, Inc. Flexible and conformable embolic filtering devices
US9204956B2 (en) 2002-02-20 2015-12-08 C. R. Bard, Inc. IVC filter with translating hooks
US7144408B2 (en) * 2002-03-05 2006-12-05 Salviac Limited Embolic protection system
US7349995B2 (en) * 2002-03-07 2008-03-25 Intel Corporation Computing device with scalable logic block to respond to data transfer requests
US7717934B2 (en) * 2002-06-14 2010-05-18 Ev3 Inc. Rapid exchange catheters usable with embolic protection devices
US7232452B2 (en) * 2002-07-12 2007-06-19 Ev3 Inc. Device to create proximal stasis
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US20130178887A1 (en) * 2002-08-05 2013-07-11 Gardia Medical Ltd. Retrieval Catheters and Methods of Retrieving Deployed Medical Devices
AU2003259784A1 (en) * 2002-08-13 2004-02-25 Cook Ireland Ltd. Ercp catheter with a removable handle for lithotriptor compatible basket
US7331973B2 (en) 2002-09-30 2008-02-19 Avdanced Cardiovascular Systems, Inc. Guide wire with embolic filtering attachment
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US7252675B2 (en) 2002-09-30 2007-08-07 Advanced Cardiovascular, Inc. Embolic filtering devices
US7998163B2 (en) * 2002-10-03 2011-08-16 Boston Scientific Scimed, Inc. Expandable retrieval device
US20040088000A1 (en) 2002-10-31 2004-05-06 Muller Paul F. Single-wire expandable cages for embolic filtering devices
US20040102789A1 (en) * 2002-11-22 2004-05-27 Scimed Life Systems, Inc. Selectively locking device
DE60210997T2 (en) * 2002-12-17 2007-01-11 N.G.C. Medical S.P.A. Double lumen suction catheter for distal protection during percutaneous surgery
US7128752B2 (en) * 2002-12-23 2006-10-31 Syntheon, Llc Emboli and thrombi filter device and method of using the same
JP2006518625A (en) * 2003-02-14 2006-08-17 サルヴィアック・リミテッド Stent delivery and placement system
US6878291B2 (en) * 2003-02-24 2005-04-12 Scimed Life Systems, Inc. Flexible tube for cartridge filter
US7740644B2 (en) * 2003-02-24 2010-06-22 Boston Scientific Scimed, Inc. Embolic protection filtering device that can be adapted to be advanced over a guidewire
US8591540B2 (en) 2003-02-27 2013-11-26 Abbott Cardiovascular Systems Inc. Embolic filtering devices
WO2004082525A2 (en) 2003-03-14 2004-09-30 Sinexus, Inc. Sinus delivery of sustained release therapeutics
US20040199201A1 (en) * 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Embolectomy devices
US20040199199A1 (en) * 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Filter and method of making a filter
US6969396B2 (en) * 2003-05-07 2005-11-29 Scimed Life Systems, Inc. Filter membrane with increased surface area
US20040254528A1 (en) * 2003-06-12 2004-12-16 Adams Daniel O. Catheter with removable wire lumen segment
US7662143B2 (en) * 2003-07-29 2010-02-16 Boston Scientific Scimed, Inc. Apparatus and method for treating intravascular disease
WO2005011790A1 (en) * 2003-07-31 2005-02-10 Wilson-Cook Medical Inc. System for introducing multiple medical devices
US8393328B2 (en) 2003-08-22 2013-03-12 BiO2 Medical, Inc. Airway assembly and methods of using an airway assembly
US7699865B2 (en) * 2003-09-12 2010-04-20 Rubicon Medical, Inc. Actuating constraining mechanism
US7892251B1 (en) 2003-11-12 2011-02-22 Advanced Cardiovascular Systems, Inc. Component for delivering and locking a medical device to a guide wire
US7651514B2 (en) * 2003-12-11 2010-01-26 Boston Scientific Scimed, Inc. Nose rider improvement for filter exchange and methods of use
US20050159772A1 (en) * 2004-01-20 2005-07-21 Scimed Life Systems, Inc. Sheath for use with an embolic protection filtering device
US8062326B2 (en) 2004-01-22 2011-11-22 Rex Medical, L.P. Vein filter
US8500774B2 (en) 2004-01-22 2013-08-06 Rex Medical, L.P. Vein filter
US7976562B2 (en) * 2004-01-22 2011-07-12 Rex Medical, L.P. Method of removing a vein filter
US8211140B2 (en) * 2004-01-22 2012-07-03 Rex Medical, L.P. Vein filter
US7338512B2 (en) * 2004-01-22 2008-03-04 Rex Medical, L.P. Vein filter
US8162972B2 (en) 2004-01-22 2012-04-24 Rex Medical, Lp Vein filter
US9510929B2 (en) 2004-01-22 2016-12-06 Argon Medical Devices, Inc. Vein filter
US7704266B2 (en) 2004-01-22 2010-04-27 Rex Medical, L.P. Vein filter
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US20050216044A1 (en) * 2004-03-25 2005-09-29 Hong Mun K Total occlusion recanalization facilitating device
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US20070208252A1 (en) 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US7410480B2 (en) * 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US20190314620A1 (en) 2004-04-21 2019-10-17 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US20050251198A1 (en) * 2004-05-06 2005-11-10 Scimed Life Systems, Inc. Intravascular filter membrane and method of forming
US7704267B2 (en) 2004-08-04 2010-04-27 C. R. Bard, Inc. Non-entangling vena cava filter
CA2580124C (en) * 2004-09-27 2014-05-13 Rex Medical, L.P. Vein filter
US8795315B2 (en) 2004-10-06 2014-08-05 Cook Medical Technologies Llc Emboli capturing device having a coil and method for capturing emboli
US7794473B2 (en) 2004-11-12 2010-09-14 C.R. Bard, Inc. Filter delivery system
US7736384B2 (en) * 2005-01-07 2010-06-15 Rex Medical, L.P. Cartridge for vascular device
US7736383B2 (en) 2005-01-07 2010-06-15 Rex Medical, L.P. Vein filter cartridge
KR100675379B1 (en) * 2005-01-25 2007-01-29 삼성전자주식회사 Printing system and printing method
ATE539789T1 (en) * 2005-02-18 2012-01-15 Tyco Healthcare QUICKLY REPLACEABLE CATHETER
US20060190024A1 (en) * 2005-02-24 2006-08-24 Bei Nianjiong Recovery catheter apparatus and method
US7998164B2 (en) * 2005-03-11 2011-08-16 Boston Scientific Scimed, Inc. Intravascular filter with centering member
US8221446B2 (en) 2005-03-15 2012-07-17 Cook Medical Technologies Embolic protection device
US8945169B2 (en) 2005-03-15 2015-02-03 Cook Medical Technologies Llc Embolic protection device
US20060229657A1 (en) * 2005-03-30 2006-10-12 Wasicek Lawrence D Single operator exchange embolic protection filter
US9259305B2 (en) 2005-03-31 2016-02-16 Abbott Cardiovascular Systems Inc. Guide wire locking mechanism for rapid exchange and other catheter systems
RU2007140909A (en) 2005-04-04 2009-05-20 Синексус, Инк. (Us) DEVICE AND METHODS FOR TREATING DISEASES OF THE NANOLAIN SINUS
US7967838B2 (en) 2005-05-12 2011-06-28 C. R. Bard, Inc. Removable embolus blood clot filter
CN2824849Y (en) * 2005-05-17 2006-10-11 微创医疗器械(上海)有限公司 Distal end protector with dual wire guide
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US7850708B2 (en) 2005-06-20 2010-12-14 Cook Incorporated Embolic protection device having a reticulated body with staggered struts
