US20070255362A1 - Cryoprotectant for use with a cooling device for improved cooling of subcutaneous lipid-rich cells - Google Patents

Cryoprotectant for use with a cooling device for improved cooling of subcutaneous lipid-rich cells Download PDF

Info

Publication number
US20070255362A1
US20070255362A1 US11/741,271 US74127107A US2007255362A1 US 20070255362 A1 US20070255362 A1 US 20070255362A1 US 74127107 A US74127107 A US 74127107A US 2007255362 A1 US2007255362 A1 US 2007255362A1
Authority
US
United States
Prior art keywords
cryoprotectant
heat exchanging
skin
cooling system
treatment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/741,271
Inventor
Mitchell E. Levinson
Donald Johnson
Jessica Preciado
Edward A. Ebbers
Daniel Bucks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeltiq Aesthetics Inc
Original Assignee
Juniper Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38649308&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20070255362(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2008513848A priority Critical patent/JP4703724B2/en
Priority to KR1020117002538A priority patent/KR101248799B1/en
Priority to BRPI0706055A priority patent/BRPI0706055B8/en
Priority to KR1020087006539A priority patent/KR101039758B1/en
Priority to PCT/US2007/067638 priority patent/WO2007127924A2/en
Priority to US11/741,271 priority patent/US20070255362A1/en
Priority to CA2585214A priority patent/CA2585214C/en
Priority to CN201410078711.0A priority patent/CN103948468A/en
Priority to AU2007244765A priority patent/AU2007244765A1/en
Application filed by Juniper Medical Inc filed Critical Juniper Medical Inc
Priority to CN200780001010.5A priority patent/CN101351167B/en
Priority to EP07761461.8A priority patent/EP2012707B1/en
Priority to IL182989A priority patent/IL182989A/en
Assigned to JUNIPER MEDICAL, INC. reassignment JUNIPER MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EBBERS, EDWARD A., JOHNSON, DONALD, LEVINSON, MITCHELL E., PRECIADO, JESSICA, BUCKS, DANIEL
Assigned to ZELTIQ AESTHETICS, INC. reassignment ZELTIQ AESTHETICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: JUNIPER MEDICAL, INC.
Publication of US20070255362A1 publication Critical patent/US20070255362A1/en
Priority to HK09102176.3A priority patent/HK1124511A1/en
Priority to AU2010241393A priority patent/AU2010241393B2/en
Priority to US13/747,161 priority patent/US20140005760A1/en
Priority to HK15100475.7A priority patent/HK1200080A1/en
Priority to US16/595,466 priority patent/US20200155215A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/10Cooling bags, e.g. ice-bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00047Cooling or heating of the probe or tissue immediately surrounding the probe using Peltier effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00101Thermal conductivity low, i.e. thermally insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00458Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
    • A61B2018/00464Subcutaneous fat, e.g. liposuction, lipolysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/007Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
    • A61F2007/0075Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating using a Peltier element, e.g. near the spot to be heated or cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0203Cataplasms, poultices or compresses, characterised by their contents; Bags therefor
    • A61F2007/0215Cataplasms, poultices or compresses, characterised by their contents; Bags therefor containing liquids other than water
    • A61F2007/0219Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0244Compresses or poultices for effecting heating or cooling with layers
    • A61F2007/0246Compresses or poultices for effecting heating or cooling with layers with a layer having high heat transfer capability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0282Compresses or poultices for effecting heating or cooling for particular medical treatments or effects
    • A61F2007/029Fat cell removal or destruction by non-ablative heat treatment

