US20080140190A1 - Methods and devices for heart valve treatments - Google Patents

Methods and devices for heart valve treatments Download PDF

Info

Publication number
US20080140190A1
US20080140190A1 US11/977,493 US97749307A US2008140190A1 US 20080140190 A1 US20080140190 A1 US 20080140190A1 US 97749307 A US97749307 A US 97749307A US 2008140190 A1 US2008140190 A1 US 2008140190A1
Authority
US
United States
Prior art keywords
left atrium
implant
heart valve
sized
leaflets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/977,493
Inventor
John A. Macoviak
Robert T. Chang
Timothy R. Machold
David A. Rahdert
Rick A. Soss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Venture Lending and Leasing IV Inc
Venture Lending and Leasing V Inc
MVRx Inc
Original Assignee
Ample Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ample Medical Inc filed Critical Ample Medical Inc
Priority to US11/977,493 priority Critical patent/US20080140190A1/en
Assigned to VENTURE LENDING & LEASING IV, INC. AND VENTURE LENDING & LEASING V, INC. reassignment VENTURE LENDING & LEASING IV, INC. AND VENTURE LENDING & LEASING V, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMPLE MEDICAL, INC.
Publication of US20080140190A1 publication Critical patent/US20080140190A1/en
Assigned to MVRX, INC. reassignment MVRX, INC. BILL OF SALE Assignors: AMPLE MEDICAL, INC.
Assigned to MVRX, INC. reassignment MVRX, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE CONVEYING PARTIES PREVIOUSLY RECORDED ON REEL 023928 FRAME 0968. ASSIGNOR(S) HEREBY CONFIRMS THE BILL OF SALE. Assignors: VENTURE LENDING & LEASING IV, INC., VENTURE LENDING & LEASING V, INC.
Assigned to VENTURE LENDING & LEASING IV, INC. reassignment VENTURE LENDING & LEASING IV, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMPLE MEDICAL, INC.
Assigned to VENTURE LENDING & LEASING V, INC., VENTURE LENDING & LEASING IV, INC. reassignment VENTURE LENDING & LEASING V, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMPLE MEDICAL, INC.
Assigned to VENTURE LENDING & LEASING IV, INC., VENTURE LENDING & LEASING V, INC. reassignment VENTURE LENDING & LEASING IV, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE SIGNATURES ON THE ORIGINALLY DOCUMENT PREVIOUSLY RECORDED AT REEL: 020814 FRAME: 0208. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT/SECURITY AGREEMENT. Assignors: AMPLE MEDICAL, INC.
Assigned to AMPLE MEDICAL, INC. reassignment AMPLE MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, ROBERT T., MACHOLD, TIMOTHY R., MACOVIAK, JOHN A., RAHDERT, DAVID A., SOSS, RICK A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22097Valve removal in veins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320052Guides for cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting
    • Y10S623/904Heart

Definitions

  • This invention relates to methods and devices to improve the function of heart valves. More particularly, the invention relates to methods and devices to treat mitral valve regurgitation.
  • the opening and closing of heart valves occur primarily as a result of pressure differences.
  • the opening and closing of the mitral valve occurs as a result of the pressure differences between the left atrium and the left ventricle.
  • the mitral valve opens, allowing blood to enter the ventricle.
  • the ventricle contracts during ventricular systole, the intraventricular pressure rises above the pressure in the atrium and pushes the mitral valve shut.
  • Valve malfunction can result from the chords becoming stretched, and in some cases tearing. When a chord tears, the result is a flailed leaflet. Also, a normally structured valve may not function properly because of an enlargement of the valve annulus. This condition is referred to as a dilation of the annulus and generally results from heart muscle failure. In addition, the valve may be defective at birth or because of an acquired disease.
  • the present invention provides a group of medical devices designed to improve heart valve function.
  • the medical devices may be used individually, or in combination to supplement damaged valves, replace damaged valves, or improve damaged valves function.
  • the medical devices include leaflet retainers, a neo-annulus, neo-leaflet, and a framework.
  • the present invention includes novel methods for surgically treating heart valves.
  • One aspect of the invention provides heart implant comprising an implant structure sized and configured to be positioned in a left atrium above the plane of a native mitral heart valve annulus having leaflets.
  • the implant structure includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • the implant structure includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • the system also includes an access tool sized and configured to establish an intravascular access path that extends from a right atrium through a septum and into a left atrium.
  • the system further includes a deployment tool sized and configured to deploy the implant structure through the intravascular path into the left atrium and position the implant structure in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • a deployment tool sized and configured to deploy the implant structure through the intravascular path into the left atrium and position the implant structure in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • Another aspect of the invention provides a method comprising deploying a guide wire through an vasculature path into a: right atrium, and introducing the guide wire through a septum from the right atrium into a left atrium.
  • the method includes advancing a catheter over the guide wire and releasing from the catheter a heart implant sized and configured to be positioned in the left atrium above the plane of a native mitral heart valve annulus having leaflets.
  • the implant includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • the method positions the implant in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • a system comprising a guide wire sized and configured to be deployed through an vasculature path into a right atrium and through a septum from the right atrium into a left atrium.
  • the system includes a catheter sized and configured to be introduced into the left atrium along the guide wire.
  • the system further includes an implant structure carried within the catheter.
  • the implant structure being sized and configured to be positioned in a left atrium above the plane of a native mitral heart valve annulus having leaflets.
  • the implant structure includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • Another aspect of the invention provides a method comprising deploying a catheter through an vasculature path into a right atrium, through a septum and into a left atrium.
  • the method includes releasing from the catheter a heart implant sized and configured to be positioned in the left atrium above the plane of a native mitral heart valve annulus having leaflets.
  • the implant includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • the method includes positioning the implant in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • the implant or implant structure is sized and configured so that, in use, the portion spans the left atrium.
  • the implant or implant structure is sized and configured so that, in use, the portion changes the shape of the native mitral heart valve annulus.
  • the implant or implant structure comprises, at least in part, nitinol, dacron, polytetrafluoroethylene, silicon, polyurethane, human pericardium, or animal pericardium.
  • the implant or implant structure comprises, at least in part, a super elastic material.
  • FIG. 1 shows a posterior oblique cutaway view of a patient's heart 100 .
  • FIG. 2 shows a cutaway view of a patient's heart 200 with a prolapsed mitral valve that does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction.
  • FIG. 3 shows a cutaway view of a patient's heart 300 with a flailing mitral valve 320 that does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction as indicated by arrows.
  • FIG. 4 shows a perspective view of a spring bridge neo-leaflet used to supplement or replace a native leaflet.
  • FIG. 5 shows a perspective view of an embodiment of the invention comprised of a bridge 540 , spanning material 530 , attachment means 550 , and a base 520 .
  • the device is shown to have a framework 510 .
  • FIG. 6 shows a perspective view of the embodiment of FIG. 5 in the open valve position.
  • FIG. 7 shows a perspective view of the embodiments shown in FIGS. 5 and 6 positioned within the left atrium of the heart.
  • FIGS. 8 and 9 show a perspective view of the embodiments of FIGS. 5 and 6 positioned within the left atrium of the heart.
  • FIG. 10 shows a perspective view of an embodiment of the invention having a framework 1010 that avoids the pulmonary veins (not shown).
  • FIGS. 11 and 12 show a perspective view of a dual spring bridge neo-leaflet having an anterior bridge spanned by an anterior material 1110 , and a posterior bridge spanned by a posterior material 1120 .
  • FIG. 13 shows a perspective view of a damaged native anterior leaflet 1310 that is not connected to the chordae tendineae.
  • FIG. 14 shows a perspective view of a device 1400 having a half sewing ring 1420 with a membrane 1410 that serves as a neo-annulus or a neo-leaflet.
  • FIG. 15 shows a perspective view of a device 1500 having a full sewing ring 1530 with a membrane 1510 that serves as a neo-annulus or a neo-leaflet.
  • FIG. 16 shows a perspective view of a leaflet retainer 1600 that is positioned within the atrium on top of both native mitral valve leaflets.
  • FIG. 17 shows a perspective view of a leaflet retainer 1700 that is positioned within the atrium on top of both native mitral valve leaflets.
  • FIG. 18 shows a perspective view of a leaflet retainer 1800 that is positioned within the atrium on top of both native mitral valve leaflets.
  • FIG. 19 shows a perspective view of a leaflet retainer 1900 that is positioned on top of both native mitral valve leaflets.
  • FIG. 20 shows a side view of the embodiment shown in FIG. 19 .
  • FIG. 21 shows a perspective view of the embodiment shown in FIG. 19 .
  • FIG. 22 through 26 show the sequence of steps for a catheter-based percutaneous deployment of an embodiment of the invention.
  • FIG. 27 shows a perspective view of an embodiment of the invention 2700 having a framework that partially fills the atrium.
  • FIG. 28 shows a perspective view of an embodiment of the invention 2800 having dual neo-leaflets, 2830 and 2840 .
  • FIG. 29 shows a perspective view of an embodiment of the invention 2900 having a leaflet retainer 2910 positioned against a native leaflet as well as a framework structure 2920 that meanders about the atrium without interfering with the pulmonary veins.
  • FIG. 30 shows a perspective view of another embodiment of the invention 3000 consisting of a continuous wire or tube that forms a leaflet retainer and framework.
  • FIG. 31 shows a perspective view of a tulip shaped wire form configuration 3100 of the invention.
  • FIG. 32 shows cutaway view of a tulip shaped wire form configuration 3200 of the invention.
  • FIG. 33 shows a cutaway view of a tulip with a twist wire form configuration 3300 of the invention.
  • FIG. 34 shows a cutaway view of the left atrium and left ventricle.
  • the arrows on the left side of the figure indicate by way of example three different ways in which an embodiment of the invention, such as a leaflet retainer, neo-leaflet, or neo-annulus, may interact with the mitral valve, or be positioned if replacing a leaflet.
  • FIG. 35 shows a perspective view of mesh leaflet with buttressing 3500 .
  • FIG. 36 shows a side view of a corona configuration 3600 of the invention.
  • FIG. 37 shows a perspective view of a corona configuration 3700 of the invention in situ within a patient's left atrium.
  • FIG. 38 shows a cutaway view of a heart, having both native leaflets, 3810 and 3820 , intact.
  • FIG. 39 shows a cutaway view of a heart with one embodiment of the invention 3900 .
  • FIG. 40 shows a cutaway view of a heart with one intact mitral valve leaflet 4010 , and one mitral valve leaflet excised, or missing.
  • FIG. 41 shows a cutaway view of a heart with one embodiment of the invention 4100 .
  • the shown embodiment has one neo-leaflet 4110 .
  • FIG. 42 shows a cutaway view of a heart with both mitral valve leaflets removed.
  • FIG. 43 shows a cutaway view of a heart with one embodiment of the invention 4300 having two neo-leaflets.
  • FIG. 1 shows a posterior oblique cutaway view of a patient's heart 100 .
  • Two of the four heart chambers are shown, the left atrium 170 , and the left ventricle 140 (not shown are the right atrium and right ventricle).
  • the left atrium 170 fills with blood from the pulmonary veins.
  • the blood then passes through the mitral valve (also known as the bicuspid valve, and more generally known as an atrioventricular valve) during ventricular diastole and into the left ventricle 140 .
  • the mitral valve also known as the bicuspid valve, and more generally known as an atrioventricular valve
  • the blood is then ejected out of the left ventricle 140 through the aortic valve 150 and into the aorta 160 .
  • the mitral valve should be shut so that blood is not regurgitated back into the left atrium.
  • the mitral valve consists of two leaflets, an anterior leaflet 110 , and a posterior leaflet 115 , attached to chordae tendineae 120 (hereafter, chords), which in turn are connected to papillary muscles 130 within the left atrium 140 .
  • chords chordae tendineae 120
  • the mitral valve has a D-shaped anterior leaflet 110 oriented toward the aortic valve, with a crescent shaped posterior leaflet 115 .
  • the leaflets intersect with the atrium 170 at the mitral annulus 190 .
  • FIG. 2 shows a cutaway view of a patient's heart 200 with a prolapsed mitral valve that does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction.
  • the anterior 220 and posterior 225 leaflets are shown being blown into the left atrium with arrows indicating the direction of regurgitant flow.
  • regurgitation can result from stretched chords 210 that are too long to prevent the leaflets from being blown into the atrium. As a result, the leaflets do not form a tight seal and blood is regurgitated into the atrium.
  • FIG. 3 shows a cutaway view of a patient's heart 300 with a flailing mitral valve 320 that does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction as indicated by arrows.
  • regurgitation can result from torn chords 310 .
  • FIG. 4 shows a perspective view of a spring bridge neo-leaflet used to supplement or replace a native leaflet.
  • the device 400 is shown to be formed of a base 420 that is positioned around the mitral annulus, and then closes in over the anterior leaflet to form a bridge 430 over the anterior leaflet.
  • the bridge 430 may be a rigid, semi-rigid, or flexible. The bridge may act like a spring, and thus respond dynamically to pressure differentials within the heart.
  • the bridge 430 may have a spanning material 410 that spans the bridge 430 .
  • the spanning material 410 may be attached to the device 400 with one or more attachment means 440 (for example, it may be sewn, glued, or welded to the device 400 , or it may be attached to itself when wrapped around the device 400 ).
  • the spanning material 410 maybe made from a synthetic material (for example, thin Nitinol, Dacron fabric, Polytetrafluoroethylene or PTFE, Silicone, or Polyurethane) or a biological material (for example, human or animal pericardium).
  • the device 400 may be delivered percutaneously, through the chest (thoracoscopy), or using open heart surgical techniques.
  • the device may be made from a super-elastic material (for example, Nitinol) enabling it to be folded and collapsed such that it can be delivered in a catheter, and will subsequently self-expand when released from the catheter.
  • the device may be secured to the mitral annulus with sutures or other attachment means (i.e. barbs, hooks, staples, etc).
  • FIG. 5 shows a perspective view of an embodiment of the invention comprised of a bridge 540 , spanning material 530 , attachment means 550 , and a base 520 .
  • the device is shown to have a framework 510 .
  • the framework 510 does not interfere with atrial contractions, instead contracting with the atrium.
  • the device 500 may have non-uniform flexibility to improve its function within the heart.
  • the framework is shown here rising from the base 520 with two substantially parallel arched wires that connect to form a semicircular hoop above the base 520 .
  • the framework 510 helps to accurately position the device within the atrium, and also helps to secure the device within the atrium.
  • the neo-leaflet comprised of the bridge 540 and spanning material 530 is shown in the closed valve position.
  • FIG. 6 shows a perspective view of the embodiment of FIG. 5 in the open valve position.
  • FIG. 7 shows a perspective view of the embodiments shown in FIGS. 5 and 6 positioned within the left atrium of the heart.
  • FIGS. 8 and 9 show a perspective view of the embodiments of FIGS. 5 and 6 positioned within the left atrium of the heart.
  • FIG. 8 shows the embodiment in a closed valve position
  • FIG. 9 shows the embodiment in an open valve position.
  • the sizing of the base 810 can vary depending upon the patient's needs.
  • FIG. 10 shows a perspective view of an embodiment of the invention having a framework 1010 that avoids the pulmonary veins (not shown).
  • FIGS. 11 and 12 show a perspective view of a dual spring bridge neo-leaflet have an anterior bridge spanned by an anterior material 1110 , and a posterior bridge spanned by a posterior material 1120 .
  • the framework 1130 shown here illustrates an alternative design. This embodiment also illustrates a base having clips 1140 that protrude below an imaginary plane formed by the annulus of the valve.
  • FIG. 11 shows the dual neo-leaflets in a closed valve position
  • FIG. 12 shows the dual neo-leaflets in an open valve position.
  • FIG. 13 shows a perspective view of a damaged native anterior leaflet 1310 that is not connected to the chordae tendineae.
  • FIG. 14 shows a perspective view of a device 1400 having a half sewing ring 1420 with a membrane 1410 that serves as a neo-annulus or a neo-leaflet.
  • the membrane 1410 When serving as a neo-annulus, the membrane 1410 is a relatively immobile structure covering one of the native valve leaflets, particularly a damaged, missing or nonfunctional leaflet. The neo-annulus serves to extend the native annulus and coapts with the remaining functional native leaflet to create a functioning mitral valve.
  • the membrane 1410 When serving as a neo-leaflet, the membrane 1410 is a mobile structure that moves in response to blood flow, coating with one of the native leaflets to create a functioning mitral valve.
  • the neo-leaflet replaces the function of a damaged, missing or nonfunctional native leaflet.
  • the device 1400 is attached to the mitral valve annulus via the half sewing ring 1420 .
  • This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 15 shows a perspective view of a device 1500 having a full sewing ring 1530 with a membrane 1510 that serves as a neo-annulus or a neo-leaflet.
  • the device 1500 has an opening 1520 though the sewing ring 1530 opposite the membrane 1510 for blood flow.
  • this embodiment could have two neo-leaflets.
  • This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 16 shows a perspective view of a leaflet retainer 1600 that is positioned within the atrium on top of both native mitral valve leaflets.
  • This embodiment is comprised of an outer ring 1610 and an inner ring 1630 connected by radial struts 1620 .
  • the interior region of the valve orifice remains unobstructed to blood flow with this embodiment.
  • This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 17 shows a perspective view of a leaflet retainer 1700 that is positioned within the atrium on top of both native mitral valve leaflets.
  • This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 18 shows a perspective view of a leaflet retainer 1800 that is positioned within the atrium on top of both native mitral valve leaflets. This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 19 shows a perspective view of a leaflet retainer 1900 that is positioned on top of both native mitral valve leaflets.
  • the leaflet retainers may be designed to retain only one leaflet, or a portion of a leaflet, depending on patient needs.
  • the outer sections of this embodiment have anchors 1910 that distribute stresses along the atrial wall, helping to prevent erosion of the atrial walls.
  • This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 20 shows a side view of the embodiment shown in FIG. 19 .
  • FIG. 21 shows a perspective view of the embodiment shown in FIG. 19 .
  • FIG. 22 through 26 show the sequence of steps for a catheter-based percutaneous deployment of an embodiment of the invention. This deployment technique applies to other embodiments as well.
  • a guidewire is introduced into the vasculature via a peripheral venous access site, such as the femoral or jugular vein, or alternatively by means of surgical access through the right atrium.
  • FIG. 22 shows the introduction of a guidewire 2210 through the septum 2220 between the right and left atria.
  • the guidewire is shown being introduced into the right atrium via the inferior vena cava 2230 .
  • FIG. 23 shows a catheter 2320 being advanced over the guidewire 2310 .
  • FIG. 24 shows an embodiment of the invention 2400 being released from the catheter after the guidewire has been removed.
  • FIG. 25 shows an embodiment of the invention having an additional feature, a looped eyelet 2500 that is being placed within a pulmonary vein to help position the device within the atrial chamber.
  • the looped eyelet 2500 could be advanced over a guidewire.
  • FIG. 26 shows an embodiment of the invention 2600 being positioned within the left atrium.
  • the device 2600 can be positioned or repositioned within the atrium using a catheter deployed grasping instrument 2610 .
  • FIG. 27 shows a perspective view of an embodiment of the invention 2700 having a framework that partially fills the atrium.
  • FIG. 28 shows a perspective view of an embodiment of the invention 2800 having dual neo-leaflets, 2830 and 2840 .
  • the device is comprised of a framework 2810 an annular base 2820 , and the neo-leaflets, 2830 and 2840 .
  • the neo-leaflets supplement or replace native leaflets, and thus function as a one-way valve to allow blood to flow from the atrium to the ventricle, and to prevent blood from flowing from the ventricle to the atrium. This is accomplished because the neo-leaflets structure is similar to native leaflet structure.
  • FIG. 29 shows a perspective view of an embodiment of the invention 2900 having a leaflet retainer 2910 positioned against a native leaflet as well as a framework structure 2920 that meanders about the atrium without interfering with the pulmonary veins.
  • the leaflet retainer 2910 prevents the leaflet from prolapsing into the atrium due to the pressure differential during ventricular contractions, thus improving closure of the mitral valve and reducing regurgitation.
  • FIG. 30 shows a perspective view of another embodiment of the invention 3000 consisting of a continuous wire or tube that forms a leaflet retainer and framework.
  • the geometry of the framework is such that it spirals upward within the atrium.
  • the device 3000 is secured in place because the framework expands within the atrium, and experiences mural pressures.
  • the leaflet retainer is secured in place over a native leaflet by its coupling to the framework, and the leaflet retainer functions to prevent the native leaflet from experiencing prolapse.
  • a coating that promotes tissue growth may aid in the fixation process of the framework within the atrium.
  • the leaflet retainer section of the device 3000 may benefit from a coating that inhibits tissue growth, thus allowing the native leaflet to allow blood to flow into the ventricle.
  • FIG. 31 shows a perspective view of a tulip shaped wire form configuration 3100 of the invention.
  • FIG. 32 shows cutaway view of a tulip shaped wire form configuration 3200 of the invention.
  • the illustration shows the device 3200 making contact with native leaflets, 3220 and 3210 , to prevent prolapse.
  • the device 3200 is comprised of a leaflet retainer section that functions to prevent the native leaflets, 3210 and 3220 , from being blown into the atrium when the ventricle contracts.
  • the leaflet retaining section is positioned directly over the native leaflets.
  • the leaflet retaining aspect of the device 3200 is shown to be integrally formed with the framework section of the device.
  • the leaflet retainer and framework may be separate structures which can be deployed separately for individual use or in combination.
  • FIG. 33 shows a cutaway view of a tulip with a twist wire form configuration 3300 of the invention.
  • the twist aspect enables the device to be shortened through twisting to decrease the longitudinal spring constant.
  • the device 3300 is comprised of a leaflet retainer section that functions to prevent the native leaflets from being blown into the atrium when the ventricle contracts.
  • the leaflet retaining section is positioned directly over the native leaflets.
  • the leaflet retaining aspect of the device 3300 is shown to be integrally formed with the framework section of the device.
  • the leaflet retainer and framework may be separate structures which can be deployed separately for individual use or in combination.
  • FIG. 34 shows a cutaway view of the left atrium and left ventricle.
  • the arrows on the left side of the figure indicate by way of example three different ways in which an embodiment of the invention, such as a leaflet retainer, neo-leaflet, or neo-annulus, may interact with the mitral valve, or be positioned if replacing a leaflet.
  • an embodiment of the invention may lie in a plane formed by the annulus of the mitral valve as indicated by the middle arrow 3410 .
  • an embodiment of the invention may lie either above or below the plane of the annulus, as indicated by the top 3400 and bottom 3420 arrows, respectively.
  • a spring bridge may be configured so that it is biased in the open valve position, and is forced shut by increasing pressure within the ventricle.
  • the spring bridge may not be biased open or closed, but simply move in response to pressure differentials.
  • the spring bridge may be biased in the closed position.
  • FIG. 35 shows a perspective view of mesh leaflet with buttressing 3500 .
  • the embodiment is comprised of a framework 3510 and leaflet retainer 3520 .
  • the interior region of the valve orifice 3530 of this embodiment is left open to facilitate the flow of blood between the heart's chambers.
  • the leaflet retainer 3520 prevents native leaflets from being blown into the atrium upon ventricular contraction.
  • the framework 3510 transmits mural pressures to the leaflet retainer, encouraging the leaflet retainer to remain positioned over the native leaflets.
  • FIG. 36 shows a side view of a corona configuration 3600 of the invention. This embodiment may be used as a framework, to which a leaflet retainer or other valve enhancing device could be attached or coupled to.
  • FIG. 37 shows a perspective view of a corona configuration 3700 of the invention in situ within a patient's left atrium.
  • FIG. 38 shows a cutaway view of a heart, having both native leaflets, 3810 and 3820 , intact.
  • FIG. 39 shows a cutaway view of a heart with one embodiment of the invention 3900 .
  • FIG. 40 shows a cutaway view of a heart with one intact mitral valve leaflet 4010 , and one mitral valve leaflet excised, or missing. The chords 4020 of the removed leaflet are shown disconnected.
  • FIG. 41 shows a cutaway view of a heart with one embodiment of the invention 4100 .
  • the shown embodiment has one neo-leaflet 4110 .
  • This neo-leaflet 4110 may be rigid, semi-rigid, or flexible.
  • FIG. 42 shows a cutaway view of a heart with both mitral valve leaflets removed. The chords 4210 are shown disconnected.
  • FIG. 43 shows a cutaway view of a heart with one embodiment of the invention 4300 having two neo-leaflets.
  • These devices may be delivered to the heart via open heart surgery, through the chest, or through a remote blood vessel.
  • a remote blood vessel examples include the use of guidewires and catheters. They can be advanced into the right atrium through the superior or inferior vena cava (transluminally, via a peripheral venous insertion site, such as the femoral or jugular vein), or into the left ventricle through the aorta.
  • the left atrium can be accessed from the right atrium through the septum.
  • the left atrium can be accessed from the left ventricle through the mitral valve using a transluminal procedure gaining access via a peripheral arterial insertion site, such as the femoral artery. Echo techniques are used to determine whether a patient is experiencing regurgitation, and various imaging techniques can be used to position the device.
  • the devices shown may be anchored within the left atrium using barbs, staples, adhesives, magnets, etc.
  • the devices may be coated with various materials to either promote (Dacron) or inhibit (heparin) tissue growth around the devices, to prevent thrombosis, or coated with other desired materials to encourage other desirable characteristics.
  • Anchoring can also be done on the opposite (ventricular) side of the valve.

Abstract

An implant is sized and configured to be positioned in a left atrium above the plane of a native mitral heart valve annulus having leaflets. The implant, when deployed, engages a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function. The implant is deployed into the left atrium through an intravascular access path that extends from a right atrium through a septum and into a left atrium.

Description

    RELATED APPLICATIONS
  • This application is a divisional of co-pending U.S. patent application Ser. No. 10/695,433, filed Oct. 28, 2003, which is a continuation of International Patent Application Serial No. PCT/US02/31376, entitled “Methods and Devices for Heart Valve Treatment”, having an international filing date of Oct. 1, 2002 and a priority date of Oct. 1, 2001, based upon the benefit of U.S. Provisional Patent Application Ser. No. 60/326,590, filed Oct. 1, 2001 and entitled “Methods and Systems for Herat Chamber Endocardial and Epicardial Scaffold Therapies.”
  • FIELD OF THE INVENTION
  • This invention relates to methods and devices to improve the function of heart valves. More particularly, the invention relates to methods and devices to treat mitral valve regurgitation.
  • BACKGROUND OF THE INVENTION
  • The opening and closing of heart valves occur primarily as a result of pressure differences. For example, the opening and closing of the mitral valve occurs as a result of the pressure differences between the left atrium and the left ventricle. During ventricular diastole, when ventricles are relaxed, the venous return of blood from the pulmonary veins into the left atrium causes the pressure in the atrium to exceed that in the ventricle. As a result, the mitral valve opens, allowing blood to enter the ventricle. As the ventricle contracts during ventricular systole, the intraventricular pressure rises above the pressure in the atrium and pushes the mitral valve shut.
  • The high pressure produced by contraction of the ventricle could push the valve leaflets too much and evert them. Prolapse is a term used to describe this condition. This is normally prevented by contraction of the papillary muscles within the ventricle, which are connected to the mitral valve leaflets by the chordae tendineae (chords). Contraction of the papillary muscles is simultaneous with the contraction of the ventricle and serves to keep healthy valve leaflets tightly shut at peak contraction pressures exerted by the ventricle.
  • Valve malfunction can result from the chords becoming stretched, and in some cases tearing. When a chord tears, the result is a flailed leaflet. Also, a normally structured valve may not function properly because of an enlargement of the valve annulus. This condition is referred to as a dilation of the annulus and generally results from heart muscle failure. In addition, the valve may be defective at birth or because of an acquired disease.
  • SUMMARY OF THE INVENTION
  • The present invention provides a group of medical devices designed to improve heart valve function. The medical devices may be used individually, or in combination to supplement damaged valves, replace damaged valves, or improve damaged valves function. The medical devices include leaflet retainers, a neo-annulus, neo-leaflet, and a framework. In addition, the present invention includes novel methods for surgically treating heart valves.
  • One aspect of the invention provides heart implant comprising an implant structure sized and configured to be positioned in a left atrium above the plane of a native mitral heart valve annulus having leaflets. The implant structure includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • Another aspect of the invention provides a system comprising an implant structure sized and configured to be positioned in a left atrium above the plane of a native mitral heart valve annulus having leaflets. The implant structure includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function. The system also includes an access tool sized and configured to establish an intravascular access path that extends from a right atrium through a septum and into a left atrium. The system further includes a deployment tool sized and configured to deploy the implant structure through the intravascular path into the left atrium and position the implant structure in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • Another aspect of the invention provides a method comprising deploying a guide wire through an vasculature path into a: right atrium, and introducing the guide wire through a septum from the right atrium into a left atrium. The method includes advancing a catheter over the guide wire and releasing from the catheter a heart implant sized and configured to be positioned in the left atrium above the plane of a native mitral heart valve annulus having leaflets. The implant includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function. The method positions the implant in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • Another aspect of the invention provides a system comprising a guide wire sized and configured to be deployed through an vasculature path into a right atrium and through a septum from the right atrium into a left atrium. The system includes a catheter sized and configured to be introduced into the left atrium along the guide wire. The system further includes an implant structure carried within the catheter. The implant structure being sized and configured to be positioned in a left atrium above the plane of a native mitral heart valve annulus having leaflets. The implant structure includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • Another aspect of the invention provides a method comprising deploying a catheter through an vasculature path into a right atrium, through a septum and into a left atrium. The method includes releasing from the catheter a heart implant sized and configured to be positioned in the left atrium above the plane of a native mitral heart valve annulus having leaflets. The implant includes a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function. The method includes positioning the implant in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
  • In one embodiment, the implant or implant structure is sized and configured so that, in use, the portion spans the left atrium.
  • In one embodiment, the implant or implant structure is sized and configured so that, in use, the portion changes the shape of the native mitral heart valve annulus.
  • In one embodiment, the implant or implant structure comprises, at least in part, nitinol, dacron, polytetrafluoroethylene, silicon, polyurethane, human pericardium, or animal pericardium.
  • In one embodiment, the implant or implant structure comprises, at least in part, a super elastic material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a posterior oblique cutaway view of a patient's heart 100.
  • FIG. 2 shows a cutaway view of a patient's heart 200 with a prolapsed mitral valve that does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction.
  • FIG. 3 shows a cutaway view of a patient's heart 300 with a flailing mitral valve 320 that does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction as indicated by arrows.
  • FIG. 4 shows a perspective view of a spring bridge neo-leaflet used to supplement or replace a native leaflet.
  • FIG. 5 shows a perspective view of an embodiment of the invention comprised of a bridge 540, spanning material 530, attachment means 550, and a base 520. In addition, the device is shown to have a framework 510.
  • FIG. 6 shows a perspective view of the embodiment of FIG. 5 in the open valve position.
  • FIG. 7 shows a perspective view of the embodiments shown in FIGS. 5 and 6 positioned within the left atrium of the heart.
  • FIGS. 8 and 9 show a perspective view of the embodiments of FIGS. 5 and 6 positioned within the left atrium of the heart.
  • FIG. 10 shows a perspective view of an embodiment of the invention having a framework 1010 that avoids the pulmonary veins (not shown).
  • FIGS. 11 and 12 show a perspective view of a dual spring bridge neo-leaflet having an anterior bridge spanned by an anterior material 1110, and a posterior bridge spanned by a posterior material 1120.
  • FIG. 13 shows a perspective view of a damaged native anterior leaflet 1310 that is not connected to the chordae tendineae.
  • FIG. 14 shows a perspective view of a device 1400 having a half sewing ring 1420 with a membrane 1410 that serves as a neo-annulus or a neo-leaflet.
  • FIG. 15 shows a perspective view of a device 1500 having a full sewing ring 1530 with a membrane 1510 that serves as a neo-annulus or a neo-leaflet.
  • FIG. 16 shows a perspective view of a leaflet retainer 1600 that is positioned within the atrium on top of both native mitral valve leaflets.
  • FIG. 17 shows a perspective view of a leaflet retainer 1700 that is positioned within the atrium on top of both native mitral valve leaflets.
  • FIG. 18 shows a perspective view of a leaflet retainer 1800 that is positioned within the atrium on top of both native mitral valve leaflets.
  • FIG. 19 shows a perspective view of a leaflet retainer 1900 that is positioned on top of both native mitral valve leaflets.
  • FIG. 20 shows a side view of the embodiment shown in FIG. 19.
  • FIG. 21 shows a perspective view of the embodiment shown in FIG. 19.
  • FIG. 22 through 26 show the sequence of steps for a catheter-based percutaneous deployment of an embodiment of the invention.
  • FIG. 27 shows a perspective view of an embodiment of the invention 2700 having a framework that partially fills the atrium.
  • FIG. 28 shows a perspective view of an embodiment of the invention 2800 having dual neo-leaflets, 2830 and 2840.
  • FIG. 29 shows a perspective view of an embodiment of the invention 2900 having a leaflet retainer 2910 positioned against a native leaflet as well as a framework structure 2920 that meanders about the atrium without interfering with the pulmonary veins.
  • FIG. 30 shows a perspective view of another embodiment of the invention 3000 consisting of a continuous wire or tube that forms a leaflet retainer and framework.
  • FIG. 31 shows a perspective view of a tulip shaped wire form configuration 3100 of the invention.
  • FIG. 32 shows cutaway view of a tulip shaped wire form configuration 3200 of the invention.
  • FIG. 33 shows a cutaway view of a tulip with a twist wire form configuration 3300 of the invention.
  • FIG. 34 shows a cutaway view of the left atrium and left ventricle. The arrows on the left side of the figure indicate by way of example three different ways in which an embodiment of the invention, such as a leaflet retainer, neo-leaflet, or neo-annulus, may interact with the mitral valve, or be positioned if replacing a leaflet.
  • FIG. 35 shows a perspective view of mesh leaflet with buttressing 3500.
  • FIG. 36 shows a side view of a corona configuration 3600 of the invention.
  • FIG. 37 shows a perspective view of a corona configuration 3700 of the invention in situ within a patient's left atrium.
  • FIG. 38 shows a cutaway view of a heart, having both native leaflets, 3810 and 3820, intact.
  • FIG. 39 shows a cutaway view of a heart with one embodiment of the invention 3900.
  • FIG. 40 shows a cutaway view of a heart with one intact mitral valve leaflet 4010, and one mitral valve leaflet excised, or missing.
  • FIG. 41 shows a cutaway view of a heart with one embodiment of the invention 4100. In addition, the shown embodiment has one neo-leaflet 4110.
  • FIG. 42 shows a cutaway view of a heart with both mitral valve leaflets removed.
  • FIG. 43 shows a cutaway view of a heart with one embodiment of the invention 4300 having two neo-leaflets.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a posterior oblique cutaway view of a patient's heart 100. Two of the four heart chambers are shown, the left atrium 170, and the left ventricle 140 (not shown are the right atrium and right ventricle). The left atrium 170 fills with blood from the pulmonary veins. The blood then passes through the mitral valve (also known as the bicuspid valve, and more generally known as an atrioventricular valve) during ventricular diastole and into the left ventricle 140. During ventricular systole, the blood is then ejected out of the left ventricle 140 through the aortic valve 150 and into the aorta 160. At this time, the mitral valve should be shut so that blood is not regurgitated back into the left atrium. The mitral valve consists of two leaflets, an anterior leaflet 110, and a posterior leaflet 115, attached to chordae tendineae 120 (hereafter, chords), which in turn are connected to papillary muscles 130 within the left atrium 140. Typically, the mitral valve has a D-shaped anterior leaflet 110 oriented toward the aortic valve, with a crescent shaped posterior leaflet 115. The leaflets intersect with the atrium 170 at the mitral annulus 190.
  • FIG. 2 shows a cutaway view of a patient's heart 200 with a prolapsed mitral valve that does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction. The anterior 220 and posterior 225 leaflets are shown being blown into the left atrium with arrows indicating the direction of regurgitant flow. Among other causes, regurgitation can result from stretched chords 210 that are too long to prevent the leaflets from being blown into the atrium. As a result, the leaflets do not form a tight seal and blood is regurgitated into the atrium.
  • FIG. 3 shows a cutaway view of a patient's heart 300 with a flailing mitral valve 320 that does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction as indicated by arrows. Among other causes, regurgitation can result from torn chords 310.
  • FIG. 4 shows a perspective view of a spring bridge neo-leaflet used to supplement or replace a native leaflet. The device 400 is shown to be formed of a base 420 that is positioned around the mitral annulus, and then closes in over the anterior leaflet to form a bridge 430 over the anterior leaflet. The bridge 430 may be a rigid, semi-rigid, or flexible. The bridge may act like a spring, and thus respond dynamically to pressure differentials within the heart. The bridge 430 may have a spanning material 410 that spans the bridge 430. The spanning material 410 may be attached to the device 400 with one or more attachment means 440 (for example, it may be sewn, glued, or welded to the device 400, or it may be attached to itself when wrapped around the device 400). The spanning material 410 maybe made from a synthetic material (for example, thin Nitinol, Dacron fabric, Polytetrafluoroethylene or PTFE, Silicone, or Polyurethane) or a biological material (for example, human or animal pericardium). The device 400 may be delivered percutaneously, through the chest (thoracoscopy), or using open heart surgical techniques. If delivered percutaneously, the device may be made from a super-elastic material (for example, Nitinol) enabling it to be folded and collapsed such that it can be delivered in a catheter, and will subsequently self-expand when released from the catheter. The device may be secured to the mitral annulus with sutures or other attachment means (i.e. barbs, hooks, staples, etc).
  • FIG. 5 shows a perspective view of an embodiment of the invention comprised of a bridge 540, spanning material 530, attachment means 550, and a base 520. In addition, the device is shown to have a framework 510. Preferably the framework 510 does not interfere with atrial contractions, instead contracting with the atrium. As such, the device 500 may have non-uniform flexibility to improve its function within the heart. The framework is shown here rising from the base 520 with two substantially parallel arched wires that connect to form a semicircular hoop above the base 520. The framework 510 helps to accurately position the device within the atrium, and also helps to secure the device within the atrium. The neo-leaflet comprised of the bridge 540 and spanning material 530 is shown in the closed valve position.
  • FIG. 6 shows a perspective view of the embodiment of FIG. 5 in the open valve position.
  • FIG. 7 shows a perspective view of the embodiments shown in FIGS. 5 and 6 positioned within the left atrium of the heart.
  • FIGS. 8 and 9 show a perspective view of the embodiments of FIGS. 5 and 6 positioned within the left atrium of the heart. FIG. 8 shows the embodiment in a closed valve position, and FIG. 9 shows the embodiment in an open valve position. The sizing of the base 810 can vary depending upon the patient's needs.
  • FIG. 10 shows a perspective view of an embodiment of the invention having a framework 1010 that avoids the pulmonary veins (not shown).
  • FIGS. 11 and 12 show a perspective view of a dual spring bridge neo-leaflet have an anterior bridge spanned by an anterior material 1110, and a posterior bridge spanned by a posterior material 1120. The framework 1130 shown here illustrates an alternative design. This embodiment also illustrates a base having clips 1140 that protrude below an imaginary plane formed by the annulus of the valve. FIG. 11 shows the dual neo-leaflets in a closed valve position, and FIG. 12 shows the dual neo-leaflets in an open valve position.
  • FIG. 13 shows a perspective view of a damaged native anterior leaflet 1310 that is not connected to the chordae tendineae.
  • FIG. 14 shows a perspective view of a device 1400 having a half sewing ring 1420 with a membrane 1410 that serves as a neo-annulus or a neo-leaflet. When serving as a neo-annulus, the membrane 1410 is a relatively immobile structure covering one of the native valve leaflets, particularly a damaged, missing or nonfunctional leaflet. The neo-annulus serves to extend the native annulus and coapts with the remaining functional native leaflet to create a functioning mitral valve. When serving as a neo-leaflet, the membrane 1410 is a mobile structure that moves in response to blood flow, coating with one of the native leaflets to create a functioning mitral valve. The neo-leaflet replaces the function of a damaged, missing or nonfunctional native leaflet. The device 1400 is attached to the mitral valve annulus via the half sewing ring 1420. This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 15 shows a perspective view of a device 1500 having a full sewing ring 1530 with a membrane 1510 that serves as a neo-annulus or a neo-leaflet. The device 1500 has an opening 1520 though the sewing ring 1530 opposite the membrane 1510 for blood flow. Alternatively, this embodiment could have two neo-leaflets. This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 16 shows a perspective view of a leaflet retainer 1600 that is positioned within the atrium on top of both native mitral valve leaflets. This embodiment is comprised of an outer ring 1610 and an inner ring 1630 connected by radial struts 1620. The interior region of the valve orifice remains unobstructed to blood flow with this embodiment. This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 17 shows a perspective view of a leaflet retainer 1700 that is positioned within the atrium on top of both native mitral valve leaflets. This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 18 shows a perspective view of a leaflet retainer 1800 that is positioned within the atrium on top of both native mitral valve leaflets. This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 19 shows a perspective view of a leaflet retainer 1900 that is positioned on top of both native mitral valve leaflets. Alternatively, the leaflet retainers may be designed to retain only one leaflet, or a portion of a leaflet, depending on patient needs. The outer sections of this embodiment have anchors 1910 that distribute stresses along the atrial wall, helping to prevent erosion of the atrial walls. This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the patient's atrium using catheter based intraluminal techniques.
  • FIG. 20 shows a side view of the embodiment shown in FIG. 19.
  • FIG. 21 shows a perspective view of the embodiment shown in FIG. 19.
  • FIG. 22 through 26 show the sequence of steps for a catheter-based percutaneous deployment of an embodiment of the invention. This deployment technique applies to other embodiments as well. Initially, a guidewire is introduced into the vasculature via a peripheral venous access site, such as the femoral or jugular vein, or alternatively by means of surgical access through the right atrium. FIG. 22 shows the introduction of a guidewire 2210 through the septum 2220 between the right and left atria. The guidewire is shown being introduced into the right atrium via the inferior vena cava 2230. FIG. 23 shows a catheter 2320 being advanced over the guidewire 2310. FIG. 24 shows an embodiment of the invention 2400 being released from the catheter after the guidewire has been removed. Alternatively, a guidewire could be used to place the device. FIG. 25 shows an embodiment of the invention having an additional feature, a looped eyelet 2500 that is being placed within a pulmonary vein to help position the device within the atrial chamber. The looped eyelet 2500 could be advanced over a guidewire. FIG. 26 shows an embodiment of the invention 2600 being positioned within the left atrium. The device 2600 can be positioned or repositioned within the atrium using a catheter deployed grasping instrument 2610.
  • FIG. 27 shows a perspective view of an embodiment of the invention 2700 having a framework that partially fills the atrium.
  • FIG. 28 shows a perspective view of an embodiment of the invention 2800 having dual neo-leaflets, 2830 and 2840. The device is comprised of a framework 2810 an annular base 2820, and the neo-leaflets, 2830 and 2840. The neo-leaflets supplement or replace native leaflets, and thus function as a one-way valve to allow blood to flow from the atrium to the ventricle, and to prevent blood from flowing from the ventricle to the atrium. This is accomplished because the neo-leaflets structure is similar to native leaflet structure.
  • FIG. 29 shows a perspective view of an embodiment of the invention 2900 having a leaflet retainer 2910 positioned against a native leaflet as well as a framework structure 2920 that meanders about the atrium without interfering with the pulmonary veins. The leaflet retainer 2910 prevents the leaflet from prolapsing into the atrium due to the pressure differential during ventricular contractions, thus improving closure of the mitral valve and reducing regurgitation.
  • FIG. 30 shows a perspective view of another embodiment of the invention 3000 consisting of a continuous wire or tube that forms a leaflet retainer and framework. The geometry of the framework is such that it spirals upward within the atrium. The device 3000 is secured in place because the framework expands within the atrium, and experiences mural pressures. The leaflet retainer is secured in place over a native leaflet by its coupling to the framework, and the leaflet retainer functions to prevent the native leaflet from experiencing prolapse. In addition, a coating that promotes tissue growth may aid in the fixation process of the framework within the atrium. However, the leaflet retainer section of the device 3000 may benefit from a coating that inhibits tissue growth, thus allowing the native leaflet to allow blood to flow into the ventricle.
  • FIG. 31 shows a perspective view of a tulip shaped wire form configuration 3100 of the invention.
  • FIG. 32 shows cutaway view of a tulip shaped wire form configuration 3200 of the invention. The illustration shows the device 3200 making contact with native leaflets, 3220 and 3210, to prevent prolapse. The device 3200 is comprised of a leaflet retainer section that functions to prevent the native leaflets, 3210 and 3220, from being blown into the atrium when the ventricle contracts. The leaflet retaining section is positioned directly over the native leaflets. In this embodiment, the leaflet retaining aspect of the device 3200 is shown to be integrally formed with the framework section of the device. However, in other embodiments, the leaflet retainer and framework may be separate structures which can be deployed separately for individual use or in combination.
  • FIG. 33 shows a cutaway view of a tulip with a twist wire form configuration 3300 of the invention. The twist aspect enables the device to be shortened through twisting to decrease the longitudinal spring constant. The device 3300 is comprised of a leaflet retainer section that functions to prevent the native leaflets from being blown into the atrium when the ventricle contracts. The leaflet retaining section is positioned directly over the native leaflets. In this embodiment, the leaflet retaining aspect of the device 3300 is shown to be integrally formed with the framework section of the device. However, in other embodiments, the leaflet retainer and framework may be separate structures which can be deployed separately for individual use or in combination.
  • FIG. 34 shows a cutaway view of the left atrium and left ventricle. The arrows on the left side of the figure indicate by way of example three different ways in which an embodiment of the invention, such as a leaflet retainer, neo-leaflet, or neo-annulus, may interact with the mitral valve, or be positioned if replacing a leaflet. In other words, an embodiment of the invention may lie in a plane formed by the annulus of the mitral valve as indicated by the middle arrow 3410. Also, an embodiment of the invention may lie either above or below the plane of the annulus, as indicated by the top 3400 and bottom 3420 arrows, respectively. In addition, FIG. 34 could also be used to illustrate potential movements when these components of the invention are configured as a spring bridge that spans the mitral annulus and actively moves with the valve leaflet(s). A spring bridge may be configured so that it is biased in the open valve position, and is forced shut by increasing pressure within the ventricle. Alternatively, the spring bridge may not be biased open or closed, but simply move in response to pressure differentials. Also, the spring bridge may be biased in the closed position.
  • FIG. 35 shows a perspective view of mesh leaflet with buttressing 3500. The embodiment is comprised of a framework 3510 and leaflet retainer 3520. The interior region of the valve orifice 3530 of this embodiment is left open to facilitate the flow of blood between the heart's chambers. The leaflet retainer 3520 prevents native leaflets from being blown into the atrium upon ventricular contraction. The framework 3510 transmits mural pressures to the leaflet retainer, encouraging the leaflet retainer to remain positioned over the native leaflets.
  • FIG. 36 shows a side view of a corona configuration 3600 of the invention. This embodiment may be used as a framework, to which a leaflet retainer or other valve enhancing device could be attached or coupled to.
  • FIG. 37 shows a perspective view of a corona configuration 3700 of the invention in situ within a patient's left atrium.
  • FIG. 38 shows a cutaway view of a heart, having both native leaflets, 3810 and 3820, intact.
  • FIG. 39 shows a cutaway view of a heart with one embodiment of the invention 3900.
  • FIG. 40 shows a cutaway view of a heart with one intact mitral valve leaflet 4010, and one mitral valve leaflet excised, or missing. The chords 4020 of the removed leaflet are shown disconnected.
  • FIG. 41 shows a cutaway view of a heart with one embodiment of the invention 4100. In addition, the shown embodiment has one neo-leaflet 4110. This neo-leaflet 4110 may be rigid, semi-rigid, or flexible.
  • FIG. 42 shows a cutaway view of a heart with both mitral valve leaflets removed. The chords 4210 are shown disconnected.
  • FIG. 43 shows a cutaway view of a heart with one embodiment of the invention 4300 having two neo-leaflets.
  • These devices may be delivered to the heart via open heart surgery, through the chest, or through a remote blood vessel. Examples of delivery through a remote blood vessel include the use of guidewires and catheters. They can be advanced into the right atrium through the superior or inferior vena cava (transluminally, via a peripheral venous insertion site, such as the femoral or jugular vein), or into the left ventricle through the aorta. The left atrium can be accessed from the right atrium through the septum. Alternatively, the left atrium can be accessed from the left ventricle through the mitral valve using a transluminal procedure gaining access via a peripheral arterial insertion site, such as the femoral artery. Echo techniques are used to determine whether a patient is experiencing regurgitation, and various imaging techniques can be used to position the device.
  • The devices shown may be anchored within the left atrium using barbs, staples, adhesives, magnets, etc. In addition, the devices may be coated with various materials to either promote (Dacron) or inhibit (heparin) tissue growth around the devices, to prevent thrombosis, or coated with other desired materials to encourage other desirable characteristics. Anchoring can also be done on the opposite (ventricular) side of the valve.
  • While the present invention has been described herein with respect to the exemplary embodiments and the best mode for practicing the invention it will become apparent to one of ordinary skill in the art that many modifications, improvements and sub combinations of the various embodiments, adaptations and variations can be made to the invention without departing from the spirit and scope thereof.

Claims (24)

1. A heart implant comprising
an implant structure sized and configured to be positioned in a left atrium above the plane of a native mitral heart valve annulus having leaflets, the implant structure including a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
2. A heart implant according to claim 1
wherein the implant structure is sized and configured so that, in use, the portion spans the left atrium.
3. A heart implant according to claim 1
wherein the implant structure is sized and configured so that, in use, the portion changes the shape of the native mitral heart valve annulus.
4. A heart implant according to claim 1
wherein the implant structure comprises, at least in part, nitinol, dacron, polytetrafluoroethylene, silicon, polyurethane, human pericardium, or animal pericardium.
5. A heart implant according to claim 1
wherein the implant structure comprises, at least in part, a super elastic material.
6. A system comprising
an implant structure sized and configured to be positioned in a left atrium above the plane of a native mitral heart valve annulus having leaflets, the implant structure including a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function,
an access tool sized and configured to establish an intravascular access path that extends from a right atrium through a septum and into a left atrium, and
a deployment tool sized and configured to deploy the implant structure through the intravascular path into the left atrium and position the implant structure in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
7. A system according to claim 6
wherein the implant structure is sized and configured so that, in use, the portion spans the left atrium.
8. A system according to claim 6
wherein the implant structure is sized and configured so that, in use, the portion changes the shape of the native mitral heart valve annulus.
9. A system according to claim 6
wherein the implant structure comprises, at least in part, nitinol, dacron, polytetrafluoroethylene, silicon, polyurethane, human pericardium, or animal pericardium.
10. A system according to claim 6
wherein the implant structure comprises, at least in part, a super elastic material.
11. A method comprising
deploying a guide wire through an vasculature path into a right atrium,
introducing the guide wire through a septum from the right atrium into a left atrium,
advancing a catheter over the guide wire, releasing from the catheter a heart implant sized and configured to be positioned in the left atrium above the plane of a native mitral heart valve annulus having leaflets, the implant including a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function, and
positioning the implant in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
12. A method according to claim 11
wherein the implant is positioned so that the portion spans the left atrium.
13. A method according to claim 11
wherein the implant is positioned so that the portion changes the shape of the native mitral heart valve annulus.
14. A method according to claim 11
wherein the heart implant comprises, at least in part, nitinol, dacron, polytetrafluoroethylene, silicon, polyurethane, human pericardium, or animal pericardium.
15. A method according to claim 11
wherein the heart implant comprises, at least in part, a super elastic material.
16. A system comprising
a guide wire sized and configured to be deployed through an vasculature path into a right atrium and through a septum from the right atrium into a left atrium,
a catheter sized and configured to be introduced into the left atrium along the guide wire, and
an implant structure carried within the catheter, the implant structure being sized and configured to be positioned in a left atrium above the plane of a native mitral heart valve annulus having leaflets, the implant structure including a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
17. A system according to claim 16
further including a grasping instrument sized and configure to be introduced through the catheter to position the implant structure within the left atrium.
18. A system according to claim 16
further including a grasping instrument sized and configure to be introduced through the catheter to reposition the implant structure within the left atrium.
19. A system according to claim 16
wherein the implant is positioned so that the portion spans the left atrium.
20. A system according to claim 16
wherein the implant is positioned so that the portion changes the shape of the native mitral heart valve annulus.
21. A system according to claim 16
wherein the heart implant comprises, at least in part, nitinol, dacron, polytetrafluoroethylene, silicon, polyurethane, human pericardium, or animal pericardium.
22. A system according to claim 16
wherein the heart implant comprises, at least in part, a super elastic material.
23. A method comprising
deploying a catheter through an vasculature path into a right atrium, through a septum and into a left atrium,
releasing from the catheter a heart implant sized and configured to be positioned in the left atrium above the plane of a native mitral heart valve annulus having leaflets, the implant including a portion sized and configured for engagement with a wall of the left atrium above the plane of the native mitral valve annulus to interact with movement of the leaflets of the mitral heart valve to affect mitral heart valve function, and
positioning the implant in the left atrium with the portion engaging a wall of the left atrium above the plane of the native mitral valve annulus such that the portion interacts with movement of the leaflets of the mitral heart valve to affect mitral heart valve function.
24. A method according to claim 23
further including deploying a grasping instrument through the catheter to reposition the implant structure within the left atrium.
US11/977,493 2001-10-01 2007-10-25 Methods and devices for heart valve treatments Abandoned US20080140190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/977,493 US20080140190A1 (en) 2001-10-01 2007-10-25 Methods and devices for heart valve treatments

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US32659001P 2001-10-01 2001-10-01
PCT/US2002/031376 WO2003028558A2 (en) 2001-10-01 2002-10-01 Methods and devices for heart valve treatments
US10/695,433 US7291168B2 (en) 2001-10-01 2003-10-28 Methods and devices for heart valve treatments
US11/977,493 US20080140190A1 (en) 2001-10-01 2007-10-25 Methods and devices for heart valve treatments

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/695,433 Division US7291168B2 (en) 2000-09-20 2003-10-28 Methods and devices for heart valve treatments

Publications (1)

Publication Number Publication Date
US20080140190A1 true US20080140190A1 (en) 2008-06-12

Family

ID=23272862

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/695,433 Expired - Lifetime US7291168B2 (en) 2000-09-20 2003-10-28 Methods and devices for heart valve treatments
US11/977,493 Abandoned US20080140190A1 (en) 2001-10-01 2007-10-25 Methods and devices for heart valve treatments

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/695,433 Expired - Lifetime US7291168B2 (en) 2000-09-20 2003-10-28 Methods and devices for heart valve treatments

Country Status (8)

Country Link
US (2) US7291168B2 (en)
EP (1) EP1434542A2 (en)
JP (1) JP4458845B2 (en)
CN (2) CN101108144A (en)
AU (1) AU2002362442B2 (en)
CA (2) CA2462254A1 (en)
HK (1) HK1073423A1 (en)
WO (1) WO2003028558A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050004665A1 (en) * 2003-07-02 2005-01-06 Lishan Aklog Annuloplasty rings and methods for repairing cardiac valves
US20080065204A1 (en) * 2000-09-20 2008-03-13 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20080288060A1 (en) * 2004-07-06 2008-11-20 Baker Medical Research Institute Treating Valvular Insufficiency
US20090306622A1 (en) * 2000-09-20 2009-12-10 Ample Medical, Inc. Devices, systems, and methods for reshaping a heat valve annulus
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
EP2478868A1 (en) 2011-01-25 2012-07-25 The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth Implant device
US20120316643A1 (en) * 2006-11-13 2012-12-13 Keraenen Olli Device and Method For Improving Function Of Heart Valve
CN102958469A (en) * 2010-02-24 2013-03-06 美敦力公司 Mitral prosthesis
CN104023656A (en) * 2011-12-05 2014-09-03 Pi-R-方形有限公司 Fracturing calcifications in heart valves
US9517131B2 (en) 2014-12-12 2016-12-13 Than Nguyen Cardiac valve repair device
WO2017035002A1 (en) * 2015-08-21 2017-03-02 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
WO2017217932A1 (en) * 2016-06-13 2017-12-21 Singapore Health Services Pte. Ltd. Device for cardiac valve repair and method of implanting the same
WO2018009868A1 (en) * 2016-07-08 2018-01-11 Edwards Lifesciences Corporation Docking station for heart valve prosthesis
EP3777771A1 (en) * 2019-08-13 2021-02-17 The Chinese University of Hong Kong Transcatheter self-expandable tricuspid valve replacement system
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US20210361430A1 (en) * 2014-10-14 2021-11-25 Valtech Cardio Ltd. Leaflet-restraining techniques
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11925553B2 (en) 2012-01-31 2024-03-12 Mitral Valve Technologies Sarl Valve docking devices, systems and methods
US11951000B2 (en) 2014-09-12 2024-04-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods

Families Citing this family (299)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
WO1999000059A1 (en) * 1997-06-27 1999-01-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US10327743B2 (en) 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US7604646B2 (en) 1999-04-09 2009-10-20 Evalve, Inc. Locking mechanisms for fixation devices and methods of engaging tissue
CA2620783C (en) 1999-04-09 2011-04-05 Evalve, Inc. Methods and apparatus for cardiac valve repair
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US7226467B2 (en) 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
WO2006116558A2 (en) * 1999-04-09 2006-11-02 Evalve, Inc. Device and methods for endoscopic annuloplasty
EP1113497A3 (en) * 1999-12-29 2006-01-25 Texas Instruments Incorporated Semiconductor package with conductor impedance selected during assembly
ITPC20000013A1 (en) * 2000-04-13 2000-07-13 Paolo Ferrazzi INTROVENTRICULAR DEVICE AND RELATED METHOD FOR THE TREATMENT AND CORRECTION OF MYOCARDIOPATHIES.
US7527646B2 (en) * 2000-09-20 2009-05-05 Ample Medical, Inc. Devices, systems, and methods for retaining a native heart valve leaflet
US8784482B2 (en) * 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
US20050222489A1 (en) 2003-10-01 2005-10-06 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US6575971B2 (en) 2001-11-15 2003-06-10 Quantum Cor, Inc. Cardiac valve leaflet stapler device and methods thereof
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US6997950B2 (en) * 2003-01-16 2006-02-14 Chawla Surendra K Valve repair device
US20050107871A1 (en) * 2003-03-30 2005-05-19 Fidel Realyvasquez Apparatus and methods for valve repair
US7658759B2 (en) * 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
US10646229B2 (en) 2003-05-19 2020-05-12 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
CA2526347C (en) 2003-05-20 2010-07-06 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US8052751B2 (en) * 2003-07-02 2011-11-08 Flexcor, Inc. Annuloplasty rings for repairing cardiac valves
WO2005007036A1 (en) * 2003-07-18 2005-01-27 Brivant Research & Development Limited A device for correcting inversion of the leaflets of a leaflet valve in the heart
WO2005009285A2 (en) * 2003-07-21 2005-02-03 The Trustees Of The University Of Pennsylvania Percutaneous heart valve
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
WO2005087140A1 (en) 2004-03-11 2005-09-22 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
US7942927B2 (en) 2004-03-15 2011-05-17 Baker Medical Research Institute Treating valve failure
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US7704277B2 (en) * 2004-09-14 2010-04-27 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
CA2748617C (en) 2004-09-27 2014-09-23 Evalve, Inc. Methods and devices for tissue grasping and assessment
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
WO2006041877A2 (en) * 2004-10-05 2006-04-20 Ample Medical, Inc. Atrioventricular valve annulus repair systems and methods including retro-chordal anchors
SE0403046D0 (en) * 2004-12-15 2004-12-15 Medtentia Ab A device and method for improving the function of a heart valve
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US20060173490A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
EP3967269A3 (en) 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
US8470028B2 (en) 2005-02-07 2013-06-25 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
JP4740619B2 (en) * 2005-02-17 2011-08-03 サンゴ エッセ.ア.エッセ. ディ カッターニ リータ エ チ. External support for venous valves to restore capacity by traction of their commissural walls
WO2006089236A1 (en) * 2005-02-18 2006-08-24 The Cleveland Clinic Foundation Apparatus and methods for replacing a cardiac valve
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
JP4740963B2 (en) * 2005-02-28 2011-08-03 メドテンティア インターナショナル リミテッド オイ Heart valve function improvement device
US8608797B2 (en) * 2005-03-17 2013-12-17 Valtech Cardio Ltd. Mitral valve treatment techniques
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060259135A1 (en) * 2005-04-20 2006-11-16 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
SE531468C2 (en) * 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
EP1874217A4 (en) * 2005-04-25 2014-11-19 Evalve Inc Device and methods for endoscopic annuloplasty
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
WO2007025028A1 (en) * 2005-08-25 2007-03-01 The Cleveland Clinic Foundation Percutaneous atrioventricular valve and method of use
CN102113922B (en) 2005-09-07 2013-03-27 梅德坦提亚国际有限公司 A device for improving the function of a heart valve
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7797607B2 (en) * 2005-12-27 2010-09-14 Lg Electronics, Inc. DTV transmitter and method of coding main and enhanced data in DTV transmitter
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7749249B2 (en) 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US7635386B1 (en) * 2006-03-07 2009-12-22 University Of Maryland, Baltimore Methods and devices for performing cardiac valve repair
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
EP3241525B2 (en) 2006-06-01 2022-06-08 Edwards Lifesciences Corporation Prosthetic insert for use with a mitral valve
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
AU2007281553B2 (en) 2006-07-31 2013-09-19 Edwards Lifesciences Cardiaq Llc Sealable endovascular implants and methods for their use
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US7837610B2 (en) 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
US20080033541A1 (en) * 2006-08-02 2008-02-07 Daniel Gelbart Artificial mitral valve
FR2906454B1 (en) 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
US8694077B2 (en) 2006-10-06 2014-04-08 The Cleveland Clinic Foundation Apparatus and method for targeting a body tissue
WO2008070262A2 (en) 2006-10-06 2008-06-12 The Cleveland Clinic Foundation Apparatus and method for targeting a body tissue
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
WO2010004546A1 (en) 2008-06-16 2010-01-14 Valtech Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
WO2008068756A2 (en) 2006-12-05 2008-06-12 Valtech Cardio, Ltd. Segmented ring placement
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US20080208328A1 (en) * 2007-02-23 2008-08-28 Endovalve, Inc. Systems and Methods For Placement of Valve Prosthesis System
US8070802B2 (en) * 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8216303B2 (en) * 2007-11-19 2012-07-10 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US8784483B2 (en) 2007-11-19 2014-07-22 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US9131928B2 (en) 2007-12-20 2015-09-15 Mor Research Applications Ltd. Elongated body for deployment in a heart
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
WO2009092782A1 (en) 2008-01-25 2009-07-30 Jenavalve Technology Inc. Medical apparatus for the therapeutic treatment of an insufficient cardiac valve
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
WO2011104269A1 (en) 2008-02-26 2011-09-01 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US10456259B2 (en) 2008-04-16 2019-10-29 Heart Repair Technologies, Inc. Transvalvular intraannular band for mitral valve repair
US20100121437A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Transvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy
US11083579B2 (en) 2008-04-16 2021-08-10 Heart Repair Technologies, Inc. Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy
US8262725B2 (en) * 2008-04-16 2012-09-11 Cardiovascular Technologies, Llc Transvalvular intraannular band for valve repair
US20100131057A1 (en) 2008-04-16 2010-05-27 Cardiovascular Technologies, Llc Transvalvular intraannular band for aortic valve repair
US11013599B2 (en) 2008-04-16 2021-05-25 Heart Repair Technologies, Inc. Percutaneous transvalvular intraannular band for mitral valve repair
US20100121435A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Percutaneous transvalvular intrannular band for mitral valve repair
US8323336B2 (en) 2008-04-23 2012-12-04 Medtronic, Inc. Prosthetic heart valve devices and methods of valve replacement
US9173737B2 (en) * 2008-04-23 2015-11-03 Medtronic, Inc. Stented heart valve devices
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8337390B2 (en) * 2008-07-30 2012-12-25 Cube S.R.L. Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
CA2776475A1 (en) * 2008-10-10 2010-04-15 Peter Forsell An improved artificial valve
AU2009317876B2 (en) 2008-11-21 2014-01-16 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis and method
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
CN102341063B (en) 2008-12-22 2015-11-25 瓦尔泰克卡迪欧有限公司 Adjustable annuloplasty device and governor motion thereof
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
WO2011033508A1 (en) 2009-09-15 2011-03-24 Transcardia Ltd. Heart valve remodeling
EP3042615A1 (en) 2009-09-15 2016-07-13 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US20110077733A1 (en) * 2009-09-25 2011-03-31 Edwards Lifesciences Corporation Leaflet contacting apparatus and method
EP2482749B1 (en) 2009-10-01 2017-08-30 Kardium Inc. Kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
EP2506777B1 (en) 2009-12-02 2020-11-25 Valtech Cardio, Ltd. Combination of spool assembly coupled to a helical anchor and delivery tool for implantation thereof
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
WO2011109813A2 (en) 2010-03-05 2011-09-09 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
EP2558014A4 (en) 2010-04-13 2017-11-29 Sentreheart, Inc. Methods and devices for treating atrial fibrillation
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
US9050066B2 (en) 2010-06-07 2015-06-09 Kardium Inc. Closing openings in anatomical tissue
JP5848345B2 (en) 2010-07-09 2016-01-27 ハイライフ エスエーエス Transcatheter atrioventricular valve prosthesis
US8657872B2 (en) 2010-07-19 2014-02-25 Jacques Seguin Cardiac valve repair system and methods of use
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
WO2012012761A2 (en) 2010-07-23 2012-01-26 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
EP2611391B1 (en) 2010-09-01 2017-11-22 Mvalve Technologies Ltd. Cardiac valve support structure
US10105224B2 (en) 2010-09-01 2018-10-23 Mvalve Technologies Ltd. Cardiac valve support structure
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
US9289295B2 (en) 2010-11-18 2016-03-22 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
US9198756B2 (en) 2010-11-18 2015-12-01 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
EP2667824A4 (en) * 2011-01-25 2017-11-01 Emory University Devices and methods for surgical and percutaneous repair of heart valve lesions
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US10500038B1 (en) 2011-05-20 2019-12-10 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve, and methods and devices for deploying the prosthetic mitral valve
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
EP3395298A1 (en) 2011-06-27 2018-10-31 University of Maryland, Baltimore Transapical mitral valve repair device
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021375A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3970627B1 (en) 2011-11-08 2023-12-20 Edwards Lifesciences Innovation (Israel) Ltd. Controlled steering functionality for implant-delivery tool
EP2591754B1 (en) * 2011-11-10 2015-02-25 Medtentia International Ltd Oy A device and a method for improving the function of a heart valve
US9445893B2 (en) 2011-11-21 2016-09-20 Mor Research Applications Ltd. Device for placement in the tricuspid annulus
CA2869365A1 (en) * 2012-04-05 2013-10-10 Mvalve Technologies Ltd. Cardiac valve support structure
WO2013175468A2 (en) 2012-05-20 2013-11-28 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve
DE102012010798A1 (en) * 2012-06-01 2013-12-05 Universität Duisburg-Essen Implantable device for improving or eliminating heart valve insufficiency
EP2900150B1 (en) 2012-09-29 2018-04-18 Mitralign, Inc. Plication lock delivery system
WO2014066397A1 (en) 2012-10-22 2014-05-01 The Cleveland Clinic Foundation Apparatus and method for targeting a body tissue
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
WO2014064695A2 (en) 2012-10-23 2014-05-01 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
EP2943132B1 (en) 2013-01-09 2018-03-28 4Tech Inc. Soft tissue anchors
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
US9724084B2 (en) 2013-02-26 2017-08-08 Mitralign, Inc. Devices and methods for percutaneous tricuspid valve repair
WO2014136056A1 (en) * 2013-03-04 2014-09-12 Medical Research, Infrastructure And Health Services Fund Of The Tel-Aviv Medical Center Cardiac valve commissure brace
WO2014141239A1 (en) 2013-03-14 2014-09-18 4Tech Inc. Stent with tether interface
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
WO2014144247A1 (en) 2013-03-15 2014-09-18 Arash Kheradvar Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
EP2968847B1 (en) 2013-03-15 2023-03-08 Edwards Lifesciences Corporation Translation catheter systems
US10052198B2 (en) 2013-08-14 2018-08-21 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
JP6328242B2 (en) 2013-08-14 2018-05-23 マイトラル・ヴァルヴ・テクノロジーズ・エス・アー・エール・エル System for heart valve replacement
CN105491978A (en) 2013-08-30 2016-04-13 耶拿阀门科技股份有限公司 Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
WO2015059699A2 (en) 2013-10-23 2015-04-30 Valtech Cardio, Ltd. Anchor magazine
US10646333B2 (en) 2013-10-24 2020-05-12 Medtronic, Inc. Two-piece valve prosthesis with anchor stent and valve component
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
WO2015066549A1 (en) 2013-10-31 2015-05-07 Sentreheart, Inc. Devices and methods for left atrial appendage closure
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9681864B1 (en) 2014-01-03 2017-06-20 Harpoon Medical, Inc. Method and apparatus for transapical procedures on a mitral valve
EP3107498B1 (en) 2014-02-21 2020-09-30 Mitral Valve Technologies Sàrl Prosthetic mitral valve with anchoring device
US9572666B2 (en) * 2014-03-17 2017-02-21 Evalve, Inc. Mitral valve fixation device removal devices and methods
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
CA2958061A1 (en) 2014-06-18 2015-12-23 Middle Peak Medical, Inc. Mitral valve implants for the treatment of valvular regurgitation
CN106573129B (en) 2014-06-19 2019-09-24 4科技有限公司 Heart tissue is tightened
EP3160396B1 (en) 2014-06-24 2022-03-23 Polares Medical Inc. Systems for anchoring an implant
US9579186B2 (en) * 2014-06-26 2017-02-28 Boston Scientific Scimed, Inc. Medical devices and methods to prevent bile reflux after bariatric procedures
EP4066786A1 (en) 2014-07-30 2022-10-05 Cardiovalve Ltd. Articulatable prosthetic valve
US9907547B2 (en) 2014-12-02 2018-03-06 4Tech Inc. Off-center tissue anchors
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US10231834B2 (en) 2015-02-09 2019-03-19 Edwards Lifesciences Corporation Low profile transseptal catheter and implant system for minimally invasive valve procedure
US10039637B2 (en) * 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US20160235525A1 (en) 2015-02-12 2016-08-18 Medtronic, Inc. Integrated valve assembly and method of delivering and deploying an integrated valve assembly
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
EP3273912A1 (en) * 2015-03-23 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Heart valve repair
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
CN114515173A (en) 2015-04-30 2022-05-20 瓦尔泰克卡迪欧有限公司 Valvuloplasty techniques
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10376673B2 (en) 2015-06-19 2019-08-13 Evalve, Inc. Catheter guiding system and methods
US10238494B2 (en) 2015-06-29 2019-03-26 Evalve, Inc. Self-aligning radiopaque ring
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US10413408B2 (en) 2015-08-06 2019-09-17 Evalve, Inc. Delivery catheter systems, methods, and devices
US10034747B2 (en) 2015-08-27 2018-07-31 Medtronic Vascular, Inc. Prosthetic valve system having a docking component and a prosthetic valve component
US20170056215A1 (en) 2015-09-01 2017-03-02 Medtronic, Inc. Stent assemblies including passages to provide blood flow to coronary arteries and methods of delivering and deploying such stent assemblies
EP3753498B1 (en) 2015-10-02 2023-12-06 Harpoon Medical, Inc. Distal anchor apparatus for mitral valve repair
US10022223B2 (en) 2015-10-06 2018-07-17 W. L. Gore & Associates, Inc. Leaflet support devices and methods of making and using the same
US10238495B2 (en) 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
US9872765B2 (en) 2015-10-12 2018-01-23 Venus Medtech (Hangzhou) Inc Mitral valve assembly
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
AU2016366840B2 (en) 2015-12-10 2021-09-23 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
WO2017117370A2 (en) 2015-12-30 2017-07-06 Mitralign, Inc. System and method for reducing tricuspid regurgitation
US10363130B2 (en) 2016-02-05 2019-07-30 Edwards Lifesciences Corporation Devices and systems for docking a heart valve
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
EP3231393B1 (en) 2016-04-13 2023-06-21 Christian Vallbracht Minimally invasive implantable mitral and tricuspid valve
US10624743B2 (en) 2016-04-22 2020-04-21 Edwards Lifesciences Corporation Beating-heart mitral valve chordae replacement
WO2017191549A1 (en) * 2016-05-05 2017-11-09 LAINCHBURY, John George Device for the treatment of mitral valve prolapse
EP3243485A1 (en) * 2016-05-11 2017-11-15 Berlin Heart GmbH Holding device for a sewing ring
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10588745B2 (en) 2016-06-20 2020-03-17 Medtronic Vascular, Inc. Modular valve prosthesis, delivery system, and method of delivering and deploying a modular valve prosthesis
US10736632B2 (en) 2016-07-06 2020-08-11 Evalve, Inc. Methods and devices for valve clip excision
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
CN114587712A (en) 2016-08-10 2022-06-07 卡迪尔维尔福股份有限公司 Prosthetic valve with coaxial frame
US10828152B2 (en) 2016-08-11 2020-11-10 4C Medical Technologies, Inc. Heart chamber prosthetic valve implant with base, spring and dome sections with single chamber anchoring for preservation, supplementation and/or replacement of native valve function
US10722359B2 (en) 2016-08-26 2020-07-28 Edwards Lifesciences Corporation Heart valve docking devices and systems
CR20190069A (en) 2016-08-26 2019-05-14 Edwards Lifesciences Corp Heart valve docking coils and systems
US11071564B2 (en) 2016-10-05 2021-07-27 Evalve, Inc. Cardiac valve cutting device
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10398553B2 (en) 2016-11-11 2019-09-03 Evalve, Inc. Opposing disk device for grasping cardiac valve tissue
US10426616B2 (en) 2016-11-17 2019-10-01 Evalve, Inc. Cardiac implant delivery system
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US10314586B2 (en) 2016-12-13 2019-06-11 Evalve, Inc. Rotatable device and method for fixing tricuspid valve tissue
EP3906893A1 (en) 2016-12-20 2021-11-10 Edwards Lifesciences Corporation Systems and mechanisms for deploying a docking device for a replacement heart valve
JP2020501842A (en) 2016-12-22 2020-01-23 ハート・リペアー・テクノロジーズ・インコーポレーテッド Percutaneous delivery system for securing an implant to a heart valve annulus
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
CN110392557A (en) 2017-01-27 2019-10-29 耶拿阀门科技股份有限公司 Heart valve simulation
USD867595S1 (en) 2017-02-01 2019-11-19 Edwards Lifesciences Corporation Stent
US20180256329A1 (en) * 2017-03-07 2018-09-13 4C Medical Technologies, Inc. Systems, methods and devices for prosthetic heart valve with single valve leaflet
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN110913801B (en) 2017-03-13 2022-04-15 宝来瑞斯医疗有限公司 Coaptation assistance element for treating an adverse coaptation of a heart valve of a heart and system for delivering the same
CN110678149B (en) 2017-03-27 2021-12-21 楚利福医疗有限公司 Device for treating a diseased mitral valve comprising a docking element
US10765515B2 (en) 2017-04-06 2020-09-08 University Of Maryland, Baltimore Distal anchor apparatus and methods for mitral valve repair
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
WO2018209313A1 (en) 2017-05-12 2018-11-15 Evalve, Inc. Long arm valve repair clip
EP3641699B1 (en) 2017-06-19 2023-08-30 Harpoon Medical, Inc. Apparatus for cardiac procedures
CN110891526A (en) 2017-06-30 2020-03-17 爱德华兹生命科学公司 Locking and releasing mechanism for transcatheter implantable devices
CA3068313A1 (en) 2017-06-30 2019-01-03 Edwards Lifesciences Corporation Docking stations for transcatheter valves
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
USD890333S1 (en) 2017-08-21 2020-07-14 Edwards Lifesciences Corporation Heart valve docking coil
EP3700434A1 (en) 2017-10-24 2020-09-02 University of Maryland, Baltimore Method and apparatus for cardiac procedures
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
WO2019144121A1 (en) 2018-01-22 2019-07-25 Edwards Lifesciences Corporation Heart shape preserving anchor
WO2019145947A1 (en) 2018-01-24 2019-08-01 Valtech Cardio, Ltd. Contraction of an annuloplasty structure
EP3743014B1 (en) 2018-01-26 2023-07-19 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11517435B2 (en) 2018-05-04 2022-12-06 Edwards Lifesciences Corporation Ring-based prosthetic cardiac valve
AU2019301967A1 (en) 2018-07-12 2021-01-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty systems and locking tools therefor
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
EP3620133A1 (en) * 2018-09-07 2020-03-11 AVVie GmbH Implant for improving coaptation of an artrioventricular valve
US11395738B2 (en) 2018-09-25 2022-07-26 Truleaf Medical Ltd. Docking elements
CR20210640A (en) 2019-10-29 2022-05-30 Valtech Cardio Ltd Annuloplasty and tissue anchor technologies
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN114474029B (en) * 2022-02-16 2023-09-01 之江实验室 High-frequency driven thermal response artificial muscle
CN117426808B (en) * 2023-12-21 2024-03-08 北京华脉泰科医疗器械股份有限公司 Skirt edge structure, self-adaptive skirt edge bracket, plugging device and skirt edge manufacturing method

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360444A (en) * 1991-03-19 1994-11-01 Kenji Kusuhara Occluder supporter and a method of attachment thereof
US5830224A (en) * 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US5961440A (en) * 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US6045497A (en) * 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6050936A (en) * 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6183411B1 (en) * 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6210222B1 (en) * 1999-12-13 2001-04-03 Eagle Comtronics, Inc. Coaxial cable connector
US6260552B1 (en) * 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6332893B1 (en) * 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6514198B2 (en) * 2000-07-25 2003-02-04 Olympus Optical Co., Ltd. Endoscope capable of undergoing at least one of cleaning, disinfection, and sterilization at high temperature
US6537198B1 (en) * 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US20030120340A1 (en) * 2001-12-26 2003-06-26 Jan Liska Mitral and tricuspid valve repair
US6616684B1 (en) * 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6626899B2 (en) * 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US6656221B2 (en) * 2001-02-05 2003-12-02 Viacor, Inc. Method and apparatus for improving mitral valve function
US20030233022A1 (en) * 2002-06-12 2003-12-18 Vidlund Robert M. Devices and methods for heart valve treatment
US6702826B2 (en) * 2000-06-23 2004-03-09 Viacor, Inc. Automated annular plication for mitral valve repair
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US20040148019A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment
US7037334B1 (en) * 2001-04-24 2006-05-02 Mitralign, Inc. Method and apparatus for catheter-based annuloplasty using local plications
US7125421B2 (en) * 2001-08-31 2006-10-24 Mitral Interventions, Inc. Method and apparatus for valve repair

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056854A (en) * 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US5370685A (en) * 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
FR2688692A1 (en) * 1992-03-20 1993-09-24 Seguin Jacques Prosthetic ring for reconstruction surgery of the aortic valve
CN2135346Y (en) * 1992-09-12 1993-06-09 中国人民解放军第四军医大学第一附属医院 Plasticity bicuspid valve shaping ring
US5263977A (en) * 1992-10-26 1993-11-23 Angeion Corporation Electrode spacing device
FR2708847B1 (en) * 1993-08-13 1995-11-03 Couetil Jean Paul Implantable heart valve.
FR2726657B1 (en) * 1994-11-07 1996-12-06 Metrix DEVICE FOR MEASURING AND / OR ANALYZING DISTURBANCES IN THE SECTOR
US5545241B1 (en) * 1995-01-17 1999-09-28 Donaldson Co Inc Air cleaner
US5716417A (en) * 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
AU7671896A (en) * 1995-11-01 1997-05-22 St. Jude Medical Inc. Bioresorbable annuloplasty prosthesis
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
DE19625202A1 (en) * 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic mitral heart valve
DE19624951A1 (en) * 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic heart valve
US5776189A (en) * 1997-03-05 1998-07-07 Khalid; Naqeeb Cardiac valvular support prosthesis
US6250308B1 (en) * 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6102932A (en) * 1998-12-15 2000-08-15 Micrus Corporation Intravascular device push wire delivery system
EP1143882B1 (en) * 1999-01-26 2007-12-05 Edwards Lifesciences Corporation Flexible heart valve
CA2620783C (en) * 1999-04-09 2011-04-05 Evalve, Inc. Methods and apparatus for cardiac valve repair
US6312464B1 (en) * 1999-04-28 2001-11-06 NAVIA JOSé L. Method of implanting a stentless cardiac valve prosthesis
SE514718C2 (en) 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US6440164B1 (en) * 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6419695B1 (en) * 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US7510572B2 (en) * 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US6913608B2 (en) * 2000-10-23 2005-07-05 Viacor, Inc. Automated annular plication for mitral valve repair
US7070618B2 (en) * 2000-10-25 2006-07-04 Viacor, Inc. Mitral shield
US6955689B2 (en) * 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
US6945978B1 (en) * 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US7004176B2 (en) * 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
SE531468C2 (en) * 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360444A (en) * 1991-03-19 1994-11-01 Kenji Kusuhara Occluder supporter and a method of attachment thereof
US6099542A (en) * 1996-03-15 2000-08-08 Beth Israel Hospital Association Inc. Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a prechosen anatomic site in-vivo
US5830224A (en) * 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US6669709B1 (en) * 1996-03-15 2003-12-30 Transvascular, Inc. Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US6332864B1 (en) * 1997-01-02 2001-12-25 Myocor, Inc. Heart wall tension reduction apparatus
US6059715A (en) * 1997-01-02 2000-05-09 Myocor, Inc. Heart wall tension reduction apparatus
US5961440A (en) * 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US6050936A (en) * 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6162168A (en) * 1997-01-02 2000-12-19 Myocor, Inc. Heart wall tension reduction apparatus
US6165119A (en) * 1997-01-02 2000-12-26 Myocor, Inc. Heart wall tension reduction apparatus and method
US6793618B2 (en) * 1997-01-02 2004-09-21 Myocor, Inc. Heart wall tension reduction apparatus
US6045497A (en) * 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6261222B1 (en) * 1997-01-02 2001-07-17 Myocor, Inc. Heart wall tension reduction apparatus and method
US6589160B2 (en) * 1997-01-02 2003-07-08 Myocor Inc Heart wall tension reduction apparatus
US6332893B1 (en) * 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6260552B1 (en) * 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6183411B1 (en) * 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6626899B2 (en) * 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US6210222B1 (en) * 1999-12-13 2001-04-03 Eagle Comtronics, Inc. Coaxial cable connector
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6709456B2 (en) * 2000-01-31 2004-03-23 Ev3 Santa Rosa, Inc. Percutaneous mitral annuloplasty with hemodynamic monitoring
US6537198B1 (en) * 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US6702826B2 (en) * 2000-06-23 2004-03-09 Viacor, Inc. Automated annular plication for mitral valve repair
US6514198B2 (en) * 2000-07-25 2003-02-04 Olympus Optical Co., Ltd. Endoscope capable of undergoing at least one of cleaning, disinfection, and sterilization at high temperature
US6616684B1 (en) * 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6656221B2 (en) * 2001-02-05 2003-12-02 Viacor, Inc. Method and apparatus for improving mitral valve function
US7037334B1 (en) * 2001-04-24 2006-05-02 Mitralign, Inc. Method and apparatus for catheter-based annuloplasty using local plications
US7125421B2 (en) * 2001-08-31 2006-10-24 Mitral Interventions, Inc. Method and apparatus for valve repair
US20030120340A1 (en) * 2001-12-26 2003-06-26 Jan Liska Mitral and tricuspid valve repair
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US20030233022A1 (en) * 2002-06-12 2003-12-18 Vidlund Robert M. Devices and methods for heart valve treatment
US20040148019A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110319990A1 (en) * 2000-09-20 2011-12-29 Mvrx, Inc. Devices, systems, and methods for supplementing, repairing or replacing a native heart valve leaflet
US20080065204A1 (en) * 2000-09-20 2008-03-13 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20090306622A1 (en) * 2000-09-20 2009-12-10 Ample Medical, Inc. Devices, systems, and methods for reshaping a heat valve annulus
US8016882B2 (en) * 2000-09-20 2011-09-13 Mvrx, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US9610161B2 (en) * 2000-09-20 2017-04-04 Mvrx, Inc. Devices, systems, and methods for supplementing, repairing or replacing a native heart valve leaflet
US9861475B2 (en) * 2000-09-20 2018-01-09 Mvrx Inc. Devices, systems, and methods for reshaping a heart valve annulus
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US20050004665A1 (en) * 2003-07-02 2005-01-06 Lishan Aklog Annuloplasty rings and methods for repairing cardiac valves
US20080288060A1 (en) * 2004-07-06 2008-11-20 Baker Medical Research Institute Treating Valvular Insufficiency
US20120316643A1 (en) * 2006-11-13 2012-12-13 Keraenen Olli Device and Method For Improving Function Of Heart Valve
US8734507B2 (en) * 2006-11-13 2014-05-27 Medtentia International Ltd. Oy Device and method for improving function of heart valve
US10398546B2 (en) 2010-02-24 2019-09-03 Medtronic Ventor Technologies Ltd. Mitral prosthesis and methods for implantation
CN102958469A (en) * 2010-02-24 2013-03-06 美敦力公司 Mitral prosthesis
WO2012101190A1 (en) 2011-01-25 2012-08-02 The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Implant device
EP2478868A1 (en) 2011-01-25 2012-07-25 The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth Implant device
CN104023656A (en) * 2011-12-05 2014-09-03 Pi-R-方形有限公司 Fracturing calcifications in heart valves
US11925553B2 (en) 2012-01-31 2024-03-12 Mitral Valve Technologies Sarl Valve docking devices, systems and methods
US11951000B2 (en) 2014-09-12 2024-04-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US20210361430A1 (en) * 2014-10-14 2021-11-25 Valtech Cardio Ltd. Leaflet-restraining techniques
US9517131B2 (en) 2014-12-12 2016-12-13 Than Nguyen Cardiac valve repair device
US11576782B2 (en) 2015-08-21 2023-02-14 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
WO2017035002A1 (en) * 2015-08-21 2017-03-02 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US11116635B2 (en) 2016-06-13 2021-09-14 Singapore Health Services Pte Ltd Device for cardiac valve repair and method of implanting the same
WO2017217932A1 (en) * 2016-06-13 2017-12-21 Singapore Health Services Pte. Ltd. Device for cardiac valve repair and method of implanting the same
GB2566222A (en) * 2016-06-13 2019-03-06 Singapore Health Serv Pte Ltd Device for cardiac valve repair and method of implanting the same
GB2566222B (en) * 2016-06-13 2022-04-06 Singapore Health Serv Pte Ltd Device for cardiac valve repair and method of implanting the same
WO2018009868A1 (en) * 2016-07-08 2018-01-11 Edwards Lifesciences Corporation Docking station for heart valve prosthesis
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11701228B2 (en) 2018-03-20 2023-07-18 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11931261B2 (en) 2018-03-20 2024-03-19 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11944536B2 (en) 2019-08-13 2024-04-02 The Chinese University Of Hong Kong Transcatheter self-expandable tricuspid valve replacement system
EP3777771A1 (en) * 2019-08-13 2021-02-17 The Chinese University of Hong Kong Transcatheter self-expandable tricuspid valve replacement system

Also Published As

Publication number Publication date
EP1434542A2 (en) 2004-07-07
CA2462254A1 (en) 2003-04-10
JP4458845B2 (en) 2010-04-28
HK1073423A1 (en) 2005-10-07
JP2005504577A (en) 2005-02-17
US7291168B2 (en) 2007-11-06
US20040138745A1 (en) 2004-07-15
CA2455444A1 (en) 2003-04-10
AU2002362442B2 (en) 2008-08-07
CN1610529A (en) 2005-04-27
CN101108144A (en) 2008-01-23
CN100333704C (en) 2007-08-29
WO2003028558A2 (en) 2003-04-10
WO2003028558A8 (en) 2003-10-30

Similar Documents

Publication Publication Date Title
US7291168B2 (en) Methods and devices for heart valve treatments
US11839545B2 (en) Method of treating a defective heart valve
AU2002362442A1 (en) Methods and devices for heart valve treatments
JP7149052B2 (en) A stent for positioning and securing a valvular prosthesis at an implantation site in a patient's heart
US8016882B2 (en) Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US9504570B2 (en) Device and method for reshaping tricuspid valve annulus
US7527646B2 (en) Devices, systems, and methods for retaining a native heart valve leaflet
JP2020531189A (en) Diameter catheter device for treating mitral regurgitation
EP2278944B1 (en) Prosthetic mitral valve
US20120283824A1 (en) Heart Valve Stent
US20210298896A1 (en) Prosthetic hemi heart valve
JP6506869B2 (en) Artificial heart valve
WO2021207695A1 (en) Prosthetic hem i heart valve
RU2348379C2 (en) Cardiac valve prosthesis and method of implantation thereof
AU2013245451A1 (en) Prosthetic insert for improving heart valve function

Legal Events

Date Code Title Description
AS Assignment

Owner name: VENTURE LENDING & LEASING IV, INC. AND VENTURE LEN

Free format text: SECURITY INTEREST;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:020814/0208

Effective date: 20080328

AS Assignment

Owner name: MVRX, INC.,CALIFORNIA

Free format text: BILL OF SALE;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:023928/0968

Effective date: 20091130

Owner name: MVRX, INC., CALIFORNIA

Free format text: BILL OF SALE;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:023928/0968

Effective date: 20091130

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MVRX, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE CONVEYING PARTIES PREVIOUSLY RECORDED ON REEL 023928 FRAME 0968. ASSIGNOR(S) HEREBY CONFIRMS THE BILL OF SALE;ASSIGNORS:VENTURE LENDING & LEASING IV, INC.;VENTURE LENDING & LEASING V, INC.;REEL/FRAME:037704/0486

Effective date: 20091130

AS Assignment

Owner name: VENTURE LENDING & LEASING IV, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:037706/0025

Effective date: 20091130

Owner name: VENTURE LENDING & LEASING V, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:037706/0025

Effective date: 20091130

Owner name: VENTURE LENDING & LEASING IV, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:037705/0289

Effective date: 20041217

AS Assignment

Owner name: VENTURE LENDING & LEASING V, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SIGNATURES ON THE ORIGINALLY DOCUMENT PREVIOUSLY RECORDED AT REEL: 020814 FRAME: 0208. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT/SECURITY AGREEMENT;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:037974/0732

Effective date: 20080328

Owner name: VENTURE LENDING & LEASING IV, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SIGNATURES ON THE ORIGINALLY DOCUMENT PREVIOUSLY RECORDED AT REEL: 020814 FRAME: 0208. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT/SECURITY AGREEMENT;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:037974/0732

Effective date: 20080328

AS Assignment

Owner name: AMPLE MEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAHDERT, DAVID A.;MACOVIAK, JOHN A.;MACHOLD, TIMOTHY R.;AND OTHERS;REEL/FRAME:038007/0463

Effective date: 20031106