US8109962B2 (en) 2005-06-20 2012-02-07 Cook Medical Technologies Llc Retrievable device having a reticulation portion with staggered struts
US7766934B2 (en) 2005-07-12 2010-08-03 Cook Incorporated Embolic protection device with an integral basket and bag
US7771452B2 (en) 2005-07-12 2010-08-10 Cook Incorporated Embolic protection device with a filter bag that disengages from a basket
US8187298B2 (en) 2005-08-04 2012-05-29 Cook Medical Technologies Llc Embolic protection device having inflatable frame
EP1912696A1 (en) 2005-08-09 2008-04-23 C.R.Bard, Inc. Embolus blood clot filter and delivery system
US8377092B2 (en) 2005-09-16 2013-02-19 Cook Medical Technologies Llc Embolic protection device
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US8632562B2 (en) 2005-10-03 2014-01-21 Cook Medical Technologies Llc Embolic protection device
US8182508B2 (en) 2005-10-04 2012-05-22 Cook Medical Technologies Llc Embolic protection device
US8252017B2 (en) 2005-10-18 2012-08-28 Cook Medical Technologies Llc Invertible filter for embolic protection
US8216269B2 (en) 2005-11-02 2012-07-10 Cook Medical Technologies Llc Embolic protection device having reduced profile
US8152831B2 (en) 2005-11-17 2012-04-10 Cook Medical Technologies Llc Foam embolic protection device
CA2940038C (en) 2005-11-18 2018-08-28 C.R. Bard, Inc. Vena cava filter with filament
US20070185524A1 (en) * 2006-02-03 2007-08-09 Pedro Diaz Rapid exchange emboli capture guidewire system and methods of use
US20070239198A1 (en) * 2006-04-03 2007-10-11 Boston Scientific Scimed, Inc. Filter and wire with distal isolation
WO2007133366A2 (en) 2006-05-02 2007-11-22 C. R. Bard, Inc. Vena cava filter formed from a sheet
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
DE102006024176B4 (en) * 2006-05-23 2008-08-28 Pah, Gunnar M. A device for filtering blood in the removal of heart valve stenosis and methods for eliminating heart valve stenosis
US9326842B2 (en) 2006-06-05 2016-05-03 C. R . Bard, Inc. Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access
US8535707B2 (en) * 2006-07-10 2013-09-17 Intersect Ent, Inc. Devices and methods for delivering active agents to the osteomeatal complex
US8911406B2 (en) * 2006-07-12 2014-12-16 Kensey Nash Corporation Guide wire exchange catheter system
US10076401B2 (en) 2006-08-29 2018-09-18 Argon Medical Devices, Inc. Vein filter
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US20080071307A1 (en) 2006-09-19 2008-03-20 Cook Incorporated Apparatus and methods for in situ embolic protection
US20080195140A1 (en) * 2006-12-08 2008-08-14 Cook Incorporated Delivery system for an embolic protection device
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US9901434B2 (en) 2007-02-27 2018-02-27 Cook Medical Technologies Llc Embolic protection device including a Z-stent waist band
US20080243170A1 (en) * 2007-03-30 2008-10-02 Boston Scientific Scimed, Inc. Embolic capturing devices and methods
US7686783B2 (en) * 2007-03-30 2010-03-30 Boston Scientific Scimed, Inc. Perfusion and embolic protection
US7780630B2 (en) * 2007-03-30 2010-08-24 Boston Scientific Scimed, Inc. Perfusion device
US20080269800A1 (en) * 2007-04-24 2008-10-30 Medtronic Vascular, Inc. Arteriotomy closure system with dual lumens sheath
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8025636B2 (en) * 2007-05-02 2011-09-27 Boston Scientific Scimed, Inc. Balloon catheters
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US7867273B2 (en) 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
US20090024157A1 (en) * 2007-07-18 2009-01-22 Abbott Laboratories Embolic protection device with open cell design
US8668712B2 (en) 2007-08-31 2014-03-11 BiO2 Medical, Inc. Multi-lumen central access vena cava filter apparatus and method of using same
US8613753B2 (en) 2007-08-31 2013-12-24 BiO2 Medical, Inc. Multi-lumen central access vena cava filter apparatus and method of using same
US10376685B2 (en) 2007-08-31 2019-08-13 Mermaid Medical Vascular Aps Thrombus detection device and method
US9039728B2 (en) 2007-08-31 2015-05-26 BiO2 Medical, Inc. IVC filter catheter with imaging modality
US9687333B2 (en) 2007-08-31 2017-06-27 BiO2 Medical, Inc. Reduced profile central venous access catheter with vena cava filter and method
US8419748B2 (en) 2007-09-14 2013-04-16 Cook Medical Technologies Llc Helical thrombus removal device
US9138307B2 (en) 2007-09-14 2015-09-22 Cook Medical Technologies Llc Expandable device for treatment of a stricture in a body vessel
US8252018B2 (en) 2007-09-14 2012-08-28 Cook Medical Technologies Llc Helical embolic protection device
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US9198687B2 (en) * 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US20100022951A1 (en) * 2008-05-19 2010-01-28 Luce, Forward, Hamilton 7 Scripps, Llp Detachable hub/luer device and processes
US8545514B2 (en) * 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US20100174309A1 (en) * 2008-05-19 2010-07-08 Mindframe, Inc. Recanalization/revascularization and embolus addressing systems including expandable tip neuro-microcatheter
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8926680B2 (en) * 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8066757B2 (en) * 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US20100256600A1 (en) * 2009-04-04 2010-10-07 Ferrera David A Neurovascular otw pta balloon catheter and delivery system
CA2709901C (en) 2007-12-18 2022-05-10 Intersect Ent, Inc. Self-expanding devices and methods therefor
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
WO2009089297A2 (en) * 2008-01-07 2009-07-16 Intersect Partners, Llc Novel enhanced ptna rapid exchange type of catheter system
ES2647310T3 (en) 2008-02-22 2017-12-20 Covidien Lp Device for flow restoration
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
JP5676446B2 (en) 2008-07-30 2015-02-25 アクラレント インコーポレイテッド Sinus mouth finder
CA2732355A1 (en) 2008-08-01 2010-02-04 Intersect Ent, Inc. Methods and devices for crimping self-expanding devices
AU2009293312B2 (en) 2008-09-18 2015-07-09 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8388644B2 (en) 2008-12-29 2013-03-05 Cook Medical Technologies Llc Embolic protection device and method of use
US20100185179A1 (en) * 2009-01-21 2010-07-22 Abbott Cardiovascular Systems Inc. Needled cannula with filter device
US20100241155A1 (en) 2009-03-20 2010-09-23 Acclarent, Inc. Guide system with suction
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
EP2429624B1 (en) 2009-05-15 2014-04-02 Intersect ENT, Inc. A combination of an expandable device and a delivery device.
US20100298922A1 (en) * 2009-05-22 2010-11-25 Ulbrich Precision Metals Limited Angioplasty Assembly
MX2012001288A (en) 2009-07-29 2012-06-19 Bard Inc C R Tubular filter.
US8696698B2 (en) * 2009-12-02 2014-04-15 Surefire Medical, Inc. Microvalve protection device and method of use for protection against embolization agent reflux
US9539081B2 (en) 2009-12-02 2017-01-10 Surefire Medical, Inc. Method of operating a microvalve protection device
US8500775B2 (en) * 2009-12-02 2013-08-06 Surefire Medical, Inc. Protection device and method against embolization agent reflux
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
WO2012052982A1 (en) 2010-10-22 2012-04-26 Neuravi Limited Clot engagement and removal system
US9770319B2 (en) 2010-12-01 2017-09-26 Surefire Medical, Inc. Closed tip dynamic microvalve protection device
US10123865B2 (en) 2010-12-16 2018-11-13 BiO2 Medical, Inc. Vascular filter assembly having low profile sheath
AU2011348265B2 (en) 2010-12-21 2016-07-14 BiO2 Medical, Inc. Configuration and method for fixation of a filter to a catheter
US8948848B2 (en) 2011-01-07 2015-02-03 Innovative Cardiovascular Solutions, Llc Angiography catheter
WO2012120490A2 (en) 2011-03-09 2012-09-13 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
KR20140013045A (en) * 2011-03-31 2014-02-04 타이들 웨이브 테크놀로지, 인크. Radio frequency ablation catheter device
EP2522307B1 (en) * 2011-05-08 2020-09-30 ITSO Medical AB Device for delivery of medical devices to a cardiac valve
US9089668B2 (en) 2011-09-28 2015-07-28 Surefire Medical, Inc. Flow directional infusion device
US9089341B2 (en) 2012-02-28 2015-07-28 Surefire Medical, Inc. Renal nerve neuromodulation device
EP2844163A4 (en) * 2012-04-30 2015-09-23 Bio2 Medical Inc Multi-lumen central access vena cava filter apparatus for clot management and method of using same
EP2961458B1 (en) * 2013-03-01 2018-01-10 Boston Scientific Scimed, Inc. Guide extension catheter with a retractable wire
CN105208950A (en) 2013-03-14 2015-12-30 尼尔拉维有限公司 A clot retrieval device for removing occlusive clot from a blood vessel
CN105188831B (en) 2013-03-14 2021-01-01 因特尔赛克特耳鼻喉公司 Systems, devices, and methods for treating sinus conditions
WO2014140092A2 (en) 2013-03-14 2014-09-18 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9968740B2 (en) 2014-03-25 2018-05-15 Surefire Medical, Inc. Closed tip dynamic microvalve protection device
US9889031B1 (en) 2014-03-25 2018-02-13 Surefire Medical, Inc. Method of gastric artery embolization
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
CN106999196B (en) 2014-11-26 2020-07-28 尼尔拉维有限公司 Thrombus retrieval device for removing obstructive thrombus from blood vessel
US10617435B2 (en) 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US20160287839A1 (en) 2015-03-31 2016-10-06 Surefire Medical, Inc. Apparatus and Method for Infusing an Immunotherapy Agent to a Solid Tumor for Treatment
WO2017027740A1 (en) 2015-08-11 2017-02-16 Microvention, Inc. System and method for implant delivery
CN109069794B (en) 2016-03-03 2021-08-20 波士顿科学国际有限公司 Guide extension catheter with expandable balloon
CA3035706A1 (en) 2016-09-06 2018-03-15 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US10780250B1 (en) 2016-09-19 2020-09-22 Surefire Medical, Inc. System and method for selective pressure-controlled therapeutic delivery
US11400263B1 (en) 2016-09-19 2022-08-02 Trisalus Life Sciences, Inc. System and method for selective pressure-controlled therapeutic delivery
EP3528885B1 (en) 2016-10-18 2024-03-13 Boston Scientific Scimed Inc. Guide extension catheter
US10806893B2 (en) 2017-01-10 2020-10-20 Surefire Medical, Inc. Guiding catheter having shape-retentive distal end
US10588636B2 (en) 2017-03-20 2020-03-17 Surefire Medical, Inc. Dynamic reconfigurable microvalve protection device
US11134967B2 (en) * 2017-12-13 2021-10-05 Eric Raul GUERRA Thrombectomy catheter and methods of use
CA3092870A1 (en) 2018-03-07 2019-09-12 Innovative Cardiovascular Solutions, Llc Embolic protection device
US11129702B2 (en) * 2018-05-09 2021-09-28 Boston Scientific Scimed, Inc. Pedal access embolic filtering sheath
US11850398B2 (en) 2018-08-01 2023-12-26 Trisalus Life Sciences, Inc. Systems and methods for pressure-facilitated therapeutic agent delivery
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
US11338117B2 (en) 2018-10-08 2022-05-24 Trisalus Life Sciences, Inc. Implantable dual pathway therapeutic agent delivery port
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device
CN113208770B (en) * 2021-04-12 2021-11-16 聚辉医疗科技(深圳)有限公司 Conveying device

Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4494531A (en) * 1982-12-06 1985-01-22 Cook, Incorporated Expandable blood clot filter
US4643184A (en) * 1982-09-29 1987-02-17 Mobin Uddin Kazi Embolus trap
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4797928A (en) * 1987-01-07 1989-01-10 Miu Automation Encryption printed circuit board
US4990156A (en) * 1988-06-21 1991-02-05 Lefebvre Jean Marie Filter for medical use
US5383887A (en) * 1992-12-28 1995-01-24 Celsa Lg Device for selectively forming a temporary blood filter
US5389087A (en) * 1991-09-19 1995-02-14 Baxter International Inc. Fully exchangeable over-the-wire catheter with rip seam and gated side port