Definitions

  • the present application relates to a cryoprotectant for use with treatment devices, systems, and methods for removing heat from subcutaneous lipid-rich cells.
  • Excess body fat, or adipose tissue can detract from personal appearance and athletic performance.
  • Excess adipose tissue may be present in various locations of the body, including, for example, the thigh, buttocks, abdomen, knees, back, face, arms, and other areas.
  • excess adipose tissue is thought to magnify the unattractive appearance of cellulite, which forms when subcutaneous fat protrudes into the dermis and creates dimples where the skin is attached to underlying structural fibrous strands.
  • Cellulite and excessive amounts of adipose tissue are often considered to be unappealing.
  • significant health risks may be associated with higher amounts of excess body fat. An effective way of controlling or removing excess body fat therefore is needed.
  • Liposuction is a method for selectively removing adipose tissue to “sculpt” a person's body. Liposuction typically is performed by plastic surgeons or dermatologists using specialized surgical equipment that invasively removes subcutaneous adipose tissue via suction.
  • One drawback of liposuction is that it is a surgical procedure, and the recovery may be painful and lengthy. Moreover, the procedure typically requires the injection of tumescent anesthetics, which is often associated temporary bruising. Liposuction can also have serious and occasionally even fatal complications. In addition, the cost for liposuction is usually substantial.
  • Other emerging techniques for removal of subcutaneous adipose tissue include mesotherapy, laser-assisted liposuction, and high intensity focused ultrasound.
  • Conventional non-invasive treatments for removing excess body fat typically include topical agents, weight-loss drugs, regular exercise, dieting, or a combination of these treatments.
  • topical agents such as topical agents, weight-loss drugs, regular exercise, dieting, or a combination of these treatments.
  • weight-loss drugs or topical agents are not an option when they cause an allergic or negative reaction.
  • fat loss in selective areas of a person's body cannot be achieved using general or systemic weight-loss methods.
  • Non-invasive treatment methods include applying heat to a zone of subcutaneous lipid-rich cells.
  • U.S. Pat. No. 5,948,011 discloses altering subcutaneous body fat and/or collagen by heating the subcutaneous fat layer with radiant energy while cooling the surface of the skin. The applied heat denatures fibrous septae made of collagen tissue and may destroy fat cells below the skin, and the cooling protects the epidermis from thermal damage. This method is less invasive than liposuction, but it still may cause thermal damage to adjacent tissue, and can also be painful and unpredictable.
  • U.S. Patent Publication No. 2003/0220674 also discloses methods for selective removal of lipid-rich cells, and avoidance of damage to other structures including dermal and epidermal cells.
  • a method for inducing collagen compaction, remodeling, and formation is also needed for treatment of loose or sagging skin, age- or sun-damaged skin, or a variety of other skin disorders. Therefore, a method for simultaneously removing lipid-rich cells while providing beneficial collagen effects is also needed.
  • FIG. 1 is an isometric view of a system for removing heat from subcutaneous lipid-rich cells in accordance with an embodiment of the invention.
  • FIG. 2 is a side elevation view of a coupling device in accordance with an embodiment of the invention.
  • FIG. 3 is an isometric view of a coupling device in accordance with another embodiment of the invention.
  • FIG. 4 is a flow chart illustrating a method for pre-cooling a treatment device in accordance with embodiments of the invention.
  • FIG. 5 is a flow chart illustrating a method for pre-cooling a treatment device in accordance with further embodiments of the invention.
  • FIG. 6 is a flow chart illustrating a method for protecting the skin of a subject with a cryoprotectant in accordance with further embodiments of the invention.
  • FIG. 7 is an isometric view of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with an embodiment of the invention.
  • FIGS. 8A-B are isometric views of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with a further embodiment of the invention.
  • FIG. 9 is an isometric and exploded view of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with a further embodiment of the invention.
  • FIG. 10 is an isometric and exploded view of a vibrator disposed in the treatment device for removing heat from subcutaneous lipid-rich cells in accordance with yet another embodiment of the invention.
  • subcutaneous tissue means tissue lying beneath the dermis and includes subcutaneous fat, or adipose tissue, which primarily is composed of lipid-rich cells, or adipocytes. It may be appreciated that several of the details set forth below are provided to describe the following embodiments in a manner sufficient to enable a person skilled in the relevant art to make and use the disclosed embodiments. Several of the details and advantages described below, however, may not be necessary to practice certain embodiments of the invention. Additionally, the invention may include other embodiments that are within the scope of the claims but are not described in detail with respect to the Figures.
  • FIG. 1 is an isometric view of a treatment system 100 for exchanging heat from subcutaneous lipid-rich cells of a subject 101 in accordance with an embodiment of the invention.
  • the treatment system 100 may include a treatment device 104 placed at an abdominal area 102 of the subject 101 or another area where reduction of the subcutaneous fat, or fat layer, is desired.
  • the treatment device 104 may be fastened to the subject 101 using, for example, a mechanical fastener (e.g., a belt 105 ), an adhesive (e.g., an epoxy), suction (e.g., a vacuum or reduced pressure), or any other mechanisms.
  • the treatment device 104 may be configured to heat and/or cool the subject 101 .
  • the treatment device 104 may contain a non-freezing cryoprotectant to, among other advantages, allow pre-cooling of the treatment device 104 to a temperature around or below the freezing point of water (0° C.) while preventing ice from forming.
  • a non-freezing cryoprotectant to, among other advantages, allow pre-cooling of the treatment device 104 to a temperature around or below the freezing point of water (0° C.) while preventing ice from forming.
  • the treatment system 100 may also include a coupling device (not shown in FIG. 1 ) for supplying the cryoprotectant to the treatment device 104 or the skin of the subject 101 , as described in more detail below with reference to FIG. 2 and FIG. 3 .
  • the treatment device 104 is configured to cool subcutaneous lipid-rich cells of the subject 101 .
  • the treatment system 100 may further include a fluid source 106 and fluid lines 108 a - b connecting the treatment device 104 to the fluid source 106 .
  • the fluid source 106 may remove heat from a coolant to a heat sink and provide the chilled coolant to the treatment device 104 via the fluid lines 108 a - b .
  • the circulating coolant include water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and any other suitable heat conducting fluids.
  • the fluid lines 108 a - b may be hoses or other conduits constructed from polyethylene, polyvinyl chloride, polyurethane, steel, aluminum, copper and other materials that may accommodate the particular circulating coolant.
  • the fluid source 106 may be a refrigeration unit, a cooling tower, a thermoelectric chiller, or any other device capable of removing heat from a coolant or municipal water supply.
  • the treatment device 104 may also include one or more thermoelectric elements, such as Peltier-type thermoelectric elements.
  • the treatment system 100 may further include a power supply 110 and a processing unit 114 operatively coupled to the treatment device 104 via electrical cables 112 , 116 .
  • the power supply 110 may provide a direct current voltage to the treatment device 104 remove heat from the subject 101 .
  • the processing unit 114 may monitor process parameters via sensors (not shown in FIG. 1 ) placed proximate to the treatment device 104 and adjust the heat removal rate based on the process parameters.
  • the processing unit 114 may include any processor, Programmable Logic Controller, Distributed Control System, and the like.
  • the processing unit 114 may be in electrical communication with an input device 118 , an output device 120 , and/or a control panel 122 .
  • the input device 118 may include a keyboard, a mouse, a touch screen, a push button, a switch, a potentiometer, and any other device suitable for accepting user input.
  • the output device 120 may include a display screen, a printer, a medium reader, an audio device, and any other device suitable for providing user feedback.
  • the control panel 122 may include indicator lights, numerical displays, and audio devices.
  • the processing unit 114 , power supply 110 , control panel 122 , fluid source 106 , input device 118 , and output device 120 are carried by a rack 124 with wheels 126 for portability.
  • the various components may be fixedly installed at a treatment site.
  • a cryoprotectant applied to the treatment device 104 may allow the treatment device 104 to be pre-cooled prior to being applied to the subject 101 for more efficient treatment. Further, the cryoprotectant can also enable the treatment device 104 to be maintained at a desired temperature while preventing ice from forming on a surface of the treatment device 104 , and thus reduces the delay in reapplying the treatment device 104 to the subject. Yet another advantage is that the cryoprotectant may prevent the treatment device 104 from freezing to the skin of the subject. If the cryoprotectant is hygroscopic, it can adsorb moisture from the atmosphere and/or from the skin, which might otherwise form ice.
  • the treatment device 104 , the cryoprotectant, and/or other components of the treatment system 100 can be included in a kit (not shown) for removing heat from subcutaneous lipid rich cells of the subject 101 .
  • the cryoprotectant can have a freezing point in the range of about ⁇ 40° C. to about 0° C. and be configured to be applied to an interface between the treatment device 104 and the skin of the subject 101 .
  • the kit can also include instruction documentation containing information regarding how to (a) apply the cryoprotectant to a target region and/or a heat exchanging surface of the treatment device 104 and (b) reduce a temperature of the target region such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface.
  • FIG. 2 is a side elevation view illustrating a coupling device 502 suitable to be used in the treatment system 100 of FIG. 1 and configured in accordance with an embodiment of the invention.
  • the coupling device 502 may be placed adjacent to a treatment region 501 of the subject 101 .
  • the coupling device 502 may include attachment features 510 for releasably or fixedly attaching the coupling device 502 to a heat exchanging element 130 of the treatment device 104 ( FIG. 1 ).
  • the attachment features 510 include tensioning clips.
  • the coupling device 502 may be snapped onto the heat exchanging element 130 with the backside portion 504 facing the treatment device 104 .
  • the attachment features 510 may include screws, pins, hinges, and/or any other suitable attachment devices.
  • the coupling device 502 may include a backside portion 504 proximate to the heat exchanging element 130 , a front side portion 508 spaced apart from the backside portion 504 , and an intermediate portion 506 between the backside portion 504 and the front side portion 508 .
  • the coupling device 502 optionally may include a protective layer (e.g., a polymeric film, not shown) attached to the front side portion 508 .
  • the protective layer may isolate the front side portion 508 from the environment and may be peeled off to expose the front side portion 508 before treatment.
  • the backside portion 504 may be a film, a plate, a sheet, or other structure constructed from a metal, a metal alloy, ceramics, a polymeric material, or other suitable conductive material.
  • the backside portion 504 may transfer heat between the heat exchanging element 130 and the treatment region 501 .
  • the backside portion 504 may also isolate the heat exchanging element 130 from the treatment region 501 for sanitation purposes.
  • the intermediate portion 506 may be a reservoir constructed from a mesh, a foam material, a porous plastic and/or metal, or other materials that may at least temporarily contain a fluid and/or a gel.
  • the intermediate portion 506 contains, or is loaded with, a cryoprotectant before a treatment process begins.
  • the intermediate portion 506 may be generally empty before a treatment process begins and only loaded with cryoprotectant immediately before and/or during the treatment process.
  • the intermediate portion 506 may be pressurized with the cryoprotectant or may be at a generally atmospheric pressure during treatment.
  • the front side portion 508 may be a film constructed from a polymeric material, a plastic material, or other material that is at least partially flexible.
  • the front side portion 508 may include one or more apertures 516 in fluid communication with the intermediate portion 506 .
  • the aperture or apertures 516 may allow the cryoprotectant contained in the intermediate portion 506 to escape to the treatment region 501 of the subject 101 through capillary actions or other mechanisms.
  • the intermediate portion 506 may continually supply the cryoprotectant to the treatment region 501 during treatment.
  • the intermediate portion 506 is pre-loaded with excess cryoprotectant.
  • cryoprotectant may be supplied from the intermediate portion 506 to the skin of the subject during treatment.
  • the intermediate portion 506 may be constantly replenished to provide a continuous supply of the cryoprotectant.
  • the cryoprotectant can be absorbed by the skin in the treatment region 501 .
  • the degree of cryoprotectant absorption by the skin depends on a number of factors, the most important of which are cryoprotectant concentration, duration of contact, solubility, and the physical condition of the skin.
  • the coupling device 502 optionally may include at least one sensor 514 proximate to the front side portion 508 to measure at least one parameter of the treatment process.
  • the sensor 514 may be a temperature sensor, a pressure sensor, a transmissivity sensor, a bio-resistance sensor, an ultrasound sensor, an optical sensor, an infrared sensor, a heat flux sensor, any other desired sensors, or any combination thereof. An operator may adjust the treatment process based on the measured parameter.
  • the treatment device 104 optionally may include a supply device 520 connected to a port 515 of the coupling device 502 by a conduit 522 for supplying and/or replenishing the cryoprotectant in the intermediate portion 506 .
  • the supply device 520 is a syringe holding a volume of the cryoprotectant.
  • the supply device 520 may include a pump coupled to a cryoprotectant storage (not shown), or other suitable supply configurations.
  • a pressure sensor 524 may be used for monitoring a cryoprotectant pressure in the intermediate portion 506 .
  • the pressure sensor 524 may be operatively coupled to the conduit 522 , the intermediate portion 506 , or the supply device 520 .
  • the pressure sensor 524 may provide an electric, visual, or other signal indicating the cryoprotectant pressure in the intermediate portion 506 .
  • an operator may manually adjust the output of the supply device 520 based on the indicated pressure.
  • the signal from the pressure sensor 524 may be used as a process variable to automatically control the output of the supply device 520 .
  • a cryoprotectant may be topically applied to the skin before a treatment begins.
  • the skin then absorbs the applied cryoprotectant, which dissipates over a period of time.
  • the cryoprotectant dissipates, in conventional techniques, the skin may be subject to freezing damage.
  • the treatment system 100 may at least reduce the risk of freezing damage, or even prevent such freezing damage, during treatment.
  • Several embodiments of the treatment system 100 may also reduce the risk of air pockets that can reduce the heat transfer efficiency between the treatment region 501 and the treatment device 104 .
  • the pressure in the intermediate portion 506 decreases, and air pockets may form.
  • the air pockets may interfere with the heat transfer efficiency between the treatment region 501 and the treatment device 104 .
  • maintaining the intermediate portion 506 at a constant pressure may at least reduce the risk of air pocket formation, and thus improve the efficiency of such heat transfer.
  • FIG. 3 illustrates another embodiment, in which the coupling device 502 is incorporated into a sleeve 162 that attaches to the heat exchanging element 130 .
  • the coupling device 502 can define a first sleeve portion 164 , and the sleeve 162 can also have a second sleeve portion 166 .
  • the first sleeve portion 164 may include the backside portion 504 , the front side portion 508 , and the intermediate portion 506 ( FIG. 3 ).
  • the second sleeve portion 166 may be an isolation layer extending from the first sleeve portion 164 .
  • the second sleeve portion 166 may be constructed from latex, rubber, nylon, polyimide, polyethylene, Kevlar®, or other substantially impermeable or semi-permeable material.
  • the second sleeve portion 166 may prevent any contact between the skin of the subject and the heat exchanging element 130 .
  • the sleeve 162 may be reusable. In other embodiments, the sleeve 162 may be disposable.
  • the sleeve 162 may be provided sterile or non-sterile.
  • the sleeve is fabricated from a flex circuit material such as polyimide or polyethylene, with etched traces to connect sensors to electronics resident in, e.g., the processing unit 114 .
  • the second sleeve portion 166 may also include attachment features to affix the sleeve 162 to the treatment device 104 .
  • the second sleeve portion 166 includes four brackets 172 (identified individually as 172 a - d ), each located at a corner of the second sleeve portion 166 .
  • Individual brackets 172 include an aperture 174 (identified individually as 174 a - d ) that corresponds to an attachment point 170 of the treatment device 104 .
  • the apertures 174 of the brackets 172 may fit over the attachment point 170 such that the second sleeve portion 166 at least partially encloses the heat exchanging element 130 .
  • the second sleeve portion 166 may include brackets that may engage each other.
  • the bracket 172 a may include a pin that may engage the aperture 174 d of the bracket 172 d .
  • the second sleeve portion 166 may wrap around the treatment device 104 and be held in place by engaging the brackets 172 with each other.
  • the second sleeve portion 166 may include a flexible member (not shown, e.g., an elastic band) at an outer edge 176 of the second sleeve portion 166 that may hold the sleeve 162 over the treatment device 104 during assembly.
  • the second sleeve portion 166 may include a releasable attachment member (not shown, e.g., Velcro® or snaps) at the outer edge 176 of the second sleeve portion 166 that may hold the sleeve 162 over the treatment device 104 during assembly.
  • adhesive may hold the second sleeve portion 166 to the treatment device 104 .
  • one expected advantage of using the sleeve 162 is the improved sanitation of using the treatment device 104 .
  • the sleeve 162 may prevent cross-contamination between the skin of the subject and the heat exchanging element 130 because the sleeve 162 is substantially impermeable. Also, operating expense of the treatment device 104 may be reduced because the heat exchanging element 130 does not need to be sanitized after each use.
  • the sleeve 162 may have many additional embodiments with different and/or additional features without detracting from its operation.
  • the first and second sleeve portions 164 , 166 may be constructed from the same material (e.g., polyimide) or different materials.
  • the sleeve 162 may include an adhesive layer (not shown) that binds the sleeve 162 to the treatment device 104 .
  • FIG. 4 is a flow chart illustrating a method suitable to be performed in the treatment system 100 of FIG. 1 and in accordance with an embodiment of the invention.
  • the method may include applying a cryoprotectant to a heat exchanging element contained in a treatment device (block 10 ).
  • the cryoprotectant may be applied to the skin of a subject or both the skin and the heat exchanging element.
  • the temperature of the heat exchanging element may be reduced to a desired temperature (block 12 ). Once the temperature of the heat exchanging element is reduced to a desired temperature, for example, around or below the freezing point of water (0° C.), the heat exchanging element may be placed adjacent to the skin of a subject (block 14 ).
  • Placing the heat exchanging element adjacent to the skin of a subject reduces the temperature of a region such that lipid-rich cells in the region are selectively affected while non-lipid-rich cells in the epidermis and/or dermis are not generally affected (block 16 ).
  • the temperature of the treatment device optionally may be further reduced to a treatment temperature once the heat exchanging element is placed adjacent to the skin of a subject (block 15 ).
  • the treatment device may then be removed from the skin of the subject (block 18 ), and the process may then end (block 20 ).
  • the reduced temperature of the heat exchanging element optionally may be maintained at a desired temperature (block 22 ).
  • the heat exchanging element optionally may be placed adjacent to another region of the skin of the subject to selectively affect lipid-rich cells in a different region of the skin of the subject (block 24 ). Once the heat exchanging element is placed adjacent to another region of the skin of the subject, the lipid-rich cells are affected (block 16 ).
  • the treatment device may then be removed from the skin of the subject (block 18 ) and then the process may end (block 20 ).
  • cryoprotectant may be reapplied to the heat exchanging element, the skin of the subject, or to an interface between the treatment device and the skin of the subject (block 28 ) prior to placing the heat exchanging element on another region of the skin of the subject.
  • a cryoprotectant may be applied to the heat exchanging element, the skin of the subject, or an interface between the treatment device and the skin of the subject to prevent the formation of ice (block 10 ) as the temperature of the heat exchanging element is reduced to a desired temperature.
  • the heat exchanging element is placed adjacent to the skin of the subject in a desired region (block 14 ), and the lipid-rich cells are selectively affected (block 16 ). After a selected period of time, the heat exchanging element may then be removed from the skin of the subject (block 18 ).
  • cryoprotectant is reapplied to the heat exchanging element, the skin of the subject, and/or an interface between the treatment device and the skin of the subject (block 28 ), and the temperature of the heat exchanging element is maintained at a desired temperature (block 22 ).
  • the process of treating the selected region of the skin of the subject optionally may be repeated to selectively affect the lipid-rich cells in a region of the subject while non-lipid-rich cells in the epidermis and/or dermis are not generally affected (block 26 ).
  • FIG. 5 illustrates another method for pre-cooling the heat exchanging element by applying a cryoprotectant on the heat exchanging element prior to decreasing the temperature of the heat exchanging element to prevent icing.
  • a cryoprotectant is placed on the heat exchanging element to prevent the heat exchanging element from icing (block 50 ).
  • the heat exchanging element is then pre-cooled by decreasing the temperature to at or below 0° C. (block 52 ).
  • the heat exchanging element is applied to the skin of the subject in a first treatment region (block 54 ), to selectively affect lipid-rich cells in the treatment region (block 56 ).
  • the temperature of the heat exchanging element may be further decreased (block 68 ).
  • the heat exchanging element is then removed from the treatment region (block 58 ) and the treatment may then end (block 64 ).
  • the temperature of the heat exchanging element may be maintained at a target temperature (block 60 ), and the heat exchanging element may be applied to a second treatment region on the skin of the subject (block 62 ), to selectively affect the lipid-rich cells.
  • the temperature of the heat exchanging element may be allowed to return to an ambient temperature (block 66 ), or the temperature of the heat exchanging element may be maintained at or below 0° C. (block 60 ).
  • the temperature of the heat exchanging element may be maintained at a target temperature (block 70 ).
  • the heat exchanging element may then be applied to a second treatment region on the skin of the subject (block 72 ), or may be reapplied to the first treatment region on the skin of the subject to selectively affect the lipid-rich cells (block 54 ).
  • subcutaneous lipid-rich cells By cooling the subcutaneous tissues to a temperature lower than 37° C., subcutaneous lipid-rich cells may be selectively affected.
  • the epidermis and dermis of a subject have lower amounts of unsaturated fatty acids compared to the underlying lipid-rich cells forming the subcutaneous tissues.
  • the subcutaneous lipid-rich cells may be selectively affected while maintaining the non-lipid-rich cells in the dermis and epidermis.
  • a range for the heat exchanging elements may be from about ⁇ 20° C. to about 20° C., preferably from about ⁇ 20° C. to about 10° C., more preferably from about ⁇ 15° C. to about 5° C., more preferably from about ⁇ 10° C. to about 0° C.
  • the lipid-rich cells may be affected by affecting, shrinking, disabling, destroying, removing, killing, or otherwise being altered. Without being bound by theory, selectively affecting lipid-rich cells is believed to result from localized crystallization of highly saturated fatty acids at temperatures that do not induce crystallization in non-lipid-rich cells. The crystals may rupture the bi-lipid membrane of lipid-rich cells to selectively necrose these cells. Thus, damage of non-lipid-rich cells, such as dermal cells, may be avoided at temperatures that induce crystal formation in lipid-rich cells. Cooling is also believed to induce lipolysis (e.g., fat metabolism) of lipid-rich cells to further enhance the reduction in subcutaneous lipid-rich cells. Lipolysis may be enhanced by local cold exposure, inducing stimulation of the sympathetic nervous system.
  • lipolysis e.g., fat metabolism
  • the treatment device may selectively reduce subcutaneous lipid-rich cells without unacceptably affecting the dermis, epidermis, and/or other tissues.
  • the treatment device may simultaneously selectively reduce subcutaneous lipid-rich cells while providing beneficial effects to the dermis and/or epidermis. These effects may include: fibroplasias, neocollagenesis, collagen contraction, collagen compaction, collagen density increase, collagen remodeling, and acanthosis (epidermal thickening).
  • the heat exchanging element may be pre-cooled in advance of treatment to more efficiently treat the skin of the subject. Further, the embodiments allow the treatment device to be maintained at a temperature at or below 0° C. or at a target temperature because the cryoprotectant may prevent icing on the heat exchanging element and/or on the skin of the subject.
  • FIG. 6 is a flow chart illustrating another method suitable to be performed in the treatment system 100 of FIG. 1 and in accordance with an embodiment of the invention.
  • the method 80 of FIG. 6 may be applied separately or in combination with the methods shown in FIG. 4 and/or FIG. 5 .
  • a cryoprotectant may be applied to both the skin of the subject for protecting the skin from freezing damage and the heat exchanging surface of the treatment device for pre-cooling the treatment device.
  • the method 80 may include applying a cryoprotectant to a treatment region of the skin of the subject (block 82 ).
  • applying the cryoprotectant may include spraying or smearing the cryoprotectant onto the skin using an instrument including, e.g., a spatula, a spray bottle, and/or a coupling device as shown in FIG. 2 .
  • the cryoprotectant may be injected into the skin of the subject using, e.g., a syringe.
  • a heat exchanging element is subsequently placed adjacent to the skin of the subject (block 84 ).
  • the heat exchanging element may cool the treatment region that is in contact with the cryoprotectant to selectively affect lipid-rich cells in the region (block 86 ).
  • the cryoprotectant may be continually supplied to the skin of the subject (block 88 ).
  • the continually supplied cryoprotectant may maintain a sufficient concentration of absorbed cryoprotectant in the epidermis and/or dermis of the subject for reducing the risk of freezing damage.
  • the cryoprotectant may be continually supplied using an absorbent (e.g., a cotton pad, a gauze, or other absorbents) pre-loaded with the cryoprotectant, or using a coupling device releasably attached to the treatment device.
  • an absorbent e.g., a cotton pad, a gauze, or other absorbents
  • a decision is made to determine whether the treatment should be continued (block 90 ). The determination may be based on time, skin temperatures, and/or other parameters of the treatment process. If the treatment is continued, then the process returns to block 86 ; otherwise, the process ends.
  • the applied cryoprotectant may at least reduce the risk of freezing damage in the epidermis and/or dermis of the subject during treatment and may even prevent such freezing damage.
  • low temperatures may potentially cause damage in the epidermis and/or dermis via at least intracellular and/or extracellular ice formation.
  • Intracellular ice formation occurs when ice forms inside a cell. The ice may expand and rupture the cell as the ice grows through the cellular wall, thus causing cell death.
  • extracellular ice formation occurs, extracellular water freezes to form ice. As a result, the remaining extracellular fluid becomes concentrated with solutes.
  • the high concentration of the extracellular fluid may cause intracellular fluid to permeate through the semi-permeable cellular wall and eventually cause cell dehydration and death.
  • the high concentration of the extracellular fluid may also interrupt electrical and/or ionic interactions among neighboring cells to cause irreversible protein damage.
  • Applying a cryoprotectant may at least reduce the risk of intracellular and/or extracellular ice formation, or even prevent such ice formation, by reducing the freezing point of water in the body fluid affected by the cryoprotectant. It is believed that after the cryoprotectant is absorbed into the epidermis and/or dermis, the cryoprotectant dissolves in or otherwise combines with water of the intracellular and/or extracellular fluid to delay the onset of ice formation by lowering the freezing point of the solution in which it resides. For example, the cryoprotectant may reduce the freezing point of the body fluid from, e.g., about ⁇ 2° C.
  • the cryoprotectant may have a sufficient concentration in the body fluid such that water in the body fluid does not freeze but instead vitrifies under low temperature conditions. As a result, the onset of intracellular and/or extracellular ice formation may be prevented in these embodiments.
  • One expected advantage of several of the embodiments of the method 80 is that an operator may use lower treatment temperatures for selectively affecting lipid-rich cells of the subject without causing freezing damage to the epidermis and/or dermis of the subject.
  • the applied cryoprotectant may lower the freezing point of the skin of the subject or body fluid in the target region to at least reduce the risk of intracellular and/or extracellular ice formation at such low treatment temperatures.
  • cryoprotectant may protect the treatment region of the skin of the subject. After the cryoprotectant is applied to the skin of the subject, the cryoprotectant is believed to enter the epidermis, the dermis, and eventually the blood stream of the subject. The subject's blood stream then may carry the cryoprotectant away from the treatment region. As a result, the cryoprotectant concentration in the treatment region drops, and the freezing point of the subject's affected body fluid increases to heighten the risk of freezing damage. Accordingly, continually supplying the cryoprotectant to the skin of the subject may at least reduce or even prevent such a risk.
  • cooling the skin of the subject may increase the residence time of the cryoprotectant and may reduce local and/or systemic side effects of the cryoprotectant. It is believed that the skin of the subject absorbs the cryoprotectant at a slower rate under low temperature conditions than under normal temperature (e.g., body temperature) conditions. Thus, the reduced absorption rate may increase the amount of time it takes for the subject's blood stream to remove the cryoprotectant, and thus prolong the efficacy of the cryoprotectant. It is also believed that certain cryoprotectants at certain concentration levels may be toxic to the subject by causing, for example, denaturation of proteins (e.g., enzymes). Thus, reducing the absorption rate of the cryoprotectant may reduce the cryoprotectant concentration in deeper tissues, and thus may reduce the associated local or systemic side effects.
  • proteins e.g., enzymes
  • a cryoprotectant suitable to be used in the treatment system 100 of FIG. 1 is a substance that may protect biological tissues of a subject from freezing damage (e.g., damage due to ice formation).
  • the cryoprotectant may contain a temperature depressant along with a thickening agent, a pH buffer, a humectant, a surfactant, and/or other additives.
  • the cryoprotectant may be formulated as a liquid (e.g., an aqueous solution or a non-aqueous solution), a gel, a hydrogel, or a paste.
  • the cryoprotectant may be hygroscopic, thermally conductive, and is ideally biocompatible.
  • the cryoprotectant may be formulated to be ultrasonically acoustic to allow ultrasound to pass through the cryoprotectant, such as a water-based gel described in U.S. Pat. No. 4,002,221 issued to Buchalter and U.S. Pat. No. 4,459,854 issued to Richardson et al., the entire disclosures of which are incorporated herein by reference.
  • the temperature depressant may include polypropylene glycol (PPG), polyethylene glycol (PEG), propylene glycol, ethylene glycol, dimethyl sulfoxide (DMSO), or other glycols.
  • the temperature depressant may also include ethanol, propanol, iso-propanol, butanol, and/or other suitable alcohol compounds.
  • the temperature depressant may lower the freezing point of a solution (e.g., body fluid) to about 0° C. to ⁇ 40° C., and more preferably to about ⁇ 10° C. to ⁇ 16° C.
  • Certain temperature depressants e.g., PPG, PEG, etc.
  • the thickening agent may include carboxyl polyethylene polymer, hydroxyethyl xylose polymer, and/or other viscosity modifiers to provide a viscosity in the range of about 1 cP to about 10,000 cP, more preferably in the range of about 4,000 cP to about 8,000 cP, and most preferably from about 5,000 cP to about 7,000 cP.
  • the cryoprotectant with a viscosity in this range may readily adhere to the treatment device, the skin of the subject, and/or the interface between the treatment device and the skin of the subject during treatment.
  • the pH buffer may include cholamine chloride, cetamidoglycine, tricine, glycinamide, bicine, and/or other suitable pH buffers.
  • the pH buffer may help the cryoprotectant to have a consistent pH of about 3.5 to about 11.5, more preferably about 5 to about 9.5, and most preferably about 6 to about 7.5.
  • the pH of the cryoprotectant may be close to the pH of the skin of the subject.
  • the humectant may include glycerin, alkylene glycol, polyalkylene glycol, propylene glycol, glyceryl triacetate, polyols (e.g., sorbitol and/or maltitol), polymeric polyols (e.g., polydextrose), quillaia, lactic acid, and/or urea.
  • the humectant may promote the retention of water to prevent the cryoprotectant from drying out.
  • the surfactant may include sodium dodecyl sulfate, ammonium lauryl sulfate, sodium lauryl sulfate, alkyl benzene sulfonate, sodium lauryl ether sulfate, and other suitable surfactants.
  • the surfactant may promote easy spreading of the cryoprotectant when an operator applies the cryoprotectant to the treatment device, the skin of the subject, and/or the interface between the treatment device and the skin of the subject during treatment.
  • the cryoprotectant may also include other additives in addition to or in lieu of the ingredients described above.
  • the cryoprotectant may also include a coloring agent, perfume, emulsifier, an anesthetic agent, and/or other ingredient.
  • the cryoprotectant may include about 30% polypropylene glycol, about 30% glycerin, and about 40% ethanol. In another embodiment, the cryoprotectant may include about 40% propylene glycol, about 0.8% hydroxyethylcellulose, and about 59.2% water. In a further embodiment, the cryoprotectant may include about 50% polypropylene glycol, about 40% glycerin, and about 10% ethanol.
  • FIG. 7 is an isometric view of a treatment device 104 in accordance with one embodiment of the invention suitable for use in the treatment system 100 .
  • the treatment device 104 includes a support 128 having a first portion 129 a and a second portion 129 b , a first heat exchanging element 130 a located at the first portion 129 a , and a second heat exchanging element 130 b located at the second portion 129 b .
  • the treatment device 104 is generally configured to be a handheld unit for manual operation, and/or it may be strapped or otherwise configured to be releasably attached to the subject.
  • the first heat exchanging element 130 a and/or the second heat exchanging element 130 b may be configured to move along the support 128 and/or rotate to position the heat exchanging elements 130 a - b for applying pressure to the treatment region during operation.
  • the first and second heat exchanging elements 130 a - b may have many similar features. As such, the features of the first heat exchanging element 130 a are described below with reference symbols followed by an “a”, and corresponding features of the second heat exchanging element 130 b are shown and noted by the same reference symbol followed by a “b.”
  • the first heat exchanging element 130 a may include a housing 139 a and fluid ports 138 a - b coupled to the fluid lines 108 a - b .
  • the housing 139 a may be constructed from polymeric materials, metals, ceramics, woods, and/or other suitable materials.
  • the housing 139 a shown in FIG. 7 is generally rectangular, but it may have any other desired shape.
  • the first heat exchanging element 130 a may further include a first interface member 132 a having a first heat exchanging surface 131 a for transferring heat to/from the subject 101 .
  • a cryoprotectant (not shown) may be applied to the heat exchanging surface 131 a to prevent ice from forming thereon when the temperature is reduced to a temperature around or below the freezing point of water (0° C.).
  • the first heat exchanging surface 131 a is generally planar, but in other embodiments, the first heat exchanging surface 131 a is non-planar (e.g., curved, faceted, etc.)
  • the first interface member 132 a may be constructed from any suitable material with a thermal conductivity greater than 0.05 Watts/Meter ° Kelvin, and in many embodiments, the thermal conductivity is more than 0.1 Watts/Meter ° Kelvin.
  • suitable materials include aluminum, other metals, metal alloys, graphite, ceramics, some polymeric materials, composites, or fluids contained in a flexible membrane.
  • Portions of the first heat exchanging surface 131 a may be an insulating material with a thermal conductivity less than 0.05 Watts/Meter ° Kelvin.
  • the first heat exchanging element 130 a may also include at least one sensing element 135 a proximate to the first heat exchanging surface 131 a .
  • the sensing element 135 a may be generally flush with the heat exchanging surface 131 a . Alternatively, it may be recessed or protrude from the surface.
  • the sensing element 135 a may include a temperature sensor, a pressure sensor, a transmissivity sensor, a bio-resistance sensor, an ultrasound sensor, an optical sensor, an infrared sensor, a sensor for measuring blood flow, or any other desired sensor.
  • the sensing element 135 a may be a temperature sensor configured to measure the temperature of the first heat exchanging surface 131 a and/or the temperature of the skin of the subject.
  • the temperature sensor may be configured as a probe or as a needle that penetrates the skin during measurement.
  • suitable temperature sensors include thermocouples, resistance temperature devices, thermistors (e.g., neutron-transmutation-doped germanium thermistors), and infrared radiation temperature sensors.
  • the sensing element 135 a may be an ultrasound sensor configured to measure the thickness of a fat layer in the subject or crystallization of subcutaneous fat in the treatment region of a subject.
  • the sensing element 135 a may be an optical or infrared sensor configured to monitor an image of the treatment region to detect, for example, epidermal physiological reactions to the treatment.
  • the sensing element 135 a may be a device to measure blood flow.
  • the sensing element 135 a may be in electrical communication with the processing unit 114 via, for example, a direct wired connection, a networked connection, and/or a wireless connection.
  • the treatment device 104 may further include a mounting element 136 a that couples the first heat exchanging element 130 a to the first portion 129 a of the support 128 .
  • the mounting element 136 a may be a pin, a ball joint, a bearing, or other types of rotatable joints. Suitable bearings include, but are not limited to, ball bearings, roller bearings, thrust bearings, and journal bearings.
  • the mounting element 136 a may accordingly be configured to rotatably couple the first heat exchanging element 130 a to the support 128 .
  • the first heat exchanging element 130 a may rotate relative to the support 128 in two dimensions (indicated by arrow A) such that the angle between the first and second heat exchanging surfaces 131 a - b may be adjusted. In another embodiment, the first heat exchanging element 130 a may rotate in three dimensions relative to the support 128 (as indicated by arrows A and B).
  • a specific embodiment of the mounting element 136 a includes a first mounting base 134 a and a flange 137 a coupled to the base 134 a by a rotatable or pivotable joint.
  • the angle between the first and second heat exchanging surfaces 131 a - b may be adjusted.
  • the first and second heat exchanging elements 130 a - b may be generally parallel to each other, i.e., have an angle of generally 0° between the first and second heat exchanging surfaces 131 a - b .
  • the first and second heat exchanging elements 130 a - b may also be generally co-planar, i.e., have an angle of generally 180° between the first and second heat exchanging surfaces 131 a - b .
  • any angle of about 0° to about 180° between the first and second heat exchanging surfaces 131 a - b may be achieved.
  • the treatment device 104 may further include a shaft 133 , and the first mounting base 134 a may be attached to the shaft 133 .
  • the first mounting base 134 a may be attached to the shaft 133 .
  • at least one of the heat exchanging elements 130 a - b moves along the shaft 133 and/or the shaft 133 moves relative to the support 128 to adjust the distance between the first and second heat exchanging elements 130 a - b (shown by arrow C).
  • the shaft 133 more specifically, extends between the first and second heat exchanging elements 130 a - b to enable movement of at least one of the heat exchanging elements 130 a - b relative to the support 128 .
  • first mounting base 134 a may be fixedly attached to the shaft 133
  • a second mounting base 134 b of the second heat exchanging element 130 b is configured such that the second mounting base 134 b may slide along the shaft 133 .
  • both the first mounting base 134 a and the second mounting base 134 b may be configured to slide along the shaft 133 .
  • the shaft 133 is generally constructed from polymeric materials, metals, ceramics, woods, or other suitable materials.
  • the treatment device 104 further includes a handle 140 slidably coupled to the shaft 133 or formed as a part of the shaft 133 .
  • the handle 140 is configured to be held by a hand of an operator.
  • the handle 140 may have a grip with grooves to improve stability of the treatment device 104 when held by the operator.
  • the handle 140 further includes an actuator 142 that operates with the shaft 133 to move the second heat exchanging element 130 b relative to the shaft 133 .
  • the actuator 142 may be a lever that engages the shaft 133 to incrementally advance the second heat exchanging element 130 b in an axial motion (arrow C) along the shaft 133 .
  • an operator may hold the treatment device 104 in one hand by grasping the handle 140 . Then, the heat exchanging elements 130 a - b may be rotated via the mounting elements 136 a - b to achieve a desired orientation. The operator may place the treatment device 104 having the heat exchanging elements 130 a - b in the desired orientation proximate to the skin of the subject to remove heat from a subcutaneous region of the subject 101 . In one embodiment, the operator may clamp a portion of the skin of the subject between the heat exchanging surfaces 131 a - b when the surfaces 131 a - b are generally parallel to each other.
  • the operator may press the heat exchanging surfaces 131 a - b against the skin of the subject when the surfaces 131 a - b are generally co-planar.
  • the operator may use thermoelectric coolers to remove heat from the subcutaneous region as described below with reference to FIG. 8 .
  • the operator may also monitor and control the treatment process by collecting measurements, such as skin temperatures, from the sensing element 135 a . By cooling the subcutaneous tissues to a temperature lower than 37° C., subcutaneous lipid-rich cells may be selectively affected. The affected cells are then reabsorbed into the subject through natural processes.
  • One expected advantage of using the treatment device 104 is that the treatment device may be applied to various regions of the subject's body because the two heat exchanging elements 130 a - b may be adjusted to conform to any body contour. Another expected advantage is that by pressing the treatment device 104 against the skin of the subject, blood flow through the treatment region may be reduced to achieve efficient cooling. Yet another expected advantage is that by applying the cryoprotectant to prevent icing and to allow pre-cooling of the heat exchanging elements, the treatment duration may be shortened. Yet another expected advantage is that maintaining the temperature of the heat exchanging elements may reduce the power consumption of the device. Still another expected advantage is that the power requirement is reduced for each of the heat exchanging elements 130 a - b because heat is removed from the skin through the two heat exchanging surfaces 131 a - b instead of a single heat exchanging element.
  • the first and second heat exchanging elements 130 a - b may have many additional embodiments with different and/or additional features without detracting from the operation of both elements.
  • the second heat exchanging element 130 b may or may not have a sensing element proximate to the second heat exchanging surface 131 b .
  • the second heat exchanging element 130 b may be constructed from a material that is different from that of the first heat exchanging element 130 a .
  • the second mounting base 134 b may have a shape and/or a surface configuration different from that of the first mounting base 134 a .
  • the first heat exchanging element 130 a may be rotatable, but the second heat exchanging element 130 b may be non-rotatable.
  • the first and second heat exchanging elements 130 a - b may further include a thermoelectric cooler (not shown), such as a Peltier-type element, proximate to the interface members 132 a - b .
  • the thermoelectric cooler may be a single Peltier-type element or an array of Peltier-type elements.
  • One suitable thermoelectric cooler is a Peltier-type heat exchanging element (model # CP-2895) produced by TE Technologies, Inc. in Traverse City, Mich.
  • FIGS. 8A-B are isometric views of a treatment device 104 in accordance with embodiments of the invention suitable for use in the treatment system 100 .
  • the treatment device 104 includes a control system housing 202 and cooling element housings 204 a - g .
  • the cooling element housings 204 a - g are connected to the heat exchanging elements (not shown) by attachment means 206 .
  • the attachment means may be any mechanical attachment device such as a screw or pin as is known in the art.
  • the plurality of cooling element housings 204 a - g may have many similar features.
  • the cooling element housing 204 a may be constructed from polymeric materials, metals, ceramics, woods, and/or other suitable materials.
  • the cooling element housing 204 a shown in FIGS. 8A-B is generally rectangular, but it may have any other desired shape.
  • the treatment device 104 is shown in a first relatively flat configuration in FIG. 8A and in a second curved configuration in FIG. 8B .
  • each segment of the cooling element housings 204 a - g is rotatably connected to adjacent segments and moveable about connection 207 a - f to allow the treatment device 104 to curve.
  • the connection 207 a - f may be a pin, a ball joint, a bearing, or other type of rotatable joints.
  • the connection 207 may accordingly be configured to rotatably couple the first cooling element housing 204 a to the second cooling element housing 204 b .
  • the first cooling element housing 204 a may rotate relative to the second cooling element housing 204 b (indicated by arrow A), each adjacent moveable pair of cooling elements being such that, for example, the angle between the first and second cooling element housings 204 a and 204 b may be adjusted up to 45°.
  • the treatment device is articulated such that it may assume a curved configuration as shown in FIG. 8B , conformable to the skin of a subject.
  • the arcuate shape of the treatment device may concentrate the heat transfer in the subcutaneous region. For example, when heat exchanging surfaces are rotated about a body contour of a subject, the arcuate shape may concentrate heat removal from the skin.
  • the control system housing 202 may house a processing unit for controlling the treatment device 104 and/or fluid lines 108 a - b and/or electrical power and communication lines.
  • the control system housing 202 includes a harness port 210 for electrical and supply fluid lines (not shown for purposes of clarity).
  • the control system housing 202 may further be configured to serve as a handle for a user of the treatment device 104 .
  • the processing unit may be contained at a location other than on the treatment device.
  • the treatment device 104 may further include at each end of the treatment device 104 retention devices 208 a and 208 b .
  • the retention devices 208 a and 208 b are rotatably connected to a frame by retention device coupling elements 212 a - b .
  • the retention device coupling elements 212 a - b may be a pin, a ball joint, a bearing, or other type of rotatable joints.
  • the retention devices 208 a and 208 b may be rigidly affixed to the end portions of the cooling element housings 204 a and 204 g .
  • the retention device may attach to control system housing 202 .
  • the retention devices 208 a and 208 b are each shown as tabs 214 , each having a slot 216 therein for receiving a band or elastomeric strap (not shown for purposes of clarity) to retain the treatment device 104 in place on a subject 101 during treatment.
  • the treatment device may not contain any attached retention device and may be held in place by hand, may be held in place by gravity, or may be held in place with a band, elastomeric strap, or non-elastic fabric (e.g., nylon webbing) wrapped around the treatment device 104 and the subject 101 .
  • the cooling element housings 204 a - g have a first edge 218 and an adjacent second edge 220 of a reciprocal shape to allow the treatment device 104 to mate and, thus, configure in a flat configuration.
  • the first edge 218 and the second edge 220 are generally angular in the Figures; however, the shape could be curved, straight, or a combination of angles, curves, and straight edges that provides a reciprocal shape between adjacent segments of the cooling element housings 204 a - g.
  • FIG. 9 is an isometric and exploded view of a treatment device 104 in accordance with another embodiment of the invention.
  • the treatment device 104 may include a housing 302 , a cooling assembly 308 at least partially disposed in the housing 302 , and retention devices 318 configured for fastening the cooling assembly 308 to the housing 302 .
  • the treatment device 104 may also include a vibration member disposed in the housing 302 , as described in more detail below with reference to FIG. 10 .
  • the cooling assembly 308 may include a heat sink 312 , a thermally conductive interface member 309 , and a thermoelectric cooler 314 disposed between the heat sink 312 and the interface member 309 .
  • the thermoelectric cooler 314 may be connected to an external power supply (not shown) via connection terminals 316 .
  • the heat sink 312 includes a U-shaped fluid conduit 310 at least partially embedded in a thermally conductive portion 313 of the heat sink 312 .
  • the fluid conduit 310 includes fluid ports 138 a - b that may be coupled to a circulating fluid source (not shown) via the fluid lines 108 a - b .
  • the heat sink 312 may include a plate-type heat exchanger, a tube and shell heat exchanger, and/or other types of heat exchanging device.
  • the interface member 309 may include a plate constructed from a metal, a metal alloy, and/or other types of thermally conductive material.
  • the thermoelectric cooler 314 may be a single Peltier-type element or an array of Peltier-type elements.
  • One suitable thermoelectric cooler is a Peltier-type heat exchanging element (model # CP-2895) produced by TE Technology, Inc. in Traverse City, Mich.
  • Individual retention devices 318 may include a plate 330 and a plurality of fasteners 306 extending through a plurality of apertures 332 (two are shown for illustrative purposes) of the plate 330 .
  • the fasteners 306 are screws that may be received by the housing 302 .
  • the fasteners 306 may include bolts, clamps, clips, nails, pins, rings, rivets, straps, and/or other suitable fasteners.
  • the cooling assembly 308 is first at least partially disposed in the internal space 303 of the housing 302 .
  • the retention devices 318 are positioned proximate to the cooling assembly 308 , and the fasteners 306 are extended through the apertures 332 of the plate 330 to engage the housing 302 .
  • the fasteners 306 , the plates 330 , and the housing 302 cooperate to hold the cooling assembly 308 together.
  • thermoelectric cooler 314 By applying power to the thermoelectric cooler 314 , heat may be effectively removed from the skin of the subject to a circulating fluid in the fluid conduit 310 .
  • applying a current to the thermoelectric cooler 314 may achieve a temperature generally below 37° C. on the first side 315 a of the thermoelectric cooler 314 to remove heat from the subject via the interface member 309 .
  • the thermoelectric cooler 314 transfers the heat from the first side 315 a to the second side 315 b .
  • the heat is then transferred to the circulating fluid in the fluid conduit 310 .
  • FIG. 10 is an isometric and exploded view of a vibrator 322 disposed in the treatment device 104 of FIG. 9 .
  • the vibrator 322 may include a frame 324 , a motor 325 carried by the frame 324 , a rotating member 328 operatively coupled to the motor 325 , and a plurality of fasteners 326 (e.g., screws) for fixedly attaching the frame 324 to the housing 302 .
  • the motor 325 has an output shaft (not shown) generally centered about a body axis 327 of the motor 325 .
  • One suitable motor is a direct current motor (model # Pittman 8322S008-R1) manufactured by Ametek, Inc., of Harleysville, Pa.
  • the rotating member 328 has a generally cylindrical shape and is off-centered from the body axis 327 . In other embodiments, the motor 325 may have an off-centered shaft that is operatively coupled to the rotating member 328 .
  • applying electricity to the motor 325 may cause the rotating member 328 to rotate around the body axis 327 of the motor 325 .
  • the off-centered rotating member 328 causes the vibrator 322 to be off-balanced about the body axis 327 , and vibration in the frame 324 and the housing 302 may result.
  • a first cryoprotectant composition used in the experiments included about 30% polypropylene glycol, about 30% glycerin, and about 40% ethanol (cryoprotectant I).
  • a second cryoprotectant composition used in the experiments included about 40% propylene glycol, about 0.8% hydroxyethylcellulose, and about 59.2% water (cryoprotectant II).
  • Skin surface temperatures investigated include ⁇ 11° C., ⁇ 12° C., ⁇ 14° C., ⁇ 16° C., and ⁇ 20° C.
  • Each testing site was cleaned and shaved, and a surface thermocouple was placed on the skin of the pig to control the treatment device.
  • cryoprotectant I and cryoprotectant II significantly lowered the freezing point of the skin of the pig.
  • the surface temperature was between about ⁇ 12° C. to about ⁇ 16° C., limited or no skin freezing was observed.

Abstract

A cryoprotectant for use with a treatment device for improved removal of heat from subcutaneous lipid-rich cells of a subject having skin is provided. The cryoprotectant is a non-freezing liquid, gel, or paste for allowing pre-cooling of the treatment device below 0° C. while preventing the formation of ice thereon. The cryoprotectant may also prevent freezing of the treatment device to the skin or ice from forming from moisture seeping out from the skin. The cryoprotectant may further be hygroscopic, thermally conductive, and biocompatible.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application claims priority to U.S. Provisional Application No. 60/795,799, filed on Apr. 28, 2006, the disclosure of which is incorporated herein by reference in its entirety. This application is also related to U.S. patent application Ser. No. ______, entitled “METHOD OF ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS AND COOLING APPARATUS HAVING AN ACTUATOR,” Attorney Docket No. 57968-8017US, the disclosure of which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • The present application relates to a cryoprotectant for use with treatment devices, systems, and methods for removing heat from subcutaneous lipid-rich cells.
  • BACKGROUND
  • Excess body fat, or adipose tissue, can detract from personal appearance and athletic performance. Excess adipose tissue may be present in various locations of the body, including, for example, the thigh, buttocks, abdomen, knees, back, face, arms, and other areas. Moreover, excess adipose tissue is thought to magnify the unattractive appearance of cellulite, which forms when subcutaneous fat protrudes into the dermis and creates dimples where the skin is attached to underlying structural fibrous strands. Cellulite and excessive amounts of adipose tissue are often considered to be unappealing. Moreover, significant health risks may be associated with higher amounts of excess body fat. An effective way of controlling or removing excess body fat therefore is needed.
  • Liposuction is a method for selectively removing adipose tissue to “sculpt” a person's body. Liposuction typically is performed by plastic surgeons or dermatologists using specialized surgical equipment that invasively removes subcutaneous adipose tissue via suction. One drawback of liposuction is that it is a surgical procedure, and the recovery may be painful and lengthy. Moreover, the procedure typically requires the injection of tumescent anesthetics, which is often associated temporary bruising. Liposuction can also have serious and occasionally even fatal complications. In addition, the cost for liposuction is usually substantial. Other emerging techniques for removal of subcutaneous adipose tissue include mesotherapy, laser-assisted liposuction, and high intensity focused ultrasound.
  • Conventional non-invasive treatments for removing excess body fat typically include topical agents, weight-loss drugs, regular exercise, dieting, or a combination of these treatments. One drawback of these treatments is that they may not be effective or even possible under certain circumstances. For example, when a person is physically injured or ill, regular exercise may not be an option. Similarly, weight-loss drugs or topical agents are not an option when they cause an allergic or negative reaction. Furthermore, fat loss in selective areas of a person's body cannot be achieved using general or systemic weight-loss methods.
  • Other non-invasive treatment methods include applying heat to a zone of subcutaneous lipid-rich cells. U.S. Pat. No. 5,948,011 discloses altering subcutaneous body fat and/or collagen by heating the subcutaneous fat layer with radiant energy while cooling the surface of the skin. The applied heat denatures fibrous septae made of collagen tissue and may destroy fat cells below the skin, and the cooling protects the epidermis from thermal damage. This method is less invasive than liposuction, but it still may cause thermal damage to adjacent tissue, and can also be painful and unpredictable.
  • Another promising method of reducing subcutaneous fat cells is to cool the target cells as disclosed in U.S. Patent Publication No. 2003/0220674, the entire disclosure of which is incorporated herein. This publication discloses, among other things, reducing the temperature of lipid-rich subcutaneous fat cells to selectively affect the fat cells without damaging the cells in the epidermis. Although this publication provides promising methods and devices, several improvements for enhancing the implementation of these methods and devices would be desirable.
  • U.S. Patent Publication No. 2003/0220674 also discloses methods for selective removal of lipid-rich cells, and avoidance of damage to other structures including dermal and epidermal cells. A method for inducing collagen compaction, remodeling, and formation is also needed for treatment of loose or sagging skin, age- or sun-damaged skin, or a variety of other skin disorders. Therefore, a method for simultaneously removing lipid-rich cells while providing beneficial collagen effects is also needed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an isometric view of a system for removing heat from subcutaneous lipid-rich cells in accordance with an embodiment of the invention.
  • FIG. 2 is a side elevation view of a coupling device in accordance with an embodiment of the invention.
  • FIG. 3 is an isometric view of a coupling device in accordance with another embodiment of the invention.
  • FIG. 4 is a flow chart illustrating a method for pre-cooling a treatment device in accordance with embodiments of the invention.
  • FIG. 5 is a flow chart illustrating a method for pre-cooling a treatment device in accordance with further embodiments of the invention.
  • FIG. 6 is a flow chart illustrating a method for protecting the skin of a subject with a cryoprotectant in accordance with further embodiments of the invention.
  • FIG. 7 is an isometric view of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with an embodiment of the invention.
  • FIGS. 8A-B are isometric views of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with a further embodiment of the invention.
  • FIG. 9 is an isometric and exploded view of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with a further embodiment of the invention.
  • FIG. 10 is an isometric and exploded view of a vibrator disposed in the treatment device for removing heat from subcutaneous lipid-rich cells in accordance with yet another embodiment of the invention.
  • DETAILED DESCRIPTION A. Overview
  • The present disclosure describes devices, systems, and methods for cooling subcutaneous lipid-rich cells with a heat exchanging element and a thermally conductive cryoprotectant. The term “subcutaneous tissue” means tissue lying beneath the dermis and includes subcutaneous fat, or adipose tissue, which primarily is composed of lipid-rich cells, or adipocytes. It may be appreciated that several of the details set forth below are provided to describe the following embodiments in a manner sufficient to enable a person skilled in the relevant art to make and use the disclosed embodiments. Several of the details and advantages described below, however, may not be necessary to practice certain embodiments of the invention. Additionally, the invention may include other embodiments that are within the scope of the claims but are not described in detail with respect to the Figures.
  • B. System for Selectively Reducing Lipid-Rich Cells
  • FIG. 1 is an isometric view of a treatment system 100 for exchanging heat from subcutaneous lipid-rich cells of a subject 101 in accordance with an embodiment of the invention. The treatment system 100 may include a treatment device 104 placed at an abdominal area 102 of the subject 101 or another area where reduction of the subcutaneous fat, or fat layer, is desired. The treatment device 104 may be fastened to the subject 101 using, for example, a mechanical fastener (e.g., a belt 105), an adhesive (e.g., an epoxy), suction (e.g., a vacuum or reduced pressure), or any other mechanisms. The treatment device 104 may be configured to heat and/or cool the subject 101. In certain embodiments, the treatment device 104 may contain a non-freezing cryoprotectant to, among other advantages, allow pre-cooling of the treatment device 104 to a temperature around or below the freezing point of water (0° C.) while preventing ice from forming. Various embodiments of the treatment device 104 are described in more detail below with reference to FIGS. 7-10. In other embodiments, the treatment system 100 may also include a coupling device (not shown in FIG. 1) for supplying the cryoprotectant to the treatment device 104 or the skin of the subject 101, as described in more detail below with reference to FIG. 2 and FIG. 3.
  • In one embodiment, the treatment device 104 is configured to cool subcutaneous lipid-rich cells of the subject 101. In such cases, the treatment system 100 may further include a fluid source 106 and fluid lines 108 a-b connecting the treatment device 104 to the fluid source 106. The fluid source 106 may remove heat from a coolant to a heat sink and provide the chilled coolant to the treatment device 104 via the fluid lines 108 a-b. Examples of the circulating coolant include water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and any other suitable heat conducting fluids. The fluid lines 108 a-b may be hoses or other conduits constructed from polyethylene, polyvinyl chloride, polyurethane, steel, aluminum, copper and other materials that may accommodate the particular circulating coolant. The fluid source 106 may be a refrigeration unit, a cooling tower, a thermoelectric chiller, or any other device capable of removing heat from a coolant or municipal water supply.
  • The treatment device 104 may also include one or more thermoelectric elements, such as Peltier-type thermoelectric elements. In such cases, the treatment system 100 may further include a power supply 110 and a processing unit 114 operatively coupled to the treatment device 104 via electrical cables 112, 116. In one embodiment, the power supply 110 may provide a direct current voltage to the treatment device 104 remove heat from the subject 101. The processing unit 114 may monitor process parameters via sensors (not shown in FIG. 1) placed proximate to the treatment device 104 and adjust the heat removal rate based on the process parameters. The processing unit 114 may include any processor, Programmable Logic Controller, Distributed Control System, and the like.
  • The processing unit 114 may be in electrical communication with an input device 118, an output device 120, and/or a control panel 122. The input device 118 may include a keyboard, a mouse, a touch screen, a push button, a switch, a potentiometer, and any other device suitable for accepting user input. The output device 120 may include a display screen, a printer, a medium reader, an audio device, and any other device suitable for providing user feedback. The control panel 122 may include indicator lights, numerical displays, and audio devices. In the embodiment shown in FIG. 1, the processing unit 114, power supply 110, control panel 122, fluid source 106, input device 118, and output device 120 are carried by a rack 124 with wheels 126 for portability. In another embodiment, the various components may be fixedly installed at a treatment site.
  • As explained in more detail below, a cryoprotectant applied to the treatment device 104 may allow the treatment device 104 to be pre-cooled prior to being applied to the subject 101 for more efficient treatment. Further, the cryoprotectant can also enable the treatment device 104 to be maintained at a desired temperature while preventing ice from forming on a surface of the treatment device 104, and thus reduces the delay in reapplying the treatment device 104 to the subject. Yet another advantage is that the cryoprotectant may prevent the treatment device 104 from freezing to the skin of the subject. If the cryoprotectant is hygroscopic, it can adsorb moisture from the atmosphere and/or from the skin, which might otherwise form ice.
  • The treatment device 104, the cryoprotectant, and/or other components of the treatment system 100 can be included in a kit (not shown) for removing heat from subcutaneous lipid rich cells of the subject 101. The cryoprotectant can have a freezing point in the range of about −40° C. to about 0° C. and be configured to be applied to an interface between the treatment device 104 and the skin of the subject 101. The kit can also include instruction documentation containing information regarding how to (a) apply the cryoprotectant to a target region and/or a heat exchanging surface of the treatment device 104 and (b) reduce a temperature of the target region such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface.
  • C. Coupling Device
  • FIG. 2 is a side elevation view illustrating a coupling device 502 suitable to be used in the treatment system 100 of FIG. 1 and configured in accordance with an embodiment of the invention. The coupling device 502 may be placed adjacent to a treatment region 501 of the subject 101. The coupling device 502 may include attachment features 510 for releasably or fixedly attaching the coupling device 502 to a heat exchanging element 130 of the treatment device 104 (FIG. 1). In the illustrated embodiment, the attachment features 510 include tensioning clips. During assembly, the coupling device 502 may be snapped onto the heat exchanging element 130 with the backside portion 504 facing the treatment device 104. In other embodiments, the attachment features 510 may include screws, pins, hinges, and/or any other suitable attachment devices.
  • The coupling device 502 may include a backside portion 504 proximate to the heat exchanging element 130, a front side portion 508 spaced apart from the backside portion 504, and an intermediate portion 506 between the backside portion 504 and the front side portion 508. In certain embodiments, the coupling device 502 optionally may include a protective layer (e.g., a polymeric film, not shown) attached to the front side portion 508. The protective layer may isolate the front side portion 508 from the environment and may be peeled off to expose the front side portion 508 before treatment.
  • The backside portion 504 may be a film, a plate, a sheet, or other structure constructed from a metal, a metal alloy, ceramics, a polymeric material, or other suitable conductive material. The backside portion 504 may transfer heat between the heat exchanging element 130 and the treatment region 501. The backside portion 504 may also isolate the heat exchanging element 130 from the treatment region 501 for sanitation purposes.
  • The intermediate portion 506 may be a reservoir constructed from a mesh, a foam material, a porous plastic and/or metal, or other materials that may at least temporarily contain a fluid and/or a gel. In one embodiment, the intermediate portion 506 contains, or is loaded with, a cryoprotectant before a treatment process begins. In another embodiment, the intermediate portion 506 may be generally empty before a treatment process begins and only loaded with cryoprotectant immediately before and/or during the treatment process. In any of these embodiments, the intermediate portion 506 may be pressurized with the cryoprotectant or may be at a generally atmospheric pressure during treatment.
  • The front side portion 508 may be a film constructed from a polymeric material, a plastic material, or other material that is at least partially flexible. The front side portion 508 may include one or more apertures 516 in fluid communication with the intermediate portion 506. During treatment, the aperture or apertures 516 may allow the cryoprotectant contained in the intermediate portion 506 to escape to the treatment region 501 of the subject 101 through capillary actions or other mechanisms. For example, the intermediate portion 506 may continually supply the cryoprotectant to the treatment region 501 during treatment. In certain embodiments, the intermediate portion 506 is pre-loaded with excess cryoprotectant. As a portion of the cryoprotectant escapes from the apertures 516, additional cryoprotectant may be supplied from the intermediate portion 506 to the skin of the subject during treatment. In other embodiments, the intermediate portion 506 may be constantly replenished to provide a continuous supply of the cryoprotectant. The cryoprotectant can be absorbed by the skin in the treatment region 501. The degree of cryoprotectant absorption by the skin depends on a number of factors, the most important of which are cryoprotectant concentration, duration of contact, solubility, and the physical condition of the skin.
  • The coupling device 502 optionally may include at least one sensor 514 proximate to the front side portion 508 to measure at least one parameter of the treatment process. The sensor 514 may be a temperature sensor, a pressure sensor, a transmissivity sensor, a bio-resistance sensor, an ultrasound sensor, an optical sensor, an infrared sensor, a heat flux sensor, any other desired sensors, or any combination thereof. An operator may adjust the treatment process based on the measured parameter.
  • In the illustrated embodiment, the treatment device 104 optionally may include a supply device 520 connected to a port 515 of the coupling device 502 by a conduit 522 for supplying and/or replenishing the cryoprotectant in the intermediate portion 506. In the illustrated embodiment, the supply device 520 is a syringe holding a volume of the cryoprotectant. In other embodiments, the supply device 520 may include a pump coupled to a cryoprotectant storage (not shown), or other suitable supply configurations.
  • Optionally, a pressure sensor 524 (shown schematically) may be used for monitoring a cryoprotectant pressure in the intermediate portion 506. The pressure sensor 524 may be operatively coupled to the conduit 522, the intermediate portion 506, or the supply device 520. During treatment, the pressure sensor 524 may provide an electric, visual, or other signal indicating the cryoprotectant pressure in the intermediate portion 506. In one embodiment, an operator may manually adjust the output of the supply device 520 based on the indicated pressure. In another embodiment, the signal from the pressure sensor 524 may be used as a process variable to automatically control the output of the supply device 520.
  • Several embodiments of the treatment system 100 may continually protect the skin of the subject against freezing damage. According to conventional techniques, a cryoprotectant may be topically applied to the skin before a treatment begins. The skin then absorbs the applied cryoprotectant, which dissipates over a period of time. After the cryoprotectant dissipates, in conventional techniques, the skin may be subject to freezing damage. As a result, by continually replenishing the dissipated cryoprotectant from the intermediate portion 506, the treatment system 100 may at least reduce the risk of freezing damage, or even prevent such freezing damage, during treatment.
  • Several embodiments of the treatment system 100 may also reduce the risk of air pockets that can reduce the heat transfer efficiency between the treatment region 501 and the treatment device 104. As the cryoprotectant escapes through the aperture or apertures 516 during treatment, the pressure in the intermediate portion 506 decreases, and air pockets may form. The air pockets may interfere with the heat transfer efficiency between the treatment region 501 and the treatment device 104. As a result, maintaining the intermediate portion 506 at a constant pressure may at least reduce the risk of air pocket formation, and thus improve the efficiency of such heat transfer.
  • Even though the coupling device 502 is illustrated as having the attachment features 510, in certain embodiments, the attachment features 510 may be omitted, and the coupling device 502 may be configured and/or incorporated into other structures. For example, FIG. 3 illustrates another embodiment, in which the coupling device 502 is incorporated into a sleeve 162 that attaches to the heat exchanging element 130. The coupling device 502 can define a first sleeve portion 164, and the sleeve 162 can also have a second sleeve portion 166. For example, the first sleeve portion 164 may include the backside portion 504, the front side portion 508, and the intermediate portion 506 (FIG. 3). The second sleeve portion 166 may be an isolation layer extending from the first sleeve portion 164. For example, the second sleeve portion 166 may be constructed from latex, rubber, nylon, polyimide, polyethylene, Kevlar®, or other substantially impermeable or semi-permeable material. The second sleeve portion 166 may prevent any contact between the skin of the subject and the heat exchanging element 130. In one embodiment, the sleeve 162 may be reusable. In other embodiments, the sleeve 162 may be disposable. The sleeve 162 may be provided sterile or non-sterile. In one embodiment, the sleeve is fabricated from a flex circuit material such as polyimide or polyethylene, with etched traces to connect sensors to electronics resident in, e.g., the processing unit 114.
  • The second sleeve portion 166 may also include attachment features to affix the sleeve 162 to the treatment device 104. In the illustrated embodiment, the second sleeve portion 166 includes four brackets 172 (identified individually as 172 a-d), each located at a corner of the second sleeve portion 166. Individual brackets 172 include an aperture 174 (identified individually as 174 a-d) that corresponds to an attachment point 170 of the treatment device 104. During assembly, the apertures 174 of the brackets 172 may fit over the attachment point 170 such that the second sleeve portion 166 at least partially encloses the heat exchanging element 130.
  • In another embodiment, the second sleeve portion 166 may include brackets that may engage each other. For example, the bracket 172 a may include a pin that may engage the aperture 174 d of the bracket 172 d. During assembly, the second sleeve portion 166 may wrap around the treatment device 104 and be held in place by engaging the brackets 172 with each other. In a further embodiment, the second sleeve portion 166 may include a flexible member (not shown, e.g., an elastic band) at an outer edge 176 of the second sleeve portion 166 that may hold the sleeve 162 over the treatment device 104 during assembly. In a further embodiment, the second sleeve portion 166 may include a releasable attachment member (not shown, e.g., Velcro® or snaps) at the outer edge 176 of the second sleeve portion 166 that may hold the sleeve 162 over the treatment device 104 during assembly. In yet another embodiment, adhesive may hold the second sleeve portion 166 to the treatment device 104.
  • In addition to the expected advantages described above, one expected advantage of using the sleeve 162 is the improved sanitation of using the treatment device 104. The sleeve 162 may prevent cross-contamination between the skin of the subject and the heat exchanging element 130 because the sleeve 162 is substantially impermeable. Also, operating expense of the treatment device 104 may be reduced because the heat exchanging element 130 does not need to be sanitized after each use.
  • The sleeve 162 may have many additional embodiments with different and/or additional features without detracting from its operation. For example, the first and second sleeve portions 164, 166 may be constructed from the same material (e.g., polyimide) or different materials. The sleeve 162 may include an adhesive layer (not shown) that binds the sleeve 162 to the treatment device 104.
  • D. Method of Pre-Cooling a Treatment Device Using a Cryoprotectant
  • FIG. 4 is a flow chart illustrating a method suitable to be performed in the treatment system 100 of FIG. 1 and in accordance with an embodiment of the invention. The method may include applying a cryoprotectant to a heat exchanging element contained in a treatment device (block 10). In certain embodiments, the cryoprotectant may be applied to the skin of a subject or both the skin and the heat exchanging element. The temperature of the heat exchanging element may be reduced to a desired temperature (block 12). Once the temperature of the heat exchanging element is reduced to a desired temperature, for example, around or below the freezing point of water (0° C.), the heat exchanging element may be placed adjacent to the skin of a subject (block 14). Placing the heat exchanging element adjacent to the skin of a subject reduces the temperature of a region such that lipid-rich cells in the region are selectively affected while non-lipid-rich cells in the epidermis and/or dermis are not generally affected (block 16). In certain embodiments, the temperature of the treatment device optionally may be further reduced to a treatment temperature once the heat exchanging element is placed adjacent to the skin of a subject (block 15).
  • After a selected period of time, the treatment device may then be removed from the skin of the subject (block 18), and the process may then end (block 20). Once the treatment device is removed from the skin of the subject, the reduced temperature of the heat exchanging element optionally may be maintained at a desired temperature (block 22). In certain embodiments, the heat exchanging element optionally may be placed adjacent to another region of the skin of the subject to selectively affect lipid-rich cells in a different region of the skin of the subject (block 24). Once the heat exchanging element is placed adjacent to another region of the skin of the subject, the lipid-rich cells are affected (block 16). The treatment device may then be removed from the skin of the subject (block 18) and then the process may end (block 20). Optionally, the cryoprotectant may be reapplied to the heat exchanging element, the skin of the subject, or to an interface between the treatment device and the skin of the subject (block 28) prior to placing the heat exchanging element on another region of the skin of the subject.
  • In another embodiment, a cryoprotectant may be applied to the heat exchanging element, the skin of the subject, or an interface between the treatment device and the skin of the subject to prevent the formation of ice (block 10) as the temperature of the heat exchanging element is reduced to a desired temperature. The heat exchanging element is placed adjacent to the skin of the subject in a desired region (block 14), and the lipid-rich cells are selectively affected (block 16). After a selected period of time, the heat exchanging element may then be removed from the skin of the subject (block 18). Optionally, the cryoprotectant is reapplied to the heat exchanging element, the skin of the subject, and/or an interface between the treatment device and the skin of the subject (block 28), and the temperature of the heat exchanging element is maintained at a desired temperature (block 22). The process of treating the selected region of the skin of the subject optionally may be repeated to selectively affect the lipid-rich cells in a region of the subject while non-lipid-rich cells in the epidermis and/or dermis are not generally affected (block 26).
  • FIG. 5 illustrates another method for pre-cooling the heat exchanging element by applying a cryoprotectant on the heat exchanging element prior to decreasing the temperature of the heat exchanging element to prevent icing. In one embodiment, a cryoprotectant is placed on the heat exchanging element to prevent the heat exchanging element from icing (block 50). The heat exchanging element is then pre-cooled by decreasing the temperature to at or below 0° C. (block 52). The heat exchanging element is applied to the skin of the subject in a first treatment region (block 54), to selectively affect lipid-rich cells in the treatment region (block 56). In certain embodiments, the temperature of the heat exchanging element may be further decreased (block 68). The heat exchanging element is then removed from the treatment region (block 58) and the treatment may then end (block 64). In certain embodiments, the temperature of the heat exchanging element may be maintained at a target temperature (block 60), and the heat exchanging element may be applied to a second treatment region on the skin of the subject (block 62), to selectively affect the lipid-rich cells. Once the heat exchanging element is removed from the treatment region (block 58), the temperature of the heat exchanging element may be allowed to return to an ambient temperature (block 66), or the temperature of the heat exchanging element may be maintained at or below 0° C. (block 60). In yet another embodiment, the temperature of the heat exchanging element may be maintained at a target temperature (block 70). The heat exchanging element may then be applied to a second treatment region on the skin of the subject (block 72), or may be reapplied to the first treatment region on the skin of the subject to selectively affect the lipid-rich cells (block 54).
  • By cooling the subcutaneous tissues to a temperature lower than 37° C., subcutaneous lipid-rich cells may be selectively affected. In general, the epidermis and dermis of a subject have lower amounts of unsaturated fatty acids compared to the underlying lipid-rich cells forming the subcutaneous tissues. Because non-lipid-rich cells usually withstand colder temperatures better than lipid-rich cells, the subcutaneous lipid-rich cells may be selectively affected while maintaining the non-lipid-rich cells in the dermis and epidermis. For example, a range for the heat exchanging elements may be from about −20° C. to about 20° C., preferably from about −20° C. to about 10° C., more preferably from about −15° C. to about 5° C., more preferably from about −10° C. to about 0° C.
  • The lipid-rich cells may be affected by affecting, shrinking, disabling, destroying, removing, killing, or otherwise being altered. Without being bound by theory, selectively affecting lipid-rich cells is believed to result from localized crystallization of highly saturated fatty acids at temperatures that do not induce crystallization in non-lipid-rich cells. The crystals may rupture the bi-lipid membrane of lipid-rich cells to selectively necrose these cells. Thus, damage of non-lipid-rich cells, such as dermal cells, may be avoided at temperatures that induce crystal formation in lipid-rich cells. Cooling is also believed to induce lipolysis (e.g., fat metabolism) of lipid-rich cells to further enhance the reduction in subcutaneous lipid-rich cells. Lipolysis may be enhanced by local cold exposure, inducing stimulation of the sympathetic nervous system.
  • One expected advantage of several of the embodiments described above is that the treatment device may selectively reduce subcutaneous lipid-rich cells without unacceptably affecting the dermis, epidermis, and/or other tissues. Another expected advantage is that the treatment device may simultaneously selectively reduce subcutaneous lipid-rich cells while providing beneficial effects to the dermis and/or epidermis. These effects may include: fibroplasias, neocollagenesis, collagen contraction, collagen compaction, collagen density increase, collagen remodeling, and acanthosis (epidermal thickening).
  • Another expected advantage of several of the embodiments described above is that the heat exchanging element may be pre-cooled in advance of treatment to more efficiently treat the skin of the subject. Further, the embodiments allow the treatment device to be maintained at a temperature at or below 0° C. or at a target temperature because the cryoprotectant may prevent icing on the heat exchanging element and/or on the skin of the subject.
  • E. Method of Protecting the Skin of a Subject Using Cryoprotectant
  • FIG. 6 is a flow chart illustrating another method suitable to be performed in the treatment system 100 of FIG. 1 and in accordance with an embodiment of the invention. The method 80 of FIG. 6 may be applied separately or in combination with the methods shown in FIG. 4 and/or FIG. 5. For example, a cryoprotectant may be applied to both the skin of the subject for protecting the skin from freezing damage and the heat exchanging surface of the treatment device for pre-cooling the treatment device.
  • In the illustrated embodiment, the method 80 may include applying a cryoprotectant to a treatment region of the skin of the subject (block 82). For example, applying the cryoprotectant may include spraying or smearing the cryoprotectant onto the skin using an instrument including, e.g., a spatula, a spray bottle, and/or a coupling device as shown in FIG. 2. In another embodiment, the cryoprotectant may be injected into the skin of the subject using, e.g., a syringe.
  • A heat exchanging element is subsequently placed adjacent to the skin of the subject (block 84). The heat exchanging element may cool the treatment region that is in contact with the cryoprotectant to selectively affect lipid-rich cells in the region (block 86). During treatment, the cryoprotectant may be continually supplied to the skin of the subject (block 88). The continually supplied cryoprotectant may maintain a sufficient concentration of absorbed cryoprotectant in the epidermis and/or dermis of the subject for reducing the risk of freezing damage. The cryoprotectant may be continually supplied using an absorbent (e.g., a cotton pad, a gauze, or other absorbents) pre-loaded with the cryoprotectant, or using a coupling device releasably attached to the treatment device.
  • A decision is made to determine whether the treatment should be continued (block 90). The determination may be based on time, skin temperatures, and/or other parameters of the treatment process. If the treatment is continued, then the process returns to block 86; otherwise, the process ends.
  • The applied cryoprotectant may at least reduce the risk of freezing damage in the epidermis and/or dermis of the subject during treatment and may even prevent such freezing damage. Without being bound by theory, it is believed that low temperatures may potentially cause damage in the epidermis and/or dermis via at least intracellular and/or extracellular ice formation. Intracellular ice formation occurs when ice forms inside a cell. The ice may expand and rupture the cell as the ice grows through the cellular wall, thus causing cell death. When extracellular ice formation occurs, extracellular water freezes to form ice. As a result, the remaining extracellular fluid becomes concentrated with solutes. The high concentration of the extracellular fluid may cause intracellular fluid to permeate through the semi-permeable cellular wall and eventually cause cell dehydration and death. The high concentration of the extracellular fluid may also interrupt electrical and/or ionic interactions among neighboring cells to cause irreversible protein damage.
  • Applying a cryoprotectant may at least reduce the risk of intracellular and/or extracellular ice formation, or even prevent such ice formation, by reducing the freezing point of water in the body fluid affected by the cryoprotectant. It is believed that after the cryoprotectant is absorbed into the epidermis and/or dermis, the cryoprotectant dissolves in or otherwise combines with water of the intracellular and/or extracellular fluid to delay the onset of ice formation by lowering the freezing point of the solution in which it resides. For example, the cryoprotectant may reduce the freezing point of the body fluid from, e.g., about −2° C. to about −5° C., −10° C., −16° C., or other temperatures suitable for a particular treatment. In some embodiments, the cryoprotectant may have a sufficient concentration in the body fluid such that water in the body fluid does not freeze but instead vitrifies under low temperature conditions. As a result, the onset of intracellular and/or extracellular ice formation may be prevented in these embodiments.
  • One expected advantage of several of the embodiments of the method 80 is that an operator may use lower treatment temperatures for selectively affecting lipid-rich cells of the subject without causing freezing damage to the epidermis and/or dermis of the subject. The applied cryoprotectant may lower the freezing point of the skin of the subject or body fluid in the target region to at least reduce the risk of intracellular and/or extracellular ice formation at such low treatment temperatures.
  • Another expected advantage is that the epidermis and/or dermis of the subject may be continually protected against freezing damage. It is believed that a topically administered cryoprotectant may protect the treatment region of the skin of the subject. After the cryoprotectant is applied to the skin of the subject, the cryoprotectant is believed to enter the epidermis, the dermis, and eventually the blood stream of the subject. The subject's blood stream then may carry the cryoprotectant away from the treatment region. As a result, the cryoprotectant concentration in the treatment region drops, and the freezing point of the subject's affected body fluid increases to heighten the risk of freezing damage. Accordingly, continually supplying the cryoprotectant to the skin of the subject may at least reduce or even prevent such a risk.
  • Another expected advantage of several of the embodiments is that cooling the skin of the subject may increase the residence time of the cryoprotectant and may reduce local and/or systemic side effects of the cryoprotectant. It is believed that the skin of the subject absorbs the cryoprotectant at a slower rate under low temperature conditions than under normal temperature (e.g., body temperature) conditions. Thus, the reduced absorption rate may increase the amount of time it takes for the subject's blood stream to remove the cryoprotectant, and thus prolong the efficacy of the cryoprotectant. It is also believed that certain cryoprotectants at certain concentration levels may be toxic to the subject by causing, for example, denaturation of proteins (e.g., enzymes). Thus, reducing the absorption rate of the cryoprotectant may reduce the cryoprotectant concentration in deeper tissues, and thus may reduce the associated local or systemic side effects.
  • F. Cryoprotectants
  • A cryoprotectant suitable to be used in the treatment system 100 of FIG. 1 is a substance that may protect biological tissues of a subject from freezing damage (e.g., damage due to ice formation). The cryoprotectant may contain a temperature depressant along with a thickening agent, a pH buffer, a humectant, a surfactant, and/or other additives. The cryoprotectant may be formulated as a liquid (e.g., an aqueous solution or a non-aqueous solution), a gel, a hydrogel, or a paste. The cryoprotectant may be hygroscopic, thermally conductive, and is ideally biocompatible. In certain embodiments, the cryoprotectant may be formulated to be ultrasonically acoustic to allow ultrasound to pass through the cryoprotectant, such as a water-based gel described in U.S. Pat. No. 4,002,221 issued to Buchalter and U.S. Pat. No. 4,459,854 issued to Richardson et al., the entire disclosures of which are incorporated herein by reference.
  • The temperature depressant may include polypropylene glycol (PPG), polyethylene glycol (PEG), propylene glycol, ethylene glycol, dimethyl sulfoxide (DMSO), or other glycols. The temperature depressant may also include ethanol, propanol, iso-propanol, butanol, and/or other suitable alcohol compounds. The temperature depressant may lower the freezing point of a solution (e.g., body fluid) to about 0° C. to −40° C., and more preferably to about −10° C. to −16° C. Certain temperature depressants (e.g., PPG, PEG, etc.) may also be used to improve smoothness of the cryoprotectant and to provide lubrication.
  • The thickening agent may include carboxyl polyethylene polymer, hydroxyethyl xylose polymer, and/or other viscosity modifiers to provide a viscosity in the range of about 1 cP to about 10,000 cP, more preferably in the range of about 4,000 cP to about 8,000 cP, and most preferably from about 5,000 cP to about 7,000 cP. The cryoprotectant with a viscosity in this range may readily adhere to the treatment device, the skin of the subject, and/or the interface between the treatment device and the skin of the subject during treatment.
  • The pH buffer may include cholamine chloride, cetamidoglycine, tricine, glycinamide, bicine, and/or other suitable pH buffers. The pH buffer may help the cryoprotectant to have a consistent pH of about 3.5 to about 11.5, more preferably about 5 to about 9.5, and most preferably about 6 to about 7.5. In certain embodiments, the pH of the cryoprotectant may be close to the pH of the skin of the subject.
  • The humectant may include glycerin, alkylene glycol, polyalkylene glycol, propylene glycol, glyceryl triacetate, polyols (e.g., sorbitol and/or maltitol), polymeric polyols (e.g., polydextrose), quillaia, lactic acid, and/or urea. The humectant may promote the retention of water to prevent the cryoprotectant from drying out.
  • The surfactant may include sodium dodecyl sulfate, ammonium lauryl sulfate, sodium lauryl sulfate, alkyl benzene sulfonate, sodium lauryl ether sulfate, and other suitable surfactants. The surfactant may promote easy spreading of the cryoprotectant when an operator applies the cryoprotectant to the treatment device, the skin of the subject, and/or the interface between the treatment device and the skin of the subject during treatment.
  • The cryoprotectant may also include other additives in addition to or in lieu of the ingredients described above. For example, the cryoprotectant may also include a coloring agent, perfume, emulsifier, an anesthetic agent, and/or other ingredient.
  • In a particular embodiment, the cryoprotectant may include about 30% polypropylene glycol, about 30% glycerin, and about 40% ethanol. In another embodiment, the cryoprotectant may include about 40% propylene glycol, about 0.8% hydroxyethylcellulose, and about 59.2% water. In a further embodiment, the cryoprotectant may include about 50% polypropylene glycol, about 40% glycerin, and about 10% ethanol.
  • G. Treatment Devices with Rotatable Heat Exchanging Elements
  • FIG. 7 is an isometric view of a treatment device 104 in accordance with one embodiment of the invention suitable for use in the treatment system 100. In this embodiment, the treatment device 104 includes a support 128 having a first portion 129 a and a second portion 129 b, a first heat exchanging element 130 a located at the first portion 129 a, and a second heat exchanging element 130 b located at the second portion 129 b. The treatment device 104 is generally configured to be a handheld unit for manual operation, and/or it may be strapped or otherwise configured to be releasably attached to the subject. The first heat exchanging element 130 a and/or the second heat exchanging element 130 b may be configured to move along the support 128 and/or rotate to position the heat exchanging elements 130 a-b for applying pressure to the treatment region during operation.
  • The first and second heat exchanging elements 130 a-b may have many similar features. As such, the features of the first heat exchanging element 130 a are described below with reference symbols followed by an “a”, and corresponding features of the second heat exchanging element 130 b are shown and noted by the same reference symbol followed by a “b.” The first heat exchanging element 130 a may include a housing 139 a and fluid ports 138 a-b coupled to the fluid lines 108 a-b. The housing 139 a may be constructed from polymeric materials, metals, ceramics, woods, and/or other suitable materials. The housing 139 a shown in FIG. 7 is generally rectangular, but it may have any other desired shape.
  • The first heat exchanging element 130 a may further include a first interface member 132 a having a first heat exchanging surface 131 a for transferring heat to/from the subject 101. A cryoprotectant (not shown) may be applied to the heat exchanging surface 131 a to prevent ice from forming thereon when the temperature is reduced to a temperature around or below the freezing point of water (0° C.). In one embodiment, the first heat exchanging surface 131 a is generally planar, but in other embodiments, the first heat exchanging surface 131 a is non-planar (e.g., curved, faceted, etc.) The first interface member 132 a may be constructed from any suitable material with a thermal conductivity greater than 0.05 Watts/Meter ° Kelvin, and in many embodiments, the thermal conductivity is more than 0.1 Watts/Meter ° Kelvin. Examples of suitable materials include aluminum, other metals, metal alloys, graphite, ceramics, some polymeric materials, composites, or fluids contained in a flexible membrane. Portions of the first heat exchanging surface 131 a may be an insulating material with a thermal conductivity less than 0.05 Watts/Meter ° Kelvin.
  • The first heat exchanging element 130 a may also include at least one sensing element 135 a proximate to the first heat exchanging surface 131 a. The sensing element 135 a, for example, may be generally flush with the heat exchanging surface 131 a. Alternatively, it may be recessed or protrude from the surface. The sensing element 135 a may include a temperature sensor, a pressure sensor, a transmissivity sensor, a bio-resistance sensor, an ultrasound sensor, an optical sensor, an infrared sensor, a sensor for measuring blood flow, or any other desired sensor. In one embodiment, the sensing element 135 a may be a temperature sensor configured to measure the temperature of the first heat exchanging surface 131 a and/or the temperature of the skin of the subject. For example, the temperature sensor may be configured as a probe or as a needle that penetrates the skin during measurement. Examples of suitable temperature sensors include thermocouples, resistance temperature devices, thermistors (e.g., neutron-transmutation-doped germanium thermistors), and infrared radiation temperature sensors. In another embodiment, the sensing element 135 a may be an ultrasound sensor configured to measure the thickness of a fat layer in the subject or crystallization of subcutaneous fat in the treatment region of a subject. In yet another embodiment, the sensing element 135 a may be an optical or infrared sensor configured to monitor an image of the treatment region to detect, for example, epidermal physiological reactions to the treatment. In yet another embodiment, the sensing element 135 a may be a device to measure blood flow. The sensing element 135 a may be in electrical communication with the processing unit 114 via, for example, a direct wired connection, a networked connection, and/or a wireless connection.
  • The treatment device 104 may further include a mounting element 136 a that couples the first heat exchanging element 130 a to the first portion 129 a of the support 128. The mounting element 136 a, for example, may be a pin, a ball joint, a bearing, or other types of rotatable joints. Suitable bearings include, but are not limited to, ball bearings, roller bearings, thrust bearings, and journal bearings. The mounting element 136 a may accordingly be configured to rotatably couple the first heat exchanging element 130 a to the support 128. In certain embodiments, the first heat exchanging element 130 a may rotate relative to the support 128 in two dimensions (indicated by arrow A) such that the angle between the first and second heat exchanging surfaces 131 a-b may be adjusted. In another embodiment, the first heat exchanging element 130 a may rotate in three dimensions relative to the support 128 (as indicated by arrows A and B).
  • A specific embodiment of the mounting element 136 a includes a first mounting base 134 a and a flange 137 a coupled to the base 134 a by a rotatable or pivotable joint. By rotatably mounting at least one of the first and second heat exchanging elements 130 a-b to the support 128, the angle between the first and second heat exchanging surfaces 131 a-b may be adjusted. For example, the first and second heat exchanging elements 130 a-b may be generally parallel to each other, i.e., have an angle of generally 0° between the first and second heat exchanging surfaces 131 a-b. The first and second heat exchanging elements 130 a-b may also be generally co-planar, i.e., have an angle of generally 180° between the first and second heat exchanging surfaces 131 a-b. With the rotatable mounting elements 136 a-b, any angle of about 0° to about 180° between the first and second heat exchanging surfaces 131 a-b may be achieved.
  • The treatment device 104 may further include a shaft 133, and the first mounting base 134 a may be attached to the shaft 133. As explained in more detail below, at least one of the heat exchanging elements 130 a-b moves along the shaft 133 and/or the shaft 133 moves relative to the support 128 to adjust the distance between the first and second heat exchanging elements 130 a-b (shown by arrow C). The shaft 133, more specifically, extends between the first and second heat exchanging elements 130 a-b to enable movement of at least one of the heat exchanging elements 130 a-b relative to the support 128. In certain embodiments, the first mounting base 134 a may be fixedly attached to the shaft 133, and a second mounting base 134 b of the second heat exchanging element 130 b is configured such that the second mounting base 134 b may slide along the shaft 133. In other embodiments, both the first mounting base 134 a and the second mounting base 134 b may be configured to slide along the shaft 133. The shaft 133 is generally constructed from polymeric materials, metals, ceramics, woods, or other suitable materials.
  • The treatment device 104 further includes a handle 140 slidably coupled to the shaft 133 or formed as a part of the shaft 133. The handle 140 is configured to be held by a hand of an operator. For example, the handle 140 may have a grip with grooves to improve stability of the treatment device 104 when held by the operator. The handle 140 further includes an actuator 142 that operates with the shaft 133 to move the second heat exchanging element 130 b relative to the shaft 133. The actuator 142 may be a lever that engages the shaft 133 to incrementally advance the second heat exchanging element 130 b in an axial motion (arrow C) along the shaft 133.
  • In operation, an operator may hold the treatment device 104 in one hand by grasping the handle 140. Then, the heat exchanging elements 130 a-b may be rotated via the mounting elements 136 a-b to achieve a desired orientation. The operator may place the treatment device 104 having the heat exchanging elements 130 a-b in the desired orientation proximate to the skin of the subject to remove heat from a subcutaneous region of the subject 101. In one embodiment, the operator may clamp a portion of the skin of the subject between the heat exchanging surfaces 131 a-b when the surfaces 131 a-b are generally parallel to each other. In another embodiment, the operator may press the heat exchanging surfaces 131 a-b against the skin of the subject when the surfaces 131 a-b are generally co-planar. In certain embodiments, the operator may use thermoelectric coolers to remove heat from the subcutaneous region as described below with reference to FIG. 8. The operator may also monitor and control the treatment process by collecting measurements, such as skin temperatures, from the sensing element 135 a. By cooling the subcutaneous tissues to a temperature lower than 37° C., subcutaneous lipid-rich cells may be selectively affected. The affected cells are then reabsorbed into the subject through natural processes.
  • One expected advantage of using the treatment device 104 is that the treatment device may be applied to various regions of the subject's body because the two heat exchanging elements 130 a-b may be adjusted to conform to any body contour. Another expected advantage is that by pressing the treatment device 104 against the skin of the subject, blood flow through the treatment region may be reduced to achieve efficient cooling. Yet another expected advantage is that by applying the cryoprotectant to prevent icing and to allow pre-cooling of the heat exchanging elements, the treatment duration may be shortened. Yet another expected advantage is that maintaining the temperature of the heat exchanging elements may reduce the power consumption of the device. Still another expected advantage is that the power requirement is reduced for each of the heat exchanging elements 130 a-b because heat is removed from the skin through the two heat exchanging surfaces 131 a-b instead of a single heat exchanging element.
  • The first and second heat exchanging elements 130 a-b may have many additional embodiments with different and/or additional features without detracting from the operation of both elements. For example, the second heat exchanging element 130 b may or may not have a sensing element proximate to the second heat exchanging surface 131 b. The second heat exchanging element 130 b may be constructed from a material that is different from that of the first heat exchanging element 130 a. The second mounting base 134 b may have a shape and/or a surface configuration different from that of the first mounting base 134 a. The first heat exchanging element 130 a may be rotatable, but the second heat exchanging element 130 b may be non-rotatable.
  • The first and second heat exchanging elements 130 a-b may further include a thermoelectric cooler (not shown), such as a Peltier-type element, proximate to the interface members 132 a-b. The thermoelectric cooler may be a single Peltier-type element or an array of Peltier-type elements. One suitable thermoelectric cooler is a Peltier-type heat exchanging element (model # CP-2895) produced by TE Technologies, Inc. in Traverse City, Mich.
  • H. Treatment Device having a Plurality of Cooling Elements
  • FIGS. 8A-B are isometric views of a treatment device 104 in accordance with embodiments of the invention suitable for use in the treatment system 100. In this embodiment, the treatment device 104 includes a control system housing 202 and cooling element housings 204 a-g. The cooling element housings 204 a-g are connected to the heat exchanging elements (not shown) by attachment means 206. The attachment means may be any mechanical attachment device such as a screw or pin as is known in the art. The plurality of cooling element housings 204 a-g may have many similar features. As such, the features of the first cooling element housing 204 a are described below with reference symbols followed by an “a,” corresponding features of the second cooling element housing 204 b are shown and noted by the same reference symbol followed by a “b,” and so forth. The cooling element housing 204 a may be constructed from polymeric materials, metals, ceramics, woods, and/or other suitable materials. The cooling element housing 204 a shown in FIGS. 8A-B is generally rectangular, but it may have any other desired shape.
  • The treatment device 104 is shown in a first relatively flat configuration in FIG. 8A and in a second curved configuration in FIG. 8B. As shown in FIG. 8B, each segment of the cooling element housings 204 a-g is rotatably connected to adjacent segments and moveable about connection 207 a-f to allow the treatment device 104 to curve. The connection 207 a-f, for example, may be a pin, a ball joint, a bearing, or other type of rotatable joints. The connection 207 may accordingly be configured to rotatably couple the first cooling element housing 204 a to the second cooling element housing 204 b. According to aspects of the invention, the first cooling element housing 204 a may rotate relative to the second cooling element housing 204 b (indicated by arrow A), each adjacent moveable pair of cooling elements being such that, for example, the angle between the first and second cooling element housings 204 a and 204 b may be adjusted up to 45°. In this way, the treatment device is articulated such that it may assume a curved configuration as shown in FIG. 8B, conformable to the skin of a subject.
  • One advantage of the plurality of rotatable heat exchanging surfaces is that the arcuate shape of the treatment device may concentrate the heat transfer in the subcutaneous region. For example, when heat exchanging surfaces are rotated about a body contour of a subject, the arcuate shape may concentrate heat removal from the skin.
  • The control system housing 202 may house a processing unit for controlling the treatment device 104 and/or fluid lines 108 a-b and/or electrical power and communication lines. The control system housing 202 includes a harness port 210 for electrical and supply fluid lines (not shown for purposes of clarity). The control system housing 202 may further be configured to serve as a handle for a user of the treatment device 104. Alternatively, the processing unit may be contained at a location other than on the treatment device.
  • The treatment device 104 may further include at each end of the treatment device 104 retention devices 208 a and 208 b. The retention devices 208 a and 208 b are rotatably connected to a frame by retention device coupling elements 212 a-b. The retention device coupling elements 212 a-b, for example, may be a pin, a ball joint, a bearing, or other type of rotatable joints. In certain embodiments, the retention devices 208 a and 208 b may be rigidly affixed to the end portions of the cooling element housings 204 a and 204 g. Alternately, the retention device may attach to control system housing 202.
  • The retention devices 208 a and 208 b are each shown as tabs 214, each having a slot 216 therein for receiving a band or elastomeric strap (not shown for purposes of clarity) to retain the treatment device 104 in place on a subject 101 during treatment. Alternatively, the treatment device may not contain any attached retention device and may be held in place by hand, may be held in place by gravity, or may be held in place with a band, elastomeric strap, or non-elastic fabric (e.g., nylon webbing) wrapped around the treatment device 104 and the subject 101.
  • As shown in FIGS. 8A-B, the cooling element housings 204 a-g have a first edge 218 and an adjacent second edge 220 of a reciprocal shape to allow the treatment device 104 to mate and, thus, configure in a flat configuration. The first edge 218 and the second edge 220 are generally angular in the Figures; however, the shape could be curved, straight, or a combination of angles, curves, and straight edges that provides a reciprocal shape between adjacent segments of the cooling element housings 204 a-g.
  • I. Additional Embodiments of Treatment Device
  • FIG. 9 is an isometric and exploded view of a treatment device 104 in accordance with another embodiment of the invention. The treatment device 104 may include a housing 302, a cooling assembly 308 at least partially disposed in the housing 302, and retention devices 318 configured for fastening the cooling assembly 308 to the housing 302. The treatment device 104 may also include a vibration member disposed in the housing 302, as described in more detail below with reference to FIG. 10.
  • The cooling assembly 308 may include a heat sink 312, a thermally conductive interface member 309, and a thermoelectric cooler 314 disposed between the heat sink 312 and the interface member 309. The thermoelectric cooler 314 may be connected to an external power supply (not shown) via connection terminals 316. In the illustrated embodiment, the heat sink 312 includes a U-shaped fluid conduit 310 at least partially embedded in a thermally conductive portion 313 of the heat sink 312. The fluid conduit 310 includes fluid ports 138 a-b that may be coupled to a circulating fluid source (not shown) via the fluid lines 108 a-b. In other embodiments, the heat sink 312 may include a plate-type heat exchanger, a tube and shell heat exchanger, and/or other types of heat exchanging device. The interface member 309 may include a plate constructed from a metal, a metal alloy, and/or other types of thermally conductive material. The thermoelectric cooler 314 may be a single Peltier-type element or an array of Peltier-type elements. One suitable thermoelectric cooler is a Peltier-type heat exchanging element (model # CP-2895) produced by TE Technology, Inc. in Traverse City, Mich.
  • Individual retention devices 318 may include a plate 330 and a plurality of fasteners 306 extending through a plurality of apertures 332 (two are shown for illustrative purposes) of the plate 330. In the illustrated embodiment, the fasteners 306 are screws that may be received by the housing 302. In other embodiments, the fasteners 306 may include bolts, clamps, clips, nails, pins, rings, rivets, straps, and/or other suitable fasteners. During assembly, the cooling assembly 308 is first at least partially disposed in the internal space 303 of the housing 302. Then, the retention devices 318 are positioned proximate to the cooling assembly 308, and the fasteners 306 are extended through the apertures 332 of the plate 330 to engage the housing 302. The fasteners 306, the plates 330, and the housing 302 cooperate to hold the cooling assembly 308 together.
  • By applying power to the thermoelectric cooler 314, heat may be effectively removed from the skin of the subject to a circulating fluid in the fluid conduit 310. For example, applying a current to the thermoelectric cooler 314 may achieve a temperature generally below 37° C. on the first side 315 a of the thermoelectric cooler 314 to remove heat from the subject via the interface member 309. The thermoelectric cooler 314 transfers the heat from the first side 315 a to the second side 315 b. The heat is then transferred to the circulating fluid in the fluid conduit 310.
  • FIG. 10 is an isometric and exploded view of a vibrator 322 disposed in the treatment device 104 of FIG. 9. The vibrator 322 may include a frame 324, a motor 325 carried by the frame 324, a rotating member 328 operatively coupled to the motor 325, and a plurality of fasteners 326 (e.g., screws) for fixedly attaching the frame 324 to the housing 302. In the illustrated embodiment, the motor 325 has an output shaft (not shown) generally centered about a body axis 327 of the motor 325. One suitable motor is a direct current motor (model # Pittman 8322S008-R1) manufactured by Ametek, Inc., of Harleysville, Pa. The rotating member 328 has a generally cylindrical shape and is off-centered from the body axis 327. In other embodiments, the motor 325 may have an off-centered shaft that is operatively coupled to the rotating member 328.
  • In operation, applying electricity to the motor 325 may cause the rotating member 328 to rotate around the body axis 327 of the motor 325. The off-centered rotating member 328 causes the vibrator 322 to be off-balanced about the body axis 327, and vibration in the frame 324 and the housing 302 may result.
  • J. Examples
  • The applicants conducted experiments to cool subcutaneous lipid-rich cells in a pig using a treatment device as shown in FIG. 9 and a cryoprotectant. A first cryoprotectant composition used in the experiments included about 30% polypropylene glycol, about 30% glycerin, and about 40% ethanol (cryoprotectant I). A second cryoprotectant composition used in the experiments included about 40% propylene glycol, about 0.8% hydroxyethylcellulose, and about 59.2% water (cryoprotectant II). Skin surface temperatures investigated include −11° C., −12° C., −14° C., −16° C., and −20° C.
  • Each testing site was cleaned and shaved, and a surface thermocouple was placed on the skin of the pig to control the treatment device. A number of 3″×3″ squares of Webril® Undercast Padding #3175, supplied by Tyco Healthcare of Mansfield Mass. (“Webril”), were soaked with 8 milliliters of either cryoprotectant I or cryoprotectant II. The soaked Webril squares were then placed on the test sites for 5 minutes, and the treatment device was then applied to the Webril squares to achieve a desired surface temperature. Once the desired surface temperature was achieved, the surface temperature was maintained for a treatment period of up to about 30 minutes. After the treatment period, the skin of the pig was inspected for freezing.
  • The results of several experiments indicate that both cryoprotectant I and cryoprotectant II significantly lowered the freezing point of the skin of the pig. In particular, when the surface temperature was between about −12° C. to about −16° C., limited or no skin freezing was observed.
  • Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
  • The above detailed descriptions of embodiments of the invention are not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art may recognize. For example, while steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may be combined to provide further embodiments.
  • In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above detailed description explicitly defines such terms. While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.

Claims (40)

1. A system for removing heat from subcutaneous lipid rich cells of a subject having skin, comprising:
a treatment device having a heat exchanging element having a first side in thermal communication with a heat exchanging surface and a second side opposite the first side, the heat exchanging element being configured to reduce a temperature of the target region such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface; and
a cryoprotectant with a freezing point in the range of about −40° C. to about 0° C. applied to an interface between the heat exchanging surface and the skin of the subject, the cryoprotectant being in contact with at least one of the skin of the subject at a target region and the heat exchanging surface.
2. The cooling system of claim 1 wherein the cryoprotectant further comprises a pH buffer to maintain a pH in the cryoprotectant in the range of about 6 to about 7.5.
3. The cooling system of claim 1 wherein the cryoprotectant contains polypropylene glycol.
4. The cooling system of claim 1 wherein the cryoprotectant is water-soluble.
5. The cooling system of claim 1 wherein the cryoprotectant is a hydrogel.
6. The cooling system of claim 1 wherein the cryoprotectant further comprises a thickening agent to provide a viscosity of the cryoprotectant in the range of about 1 cP to about 10,000 cP.
7. The cooling system of claim 1 wherein the cryoprotectant further comprises a humectant.
8. The cooling system of claim 1 wherein the cryoprotectant freezing point is below about −10° C.
9. The cooling system of claim 1 further comprising a coupling device containing the cryoprotectant, the coupling device being releasably coupled to the treatment device and proximate to the heat exchanging surface.
10. The cooling system of claim 9 wherein the coupling device includes a backside portion proximate to the heat exchanging surface, a front side portion spaced apart from the backside portion, and an intermediate portion between the backside portion and the front side portion for holding the cryoprotectant.
11. The cooling system of claim 10 wherein the front side portion includes at least one aperture in fluid communication with the intermediate portion.
12. The cooling system of claim 10 wherein the intermediate portion is constructed from a mesh, foam, a porous plastic material and/or a porous metal material.
13. The cooling system of claim 10 further comprising a supply device in fluid communication with the intermediate portion via a conduit and a pressure sensor operatively coupled to one of the intermediate portion, the supply device, and the conduit for monitoring a pressure in the intermediate portion.
14. The cooling system of claim 10 wherein the intermediate portion contains the thermally conductive cryoprotectant before treatment.
15. The cooling system of claim 1 further comprising an absorbent pre-loaded with the cryoprotectant, the absorbent being at least partially between the heat exchanging surface and target region.
16. The system of claim 1 wherein the cryoprotectant includes at least one of a polypropylene glycol, glycol, polyethylene glycol, ethylene glycol, dimethyl sulfoxide, polyvinyl pyridine, calcium magnesium acetate, sodium acetate, ethanol, propanol, and sodium formate.
17. A system for removing heat from subcutaneous lipid rich cells of a subject having skin, comprising:
a treatment device having a housing and a thermal mass in thermal communication with a heat exchanging surface, the thermal mass being configured to reduce a temperature of a region of the skin such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface; and
a hygroscopic cryoprotectant configured to substantially cover an interface between the treatment device and the skin, wherein the cryoprotectant is configured to contact at least one of the treatment device and the skin.
18. The cooling system of claim 17 further comprising a coupling device releasably coupled to the treatment device, wherein the coupling device includes a backside portion proximate to the heat exchanging surface, a front side portion spaced apart from the backside portion, and an intermediate portion between the backside portion and the front side portion for holding the cryoprotectant.
19. The cooling system of claim 17, wherein the cryoprotectant further comprises a pH buffer to maintain the pH in the range of about 3 to about 11.
20. The cooling system of claim 19 wherein the pH buffer maintains a pH in the range of about 6 to about 7.5.
21. The cooling system of claim 17 wherein the cryoprotectant contains polypropylene glycol.
22. The cooling system of claim 17 wherein the cryoprotectant is water-soluble.
23. The cooling system of claim 17 wherein the cryoprotectant is a hydrogel.
24. The cooling system of claim 17 wherein the cryoprotectant further comprises a thickening agent to provide a viscosity of the cryoprotectant in the range of about 1 cP to about 10,000 cP.
25. The cooling system of claim 17 wherein the cryoprotectant further comprises a humectant.
26. The treatment device of claim 17 wherein the cryoprotectant has a freezing point below about −10° C.
27. A method of applying to skin of a subject a treatment device having a heat exchanging element, a cryoprotectant applied to a heat exchanging surface in thermal communication with the heat exchanging element, comprising:
(i) applying the cryoprotectant to an interface between the treatment device and the skin;
(ii) reducing a temperature of the heat exchanging element to a treatment temperature;
(iii) placing the heat exchanging element with respect to the skin at a treatment region; and
(iv) achieving a desired temperature in the region such that lipid rich cells in the region are affected while preserving non-lipid rich cells in the epidermis.
28. The method of claim 27 wherein applying the cryoprotectant includes applying the cryoprotectant to the heat exchanging surface, and wherein the method further includes preventing ice formation on the heat exchanging surface when reducing the temperature of the heat exchanging element to the treatment temperature.
29. The method of claim 27 wherein applying the cryoprotectant includes applying the cryoprotectant to the skin, and the method further includes reducing a freezing point of the skin of the subject.
30. The method of claim 29 further comprising continually supplying the cryoprotectant to the skin of the subject and maintaining a sufficient concentration of the cryoprotectant in the skin of the subject.
31. The method of claim 29 wherein applying the cryoprotectant includes applying the cryoprotectant using a coupling device having a backside portion proximate to the heat exchanging surface, a front side portion spaced apart from the backside portion, and an intermediate portion between the backside portion and the front side portion for holding the cryoprotectant.
32. The method of claim 31, further comprising maintaining a constant cryoprotectant pressure in the intermediate portion.
33. The method of claim 31, further comprising pre-charging the intermediate portion with the cryoprotectant before treatment.
34. The method of claim 27 wherein applying the cryoprotectant includes applying a cryoprotectant including at least one of a polypropylene glycol, glycol, polyethylene glycol, ethylene glycol, dimethyl sulfoxide, polyvinyl pyridine, calcium magnesium acetate, sodium acetate, ethanol, propanol, methanol and sodium formate.
35. A kit for removing heat from subcutaneous lipid rich cells of a subject having skin, comprising:
a treatment device having a heat exchanging element with a heat exchanging surface, the heat exchanging element being configured to reduce a temperature of a target region such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface; and
a cryoprotectant with a freezing point in the range of about −40° C. to about 0° C. and configured to be applied to an interface between the heat exchanging surface and the target region;
instruction documentation containing information regarding how to (i) apply the cryoprotectant to the target region and/or the heat exchanging surface of the treatment device and (ii) reduce a temperature of the target region such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface.
36. The kit of claim 35 wherein the cryoprotectant contains at least one of polypropylene glycol, polyethylene glycol, propylene glycol, ethylene glycol, glycerin, ethanol, propanol, iso-propanol, and butanol.
37. The kit of claim 35 further comprising a coupling device configured to contain the cryoprotectant, the coupling device being releasably couplable to the treatment device.
38. The kit of claim 37 wherein the coupling device includes a backside portion, a front side portion spaced apart from the backside portion, and an intermediate portion between the backside portion and the front side portion for holding the cryoprotectant.
39. The kit of claim 37 wherein the front side portion includes at least one aperture in fluid communication with the intermediate portion.
40. The cooling system of claim 35 further comprising an absorbent pre-loaded with the cryoprotectant.
US11/741,271 2006-04-28 2007-04-27 Cryoprotectant for use with a cooling device for improved cooling of subcutaneous lipid-rich cells Abandoned US20070255362A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
AU2007244765A AU2007244765A1 (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
EP07761461.8A EP2012707B1 (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
KR1020117002538A KR101248799B1 (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
KR1020087006539A KR101039758B1 (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
PCT/US2007/067638 WO2007127924A2 (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
US11/741,271 US20070255362A1 (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a cooling device for improved cooling of subcutaneous lipid-rich cells
CA2585214A CA2585214C (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
CN201410078711.0A CN103948468A (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
CN200780001010.5A CN101351167B (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
JP2008513848A JP4703724B2 (en) 2006-04-28 2007-04-27 Antifreeze for use in therapeutic devices with improved cooling of subcutaneous lipid-rich cells
BRPI0706055A BRPI0706055B8 (en) 2006-04-28 2007-04-27 system and set of components to remove heat from lipid-rich subcutaneous cells
IL182989A IL182989A (en) 2006-04-28 2007-05-03 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
HK09102176.3A HK1124511A1 (en) 2006-04-28 2009-03-06 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
AU2010241393A AU2010241393B2 (en) 2006-04-28 2010-11-11 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
US13/747,161 US20140005760A1 (en) 2006-04-28 2013-01-22 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
HK15100475.7A HK1200080A1 (en) 2006-04-28 2015-01-15 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
US16/595,466 US20200155215A1 (en) 2006-04-28 2019-10-08 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79579906P 2006-04-28 2006-04-28
US11/741,271 US20070255362A1 (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a cooling device for improved cooling of subcutaneous lipid-rich cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/747,161 Continuation US20140005760A1 (en) 2006-04-28 2013-01-22 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells

Publications (1)

Publication Number Publication Date
US20070255362A1 true US20070255362A1 (en) 2007-11-01

Family

ID=38649308

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/741,271 Abandoned US20070255362A1 (en) 2006-04-28 2007-04-27 Cryoprotectant for use with a cooling device for improved cooling of subcutaneous lipid-rich cells
US13/747,161 Abandoned US20140005760A1 (en) 2006-04-28 2013-01-22 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
US16/595,466 Pending US20200155215A1 (en) 2006-04-28 2019-10-08 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/747,161 Abandoned US20140005760A1 (en) 2006-04-28 2013-01-22 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
US16/595,466 Pending US20200155215A1 (en) 2006-04-28 2019-10-08 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells

Country Status (11)

Country Link
US (3) US20070255362A1 (en)
EP (1) EP2012707B1 (en)
JP (1) JP4703724B2 (en)
KR (2) KR101039758B1 (en)
CN (1) CN103948468A (en)
AU (1) AU2007244765A1 (en)
BR (1) BRPI0706055B8 (en)
CA (1) CA2585214C (en)
HK (2) HK1124511A1 (en)
IL (1) IL182989A (en)
WO (1) WO2007127924A2 (en)

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070129714A1 (en) * 2005-05-20 2007-06-07 Echo Healthcare Llc Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (FAT)
US20080077211A1 (en) * 2006-09-26 2008-03-27 Juniper Medical, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US20080200910A1 (en) * 2007-02-16 2008-08-21 Myoscience, Inc. Replaceable and/or Easily Removable Needle Systems for Dermal and Transdermal Cryogenic Remodeling
US7850683B2 (en) 2005-05-20 2010-12-14 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
WO2010127315A3 (en) * 2009-04-30 2011-04-21 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
WO2011091293A1 (en) * 2010-01-21 2011-07-28 Zeltiq Aesthetics, Inc. Compositions for use with a system for improved cooling of subcutaneous lipid-rich tissue
US20110190856A1 (en) * 2010-02-04 2011-08-04 FreezeAwayFat LLC Garment and Method for Treating Fatty Deposits on a Human Body
US8073550B1 (en) 1997-07-31 2011-12-06 Miramar Labs, Inc. Method and apparatus for treating subcutaneous histological features
US20120022518A1 (en) * 2010-07-20 2012-01-26 Zeltiq Aesthetics, Inc. Combined modality treatement systems, methods and apparatus for body contouring applications
WO2012103242A1 (en) 2011-01-25 2012-08-02 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US20120221083A1 (en) * 2011-02-27 2012-08-30 Meliza Cruzada Treatment System by Heat Extraction and Methods of Use Thereof
US8275442B2 (en) 2008-09-25 2012-09-25 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
US8285390B2 (en) 2007-08-21 2012-10-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8298216B2 (en) 2007-11-14 2012-10-30 Myoscience, Inc. Pain management using cryogenic remodeling
US8337539B2 (en) 2006-02-22 2012-12-25 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US8401668B2 (en) 2007-04-19 2013-03-19 Miramar Labs, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US8406894B2 (en) 2007-12-12 2013-03-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US8469951B2 (en) 2011-08-01 2013-06-25 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US20130331914A1 (en) * 2012-06-11 2013-12-12 Martin Lee Thermal therapy system and method of use
WO2013191699A1 (en) * 2012-06-21 2013-12-27 Liliana Paez Cooling device for lipid-rich cell disruption
EP2687174A1 (en) * 2012-07-19 2014-01-22 Jose Antonio Sanchez Jaime Head end for device for cool therapy and method for applying locally a cool therapy with the use of the head end
US8688228B2 (en) 2007-04-19 2014-04-01 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US20140144170A1 (en) * 2012-11-29 2014-05-29 Luciano Faccin Charging device for cooling system
WO2014151850A2 (en) 2013-03-14 2014-09-25 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US9017318B2 (en) 2012-01-20 2015-04-28 Myoscience, Inc. Cryogenic probe system and method
US9066712B2 (en) 2008-12-22 2015-06-30 Myoscience, Inc. Integrated cryosurgical system with refrigerant and electrical power source
US9078634B2 (en) 2011-01-27 2015-07-14 Cryosa, Llc Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
WO2015117005A1 (en) * 2014-01-31 2015-08-06 The General Hospital Corporation Cooling device to disrupt function sebaceous glands
WO2015117001A1 (en) * 2014-01-31 2015-08-06 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US20150216718A1 (en) * 2012-08-03 2015-08-06 Board Of Regents, The University Of Texas System Devices, systems and methods for thermoelectric heating and cooling of mammalian tissue
US9149331B2 (en) 2007-04-19 2015-10-06 Miramar Labs, Inc. Methods and apparatus for reducing sweat production
US9155584B2 (en) 2012-01-13 2015-10-13 Myoscience, Inc. Cryogenic probe filtration system
US9241753B2 (en) 2012-01-13 2016-01-26 Myoscience, Inc. Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
US9241763B2 (en) 2007-04-19 2016-01-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US9254162B2 (en) 2006-12-21 2016-02-09 Myoscience, Inc. Dermal and transdermal cryogenic microprobe systems
US9295512B2 (en) 2013-03-15 2016-03-29 Myoscience, Inc. Methods and devices for pain management
US20160089550A1 (en) * 2014-09-25 2016-03-31 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for altering the appearance of skin
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US9314290B2 (en) 2012-01-13 2016-04-19 Myoscience, Inc. Cryogenic needle with freeze zone regulation
US20160175193A1 (en) * 2013-08-08 2016-06-23 Classys Inc. Device for curing obesity using cooling
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US9610112B2 (en) 2013-03-15 2017-04-04 Myoscience, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US20170105869A1 (en) * 2015-10-19 2017-04-20 Zeltiq Aesthestics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US9668800B2 (en) 2013-03-15 2017-06-06 Myoscience, Inc. Methods and systems for treatment of spasticity
US20170224529A1 (en) * 2014-10-15 2017-08-10 Braincool Ab Device and method for reducing the body core temperature of a patient for hypothermia treatment by cooling at least two body parts of the patient
US20170239079A1 (en) * 2016-02-18 2017-08-24 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US20170319378A1 (en) * 2002-03-15 2017-11-09 The General Hospital Corporation Treatment systems for removing heat from subcutaneous lipid-rich cells and treatment systems for affecting subcutaneous lipid-rich cells
US20170326346A1 (en) * 2016-05-10 2017-11-16 Zeltiq Aesthetics, Inc. Permeation enhancers and methods of cryotherapy
WO2017196548A1 (en) 2016-05-10 2017-11-16 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US20170326042A1 (en) * 2016-05-10 2017-11-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
WO2018060533A1 (en) * 2016-09-28 2018-04-05 High Technology Products, S.L. Device for protecting skin and tissues for aesthetic cold treatments
FR3061012A1 (en) * 2016-12-27 2018-06-29 Deleo PROCESS FOR REDUCING COLD SUBCUTANEOUS VOLUME USING ANTICELLULITE ACTIVE INGREDIENT
WO2018175111A1 (en) 2017-03-21 2018-09-27 Zeltiq Aesthetics, Inc. Use of saccharides for cryoprotection and related technology
US10130409B2 (en) 2013-11-05 2018-11-20 Myoscience, Inc. Secure cryosurgical treatment system
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
WO2019162539A1 (en) 2018-02-26 2019-08-29 High Technology Products, Sl Skin and tissue protection device for aesthetics treatments with cold temperatures
US10463429B2 (en) 2007-04-19 2019-11-05 Miradry, Inc. Methods, devices, and systems for non-invasive delivery of microwave therapy
US10471269B1 (en) 2015-07-01 2019-11-12 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10478633B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10500342B2 (en) 2017-08-21 2019-12-10 Miraki Innovation Think Tank Llc Cold slurry syringe
US10524956B2 (en) * 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US10555831B2 (en) * 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US10596386B2 (en) 2016-07-01 2020-03-24 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10624696B2 (en) 2007-04-19 2020-04-21 Miradry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US10632321B2 (en) 2016-07-01 2020-04-28 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695576B2 (en) 2015-07-01 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10709895B2 (en) 2016-05-10 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10709894B2 (en) 2015-07-01 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10729496B2 (en) 2017-11-21 2020-08-04 Cutera, Inc. Dermatological picosecond laser treatment systems and methods using optical parametric oscillator
US20200261137A1 (en) * 2014-05-12 2020-08-20 Gary Kalser Cryotherapy device with cryoprotection and methods for performing cryotherapy with cryoprotection
US10779885B2 (en) 2013-07-24 2020-09-22 Miradry. Inc. Apparatus and methods for the treatment of tissue using microwave energy
WO2020215011A1 (en) * 2019-04-18 2020-10-22 Abs Global, Inc. System and process for continuous addition of cryoprotectant
US10821295B1 (en) 2015-07-01 2020-11-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10888366B2 (en) 2013-03-15 2021-01-12 Pacira Cryotech, Inc. Cryogenic blunt dissection methods and devices
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US11000409B2 (en) 2016-11-02 2021-05-11 Miraki Innovation Think Tank Llc Devices and methods for slurry generation
WO2021105929A3 (en) * 2019-11-26 2021-07-08 Amir Katz Cryotherapy skin growth removal device
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11134998B2 (en) 2017-11-15 2021-10-05 Pacira Cryotech, Inc. Integrated cold therapy and electrical stimulation systems for locating and treating nerves and associated methods
US11140987B2 (en) * 2019-02-14 2021-10-12 Deer Solutions LLC Athletic chair with adjustable heating and height
US11185690B2 (en) 2016-05-23 2021-11-30 BTL Healthcare Technologies, a.s. Systems and methods for tissue treatment
US11187224B2 (en) 2013-07-16 2021-11-30 Abs Global, Inc. Microfluidic chip
US11193879B2 (en) 2010-11-16 2021-12-07 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
CN113827545A (en) * 2020-06-23 2021-12-24 微创医美科技(嘉兴)有限公司 Antifreeze injection preparation assisting in frozen fat dissolution, liquid guide device, kit and frozen fat dissolution system
US11243494B2 (en) 2002-07-31 2022-02-08 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US11247063B2 (en) 2019-04-11 2022-02-15 Btl Healthcare Technologies A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
WO2022036271A1 (en) 2020-08-14 2022-02-17 Zeltiq Aesthetics, Inc. Multi-applicator system and method for body contouring
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11253718B2 (en) 2015-07-01 2022-02-22 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US11311327B2 (en) 2016-05-13 2022-04-26 Pacira Cryotech, Inc. Methods and systems for locating and treating nerves with cold therapy
US11320361B2 (en) 2015-02-19 2022-05-03 1087 Systems, Inc. Scanning infrared measurement system
US11324673B2 (en) 2016-11-18 2022-05-10 Miraki Innovation Think Tank Llc Cosmetic appearance of skin
US11331670B2 (en) 2018-05-23 2022-05-17 Abs Global, Inc. Systems and methods for particle focusing in microchannels
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US11395760B2 (en) 2006-09-26 2022-07-26 Zeltiq Aesthetics, Inc. Tissue treatment methods
US11400308B2 (en) 2017-11-21 2022-08-02 Cutera, Inc. Dermatological picosecond laser treatment systems and methods using optical parametric oscillator
US11415503B2 (en) 2013-10-30 2022-08-16 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11439532B2 (en) 2017-04-05 2022-09-13 Miraki Innovation Think Tank Llc Point of delivery cold slurry generation
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
US11446178B2 (en) 2017-04-05 2022-09-20 Miraki Innovation Think Tank Llc Cold slurry containment
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11534335B2 (en) 2014-10-01 2022-12-27 Cryosa, Inc. Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US11559421B2 (en) 2015-06-25 2023-01-24 Hill-Rom Services, Inc. Protective dressing with reusable phase-change material cooling insert
US11583437B2 (en) 2018-02-06 2023-02-21 Aspen Surgical Products, Inc. Reusable warming blanket with phase change material
US11590020B2 (en) 2002-03-15 2023-02-28 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
US11628439B2 (en) 2020-01-13 2023-04-18 Abs Global, Inc. Single-sheath microfluidic chip
US11806528B2 (en) 2020-05-04 2023-11-07 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11819451B2 (en) 2020-07-10 2023-11-21 C° Change Surgical Llc Injectable slush feed supply
US11826565B2 (en) 2020-05-04 2023-11-28 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319141B (en) * 2011-08-23 2014-08-13 广州贝伽电子科技有限公司 Method for reducing human body fat and weight reducing instrument adopting method
CN104095702A (en) * 2013-04-15 2014-10-15 宁波博高国际贸易有限公司 Frozen fat eliminating device
WO2016044058A1 (en) 2014-09-15 2016-03-24 Sung Oh Cooling system for localized and non-invasive cooling treatment
KR200481035Y1 (en) * 2014-09-23 2016-08-04 박병권 Pad structure for protection from the frostbite
US10382961B2 (en) * 2014-12-05 2019-08-13 Ademco Inc. System and method of preventing unauthorized SIM card usage
KR101794270B1 (en) 2016-03-15 2017-11-08 주식회사 엔씨바이오 A cooling system for medical
TWI621396B (en) * 2016-09-30 2018-04-21 臺北榮民總醫院 Anti-frozen agent for protection of biological tissues during freezing treatment and process for its preparation
US20200046548A1 (en) * 2016-10-31 2020-02-13 Elmedix Bvba Whole-body hyperthermia system
CN108904036B (en) * 2018-07-17 2024-01-12 广州复大医疗有限公司 Skin frostbite prevention device, skin frostbite prevention bag and use method thereof
US10864380B1 (en) 2020-02-29 2020-12-15 Cutera, Inc. Systems and methods for controlling therapeutic laser pulse duration
US11253720B2 (en) 2020-02-29 2022-02-22 Cutera, Inc. Dermatological systems and methods with handpiece for coaxial pulse delivery and temperature sensing
CN111233142A (en) * 2020-03-03 2020-06-05 深圳市长隆科技有限公司 High-efficiency composite carbon source suitable for low-temperature conditions in northern winter and preparation method thereof
EP3906901A1 (en) 2020-05-04 2021-11-10 High Technology Products, SL Pads and systems for treatment of a subject
CN114052887A (en) * 2020-07-30 2022-02-18 上海微创惟美医疗科技(集团)有限公司 Frozen fat-dissolving treatment component, device and antifreezing agent
CN112220551B (en) * 2020-12-10 2021-04-16 微创医美科技(嘉兴)有限公司 Freezing fat-dissolving treatment assembly and device
CN113075371B (en) * 2021-03-22 2022-11-18 重庆医药高等专科学校 Medicine appearance that disintegrates

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US681806A (en) * 1901-05-25 1901-09-03 Armand Mignault Lung-protector.
US889810A (en) * 1908-01-04 1908-06-02 Henry Robinson Medicating and massaging appliance.
US3132688A (en) * 1963-04-08 1964-05-12 Welville B Nowak Electronic cold and/or hot compress device
US3502080A (en) * 1965-06-28 1970-03-24 Max L Hirschhorn Thermoelectrically cooled surgical instrument
US3786814A (en) * 1972-12-15 1974-01-22 T Armao Method of preventing cryoadhesion of cryosurgical instruments and cryosurgical instruments
US3942519A (en) * 1972-12-26 1976-03-09 Ultrasonic Systems, Inc. Method of ultrasonic cryogenic cataract removal
US3948269A (en) * 1973-08-31 1976-04-06 Dragerwerk Aktiengesellschaft Cryomedical device
US4140130A (en) * 1977-05-31 1979-02-20 Storm Iii Frederick K Electrode structure for radio frequency localized heating of tumor bearing tissue
US4202336A (en) * 1976-05-14 1980-05-13 Erbe Elektromedizin Kg Cauterizing probes for cryosurgery
US4266043A (en) * 1974-08-15 1981-05-05 Toyo Rubber Chemical Industrial Corporation Resilient hydrophobic foamed polymer
US4381009A (en) * 1980-01-28 1983-04-26 Bon F Del Hand-held device for the local heat-treatment of the skin
US4585002A (en) * 1985-04-22 1986-04-29 Igor Kissin Method and apparatus for treatment of pain by frequently alternating temperature stimulation
US4644955A (en) * 1982-12-27 1987-02-24 Rdm International, Inc. Circuit apparatus and method for electrothermal treatment of cancer eye
US4664110A (en) * 1985-03-18 1987-05-12 University Of Southern California Controlled rate freezing for cryorefractive surgery
US4718429A (en) * 1983-03-10 1988-01-12 Udo Smidt Method of reducing fatty deposits in the human body
US4741338A (en) * 1986-10-06 1988-05-03 Toshiaki Miyamae Thermoelectric physical remedy apparatus
US4802475A (en) * 1987-06-22 1989-02-07 Weshahy Ahmed H A G Methods and apparatus of applying intra-lesional cryotherapy
US4832022A (en) * 1986-05-26 1989-05-23 Tomsky Gosudarstvenny Universitet Im. Kuibysheva Cryogenic ultrasonic scalpel
US4906463A (en) * 1986-12-22 1990-03-06 Cygnus Research Corporation Transdermal drug-delivery composition
US4990144A (en) * 1986-08-20 1991-02-05 Smith And Nephew Associated Companies Plc Medicating impressed film wound dressing
US5007433A (en) * 1988-06-23 1991-04-16 Phywe Systeme Gmbh Stimulation device
US5084671A (en) * 1987-09-02 1992-01-28 Tokyo Electron Limited Electric probing-test machine having a cooling system
US5108390A (en) * 1988-11-14 1992-04-28 Frigitronics, Inc. Flexible cryoprobe
US5197466A (en) * 1983-01-21 1993-03-30 Med Institute Inc. Method and apparatus for volumetric interstitial conductive hyperthermia
US5207674A (en) * 1991-05-13 1993-05-04 Hamilton Archie C Electronic cryogenic surgical probe apparatus and method
US5277030A (en) * 1993-01-22 1994-01-11 Welch Allyn, Inc. Preconditioning stand for cooling probe
US5314423A (en) * 1992-11-03 1994-05-24 Seney John S Cold electrode pain alleviating tissue treatment assembly
US5497596A (en) * 1994-01-27 1996-03-12 E. I. Du Pont De Nemours And Company Method for reducing penetration of liquid through nonwoven film-fibril sheets pierced by fastening elements
US5505726A (en) * 1994-03-21 1996-04-09 Dusa Pharmaceuticals, Inc. Article of manufacture for the photodynamic therapy of dermal lesion
US5507790A (en) * 1994-03-21 1996-04-16 Weiss; William V. Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism
US5514170A (en) * 1994-08-25 1996-05-07 Mauch; Rose M. Cold pack device
US5514105A (en) * 1992-01-03 1996-05-07 The Procter & Gamble Company Resilient plastic web exhibiting reduced skin contact area and enhanced fluid transfer properties
US5603221A (en) * 1994-06-30 1997-02-18 State Of Israel, Ministry Of Defense, Rafael-Armaments Development Authority Multiprobe surgical cryogenic apparatus
US5628769A (en) * 1994-09-30 1997-05-13 Saringer Research, Inc. Method and devices for producing somatosensory stimulation using temperature
US5733280A (en) * 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US5741248A (en) * 1995-06-07 1998-04-21 Temple University-Of The Commonwealth System Of Higher Education Fluorochemical liquid augmented cryosurgery
US5746736A (en) * 1995-08-09 1998-05-05 Lumedics, Ltd. Cryogenic laser lithotripsy with enhanced light absorption
US5755663A (en) * 1994-08-19 1998-05-26 Novoste Corporation Apparatus for procedures related to the electrophysiology of the heart
US5755753A (en) * 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US5871524A (en) * 1995-05-05 1999-02-16 Thermage, Inc. Apparatus for controlled contraction of collagen tissue
US5871526A (en) * 1993-10-13 1999-02-16 Gibbs; Roselle Portable temperature control system
US5895418A (en) * 1994-09-30 1999-04-20 Saringer Research Inc. Device for producing cold therapy
US5901707A (en) * 1995-05-19 1999-05-11 Hpl Biomedical, Inc. Silicone mask for cryosurgery and method
US6017337A (en) * 1996-11-04 2000-01-25 Pira; Luc Cryoprobe based on a peltier module
US6023932A (en) * 1997-08-25 2000-02-15 Johnston; Robert Topical cooling device
US6032675A (en) * 1997-03-17 2000-03-07 Rubinsky; Boris Freezing method for controlled removal of fatty tissue by liposuction
US6039694A (en) * 1998-06-25 2000-03-21 Sonotech, Inc. Coupling sheath for ultrasound transducers
US6041787A (en) * 1997-03-17 2000-03-28 Rubinsky; Boris Use of cryoprotective agent compounds during cryosurgery
US6051159A (en) * 1995-12-19 2000-04-18 Hao; Jie Soft ice
US6350276B1 (en) * 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US6354297B1 (en) * 1998-04-16 2002-03-12 The Uniformed Services University Of The Health Sciences Method and device for destroying fat cells by induction of programmed cell death
US6377854B1 (en) * 1995-05-05 2002-04-23 Thermage, Inc. Method for controlled contraction of collagen in fibrous septae in subcutaneous fat layers
US20020058975A1 (en) * 1999-12-14 2002-05-16 Bieberich Mark Thomas High-efficiency cooling pads, mattresses, and sleeves
US20020062142A1 (en) * 1995-05-05 2002-05-23 Edward W. Knowlton Method and apparatus for tissue remodeling
US6519964B2 (en) * 2000-04-11 2003-02-18 Augustine Medical, Inc. Cooling devices with high-efficiency cooling features
US6523354B1 (en) * 2002-03-08 2003-02-25 Deborah Ann Tolbert Cooling blanket
US6527765B2 (en) * 2000-10-06 2003-03-04 Charles D. Kelman Cryogenic surgical system and method of use in removal of tissue
US6544248B1 (en) * 1996-08-08 2003-04-08 Starion Instruments Corporation Device for suction-assisted lipectomy and method of using same
US20030069618A1 (en) * 2001-04-26 2003-04-10 Smith Edward Dewey Method, kit and device for the treatment of cosmetic skin conditions
US6548297B1 (en) * 1994-11-09 2003-04-15 Celadon Science, Inc. Sheets of cultured epithelial cells used for wound repair and their cryopreservation
US6551349B2 (en) * 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US20030077329A1 (en) * 2001-10-19 2003-04-24 Kipp James E Composition of and method for preparing stable particles in a frozen aqueous matrix
US6569189B1 (en) * 1998-04-06 2003-05-27 Augustine Medical, Inc. Tissue treatment apparatus including a bandpass filter transparent to selected wavelengths of IR electromagnetic spectrum
US20030100936A1 (en) * 2001-11-29 2003-05-29 Gregory Altshuler Method and apparatus for controlling the temperature of a surface
US20040006328A1 (en) * 1999-01-04 2004-01-08 Anderson Richard Rox Targeting of sebaceous follicles as a treatment of sebaceous gland disorders
US20040009936A1 (en) * 1999-05-03 2004-01-15 Tang De-Chu C. Vaccine and drug delivery by topical application of vectors and vector extracts
US20040030332A1 (en) * 1996-01-05 2004-02-12 Knowlton Edward W. Handpiece with electrode and non-volatile memory
US20040039312A1 (en) * 2002-02-20 2004-02-26 Liposonix, Inc. Ultrasonic treatment and imaging of adipose tissue
US6699266B2 (en) * 2001-12-08 2004-03-02 Charles A. Lachenbruch Support surface with phase change material or heat tubes
US20040049178A1 (en) * 1999-01-25 2004-03-11 Marwan Abboud Cooling system
US20040073079A1 (en) * 2002-06-19 2004-04-15 Palomar Medical Technologies, Inc. Method and apparatus for treatment of cutaneous and subcutaneous conditions
US20040074629A1 (en) * 2002-10-18 2004-04-22 Noel Thomas P. Method and thermally active convection apparatus and method for abstracting heat with circulation intermediate three dimensional--parity heat transfer elements in bi-phase heat exchanging composition
US20040093042A1 (en) * 2002-06-19 2004-05-13 Palomar Medical Technologies, Inc. Method and apparatus for photothermal treatment of tissue at depth
US6840955B2 (en) * 2000-01-27 2005-01-11 Robert J. Ein Therapeutic apparatus
US20050049661A1 (en) * 2003-09-03 2005-03-03 Koffroth Shirley B. Ice belt to reduce body temperature
US6878144B2 (en) * 1996-12-02 2005-04-12 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US20060030778A1 (en) * 1997-08-19 2006-02-09 Mendlein John D Ultrasonic transmission films and devices for hygienic transducer surfaces
US20060036300A1 (en) * 2004-08-16 2006-02-16 Syneron Medical Ltd. Method for lypolisis
US7005558B1 (en) * 1996-05-02 2006-02-28 Sca Hygiene Products Ab Apertured covering sheet for an absorbent article and a method of producing the covering sheet
US7022121B2 (en) * 1999-03-09 2006-04-04 Thermage, Inc. Handpiece for treatment of tissue
US20060074313A1 (en) * 2004-10-06 2006-04-06 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US20060079852A1 (en) * 2002-12-31 2006-04-13 Bubb Stephen K Externally-applied patient interface system and method
US7037326B2 (en) * 2003-03-14 2006-05-02 Hee-Young Lee Skin cooling device using thermoelectric element
US20070010861A1 (en) * 2002-03-15 2007-01-11 Anderson Richard R Methods and devices for selective disruption of fatty tissue by controlled cooling
US20070032661A1 (en) * 2005-08-03 2007-02-08 Glenmark Pharmaceuticals Limited Process for the preparation of intermediates of perindopril
US7183360B2 (en) * 2001-10-05 2007-02-27 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
US7189252B2 (en) * 2003-03-25 2007-03-13 Krueger & Gothe Gmbh Warming/chilling apparatus
US7192426B2 (en) * 2001-05-31 2007-03-20 Endocare, Inc. Cryogenic system
US7204832B2 (en) * 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device
US7220778B2 (en) * 2003-04-15 2007-05-22 The General Hospital Corporation Methods and devices for epithelial protection during photodynamic therapy
US20080077202A1 (en) * 2006-09-26 2008-03-27 Juniper Medical, Inc. Tissue Treatment Methods
US20090118722A1 (en) * 2006-10-31 2009-05-07 Ebbers Edward A Method and apparatus for cooling subcutaneous lipid-rich cells or tissue
US20100081971A1 (en) * 2008-09-25 2010-04-01 Allison John W Treatment planning systems and methods for body contouring applications

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB578157A (en) 1942-12-21 1946-06-18 Johnson & Johnson Improvements in and relating to surgical dressings
US2516491A (en) * 1945-10-08 1950-07-25 Henry A Swastek Massage and shampoo device
US4002221A (en) * 1972-09-19 1977-01-11 Gilbert Buchalter Method of transmitting ultrasonic impulses to surface using transducer coupling agent
GB2190842B (en) * 1986-05-05 1990-03-07 Oreal Apparatus for the cryogenic treatment of the skin
US4764463A (en) * 1986-10-30 1988-08-16 The University Of Tennessee Research Corporation Platelet cyropreservation
US5336616A (en) * 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
AU1464792A (en) * 1991-03-01 1992-10-06 Dow Chemical Company, The Mesogenic glycidyl amines
US20010031459A1 (en) * 1991-07-08 2001-10-18 The American National Red Cross Method of preparing tissues for vitrification
AU3286299A (en) * 1999-01-29 2000-08-18 Gerard Hassler Lowering skin temperature
EP1263285A2 (en) * 2000-03-14 2002-12-11 Alnis Biosciences, Inc. Cryoprotective system
US6430956B1 (en) * 2001-05-15 2002-08-13 Cimex Biotech Lc Hand-held, heat sink cryoprobe, system for heat extraction thereof, and method therefore
JP2003190201A (en) 2001-12-26 2003-07-08 Lion Corp Body cooler and body warmer
US8840608B2 (en) * 2002-03-15 2014-09-23 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
CN2617189Y (en) 2003-03-22 2004-05-26 仇刚强 Antifreezing hand protector
KR20040094508A (en) * 2003-05-02 2004-11-10 김창선 Apparatus for Skin Treatment Using Ultra-sonic And Cold-Hot
WO2005082301A1 (en) 2004-02-23 2005-09-09 Aqueduct Medical, Inc. Temperature-controllable device
US7713266B2 (en) * 2005-05-20 2010-05-11 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US681806A (en) * 1901-05-25 1901-09-03 Armand Mignault Lung-protector.
US889810A (en) * 1908-01-04 1908-06-02 Henry Robinson Medicating and massaging appliance.
US3132688A (en) * 1963-04-08 1964-05-12 Welville B Nowak Electronic cold and/or hot compress device
US3502080A (en) * 1965-06-28 1970-03-24 Max L Hirschhorn Thermoelectrically cooled surgical instrument
US3786814A (en) * 1972-12-15 1974-01-22 T Armao Method of preventing cryoadhesion of cryosurgical instruments and cryosurgical instruments
US3942519A (en) * 1972-12-26 1976-03-09 Ultrasonic Systems, Inc. Method of ultrasonic cryogenic cataract removal
US3948269A (en) * 1973-08-31 1976-04-06 Dragerwerk Aktiengesellschaft Cryomedical device
US4266043A (en) * 1974-08-15 1981-05-05 Toyo Rubber Chemical Industrial Corporation Resilient hydrophobic foamed polymer
US4202336A (en) * 1976-05-14 1980-05-13 Erbe Elektromedizin Kg Cauterizing probes for cryosurgery
US4140130A (en) * 1977-05-31 1979-02-20 Storm Iii Frederick K Electrode structure for radio frequency localized heating of tumor bearing tissue
US4381009A (en) * 1980-01-28 1983-04-26 Bon F Del Hand-held device for the local heat-treatment of the skin
US4644955A (en) * 1982-12-27 1987-02-24 Rdm International, Inc. Circuit apparatus and method for electrothermal treatment of cancer eye
US5197466A (en) * 1983-01-21 1993-03-30 Med Institute Inc. Method and apparatus for volumetric interstitial conductive hyperthermia
US4718429A (en) * 1983-03-10 1988-01-12 Udo Smidt Method of reducing fatty deposits in the human body
US4664110A (en) * 1985-03-18 1987-05-12 University Of Southern California Controlled rate freezing for cryorefractive surgery
US4585002A (en) * 1985-04-22 1986-04-29 Igor Kissin Method and apparatus for treatment of pain by frequently alternating temperature stimulation
US4832022A (en) * 1986-05-26 1989-05-23 Tomsky Gosudarstvenny Universitet Im. Kuibysheva Cryogenic ultrasonic scalpel
US4990144A (en) * 1986-08-20 1991-02-05 Smith And Nephew Associated Companies Plc Medicating impressed film wound dressing
US4741338A (en) * 1986-10-06 1988-05-03 Toshiaki Miyamae Thermoelectric physical remedy apparatus
US4906463A (en) * 1986-12-22 1990-03-06 Cygnus Research Corporation Transdermal drug-delivery composition
US4802475A (en) * 1987-06-22 1989-02-07 Weshahy Ahmed H A G Methods and apparatus of applying intra-lesional cryotherapy
US5084671A (en) * 1987-09-02 1992-01-28 Tokyo Electron Limited Electric probing-test machine having a cooling system
US5007433A (en) * 1988-06-23 1991-04-16 Phywe Systeme Gmbh Stimulation device
US5108390A (en) * 1988-11-14 1992-04-28 Frigitronics, Inc. Flexible cryoprobe
US5207674A (en) * 1991-05-13 1993-05-04 Hamilton Archie C Electronic cryogenic surgical probe apparatus and method
US5514105A (en) * 1992-01-03 1996-05-07 The Procter & Gamble Company Resilient plastic web exhibiting reduced skin contact area and enhanced fluid transfer properties
US5314423A (en) * 1992-11-03 1994-05-24 Seney John S Cold electrode pain alleviating tissue treatment assembly
US5277030A (en) * 1993-01-22 1994-01-11 Welch Allyn, Inc. Preconditioning stand for cooling probe
US5871526A (en) * 1993-10-13 1999-02-16 Gibbs; Roselle Portable temperature control system
US5497596A (en) * 1994-01-27 1996-03-12 E. I. Du Pont De Nemours And Company Method for reducing penetration of liquid through nonwoven film-fibril sheets pierced by fastening elements
US5505726A (en) * 1994-03-21 1996-04-09 Dusa Pharmaceuticals, Inc. Article of manufacture for the photodynamic therapy of dermal lesion
US5507790A (en) * 1994-03-21 1996-04-16 Weiss; William V. Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism
US5603221A (en) * 1994-06-30 1997-02-18 State Of Israel, Ministry Of Defense, Rafael-Armaments Development Authority Multiprobe surgical cryogenic apparatus
US5755663A (en) * 1994-08-19 1998-05-26 Novoste Corporation Apparatus for procedures related to the electrophysiology of the heart
US5514170A (en) * 1994-08-25 1996-05-07 Mauch; Rose M. Cold pack device
US5895418A (en) * 1994-09-30 1999-04-20 Saringer Research Inc. Device for producing cold therapy
US5628769A (en) * 1994-09-30 1997-05-13 Saringer Research, Inc. Method and devices for producing somatosensory stimulation using temperature
US6548297B1 (en) * 1994-11-09 2003-04-15 Celadon Science, Inc. Sheets of cultured epithelial cells used for wound repair and their cryopreservation
US6381497B1 (en) * 1995-05-05 2002-04-30 Thermage, Inc. Method for smoothing contour irregularity of skin surface by controlled contraction of collagen tissue
US5871524A (en) * 1995-05-05 1999-02-16 Thermage, Inc. Apparatus for controlled contraction of collagen tissue
US5755753A (en) * 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US20020062142A1 (en) * 1995-05-05 2002-05-23 Edward W. Knowlton Method and apparatus for tissue remodeling
US6387380B1 (en) * 1995-05-05 2002-05-14 Thermage, Inc. Apparatus for controlled contraction of collagen tissue
US6381498B1 (en) * 1995-05-05 2002-04-30 Thermage, Inc. Method and apparatus for controlled contraction of collagen tissue
US6377854B1 (en) * 1995-05-05 2002-04-23 Thermage, Inc. Method for controlled contraction of collagen in fibrous septae in subcutaneous fat layers
US6377855B1 (en) * 1995-05-05 2002-04-23 Thermage, Inc. Method and apparatus for controlled contraction of collagen tissue
US5901707A (en) * 1995-05-19 1999-05-11 Hpl Biomedical, Inc. Silicone mask for cryosurgery and method
US5741248A (en) * 1995-06-07 1998-04-21 Temple University-Of The Commonwealth System Of Higher Education Fluorochemical liquid augmented cryosurgery
US5746736A (en) * 1995-08-09 1998-05-05 Lumedics, Ltd. Cryogenic laser lithotripsy with enhanced light absorption
US5733280A (en) * 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US6051159A (en) * 1995-12-19 2000-04-18 Hao; Jie Soft ice
US6350276B1 (en) * 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US20020049483A1 (en) * 1996-01-05 2002-04-25 Knowlton Edward W. Fluid delivery apparatus
US20040030332A1 (en) * 1996-01-05 2004-02-12 Knowlton Edward W. Handpiece with electrode and non-volatile memory
US7005558B1 (en) * 1996-05-02 2006-02-28 Sca Hygiene Products Ab Apertured covering sheet for an absorbent article and a method of producing the covering sheet
US6544248B1 (en) * 1996-08-08 2003-04-08 Starion Instruments Corporation Device for suction-assisted lipectomy and method of using same
US6017337A (en) * 1996-11-04 2000-01-25 Pira; Luc Cryoprobe based on a peltier module
US7204832B2 (en) * 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device
US6878144B2 (en) * 1996-12-02 2005-04-12 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US6032675A (en) * 1997-03-17 2000-03-07 Rubinsky; Boris Freezing method for controlled removal of fatty tissue by liposuction
US6041787A (en) * 1997-03-17 2000-03-28 Rubinsky; Boris Use of cryoprotective agent compounds during cryosurgery
US20060030778A1 (en) * 1997-08-19 2006-02-09 Mendlein John D Ultrasonic transmission films and devices for hygienic transducer surfaces
US6023932A (en) * 1997-08-25 2000-02-15 Johnston; Robert Topical cooling device
US6551349B2 (en) * 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US6569189B1 (en) * 1998-04-06 2003-05-27 Augustine Medical, Inc. Tissue treatment apparatus including a bandpass filter transparent to selected wavelengths of IR electromagnetic spectrum
US6354297B1 (en) * 1998-04-16 2002-03-12 The Uniformed Services University Of The Health Sciences Method and device for destroying fat cells by induction of programmed cell death
US6039694A (en) * 1998-06-25 2000-03-21 Sonotech, Inc. Coupling sheath for ultrasound transducers
US20040006328A1 (en) * 1999-01-04 2004-01-08 Anderson Richard Rox Targeting of sebaceous follicles as a treatment of sebaceous gland disorders
US20040049178A1 (en) * 1999-01-25 2004-03-11 Marwan Abboud Cooling system
US7022121B2 (en) * 1999-03-09 2006-04-04 Thermage, Inc. Handpiece for treatment of tissue
US20040009936A1 (en) * 1999-05-03 2004-01-15 Tang De-Chu C. Vaccine and drug delivery by topical application of vectors and vector extracts
US20020058975A1 (en) * 1999-12-14 2002-05-16 Bieberich Mark Thomas High-efficiency cooling pads, mattresses, and sleeves
US6840955B2 (en) * 2000-01-27 2005-01-11 Robert J. Ein Therapeutic apparatus
US6718785B2 (en) * 2000-04-11 2004-04-13 Arizant Healthcare Inc. Cooling devices with high-efficiency cooling features
US20030079488A1 (en) * 2000-04-11 2003-05-01 Bieberich Mark Thomas Cooling devices with high-efficiency cooling features
US6519964B2 (en) * 2000-04-11 2003-02-18 Augustine Medical, Inc. Cooling devices with high-efficiency cooling features
US6527765B2 (en) * 2000-10-06 2003-03-04 Charles D. Kelman Cryogenic surgical system and method of use in removal of tissue
US20030069618A1 (en) * 2001-04-26 2003-04-10 Smith Edward Dewey Method, kit and device for the treatment of cosmetic skin conditions
US7192426B2 (en) * 2001-05-31 2007-03-20 Endocare, Inc. Cryogenic system
US7183360B2 (en) * 2001-10-05 2007-02-27 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
US20030077329A1 (en) * 2001-10-19 2003-04-24 Kipp James E Composition of and method for preparing stable particles in a frozen aqueous matrix
US20030100936A1 (en) * 2001-11-29 2003-05-29 Gregory Altshuler Method and apparatus for controlling the temperature of a surface
US6699266B2 (en) * 2001-12-08 2004-03-02 Charles A. Lachenbruch Support surface with phase change material or heat tubes
US20040039312A1 (en) * 2002-02-20 2004-02-26 Liposonix, Inc. Ultrasonic treatment and imaging of adipose tissue
US6523354B1 (en) * 2002-03-08 2003-02-25 Deborah Ann Tolbert Cooling blanket
US20070010861A1 (en) * 2002-03-15 2007-01-11 Anderson Richard R Methods and devices for selective disruption of fatty tissue by controlled cooling
US20040093042A1 (en) * 2002-06-19 2004-05-13 Palomar Medical Technologies, Inc. Method and apparatus for photothermal treatment of tissue at depth
US20040073079A1 (en) * 2002-06-19 2004-04-15 Palomar Medical Technologies, Inc. Method and apparatus for treatment of cutaneous and subcutaneous conditions
US20040074629A1 (en) * 2002-10-18 2004-04-22 Noel Thomas P. Method and thermally active convection apparatus and method for abstracting heat with circulation intermediate three dimensional--parity heat transfer elements in bi-phase heat exchanging composition
US20060079852A1 (en) * 2002-12-31 2006-04-13 Bubb Stephen K Externally-applied patient interface system and method
US7037326B2 (en) * 2003-03-14 2006-05-02 Hee-Young Lee Skin cooling device using thermoelectric element
US7189252B2 (en) * 2003-03-25 2007-03-13 Krueger & Gothe Gmbh Warming/chilling apparatus
US7220778B2 (en) * 2003-04-15 2007-05-22 The General Hospital Corporation Methods and devices for epithelial protection during photodynamic therapy
US20050049661A1 (en) * 2003-09-03 2005-03-03 Koffroth Shirley B. Ice belt to reduce body temperature
US20060036300A1 (en) * 2004-08-16 2006-02-16 Syneron Medical Ltd. Method for lypolisis
US20060074313A1 (en) * 2004-10-06 2006-04-06 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US20070032661A1 (en) * 2005-08-03 2007-02-08 Glenmark Pharmaceuticals Limited Process for the preparation of intermediates of perindopril
US20080077202A1 (en) * 2006-09-26 2008-03-27 Juniper Medical, Inc. Tissue Treatment Methods
US20090118722A1 (en) * 2006-10-31 2009-05-07 Ebbers Edward A Method and apparatus for cooling subcutaneous lipid-rich cells or tissue
US20100081971A1 (en) * 2008-09-25 2010-04-01 Allison John W Treatment planning systems and methods for body contouring applications

Cited By (262)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853600B2 (en) 1997-07-31 2014-10-07 Miramar Labs, Inc. Method and apparatus for treating subcutaneous histological features
US8073550B1 (en) 1997-07-31 2011-12-06 Miramar Labs, Inc. Method and apparatus for treating subcutaneous histological features
US20190000663A1 (en) * 2002-03-15 2019-01-03 The General Hospital Corporation Treatment systems for removing heat from subcutaneous lipid-rich cells
US11590020B2 (en) 2002-03-15 2023-02-28 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
US20170319378A1 (en) * 2002-03-15 2017-11-09 The General Hospital Corporation Treatment systems for removing heat from subcutaneous lipid-rich cells and treatment systems for affecting subcutaneous lipid-rich cells
US11243494B2 (en) 2002-07-31 2022-02-08 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US11415936B2 (en) 2002-07-31 2022-08-16 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US11422504B2 (en) 2002-07-31 2022-08-23 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US20070129714A1 (en) * 2005-05-20 2007-06-07 Echo Healthcare Llc Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (FAT)
US9345526B2 (en) 2005-05-20 2016-05-24 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7850683B2 (en) 2005-05-20 2010-12-14 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7862558B2 (en) 2005-05-20 2011-01-04 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7713266B2 (en) 2005-05-20 2010-05-11 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US10363080B2 (en) 2005-05-20 2019-07-30 Pacira Cryotech, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US11350979B2 (en) 2005-05-20 2022-06-07 Pacira Cryotech, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7998137B2 (en) 2005-05-20 2011-08-16 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US9072498B2 (en) 2005-05-20 2015-07-07 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US8337539B2 (en) 2006-02-22 2012-12-25 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US10292859B2 (en) 2006-09-26 2019-05-21 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9132031B2 (en) * 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11219549B2 (en) 2006-09-26 2022-01-11 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US20080077211A1 (en) * 2006-09-26 2008-03-27 Juniper Medical, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11395760B2 (en) 2006-09-26 2022-07-26 Zeltiq Aesthetics, Inc. Tissue treatment methods
US9375345B2 (en) 2006-09-26 2016-06-28 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11179269B2 (en) 2006-09-26 2021-11-23 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US10939947B2 (en) 2006-12-21 2021-03-09 Pacira Cryotech, Inc. Dermal and transdermal cryogenic microprobe systems
US9254162B2 (en) 2006-12-21 2016-02-09 Myoscience, Inc. Dermal and transdermal cryogenic microprobe systems
US8409185B2 (en) 2007-02-16 2013-04-02 Myoscience, Inc. Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling
US9113855B2 (en) 2007-02-16 2015-08-25 Myoscience, Inc. Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling
US20080200910A1 (en) * 2007-02-16 2008-08-21 Myoscience, Inc. Replaceable and/or Easily Removable Needle Systems for Dermal and Transdermal Cryogenic Remodeling
US10624696B2 (en) 2007-04-19 2020-04-21 Miradry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US9241763B2 (en) 2007-04-19 2016-01-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US10166072B2 (en) 2007-04-19 2019-01-01 Miradry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US10779887B2 (en) 2007-04-19 2020-09-22 Miradry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US8401668B2 (en) 2007-04-19 2013-03-19 Miramar Labs, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US8688228B2 (en) 2007-04-19 2014-04-01 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US11419678B2 (en) 2007-04-19 2022-08-23 Miradry, Inc. Methods, devices, and systems for non-invasive delivery of microwave therapy
US10463429B2 (en) 2007-04-19 2019-11-05 Miradry, Inc. Methods, devices, and systems for non-invasive delivery of microwave therapy
US9149331B2 (en) 2007-04-19 2015-10-06 Miramar Labs, Inc. Methods and apparatus for reducing sweat production
US9427285B2 (en) 2007-04-19 2016-08-30 Miramar Labs, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US11291606B2 (en) 2007-05-18 2022-04-05 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US9655770B2 (en) 2007-07-13 2017-05-23 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US10675178B2 (en) 2007-08-21 2020-06-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
EP2182898B1 (en) 2007-08-21 2018-10-03 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8285390B2 (en) 2007-08-21 2012-10-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
EP3488833A1 (en) 2007-08-21 2019-05-29 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9408745B2 (en) 2007-08-21 2016-08-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US11583438B1 (en) 2007-08-21 2023-02-21 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9101346B2 (en) 2007-11-14 2015-08-11 Myoscience, Inc. Pain management using cryogenic remodeling
US8715275B2 (en) 2007-11-14 2014-05-06 Myoscience, Inc. Pain management using cryogenic remodeling
US11672694B2 (en) 2007-11-14 2023-06-13 Pacira Cryotech, Inc. Pain management using cryogenic remodeling
US9907693B2 (en) 2007-11-14 2018-03-06 Myoscience, Inc. Pain management using cryogenic remodeling
US8298216B2 (en) 2007-11-14 2012-10-30 Myoscience, Inc. Pain management using cryogenic remodeling
US10864112B2 (en) 2007-11-14 2020-12-15 Pacira Cryotech, Inc. Pain management using cryogenic remodeling
US10869779B2 (en) 2007-11-14 2020-12-22 Pacira Cryotech, Inc. Pain management using cryogenic remodeling
US8406894B2 (en) 2007-12-12 2013-03-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US8825176B2 (en) 2007-12-12 2014-09-02 Miramar Labs, Inc. Apparatus for the noninvasive treatment of tissue using microwave energy
US8275442B2 (en) 2008-09-25 2012-09-25 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
US9737434B2 (en) 2008-12-17 2017-08-22 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US9066712B2 (en) 2008-12-22 2015-06-30 Myoscience, Inc. Integrated cryosurgical system with refrigerant and electrical power source
US11452634B2 (en) * 2009-04-30 2022-09-27 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US20140257443A1 (en) * 2009-04-30 2014-09-11 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
WO2010127315A3 (en) * 2009-04-30 2011-04-21 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
EP2424475A4 (en) * 2009-04-30 2012-10-03 Zeltiq Aesthetics Inc Device, system and method of removing heat from subcutaneous lipid-rich cells
US9861520B2 (en) * 2009-04-30 2018-01-09 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US11224536B2 (en) 2009-04-30 2022-01-18 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
EP2769703A2 (en) 2009-04-30 2014-08-27 Zeltiq Aesthetics, Inc. Device and system for removing heat from subcutaneous lipid-rich cells
EP2769703A3 (en) * 2009-04-30 2014-09-24 Zeltiq Aesthetics, Inc. Device and system for removing heat from subcutaneous lipid-rich cells
US20230122866A1 (en) * 2009-04-30 2023-04-20 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US8702774B2 (en) 2009-04-30 2014-04-22 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
EP2424475A2 (en) * 2009-04-30 2012-03-07 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
AU2010242785B2 (en) * 2009-04-30 2014-03-06 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
KR20130139382A (en) 2009-04-30 2013-12-20 젤티크 애스세틱스, 인코포레이티드. Device, system and method of removing heat from subcutaneous lipid-rich cells
EP4066797A1 (en) 2009-04-30 2022-10-05 Zeltiq Aesthetics, Inc. Device for removing heat from subcutaneous lipid-rich cells
JP2016165543A (en) * 2009-04-30 2016-09-15 ゼルティック エステティックス インコーポレイテッド Device, system and method for removing heat from subcutaneous lipid-rich cells
US20110300079A1 (en) * 2010-01-21 2011-12-08 Zeltiq Aesthetics, Inc. Compositions for use with a system for improved cooling of subcutaneous lipid-rich tissue
WO2011091293A1 (en) * 2010-01-21 2011-07-28 Zeltiq Aesthetics, Inc. Compositions for use with a system for improved cooling of subcutaneous lipid-rich tissue
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US9844461B2 (en) 2010-01-25 2017-12-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants
US20110190856A1 (en) * 2010-02-04 2011-08-04 FreezeAwayFat LLC Garment and Method for Treating Fatty Deposits on a Human Body
US10092346B2 (en) 2010-07-20 2018-10-09 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US8676338B2 (en) * 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US20120022518A1 (en) * 2010-07-20 2012-01-26 Zeltiq Aesthetics, Inc. Combined modality treatement systems, methods and apparatus for body contouring applications
US11193879B2 (en) 2010-11-16 2021-12-07 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
WO2012103242A1 (en) 2011-01-25 2012-08-02 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US20120239123A1 (en) * 2011-01-25 2012-09-20 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US10722395B2 (en) * 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US9439805B2 (en) 2011-01-27 2016-09-13 Cryosa, Llc Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US9078634B2 (en) 2011-01-27 2015-07-14 Cryosa, Llc Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US10111774B2 (en) 2011-01-27 2018-10-30 Cryosa, Inc. Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US11419757B2 (en) 2011-01-27 2022-08-23 Cryosa, Inc. Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US20120221083A1 (en) * 2011-02-27 2012-08-30 Meliza Cruzada Treatment System by Heat Extraction and Methods of Use Thereof
US8469951B2 (en) 2011-08-01 2013-06-25 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US9314301B2 (en) 2011-08-01 2016-04-19 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US11123136B2 (en) 2011-08-01 2021-09-21 Miradry, Inc. Applicator and tissue interface module for dermatological device
US10321954B2 (en) 2011-08-01 2019-06-18 Miradry, Inc. Applicator and tissue interface module for dermatological device
US8535302B2 (en) 2011-08-01 2013-09-17 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US9028477B2 (en) 2011-08-01 2015-05-12 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US9155584B2 (en) 2012-01-13 2015-10-13 Myoscience, Inc. Cryogenic probe filtration system
US9314290B2 (en) 2012-01-13 2016-04-19 Myoscience, Inc. Cryogenic needle with freeze zone regulation
US10188444B2 (en) 2012-01-13 2019-01-29 Myoscience, Inc. Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
US11857239B2 (en) 2012-01-13 2024-01-02 Pacira Cryotech, Inc. Cryogenic needle with freeze zone regulation
US9241753B2 (en) 2012-01-13 2016-01-26 Myoscience, Inc. Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
US10213244B2 (en) 2012-01-13 2019-02-26 Myoscience, Inc. Cryogenic needle with freeze zone regulation
US9017318B2 (en) 2012-01-20 2015-04-28 Myoscience, Inc. Cryogenic probe system and method
US11382789B2 (en) 2012-06-11 2022-07-12 Rhmd Pty. Ltd. Thermal therapy system and method of use
US20130331914A1 (en) * 2012-06-11 2013-12-12 Martin Lee Thermal therapy system and method of use
WO2013191699A1 (en) * 2012-06-21 2013-12-27 Liliana Paez Cooling device for lipid-rich cell disruption
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
EP2687174A1 (en) * 2012-07-19 2014-01-22 Jose Antonio Sanchez Jaime Head end for device for cool therapy and method for applying locally a cool therapy with the use of the head end
US20150216718A1 (en) * 2012-08-03 2015-08-06 Board Of Regents, The University Of Texas System Devices, systems and methods for thermoelectric heating and cooling of mammalian tissue
US9052129B2 (en) * 2012-11-29 2015-06-09 Luciano Faccin Charging device for cooling system
US20140144170A1 (en) * 2012-11-29 2014-05-29 Luciano Faccin Charging device for cooling system
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
WO2014151850A2 (en) 2013-03-14 2014-09-25 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US10085789B2 (en) 2013-03-15 2018-10-02 Myoscience, Inc. Methods and systems for treatment of occipital neuralgia
US9295512B2 (en) 2013-03-15 2016-03-29 Myoscience, Inc. Methods and devices for pain management
US10314739B2 (en) 2013-03-15 2019-06-11 Myoscience, Inc. Methods and devices for pain management
US10085881B2 (en) 2013-03-15 2018-10-02 Myoscience, Inc. Methods, systems, and devices for treating neuromas, fibromas, nerve entrapment, and/or pain associated therewith
US10596030B2 (en) 2013-03-15 2020-03-24 Pacira Cryotech, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US11253393B2 (en) 2013-03-15 2022-02-22 Pacira Cryotech, Inc. Methods, systems, and devices for treating neuromas, fibromas, nerve entrapment, and/or pain associated therewith
US11134999B2 (en) 2013-03-15 2021-10-05 Pacira Cryotech, Inc. Methods and systems for treatment of occipital neuralgia
US9610112B2 (en) 2013-03-15 2017-04-04 Myoscience, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US10888366B2 (en) 2013-03-15 2021-01-12 Pacira Cryotech, Inc. Cryogenic blunt dissection methods and devices
US9668800B2 (en) 2013-03-15 2017-06-06 Myoscience, Inc. Methods and systems for treatment of spasticity
US10016229B2 (en) 2013-03-15 2018-07-10 Myoscience, Inc. Methods and systems for treatment of occipital neuralgia
US11865038B2 (en) 2013-03-15 2024-01-09 Pacira Cryotech, Inc. Methods, systems, and devices for treating nerve spasticity
US11642241B2 (en) 2013-03-15 2023-05-09 Pacira Cryotech, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US11187224B2 (en) 2013-07-16 2021-11-30 Abs Global, Inc. Microfluidic chip
US11512691B2 (en) 2013-07-16 2022-11-29 Abs Global, Inc. Microfluidic chip
US10779885B2 (en) 2013-07-24 2020-09-22 Miradry. Inc. Apparatus and methods for the treatment of tissue using microwave energy
US10292903B2 (en) * 2013-08-08 2019-05-21 Classys Inc. Device for curing obesity using cooling
EP3031418A4 (en) * 2013-08-08 2016-09-28 Classys Inc Device for curing obesity using cooling
US20160175193A1 (en) * 2013-08-08 2016-06-23 Classys Inc. Device for curing obesity using cooling
US11796449B2 (en) 2013-10-30 2023-10-24 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11639888B2 (en) 2013-10-30 2023-05-02 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11415503B2 (en) 2013-10-30 2022-08-16 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11690661B2 (en) 2013-11-05 2023-07-04 Pacira Cryotech, Inc. Secure cryosurgical treatment system
US10130409B2 (en) 2013-11-05 2018-11-20 Myoscience, Inc. Secure cryosurgical treatment system
US10864033B2 (en) 2013-11-05 2020-12-15 Pacira Cryotech, Inc. Secure cryosurgical treatment system
WO2015117036A2 (en) 2014-01-30 2015-08-06 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing for other treatments
US10806500B2 (en) 2014-01-31 2020-10-20 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US10912599B2 (en) * 2014-01-31 2021-02-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10201380B2 (en) 2014-01-31 2019-02-12 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
EP4279041A2 (en) 2014-01-31 2023-11-22 Zeltiq Aesthetics, Inc. Compositions and treatment systems for improved cooling of lipid-rich tissue
US10575890B2 (en) 2014-01-31 2020-03-03 Zeltiq Aesthetics, Inc. Treatment systems and methods for affecting glands and other targeted structures
WO2015117001A1 (en) * 2014-01-31 2015-08-06 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US11819257B2 (en) * 2014-01-31 2023-11-21 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US20170165105A1 (en) * 2014-01-31 2017-06-15 The General Hospital Corporation Methods, kits, and cooling devices for disrupting function of one or more sebaceous glands
US20150216816A1 (en) * 2014-01-31 2015-08-06 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
WO2015117005A1 (en) * 2014-01-31 2015-08-06 The General Hospital Corporation Cooling device to disrupt function sebaceous glands
US20150216719A1 (en) * 2014-01-31 2015-08-06 Zeltiq Aesthetics, Inc Treatment systems and methods for treating cellulite and for providing other treatments
EP4279041A3 (en) * 2014-01-31 2024-01-24 Zeltiq Aesthetics, Inc. Compositions and treatment systems for improved cooling of lipid-rich tissue
US20210282829A1 (en) * 2014-01-31 2021-09-16 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
WO2015117032A1 (en) 2014-01-31 2015-08-06 Zeltiq Aesthestic, Inc. Treatment systems for treating glands by cooling
US20220387091A1 (en) * 2014-01-31 2022-12-08 Zeltiq Aesthetics, Inc. Treatment systems and methods for treating cellulite and for providing other treatments
US9861421B2 (en) * 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US20200261137A1 (en) * 2014-05-12 2020-08-20 Gary Kalser Cryotherapy device with cryoprotection and methods for performing cryotherapy with cryoprotection
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
EP4324441A2 (en) 2014-08-19 2024-02-21 Zeltiq Aesthetics, Inc. Treatment systems and small volume applicators for treating tissue
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
WO2016048721A1 (en) 2014-09-25 2016-03-31 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for altering the appearance of skin
US20160089550A1 (en) * 2014-09-25 2016-03-31 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for altering the appearance of skin
US11534335B2 (en) 2014-10-01 2022-12-27 Cryosa, Inc. Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US20170224529A1 (en) * 2014-10-15 2017-08-10 Braincool Ab Device and method for reducing the body core temperature of a patient for hypothermia treatment by cooling at least two body parts of the patient
US10959877B2 (en) * 2014-10-15 2021-03-30 Braincool Ab Device and method for reducing the body core temperature of a patient for hypothermia treatment by cooling at least two body parts of the patient
US11674882B2 (en) 2015-02-19 2023-06-13 1087 Systems, Inc. Scanning infrared measurement system
US11320361B2 (en) 2015-02-19 2022-05-03 1087 Systems, Inc. Scanning infrared measurement system
US11559421B2 (en) 2015-06-25 2023-01-24 Hill-Rom Services, Inc. Protective dressing with reusable phase-change material cooling insert
US10709894B2 (en) 2015-07-01 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US10471269B1 (en) 2015-07-01 2019-11-12 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10478633B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695576B2 (en) 2015-07-01 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10821295B1 (en) 2015-07-01 2020-11-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11253718B2 (en) 2015-07-01 2022-02-22 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US20170105869A1 (en) * 2015-10-19 2017-04-20 Zeltiq Aesthestics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
WO2017070112A1 (en) 2015-10-19 2017-04-27 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US11154418B2 (en) * 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US10524956B2 (en) * 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US20170239079A1 (en) * 2016-02-18 2017-08-24 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US10765552B2 (en) * 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US11602629B2 (en) 2016-05-03 2023-03-14 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including rf and electrical energy
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11883643B2 (en) 2016-05-03 2024-01-30 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including RF and electrical energy
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US10555831B2 (en) * 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US20170326346A1 (en) * 2016-05-10 2017-11-16 Zeltiq Aesthetics, Inc. Permeation enhancers and methods of cryotherapy
WO2017196548A1 (en) 2016-05-10 2017-11-16 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US20170326042A1 (en) * 2016-05-10 2017-11-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US11691024B2 (en) 2016-05-10 2023-07-04 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
CN109310516A (en) * 2016-05-10 2019-02-05 斯尔替克美学股份有限公司 For handling the skin freezing system of acne and skin
US10682297B2 (en) * 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10709895B2 (en) 2016-05-10 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11590356B2 (en) 2016-05-10 2023-02-28 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US20230021151A1 (en) * 2016-05-10 2023-01-19 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US11311327B2 (en) 2016-05-13 2022-04-26 Pacira Cryotech, Inc. Methods and systems for locating and treating nerves with cold therapy
US11185690B2 (en) 2016-05-23 2021-11-30 BTL Healthcare Technologies, a.s. Systems and methods for tissue treatment
US11878162B2 (en) 2016-05-23 2024-01-23 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11623083B2 (en) 2016-05-23 2023-04-11 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11896821B2 (en) 2016-05-23 2024-02-13 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US10596386B2 (en) 2016-07-01 2020-03-24 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10632321B2 (en) 2016-07-01 2020-04-28 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11497925B2 (en) 2016-07-01 2022-11-15 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11524171B2 (en) 2016-07-01 2022-12-13 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11628308B2 (en) 2016-07-01 2023-04-18 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11266852B2 (en) 2016-07-01 2022-03-08 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11607556B2 (en) 2016-07-01 2023-03-21 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11679270B2 (en) 2016-07-01 2023-06-20 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11794029B2 (en) 2016-07-01 2023-10-24 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
WO2018060533A1 (en) * 2016-09-28 2018-04-05 High Technology Products, S.L. Device for protecting skin and tissues for aesthetic cold treatments
AU2017334051B2 (en) * 2016-09-28 2022-06-16 High Technology Products, S.l.u. Device for protecting skin and tissues for aesthetic cold treatments
US11890225B2 (en) 2016-11-02 2024-02-06 Miraki Innovation Think Tank Llc Devices and methods for slurry generation
US11000409B2 (en) 2016-11-02 2021-05-11 Miraki Innovation Think Tank Llc Devices and methods for slurry generation
US11324673B2 (en) 2016-11-18 2022-05-10 Miraki Innovation Think Tank Llc Cosmetic appearance of skin
WO2018122535A1 (en) * 2016-12-27 2018-07-05 Deleo Method for reducing a subcutaneous fat volume by means of cold using an anti-cellulite active ingredient
FR3061012A1 (en) * 2016-12-27 2018-06-29 Deleo PROCESS FOR REDUCING COLD SUBCUTANEOUS VOLUME USING ANTICELLULITE ACTIVE INGREDIENT
US20180271767A1 (en) * 2017-03-21 2018-09-27 Zeltiq Aesthetics, Inc. Use of saccharides for cryoprotection and related technology
WO2018175111A1 (en) 2017-03-21 2018-09-27 Zeltiq Aesthetics, Inc. Use of saccharides for cryoprotection and related technology
US11446178B2 (en) 2017-04-05 2022-09-20 Miraki Innovation Think Tank Llc Cold slurry containment
US11439532B2 (en) 2017-04-05 2022-09-13 Miraki Innovation Think Tank Llc Point of delivery cold slurry generation
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11241541B2 (en) 2017-08-21 2022-02-08 Miraki Innovation Think Tank Llc Cold slurry syringe
US10500342B2 (en) 2017-08-21 2019-12-10 Miraki Innovation Think Tank Llc Cold slurry syringe
US11134998B2 (en) 2017-11-15 2021-10-05 Pacira Cryotech, Inc. Integrated cold therapy and electrical stimulation systems for locating and treating nerves and associated methods
US11400308B2 (en) 2017-11-21 2022-08-02 Cutera, Inc. Dermatological picosecond laser treatment systems and methods using optical parametric oscillator
US10729496B2 (en) 2017-11-21 2020-08-04 Cutera, Inc. Dermatological picosecond laser treatment systems and methods using optical parametric oscillator
US11389237B2 (en) 2017-11-21 2022-07-19 Cutera, Inc. Dermatological picosecond laser treatment systems and methods using optical parametric oscillator
US11583437B2 (en) 2018-02-06 2023-02-21 Aspen Surgical Products, Inc. Reusable warming blanket with phase change material
WO2019162539A1 (en) 2018-02-26 2019-08-29 High Technology Products, Sl Skin and tissue protection device for aesthetics treatments with cold temperatures
US11331670B2 (en) 2018-05-23 2022-05-17 Abs Global, Inc. Systems and methods for particle focusing in microchannels
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
US11140987B2 (en) * 2019-02-14 2021-10-12 Deer Solutions LLC Athletic chair with adjustable heating and height
US11653763B2 (en) 2019-02-14 2023-05-23 Deer Solutions LLC Athletic chair with adjustable heating and height
US11484725B2 (en) 2019-04-11 2022-11-01 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11247063B2 (en) 2019-04-11 2022-02-15 Btl Healthcare Technologies A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
WO2020215011A1 (en) * 2019-04-18 2020-10-22 Abs Global, Inc. System and process for continuous addition of cryoprotectant
US11889830B2 (en) 2019-04-18 2024-02-06 Abs Global, Inc. System and process for continuous addition of cryoprotectant
WO2021105929A3 (en) * 2019-11-26 2021-07-08 Amir Katz Cryotherapy skin growth removal device
US11628439B2 (en) 2020-01-13 2023-04-18 Abs Global, Inc. Single-sheath microfluidic chip
US11826565B2 (en) 2020-05-04 2023-11-28 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11813451B2 (en) 2020-05-04 2023-11-14 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11806528B2 (en) 2020-05-04 2023-11-07 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
CN113827545A (en) * 2020-06-23 2021-12-24 微创医美科技(嘉兴)有限公司 Antifreeze injection preparation assisting in frozen fat dissolution, liquid guide device, kit and frozen fat dissolution system
US11819451B2 (en) 2020-07-10 2023-11-21 C° Change Surgical Llc Injectable slush feed supply
WO2022036271A1 (en) 2020-08-14 2022-02-17 Zeltiq Aesthetics, Inc. Multi-applicator system and method for body contouring
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Also Published As

Publication number Publication date
US20140005760A1 (en) 2014-01-02
BRPI0706055A2 (en) 2011-03-22
US20200155215A1 (en) 2020-05-21
CN103948468A (en) 2014-07-30
IL182989A0 (en) 2008-04-13
BRPI0706055B8 (en) 2021-06-22
CA2585214A1 (en) 2007-10-28
JP2008537504A (en) 2008-09-18
EP2012707A2 (en) 2009-01-14
HK1124511A1 (en) 2009-07-17
CA2585214C (en) 2011-05-31
WO2007127924A3 (en) 2008-05-02
EP2012707A4 (en) 2012-05-30
WO2007127924A2 (en) 2007-11-08
KR20080049052A (en) 2008-06-03
HK1200080A1 (en) 2015-07-31
AU2007244765A1 (en) 2007-11-08
KR20110019446A (en) 2011-02-25
KR101039758B1 (en) 2011-06-09
IL182989A (en) 2015-11-30
JP4703724B2 (en) 2011-06-15
EP2012707B1 (en) 2020-03-18
KR101248799B1 (en) 2013-04-02
AU2010241393A1 (en) 2010-12-02
BRPI0706055B1 (en) 2020-12-15

Similar Documents

Publication Publication Date Title
US20200155215A1 (en) Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
AU2013207657B2 (en) Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
US11819257B2 (en) Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
ES2784023T3 (en) Cryoprotectant for use with a treatment device for enhanced cooling of lipid-rich subcutaneous cells
US20230320894A1 (en) Treatment systems, small volume applicators, and methods for treating submental tissue
US10524956B2 (en) Temperature-dependent adhesion between applicator and skin during cooling of tissue
US20110300079A1 (en) Compositions for use with a system for improved cooling of subcutaneous lipid-rich tissue
ES2390598T3 (en) Devices for selective disintegration of adipose tissue by controlled cooling
WO2008060423A2 (en) Tissue treatment methods
US20200069458A1 (en) Compositions, treatment systems, and methods for fractionally freezing tissue
MX2008001841A (en) Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells

Legal Events

Date Code Title Description
AS Assignment

Owner name: JUNIPER MEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEVINSON, MITCHELL E.;JOHNSON, DONALD;PRECIADO, JESSICA;AND OTHERS;REEL/FRAME:019416/0606;SIGNING DATES FROM 20070501 TO 20070509

AS Assignment

Owner name: ZELTIQ AESTHETICS, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:JUNIPER MEDICAL, INC.;REEL/FRAME:019712/0079

Effective date: 20070727

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION