Sök Bilder Maps Play YouTube Nyheter Gmail Drive Mer »
Logga in
Använder du ett skärmläsningsprogram? Öppna boken i tillgänglighetsläge genom att klicka här. Tillgänglighetsläget har samma grundläggande funktioner men fungerar bättre ihop med skärmläsningsprogrammet.

Patent

  1. Avancerad patentsökning
PublikationsnummerUS20070224830 A1
Typ av kungörelseAnsökan
AnsökningsnummerUS 11/752,477
Publiceringsdatum27 sep 2007
Registreringsdatum23 maj 2007
Prioritetsdatum31 jan 2005
Även publicerat somCN101155648A, CN101155648B, EP2023376A2, EP2023376A3, EP2023377A2, EP2023377A3, US7235492, US8093154, US8445389, US8492284, US20060169668, US20060169669, US20120070961, US20120108039
Publikationsnummer11752477, 752477, US 2007/0224830 A1, US 2007/224830 A1, US 20070224830 A1, US 20070224830A1, US 2007224830 A1, US 2007224830A1, US-A1-20070224830, US-A1-2007224830, US2007/0224830A1, US2007/224830A1, US20070224830 A1, US20070224830A1, US2007224830 A1, US2007224830A1
UppfinnareArkadii Samoilov
Ursprunglig innehavareSamoilov Arkadii V
Exportera citatBiBTeX, EndNote, RefMan
Externa länkar: USPTO, Överlåtelse av äganderätt till patent som har registrerats av USPTO, Espacenet
Low temperature etchant for treatment of silicon-containing surfaces
US 20070224830 A1
Sammanfattning
Embodiments provide a method for etching or smoothing a silicon material on a substrate. In one example, the method provides positioning a substrate containing a contaminant disposed on a silicon material within a process chamber, heating the substrate to a temperature of less than 800° C., and exposing the silicon material to an etching gas that contains a chlorine-containing gas and a silicon source gas. The contaminant and a predetermined thickness of the silicon material are removed during the etching process. In another example, the method provides that the substrate contains a first silicon surface having a surface roughness of about 1 nm RMS or greater, exposing the substrate to the etching gas to form a second silicon surface from the first silicon surface during a smoothing process, wherein the second silicon surface has a surface roughness of less than 1 nm RMS.
Bilder(6)
Previous page
Next page
Anspråk(26)
1. A method for etching a silicon material on a substrate surface, comprising:
positioning a substrate comprising a silicon-containing material within a process chamber, wherein a contaminant is disposed on the silicon-containing material;
heating the substrate to a temperature of less than 800° C.; and
exposing the silicon-containing material to an etching gas comprising a chlorine-containing gas and a silicon source gas to remove the contaminant and a predetermined thickness of the silicon-containing material during an etching process.
2. The method of claim 1, wherein the chlorine-containing gas comprises a source gas selected from the group consisting of chlorine gas, chlorine trifluoride, tetrachlorosilane, derivatives thereof, and combinations thereof.
3. The method of claim 1, wherein the silicon-containing material is removed at a rate within a range from about 2 Å per minute to about 20 Å per minute.
4. The method of claim 3, wherein the temperature of the substrate is within a range from about 500° C. to about 700° C.
5. The method of claim 1, wherein the etching gas comprises a carrier gas selected from the group consisting of nitrogen, argon, helium, and combinations thereof.
6. The method of claim 5, wherein the silicon source gas is selected from the group consisting of silane, disilane, methylsilane, derivatives thereof, and combinations thereof.
7. The method of claim 6, wherein the carrier gas comprises nitrogen and the silicon source gas comprises silane.
8. The method of claim 1, wherein an epitaxy deposition process is conducted within the process chamber subsequent the etching process.
9. The method of claim 1, wherein the contaminant comprises a species selected from the group consisting of oxide, fluoride, chloride, nitride, organic residue, carbon, derivatives thereof, and combinations thereof.
10. The method of claim 9, wherein the substrate is exposed to a wet clean process prior to positioning the substrate within the process chamber.
11. The method of claim 10, wherein the substrate is exposed to ambient conditions for a time period within a range from about 6 hours to about 24 hours subsequent the wet clean process and prior to positioning the substrate within the process chamber.
12. The method of claim 9, wherein the silicon-containing material further comprises a rough surface that is removed during the etching process.
13. A method for smoothing a silicon-containing material on a substrate surface, comprising:
positioning a substrate comprising a first silicon-containing surface within a process chamber, wherein the first silicon-containing surface comprises a surface roughness of about 1 nm RMS or greater;
heating the substrate to a temperature of less than 800° C.; and
exposing the substrate to an etching gas comprising a chlorine-containing gas and a silicon source gas to form a second silicon-containing surface from the first silicon-containing surface during a smoothing process, wherein the second silicon-containing surface comprises a surface roughness of less than 1 nm RMS.
14. The method of claim 13, wherein the chlorine-containing gas comprises a source gas selected from the group consisting of chlorine gas, chlorine trifluoride, tetrachlorosilane, derivatives thereof, and combinations thereof.
15. The method of claim 13, wherein a predetermined thickness of the first silicon-containing surface is removed at a rate within a range from about 2 Å per minute to about 20 Å per minute.
16. The method of claim 15, wherein the temperature of the substrate is within a range from about 500° C. to about 700° C.
17. The method of claim 13, wherein the etching gas comprises a carrier gas selected from the group consisting of nitrogen, argon, helium, and combinations thereof.
18. The method of claim 17, wherein the silicon source gas is selected from the group consisting of silane, disilane, methylsilane, derivatives thereof, and combinations thereof.
19. A method for forming a silicon-containing monocrystalline material on a substrate, comprising:
exposing a substrate to a HF-last wet clean solution during a preclean process;
positioning the substrate within a process chamber, wherein the substrate comprises a silicon-containing monocrystalline surface;
heating the substrate to a temperature of less than 800° C.;
exposing the substrate to an etching gas comprising a chlorine-containing gas and a silicon source gas to remove a predetermined thickness of the silicon-containing monocrystalline surface while forming an exposed monocrystalline surface; and
depositing an epitaxy layer on the exposed monocrystalline surface within the process chamber.
20. The method of claim 19, wherein the chlorine-containing gas comprises a source gas selected from the group consisting of chlorine gas, chlorine trifluoride, tetrachlorosilane, derivatives thereof, and combinations thereof.
21. The method of claim 20, wherein the silicon source gas is selected from the group consisting of silane, disilane, methylsilane, derivatives thereof, and combinations thereof.
22. The method of claim 21, wherein the etching gas comprises a carrier gas selected from the group consisting of nitrogen, argon, helium, and combinations thereof.
23. The method of claim 19, wherein the epitaxy layer is deposited by a deposition gas containing chlorine gas.
24. The method of claim 19, further comprising cleaning the process chamber with the etching gas to remove a silicon-containing contaminant adhered on an inner surface of the process chamber during a post-clean process subsequent to the deposition of the epitaxy layer.
25. The method of claim 24, wherein the process chamber is heated to a temperature within a range from about 500° C. to about 700° C. during the post-clean process.
26. The method of claim 24, wherein nitrogen is co-flowed with chlorine gas during the post-clean process.
Beskrivning
    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    This application is a continuation of U.S. Ser. No. 11/047,323 (APPM/009793), filed Jan. 31, 2005, which is herein incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    Embodiments of the invention generally relate to the field of electronic manufacturing processes and devices, more particular, to methods of etching and depositing silicon-containing materials while forming electronic devices.
  • [0004]
    2. Description of the Related Art
  • [0005]
    Electronic devices such as semiconductor devices are fabricated by an assortment of steps including the deposition and removal of silicon-containing material. These deposition and removal steps as well as other process steps can cause the substrate surface containing a silicon-containing material to become rough and/or bare contaminant. Rough or contaminated substrate surfaces generally lead to poor quality interfaces which provide poor device performance and reliability.
  • [0006]
    Etching processes have been developed to combat contamination and roughness on substrate surfaces. However, these traditional etching processes have some draw backs. Usually, etchants, such as hydrogen chloride (HCl), require a high activation temperature in order to remove silicon-containing materials. Therefore, etching processes are often conducted at temperatures of 1,000° C. or higher. Such high temperatures are not desirable during a fabrication process due to thermal budget considerations, possible uncontrolled nitridation reactions to the substrate surface and loss of economically efficiencies. Chlorine (Cl2) has been used to remove silicon-containing materials during etch processes at lower temperatures than processes that utilize hydrogen chloride etchants. However, chlorine reacts very quickly with silicon-containing materials and thus the etch rate is not easily controlled. Therefore, silicon-containing materials are usually over etched by processes using chlorine gas.
  • [0007]
    Also, traditional etching processes generally are conducted in an etching chamber or a thermal processing chamber. Once the etching of the silicon-containing material is complete, the substrate is transferred into a secondary chamber to for a subsequent deposition process. Often, the substrate is exposed to the ambient environment between the etching process and the deposition process. The ambient environment may introduce the substrate surface to water and/or oxygen and form an oxide layer.
  • [0008]
    Even before the etching processor depositing process is conducted, substrates are usually exposed to a pre-treatment process that may include a wet clean process, such as a HF-last process, a plasma clean or an acid wash process. After a pre-treatment process and prior to starting an etching process, the substrate may have to reside outside the process chamber or controlled environment for a period of time called the queue time (Q-time). During the Q-time, the substrate is exposed to ambient environmental conditions that include an oxygen and water at atmospheric pressure and room temperature. The ambient exposure forms an oxide layer on the substrate surface, such as silicon oxide. Generally, longer Q-times form thicker oxide layers and therefore more extreme etching processes must be conducted at higher temperatures and pressures.
  • [0009]
    Therefore, there is a need to have an etching process for treating a silicon-containing material on a substrate surface to remove any surface contaminants contained thereon and/or to smooth the substrate surface. There is also a need to be able to treat the substrate surface in a process chamber which could subsequently be used during the next process step, such as to deposit an epitaxy layer. Furthermore, there is a need to maintain the process temperature at a low temperature, such as below 1,000° C., and preferably below 800° C., even on substrates that have endured long Q-times (e.g., about 10 hours).
  • SUMMARY OF THE INVENTION
  • [0010]
    In one embodiment of the invention, a method of etching a silicon-containing material on a substrate surface is provided which includes positioning a substrate containing a contaminant into a process chamber, exposing the substrate surface to an etching gas that contains chlorine gas, a silicon source and a carrier gas and removing a first layer of the substrate surface and the contaminant. In one example, the process may remove the first layer at a rate in a range from about 2 Å per minute to about 20 Å per minute. In another example, the carrier gas is nitrogen, the silicon source is silane and the process chamber is maintained at a temperature in a range from about 500° C. to about 700° C.
  • [0011]
    In another embodiment of the invention, a method of smoothing a silicon-containing material on a substrate surface is provided which includes positioning a substrate into a process chamber, wherein the substrate contains a silicon-containing material with a first surface roughness of about 1 nm RMS or greater, exposing the silicon-containing material to an etching gas that contains an etchant, a silicon source and a carrier gas and redistributing the silicon-containing material to form a second surface roughness of less than about 1 nm RMS. In one example, the carrier gas is nitrogen, the silicon source is silane and the etchant is chlorine gas.
  • [0012]
    In another embodiment of the invention, a method of etching a silicon-containing material on a substrate that contains a monocrystalline surface and at least a second material selected from a nitride surface, an oxide surface or combinations thereof is provided which includes positioning the substrate into a process chamber and exposing the substrate surface to an etching gas that contains chlorine gas and a carrier gas. The method further includes removing a first layer of the monocrystalline surface to form an exposed monocrystalline surface and depositing an epitaxy layer on the exposed monocrystalline surface in the same process chamber as used during the removing step. In one example, the etching gas also contains a silicon source.
  • [0013]
    In another embodiment of the invention, a method of forming a silicon-containing monocrystalline material on a substrate is provided which includes exposing a substrate to a HF-last wet clean process, positioning the substrate into a process chamber and exposing the substrate to an etching gas containing chlorine gas and a carrier gas. A predetermined thickness of the silicon-containing monocrystalline material is removed to form an exposed monocrystalline surface. The method further includes depositing an epitaxy layer on the exposed monocrystalline surface in the process chamber and subsequently cleaning the process chamber with the chlorine gas to remove silicon-containing contaminant adhered thereon.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    So that the manner in which the above recited features of the invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
  • [0015]
    FIG. 1 is a flow chart describing a process to treat silicon-containing materials in one embodiment described herein;
  • [0016]
    FIGS. 2A-2C show schematic illustrations of layers treated by processes described in FIG. 1;
  • [0017]
    FIG. 3 is a flow chart describing a process to treat silicon-containing materials in another embodiment described herein;
  • [0018]
    FIGS. 4A-4C show schematic illustrations of layers treated by processes described in FIG. 3; and
  • [0019]
    FIG. 5 is a flow chart describing a method to process a substrate and thereafter clean the process chamber by one embodiment described herein.
  • DETAILED DESCRIPTION
  • [0020]
    Embodiments of the invention disclose processes to etch and deposit silicon-containing materials on substrate surfaces. The etching processes include a slow etch process (e.g., <100 Å/min) that utilizes an etching gas that contains an etchant and a silicon source as well as a fast etch process (e.g., >100 Å/min).
  • [0021]
    In one embodiment of the invention, a method for finishing or treating a silicon-containing surface is provided which includes smoothing the surface and/or removing contaminants contained on the surface. According to one example, a substrate having a silicon-containing surface is placed into a process chamber and heated to a temperature in a range from about 500° C. to about 700° C. While the substrate is heated, the silicon-containing surface is exposed to an etching gas that contains an etchant, a silicon source and a carrier gas. An etchant, such as chlorine gas (Cl2) may be selected so that a relatively low temperature is used during the etching process. A silicon source is provided simultaneously with the etchant in order to counter act any over etching caused by the etchant. That is, the silicon source is used to deposit silicon on the silicon-containing layer while the etchant removes the silicon. The rates at which the etchant and the silicon source are introduced to the substrate are adjusted so that the overall reaction favors material removal and/or redistribution. Therefore, in one example, the overall reaction removes silicon-containing material while the etch rate is finely controlled to several angstroms or less per minute. During an example of a process to redistribute silicon-containing material, the surface is smoothed as material is removed from higher portions of the surface (i.e., peaks) while material is added to the lower portions of the surface (i.e., troughs). Embodiments of the invention can transform a silicon-containing surface with a surface roughness of about 6 nm root mean square (RMS) or more into a much smoother surface with a surface roughness of less than about 0.1 nm RMS.
  • [0022]
    In another embodiment of the invention, a method for etching a silicon-containing surface is provided which includes removing silicon-containing material at a fast rate in order to form a recess in a source/drain (S/D) area on the substrate. According to one example of the fast etch process, a substrate having a silicon-containing surface is placed into a process chamber and heated to a temperature in a range from about 500° C. to about 700° C. While the substrate is heated, the silicon-containing surface is exposed to an etching gas that contains an etchant and a carrier gas. The etchant, such as chlorine gas, may be selected so that a relatively low temperature is used during the etching process while maintaining a fast etch rate. A silicon source may be added to the etching gas to have more control of the removal rate.
  • [0000]
    Slow Etch (Pre-Clean and Smooth)
  • [0023]
    In one embodiment, a slow etch process (e.g., <100 Å/min) is conducted to remove contaminants and/or surface irregularities, such as roughness, from a substrate surface. The substrate surface is etched to expose an underlayer free of the contaminants and/or material of the substrate surface is redistributed to minimize peaks and troughs that attribute to surface irregularities. During the slow etch process, the substrate is exposed to an etching gas containing an etchant, a silicon source and a carrier gas. The overall reaction is controlled in part by the relative flow rates of the etchant and the silicon source, the specific etchant and silicon source, and the temperature and the pressure that the process is conducted.
  • [0024]
    Prior to starting an etching process, a substrate may be exposed to a pre-treatment process to prepare the surface for the subsequent etching. A pre-treatment process may include a wet clean process, such as a HF-last process, a plasma clean, an acid wash process and combinations thereof. In one example, the substrate is treated to a HF-last wet clean process by exposing the surface to a hydrofluoric acid solution for about 2 minutes.
  • [0025]
    FIG. 1 depicts process 100 conducted to remove contaminants and/or rough areas on substrate 200, as depicted in FIGS. 2A-2C. In FIG. 2A, substrate 200 contains contaminants and/or rough areas on surface 210. A pre-determined thickness 220 of the substrate 200 including surface 210 is removed during the etching process to reveal exposed surface 230. A layer 240 is optionally deposited on exposed surface 230. Usually, layer 240 is a silicon-containing material deposited by an epitaxy deposition process.
  • [0026]
    Embodiments of the processes described herein etch and deposit silicon-containing materials on various substrates surfaces and substrates. A “substrate” or “substrate surface” as used herein refers to any substrate or material surface formed on a substrate upon which film processing is performed. For example, a substrate surface on which processing may be performed include materials such as silicon, silicon-containing materials, silicon oxide, strained silicon, silicon on insulator (SOI), carbon doped silicon oxides, silicon nitride, doped silicon, silicon germanium, silicon germanium carbon, germanium, gallium arsenide, glass, sapphire, and other materials depending on the application. A substrate surface may also include dielectric materials such as silicon dioxide, silicon nitride, silicon oxynitride, and/or carbon doped silicon oxides. Substrates may have various dimensions, such as 200 mm or 300 mm diameter round wafers, as well as, rectangular or square panes. Embodiments of the processes described herein etch and deposit on many substrates and surfaces, especially, silicon and silicon-containing materials. Substrates on which embodiments of the invention may be useful include, but are not limited to semiconductor wafers, such as crystalline silicon (e.g., Si<100>or Si<111>), silicon oxide, strained silicon, silicon germanium, doped or undoped polysilicon, doped or undoped silicon wafers silicon nitride and patterned or non-patterned wafers.
  • [0027]
    Throughout the application, the terms “silicon-containing” materials, compounds, films or layers should be construed to include a composition containing at least silicon and may contain germanium, carbon, boron, arsenic, phosphorous gallium and/or aluminum. Other elements, such as metals, halogens or hydrogen may be incorporated within a silicon-containing material, compound, film or layer, usually in part per million (ppm) concentrations. Compounds or alloys of silicon-containing materials may be represented by an abbreviation, such as Si for silicon, SiGe, for silicon germanium, SiC for silicon carbon, and SiGeC for silicon germanium carbon. The abbreviations do not represent chemical equations with stoichiometrical relationships, nor represent any particular reduction/oxidation state of the silicon-containing materials. Silicon-containing materials, compounds, films, or layers may include substrates or substrate surfaces.
  • [0028]
    Contaminants left on the surface 210 from a previous process may include organic residues, carbon, oxides, nitrides, halides (e.g., fluorides or chlorides) and combinations thereof. For example, surface 210 may contain a layer of silicon oxide after being exposed to the ambient air or may contain a layer of silicon fluoride after being treated with a HF-last wet clean process. Surface 210 may also contain irregularities, such as regional areas of roughness that include troughs and peaks.
  • [0029]
    During step 110, substrate 200 is positioned into a process chamber and heated to a predetermined temperature. The substrate and/or the process chamber is maintained at temperature in a range from about 400° C. to about 800° C., preferably from about 500° C. to about 700° C. The process chamber is maintained at a pressure in a range from about 0.1 Torr to about 750 Torr, preferably, from about 1 Torr to about 100 Torr, and more preferably, from about 10 Torr to about 40 Torr.
  • [0030]
    The etching gas used during the slow etch process in step 120 contains an etchant, a silicon source and a carrier gas. Preferably, the etchant is chlorine gas (Cl2). In one example, it has been found that chlorine works exceptionally well as an etchant for silicon-containing materials at temperatures lower than processes using more common etchants. Therefore, an etching process utilizing chlorine may be conducted at a lower process temperature. The silicon source is provided simultaneously with the etchant in order to counter act any over etching of the substrate 200. The silicon source is used to deposit silicon on the silicon-containing layer while the etchant removes the silicon-containing material. The rates at which the etchant and the silicon source are introduced to the substrate are adjusted so that the overall reaction favors material removal and/or material redistribution. Therefore, the overall reaction is removing or redistributing silicon-containing material and the etch rate may be finely controlled to several angstroms per minute.
  • [0031]
    The etchant is provided into the process chamber in the etching gas at a rate in a range from about 1 standard cubic centimeters per minute (sccm) to about 100 sccm, preferably, from about 5 sccm to about 50 sccm, and more preferably, from about 10 sccm to about 30 sccm, for example, about 20 sccm. While chlorine is the preferred etchant, other etchants that may be used solely or in combination include chlorine trifluoride (ClF3), tetrachlorosilane (SiCl4), and derivatives thereof.
  • [0032]
    The silicon source is usually provided into the process chamber in the etching gas for slow etch processes at a rate in a range from about 5 sccm to about 500 sccm, preferably from about 10 sccm to about 100 sccm, and more preferably from about 20 sccm to about 80 sccm, for example, about 50 sccm. Silicon sources that may be used in the etching include silanes, halogenated silanes, organosilanes and derivatives thereof. Silanes include silane (SiH4) and higher silanes with the empirical formula SixH(2x+2), such as disilane (Si2H6), trisilane (Si3H8), and tetrasilane (Si4H10), as well as others. Halogenated silanes include compounds with the empirical formula X′ySixH(2x+2−y), where X′ is independently selected from F, Cl, Br, or I, such as hexachlorodisilane (Si2Cl6), tetrachlorosilane (SiCl4), dichlorosilane (Cl2SiH2), and trichlorosilane (Cl3SiH). Organosilanes include compounds with the empirical formula RySixH(2x+2−y), where R is independently selected from methyl, ethyl, propyl or butyl, such as methylsilane ((CH3)SiH3), dimethylsilane ((CH3)2SiH2), ethylsilane ((CH3CH2)SiH3), methyldisilane ((CH3)Si2H5), dimethyldisilane ((CH3)2Si2H4), and hexamethyldisilane ((CH3)6Si2). The preferred silicon sources include silane, dichlorosilane, and disilane.
  • [0033]
    The carrier gas is usually provided into the process chamber in the etching gas at a flow rate in a range from about 1 slm (standard liters per minute) to about 100 slm, preferably, from about 5 slm to about 80 slm, and more preferably, from about 10 slm to about 40 slm, for example, about 20 slm. Carrier gases may include nitrogen (N2), hydrogen (H2), argon, helium, or combinations thereof. An inert carrier gas is preferred and includes nitrogen, argon, helium, or combinations thereof. A carrier gas may be selected based on the precursor(s) used and/or the process temperature during the etching process in step 120.
  • [0034]
    Preferably, nitrogen is utilized as a carrier gas in embodiments featuring low temperature (e.g., <800° C.) processes. Low temperature processes are accessible due in part to the use of chlorine gas in the etching process. Nitrogen remains inert during low temperature etching processes. Therefore, nitrogen is not incorporated into silicon-containing materials on the substrate during low temperature processes. Also, a nitrogen carrier gas does not form hydrogen-terminated surfaces as does a hydrogen carrier gas. The hydrogen-terminated surfaces formed by the adsorption of hydrogen carrier gas on the substrate surface inhibit the growth rate of subsequently deposited silicon-containing layers. Finally, the low temperature processes may take economic advantage of nitrogen as a carrier gas, since nitrogen is far less expensive than hydrogen, argon or helium. In one example of an etching gas, chlorine is the etchant, silane is the silicon source and nitrogen is the carrier gas.
  • [0035]
    During step 120, substrate 200 and surface 210 are exposed to an etching gas to remove a predetermined thickness 220 of substrate 200. Surface 210 is also etched during the removal of the predetermined thickness 220. The etching gas is exposed to substrate 200 for a period of time from about 5 seconds to about 5 minutes, preferably from about 30 seconds to about 2 minutes. The amount of time is adjusted relative to the etch rate used in a particular process. The etch rate of a slow etch process is usually less than about 100 Å/min, preferably less than about 50 Å/min. In one embodiment, the slow etch rate is in a range from about 2 Å/min to about 20 Å/min, preferably from about 5 Å/min to about 15 Å/min, for example, about 10 Å/min. In another embodiment, the etch rate is less than about 2 Å/min, preferably less than about 1 Å/min, and more preferably approaches a redistribution of material on the substrate such that the net removal rate is non-measurable relative to the thickness of the layer. As the etch process is slowed to a redistribution reaction, material is removed from the peaks thereon the surface and material is added to troughs thereon the surface. The troughs may be filled by the material derived from the peaks and/or virgin material being produced by the introduction of precursors (e.g., silicon source) in the etching gas.
  • [0036]
    Surface 210 may have had a surface roughness of about 6 nm root mean square (RMS) or more. However, once the predetermined thickness 220 is removed, the exposed surface 230 is much smoother than surface 210. The exposed surface may have a surface roughness of about 1 nm RMS or less, preferably about 0.1 nm RMS or less and more preferably about 0.07 nm RMS. Contaminants previously disposed on surface 210 are removed. The exposed surface 230 is free or substantially free of contaminants that include organic residues, carbon, oxides, nitrides, halides (e.g., fluorides or chlorides), or combinations thereof.
  • [0037]
    Once the predetermined thickness 220 and surface 210 of substrate 200 are removed, layer 240 may be deposited during step 130. Preferably, layer 240 is a silicon-containing material that may be selectively and epitaxially deposited on the exposed surface 230 a chemical vapor deposition (CVD) process. Chemical vapor deposition described herein includes the use of many techniques, such as atomic layer epitaxy (ALE), atomic layer deposition (ALD), plasma-assisted CVD (PA-CVD), atomic layer CVD (ALCVD), organometallic or metalorganic CVD (OMCVD or MOCVD), laser-assisted CVD (LA-CVD), ultraviolet CVD (UV-CVD), hot-wire (HWCVD), reduced-pressure CVD (RP-CVD), ultra-high vacuum CVD (UHV-CVD), and others. In one example, a preferred process is to use thermal CVD to epitaxially grow or deposit a silicon-containing compound as layer 240 on exposed surface 230. The deposition gas used during step 130 may also contain at least one secondary elemental source, such as a germanium source and/or a carbon source. The germanium source may be added to the process chamber with the silicon source, etchant and carrier gas to form a silicon-containing compound. Therefore, the silicon-containing compound may include silicon, SiGe, SiC, SiGeC, doped variants thereof, and combinations thereof. Germanium and/or carbon may be added to the silicon-containing material by including germanium source (e.g., germane) or a carbon source (e.g., methylsilane) during the deposition process. Dopants may also be included by including a boron source (e.g., diborane), an arsenic source (e.g., arsine), or a phosphorous source (e.g., phosphine) during or after the deposition process.
  • [0038]
    In another example, a preferred process is to use the CVD process called alternating gas supply (APG) to epitaxially grow or deposit a silicon-containing compound as layer 240 on exposed surface 230. The APG deposition process includes a cycle of alternating exposures of silicon-sources and etchants to the substrate surface. An APG deposition is further disclosed in commonly assigned U.S. Ser. No. 11/001,774, filed Dec. 1, 2004, and published as US 2006-0115934, which is incorporated herein by reference in its entirety for the purpose of describing the APG deposition process.
  • [0039]
    Process 100 may be used to etch and deposit silicon-containing materials in the same process chamber. Preferably, the slow etch process and the subsequent deposition process are performed in the same process chamber to improve throughput, be more efficient, decrease probability of contamination and benefit process synergies, such as common chemical precursors. In one example, both the slow etch process and the selective, epitaxial deposition process of a silicon-containing compound use chlorine as an etchant and nitrogen as a carrier gas.
  • [0000]
    Fast Etch
  • [0040]
    In another embodiment, a fast etch process (e.g., >100 Å/min) is performed to selectively remove silicon-containing material from the substrate surface. The fast etch process is a selective etch process to remove silicon-containing material while leaving barrier material unscathed. Barrier materials may include silicon nitride, silicon oxide, or silicon oxynitride used as spacers, capping layers and mask.
  • [0041]
    In FIG. 3, process 300 is initiated by positioning the substrate into a process chamber and adjusting the process parameters during step 310. The substrate and/or the process chamber is heated at a temperature in a range from about 400° C. to about 800° C., preferably from about 500° C. to about 700° C. The process chamber is maintained at a pressure in a range from about 1 Torr to about 750 Torr, preferably, from about 100 Torr to about 700 Torr, and more preferably, from about 400 Torr to about 600 Torr.
  • [0042]
    The etching gas used during the fast etch process in step 320 contains an etchant, a carrier gas and an optional silicon source. Preferably, the etchant is chlorine gas, the carrier gas is nitrogen and the silicon source is silane. The etchant is provided into the process chamber in the etching gas at a rate in a range from about 1 sccm to about 100 sccm, preferably from about 5 sccm to about 50 sccm, and more preferably from about 10 sccm to about 30 sccm, for example, about 20 sccm. While chlorine is the preferred etchant in the fast etch process, other etchants that may be used solely or in combination include chlorine trifluoride (ClF3), tetrachlorosilane (SiCl4), and derivatives thereof.
  • [0043]
    The carrier gas is usually provided into the process chamber in the etching gas at a flow rate in a range from about 1 slm to about 100 slm, preferably from about 5 slm to about 80 slm, and more preferably from about 10 slm to about 40 slm, for example, about 20 slm. Carrier gases may include nitrogen (N2), hydrogen (H2), argon, helium, or combinations thereof. An inert carrier gas is preferred and includes nitrogen, argon, helium, or combinations thereof. A carrier gas may be selected based on the precursor(s) used and/or the process temperature during the etching process in step 320. Preferably, nitrogen is utilized as a carrier gas in embodiments featuring low temperature (e.g., <800° C.) processes. In one example of an etching gas, chlorine is the etchant and nitrogen is the carrier gas.
  • [0044]
    In some embodiments, the silicon source is optionally included in the etching gas to provide additional control of the etch rate during fast etch processes. The silicon source is delivered into the process chamber at a rate in a range from about 5 sccm to about 500 sccm, preferably from about 10 sccm to about 100 sccm, and more preferably from about 20 sccm to about 80 sccm, for example, about 50 sccm. Silicon sources that may be used in the etching include silanes, halogenated silanes, organosilanes, and derivatives thereof, as discussed above.
  • [0045]
    In FIG. 4A, at least one source/drain feature 410 is disposed on substrate 400. Substrate 400 may be doped or undoped, bare silicon substrate or include a silicon-containing layer disposed thereon. Feature 410 includes gate layer 412 on gate oxide layer 414 surrounded by spacers 416 and protective capping layer 418. Generally, gate layer 412 is composed of a polysilicon. Gate oxide layer 414 is composed of silicon dioxide, silicon oxynitride or hafnium oxide. Partially encompassing the gate oxide layer 414 is a spacer 416, which is usually an isolation material such as a nitride/oxide stack (e.g., Si3N4/SiO2/Si3N4). Gate layer 412 may optionally have a protective capping layer 418 adhered thereon.
  • [0046]
    During step 320, substrate 400 is exposed to an etching gas to remove a predetermined thickness 425 of substrate 400 and form a recess 430, as depicted in FIG. 4B. The etching gas is exposed to substrate 400 for a period of time from about 10 seconds to about 5 minutes, preferably from about 1 minute to about 3 minutes. The amount of time is adjusted relative to the etch rate used in a particular process. The etch rate of a fast etch process is usually more than about 100 Å/min, preferably more than about 200 Å/min, such as at rate in a range from about 200 Å/min to about 1,500 Å/min, preferably, from about 200 Å/min to about 1,000 Å/min, for example about 600 Å/min.
  • [0047]
    In one example, the etching process may be kept at a fast rate to remove the predetermined thickness 425, and then reduced to a slow rate process to smooth the remaining surface. The reduced etching rate may be controlled by an etching process described by process 100.
  • [0048]
    Once the predetermined thickness 425 of substrate 400 is removed, layer 440 may be deposited during step 330. Preferably, layer 440 is a silicon-containing material that may be selectively and epitaxially deposited on the exposed surface of recess 430 a CVD process. In one example, the CVD process includes an AGS deposition technique. Alternatively, recess 430 may be exposed to another fabrication process prior to the deposition of layer 440, such as a doping process. One example of a doping process includes ion implantation, in which a dopant (e.g., boron, phosphorous or arsenic) may be implanted into the surface of the recess 430.
  • [0049]
    Process 300 may be used to etch and deposit silicon-containing materials in the same process chamber. Preferably, the fast etch process and the subsequent deposition is performed in the same process chamber to improve throughput, be more efficient, decrease probability of contamination and benefit process synergies, such as common chemical precursors. In one example, both the fast etch process and the selective, epitaxial deposition process of a silicon-containing compound use chlorine as an etchant and nitrogen as a carrier gas.
  • [0050]
    FIG. 5 illustrates an alternative embodiment of the invention that includes cleaning the process chamber after finishing a fabrication techniques using process 500. During step 510, the substrate is exposed to a pre-treatment process that may include a wet clean process, a HF-last process, a plasma clean, an acid wash process, and combinations thereof. After a pre-treatment process and prior to starting an etching process described herein, the substrate may have to remain outside the controlled environment of the process chamber for a period of time called queue time (Q-time). The Q-time in an ambient environment may last about 2 hours or more, usually, the Q-time last much longer, such as from about 6 hours to about 24 hours or longer, such as about 36 hours. A silicon oxide layer usually forms on the substrate surface during the Q-time due to the substrate being exposed to ambient water and oxygen.
  • [0051]
    During step 520, the substrate is positioned into a process chamber and exposed to an etching process as described herein. The etching process may be a slow etch process as described in step 120 or a fast etch process as described in step 320. The etching process removes a pre-determined thickness of silicon-containing layer thereon the substrate to form an exposed silicon-containing layer. Thereafter, a secondary material is deposited on the exposed silicon-containing layer during step 520. Usually, the secondary material is in a selective, epitaxially deposited silicon-containing compound. The deposition process may include the processes as described in steps 130 and 330. In one aspect of the embodiment, processes 100 or 300 may each be independently used during steps 520 and 530.
  • [0052]
    A cleaning process is conducted inside the process chamber to remove various contaminants therein during step 540. Etch processes and/or deposition processes may form or deposit contaminants on surfaces within the process chamber. Usually, the contaminants include silicon-containing materials adhered to the walls and other inner surfaces of the process chamber.
  • [0053]
    The cleaning process includes heating the process chamber to a temperature in a range from about 600° C. to about 900° C., preferably from about 650° C. to about 800° C. The cleaning process is conducted for a period of time in a range from about 30 seconds to about 3 minutes, preferably, from about 1 minute to about 2 minutes. A cleaning gas contains an etchant and a carrier gas. Preferably, the etchant and the carrier gas are the same gases used during step 520. The etchant is provided into the process chamber within the cleaning gas at a rate in a range from about 10 sccm to about 5,000 sccm, preferably from about 100 sccm to about 3,000 sccm, and more preferably from about 500 sccm to about 2,000 sccm, for example, about 1,000 sccm. Etchants that may be used within the cleaning gas include chlorine, chlorine trifluoride, tetrachlorosilane, and derivatives thereof.
  • [0054]
    The carrier is usually provided into the process chamber within the cleaning gas at a flow rate in a range from about 1 slm to about 100 slm, preferably from about 5 slm to about 80 slm, and more preferably from about 10 slm to about 40 slm, for example, about 20 slm. Carrier gases may include nitrogen, hydrogen, argon, helium, or combinations thereof. An inert carrier gas is preferred and includes nitrogen, argon, helium, or combinations thereof. Preferably, chlorine is used as an etchant and nitrogen is used as a carrier gas in embodiments of the cleaning processes. A cleaning process that may be used within embodiments of the invention described herein is further disclosed in commonly assigned U.S. Pat. No. 6,042,654, which is incorporated herein by reference in its entirety. The cleaning process may be repeated after processing each individual substrate or after multiple substrates. In one example, the cleaning process is conducted after processing every 25 substrates.
  • [0055]
    In one example of process 500, the substrate is first exposed to a HF-last process. The substrate is placed into a process chamber and exposed to an etch process that contains chlorine and nitrogen at about 600° C. Within the same process chamber, a silicon-containing layer is epitaxially deposited on the substrate by a deposition process utilizing chlorine and nitrogen at about 625° C. Subsequent the removal of the substrate, the process chamber is heated to about 675° C. and exposed to a cleaning gas containing chlorine and nitrogen.
  • [0056]
    Embodiments of the etching and depositing processes of silicon-containing compounds described herein may be utilized for fabricating Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and bipolar transistors, such as Bipolar device fabrication (e.g., base, emitter, collector, emitter contact), BiCMOS device fabrication (e.g., base, emitter, collector, emitter contact) and CMOS device fabrication (e.g., channel, source/drain, source/drain extension, elevated source/drain, substrate, strained silicon, silicon on insulator, and contact plug). Other embodiments of processes teach the etching and growing of silicon-containing layers that can be used as gate, base contact, collector contact, emitter contact, elevated source/drain, and other uses.
  • [0057]
    The processes of the invention can be carried out in equipment known in the art of CVD or ALE. Hardware that can be used to etch and/or deposit silicon-containing films includes the Epi CENTURA® system and the POLYGEN™ system available from Applied Materials, Inc., located in Santa Clara, Calif. A process chamber useful to etch and deposit as described herein is further disclosed in commonly assigned U.S. Pat. No. 6,562,720, which is incorporated herein by reference in its entirety for the purpose of describing the apparatus. Other enabling apparatuses include batch, high-temperature furnaces, as known in the art.
  • EXAMPLES
  • [0058]
    The following hypothetical examples were conducted in an Epi CENTURA® system available from Applied Materials, Inc., located in Santa Clara, Calif. The substrates were 300 mm silicon wafers.
  • Example 1 Pre-Clean Process Comparative without Silane
  • [0059]
    A substrate was exposed to an HF-last process to form a fluoride terminated surface. The substrate was placed in the process chamber and heated to about 600° C. while the atmosphere was maintained at about 20 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm and Cl2 at flow rate of about 120 sccm. The surface was etched at a rate of about 500 Å/min.
  • Example 2 Pre-Clean Process with Silane
  • [0060]
    A substrate was exposed to an HF-last process to form a fluoride terminated surface. The substrate was placed in the process chamber and heated to about 600° C. while the atmosphere was maintained at about 20 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm, Cl2 at flow rate of about 20 sccm and SiH4 at a flow rate of about 50 sccm. The surface was etched at a rate of about 10 Å/min. Therefore, the addition of a silicon source, such as silane in Example 2, reduced the etch rate of the silicon-containing layer by about 50 times as compared to the etch rate in Example 1.
  • Example 3 Smoothing Process Comparative without Silane
  • [0061]
    A substrate surface containing a silicon-containing layer was cleaved forming a surface with a roughness of about 5.5 nm root mean square (RMS). The substrate was placed in the process chamber and heated to about 650° C. while the atmosphere was maintained at about 200 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm and Cl2 at flow rate of about 20 sccm. The surface was etched at a rate of about 200 Å/min.
  • Example 4 Smoothing Process with Silane
  • [0062]
    A substrate surface containing a silicon-containing layer was cleaved forming a surface with a roughness of about 5.5 nm root mean square. The substrate was placed in the process chamber and heated to about 650° C. while the atmosphere was maintained at about 200 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm, Cl2 at flow rate of about 20 sccm and SiH4 at a flow rate of about 50 sccm. The surface was etched at a rate of about 20 Å/min. The surface roughness was reduced to about 0.1 nm RMS. Therefore, the addition of a silicon source, such as silane used in Example 4, reduced the etch rate of the silicon-containing layer by about 10 times as compared to the etch rate in Example 3.
  • Example 5 Chlorine Etch Process Followed by Silicon-Epitaxy
  • [0063]
    A silicon substrate contained a series of silicon nitride line features that are about 90 nm tall, about 100 nm wide and about 150 nm apart, baring the silicon surface. The substrate was placed in the process chamber and heated to about 600° C. while the atmosphere was maintained at about 40 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm and Cl2 at flow rate of about 80 sccm. The surface was etched at a rate of about 750 Å/min. After about 30 seconds, about 35 nm of the silicon surface was etched. The silicon nitride features remain inert to the etching process. The pressure was increased to about 200 Torr and SiH4 was added to the etching gas at a flow rate of about 50 sccm. The etch rate was reduced to about 18 Å/min to smooth the freshly etched silicon surface. After about 1 minute, the smooth surface is exposed to a selective epitaxy deposition process by increasing the flow of SiH4 to about 100 sccm and maintaining the flow of N2 and Cl2 unchanged. A silicon-containing material was deposited on the silicon surface at a rate of about 25 Å/min.
  • Example 6 Chlorine Fast Etch Process Containing Silane
  • [0064]
    A silicon substrate contained a series of silicon nitride line features that are about 90 nm tall, about 100 nm wide and about 150 nm apart, baring the silicon surface. The substrate was placed in the process chamber and heated to about 600° C. while the atmosphere was maintained at about 40 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm, Cl2 at flow rate of about 80 sccm and SiH4 at flow rate of about 40 sccm. The surface was etched at a rate of about 400 Å/min.
  • [0065]
    While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Citat från patent
citerade patent Registreringsdatum Publiceringsdatum Sökande Titel
US4663831 *8 okt 198512 maj 1987Motorola, Inc.Method of forming transistors with poly-sidewall contacts utilizing deposition of polycrystalline and insulating layers combined with selective etching and oxidation of said layers
US4834831 *4 sep 198730 maj 1989Research Development Corporation Of JapanMethod for growing single crystal thin films of element semiconductor
US5112439 *14 nov 199012 maj 1992McncMethod for selectively depositing material on substrates
US5288658 *26 maj 199222 feb 1994Canon Kabushiki KaishaProcess for the formation of an amorphous silicon deposited film with intermittent irradiation of inert gas plasma
US5294286 *12 jan 199315 mar 1994Research Development Corporation Of JapanProcess for forming a thin film of silicon
US5308788 *19 apr 19933 maj 1994Motorola, Inc.Temperature controlled process for the epitaxial growth of a film of material
US5480818 *9 feb 19932 jan 1996Fujitsu LimitedMethod for forming a film and method for manufacturing a thin film transistor
US5503875 *17 mar 19942 apr 1996Tokyo Electron LimitedFilm forming method wherein a partial pressure of a reaction byproduct in a processing container is reduced temporarily
US5521126 *22 jun 199428 maj 1996Nec CorporationMethod of fabricating semiconductor devices
US5527733 *18 feb 199418 jun 1996Seiko Instruments Inc.Impurity doping method with adsorbed diffusion source
US5716495 *25 mar 199610 feb 1998Fsi InternationalCleaning method
US5906680 *24 dec 199625 maj 1999International Business Machines CorporationMethod and apparatus for low temperature, low pressure chemical vapor deposition of epitaxial silicon layers
US6025627 *29 maj 199815 feb 2000Micron Technology, Inc.Alternate method and structure for improved floating gate tunneling devices
US6042654 *13 jan 199828 mar 2000Applied Materials, Inc.Method of cleaning CVD cold-wall chamber and exhaust lines
US6200893 *11 mar 199913 mar 2001Genus, IncRadical-assisted sequential CVD
US6207487 *12 okt 199927 mar 2001Samsung Electronics Co., Ltd.Method for forming dielectric film of capacitor having different thicknesses partly
US6232196 *5 mar 199915 maj 2001Asm America, Inc.Method of depositing silicon with high step coverage
US6335280 *13 jan 19971 jan 2002Asm America, Inc.Tungsten silicide deposition process
US6342277 *14 apr 199929 jan 2002Licensee For Microelectronics: Asm America, Inc.Sequential chemical vapor deposition
US6342421 *18 jun 199829 jan 2002Kabushiki Kaisha ToshibaSemiconductor device and manufacturing method thereof
US6348420 *23 dec 199919 feb 2002Asm America, Inc.Situ dielectric stacks
US6352945 *7 jun 19995 mar 2002Asm Japan K.K.Silicone polymer insulation film on semiconductor substrate and method for forming the film
US6358829 *16 sep 199919 mar 2002Samsung Electronics Company., Ltd.Semiconductor device fabrication method using an interface control layer to improve a metal interconnection layer
US6383955 *7 jun 19997 maj 2002Asm Japan K.K.Silicone polymer insulation film on semiconductor substrate and method for forming the film
US6383956 *20 aug 20017 maj 2002Ultratech Stepper, Inc.Method of forming thermally induced reflectivity switch for laser thermal processing
US6387761 *4 feb 200014 maj 2002Applied Materials, Inc.Anneal for enhancing the electrical characteristic of semiconductor devices
US6391785 *23 aug 200021 maj 2002Interuniversitair Microelektronica Centrum (Imec)Method for bottomless deposition of barrier layers in integrated circuit metallization schemes
US6391803 *20 jun 200121 maj 2002Samsung Electronics Co., Ltd.Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
US6511539 *8 sep 199928 jan 2003Asm America, Inc.Apparatus and method for growth of a thin film
US6534395 *6 mar 200118 mar 2003Asm Microchemistry OyMethod of forming graded thin films using alternating pulses of vapor phase reactants
US6544900 *14 nov 20018 apr 2003Asm America, Inc.In situ dielectric stacks
US6559520 *25 apr 20026 maj 2003Asm Japan K.K.Siloxan polymer film on semiconductor substrate
US6562720 *14 feb 200213 maj 2003Applied Materials, Inc.Apparatus and method for surface finishing a silicon film
US6677247 *7 jan 200213 jan 2004Applied Materials Inc.Method of increasing the etch selectivity of a contact sidewall to a preclean etchant
US6713177 *16 jul 200230 mar 2004Regents Of The University Of ColoradoInsulating and functionalizing fine metal-containing particles with conformal ultra-thin films
US6713846 *25 jan 200230 mar 2004Aviza Technology, Inc.Multilayer high κ dielectric films
US6839507 *7 okt 20024 jan 2005Applied Materials, Inc.Black reflector plate
US6846516 *8 apr 200225 jan 2005Applied Materials, Inc.Multiple precursor cyclical deposition system
US6858547 *27 sep 200222 feb 2005Applied Materials, Inc.System and method for forming a gate dielectric
US6897131 *22 sep 200324 maj 2005Applied Materials, Inc.Advances in spike anneal processes for ultra shallow junctions
US6992019 *12 jun 200331 jan 2006Samsung Electronics Co., Ltd.Methods for forming silicon dioxide layers on substrates using atomic layer deposition
US6998305 *23 jan 200414 feb 2006Asm America, Inc.Enhanced selectivity for epitaxial deposition
US7166528 *10 okt 200323 jan 2007Applied Materials, Inc.Methods of selective deposition of heavily doped epitaxial SiGe
US20010000866 *29 nov 200010 maj 2001Ofer SnehApparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US20020000598 *23 jul 20013 jan 2002Sang-Bom KangSemiconductor devices having metal layers as barrier layers on upper or lower electrodes of capacitors
US20020016084 *26 apr 20017 feb 2002Todd Michael A.CVD syntheses of silicon nitride materials
US20020019148 *20 aug 200114 feb 2002Ultratech Stepper, Inc.Thermally induced reflectivity switch for laser thermal processing
US20020022294 *27 aug 200121 feb 2002Ultratech Stepper, Inc.Thermally induced reflectivity switch for laser thermal processing
US20020031618 *9 okt 200114 mar 2002Arthur ShermanSequential chemical vapor deposition
US20020047151 *12 jul 200125 apr 2002Kim Yeong-KwanSemiconductor device having thin film formed by atomic layer deposition and method for fabricating the same
US20020060363 *17 jan 200223 maj 2002Applied Materials, Inc.Reliability barrier integration for Cu application
US20030013320 *31 maj 200116 jan 2003Samsung Electronics Co., Ltd.Method of forming a thin film using atomic layer deposition
US20030015764 *21 jun 200123 jan 2003Ivo RaaijmakersTrench isolation for integrated circuit
US20030022528 *11 feb 200230 jan 2003Todd Michael A.Improved Process for Deposition of Semiconductor Films
US20030032281 *23 sep 200213 feb 2003Werkhoven Christiaan J.Graded thin films
US20030036268 *29 maj 200220 feb 2003Brabant Paul D.Low temperature load and bake
US20030045074 *29 aug 20016 mar 2003Cindy SeibelMethod for semiconductor gate doping
US20030049942 *22 aug 200213 mar 2003Suvi HaukkaLow temperature gate stack
US20030059535 *25 sep 200127 mar 2003Lee LuoCycling deposition of low temperature films in a cold wall single wafer process chamber
US20030060057 *25 okt 200227 mar 2003Ivo RaaijmakersMethod of forming ultrathin oxide layer
US20030062335 *12 aug 20023 apr 2003Hrl Laboratories, LlcProcess for smoothing a rough surface on a substrate by dry etching
US20030068437 *20 nov 200210 apr 2003Genji NakamuraMethod and apparatus for forming insulating film containing silicon oxy-nitride
US20030072884 *15 okt 200117 apr 2003Applied Materials, Inc.Method of titanium and titanium nitride layer deposition
US20030072975 *26 sep 200217 apr 2003Shero Eric J.Incorporation of nitrogen into high k dielectric film
US20030082300 *11 feb 20021 maj 2003Todd Michael A.Improved Process for Deposition of Semiconductor Films
US20030089308 *10 dec 200215 maj 2003Ivo RaaijmakersApparatus and method for growth of a thin film
US20030089942 *9 nov 200115 maj 2003Micron Technology, Inc.Scalable gate and storage dielectric
US20040007747 *15 jul 200215 jan 2004Visokay Mark R.Gate structure and method
US20040009307 *8 jun 200115 jan 2004Won-Yong KohThin film forming method
US20040009675 *15 jul 200215 jan 2004Eissa Mona M.Gate structure and method
US20040016973 *26 jul 200229 jan 2004Rotondaro Antonio L.P.Gate dielectric and method
US20040018738 *21 jul 200329 jan 2004Wei LiuMethod for fabricating a notch gate structure of a field effect transistor
US20040023462 *31 jul 20025 feb 2004Rotondaro Antonio L.P.Gate dielectric and method
US20040033674 *14 aug 200219 feb 2004Todd Michael A.Deposition of amorphous silicon-containing films
US20040033698 *4 aug 200319 feb 2004Lee Yun-JungMethod of forming oxide layer using atomic layer deposition method and method of forming capacitor of semiconductor device using the same
US20040038486 *12 jun 200326 feb 2004Applied Materials, Inc.Plasma method and apparatus for processing a substrate
US20040043149 *28 sep 20014 mar 2004Gordon Roy G.Vapor deposition of metal oxides, silicates and phosphates, and silicon dioxide
US20040043569 *28 aug 20024 mar 2004Ahn Kie Y.Atomic layer deposited HfSiON dielectric films
US20040043623 *16 jun 20034 mar 2004Wei LiuMethod for fabricating a gate structure of a field effect transistor
US20040048491 *28 aug 200311 mar 2004Hyung-Suk JungPost thermal treatment methods of forming high dielectric layers in integrated circuit devices
US20040053484 *16 sep 200218 mar 2004Applied Materials, Inc.Method of fabricating a gate structure of a field effect transistor using a hard mask
US20040053515 *12 sep 200218 mar 2004Comita Paul B.Apparatus and method for surface finishing a silicon film
US20050008779 *6 aug 200413 jan 2005Yang Michael XiMultiple precursor cyclical depositon system
US20050009371 *6 aug 200413 jan 2005Metzner Craig R.System and method for forming a gate dielectric
US20050012975 *2 aug 200420 jan 2005George Steven M.Al2O3 atomic layer deposition to enhance the deposition of hydrophobic or hydrophilic coatings on micro-electromechcanical devices
US20050037627 *27 nov 200217 feb 2005Christian DussarratMethod for depositing silicon nitride films and silicon oxynitride films by chemical vapor deposition
US20050079691 *10 okt 200314 apr 2005Applied Materials, Inc.Methods of selective deposition of heavily doped epitaxial SiGe
US20050079692 *14 maj 200414 apr 2005Applied Materials, Inc.Methods to fabricate MOSFET devices using selective deposition process
US20060019032 *23 jul 200426 jan 2006Yaxin WangLow thermal budget silicon nitride formation for advance transistor fabrication
US20060019033 *24 jun 200526 jan 2006Applied Materials, Inc.Plasma treatment of hafnium-containing materials
US20060060920 *17 sep 200423 mar 2006Applied Materials, Inc.Poly-silicon-germanium gate stack and method for forming the same
US20060062917 *9 sep 200523 mar 2006Shankar MuthukrishnanVapor deposition of hafnium silicate materials with tris(dimethylamino)silane
US20060084283 *20 okt 200420 apr 2006Paranjpe Ajit PLow temperature sin deposition methods
US20070020890 *22 sep 200525 jan 2007Applied Materials, Inc.Method and apparatus for semiconductor processing
US20070049043 *23 aug 20051 mar 2007Applied Materials, Inc.Nitrogen profile engineering in HI-K nitridation for device performance enhancement and reliability improvement
US20070049053 *26 aug 20051 mar 2007Applied Materials, Inc.Pretreatment processes within a batch ALD reactor
US20070065578 *21 sep 200522 mar 2007Applied Materials, Inc.Treatment processes for a batch ALD reactor
US20070066023 *18 sep 200622 mar 2007Randhir ThakurMethod to form a device on a soi substrate
US20070082451 *9 okt 200612 apr 2007Samoilov Arkadii VMethods to fabricate mosfet devices using a selective deposition process
Hänvisningar finns i följande patent
citeras i Registreringsdatum Publiceringsdatum Sökande Titel
US86585408 jun 201125 feb 2014Applied Materials, Inc.Methods for low temperature conditioning of process chambers
US9044793 *19 nov 20122 jun 2015Semiconductor Energy Laboratory Co., Ltd.Method for cleaning film formation apparatus and method for manufacturing semiconductor device
US9548224 *11 maj 201117 jan 2017Ultra High Vacuum Solutions Ltd.Method and apparatus to control surface texture modification of silicon wafers for photovoltaic cell devices
US20130069204 *11 maj 201121 mar 2013Ultra High Vacuum Solutions Ltd 1/A Nines EngineMethod and Apparatus to Control Surface Texture Modification of Silicon Wafers for Photovoltaic Cell Devices
US20130130476 *19 nov 201223 maj 2013Semiconductor Energy Laboratory Co., Ltd.Method for cleaning film formation apparatus and method for manufacturing semiconductor device
Klassificeringar
USA-klassificering438/714, 257/E21.131, 257/E21.218, 257/E21.102, 257/E21.219, 257/E21.634, 257/E21.62, 257/E21.633, 257/E21.226, 257/E21.214
Internationell klassificeringH01L21/302
Kooperativ klassningH01L21/02381, H01L21/02532, H01L21/0262, H01L21/02658, B08B7/0035, H01L21/02019, H01L21/02046, H01L21/02057, H01L21/3065, H01L21/823425, H01L21/823807, H01L21/823814, H01L21/02529
Europeisk klassificeringH01L21/02F2B, H01L21/8234D2, H01L21/3065, B08B7/00S, H01L21/02F4, H01L21/02D2M2C
Juridiska händelser
DatumKodHändelseBeskrivning
23 maj 2007ASAssignment
Owner name: APPLIED MATERIALS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAMOILOV, ARKADII V.;REEL/FRAME:019337/0239
Effective date: 20050128