US5490859A (en) * 1992-11-13 1996-02-13 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5601595A (en) * 1994-10-25 1997-02-11 Scimed Life Systems, Inc. Remobable thrombus filter
US5720764A (en) * 1994-06-11 1998-02-24 Naderlinger; Eduard Vena cava thrombus filter
US5868708A (en) * 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US6013093A (en) * 1995-11-28 2000-01-11 Boston Scientific Corporation Blood clot filtering
US6022336A (en) * 1996-05-20 2000-02-08 Percusurge, Inc. Catheter system for emboli containment
US6027520A (en) * 1997-05-08 2000-02-22 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6168579B1 (en) * 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
US6168604B1 (en) * 1995-10-06 2001-01-02 Metamorphic Surgical Devices, Llc Guide wire device for removing solid objects from body canals
US6171327B1 (en) * 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6171328B1 (en) * 1999-11-09 2001-01-09 Embol-X, Inc. Intravascular catheter filter with interlocking petal design and methods of use
US6174318B1 (en) * 1998-04-23 2001-01-16 Scimed Life Systems, Inc. Basket with one or more moveable legs
US6176849B1 (en) * 1999-05-21 2001-01-23 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat
US6179860B1 (en) * 1998-08-19 2001-01-30 Artemis Medical, Inc. Target tissue localization device and method
US6179859B1 (en) * 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US6179861B1 (en) * 1999-07-30 2001-01-30 Incept Llc Vascular device having one or more articulation regions and methods of use
US6187025B1 (en) * 1999-09-09 2001-02-13 Noble-Met, Ltd. Vascular filter
US6336934B1 (en) * 1997-11-07 2002-01-08 Salviac Limited Embolic protection device
US6340465B1 (en) * 1999-04-12 2002-01-22 Edwards Lifesciences Corp. Lubricious coatings for medical devices
US6340364B2 (en) * 1999-10-22 2002-01-22 Nozomu Kanesaka Vascular filtering device
US6346116B1 (en) * 1999-08-03 2002-02-12 Medtronic Ave, Inc. Distal protection device
US6348056B1 (en) * 1999-08-06 2002-02-19 Scimed Life Systems, Inc. Medical retrieval device with releasable retrieval basket
US20030004539A1 (en) * 2001-07-02 2003-01-02 Linder Richard J. Methods, systems, and devices for providing embolic protection and removing embolic material
US20030004537A1 (en) * 2001-06-29 2003-01-02 Boyle William J. Delivery and recovery sheaths for medical devices
US20030004536A1 (en) * 2001-06-29 2003-01-02 Boylan John F. Variable thickness embolic filtering devices and method of manufacturing the same
US20030004541A1 (en) * 2001-07-02 2003-01-02 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection
US20030004540A1 (en) * 2001-07-02 2003-01-02 Rubicon Medical, Inc. Methods, systems, and devices for deploying an embolic protection filter
US20030009188A1 (en) * 2001-07-02 2003-01-09 Linder Richard J. Methods, systems, and devices for deploying a filter from a filter device
US6506203B1 (en) * 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US6506205B2 (en) * 2001-02-20 2003-01-14 Mark Goldberg Blood clot filtering system
US20030018354A1 (en) * 2001-07-18 2003-01-23 Roth Noah M. Integral vascular filter system with core wire activation
US6511496B1 (en) * 2000-09-12 2003-01-28 Advanced Cardiovascular Systems, Inc. Embolic protection device for use in interventional procedures
US6511503B1 (en) * 1999-12-30 2003-01-28 Advanced Cardiovascular Systems, Inc. Catheter apparatus for treating occluded vessels and filtering embolic debris and method of use
US6511492B1 (en) * 1998-05-01 2003-01-28 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US6511497B1 (en) * 1999-09-14 2003-01-28 Cormedics Gmbh Vascular filter system
US20030023265A1 (en) * 2001-07-13 2003-01-30 Forber Simon John Vascular protection system
US6514273B1 (en) * 2000-03-22 2003-02-04 Endovascular Technologies, Inc. Device for removal of thrombus through physiological adhesion
US6517550B1 (en) * 2000-02-02 2003-02-11 Board Of Regents, The University Of Texas System Foreign body retrieval device
US6517559B1 (en) * 1999-05-03 2003-02-11 O'connell Paul T. Blood filter and method for treating vascular disease
US20030032941A1 (en) * 2001-08-13 2003-02-13 Boyle William J. Convertible delivery systems for medical devices
US20030032977A1 (en) * 1997-11-07 2003-02-13 Salviac Limited Filter element with retractable guidewire tip
US6520978B1 (en) * 2000-05-15 2003-02-18 Intratherapeutics, Inc. Emboli filter
US20030040772A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Delivery devices
US20040002730A1 (en) * 2002-06-26 2004-01-01 Denison Andy E. Embolic filtering devices for bifurcated vessels
US6673090B2 (en) * 1999-08-04 2004-01-06 Scimed Life Systems, Inc. Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue
US20040006365A1 (en) * 2002-05-13 2004-01-08 Salviac Limited Embolic protection system
US20040006361A1 (en) * 2002-06-27 2004-01-08 Boyle William J. Support structures for embolic filtering devices
US20040006367A1 (en) * 2001-06-12 2004-01-08 Krik Johnson Emboli extraction catheter and vascular filter system
US20040006368A1 (en) * 1994-07-08 2004-01-08 Ev3 Inc. Method and device for filtering body fluid
US20040006364A1 (en) * 1997-06-02 2004-01-08 Ladd William Gregory Apparatus for trapping emboli
US20040006366A1 (en) * 2001-08-31 2004-01-08 Huter Benjamin C. Hinged short cage for an embolic protection device
US6676666B2 (en) * 1999-01-11 2004-01-13 Scimed Life Systems, Inc Medical device delivery system with two sheaths
US6676682B1 (en) * 1997-05-08 2004-01-13 Scimed Life Systems, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6679902B1 (en) * 2000-07-19 2004-01-20 Advanced Cardiovascular Systems, Inc. Reduced profile delivery sheath for use in interventional procedures
US6679903B2 (en) * 1998-12-15 2004-01-20 Micrus Corporation Intravascular device push wire delivery system
US20040015184A1 (en) * 2000-12-21 2004-01-22 Boyle William J. Vessel occlusion device for embolic protection system
US6682546B2 (en) * 1994-07-08 2004-01-27 Aga Medical Corporation Intravascular occlusion devices
US20040019363A1 (en) * 2000-10-05 2004-01-29 Scimed Life Systems, Inc. Filter delivery and retrieval device
US6837898B2 (en) * 2001-11-30 2005-01-04 Advanced Cardiovascular Systems, Inc. Intraluminal delivery system for an attachable treatment device
US20050004595A1 (en) * 2003-02-27 2005-01-06 Boyle William J. Embolic filtering devices
US20050004594A1 (en) * 2003-07-02 2005-01-06 Jeffrey Nool Devices and methods for aspirating from filters
US20050004597A1 (en) * 2003-04-29 2005-01-06 Mcguckin James F. Distal protection device
US6840950B2 (en) * 2001-02-20 2005-01-11 Scimed Life Systems, Inc. Low profile emboli capture device
US20050010245A1 (en) * 2003-07-10 2005-01-13 Lawrence Wasicek Embolic protection filtering device
US20050010247A1 (en) * 2002-03-08 2005-01-13 Ev3 Inc. Distal protection devices having controllable wire motion
US20050010246A1 (en) * 2000-06-30 2005-01-13 Streeter Richard B. Intravascular filter with debris entrapment mechanism
US6843798B2 (en) * 1999-08-27 2005-01-18 Ev3 Inc. Slideable vascular filter
US6846316B2 (en) * 1999-12-10 2005-01-25 Scimed Life Systems, Inc. Systems and methods for detaching a covering from an implantable medical device
US6846317B1 (en) * 1999-06-14 2005-01-25 Aln Kit for removing a blood vessel filter
US20050021075A1 (en) * 2002-12-30 2005-01-27 Bonnette Michael J. Guidewire having deployable sheathless protective filter
US20060004403A1 (en) * 1997-11-07 2006-01-05 Salviac Limited Embolic protection system
US20060004405A1 (en) * 2001-10-18 2006-01-05 Amr Salahieh Vascular embolic filter devices and methods of use therefor
US6986778B2 (en) * 1996-05-20 2006-01-17 Medtronic Vascular, Inc. Exchange method for emboli containment
US20060015138A1 (en) * 2004-07-19 2006-01-19 Michael Gertner Emboli diverting devices created by microfabricated means
US20060015139A1 (en) * 1999-11-15 2006-01-19 Ross Tsugita Guidewire filter and methods of use
US6989021B2 (en) * 2002-10-31 2006-01-24 Cordis Corporation Retrievable medical filter
US6989027B2 (en) * 2003-04-30 2006-01-24 Medtronic Vascular Inc. Percutaneously delivered temporary valve assembly
US20060020285A1 (en) * 2004-07-22 2006-01-26 Volker Niermann Method for filtering blood in a vessel with helical elements
US20060020286A1 (en) * 2004-07-22 2006-01-26 Volker Niermann Device for filtering blood in a vessel with helical elements
US6991642B2 (en) * 2001-03-06 2006-01-31 Scimed Life Systems, Inc. Wire and lock mechanism
US6991641B2 (en) * 1999-02-12 2006-01-31 Cordis Corporation Low profile vascular filter system

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952747A (en) 1974-03-28 1976-04-27 Kimmell Jr Garman O Filter and filter insertion instrument
DE2821048C2 (en) 1978-05-13 1980-07-17 Willy Ruesch Gmbh & Co Kg, 7053 Kernen Medical instrument
US4727873A (en) 1984-04-17 1988-03-01 Mobin Uddin Kazi Embolus trap
DK151404C (en) 1984-05-23 1988-07-18 Cook Europ Aps William FULLY FILTER FOR IMPLANTATION IN A PATIENT'S BLOOD
IT1176442B (en) 1984-07-20 1987-08-18 Enrico Dormia INSTRUMENT FOR THE EXTRACTION OF FOREIGN BODIES FROM THE BODY'S PHYSIOLOGICAL CHANNELS
FR2573646B1 (en) 1984-11-29 1988-11-25 Celsa Composants Electr Sa PERFECTED FILTER, PARTICULARLY FOR THE RETENTION OF BLOOD CLOTS
US4790813A (en) 1984-12-17 1988-12-13 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4706671A (en) 1985-05-02 1987-11-17 Weinrib Harry P Catheter with coiled tip
US4662885A (en) 1985-09-03 1987-05-05 Becton, Dickinson And Company Percutaneously deliverable intravascular filter prosthesis
US4650466A (en) 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4790812A (en) 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
FR2606641B1 (en) 1986-11-17 1991-07-12 Promed FILTERING DEVICE FOR BLOOD CLOTS
US4794928A (en) 1987-06-10 1989-01-03 Kletschka Harold D Angioplasty device and method of using the same
US4873978A (en) 1987-12-04 1989-10-17 Robert Ginsburg Device and method for emboli retrieval
FR2624747A1 (en) 1987-12-18 1989-06-23 Delsanti Gerard REMOVABLE ENDO-ARTERIAL DEVICES FOR REPAIRING ARTERIAL WALL DECOLLEMENTS
US4921478A (en) 1988-02-23 1990-05-01 C. R. Bard, Inc. Cerebral balloon angioplasty system
US4832055A (en) 1988-07-08 1989-05-23 Palestrant Aubrey M Mechanically locking blood clot filter
US4921484A (en) 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US5152777A (en) 1989-01-25 1992-10-06 Uresil Corporation Device and method for providing protection from emboli and preventing occulsion of blood vessels
US4969891A (en) 1989-03-06 1990-11-13 Gewertz Bruce L Removable vascular filter
DE8910603U1 (en) 1989-09-06 1989-12-07 Guenther, Rolf W., Prof. Dr.
US5100425A (en) 1989-09-14 1992-03-31 Medintec R&D Limited Partnership Expandable transluminal atherectomy catheter system and method for the treatment of arterial stenoses
US4997435A (en) 1989-09-25 1991-03-05 Methodist Hospital Of Indiana Inc. Percutaneous catheter with encapsulating receptacle
US5092839A (en) 1989-09-29 1992-03-03 Kipperman Robert M Coronary thrombectomy
US5421832A (en) 1989-12-13 1995-06-06 Lefebvre; Jean-Marie Filter-catheter and method of manufacturing same
US5071407A (en) 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5221261A (en) 1990-04-12 1993-06-22 Schneider (Usa) Inc. Radially expandable fixation member
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
CA2048307C (en) 1990-08-14 1998-08-18 Rolf Gunther Method and apparatus for filtering blood in a blood vessel of a patient
US5108419A (en) 1990-08-16 1992-04-28 Evi Corporation Endovascular filter and method for use thereof
US5160342A (en) 1990-08-16 1992-11-03 Evi Corp. Endovascular filter and method for use thereof
US5100423A (en) 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5064428A (en) 1990-09-18 1991-11-12 Cook Incorporated Medical retrieval basket
US5053008A (en) 1990-11-21 1991-10-01 Sandeep Bajaj Intracardiac catheter
US5695518A (en) 1990-12-28 1997-12-09 Laerum; Frode Filtering device for preventing embolism and/or distension of blood vessel walls
US5350398A (en) 1991-05-13 1994-09-27 Dusan Pavcnik Self-expanding filter for percutaneous insertion
ATE176999T1 (en) 1991-06-17 1999-03-15 Wilson Cook Medical Inc ENDOSCOPIC EXTRACTION DEVICE WITH COMPOSITE WIRE CONSTRUCTION
US5192286A (en) 1991-07-26 1993-03-09 Regents Of The University Of California Method and device for retrieving materials from body lumens
US5626605A (en) 1991-12-30 1997-05-06 Scimed Life Systems, Inc. Thrombosis filter
FR2689388B1 (en) 1992-04-07 1999-07-16 Celsa Lg PERFECTIONALLY RESORBABLE BLOOD FILTER.
US5324304A (en) 1992-06-18 1994-06-28 William Cook Europe A/S Introduction catheter set for a collapsible self-expandable implant
FR2696092B1 (en) 1992-09-28 1994-12-30 Lefebvre Jean Marie Kit for medical use composed of a filter and its device for placement in the vessel.
US5315747A (en) * 1992-10-30 1994-05-31 Pameda N.V. Method of preparing a balloon dilatation catheter
US5501694A (en) 1992-11-13 1996-03-26 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5792157A (en) 1992-11-13 1998-08-11 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5836868A (en) 1992-11-13 1998-11-17 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
DE69433774T2 (en) 1993-02-19 2005-04-14 Boston Scientific Corp., Natick SURGICAL EXTRACTOR
US5897567A (en) 1993-04-29 1999-04-27 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5634942A (en) 1994-04-21 1997-06-03 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and a device for implanting it
US5658296A (en) 1994-11-21 1997-08-19 Boston Scientific Corporation Method for making surgical retrieval baskets
US5549626A (en) 1994-12-23 1996-08-27 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Vena caval filter
US5795322A (en) 1995-04-10 1998-08-18 Cordis Corporation Catheter with filter and thrombus-discharge device
DE69629865T2 (en) 1995-04-14 2004-07-15 B. Braun Medical Sas Intraluminal medical device, especially blood filter
US5681347A (en) 1995-05-23 1997-10-28 Boston Scientific Corporation Vena cava filter delivery system
US5833650A (en) 1995-06-05 1998-11-10 Percusurge, Inc. Catheter apparatus and method for treating occluded vessels
FR2735967B1 (en) 1995-06-27 1998-03-06 Perouse Implant Lab VASCULAR SURGERY TOOL AND ITS USE
FR2737654B1 (en) 1995-08-10 1997-11-21 Braun Celsa Sa FILTRATION UNIT FOR THE RETENTION OF BLOOD CLOTS
US5779716A (en) 1995-10-06 1998-07-14 Metamorphic Surgical Devices, Inc. Device for removing solid objects from body canals, cavities and organs
US5769816A (en) 1995-11-07 1998-06-23 Embol-X, Inc. Cannula with associated filter
US5989281A (en) 1995-11-07 1999-11-23 Embol-X, Inc. Cannula with associated filter and methods of use during cardiac surgery
US5695519A (en) 1995-11-30 1997-12-09 American Biomed, Inc. Percutaneous filter for carotid angioplasty
NL1002423C2 (en) 1996-02-22 1997-08-25 Cordis Europ Temporary filter catheter.
US5846251A (en) 1996-07-22 1998-12-08 Hart; Charles C. Access device with expandable containment member
US5935139A (en) 1996-05-03 1999-08-10 Boston Scientific Corporation System for immobilizing or manipulating an object in a tract
NL1003497C2 (en) 1996-07-03 1998-01-07 Cordis Europ Catheter with temporary vena-cava filter.
US5669933A (en) 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US5662671A (en) 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5876367A (en) 1996-12-05 1999-03-02 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5776162A (en) 1997-01-03 1998-07-07 Nitinol Medical Technologies, Inc. Vessel implantable shape memory appliance with superelastic hinged joint
FR2758078B1 (en) 1997-01-03 1999-07-16 Braun Celsa Sa BLOOD FILTER WITH IMPROVED PERMEABILITY
ES2245387T3 (en) 1997-02-03 2006-01-01 Cordis Corporation VASCULAR FILTER
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
US5800457A (en) 1997-03-05 1998-09-01 Gelbfish; Gary A. Intravascular filter and associated methodology
US5827324A (en) 1997-03-06 1998-10-27 Scimed Life Systems, Inc. Distal protection device
US5814064A (en) 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US6152946A (en) 1998-03-05 2000-11-28 Scimed Life Systems, Inc. Distal protection device and method
US5772674A (en) * 1997-03-31 1998-06-30 Nakhjavan; Fred K. Catheter for removal of clots in blood vessels
US5810867A (en) * 1997-04-28 1998-09-22 Medtronic, Inc. Dilatation catheter with varied stiffness
US5846260A (en) 1997-05-08 1998-12-08 Embol-X, Inc. Cannula with a modular filter for filtering embolic material
US5954745A (en) 1997-05-16 1999-09-21 Gertler; Jonathan Catheter-filter set having a compliant seal
US5800525A (en) 1997-06-04 1998-09-01 Vascular Science, Inc. Blood filter
US5848964A (en) 1997-06-06 1998-12-15 Samuels; Shaun Lawrence Wilkie Temporary inflatable filter device and method of use
US5941896A (en) 1997-09-08 1999-08-24 Montefiore Hospital And Medical Center Filter and method for trapping emboli during endovascular procedures
EP0933065A1 (en) * 1998-02-02 1999-08-04 Sulzer Orthopädie AG Pivotable attachment system for a bone screw
US5944728A (en) 1998-04-23 1999-08-31 Boston Scientific Corporation Surgical retrieval basket with the ability to capture and release material
US6007557A (en) 1998-04-29 1999-12-28 Embol-X, Inc. Adjustable blood filtration system
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US6689151B2 (en) * 2001-01-25 2004-02-10 Scimed Life Systems, Inc. Variable wall thickness for delivery sheath housing

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4643184A (en) * 1982-09-29 1987-02-17 Mobin Uddin Kazi Embolus trap
US4494531A (en) * 1982-12-06 1985-01-22 Cook, Incorporated Expandable blood clot filter
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4797928A (en) * 1987-01-07 1989-01-10 Miu Automation Encryption printed circuit board
US4990156A (en) * 1988-06-21 1991-02-05 Lefebvre Jean Marie Filter for medical use
US5389087A (en) * 1991-09-19 1995-02-14 Baxter International Inc. Fully exchangeable over-the-wire catheter with rip seam and gated side port
US5490859A (en) * 1992-11-13 1996-02-13 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5383887A (en) * 1992-12-28 1995-01-24 Celsa Lg Device for selectively forming a temporary blood filter
US5720764A (en) * 1994-06-11 1998-02-24 Naderlinger; Eduard Vena cava thrombus filter
US6989019B2 (en) * 1994-07-08 2006-01-24 Ev3 Inc. Method and device for filtering body fluid
US20050021076A1 (en) * 1994-07-08 2005-01-27 Ev3 Inc. Method and device for filtering body fluid
US6682546B2 (en) * 1994-07-08 2004-01-27 Aga Medical Corporation Intravascular occlusion devices
US20040006368A1 (en) * 1994-07-08 2004-01-08 Ev3 Inc. Method and device for filtering body fluid
US5601595A (en) * 1994-10-25 1997-02-11 Scimed Life Systems, Inc. Remobable thrombus filter
US6168604B1 (en) * 1995-10-06 2001-01-02 Metamorphic Surgical Devices, Llc Guide wire device for removing solid objects from body canals
US6013093A (en) * 1995-11-28 2000-01-11 Boston Scientific Corporation Blood clot filtering
US6022336A (en) * 1996-05-20 2000-02-08 Percusurge, Inc. Catheter system for emboli containment
US6986778B2 (en) * 1996-05-20 2006-01-17 Medtronic Vascular, Inc. Exchange method for emboli containment
US5868708A (en) * 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US6676682B1 (en) * 1997-05-08 2004-01-13 Scimed Life Systems, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6027520A (en) * 1997-05-08 2000-02-22 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US20040006364A1 (en) * 1997-06-02 2004-01-08 Ladd William Gregory Apparatus for trapping emboli
US20040039411A1 (en) * 1997-11-07 2004-02-26 Paul Gilson Embolic protection device
US20040034385A1 (en) * 1997-11-07 2004-02-19 Paul Gilson Embolic protection device
US6336934B1 (en) * 1997-11-07 2002-01-08 Salviac Limited Embolic protection device
US20030032977A1 (en) * 1997-11-07 2003-02-13 Salviac Limited Filter element with retractable guidewire tip
US20060004403A1 (en) * 1997-11-07 2006-01-05 Salviac Limited Embolic protection system
US20030009189A1 (en) * 1997-11-07 2003-01-09 Salviac Limited Embolic protection device
US6174318B1 (en) * 1998-04-23 2001-01-16 Scimed Life Systems, Inc. Basket with one or more moveable legs
US6685722B1 (en) * 1998-05-01 2004-02-03 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US6511492B1 (en) * 1998-05-01 2003-01-28 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US6179860B1 (en) * 1998-08-19 2001-01-30 Artemis Medical, Inc. Target tissue localization device and method
US6679903B2 (en) * 1998-12-15 2004-01-20 Micrus Corporation Intravascular device push wire delivery system
US6676666B2 (en) * 1999-01-11 2004-01-13 Scimed Life Systems, Inc Medical device delivery system with two sheaths
US20030040772A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Delivery devices
US6991641B2 (en) * 1999-02-12 2006-01-31 Cordis Corporation Low profile vascular filter system
US6171327B1 (en) * 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6340465B1 (en) * 1999-04-12 2002-01-22 Edwards Lifesciences Corp. Lubricious coatings for medical devices
US6517559B1 (en) * 1999-05-03 2003-02-11 O'connell Paul T. Blood filter and method for treating vascular disease
US6176849B1 (en) * 1999-05-21 2001-01-23 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat
US6846317B1 (en) * 1999-06-14 2005-01-25 Aln Kit for removing a blood vessel filter
US6179859B1 (en) * 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US6179861B1 (en) * 1999-07-30 2001-01-30 Incept Llc Vascular device having one or more articulation regions and methods of use
US6346116B1 (en) * 1999-08-03 2002-02-12 Medtronic Ave, Inc. Distal protection device
US6673090B2 (en) * 1999-08-04 2004-01-06 Scimed Life Systems, Inc. Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue
US6168579B1 (en) * 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
US6348056B1 (en) * 1999-08-06 2002-02-19 Scimed Life Systems, Inc. Medical retrieval device with releasable retrieval basket
US6843798B2 (en) * 1999-08-27 2005-01-18 Ev3 Inc. Slideable vascular filter
US6187025B1 (en) * 1999-09-09 2001-02-13 Noble-Met, Ltd. Vascular filter
US6511497B1 (en) * 1999-09-14 2003-01-28 Cormedics Gmbh Vascular filter system
US6340364B2 (en) * 1999-10-22 2002-01-22 Nozomu Kanesaka Vascular filtering device
US6676683B1 (en) * 1999-11-09 2004-01-13 Edwards Lifescience Corporation Intravascular catheter filter with interlocking petal design and methods of use
US6171328B1 (en) * 1999-11-09 2001-01-09 Embol-X, Inc. Intravascular catheter filter with interlocking petal design and methods of use
US20060015139A1 (en) * 1999-11-15 2006-01-19 Ross Tsugita Guidewire filter and methods of use
US6846316B2 (en) * 1999-12-10 2005-01-25 Scimed Life Systems, Inc. Systems and methods for detaching a covering from an implantable medical device
US6511503B1 (en) * 1999-12-30 2003-01-28 Advanced Cardiovascular Systems, Inc. Catheter apparatus for treating occluded vessels and filtering embolic debris and method of use
US20030028238A1 (en) * 1999-12-30 2003-02-06 Burkett David H. Catheter apparatus for treating occluded vessels and filtering embolic debris and method of use
US6517550B1 (en) * 2000-02-02 2003-02-11 Board Of Regents, The University Of Texas System Foreign body retrieval device
US6514273B1 (en) * 2000-03-22 2003-02-04 Endovascular Technologies, Inc. Device for removal of thrombus through physiological adhesion
US6520978B1 (en) * 2000-05-15 2003-02-18 Intratherapeutics, Inc. Emboli filter
US20050010246A1 (en) * 2000-06-30 2005-01-13 Streeter Richard B. Intravascular filter with debris entrapment mechanism
US6679902B1 (en) * 2000-07-19 2004-01-20 Advanced Cardiovascular Systems, Inc. Reduced profile delivery sheath for use in interventional procedures
US6511496B1 (en) * 2000-09-12 2003-01-28 Advanced Cardiovascular Systems, Inc. Embolic protection device for use in interventional procedures
US20040019363A1 (en) * 2000-10-05 2004-01-29 Scimed Life Systems, Inc. Filter delivery and retrieval device
US6506203B1 (en) * 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US20040015184A1 (en) * 2000-12-21 2004-01-22 Boyle William J. Vessel occlusion device for embolic protection system
US6840950B2 (en) * 2001-02-20 2005-01-11 Scimed Life Systems, Inc. Low profile emboli capture device
US6506205B2 (en) * 2001-02-20 2003-01-14 Mark Goldberg Blood clot filtering system
US6991642B2 (en) * 2001-03-06 2006-01-31 Scimed Life Systems, Inc. Wire and lock mechanism
US20040006367A1 (en) * 2001-06-12 2004-01-08 Krik Johnson Emboli extraction catheter and vascular filter system
US20030004536A1 (en) * 2001-06-29 2003-01-02 Boylan John F. Variable thickness embolic filtering devices and method of manufacturing the same
US20030004537A1 (en) * 2001-06-29 2003-01-02 Boyle William J. Delivery and recovery sheaths for medical devices
US20030004541A1 (en) * 2001-07-02 2003-01-02 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection
US20060015141A1 (en) * 2001-07-02 2006-01-19 Linder Richard J Methods, systems, and devices for deploying a filter from a filter device
US20030004539A1 (en) * 2001-07-02 2003-01-02 Linder Richard J. Methods, systems, and devices for providing embolic protection and removing embolic material
US20030009188A1 (en) * 2001-07-02 2003-01-09 Linder Richard J. Methods, systems, and devices for deploying a filter from a filter device
US20030004540A1 (en) * 2001-07-02 2003-01-02 Rubicon Medical, Inc. Methods, systems, and devices for deploying an embolic protection filter
US20030023265A1 (en) * 2001-07-13 2003-01-30 Forber Simon John Vascular protection system
US20030018354A1 (en) * 2001-07-18 2003-01-23 Roth Noah M. Integral vascular filter system with core wire activation
US20030015206A1 (en) * 2001-07-18 2003-01-23 Roth Noah M. Integral vascular filter system
US20030032941A1 (en) * 2001-08-13 2003-02-13 Boyle William J. Convertible delivery systems for medical devices
US20040006366A1 (en) * 2001-08-31 2004-01-08 Huter Benjamin C. Hinged short cage for an embolic protection device
US20060004405A1 (en) * 2001-10-18 2006-01-05 Amr Salahieh Vascular embolic filter devices and methods of use therefor
US6837898B2 (en) * 2001-11-30 2005-01-04 Advanced Cardiovascular Systems, Inc. Intraluminal delivery system for an attachable treatment device
US20050010247A1 (en) * 2002-03-08 2005-01-13 Ev3 Inc. Distal protection devices having controllable wire motion
US20040006365A1 (en) * 2002-05-13 2004-01-08 Salviac Limited Embolic protection system
US20040002730A1 (en) * 2002-06-26 2004-01-01 Denison Andy E. Embolic filtering devices for bifurcated vessels
US20040006361A1 (en) * 2002-06-27 2004-01-08 Boyle William J. Support structures for embolic filtering devices
US6989021B2 (en) * 2002-10-31 2006-01-24 Cordis Corporation Retrievable medical filter
US20050021075A1 (en) * 2002-12-30 2005-01-27 Bonnette Michael J. Guidewire having deployable sheathless protective filter
US20050004595A1 (en) * 2003-02-27 2005-01-06 Boyle William J. Embolic filtering devices
US20050004597A1 (en) * 2003-04-29 2005-01-06 Mcguckin James F. Distal protection device
US6989027B2 (en) * 2003-04-30 2006-01-24 Medtronic Vascular Inc. Percutaneously delivered temporary valve assembly
US20050004594A1 (en) * 2003-07-02 2005-01-06 Jeffrey Nool Devices and methods for aspirating from filters
US20050010245A1 (en) * 2003-07-10 2005-01-13 Lawrence Wasicek Embolic protection filtering device
US20060015138A1 (en) * 2004-07-19 2006-01-19 Michael Gertner Emboli diverting devices created by microfabricated means
US20060020285A1 (en) * 2004-07-22 2006-01-26 Volker Niermann Method for filtering blood in a vessel with helical elements
US20060020286A1 (en) * 2004-07-22 2006-01-26 Volker Niermann Device for filtering blood in a vessel with helical elements

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091212A1 (en) * 2009-02-04 2010-08-12 Blatter Duane D Blood filter retrieval devices and methods
US8828042B2 (en) 2009-02-04 2014-09-09 Duane D. Blatter Blood filter retrieval devices and methods
WO2011141866A2 (en) * 2010-05-13 2011-11-17 Noel Elman Stent devices for support, controlled drug delivery and pain management after vaginal surgery
WO2011141866A3 (en) * 2010-05-13 2012-01-05 Noel Elman Stent devices for support, controlled drug delivery and pain management after vaginal surgery

Also Published As

Publication number Publication date
US6537294B1 (en) 2003-03-25
US20030176889A1 (en) 2003-09-18
US7425215B2 (en) 2008-09-16
US20090030445A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
US6537294B1 (en) Delivery systems for embolic filter devices
US7241304B2 (en) Flexible and conformable embolic filtering devices
US6575995B1 (en) Expandable cage embolic material filter system and method
US6939362B2 (en) Offset proximal cage for embolic filtering devices
US8016854B2 (en) Variable thickness embolic filtering devices and methods of manufacturing the same
US7815660B2 (en) Guide wire with embolic filtering attachment
US7344549B2 (en) Expandable cages for embolic filtering devices
US6887258B2 (en) Embolic filtering devices for bifurcated vessels
US7252675B2 (en) Embolic filtering devices
US7048758B2 (en) Vessel occlusion device for embolic protection system
US6506203B1 (en) Low profile sheathless embolic protection system
US7678131B2 (en) Single-wire expandable cages for embolic filtering devices
US7172614B2 (en) Support structures for embolic filtering devices
US20090024157A1 (en) Embolic protection device with open cell design
US20070088382A1 (en) Embolic protection recovery catheter assembly

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION