US20080038146A1 - Metal alloy for medical devices and implants - Google Patents

Metal alloy for medical devices and implants Download PDF

Info

Publication number
US20080038146A1
US20080038146A1 US11/804,044 US80404407A US2008038146A1 US 20080038146 A1 US20080038146 A1 US 20080038146A1 US 80404407 A US80404407 A US 80404407A US 2008038146 A1 US2008038146 A1 US 2008038146A1
Authority
US
United States
Prior art keywords
metal alloy
weight percent
alloy according
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/804,044
Inventor
Jurgen Wachter
Jens Trotzschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP03002905.2A external-priority patent/EP1444993B2/en
Application filed by Individual filed Critical Individual
Priority to US11/804,044 priority Critical patent/US20080038146A1/en
Assigned to HERAEUS HOLDING GMBH reassignment HERAEUS HOLDING GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TROTZSCHEL, JENS, WACHTER, JURGEN
Publication of US20080038146A1 publication Critical patent/US20080038146A1/en
Assigned to HERAEUS HOLDING GMBH reassignment HERAEUS HOLDING GMBH NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: HERAEUS HOLDING GMBH
Assigned to W.C. HERAEUS GMBH reassignment W.C. HERAEUS GMBH CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME TO W.C. HERAEUS GMBH AND THE EFFECTIVE DATE TO BE AS OF MAY 16, 2007 PREVIOUSLY RECORDED ON REEL 025888 FRAME 0948. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNOR'S INTEREST. Assignors: HERAEUS HOLDING GMBH
Priority to US13/741,908 priority patent/US20140010703A1/en
Assigned to HERAEUS PRECIOUS METALS GMBH & CO. KG reassignment HERAEUS PRECIOUS METALS GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: W.C. HERAEUS GMBH & CO. KG
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/18Materials at least partially X-ray or laser opaque

Definitions

  • the present invention relates to an improved metal alloy for medical implants or devices for desired material properties.
  • a medical implant or device must satisfy a number of requirements. Factors affecting the choice of the medical implant or device and the material thereof are mainly all mechanical properties and biocompatibility.
  • the material must not cause any inflammatory reaction or allergic reaction. Commonly used materials often include nickel, like medical grade 316L stainless steel, which contains about 16% nickel. For patients with an allergic reaction the implantation of such materials is contraindicated.
  • Another consideration in material selection is the need for the implanting physician to be able to visualize the position of the medical implant or device during procedure to the desired target site in the body, and for purposes of examination from time to time thereafter at the implant site, typically by X-ray fluoroscopy.
  • MRI compatibility is desirable.
  • the metal alloys commonly used for implantation like stainless steel 316
  • alloys like Nitinol behave more favourably in MRI, their MRI compatibility is not considered to be sufficiently good.
  • This invention relates to medical devices or implants in general such as catheters, guide wires, stents, stent grafts and heart valve repair devices.
  • Stents are generally thin walled tubular-shaped devices composed of complex patterns of inter-connecting struts which function to hold open a segment of a blood vessel or other body lumen like oesophagus and urethra.
  • Stent grafts are stents with a circumferential covering or lining and are suitable for supporting a dissected artery or intimal flap that can occlude a vessel lumen.
  • Stents and stent grafts are typically implanted by use of a catheter. Initially they are maintained in a radially compressed state to manoeuvre them through the lumen. Once in position, they are deployed.
  • the material from which the vascular prosthesis like stents or stent grafts is constructed must allow the prosthesis to undergo expansion, which typically requires substantial deformation. Once expanded the stent must maintain its size and shape and must be capable of withstanding the structural loads, namely radial compressive forces, imposed on the stent as it supports the walls of a vessel lumen.
  • the wall of the prosthesis must be sufficiently thick, depending on the stent material, not only to withstand the vessel wall recoil but also allow the stent to be seen on the fluoroscope.
  • the prosthesis material must be biocompatible so as not to trigger any adverse vascular responses like restenosis or thrombus formation in the treated vessel.
  • EP 0 788 802 provides a self-expanding stent consisting of a titanium alloy including at least about 68 weight percent titanium and optionally Niobium, Zirconium, and Molybdenum.
  • U.S. Pat. No. 6,238,491 and WO 00/68448 describe a Niobium-Titanium-Zirconium-Molybdenum alloy for medical devices providing a uniform ⁇ -structure, which is corrosion resistant, and can be processed to develop high-strength and low-modulus.
  • the alloy comprises 29 to 70 weight percent Niobium, 10 to 46 weight percent Zirconium, 3 to 15 weight percent Molybdenum and a balance of Titanium.
  • Davidson employ an alloy consisting essentially of Titanium, 10 to 20 or 25 to 50 weight percent Niobium and optionally up to 20 weight percent Zirconium, the alloy having an elastic modulus less than 90 GPa.
  • Similar Titanium-alloys for medical implants also published by Davidson comprise Titanium, 10 to 20 or 35 to 50 weight percent Niobium and optionally up to 20 weight percent each Zirconium and Tantalum (EP 0 437 079) or Titanium, 10 to 20 or 35 to 50 weight percent each Niobium and Tantalum and optionally up to 20 weight percent Zirconium (U.S. Pat. No. 5,690,670).
  • EP 0 707 085 also provides a low modulus, biocompatible Titanium-base alloy for medical devices consisting of 20 to 40 weight percent Niobium, 4.5 to 25 weight percent Tantalum, 2.5 to 13 weight percent Zirconium and the balance Titanium.
  • a further high strength, low modulus and biocompatible Titanium-alloy is laid open in U.S. Pat. No. 4,857,269 and EP 0 359 446 consisting of Titanium and up to 25 weight percent Niobium, Zirconium, and Molybdenum.
  • EP 1 046 722 describes a corrosion resistant Titanium-Zirconium-type alloy for medical appliances consisting of 25 to 50 weight percent Titanium, 5 to 30 weight percent Niobium, 5 to 40 weight percent Tantalum and 25 to 60 weight percent Zirconium.
  • Niobium is a relatively soft and ductile metal, which is alloyed with traces of other elements, e.g. Zirconium, Tantalum or Titanium for reinforcement of the alloy.
  • Niobium surfaces cannot be electropolished because of their tendency to smear.
  • Stents fabricated from binary Tantalum-Alloys, namely Tantalum-Niobium and Tantalum-Tungsten, are disclosed in WO 02/05863.
  • Aim of the present invention is to provide an inventive material for medical implants and devices, which comprises favourable mechanical properties, excellent biocompatibility, optimal radio-opacity while at the same time exhibiting minor image artefact in MRI examination (MRI compatibility) and does therefore overcome the drawbacks of recently available metals for medical purposes.
  • the alloy fulfills all mechanical and structural requirements according to its function in a medical implant or device.
  • the device is sufficiently radio-opaque to allow for good imaging of the device under x-ray without the addition of an extra layer or portion of radio-opaque material.
  • the device is not overly bright and therefore does not obscure the image of the surrounding tissue, as would be the case with a device made from an extremely dense material.
  • the device is MRI safe and compatible, preferably also visible under MRI.
  • the desired properties can be given to a metal alloy comprising Tantalum, Niobium and at least one element selected from the group consisting of Tungsten, Zirconium and Molybdenum.
  • Tantalum is known as a very hard metal with a high melting point, high strength, and good ductility and is almost completely inert at body temperature. Tantalum has a high atomic number (73) and a density of 16.6 g/cm 3 resulting in a high radio-opacity. Therefore, medical implants or devices made of pure tantalum have the disadvantage that they are excessively radio-opaque, leading to a completely black area on the x-ray image in the region where the medical implant or device is located.
  • the radio-opacity of the inventive metal alloy is adjusted by adding further elements possessing higher or lower atomic numbers to the tantalum based alloy, which lowers the density of the alloy.
  • Niobium has an atomic mass of approximately half that of Tantalum.
  • tailoring the density of the inventive alloy by variation of the Niobium portion allows achievement of appropriate radio-opacity for each medical device or implant manufactured at least in part of the inventive alloy. It is possible to fabricate an alloy according to the present invention, which is sufficiently radio-opaque to be readily visualized under x-ray during medical procedures and yet is not so radio-opaque as to interfere with the visualization of surrounding body tissue.
  • the alloys of the invention show excellent melting and mixing properties with excellent uniformity since Niobium and tantalum are arbitrarily miscible. Varying the amount of Tungsten, Zirconium and Molybdenum, or optionally, the amount of Cerium, Rhenium, or Hafnium, allows adjustment of the granular size of the alloy.
  • the alloy according to the present invention is stronger than pure tantalum and in specific compositions even stronger than stainless steel.
  • a stent is manufactured from the alloy of the invention comprising a tailored radio-opacity while having a reduced wall thickness. Such a stent combines desired visibility under x-ray and excellent radial force with minimized delivery profile and less turbulence when employed in the vessel.
  • An additional advantage of the inventive alloy is the formation of a passive oxide film primarily composed of Tantalum-oxide (Ta 2 O 5 ), which is generally more durable and more corrosion resistant than for example the chromium-oxide film formed during the passivation of stainless steel.
  • Tantalum-oxide Ti 2 O 5
  • the inventive alloy can be easily cold-worked to increase strength and reduce elastic modulus. It is possible to form a hard, abrasion resistant surface on the inventive alloy through standard oxidation and nitridizing methods known by those skilled in the art. The presence of a hard, inert, abrasion resistant surface layer presents an important option for medical implants and devices in which it is desirable to have lower friction and wear, electrical insulation and improved corrosion resistance.
  • At least a portion of the surface of the inventive alloy can be conversion surface hardened and/or coated.
  • coatings can include, but are not limited to a polymer, a blend of polymers, a metal, a blend of metals, a ceramic and/or biomolecules, in particular peptides, proteins, lipids, carbohydrates and/or nucleic acids (e.g. collagen, heparin, fibrin, phosphorylcholine, cellulose, morphogenic proteins or peptides, growth factors).
  • alloy surface or the coatings can comprise stem cells and/or a bioactive substances, in particular drugs, antibiotics, growth factors, anti-inflammatory agents and/or anti-, thrombogenic agents.
  • the surface can be modified by electropolishing or mechanical polishing for formation of a completely smooth surface, sintering to achieve a porous coating as for example described in EP0601804, or by roughening procedures or microblasting, in particular sandblasting, to achieve a rough surface.
  • the inventive alloy is useful in the manufacturing of a variety of medical implants and devices.
  • the manufacture of medical devices from the invention alloy includes minimal-invasive devices, in particular guide wires, catheters (balloon catheters, guiding catheter, angiographic catheters, functional catheters, . . . ), intra-cavernous implants, in particular intra-oesophagus, intra-urethra, intra-tracheal implants and intra-vascular implants, in particular stents, stent grafts, stent graft connector, heart valve repair device or filters.
  • Preferred alloys contain the following elements:
  • the alloys preferably provide for a uniform beta structure, which is uniform and corrosion resistant, and have the ability for conversion oxidation or nitridization surface hardening of the medical implant or device.
  • the tungsten content is preferably between 0.1 and 15 weight percent.
  • the zirconium content is preferably between 0.1 and 10 weight percent.
  • the molybdenum content is preferably between 0.1 and 20 weight percent and more preferably between 0.1 and 10 weight percent.
  • the niobium content is preferably between 5 and 25 weight percent.
  • Especially preferred alloys contain about 10 weight percent Niobium and about 2.5 weight percent Tungsten.
  • alloys which comprise about 10 weight percent Niobium and about 7.5 weight percent Tungsten.
  • alloys which comprise about 10 weight percent Niobium and about 1 weight percent Zirconium.
  • alloys which comprise about 10 weight percent Niobium and about 3 weight percent Zirconium.
  • the invention also relates to medical implants or devices fabricated from the above-mentioned alloys, e.g. minimal-invasive devices, in particular catheters or guide wires, or intra-cavernous implants, in particular intravascular implants, such as stents, a stent grafts, stent graft connectors or heart valve repair devices.
  • minimal-invasive devices in particular catheters or guide wires
  • intra-cavernous implants in particular intravascular implants, such as stents, a stent grafts, stent graft connectors or heart valve repair devices.
  • the surface of the metal alloys may be passivated by oxidation or nitridization, or may be electropolished, mechanically polished, micro blasted, roughened or sintered, or may be coated with a polymer, a blend of polymers, a metal, a blend of metals, a ceramic and/or biomolecules, in particular peptides, proteins, lipids, carbohydrates and/or nucleic acids; or may be coated with stem cells and/or a bioactive substance, in particular drugs, antibiotics, growth factors, anti-inflammatory agents and/or anti-thrombogenic agents.
  • the invention may be carried out with an alloy of the following compositions:

Abstract

The present invention relates to a medical device or implant made at least in part of a high strength, low modulus metal alloy comprising Niobium, Tantalum, and at least one element selected from the group consisting of Zirconium, Tungsten and Molybdenum. The medical devices according to the present invention provide superior characteristics with regard to biocompatibility, radio-opacity and MRI compatibility.

Description

  • This is a Continuation-in-Part of U.S. patent application Ser. No. 10/409,559 filed Apr. 8, 2003. Priority is claimed on that application and on the following application:
      • Country: Germany, Application No. 03002905.2, filed Feb. 10, 2003
  • The present invention relates to an improved metal alloy for medical implants or devices for desired material properties.
  • BACKGROUND OF THE INVENTION
  • A medical implant or device must satisfy a number of requirements. Factors affecting the choice of the medical implant or device and the material thereof are mainly all mechanical properties and biocompatibility. The material must not cause any inflammatory reaction or allergic reaction. Commonly used materials often include nickel, like medical grade 316L stainless steel, which contains about 16% nickel. For patients with an allergic reaction the implantation of such materials is contraindicated. Another consideration in material selection is the need for the implanting physician to be able to visualize the position of the medical implant or device during procedure to the desired target site in the body, and for purposes of examination from time to time thereafter at the implant site, typically by X-ray fluoroscopy.
  • With the growing importance of magnetic resonance imaging (MRI), MRI compatibility is desirable. The metal alloys commonly used for implantation (like stainless steel 316) induce a local disturbance of the magnetic field used in MRI, to the extent that imaging of surrounding tissue is impeded. Although alloys like Nitinol behave more favourably in MRI, their MRI compatibility is not considered to be sufficiently good.
  • This invention relates to medical devices or implants in general such as catheters, guide wires, stents, stent grafts and heart valve repair devices.
  • Stents are generally thin walled tubular-shaped devices composed of complex patterns of inter-connecting struts which function to hold open a segment of a blood vessel or other body lumen like oesophagus and urethra. Stent grafts are stents with a circumferential covering or lining and are suitable for supporting a dissected artery or intimal flap that can occlude a vessel lumen. Stents and stent grafts are typically implanted by use of a catheter. Initially they are maintained in a radially compressed state to manoeuvre them through the lumen. Once in position, they are deployed. The material from which the vascular prosthesis like stents or stent grafts is constructed must allow the prosthesis to undergo expansion, which typically requires substantial deformation. Once expanded the stent must maintain its size and shape and must be capable of withstanding the structural loads, namely radial compressive forces, imposed on the stent as it supports the walls of a vessel lumen. The wall of the prosthesis must be sufficiently thick, depending on the stent material, not only to withstand the vessel wall recoil but also allow the stent to be seen on the fluoroscope. Finally, the prosthesis material must be biocompatible so as not to trigger any adverse vascular responses like restenosis or thrombus formation in the treated vessel.
  • For medical devices such as all kind of catheters and guide wires special -mechanical properties are desired to have perfect trackability and pushability during the intervention. Moreover, good radio-opacity and MRI compatibility are essential in order to survey medical procedures via x-ray and MRI. Finally also for these medical devices biocompatibility is a must.
  • In the past years increased effort was undertaken to find new materials for medical implants and devices bearing superior characteristics over commonly used metals like stainless steel or titanium. Numerous publications focus on titanium alloys aiming at corrosion resistant, high strength and biocompatible alloys. As described for example in U.S. Pat. No. 6,312,455, US 2001/0007953, and WO 99/58184 many Titanium-alloys thereof are super-elastic or shape memory alloys. A pseudo-elastic β-titanium alloy fabricated from Titanium, Molybdenum, Aluminium and optionally Niobium, Chrome and Vanadium is described in U.S. Pat. No. 6,258,182. EP 0 788 802 provides a self-expanding stent consisting of a titanium alloy including at least about 68 weight percent titanium and optionally Niobium, Zirconium, and Molybdenum. U.S. Pat. No. 6,238,491 and WO 00/68448 describe a Niobium-Titanium-Zirconium-Molybdenum alloy for medical devices providing a uniform β-structure, which is corrosion resistant, and can be processed to develop high-strength and low-modulus. The alloy comprises 29 to 70 weight percent Niobium, 10 to 46 weight percent Zirconium, 3 to 15 weight percent Molybdenum and a balance of Titanium. In another approach Davidson (EP 0 601 804) employ an alloy consisting essentially of Titanium, 10 to 20 or 25 to 50 weight percent Niobium and optionally up to 20 weight percent Zirconium, the alloy having an elastic modulus less than 90 GPa. Similar Titanium-alloys for medical implants also published by Davidson comprise Titanium, 10 to 20 or 35 to 50 weight percent Niobium and optionally up to 20 weight percent each Zirconium and Tantalum (EP 0 437 079) or Titanium, 10 to 20 or 35 to 50 weight percent each Niobium and Tantalum and optionally up to 20 weight percent Zirconium (U.S. Pat. No. 5,690,670). EP 0 707 085 also provides a low modulus, biocompatible Titanium-base alloy for medical devices consisting of 20 to 40 weight percent Niobium, 4.5 to 25 weight percent Tantalum, 2.5 to 13 weight percent Zirconium and the balance Titanium. A further high strength, low modulus and biocompatible Titanium-alloy is laid open in U.S. Pat. No. 4,857,269 and EP 0 359 446 consisting of Titanium and up to 25 weight percent Niobium, Zirconium, and Molybdenum. EP 1 046 722 describes a corrosion resistant Titanium-Zirconium-type alloy for medical appliances consisting of 25 to 50 weight percent Titanium, 5 to 30 weight percent Niobium, 5 to 40 weight percent Tantalum and 25 to 60 weight percent Zirconium.
  • Further approaches to develop biocompatible, high strength alloys which are also sufficiently radio-opaque and do not contain Titanium are described in U.S. Pat. No. 6,478,815 and WO 02/43787. Both documents reveal stents made from at least 90 weight percent Niobium. Niobium is a relatively soft and ductile metal, which is alloyed with traces of other elements, e.g. Zirconium, Tantalum or Titanium for reinforcement of the alloy. However, Niobium surfaces cannot be electropolished because of their tendency to smear. Stents fabricated from binary Tantalum-Alloys, namely Tantalum-Niobium and Tantalum-Tungsten, are disclosed in WO 02/05863.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Aim of the present invention is to provide an inventive material for medical implants and devices, which comprises favourable mechanical properties, excellent biocompatibility, optimal radio-opacity while at the same time exhibiting minor image artefact in MRI examination (MRI compatibility) and does therefore overcome the drawbacks of recently available metals for medical purposes.
  • The alloy fulfills all mechanical and structural requirements according to its function in a medical implant or device. Moreover, the device is sufficiently radio-opaque to allow for good imaging of the device under x-ray without the addition of an extra layer or portion of radio-opaque material. Also, the device is not overly bright and therefore does not obscure the image of the surrounding tissue, as would be the case with a device made from an extremely dense material. In addition, the device is MRI safe and compatible, preferably also visible under MRI.
  • Surprisingly, it has been found that the desired properties can be given to a metal alloy comprising Tantalum, Niobium and at least one element selected from the group consisting of Tungsten, Zirconium and Molybdenum.
  • Tantalum is known as a very hard metal with a high melting point, high strength, and good ductility and is almost completely inert at body temperature. Tantalum has a high atomic number (73) and a density of 16.6 g/cm3 resulting in a high radio-opacity. Therefore, medical implants or devices made of pure tantalum have the disadvantage that they are excessively radio-opaque, leading to a completely black area on the x-ray image in the region where the medical implant or device is located.
  • The radio-opacity of the inventive metal alloy is adjusted by adding further elements possessing higher or lower atomic numbers to the tantalum based alloy, which lowers the density of the alloy. Niobium has an atomic mass of approximately half that of Tantalum. Thus, tailoring the density of the inventive alloy by variation of the Niobium portion allows achievement of appropriate radio-opacity for each medical device or implant manufactured at least in part of the inventive alloy. It is possible to fabricate an alloy according to the present invention, which is sufficiently radio-opaque to be readily visualized under x-ray during medical procedures and yet is not so radio-opaque as to interfere with the visualization of surrounding body tissue.
  • The alloys of the invention show excellent melting and mixing properties with excellent uniformity since Niobium and tantalum are arbitrarily miscible. Varying the amount of Tungsten, Zirconium and Molybdenum, or optionally, the amount of Cerium, Rhenium, or Hafnium, allows adjustment of the granular size of the alloy.
  • Surprisingly, the alloy according to the present invention is stronger than pure tantalum and in specific compositions even stronger than stainless steel. In a preferred embodiment a stent is manufactured from the alloy of the invention comprising a tailored radio-opacity while having a reduced wall thickness. Such a stent combines desired visibility under x-ray and excellent radial force with minimized delivery profile and less turbulence when employed in the vessel.
  • An additional advantage of the inventive alloy is the formation of a passive oxide film primarily composed of Tantalum-oxide (Ta2O5), which is generally more durable and more corrosion resistant than for example the chromium-oxide film formed during the passivation of stainless steel.
  • The inventive alloy can be easily cold-worked to increase strength and reduce elastic modulus. It is possible to form a hard, abrasion resistant surface on the inventive alloy through standard oxidation and nitridizing methods known by those skilled in the art. The presence of a hard, inert, abrasion resistant surface layer presents an important option for medical implants and devices in which it is desirable to have lower friction and wear, electrical insulation and improved corrosion resistance.
  • To further improve the biocompatibility of the medical implant or device fabricated at least in part from the inventive alloy, at least a portion of the surface of the inventive alloy can be conversion surface hardened and/or coated. Such coatings can include, but are not limited to a polymer, a blend of polymers, a metal, a blend of metals, a ceramic and/or biomolecules, in particular peptides, proteins, lipids, carbohydrates and/or nucleic acids (e.g. collagen, heparin, fibrin, phosphorylcholine, cellulose, morphogenic proteins or peptides, growth factors). Furthermore the alloy surface or the coatings can comprise stem cells and/or a bioactive substances, in particular drugs, antibiotics, growth factors, anti-inflammatory agents and/or anti-, thrombogenic agents. Further, the surface can be modified by electropolishing or mechanical polishing for formation of a completely smooth surface, sintering to achieve a porous coating as for example described in EP0601804, or by roughening procedures or microblasting, in particular sandblasting, to achieve a rough surface.
  • The inventive alloy is useful in the manufacturing of a variety of medical implants and devices. The manufacture of medical devices from the invention alloy includes minimal-invasive devices, in particular guide wires, catheters (balloon catheters, guiding catheter, angiographic catheters, functional catheters, . . . ), intra-cavernous implants, in particular intra-oesophagus, intra-urethra, intra-tracheal implants and intra-vascular implants, in particular stents, stent grafts, stent graft connector, heart valve repair device or filters.
  • Preferred alloys contain the following elements:
      • (a) between about 0.1 and 70 weight percent Niobium,
      • (b) between about 0.1 and 30 weight percent in total of at least one element selected from the group consisting of Tungsten, Zirconium and Molybdenum,
      • (c) up to 5 weight percent in total of at least one element selected from the group consisting of Hafnium, Rhenium and Lanthanides, in particular Cerium,
      • (d) and a balance of Tantalum
  • The alloys preferably provide for a uniform beta structure, which is uniform and corrosion resistant, and have the ability for conversion oxidation or nitridization surface hardening of the medical implant or device.
  • The tungsten content is preferably between 0.1 and 15 weight percent.
  • The zirconium content is preferably between 0.1 and 10 weight percent.
  • The molybdenum content is preferably between 0.1 and 20 weight percent and more preferably between 0.1 and 10 weight percent.
  • The niobium content is preferably between 5 and 25 weight percent.
  • Especially preferred alloys contain about 10 weight percent Niobium and about 2.5 weight percent Tungsten.
  • Also preferred are alloys which comprise about 10 weight percent Niobium and about 7.5 weight percent Tungsten.
  • Also preferred are alloys which comprise about 10 weight percent Niobium and about 1 weight percent Zirconium.
  • Also preferred are alloys which comprise about 10 weight percent Niobium and about 3 weight percent Zirconium.
  • The invention also relates to medical implants or devices fabricated from the above-mentioned alloys, e.g. minimal-invasive devices, in particular catheters or guide wires, or intra-cavernous implants, in particular intravascular implants, such as stents, a stent grafts, stent graft connectors or heart valve repair devices.
  • In the above implants and devices the surface of the metal alloys may be passivated by oxidation or nitridization, or may be electropolished, mechanically polished, micro blasted, roughened or sintered, or may be coated with a polymer, a blend of polymers, a metal, a blend of metals, a ceramic and/or biomolecules, in particular peptides, proteins, lipids, carbohydrates and/or nucleic acids; or may be coated with stem cells and/or a bioactive substance, in particular drugs, antibiotics, growth factors, anti-inflammatory agents and/or anti-thrombogenic agents.
  • EXAMPLES
  • The invention may be carried out with an alloy of the following compositions:
      • 1. Ta: 71.5% by weight
      • Nb: 27.5% by weight
      • Zr: 1.0% by weight
      • 2. Ta: 82.5% by weight
      • Nb: 10% by weight
      • W: 7.5% by weight
      • 3. Ta: 87% by weight
      • Nb: 10% by weight
      • Mo: 3% by weight
      • 4. Ta: 83% by weight
      • Nb: 10% by weight
      • Mo: 7% by weight
  • Methods of producing the alloy are known to the person skilled in the art.

Claims (37)

1. A metal alloy for use in medical implants or devices, said alloy consisting essentially of:
between about 5 and 25 weight percent Niobium;
between about 0.1 and 30 weight percent Zirconium;
up to 5 weight percent in total of at least one element selected from the group consisting of Hafnium, Rhenium and Lanthanides; and
balance of Tantalum.
2. A metal alloy for use in medical implants or devices, said alloy consisting essentially of:
between about 0.1 and 70 weight percent Niobium;
between about 0.1 and 30 weight percent in total of at least one element selected from the group consisting of Tungsten and Molybdenum;
up to 5 weight percent in total of at least one element selected from the group consisting of Hafnium, Rhenium and Lanthanides; and
a balance of Tantalum.
3. A metal alloy for use in medical implants or devices, said alloy consisting essentially of:
between about 0.1 and 70 weight percent Niobium;
between about 0.1 and 30 weight percent in total of at least two elements selected from the group consisting of Tungsten, Zirconium and Molybdenum;
up to 5 weight percent in total of at least one element selected from the group consisting of Hafnium, Rhenium and Lanthanides; and
a balance of Tantalum.
4. A metal alloy according to claim 1, wherein the Lanthanide is Cerium.
5. A metal alloy according to claim 2, wherein the Lanthanide is Cerium.
6. A metal alloy according to claim 3, wherein the Lanthanide is Cerium.
7. A metal alloy according to claim 2, wherein the alloy comprises between 0.1 and 15 weight percent Tungsten.
8. A metal alloy according to claim 3, wherein the alloy comprises between 0.1 and 15 weight percent Tungsten.
9. A metal alloy according to claim 1, wherein the alloy comprises between 0.1 and 10 weight percent Zirconium.
10. A metal alloy according to claim 3, wherein the alloy comprises between 0.1 and 10 weight percent Zirconium.
11. A metal alloy according to claim 2, wherein the alloy comprises between 0.1 and 20 weight percent Molybdenum.
12. A metal alloy according to claim 3, wherein the alloy comprises between .0.1 and 20 weight percent Molybdenum.
13. A metal alloy according to claim 2, wherein the alloy comprises between 5 and 25 weight percent Niobium.
14. A metal alloy according to claim 3, wherein the alloy comprises between 5 and 25 weight percent Niobium.
15. A metal alloy according to claim 7, wherein the alloy comprises about 10 weight percent Niobium and about 2.5 weight percent Tungsten.
16. A metal alloy according to claim 8, wherein the alloy comprises about 10 weight percent Niobium and about 2.5 weight percent Tungsten.
17. A metal alloy according to claim 7, wherein the alloy comprises about 10 weight percent Niobium and about 7.5 weight percent Tungsten.
18. A metal alloy according to claim 8, wherein the alloy comprises about 10 weight percent Niobium and about 7.5 weight percent Tungsten.
19. A metal alloy according to claim 9, wherein the alloy comprises about 10 weight percent Niobium and about 1 weight percent Zirconium.
20. A metal alloy according to claim 10, wherein the alloy comprises about 10 weight percent Niobium and about 1 weight percent Zirconium.
21. A metal alloy according to claim 9, wherein the alloy comprises about 10 weight percent Niobium and about 3 weight percent Zirconium.
22. A metal alloy according to claim 10, wherein the alloy comprises about 10 weight percent Niobium and about 3 weight percent Zirconium.
23. A metal alloy according to claim 1, wherein the alloy provides for a uniform beta structure, which is uniform and corrosion resistant, and has the ability for conversion oxidation or nitridization surface hardening of the medical implant or device.
24. A metal alloy according to claim 2, wherein the alloy provides for a uniform beta structure, which is uniform and corrosion resistant, and has the ability for conversion oxidation or nitridization surface hardening of the medical implant or device.
25. A metal alloy according to claim 3, wherein the alloy provides for a uniform beta structure, which is uniform and corrosion resistant, and has the ability for conversion oxidation or nitridization surface hardening of the medical implant or device.
26. A metal alloy according to claim 1, wherein the metal alloy has a surface that is passivated by oxidation or nitridization.
27. A metal alloy according to claim 2, wherein the metal alloy has a surface, that is passivated by oxidation or nitridization.
28. A metal alloy according to claim 3, wherein the metal alloy has a surface that is passivated by oxidation or nitridization.
29. A metal alloy according to claim 1, wherein the metal alloy has a surface that is one of the electropolished, mechanically polished, micro blasted, roughened and sintered.
30. A metal alloy according to claim 2, wherein the metal alloy has a surface that is one of the electropolished, mechanically polished, micro blasted, roughened and sintered.
31. A metal alloy according to claim 3, wherein the metal alloy has a surface that is one of the electropolished, mechanically polished, micro blasted, roughened and sintered.
32. A metal alloy according to claim 1, wherein the metal alloy has a surface coated with at least one of the group consisting of a metal, a blend of metals and a ceramic.
33. A metal alloy according to claim 2, wherein the metal alloy has a surface coated with at least one of the group consisting of a metal, a blend of metals and a ceramic.
34. A metal alloy according to claim 3, wherein the metal alloy has a surface coated with at least one of the group consisting of a metal, a blend of metals and a ceramic.
35. A metal alloy for use in medical implants or devices according to claim 1, wherein the medical device is a stimulation device, stimulation leads or a dental device.
36. A metal alloy for use in medical implants or devices according to claim 2, wherein the medical device is a stimulation device, stimulation leads or a dental device.
37. A metal alloy for use in medical implants or devices according to claim 3, wherein the medical device is a stimulation device, stimulation leads or a dental device.
US11/804,044 2003-02-10 2007-05-16 Metal alloy for medical devices and implants Abandoned US20080038146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/804,044 US20080038146A1 (en) 2003-02-10 2007-05-16 Metal alloy for medical devices and implants
US13/741,908 US20140010703A1 (en) 2003-02-10 2013-01-15 Tantalum-based metal alloys

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE03002905.2 2003-02-10
EP03002905.2 2003-02-10
EP03002905.2A EP1444993B2 (en) 2003-02-10 2003-02-10 Improved metal alloy for medical devices and implants
US10/409,559 US20040158309A1 (en) 2003-02-10 2003-04-08 Metal alloy for medical devices and implants
US11/804,044 US20080038146A1 (en) 2003-02-10 2007-05-16 Metal alloy for medical devices and implants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/409,559 Continuation-In-Part US20040158309A1 (en) 2003-02-10 2003-04-08 Metal alloy for medical devices and implants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/480,922 Continuation US20120330390A1 (en) 2003-02-10 2012-05-25 Medical devices and implants from Ta-Nb-W alloys

Publications (1)

Publication Number Publication Date
US20080038146A1 true US20080038146A1 (en) 2008-02-14

Family

ID=38750526

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/804,044 Abandoned US20080038146A1 (en) 2003-02-10 2007-05-16 Metal alloy for medical devices and implants

Country Status (1)

Country Link
US (1) US20080038146A1 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178129A1 (en) * 2006-02-01 2007-08-02 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20080312740A1 (en) * 2003-02-10 2008-12-18 Jurgen Wachter Metal alloy for medical devices and implants
US20090171187A1 (en) * 2007-12-26 2009-07-02 Gerhart John P Catheter electrode that can simultaneously emit electrical energy and facilitate visualization by magnetic resonance imaging
US20090171188A1 (en) * 2007-12-28 2009-07-02 Saurav Paul Flexible polymer electrode for mri-guided positioning and radio frequency ablation
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8920491B2 (en) 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2907654A (en) * 1957-07-01 1959-10-06 Sierra Metals Corp High temperature tantalum-columbium base alloys
US3128178A (en) * 1961-02-28 1964-04-07 California Research Corp Tantalum-titanium base alloy
US3140943A (en) * 1962-01-17 1964-07-14 Westinghouse Electric Corp Tantalum base alloys
US3163563A (en) * 1962-07-13 1964-12-29 Nat Res Corp Composite body formed of a tantalum alloy having an outer carburized surface layer
US3173784A (en) * 1958-12-22 1965-03-16 Union Carbide Corp Columbium base alloy
US3186837A (en) * 1961-02-28 1965-06-01 California Research Corp Columbium-tantalum base alloy
US3188206A (en) * 1961-12-20 1965-06-08 Fansteel Metallurgical Corp Columbium alloy
US3249429A (en) * 1963-12-27 1966-05-03 Clo E Armantrout Tantalum brazing alloy
US3254995A (en) * 1962-04-13 1966-06-07 Powder Alloys Corp Heavy metal alloys
US3297438A (en) * 1964-04-06 1967-01-10 United Aircraft Corp High temperature strength columbium base alloys
US3317314A (en) * 1959-11-18 1967-05-02 Union Carbide Corp Columbium-base alloy
US3341370A (en) * 1963-12-10 1967-09-12 United Aircraft Corp Hafnium-containing columbium-base alloys
US3395012A (en) * 1964-11-10 1968-07-30 Birmingham Small Arms Co Ltd Niobium alloys
US3592639A (en) * 1968-08-19 1971-07-13 Fansteel Inc Tantalum-tungsten alloy
US3679494A (en) * 1969-04-30 1972-07-25 Iit Res Inst Nitrided hafnium-tantalum alloys and method of making the same
US4526749A (en) * 1984-07-02 1985-07-02 Cabot Corporation Tantalum-columbium-molybdenum-tungsten alloy
US4799977A (en) * 1987-09-21 1989-01-24 Fansteel Inc. Graded multiphase oxycarburized and oxycarbonitrided material systems
US4857269A (en) * 1988-09-09 1989-08-15 Pfizer Hospital Products Group Inc. High strength, low modulus, ductile, biopcompatible titanium alloy
US5477864A (en) * 1989-12-21 1995-12-26 Smith & Nephew Richards, Inc. Cardiovascular guidewire of enhanced biocompatibility
US5871595A (en) * 1994-10-14 1999-02-16 Osteonics Corp. Low modulus biocompatible titanium base alloys for medical devices
US5888201A (en) * 1996-02-08 1999-03-30 Schneider (Usa) Inc Titanium alloy self-expanding stent
US6200685B1 (en) * 1997-03-27 2001-03-13 James A. Davidson Titanium molybdenum hafnium alloy
US6238491B1 (en) * 1999-05-05 2001-05-29 Davitech, Inc. Niobium-titanium-zirconium-molybdenum (nbtizrmo) alloys for dental and other medical device applications
US6258182B1 (en) * 1998-03-05 2001-07-10 Memry Corporation Pseudoelastic β titanium alloy and uses therefor
US20010007953A1 (en) * 1997-04-25 2001-07-12 Carl J. Evens Stent
US20020008021A1 (en) * 1998-03-10 2002-01-24 Martin Weigert Sputtering target for depositing silicon layers in their nitride or oxide form and a process for its preparation
US6387121B1 (en) * 1996-10-21 2002-05-14 Inflow Dynamics Inc. Vascular and endoluminal stents with improved coatings
US20020111694A1 (en) * 2000-12-06 2002-08-15 Bioti As Medical prosthetic devices and implants having improved biocompatibility
US20020139667A1 (en) * 2001-03-29 2002-10-03 Guangxin Wang Methods for electrically forming materials; and mixed metal materials
US6478815B1 (en) * 2000-09-18 2002-11-12 Inflow Dynamics Inc. Vascular and endoluminal stents
US20030037847A1 (en) * 1998-11-25 2003-02-27 Michaluk Christopher A. High purity tantalum, products containing the same, and methods of making the same
US20030186914A1 (en) * 2000-09-05 2003-10-02 Rolf Hofer Method for precipitating mono and multiple layers of organophosphoric and organophosphonic acids and the salts thereof in addition to use thereof
US20040062676A1 (en) * 2002-09-27 2004-04-01 W.C. Heraeus Gmbh & Co. Kg Alloy for use as stents
US20040126613A1 (en) * 2002-12-27 2004-07-01 Bernard Bewlay Coatings, method of manufacture, and the articles derived therefrom
US6767418B1 (en) * 1999-04-23 2004-07-27 Terumo Kabushiki Kaisha Ti-Zr type alloy and medical appliance formed thereof
US20040168751A1 (en) * 2002-06-27 2004-09-02 Wu Ming H. Beta titanium compositions and methods of manufacture thereof
US20040243133A1 (en) * 2003-03-05 2004-12-02 Therics, Inc. Method and system for manufacturing biomedical articles, such as using biomedically compatible infiltrant metal alloys in porous matrices
US20040249447A1 (en) * 2000-12-27 2004-12-09 Boylan John F. Radiopaque and MRI compatible nitinol alloys for medical devices

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2907654A (en) * 1957-07-01 1959-10-06 Sierra Metals Corp High temperature tantalum-columbium base alloys
US3173784A (en) * 1958-12-22 1965-03-16 Union Carbide Corp Columbium base alloy
US3317314A (en) * 1959-11-18 1967-05-02 Union Carbide Corp Columbium-base alloy
US3186837A (en) * 1961-02-28 1965-06-01 California Research Corp Columbium-tantalum base alloy
US3128178A (en) * 1961-02-28 1964-04-07 California Research Corp Tantalum-titanium base alloy
US3188206A (en) * 1961-12-20 1965-06-08 Fansteel Metallurgical Corp Columbium alloy
US3140943A (en) * 1962-01-17 1964-07-14 Westinghouse Electric Corp Tantalum base alloys
US3254995A (en) * 1962-04-13 1966-06-07 Powder Alloys Corp Heavy metal alloys
US3163563A (en) * 1962-07-13 1964-12-29 Nat Res Corp Composite body formed of a tantalum alloy having an outer carburized surface layer
US3341370A (en) * 1963-12-10 1967-09-12 United Aircraft Corp Hafnium-containing columbium-base alloys
US3249429A (en) * 1963-12-27 1966-05-03 Clo E Armantrout Tantalum brazing alloy
US3297438A (en) * 1964-04-06 1967-01-10 United Aircraft Corp High temperature strength columbium base alloys
US3395012A (en) * 1964-11-10 1968-07-30 Birmingham Small Arms Co Ltd Niobium alloys
US3592639A (en) * 1968-08-19 1971-07-13 Fansteel Inc Tantalum-tungsten alloy
US3679494A (en) * 1969-04-30 1972-07-25 Iit Res Inst Nitrided hafnium-tantalum alloys and method of making the same
US4526749A (en) * 1984-07-02 1985-07-02 Cabot Corporation Tantalum-columbium-molybdenum-tungsten alloy
US4799977A (en) * 1987-09-21 1989-01-24 Fansteel Inc. Graded multiphase oxycarburized and oxycarbonitrided material systems
US4857269A (en) * 1988-09-09 1989-08-15 Pfizer Hospital Products Group Inc. High strength, low modulus, ductile, biopcompatible titanium alloy
US5477864A (en) * 1989-12-21 1995-12-26 Smith & Nephew Richards, Inc. Cardiovascular guidewire of enhanced biocompatibility
US5690670A (en) * 1989-12-21 1997-11-25 Davidson; James A. Stents of enhanced biocompatibility and hemocompatibility
US5871595A (en) * 1994-10-14 1999-02-16 Osteonics Corp. Low modulus biocompatible titanium base alloys for medical devices
US5888201A (en) * 1996-02-08 1999-03-30 Schneider (Usa) Inc Titanium alloy self-expanding stent
US6387121B1 (en) * 1996-10-21 2002-05-14 Inflow Dynamics Inc. Vascular and endoluminal stents with improved coatings
US6200685B1 (en) * 1997-03-27 2001-03-13 James A. Davidson Titanium molybdenum hafnium alloy
US20010007953A1 (en) * 1997-04-25 2001-07-12 Carl J. Evens Stent
US6312455B2 (en) * 1997-04-25 2001-11-06 Nitinol Devices & Components Stent
US6258182B1 (en) * 1998-03-05 2001-07-10 Memry Corporation Pseudoelastic β titanium alloy and uses therefor
US20020008021A1 (en) * 1998-03-10 2002-01-24 Martin Weigert Sputtering target for depositing silicon layers in their nitride or oxide form and a process for its preparation
US20030037847A1 (en) * 1998-11-25 2003-02-27 Michaluk Christopher A. High purity tantalum, products containing the same, and methods of making the same
US6767418B1 (en) * 1999-04-23 2004-07-27 Terumo Kabushiki Kaisha Ti-Zr type alloy and medical appliance formed thereof
US6238491B1 (en) * 1999-05-05 2001-05-29 Davitech, Inc. Niobium-titanium-zirconium-molybdenum (nbtizrmo) alloys for dental and other medical device applications
US20030186914A1 (en) * 2000-09-05 2003-10-02 Rolf Hofer Method for precipitating mono and multiple layers of organophosphoric and organophosphonic acids and the salts thereof in addition to use thereof
US6478815B1 (en) * 2000-09-18 2002-11-12 Inflow Dynamics Inc. Vascular and endoluminal stents
US20020111694A1 (en) * 2000-12-06 2002-08-15 Bioti As Medical prosthetic devices and implants having improved biocompatibility
US20040249447A1 (en) * 2000-12-27 2004-12-09 Boylan John F. Radiopaque and MRI compatible nitinol alloys for medical devices
US20020139667A1 (en) * 2001-03-29 2002-10-03 Guangxin Wang Methods for electrically forming materials; and mixed metal materials
US20040168751A1 (en) * 2002-06-27 2004-09-02 Wu Ming H. Beta titanium compositions and methods of manufacture thereof
US20040062676A1 (en) * 2002-09-27 2004-04-01 W.C. Heraeus Gmbh & Co. Kg Alloy for use as stents
US20040126613A1 (en) * 2002-12-27 2004-07-01 Bernard Bewlay Coatings, method of manufacture, and the articles derived therefrom
US20040243133A1 (en) * 2003-03-05 2004-12-02 Therics, Inc. Method and system for manufacturing biomedical articles, such as using biomedically compatible infiltrant metal alloys in porous matrices

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8349249B2 (en) 2003-02-10 2013-01-08 Heraeus Precious Metals Gmbh & Co. Kg Metal alloy for medical devices and implants
US20080312740A1 (en) * 2003-02-10 2008-12-18 Jurgen Wachter Metal alloy for medical devices and implants
US20100222866A1 (en) * 2003-02-10 2010-09-02 Jurgen Wachter Metal alloy for medical devices and implants
US8403980B2 (en) 2003-02-10 2013-03-26 Heraeus Materials Technology Gmbh & Co. Kg Metal alloy for medical devices and implants
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20070178129A1 (en) * 2006-02-01 2007-08-02 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US8715339B2 (en) 2006-12-28 2014-05-06 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8473029B2 (en) 2007-12-26 2013-06-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter electrode that can simultaneously emit electrical energy and facilitate visualization by magnetic resonance imaging
US20090171187A1 (en) * 2007-12-26 2009-07-02 Gerhart John P Catheter electrode that can simultaneously emit electrical energy and facilitate visualization by magnetic resonance imaging
US8175679B2 (en) 2007-12-26 2012-05-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter electrode that can simultaneously emit electrical energy and facilitate visualization by magnetic resonance imaging
US20090171188A1 (en) * 2007-12-28 2009-07-02 Saurav Paul Flexible polymer electrode for mri-guided positioning and radio frequency ablation
US11331136B2 (en) 2007-12-28 2022-05-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Flexible polymer electrode for MRI-guided positioning and radio frequency ablation
US9675410B2 (en) 2007-12-28 2017-06-13 St. Jude Medical, Atrial Fibrillation Division, Inc. Flexible polymer electrode for MRI-guided positioning and radio frequency ablation
US8920491B2 (en) 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses

Similar Documents

Publication Publication Date Title
US8349249B2 (en) Metal alloy for medical devices and implants
US20080038146A1 (en) Metal alloy for medical devices and implants
US20070276488A1 (en) Medical implant or device
US6767418B1 (en) Ti-Zr type alloy and medical appliance formed thereof
US6238491B1 (en) Niobium-titanium-zirconium-molybdenum (nbtizrmo) alloys for dental and other medical device applications
US9402936B2 (en) Medical devices having alloy compositions
CN112584876B (en) Iron-based biodegradable metals for implantable medical devices
WO1998043550A1 (en) Titanium molybdenum hafnium alloys for medical implants and devices
US9757224B2 (en) Cobalt alloy for medical implants and stent comprising the alloy
WO2012068358A1 (en) Radiopaque intraluminal stents comprising cobalt-based alloys containing one or more platinum group metals, refractory metals, or combinations thereof
US9427500B2 (en) Stent made of a cobalt alloy
US20130338756A1 (en) Stent composed of an iron alloy
US20120231048A1 (en) Medical Devices and Implants from Nb-Ta-W-Zr Alloys
Radenković et al. Metallic biomaterials
US20050098241A1 (en) Niobium-Zirconium Alloy for medical devices or their parts
JP4137327B2 (en) Medical device made of Ti-Zr alloy
Narnaware Metallic biomaterials for human body implant: a review study
Cui et al. Biocompatibility and fabrication of in situ bioceramic coating
JP2022049329A (en) Medical composite material

Legal Events

Date Code Title Description
AS Assignment

Owner name: HERAEUS HOLDING GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WACHTER, JURGEN;TROTZSCHEL, JENS;REEL/FRAME:019757/0388

Effective date: 20070711

AS Assignment

Owner name: HERAEUS HOLDING GMBH, GERMANY

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:HERAEUS HOLDING GMBH;REEL/FRAME:025888/0948

Effective date: 20110224

AS Assignment

Owner name: W.C. HERAEUS GMBH, GERMANY

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME TO W.C. HERAEUS GMBH AND THE EFFECTIVE DATE TO BE AS OF MAY 16, 2007 PREVIOUSLY RECORDED ON REEL 025888 FRAME 0948. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNOR:HERAEUS HOLDING GMBH;REEL/FRAME:025971/0331

Effective date: 20110224

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: HERAEUS PRECIOUS METALS GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:W.C. HERAEUS GMBH & CO. KG;REEL/FRAME:032973/0477

Effective date: 20110801