US20060230563A1 - Oral care device with multi-structural contact elements - Google Patents

Oral care device with multi-structural contact elements Download PDF

Info

Publication number
US20060230563A1
US20060230563A1 US11/173,313 US17331305A US2006230563A1 US 20060230563 A1 US20060230563 A1 US 20060230563A1 US 17331305 A US17331305 A US 17331305A US 2006230563 A1 US2006230563 A1 US 2006230563A1
Authority
US
United States
Prior art keywords
squeegee
bristle
protruding
structures
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/173,313
Inventor
James Gavney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/957,302 external-priority patent/US6865767B1/en
Priority claimed from US10/925,582 external-priority patent/US7434288B2/en
Application filed by Individual filed Critical Individual
Priority to US11/173,313 priority Critical patent/US20060230563A1/en
Priority to PCT/US2006/025847 priority patent/WO2007005753A2/en
Publication of US20060230563A1 publication Critical patent/US20060230563A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/12Implements with several different treating devices
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B15/00Other brushes; Brushes with additional arrangements
    • A46B15/0002Arrangements for enhancing monitoring or controlling the brushing process
    • A46B15/0016Arrangements for enhancing monitoring or controlling the brushing process with enhancing means
    • A46B15/0032Arrangements for enhancing monitoring or controlling the brushing process with enhancing means with protrusion for polishing teeth
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B5/00Brush bodies; Handles integral with brushware
    • A46B5/002Brush bodies; Handles integral with brushware having articulations, joints or flexible portions
    • A46B5/0025Brushes with elastically deformable heads that change shape during use
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B9/00Arrangements of the bristles in the brush body
    • A46B9/005Arrangements of the bristles in the brush body where the brushing material is not made of bristles, e.g. sponge, rubber or paper
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B9/00Arrangements of the bristles in the brush body
    • A46B9/06Arrangement of mixed bristles or tufts of bristles, e.g. wire, fibre, rubber
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B9/00Arrangements of the bristles in the brush body
    • A46B9/06Arrangement of mixed bristles or tufts of bristles, e.g. wire, fibre, rubber
    • A46B9/065Arrangement of mixed bristles or tufts of bristles, e.g. wire, fibre, rubber the bristles or the tufts being embedded in a different brushing material
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/222Brush body details, e.g. the shape thereof or connection to handle
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B2200/00Brushes characterized by their functions, uses or applications
    • A46B2200/10For human or animal care
    • A46B2200/1066Toothbrush for cleaning the teeth or dentures

Definitions

  • This invention relates generally to devices with contact elements. More specifically, the invention relates to devices with resilient contact elements.
  • Brush devices have bristle contact elements.
  • the bristles are provided in the appropriate configuration and are chosen with the appropriate geometry, flexibility, hardness and resiliency to suit the intended purpose.
  • a paintbrush is typically configured with long flexible bristles that conform to surfaces and facilitate the application of paints to surfaces.
  • Other brush devices are configured with short rigid bristles to scour, scrub or clean surfaces.
  • Sponges and other absorbent materials are also used as resilient contact elements. Sponges and related materials are typically soft and used in cleaning devices and applicator devices.
  • Squeegees are also used in contact devices. Because squeegees are often made from non-absorbent materials, such as rubber, they are not generally used in applicator devices. Squeegees are flexible and resilient and tend to be too soft to be used in scrubbing or scouring devices. Squeegees are most commonly used to wipe or squeegee water and water solutions from smooth glass surfaces.
  • Stroud describes a polymeric sweeping device that is formed from a polymeric head with a soft polymeric bristle portion.
  • Florsline describes a device with a silicone tip configured to be used as a paint applicator or an artist's tool.
  • Molded rubber-like or resilient contact elements have also been described in dentition cleaning and oral care devices.
  • Herrera describes a device for removing adhesives from a palate.
  • the device is configured with a plurality of rubber nodules having resiliencies that are sensitive to temperature.
  • Tveras in the U.S. Pat. No. 5,810,556, discloses an oral hygiene device configured with a plurality of wiping elements at one end of the device and a brush section at the other end; the wiping elements are configured for scraping plaque from a tongue.
  • Kweon describes a toothbrush with silicone rubber bristles.
  • the silicone bristles are plate-shaped bristles extending in a parallel arrangement along the sides of the cleaning head.
  • the cleaning head is attached to a handle through a hole in the handle.
  • DeNiro et al. describe a resilient chewing device for cleaning teeth and gums.
  • the device is a spool-shaped member formed of a resilient material.
  • the interior regions of the spool-shaped member have protrusions to facilitate the cleaning of gums and teeth when a user chews on the device.
  • the current invention is directed to a device with at least one resilient contact element.
  • the device of the present invention is configured for applying materials to a surface, cleaning a surface, texturing materials or massaging tissues.
  • the contact element has a least two structures.
  • Primary structures refer to structures that protrude from a supporting non-contact structure or portion thereof, such as a handle or a cleaning head.
  • Secondary structures refer to structures that are coupled to primary structures such that the secondary structures exhibit cooperative displacement with the primary structure.
  • both the primary and the secondary structure contribute to the contact properties of the contact elements.
  • the primary structure and the secondary structure are made of the sane material or of different materials.
  • the primary structure and the secondary structure are formed in multiple steps, as a monolithic element, or in parts that are later attached together.
  • a device in accordance with the instant invention is configured with any number contact elements depending on the intended use. Further, it is understood that contact elements and the corresponding supporting structure or structures of the device are monolithic or formed in parts.
  • the primary and secondary structures are preferably formed from resilient materials such as plastics, elastomers, rubber or rubber-like materials.
  • the secondary structure comprises metal bristles.
  • the primary and the secondary structures are, nodule structures, arrays of nodules, squeegee structures, squeegee matrix structures, bristles and combinations thereof.
  • the contact surfaces provided by the device of the present invention are configured to be collectively planar, curved or three-dimensional.
  • the primary structure preferably protrudes from a support structure by a distance in a range of 0.2 to 6.0 mm.
  • the maximum thickness of any nodule protrusion, squeegee wall, or matrix wall is preferably not greater that 2.0 mm and is more preferably less than 1.0 mm and greater than 0.3 mm.
  • contact devices with contact elements of larger dimensions than the preferred dimensions, recited herein can have industrial applications.
  • the primary structure provides first contact surfaces and the secondary structure provides second contact surfaces.
  • the primary structure is molded and is larger than the secondary structure, wherein the secondary structure protrudes from a surface portion of the primary structure. Accordingly, the secondary structure exhibits cooperative displacement, wherein displacing the primary structure from its equilibrium resting position will also displace the secondary structure.
  • the primary structure may also exhibit cooperative displacement with the secondary structure.
  • the primary and secondary structures of a contact element are configured such that only the contact surfaces of either the primary or secondary structure will engage a working surface when a first force is applied to a working surface through the primary structure.
  • the contact surfaces of the secondary and primary structure engage the working surface. Accordingly, multiple types of contact surfaces are provided within a single multi-structural contact element or device. Further, applying more or less force to the working surface through the contact element controls the types contact surfaces that engage the working surface.
  • the primary structure is more flexible than the secondary structure.
  • the primary structure provides a cushion for the second structure.
  • the force that is required to deform the primary structure limits the force that may be applied to a working surface through the contact element or elements.
  • a device is configured with a contact element having a primary structure and a secondary structure capable of engaging a working surface concurrently through out an entire range of forces as applied to a working surface through the contact element.
  • a contact element includes a squeegee primary element that surrounds bristles.
  • the primary squeegee element has protruding wall that are preferably configured to guide bristles and wipe teeth and gums while brushing.
  • the primary squeegee element can also include a secondary structure.
  • the secondary structure can include smaller squeegee elements, nodules, bristles or combinations thereof, that protrudes from a wall and/or edge of the squeegee element
  • the primary structure and/or the secondary structure preferably have hardness values in a range of 10 to 90 Shores A as determined by a method described in Document ASTM D2240-00, Developed by the American Society for Testing Materials, entitled “Standard Test Method for Rubber Property-Durometer Hardness”, the contents of which are hereby incorporated by reference.
  • the secondary structure includes bristles
  • the bristles can be formed from polyester, polyamide or any other suitable resin for forming fibers.
  • FIG. 1 a shows an exemplary nodule structure.
  • FIG. 1 b show an exemplary squeegee structure.
  • FIG. 1 c illustrates a perspective view of a squeegee matrix.
  • FIG. 2 a shows a contact element with nodule structure and a squeegee structure protruding from top surfaces of the nodule structure.
  • FIG. 2 b illustrates a contact element with tubular squeegee structure and bristles protruding from edge surfaces of the squeegee structure.
  • FIGS. 2 c - l show contact elements with primary nodule structures with secondary nodule structures, bristles, squeegee structures and textured or patterned walls, in accordance with the embodiments of the present invention.
  • FIGS. 3 a - j show a contact element with primary squeegee structures with secondary nodule structures, bristles, squeegee structures and textured or patterned walls, in accordance with the embodiments of the present invention.
  • FIG. 4 a shows a contact element with a tapered squeegee structure and bristles protruding from edge surfaces of the squeegee structure.
  • FIG. 4 b is a cross-sectional view of the contact element shown in FIG. 4 a , illustrating bristles extending through the squeegee structure.
  • FIG. 5 a shows a contact element with a contoured squeegee structure and with bristles protruding from between depressed regions of the contoured squeegee structure.
  • FIG. 5 b shows a contact element with nodular protrusions and with bristles protruding from surfaces between the nodular protrusions of the contact element.
  • FIGS. 6 a - h illustrate several exemplary symmetrical nodular structures.
  • FIGS. 7 a - 7 g illustrate several exemplary asymmetric nodular structures.
  • FIGS. 8 a - f illustrate several exemplary contoured tip and edge surfaces.
  • FIG. 9 a shows a contact element with a nodular structure and a bristle structure protruding from tip surfaces of the nodular structure.
  • FIG. 9 b illustrates the contact element shown in the FIG. 9 a bending at the body portion of the nodule structure and concurrently displacing the bristle structure attached thereto.
  • FIG. 10 a shows a cross-sectional view of a contact element with a structure having an L-shaped cross-section and bristles protruding from inner walls of the L-shaped cross-section.
  • FIG. 10 b shows cooperative displacement of bristle structures protruding from the L-shaped cross-section of the contact element illustrated in the FIG. 10 a.
  • FIG. 10 c shows cooperative displacement of a selective set of bristles protruding from the structure L-shaped cross-section of the contact element illustrated in the FIG. 10 a.
  • FIGS. 11 a - c illustrate several views of a dentition cleaning device, in accordance with the embodiments of the invention.
  • FIGS. 12 a - c illustrate several views of a dentition cleaning device, in accordance with the further embodiments of the invention.
  • FIGS. 13 a - c illustrate several views of a dentition cleaning device, in accordance with yet further embodiments of the invention.
  • FIGS. 14 a - c illustrate several views of a squeegee structures or bristle boots that surround bristles, in accordance with yet further embodiments of the invention.
  • FIGS. 15 a - b illustrate a dentition cleaning devices, in accordance with still further embodiments of the invention.
  • FIG. 16 shows an electric powered oral-care device comprising a power cleaning head with one or more movable regions, in accordance with the embodiments of the invention.
  • a nodule is a protruding structure with outer surfaces.
  • a squeegee is an elongated and protruding structure, i.e. a nodule that is on the average thinner in one dimension that the other, the wider dimension being referred to herein as the elongation direction.
  • An array is a grouping of protruding structures.
  • a matrix is a protruding structure that has an extended network of edges, walls and cavities.
  • Softness is the ease with which the surface of a structure yields or deforms to an applied force.
  • Hardness is the magnitude of force required for a structure to yield or deform to an applied force as measured with durometer hardness meter and reported in units of Shore A.
  • Resiliency is the ability of a structure to return substantially to its original form or geometry after a deformation to the structure or portion thereof. Structures that substantially return to their original form or geometry quickly after a deformation are described herein, as being more resilient than those structures, which substantially return to their original form or geometry slowly after a deformation.
  • Resilient materials are materials that exhibit resiliency.
  • Flexibility is a measure of the ability of a resilient structure or a measure of the ability of a resilient structure to be displaced from an equilibrium rest position without damage to the structure. A structure that is less flexible is more rigid.
  • FIG. 1 a shows a typical nodule structure 50 .
  • the nodule structure protrudes from support surfaces 55 in a protruding direction 54 and preferably extends to distances in a range of 0.2 to 6.0 mm from the support surfaces 55 .
  • the nodule 53 has wall surfaces and tip surfaces 51 .
  • the averaged thickness 56 of the nodule 50 is not greater than 2.0 mm and is most preferably less than 1.0 mm measured from distances 57 between the tip 51 of the structure 50 and 0.2 mm down from the tip 51 of the structure 50 .
  • FIG. 1 b shows a section of a squeegee structure 100 .
  • the squeegee structure 100 protrudes from support surfaces 105 in a protruding direction 104 and preferably extends to distances in a range of 0.2 to 6.0 mm.
  • the squeegee structure 100 has squeegee wall surfaces 102 , squeegee edge surfaces 101 and squeegee ends 103 and 103 ′.
  • squeegee structures extend in the elongation direction 108 to any distance and takes on any number of shapes and forms.
  • Squeegee structure herein refers to an elongated structure with two ends as shown in FIG.
  • the averaged thickness 106 of the squeegee wall 102 is not greater than 2.0 mm and is most preferably less than 1.0 mm measured distances 107 between the edge surfaces 101 of the structure 100 and 0.2 mm down from the edge surfaces 101 of the structure 100 .
  • FIG. 1 c shows a two-cavity matrix structure 150 .
  • the matrix structure 150 protrudes from support surfaces 155 in a protruding direction 159 and preferably extends to distances in a range of 0.2 to 6.0 mm.
  • the matrix structure 150 has edge surfaces 151 , wall surfaces 153 , and cavities 154 and 156 .
  • Matrix structures in accordance with the instant invention have any number of geometries and shapes.
  • the matrix structure has a symmetrical or an asymmetrical network of wall surfaces, edge surfaces and cavities.
  • the averaged thickness 157 of the walls 153 are not greater than 2.0 mm and is most preferably less than 1.0 mm measured from distances 160 between the edge surfaces 151 of the structure 150 and 0.2 mm down from the edge surfaces 151 of the structure 150 .
  • a contact device is configured to have at least one a resilient contact element.
  • the contact element has a primary structure that is a nodule, a squeegee, an array or a matrix.
  • the primary structure provides for first contact surfaces that are capable of contacting a working surface.
  • the resilient contact element has at least one secondary structure that is coupled to the primary structure.
  • the secondary structure is capable of exhibiting cooperative displacement with the primary contact structure.
  • Cooperative displacement herein, refers to the displacement of one structure through the displacement of another structure.
  • the secondary structure protrudes from surfaces or a surface region of the primary structure. Most preferably, the secondary structure protrudes from wall surfaces, edge surfaces or tip surfaces of the primary structure.
  • the secondary structure is a nodule, a squeegee, an array, a matrix or a bristle structure.
  • the secondary structure provides second contact surfaces that are capable of contacting the working surface.
  • Both the primary and the secondary structures are preferably resilient and formed from resilient materials including, but not limited, to plastics, rubbers, silicones, urethanes, latex and other elastomeric materials.
  • the primary structure preferably has durometer hardness in a range of 10 to 90 Shores A.
  • the secondary contact structure preferably comprises a bristle structure.
  • the primary structure is preferably formed by injection molding or any other suitable molding technique known in the art.
  • the secondary structures are preferably formed by fiber drawing techniques for forming bristles from plastic resin materials. Alternatively, the secondary structure is a nodule, a squeegee, any array or matrix also formed by molding techniques.
  • the contact element can be modified by incorporating non-resilient materials such as abrasive particles into the primary and/or secondary structures.
  • FIG. 2 a illustrates a contact element 200 with a nodule 203 protruding from support surfaces 205 .
  • the nodule 203 has contact surfaces 201 that are capable of engaging a working surface (not shown).
  • the contact element 200 has a squeegee structure 206 coupled to the nodule 203 and protruding from the contact surfaces 201 of the nodule 203 .
  • the squeegee structure 206 provides the contact element 200 with a second set of contact surfaces that are capable of engaging the working surface.
  • the contact element 200 will engage the working surface with the squeegee 206 when a first force is applied to the working surface through the nodule 203 .
  • surfaces of the nodule 203 will also engage the working surface.
  • FIG. 2 b illustrates a contact element 250 with a tubular squeegee 253 protruding from support surfaces 255 .
  • the squeegee 253 has contact surfaces 251 that are capable of engaging a working surface (not shown).
  • the contact element 250 has a bristle structure 256 coupled to the squeegee 253 and protruding from the surfaces 251 of the squeegee 253 .
  • the bristle structure 256 provides the contact element 250 with bristle surfaces that are capable of engaging the working surface.
  • the contact element 250 will engage a working surface with the bristles 256 when a first applied force is applied to the working surface through the squeegee 253 .
  • surfaces 251 of the squeegee 253 will also engage the working surface.
  • FIGS. 2 c - h show top views of contact elements with primary nodule structures and secondary squeegee structures or nodules protruding from top surfaces of the primary nodule structures, in accordance with the embodiments of the present invention.
  • FIG. 2 c shows a contact element 220 comprising a plurality of wave-like or serpentine squeegee structures 223 protruding from a top surface of a nodule structure 221 .
  • FIG. 2 d shows a contact element 230 comprising a plurality of cross-shaped squeegee structures 233 protruding from a top surface of a nodule structure 231 .
  • FIG. 2 e shows a contact element 240 comprising a plurality of curved squeegee segments 243 protruding from a top surface of a nodule structure 241 .
  • FIG. 2 f shows a contact element 250 comprising a plurality of continuous and concentrically positioned squeegee structures 253 and 255 protruding from a top surface of a nodule structure 231 .
  • FIG. 2 g shows a contact element 260 comprising a plurality of linear squeegee segments 263 , 265 and 267 protruding from a top surface of a nodule structure 261 and positioned at a range of angles with respect to each other.
  • FIGS. 2 a - h show a contact element 270 comprising a nodules structure 271 and plurality of smaller nodules structures 273 and 273 ′ protruding from a top surface of a nodule structure 270 .
  • the contact elements illustrated in FIGS. 2 a - h are provided as examples and it will be clear to one skilled in the art that contact elements can include a primary nodule structure with secondary squeegee structures protruding from a top surface that have any number of geometries or combinations of geometries.
  • FIGS. 2 i - l show perspective views of contact elements with primary nodule structures and secondary structures protruding from side surfaces of the primary nodule structures, in accordance with the embodiments of the present invention.
  • FIG. 2 i shows a contact element 280 comprising a nodule structure 285 protruding from a support surface 281 , wherein protruding walls 281 of the nodule structure 285 are contoured with alternating ring-like protrusions 282 and depressions 283 .
  • FIG. 2 i shows a contact element 280 comprising a nodule structure 285 protruding from a support surface 281 , wherein protruding walls 281 of the nodule structure 285 are contoured with alternating ring-like protrusions 282 and depressions 283 .
  • FIG. 2 j shows a contact element 290 comprising a nodule structure 295 protruding from a support surface 291 , wherein protruding walls 292 of the nodule structure 295 are contoured with depressions or cavitations 1201 .
  • FIG. 2 k shows a contact element 1200 comprising a nodule structure 1205 protruding from a support surface 291 , wherein protruding walls 1203 of the nodule structure 1205 have squeegees extending in the protruding direction of the nodule structure 1205 .
  • FIG. 2L shows a contact element 1210 comprising a nodule structure 1215 protruding from a support surface 1211 , wherein protruding walls 1213 of the nodule structure 1215 have nodule protrusions 1212 and 1212 ′.
  • FIG. 3 a illustrates a contact element 300 with a squeegee structure 302 .
  • the squeegee structure 302 has edge surfaces 301 for engaging a working surface (not shown).
  • the bristle sections 304 , 304 ′ and 304 ′′ and the squeegee surfaces 301 are cable of engaging the working surface simultaneously or individually depending on presentation angle of the contact element 300 relative to the working surface and the force that is applied to the working surface through the contact element.
  • the contact element 300 provides the contact properties of a squeegee and bristles in a single multi-structural contact element.
  • the bristles 304 , 304 ′ and 304 ′′ can at any angle 306 relative to the protruding wall surfaces 303 suitable for the application at hand.
  • FIG. 3 b illustrates a contact element 350 with a squeegee structure 352 .
  • the squeegee structure 352 has edge surfaces 351 for engaging a working surface (not shown).
  • the secondary squeegee structures 354 , 354 ′ and 354 ′′and the squeegee surfaces 351 are cable of engaging the working surface.
  • the secondary squeegees 304 , 304 ′ and 304 ′′and the squeegee surfaces 351 engage the working surface simultaneously or individually depending on presentation angle of the contact element 350 relative to the working surface and the force that is applied to the working surface through the contact element as explained in detail above.
  • FIGS. 3 c - f show schematic representation of contact elements with a primary squeegee structures and secondary squeegee structures protruding from wall surfaces of the primary squeegee structures, in accordance with the embodiments of the invention.
  • FIG. 3 c shows a contact element 320 with a squeegee structure 321 and a plurality of wave-like of serpentine squeegee structures 323 protruding from a wall of squeegee structure 321 .
  • FIG. 3 c shows a contact element 320 with a squeegee structure 321 and a plurality of wave-like of serpentine squeegee structures 323 protruding from a wall of squeegee structure 321 .
  • FIG. 3 d shows a contact element 330 with a squeegee structure 331 and a plurality of cross-shaped squeegee structures 333 and 335 protruding from a wall of squeegee structure 331 .
  • the squeegee structure 335 includes a longer squeegee segment with a plurality of smaller squeegee segments that intersect with the longer squeegee segment forming a backbone-shaped squeegee 335 .
  • FIG. 3 e shows a contact element 350 with a squeegee structure 351 and a plurality of continuous squeegee structures 335 and 345 protruding from a wall of squeegee structure 331 .
  • FIG. 3 f shows a contact element 360 with a squeegee structure 361 and a plurality of linear squeegee segments 363 protruding from a wall of squeegee structure 361 .
  • FIGS. 3 g - j show perspective views of contact elements with primary squeegee structures and secondary structures protruding from side surfaces of the primary structures, in accordance with the embodiments of the present invention.
  • FIG. 3 g shows a contact element 370 comprising a squeegee structure 375 protruding from a support surface 371 , wherein protruding walls 374 of the squeegee structure 375 have curved squeegees 373 and 373 ′ protruding therefrom.
  • FIG. 3 g shows a contact element 370 comprising a squeegee structure 375 protruding from a support surface 371 , wherein protruding walls 374 of the squeegee structure 375 have curved squeegees 373 and 373 ′ protruding therefrom.
  • FIG. 3 g shows a contact element 370 comprising a squeegee structure 375 protruding from a
  • FIG. 3 h shows a contact element 380 comprising a squeegee structure 385 protruding from a support surface 381 , wherein protruding walls 384 of the squeegee structure 385 are contoured with depressions or cavitations 383 .
  • FIG. 3 i shows a contact element 390 comprising a squeegee structure 395 protruding from a support surface 391 , wherein protruding walls 394 of the squeegee structure 395 have nodule structure 393 and 393 ′ protruding therefrom.
  • 3 j shows a contact element 1300 comprising a squeegee structure 1305 protruding from a support surface 1301 , wherein protruding walls 1304 of the squeegee structure 1305 are patterned with circular depressions or holes 1303 and 1303 .
  • FIG. 4 a illustrates a contact element 400 with a tapered squeegee 402 protruding from support surfaces 405 .
  • the squeegee 402 has wall surfaces 403 and edge surfaces 401 that are capable of engaging a working surface (not shown).
  • the contact element 400 has a bristle structure 404 couple to the squeegee 402 and protruding from the edge surfaces 401 of the squeegee 402 .
  • the bristle structure 404 provides the contact element 400 with bristle surfaces that are also capable of engaging the working surface.
  • the contact element 400 will engage the working surface with the bristles 404 when a first force is applied to the working surface through the squeegee 402 .
  • the edge surfaces 401 and wall surfaces 403 of the squeegee 402 will also engage the working surface.
  • FIG. 4 b shows a cross-sectional view of the contact element 400 illustrated in the FIG. 4 b .
  • the tapered squeegee 402 has wall surfaces 403 and 403 ′ and the edge surfaces 401 that are capable of engaging a working surface, as described above.
  • the bristles 404 are preferably attached to the support 405 extend through a portion of the squeegee 402 and protrude from wall surfaces 403 and 403 ′ or edge surfaces 401 , as shown.
  • the bristles of the bristle structure 404 are not required to extend through the entire squeegee 402 to practice the invention and may be couple to surfaces of the squeegee structure 402 by other means known in the art.
  • FIG. 5 a illustrates a contact element 500 that has a squeegee structure 512 which protrudes from support surfaces 505 with protruding squeegee walls 510 .
  • the squeegee element 512 is contoured with teeth 501 , 503 , 505 , 507 , and 509 . Between the teeth 501 , 503 , 505 , 507 , and 509 there are notches or depressions 511 , 513 , 515 and 517 . On the surfaces of the notches 511 , 513 , 515 and 517 there are bristle sections 502 , 504 , 506 and 508 , respectively.
  • the squeegee teeth 501 , 503 , 505 , 507 , and 509 and the bristle sections 502 , 504 , 506 and 508 are made to be longer or shorter relative to each other depending on the application at hand.
  • squeegee teeth 501 , 503 , 505 , 507 , and 509 are longer than the bristle sections 502 , 504 , 506 and 508 , as shown, then the squeegee teeth 501 , 503 , 505 , 507 , and 509 (or a portion thereof) will engage a working surface (not shown) when a first force is applied to the working surface through squeegee structure 512 .
  • the bristle sections 502 , 504 , 506 and 508 (or a portion thereof) will also contact the working surface.
  • the squeegee teeth 501 , 503 , 505 , 507 , and 509 and the bristle sections 502 , 504 , 506 and 508 are made to have the same length such that the teeth 501 , 503 , 505 , 507 , and 509 and bristle sections 502 , 504 , 506 and 508 engage a working surface simultaneously.
  • the contact device of the instant invention is configured with any number of teeth and bristles sections suitable for the application at hand.
  • FIG. 5 b illustrates a contact element 550 that has an extended nodular structure 562 that protrudes from support surfaces 555 with protruding nodules 551 , 553 , 555 and 557 .
  • an extended nodular structure 562 that protrudes from support surfaces 555 with protruding nodules 551 , 553 , 555 and 557 .
  • Protruding from the depressed surfaces 559 , 561 and 563 there are bristle sections 552 , 554 , and 556 .
  • the nodules 551 , 553 , 555 and 557 and the bristle sections 552 , 554 , and 556 are made to be longer or shorter or the same, as explained above relative to each other depending on the application at hand.
  • the nodules 551 , 553 , 555 and 557 and the bristle sections 552 , 554 , and 556 are made to have the same length so that the nodules 551 , 553 , 555 and 557 and bristle sections 552 , 554 , and 556 contact a working surface simultaneously.
  • the contact device of the instant invention is configured with any number of teeth and bristles sections suitable for the application at hand.
  • FIGS. 6 a - h illustrate several symmetrical nodule structure geometries that are useful in the contact device of the instant invention.
  • FIG. 6 a shows a nodule 610 with cylindrical protruding walls 611 and a rounded tip portion 612 ;
  • FIG. 6 b shows a nodule 620 with cylindrical protruding walls 621 and a flat top 622 ;
  • FIG. 6 c shows a nodule 630 with contoured protruding walls 631 and a flat top 632 ;
  • FIG. 6 d shows a pointed nodule 640 with tapered protruding walls 641 and a tip 642 ;
  • FIG. 6 e shows a rectangular nodule 650 with planar walls 651 and a flat top 652 ;
  • FIG. 6 f shows a nodule 660 with planar walls 661 and a rounded tip portion 662 ;
  • FIG. 6 g shows a star shaped nodule 670 with protruding walls 671 and a star-shaped top 672 ;
  • FIG. 6 h shows a triangular nodule 680 with protruding walls 681 and triangular-shaped top 682 .
  • FIGS. 7 a - g illustrate several asymmetrical nodule structure geometries that are useful in the contact device of the instant invention.
  • FIG. 7 a shows a wedge-shaped nodule 700 with protruding walls 701 and a top 702 ;
  • FIG. 7 b shows a nodule 710 with contoured walls 711 and a bow-tie shaped top 712 ;
  • FIG. 7 c shows a curved nodule 720 with protruding walls 721 (curved in the elongation direction) and a flat top 722 ;
  • FIG. 7 d shows a curved nodule 730 with protruding walls 733 (curved in the protruding direction) and a top 732 ;
  • FIG. 7 a shows a wedge-shaped nodule 700 with protruding walls 701 and a top 702 ;
  • FIG. 7 b shows a nodule 710 with contoured walls 711 and a bow-t
  • FIG. 7 e shows a wedge shaped nodule 740 with tapered walls 743 , triangular walls 741 and an edge 742 ;
  • FIG. 7 f shows a nodule 750 with grooved walls 753 , bow-tie shaped walls 752 and a flat top 751 ;
  • FIG. 7 g shows a nodule 760 with contoured walls 762 and a top 761 . It will be clear to one of average skill in the art that any number of symmetric and asymmetric nodule geometries and combinations thereof are useful in the contact device of the instant invention.
  • FIG. 8 a - f illustrate several edge and tip contours of contact structures used in the instant invention.
  • FIG. 8 a shows a contact structure segment 80 with a planar contact edge 81 ;
  • FIG. 8 b shows a contact structure segment 82 with a V-shaped contact edge 83 ;
  • FIG. 8 c shows a contact structure segment 84 with a curve convex contoured contact edge 85 ;
  • FIG. 8 d shows a contact structure segment 86 with a concave contoured contact edge 87 ;
  • FIG. 8 e shows a contact structure segment 88 with a diagonally contoured contact edge 89 ;
  • FIG. 8 f shows a contact structure segment 90 with a pointed contact edge 91 .
  • FIG. 9 a shows a contact element 900 with a primary nodular structure 905 that protrudes from a support structure 906 in a protruding direction 907 .
  • the support structure 906 is rigid or flexible depending on the intended application.
  • the support 906 and the nodule 905 are formed of the same or different material and are made in parts or are co-molded as a monolithic unit.
  • a contact device has one or more contact elements or an array of contact elements such as the one shown in the FIG. 9 a.
  • the contact element 900 has a bristle structure 901 comprising bristle groupings 902 protruding from top surfaces 903 of the nodule 905 .
  • a bristle structure protrudes from wall surfaces or edge surfaces 904 of the nodule 905 or any combination of surfaces and edges.
  • the bristle structure 901 is comprised of bristles that are formed from resilient materials, including but not limited to, natural hair, plastics, rubbers, silicones, urethanes latex and elastomeric materials. Bristles, while typically hard, are made to be flexible and resilient by virtue of their thin elongated geometries.
  • the contact behavior of the element 900 depends on the relative flexibility or rigidity of the primary 905 and secondary 901 contact structures. For example, when the bristle structure 901 is made to be sufficiently rigid relative to the nodule structure 905 , then engaging the bristle structure 901 with a working surface (not shown) and applying a force to the working surface through the nodule 905 will cause the nodule 905 to deflect as shown in the FIG. 9 b .
  • the nodule structure 905 more flexible that the bristle structure 901 allows the nodule structure 905 to function as a cushion for the more rigid abrasive bristle structure 901 .
  • the bristle structure 901 is made to be more flexible relative to the nodule structure 905 , then engaging the bristle structure 901 with the working surface and applying a force to the working surface through the nodule 905 will cause the bristle structure 901 to be displaced from its equilibrium resting position. If the bristles are sufficiently flexible, then the bristles of the bristle structure 901 will be completely displaced and surfaces of the nodule 905 will also contact the working surface.
  • FIG. 9 c shows a contact element 1910 , in accordance with further embodiments of the invention.
  • the contact element has a primary nodular structure 1903 that protrudes from a surface 1906 of a support structure 1901 .
  • the contact element 1901 has primary nodule structures or fingers 1905 and 1905 ′ protruding from a top surface 1904 of the nodule structure 1903 .
  • the contact element 1910 can also includes bristles, squeegees or have patterned or contoured walls, such as described above with reference to FIGS. 2 c - l and FIGS. 3 a - j.
  • FIG. 10 a shows a cross-sectional view of a contact element 10 in accordance with an alternative embodiment of the invention.
  • the primary structure 17 is a bent nodule or squeegee structure.
  • the primary structure 17 protrudes from a support structure 12 that is either rigid or flexible or a combination of rigid and flexible components.
  • the primary structure 17 protrudes from the support 12 with a base portion 18 in a direction 14 and further extends with a wall portion 19 in a second direction 16 .
  • Protruding from the interior surfaces of the base portion 18 and the wall portion 12 of the structure 17 are bristle structures 11 , 13 and 15 .
  • different groups of the bristle structures 11 , 13 and 15 will exhibit cooperative displacement.
  • the structures 11 , 13 and 15 are preferably imbedded in the primary structure 17 through bristle boats 38 and 37 that can be formed from a rigid or semi-rigid plastic which help to anchor or hold the bristle 11 , 13 and 15 into the primary structure 17 .
  • Bristle structures such as 11 13 and 15 can be configured to protrude for the structure 17 at any angle relative to the surfaces of the base portion 18 and the wall portion 12 , but preferably protrude from the wall portion at an angle 9 between 90 and 10 degrees relative to the wall portion 12 .
  • FIG. 11 a shows a top view of a contact device in accordance with the preferred embodiment of the invention.
  • the device 20 is preferably configured for cleaning dentition.
  • the device 20 has a handle portion 27 for griping and manipulating the device 20 during a cleaning operation.
  • the device 20 has at least one primary structure 29 that preferably forms two sides 21 and 21 ′ giving the device 20 a cleaning cavity or channel.
  • the primary structure 29 has a plurality of nodular protrusions 21 that contact surfaces of teeth and gums or dentures during a cleaning operation.
  • the device 20 also preferably has a plurality of bristle structures 23 and 24 that protrude from inner surfaces of the primary structure 29 .
  • the primary structure 29 is attached to the handle portion 27 through a support structure 28 .
  • the support structure 28 is preferably a channel support structure that is formed of rigid or flexible materials.
  • the channel 28 comprises interspersed flexible segments 25 and rigid segments 26 , which allow the channel structure 28 to bend and deform as required during use.
  • Protruding from the channel structure 28 are bristle sections 22 and 23 that have any number of bristles with any number bristle arrangements or configurations.
  • the bristle sections 22 and 23 are comprised of needle-like bristles having any resiliency, texture, geometry or hardness required to facilitate the cleaning of teeth and dentures.
  • the bristles are preferably formed by fiber drawing procedures known in the art.
  • the bristles are formed from nylon, polyester, polyamide or any other suitable plastic resin.
  • FIG. 11 b shows a perspective side view of the dentition cleaning device 20 shown in FIG. 11 a .
  • the nodular protrusions on sides 21 and 21 ′ preferable protrude farther than the bristle structures 22 and 23 such that the primary structure 19 cups teeth and dentition within the channel of bristles.
  • the preferred embodiment of the instant invention is particularly useful for guiding and controlling contact positions and angles of the bristle on gums and teeth.
  • the device 20 is also particularly useful for cleaning teeth and gums of persons wearing orthodontia.
  • the device 20 allows bristles to be positioned at angles relative orthodontia that are difficult or impossible to obtain with a conventional toothbrush.
  • FIG. 11 c illustrates a cross-sectional view 30 of a contact device in accordance with the instant invention.
  • the L-shaped primary structures 31 and 31 ′ are attached to a support structure 36 .
  • the support structure 36 is formed of rigid or flexible materials.
  • the support structure 36 preferably has interspersed flexible segments and rigid segments, as described above and shown in FIG. 11 a , which allow the support structure 36 to bend and deform as required during use.
  • Protruding from the support structure 36 are bristle structures 32 and 32 ′.
  • Protruding from inner surfaces of the structures 31 and 31 ′ are bristles structures 33 / 33 ′ and 34 / 34 ′, respectively.
  • the flexible backbone structure 36 described is also useful in numerous other devices that are configured to contact and/or clean protruding and/or elongated structures with complex geometries, such as teeth and dentures.
  • the L-shaped primary structures 31 and 31 ′ extended to form a continuous channel or a channel section.
  • FIG. 12 a shows a cross-sectional view of a dentition device 40 in the elongated direction of the dentition device 40 .
  • the dentition device 40 includes a handle 41 and support structure 41 ′ that are formed from a first polymeric material.
  • the dentition device 40 preferably includes bristles 43 that protrude the support structure 41 ′.
  • the dentition device 40 also includes a resilient contact structure 45 (primary structure) that is formed from a second polymeric material.
  • the resilient contact structure 45 preferably includes end nodules and/or squeegees 47 that protrude upward in a direction similar to the bristle 43 .
  • the first material that forms the handle 41 and the support structure 41 ′ is preferably a hard semi-rigid polymeric material with a hardness value that is greater than 90 Shores.
  • the second material that forms the resilient contact structure 45 is preferably a softer resilient material with a hardness value that is less than 90 Shores, such that portions of resilient contact structure 45 , including the nodules and/or squeegees 47 can be resiliently displaced from the support structure 41 ′, as described in detail above.
  • FIG. 12 b shows a cross-sectional view of the dentition device 40 along the width of the dentition cleaning device 40 .
  • the dentition device 40 is shown in FIG. 2 b with the resilient contact structure 45 and being resilient displaced outward from the support structure 41 ′ along both sides of the dentition device 40 .
  • Form the view shown in FIG. 2 b it can be seen that there are also bristles 43 ′ and 42 ′′ that protrude upward from portions of the resilient contact structure 45 and are resiliently displaced from the support structure 41 ′ along with side nodules and/or squeegees 48 and 48 ′.
  • the bristles 43 and 43 ′ are preferably set onto the resilient contact structure 45 through bristle boat structures 46 and 46 ′ that are formed from the same material as the support structure 41 ′ or a different material that is suitable for securing or anchoring the bristles 43 ′ and 43 ′′ to the resilient contact structure 45 .
  • FIG. 12 c shows a top schematic view of the dentition device that includes the handle 41 , the support structure 41 ′, the resilient contact structure 45 , the bristle boats 46 and 46 ′, the bristles 43 , 43 ′ and 43 ′′, the end nodules and/or squeegees 47 and the side nodules and/or squeegees 48 ′ and 48 ′′.
  • FIG. 12 d shows a perspective view of the dentition device 40 .
  • the bristles 43 ′ and 43 ′′ shown in FIGS. 12 a - c have been removed from FIG. 12 d for clarity.
  • the support structure 41 ′ is over molded by the resilient contact structure 45 , as indicated by the dotted line.
  • FIG. 13 a shows a cross-sectional view of a dentition device 50 in the elongated direction of the dentition device 50 , in accordance with yet further embodiments of the invention.
  • the dentition device 50 includes a handle 51 and support structure 51 ′ that are formed from a first polymeric material.
  • the dentition device 50 preferably includes bristles 53 and 53 ′ that protrude the support structure 51 ′ and a bristle boat 56 , respectively.
  • the bristle boat 56 is formed from a material that is suitable for holding and securing the bristles 53 ′, as described above.
  • the dentition device 50 also includes a resilient contact structure 55 that is formed from a second polymeric material.
  • the resilient contact structure 55 preferably includes end nodules and/or squeegees 57 that protrudes upward in a direction similar to the bristle 43 .
  • the first material that forms the handle 51 and the primary structure 51 ′ is preferably a hard semi-rigid polymeric material with a hardness value that is greater than 90 Shores.
  • the second material that forms the resilient contact structure 55 is preferably a softer resilient material with a hardness value that is less than 90 Shores, such that portions of resilient contact structure 55 , including the end nodules and/or squeegees 57 can be resiliently displaced from the support structure 51 ′.
  • FIG. 13 b shows the a cross-sectional view of the dentition device 50 in the elongated direction of the dentition device 50 and with the resilient contact structure 55 being resiliently displaced from the support structure 51 ′ through a flexible region 55 ′ of the secondary structure 55 . Note that the bristles 53 ′ are displaced in the elongated direction with the with the resilient contact structure 55 .
  • FIG. 13 c shows a top schematic view of the dentition device 50 that includes the handle 51 , the support structure 51 ′, the resilient contact structure 55 , the bristle boat 56 , the bristles 53 and 53 ′, the end nodules and/or squeegees 57 and the side nodules and/or squeegees 58 ′ and 58 ′′.
  • FIG. 12 d shows a perspective view of the dentition device 50 . Note that the support structure 51 ′ and the bristle boat 56 are over molded by the resilient contact structure 55 , as indicated by the dotted lines.
  • FIGS. 14 a - c illustrate several views of contact elements that include primary squeegee structures that surround bristles also referred to herein as bristle boots.
  • FIGS. 14 a - b show a prospective view and side view of a contact element 1400 that includes a primary squeegee or bristle boot 1403 that protrudes from a support 1401 and surrounds bristles 1407 and 1407 ′.
  • the bristles 1407 and 1407 ′ can also protrude from the support 1401 and/or a portion of the bristle boot 1403 .
  • the contact element 1400 also preferably includes a secondary squeegee structure or squeegee wall 1405 that protrudes from a top portion 1404 of the bristle boot 1403 and provides a wiping edge 1409 .
  • the secondary squeegee or squeegee wall 1405 helps to guide bristles 1407 and 1407 ′ between teeth and under the gum-line, while the bristle boot 1403 provides structural integrity for the bristles 1407 and 1407 ′, which is particularly beneficial when the bristles 1407 and 1407 ′ are very fine and/or soft.
  • the contact element 1400 includes nodules or finger that protrude from the top portion 1404 of the bristle boot 1403 .
  • the bristles 1407 and 1407 ′ can extend through a compartment 1406 of the primary squeegee structure of bristle boot 1403 , as indicated by the dotted or dashed lines and can be anchored or secured to the support 1401 through a bristle boat or bristle anchor structure 1402 , such as described previously above.
  • FIG. 14 c shows a prospective view of a contact element 1410 that includes a cylindrical bristle boot 1413 that protrudes from a surface 1406 of a support 1411 and surrounds bristles 1415 .
  • the bristles 1415 can protrude from the support 1401 and/or a portion of the bristle boot 1403 .
  • the contact element 1403 also preferably includes secondary squeegees or squeegee walls 417 and 1419 that protrude from a top portion 1416 of the bristle boot 1403 and provides wiping edges 1421 and 1423 .
  • the contact element 1410 can include nodules or finger that protrude from the top portion 1416 of the bristle boot 1413 .
  • FIGS. 15 a - b show schematic representations of cleaning heads 1500 and 1510 of dentition cleaning devices or systems that includes bristle boots that surround bristles and that preferably includes one or more secondary squeegee structures 1417 and 1419 and/or nodule structures, such as described above with reference to FIGS. 14 a - c.
  • the cleaning head 1500 includes a neck portion 1502 that is configured to attach to, or is attached to, a manual or electric handle (not shown).
  • the cleaning head 1500 includes a plurality of bristle boots 1503 and 1503 ′ that surround bristles protruding from a support surface 1501 of the cleaning head 1500 .
  • the cleaning head 1500 can also includes a plurality of squeegees 1505 and 1505 ′ that can be straight, curved or otherwise contoured, that also protrude from the support surface 1501 of the cleaning head 1500 .
  • the cleaning head 1500 can include bristle tufts and/or nodules 1507 that also protrude from the support surface 1501 of the cleaning head 1500 .
  • the cleaning head 1510 includes a neck portion 1512 that is configured to attach to, or is attached to, a manual or electric handle (not shown).
  • the cleaning head 1510 includes a plurality of elongated bristle boots 1513 and 1513 ′ that extend along opposed sides or edges of the a support surface 1511 and surround bristles protruding from a support surface 1511 of the cleaning head 1510 .
  • the cleaning head 1510 can also includes a plurality of squeegees 1515 and 1515 ′ that can be straight, curved or otherwise contoured, that also protrude from the support surface 1511 of the cleaning head 1510 .
  • the cleaning head 1510 can include bristle tufts and/or nodules 1517 that also protrude from the support surface 1511 of the cleaning head 1510 .
  • FIG. 16 shows an electric powered oral-care apparatus 1600 comprising a power cleaning head 1601 with one or more regions 1603 and 1605 that move and that include one or more contact elements that includes primary structures, secondary structures and bristles, such as described above with reference to FIGS. 2 a - l , 3 a - j , 4 a - b , 5 a - b , 9 a - c , and 14 a - c .
  • the electric powered oral-care apparatus 1600 comprises a power or recharging station 1609 for docking a body portion 1611 of the oral-care apparatus 1600 .
  • the power or recharging station 1609 comprises means 1615 for plugging the power or recharging station 1609 into an electrical receptacle and recharging a battery (not shown) housed within the body portion 1611 of the oral-care apparatus 1600 , wherein the battery is configured for providing power to a driver mechanism (not shown) that moves one or both of the regions 1603 and 1605 .
  • the apparatus 1600 can be configured to be powered with disposable batteries (not shown) that are housed in the body portion 1611 of the oral-care apparatus 1600 .
  • the oral-care apparatus 200 has a power switch 1613 for energizing the power head 1601 to move the power cleaning head 1601 on or turn it off.
  • the oral-care apparatus 1600 can include any number of timer mechanisms to indicate to a user a preferred amount of time to clean teeth and gums with the oral-care apparatus 1600 .
  • the oral-care apparatus 1600 can be configured to automatically shut off in a predetermined period of time after being energized with the power switch 1613 .
  • the power cleaning head 1601 and/or the one or more regions 1603 and 1605 power cleaning head 1601 can be configured to rotate, oscillate, vibrate or otherwise move.

Abstract

A contact device with resilient contact elements is disclosed. The resilient contact elements have primary structures and secondary structures. The primary structures and secondary structures have contact surfaces for engaging a working surface. The primary structures are preferably molded structures with hardness value between 10 to 90 Shores A. The secondary structures are nodules, squeegees, bristles or combinations thereof. In accordance with the embodiment of the invention a toothbrush includes resilient bristle boots that surround groups of bristles and have squeegees, nodules, bristles, or combinations thereof, that protrude from surfaces of the resilient bristle boots.

Description

    RELATED APPLICATIONS
  • The Patent application is a continuation in part Application of U.S. patent application Ser. No. 10/925,582, filed Sep. 24, 2004, titled “ORAL-CARE DEVICE WITH MULTI-STRUCTURAL CONTACT ELEMENTS,” which is a continuation in part Application of U.S. patent application Ser. No. 09/957,302, filed Sep. 19, 2002, titled “APPARATUS WITH MULTI-STRUCTURAL CONTACT ELEMENTS, now U.S. Pat. No. 6,865,767 B1. The U.S. patent application Ser. No. 09/957,302, filed Sep. 19, 2002, titled “APPARATUS WITH MULTI-STRUCTURAL CONTACT ELEMENTS” claims priority under 35 U.S.C. § 119 (e) from the co-pending U.S. Provisional Patent Application Ser. No. 60/233,580, filed Sep. 19, 2000, and titled “APPARATUS WITH MULTI-STRUCTURAL CONTACT ELEMENTS”. The U.S. patent application Ser. No. 10/925,582, filed Sep. 24, 2004, titled “ORAL-CARE DEVICE WITH MULTI-STRUCTURAL CONTACT ELEMENTS,” the U.S. patent application Ser. No. 09/957,302, filed Sep. 19, 2002, titled “APPARATUS WITH MULTI-STRUCTURAL CONTACT ELEMENTS,” now U.S. Pat. No. 6,865,767 B1 and the Provisional Patent Application Ser. No. 60/233,580, filed Sep. 19, 2000, and titled “APPARATUS WITH MULTI-STRUCTURAL CONTACT ELEMENTS” are all hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • This invention relates generally to devices with contact elements. More specifically, the invention relates to devices with resilient contact elements.
  • BACKGROUND OF THE INVENTION
  • Devices with resilient contact elements are typically used to clean surfaces or to apply cleaners and other materials to surfaces. For example, brush devices have bristle contact elements. The bristles are provided in the appropriate configuration and are chosen with the appropriate geometry, flexibility, hardness and resiliency to suit the intended purpose. As one example of these devices, a paintbrush is typically configured with long flexible bristles that conform to surfaces and facilitate the application of paints to surfaces. Other brush devices are configured with short rigid bristles to scour, scrub or clean surfaces.
  • Sponges and other absorbent materials are also used as resilient contact elements. Sponges and related materials are typically soft and used in cleaning devices and applicator devices.
  • Squeegees are also used in contact devices. Because squeegees are often made from non-absorbent materials, such as rubber, they are not generally used in applicator devices. Squeegees are flexible and resilient and tend to be too soft to be used in scrubbing or scouring devices. Squeegees are most commonly used to wipe or squeegee water and water solutions from smooth glass surfaces.
  • There have been attempts to combine the cleaning properties of an absorbent sponge-like element with a squeegee element. In the U.S. Pat. No. 6,065,890 issued to Weitz, Weitz describes a cleaning device with a squeegee element and a sponge element attached to a yoke support for combining washing and wiping.
  • Devices with brush-like contact elements molded form non-absorbent rubber-like materials have also been described. For example, in the U.S. Pat. No. 5,966,771, issued to Stroud, Stroud describes a polymeric sweeping device that is formed from a polymeric head with a soft polymeric bristle portion. In the U.S. Pat. No. 6,032,322, issued to Florsline, Florsline describes a device with a silicone tip configured to be used as a paint applicator or an artist's tool.
  • Molded rubber-like or resilient contact elements have also been described in dentition cleaning and oral care devices. In the U.S. Pat. No. 5,032,082 issued to Herrera, Herrera describes a device for removing adhesives from a palate. The device is configured with a plurality of rubber nodules having resiliencies that are sensitive to temperature. Tveras, in the U.S. Pat. No. 5,810,556, discloses an oral hygiene device configured with a plurality of wiping elements at one end of the device and a brush section at the other end; the wiping elements are configured for scraping plaque from a tongue. In the U.S. Pat. No. 6,067,684, issued to Kweon, Kweon describes a toothbrush with silicone rubber bristles. The silicone bristles are plate-shaped bristles extending in a parallel arrangement along the sides of the cleaning head. The cleaning head is attached to a handle through a hole in the handle. In the U.S. Pat. No. 4,584,416, issued to DeNiro et al., DeNiro et al. describe a resilient chewing device for cleaning teeth and gums. The device is a spool-shaped member formed of a resilient material. The interior regions of the spool-shaped member have protrusions to facilitate the cleaning of gums and teeth when a user chews on the device. The U.S. Pat. No. 5,970,564, issued to Inns et al., describes bristle sections that are coupled through an elastomeric bridge. The elastomeric bridge provides for the ability to anchor sets of bristles that are attached to a flexible platform. Mori et al., in U.S. Pat. No. 6,021,541, describe a toothbrush with composite monofiliment fibers. The composite monofiliment fibers have a polyester sheath with 2-5 polyamide cores. The polyamide cores protrude from the composite cores by a predetermined distance.
  • SUMMARY
  • The current invention is directed to a device with at least one resilient contact element. The device of the present invention is configured for applying materials to a surface, cleaning a surface, texturing materials or massaging tissues. The contact element has a least two structures. For this description and for simplicity of understanding, the invention is described in terms of primary and secondary structures. Primary structures refer to structures that protrude from a supporting non-contact structure or portion thereof, such as a handle or a cleaning head. Secondary structures refer to structures that are coupled to primary structures such that the secondary structures exhibit cooperative displacement with the primary structure. Preferably, both the primary and the secondary structure contribute to the contact properties of the contact elements.
  • The primary structure and the secondary structure are made of the sane material or of different materials. The primary structure and the secondary structure are formed in multiple steps, as a monolithic element, or in parts that are later attached together. A device in accordance with the instant invention is configured with any number contact elements depending on the intended use. Further, it is understood that contact elements and the corresponding supporting structure or structures of the device are monolithic or formed in parts. The primary and secondary structures are preferably formed from resilient materials such as plastics, elastomers, rubber or rubber-like materials. However, in an embodiment of the instant invention the secondary structure comprises metal bristles. The primary and the secondary structures are, nodule structures, arrays of nodules, squeegee structures, squeegee matrix structures, bristles and combinations thereof. The contact surfaces provided by the device of the present invention are configured to be collectively planar, curved or three-dimensional. The primary structure preferably protrudes from a support structure by a distance in a range of 0.2 to 6.0 mm. The maximum thickness of any nodule protrusion, squeegee wall, or matrix wall is preferably not greater that 2.0 mm and is more preferably less than 1.0 mm and greater than 0.3 mm. However, it is clear that contact devices with contact elements of larger dimensions than the preferred dimensions, recited herein, can have industrial applications.
  • The primary structure provides first contact surfaces and the secondary structure provides second contact surfaces. Preferably, the primary structure is molded and is larger than the secondary structure, wherein the secondary structure protrudes from a surface portion of the primary structure. Accordingly, the secondary structure exhibits cooperative displacement, wherein displacing the primary structure from its equilibrium resting position will also displace the secondary structure. Depending on the geometries of the structures and the materials used to make the contact elements, the primary structure may also exhibit cooperative displacement with the secondary structure.
  • According to an embodiment of the instant invention, the primary and secondary structures of a contact element are configured such that only the contact surfaces of either the primary or secondary structure will engage a working surface when a first force is applied to a working surface through the primary structure. By applying a sufficiently greater force to the working surface through the primary structure, the contact surfaces of the secondary and primary structure engage the working surface. Accordingly, multiple types of contact surfaces are provided within a single multi-structural contact element or device. Further, applying more or less force to the working surface through the contact element controls the types contact surfaces that engage the working surface.
  • According to another embodiment of the instant invention, the primary structure is more flexible than the secondary structure. The primary structure provides a cushion for the second structure. Thus the force that is required to deform the primary structure limits the force that may be applied to a working surface through the contact element or elements.
  • According to yet another embodiment of the instant invention a device is configured with a contact element having a primary structure and a secondary structure capable of engaging a working surface concurrently through out an entire range of forces as applied to a working surface through the contact element.
  • In accordance with the embodiments of the invention, the device is a dentition cleaning device. According to this preferred embodiment, a contact element includes a squeegee primary element that surrounds bristles. The primary squeegee element has protruding wall that are preferably configured to guide bristles and wipe teeth and gums while brushing. The primary squeegee element can also include a secondary structure. The secondary structure can include smaller squeegee elements, nodules, bristles or combinations thereof, that protrudes from a wall and/or edge of the squeegee element
  • The primary structure and/or the secondary structure preferably have hardness values in a range of 10 to 90 Shores A as determined by a method described in Document ASTM D2240-00, Developed by the American Society for Testing Materials, entitled “Standard Test Method for Rubber Property-Durometer Hardness”, the contents of which are hereby incorporated by reference. Where the secondary structure includes bristles, the bristles can be formed from polyester, polyamide or any other suitable resin for forming fibers.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 a shows an exemplary nodule structure.
  • FIG. 1 b show an exemplary squeegee structure.
  • FIG. 1 c illustrates a perspective view of a squeegee matrix.
  • FIG. 2 a shows a contact element with nodule structure and a squeegee structure protruding from top surfaces of the nodule structure.
  • FIG. 2 b illustrates a contact element with tubular squeegee structure and bristles protruding from edge surfaces of the squeegee structure.
  • FIGS. 2 c-l show contact elements with primary nodule structures with secondary nodule structures, bristles, squeegee structures and textured or patterned walls, in accordance with the embodiments of the present invention.
  • FIGS. 3 a-j show a contact element with primary squeegee structures with secondary nodule structures, bristles, squeegee structures and textured or patterned walls, in accordance with the embodiments of the present invention.
  • FIG. 4 a shows a contact element with a tapered squeegee structure and bristles protruding from edge surfaces of the squeegee structure.
  • FIG. 4 b is a cross-sectional view of the contact element shown in FIG. 4 a, illustrating bristles extending through the squeegee structure.
  • FIG. 5 a shows a contact element with a contoured squeegee structure and with bristles protruding from between depressed regions of the contoured squeegee structure.
  • FIG. 5 b shows a contact element with nodular protrusions and with bristles protruding from surfaces between the nodular protrusions of the contact element.
  • FIGS. 6 a-h illustrate several exemplary symmetrical nodular structures.
  • FIGS. 7 a-7 g illustrate several exemplary asymmetric nodular structures.
  • FIGS. 8 a-f illustrate several exemplary contoured tip and edge surfaces.
  • FIG. 9 a shows a contact element with a nodular structure and a bristle structure protruding from tip surfaces of the nodular structure.
  • FIG. 9 b illustrates the contact element shown in the FIG. 9 a bending at the body portion of the nodule structure and concurrently displacing the bristle structure attached thereto.
  • FIG. 10 a shows a cross-sectional view of a contact element with a structure having an L-shaped cross-section and bristles protruding from inner walls of the L-shaped cross-section.
  • FIG. 10 b shows cooperative displacement of bristle structures protruding from the L-shaped cross-section of the contact element illustrated in the FIG. 10 a.
  • FIG. 10 c shows cooperative displacement of a selective set of bristles protruding from the structure L-shaped cross-section of the contact element illustrated in the FIG. 10 a.
  • FIGS. 11 a-c illustrate several views of a dentition cleaning device, in accordance with the embodiments of the invention.
  • FIGS. 12 a-c illustrate several views of a dentition cleaning device, in accordance with the further embodiments of the invention.
  • FIGS. 13 a-c illustrate several views of a dentition cleaning device, in accordance with yet further embodiments of the invention.
  • FIGS. 14 a-c illustrate several views of a squeegee structures or bristle boots that surround bristles, in accordance with yet further embodiments of the invention.
  • FIGS. 15 a-b illustrate a dentition cleaning devices, in accordance with still further embodiments of the invention.
  • FIG. 16 shows an electric powered oral-care device comprising a power cleaning head with one or more movable regions, in accordance with the embodiments of the invention.
  • DETAILED DESCRIPTION
  • Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following preferred embodiment of the invention is set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
  • To facilitate the clarity of the ensuing description, words listed below have been ascribed the following meanings:
  • 1) A nodule is a protruding structure with outer surfaces.
  • 2) A squeegee is an elongated and protruding structure, i.e. a nodule that is on the average thinner in one dimension that the other, the wider dimension being referred to herein as the elongation direction.
  • 3) An array is a grouping of protruding structures.
  • 4) A matrix is a protruding structure that has an extended network of edges, walls and cavities.
  • 5) Softness is the ease with which the surface of a structure yields or deforms to an applied force.
  • 6) Hardness is the magnitude of force required for a structure to yield or deform to an applied force as measured with durometer hardness meter and reported in units of Shore A.
  • 7) Resiliency is the ability of a structure to return substantially to its original form or geometry after a deformation to the structure or portion thereof. Structures that substantially return to their original form or geometry quickly after a deformation are described herein, as being more resilient than those structures, which substantially return to their original form or geometry slowly after a deformation.
  • 8) Resilient materials are materials that exhibit resiliency.
  • 9) Flexibility is a measure of the ability of a resilient structure or a measure of the ability of a resilient structure to be displaced from an equilibrium rest position without damage to the structure. A structure that is less flexible is more rigid.
  • FIG. 1 a shows a typical nodule structure 50. The nodule structure protrudes from support surfaces 55 in a protruding direction 54 and preferably extends to distances in a range of 0.2 to 6.0 mm from the support surfaces 55. The nodule 53 has wall surfaces and tip surfaces 51. Preferably, the averaged thickness 56 of the nodule 50 is not greater than 2.0 mm and is most preferably less than 1.0 mm measured from distances 57 between the tip 51 of the structure 50 and 0.2 mm down from the tip 51 of the structure 50.
  • FIG. 1 b shows a section of a squeegee structure 100. The squeegee structure 100 protrudes from support surfaces 105 in a protruding direction 104 and preferably extends to distances in a range of 0.2 to 6.0 mm. The squeegee structure 100 has squeegee wall surfaces 102, squeegee edge surfaces 101 and squeegee ends 103 and 103′. According to the current invention, squeegee structures extend in the elongation direction 108 to any distance and takes on any number of shapes and forms. Squeegee structure herein refers to an elongated structure with two ends as shown in FIG. 1 b, an elongated structure with one end, an elongated structure without ends (viz. a continues squeegee structure) and combinations thereof. Preferably, the averaged thickness 106 of the squeegee wall 102 is not greater than 2.0 mm and is most preferably less than 1.0 mm measured distances 107 between the edge surfaces 101 of the structure 100 and 0.2 mm down from the edge surfaces 101 of the structure 100.
  • FIG. 1 c shows a two-cavity matrix structure 150. The matrix structure 150 protrudes from support surfaces 155 in a protruding direction 159 and preferably extends to distances in a range of 0.2 to 6.0 mm. The matrix structure 150 has edge surfaces 151, wall surfaces 153, and cavities 154 and 156. Matrix structures in accordance with the instant invention have any number of geometries and shapes. The matrix structure has a symmetrical or an asymmetrical network of wall surfaces, edge surfaces and cavities. Preferably, the averaged thickness 157 of the walls 153 are not greater than 2.0 mm and is most preferably less than 1.0 mm measured from distances 160 between the edge surfaces 151 of the structure 150 and 0.2 mm down from the edge surfaces 151 of the structure 150.
  • According to the current invention a contact device is configured to have at least one a resilient contact element. The contact element has a primary structure that is a nodule, a squeegee, an array or a matrix. The primary structure provides for first contact surfaces that are capable of contacting a working surface. The resilient contact element has at least one secondary structure that is coupled to the primary structure. The secondary structure is capable of exhibiting cooperative displacement with the primary contact structure. Cooperative displacement, herein, refers to the displacement of one structure through the displacement of another structure. Preferably, the secondary structure protrudes from surfaces or a surface region of the primary structure. Most preferably, the secondary structure protrudes from wall surfaces, edge surfaces or tip surfaces of the primary structure. The secondary structure is a nodule, a squeegee, an array, a matrix or a bristle structure. The secondary structure provides second contact surfaces that are capable of contacting the working surface.
  • Both the primary and the secondary structures are preferably resilient and formed from resilient materials including, but not limited, to plastics, rubbers, silicones, urethanes, latex and other elastomeric materials. The primary structure preferably has durometer hardness in a range of 10 to 90 Shores A. The secondary contact structure preferably comprises a bristle structure. The primary structure is preferably formed by injection molding or any other suitable molding technique known in the art. The secondary structures are preferably formed by fiber drawing techniques for forming bristles from plastic resin materials. Alternatively, the secondary structure is a nodule, a squeegee, any array or matrix also formed by molding techniques. The contact element can be modified by incorporating non-resilient materials such as abrasive particles into the primary and/or secondary structures.
  • FIG. 2 a illustrates a contact element 200 with a nodule 203 protruding from support surfaces 205. The nodule 203 has contact surfaces 201 that are capable of engaging a working surface (not shown). The contact element 200 has a squeegee structure 206 coupled to the nodule 203 and protruding from the contact surfaces 201 of the nodule 203. The squeegee structure 206 provides the contact element 200 with a second set of contact surfaces that are capable of engaging the working surface. In accordance with the instant invention, the contact element 200 will engage the working surface with the squeegee 206 when a first force is applied to the working surface through the nodule 203. When a second and sufficiently greater force is applied to the working surface through the nodule 203, surfaces of the nodule 203 will also engage the working surface.
  • FIG. 2 b illustrates a contact element 250 with a tubular squeegee 253 protruding from support surfaces 255. The squeegee 253 has contact surfaces 251 that are capable of engaging a working surface (not shown). The contact element 250 has a bristle structure 256 coupled to the squeegee 253 and protruding from the surfaces 251 of the squeegee 253. The bristle structure 256 provides the contact element 250 with bristle surfaces that are capable of engaging the working surface. In accordance with the instant invention, the contact element 250 will engage a working surface with the bristles 256 when a first applied force is applied to the working surface through the squeegee 253. When a second, and sufficiently greater, force is applied to the working surface through the squeegee 253, surfaces 251 of the squeegee 253 will also engage the working surface.
  • FIGS. 2 c-h show top views of contact elements with primary nodule structures and secondary squeegee structures or nodules protruding from top surfaces of the primary nodule structures, in accordance with the embodiments of the present invention. FIG. 2 c shows a contact element 220 comprising a plurality of wave-like or serpentine squeegee structures 223 protruding from a top surface of a nodule structure 221. FIG. 2 d shows a contact element 230 comprising a plurality of cross-shaped squeegee structures 233 protruding from a top surface of a nodule structure 231. FIG. 2 e shows a contact element 240 comprising a plurality of curved squeegee segments 243 protruding from a top surface of a nodule structure 241. FIG. 2 f shows a contact element 250 comprising a plurality of continuous and concentrically positioned squeegee structures 253 and 255 protruding from a top surface of a nodule structure 231. FIG. 2 g shows a contact element 260 comprising a plurality of linear squeegee segments 263, 265 and 267 protruding from a top surface of a nodule structure 261 and positioned at a range of angles with respect to each other. FIG. 2 h shows a contact element 270 comprising a nodules structure 271 and plurality of smaller nodules structures 273 and 273′ protruding from a top surface of a nodule structure 270. The contact elements illustrated in FIGS. 2 a-h are provided as examples and it will be clear to one skilled in the art that contact elements can include a primary nodule structure with secondary squeegee structures protruding from a top surface that have any number of geometries or combinations of geometries.
  • FIGS. 2 i-l show perspective views of contact elements with primary nodule structures and secondary structures protruding from side surfaces of the primary nodule structures, in accordance with the embodiments of the present invention. FIG. 2 i shows a contact element 280 comprising a nodule structure 285 protruding from a support surface 281, wherein protruding walls 281 of the nodule structure 285 are contoured with alternating ring-like protrusions 282 and depressions 283. FIG. 2 j shows a contact element 290 comprising a nodule structure 295 protruding from a support surface 291, wherein protruding walls 292 of the nodule structure 295 are contoured with depressions or cavitations 1201. FIG. 2 k shows a contact element 1200 comprising a nodule structure 1205 protruding from a support surface 291, wherein protruding walls 1203 of the nodule structure 1205 have squeegees extending in the protruding direction of the nodule structure 1205. FIG. 2L shows a contact element 1210 comprising a nodule structure 1215 protruding from a support surface 1211, wherein protruding walls 1213 of the nodule structure 1215 have nodule protrusions 1212 and 1212′.
  • FIG. 3 a illustrates a contact element 300 with a squeegee structure 302. The squeegee structure 302 has edge surfaces 301 for engaging a working surface (not shown). Protruding from wall surfaces 303 of the squeegee 302, there are several bristles or bristle sections 304, 304′ and 304″. Preferably, the bristle sections 304, 304′ and 304″ and the squeegee surfaces 301 are cable of engaging the working surface simultaneously or individually depending on presentation angle of the contact element 300 relative to the working surface and the force that is applied to the working surface through the contact element. The contact element 300 provides the contact properties of a squeegee and bristles in a single multi-structural contact element. The bristles 304, 304′ and 304″ can at any angle 306 relative to the protruding wall surfaces 303 suitable for the application at hand.
  • FIG. 3 b illustrates a contact element 350 with a squeegee structure 352. The squeegee structure 352 has edge surfaces 351 for engaging a working surface (not shown). Protruding from wall surfaces 353 of the squeegee 352 there are several secondary squeegees 354, 354′ and 354″. Preferably, the secondary squeegee structures 354, 354′ and 354″and the squeegee surfaces 351 are cable of engaging the working surface. The secondary squeegees 304, 304′ and 304″and the squeegee surfaces 351 engage the working surface simultaneously or individually depending on presentation angle of the contact element 350 relative to the working surface and the force that is applied to the working surface through the contact element as explained in detail above.
  • FIGS. 3 c-f show schematic representation of contact elements with a primary squeegee structures and secondary squeegee structures protruding from wall surfaces of the primary squeegee structures, in accordance with the embodiments of the invention. FIG. 3 c shows a contact element 320 with a squeegee structure 321 and a plurality of wave-like of serpentine squeegee structures 323 protruding from a wall of squeegee structure 321. FIG. 3 d shows a contact element 330 with a squeegee structure 331 and a plurality of cross-shaped squeegee structures 333 and 335 protruding from a wall of squeegee structure 331. The squeegee structure 335 includes a longer squeegee segment with a plurality of smaller squeegee segments that intersect with the longer squeegee segment forming a backbone-shaped squeegee 335. FIG. 3 e shows a contact element 350 with a squeegee structure 351 and a plurality of continuous squeegee structures 335 and 345 protruding from a wall of squeegee structure 331. The continuous squeegee structures 345 surrounds the smaller squeegee structures 355. FIG. 3 f shows a contact element 360 with a squeegee structure 361 and a plurality of linear squeegee segments 363 protruding from a wall of squeegee structure 361.
  • FIGS. 3 g-j show perspective views of contact elements with primary squeegee structures and secondary structures protruding from side surfaces of the primary structures, in accordance with the embodiments of the present invention. FIG. 3 g shows a contact element 370 comprising a squeegee structure 375 protruding from a support surface 371, wherein protruding walls 374 of the squeegee structure 375 have curved squeegees 373 and 373′ protruding therefrom. FIG. 3 h shows a contact element 380 comprising a squeegee structure 385 protruding from a support surface 381, wherein protruding walls 384 of the squeegee structure 385 are contoured with depressions or cavitations 383. FIG. 3 i shows a contact element 390 comprising a squeegee structure 395 protruding from a support surface 391, wherein protruding walls 394 of the squeegee structure 395 have nodule structure 393 and 393′ protruding therefrom. FIG. 3 j shows a contact element 1300 comprising a squeegee structure 1305 protruding from a support surface 1301, wherein protruding walls 1304 of the squeegee structure 1305 are patterned with circular depressions or holes 1303 and 1303.
  • FIG. 4 a illustrates a contact element 400 with a tapered squeegee 402 protruding from support surfaces 405. The squeegee 402 has wall surfaces 403 and edge surfaces 401 that are capable of engaging a working surface (not shown). The contact element 400 has a bristle structure 404 couple to the squeegee 402 and protruding from the edge surfaces 401 of the squeegee 402. The bristle structure 404 provides the contact element 400 with bristle surfaces that are also capable of engaging the working surface. The contact element 400 will engage the working surface with the bristles 404 when a first force is applied to the working surface through the squeegee 402. When a second, and sufficiently greater, force is applied to the working surface through the squeegee 401, the edge surfaces 401 and wall surfaces 403 of the squeegee 402 will also engage the working surface.
  • FIG. 4 b shows a cross-sectional view of the contact element 400 illustrated in the FIG. 4 b. The tapered squeegee 402 has wall surfaces 403 and 403′ and the edge surfaces 401 that are capable of engaging a working surface, as described above. The bristles 404 are preferably attached to the support 405 extend through a portion of the squeegee 402 and protrude from wall surfaces 403 and 403′ or edge surfaces 401, as shown. The bristles of the bristle structure 404 are not required to extend through the entire squeegee 402 to practice the invention and may be couple to surfaces of the squeegee structure 402 by other means known in the art.
  • FIG. 5 a illustrates a contact element 500 that has a squeegee structure 512 which protrudes from support surfaces 505 with protruding squeegee walls 510. The squeegee element 512 is contoured with teeth 501, 503, 505, 507, and 509. Between the teeth 501, 503, 505, 507, and 509 there are notches or depressions 511, 513, 515 and 517. On the surfaces of the notches 511, 513, 515 and 517 there are bristle sections 502, 504, 506 and 508, respectively. The squeegee teeth 501, 503, 505, 507, and 509 and the bristle sections 502, 504, 506 and 508 are made to be longer or shorter relative to each other depending on the application at hand. When squeegee teeth 501, 503, 505, 507, and 509 are longer than the bristle sections 502, 504, 506 and 508, as shown, then the squeegee teeth 501, 503, 505, 507, and 509 (or a portion thereof) will engage a working surface (not shown) when a first force is applied to the working surface through squeegee structure 512. When a second, and sufficiently greater, force is applied to the working surface through the squeegee structure 512, then the bristle sections 502, 504, 506 and 508 (or a portion thereof) will also contact the working surface. Alternatively, the squeegee teeth 501, 503, 505, 507, and 509 and the bristle sections 502, 504, 506 and 508 are made to have the same length such that the teeth 501, 503, 505, 507, and 509 and bristle sections 502, 504, 506 and 508 engage a working surface simultaneously. The contact device of the instant invention is configured with any number of teeth and bristles sections suitable for the application at hand.
  • FIG. 5 b illustrates a contact element 550 that has an extended nodular structure 562 that protrudes from support surfaces 555 with protruding nodules 551, 553, 555 and 557. Between the protruding nodules 551, 553, 555 and 557, there are depressed surfaces 559, 561, and 563. Protruding from the depressed surfaces 559, 561 and 563 there are bristle sections 552, 554, and 556. The nodules 551, 553, 555 and 557 and the bristle sections 552, 554, and 556 are made to be longer or shorter or the same, as explained above relative to each other depending on the application at hand. Alternatively, the nodules 551, 553, 555 and 557 and the bristle sections 552, 554, and 556 are made to have the same length so that the nodules 551, 553, 555 and 557 and bristle sections 552, 554, and 556 contact a working surface simultaneously. Further, the contact device of the instant invention is configured with any number of teeth and bristles sections suitable for the application at hand.
  • FIGS. 6 a-h illustrate several symmetrical nodule structure geometries that are useful in the contact device of the instant invention. FIG. 6 a shows a nodule 610 with cylindrical protruding walls 611 and a rounded tip portion 612; FIG. 6 b shows a nodule 620 with cylindrical protruding walls 621 and a flat top 622; FIG. 6 c shows a nodule 630 with contoured protruding walls 631 and a flat top 632; FIG. 6 d shows a pointed nodule 640 with tapered protruding walls 641 and a tip 642; FIG. 6 e shows a rectangular nodule 650 with planar walls 651 and a flat top 652; FIG. 6 f shows a nodule 660 with planar walls 661 and a rounded tip portion 662; FIG. 6 g shows a star shaped nodule 670 with protruding walls 671 and a star-shaped top 672; FIG. 6 h shows a triangular nodule 680 with protruding walls 681 and triangular-shaped top 682.
  • FIGS. 7 a-g illustrate several asymmetrical nodule structure geometries that are useful in the contact device of the instant invention. FIG. 7 a shows a wedge-shaped nodule 700 with protruding walls 701 and a top 702; FIG. 7 b shows a nodule 710 with contoured walls 711 and a bow-tie shaped top 712; FIG. 7 c shows a curved nodule 720 with protruding walls 721 (curved in the elongation direction) and a flat top 722; FIG. 7 d shows a curved nodule 730 with protruding walls 733 (curved in the protruding direction) and a top 732; FIG. 7 e shows a wedge shaped nodule 740 with tapered walls 743, triangular walls 741 and an edge 742; FIG. 7 f shows a nodule 750 with grooved walls 753, bow-tie shaped walls 752 and a flat top 751; and FIG. 7 g shows a nodule 760 with contoured walls 762 and a top 761. It will be clear to one of average skill in the art that any number of symmetric and asymmetric nodule geometries and combinations thereof are useful in the contact device of the instant invention.
  • FIG. 8 a-f illustrate several edge and tip contours of contact structures used in the instant invention. FIG. 8 a shows a contact structure segment 80 with a planar contact edge 81; FIG. 8 b shows a contact structure segment 82 with a V-shaped contact edge 83; FIG. 8 c shows a contact structure segment 84 with a curve convex contoured contact edge 85; FIG. 8 d shows a contact structure segment 86 with a concave contoured contact edge 87; FIG. 8 e shows a contact structure segment 88 with a diagonally contoured contact edge 89; and FIG. 8 f shows a contact structure segment 90 with a pointed contact edge 91.
  • FIG. 9 a shows a contact element 900 with a primary nodular structure 905 that protrudes from a support structure 906 in a protruding direction 907. The support structure 906 is rigid or flexible depending on the intended application. The support 906 and the nodule 905 are formed of the same or different material and are made in parts or are co-molded as a monolithic unit. According to an embodiment of the invention, a contact device has one or more contact elements or an array of contact elements such as the one shown in the FIG. 9 a.
  • Still referring to the FIG. 9 a, the contact element 900 has a bristle structure 901 comprising bristle groupings 902 protruding from top surfaces 903 of the nodule 905. Alternatively, a bristle structure protrudes from wall surfaces or edge surfaces 904 of the nodule 905 or any combination of surfaces and edges. The bristle structure 901 is comprised of bristles that are formed from resilient materials, including but not limited to, natural hair, plastics, rubbers, silicones, urethanes latex and elastomeric materials. Bristles, while typically hard, are made to be flexible and resilient by virtue of their thin elongated geometries.
  • Now referring to FIG. 9 b, when the nodule structure 905 of the contact element 900 is displaced in the direction 907, then the bristle structure 901 exhibits cooperative displacement with the nodule structure 905. Accordingly, the contact behavior of the element 900 depends on the relative flexibility or rigidity of the primary 905 and secondary 901 contact structures. For example, when the bristle structure 901 is made to be sufficiently rigid relative to the nodule structure 905, then engaging the bristle structure 901 with a working surface (not shown) and applying a force to the working surface through the nodule 905 will cause the nodule 905 to deflect as shown in the FIG. 9 b. Making the nodule structure 905 more flexible that the bristle structure 901 allows the nodule structure 905 to function as a cushion for the more rigid abrasive bristle structure 901. Alternatively, when the bristle structure 901 is made to be more flexible relative to the nodule structure 905, then engaging the bristle structure 901 with the working surface and applying a force to the working surface through the nodule 905 will cause the bristle structure 901 to be displaced from its equilibrium resting position. If the bristles are sufficiently flexible, then the bristles of the bristle structure 901 will be completely displaced and surfaces of the nodule 905 will also contact the working surface. When the nodule structure 905 and the bristles of the bristle structure 901 are made to exhibit similar flexibility, then engaging the bristle structure 901 with the working surface and applying a force to the working surface through the nodule 905 displaces both the nodule 905 and the bristle structure 901 from their respective equilibrium resting positions.
  • FIG. 9 c shows a contact element 1910, in accordance with further embodiments of the invention. The contact element has a primary nodular structure 1903 that protrudes from a surface 1906 of a support structure 1901. The contact element 1901 has primary nodule structures or fingers 1905 and 1905′ protruding from a top surface 1904 of the nodule structure 1903. It will be clear to one skilled in the art that the contact element 1910 can also includes bristles, squeegees or have patterned or contoured walls, such as described above with reference to FIGS. 2 c-l and FIGS. 3 a-j.
  • FIG. 10 a shows a cross-sectional view of a contact element 10 in accordance with an alternative embodiment of the invention. The primary structure 17 is a bent nodule or squeegee structure. The primary structure 17 protrudes from a support structure 12 that is either rigid or flexible or a combination of rigid and flexible components. The primary structure 17 protrudes from the support 12 with a base portion 18 in a direction 14 and further extends with a wall portion 19 in a second direction 16. Protruding from the interior surfaces of the base portion 18 and the wall portion 12 of the structure 17 are bristle structures 11, 13 and 15. Depending on where the structure 17 is bent from or displaced, different groups of the bristle structures 11, 13 and 15 will exhibit cooperative displacement. The structures 11, 13 and 15 are preferably imbedded in the primary structure 17 through bristle boats 38 and 37 that can be formed from a rigid or semi-rigid plastic which help to anchor or hold the bristle 11, 13 and 15 into the primary structure 17.
  • Now referring to FIG. 10 b, displacement of the structure 17 from its equilibrium resting position in the direction 14 will causes all of bristle structures 11 13 and 15 to be displaced as shown. Now referring to the FIG. 10 c, displacement of the structure 17 from its equilibrium resting position in the direction 16 will cause the bristle structures 11 and 13 to be displace as shown and leave the bristle structure 15 in substantially the same position relative to the support structure 12. Bristle structures such as 11 13 and 15 can be configured to protrude for the structure 17 at any angle relative to the surfaces of the base portion 18 and the wall portion 12, but preferably protrude from the wall portion at an angle 9 between 90 and 10 degrees relative to the wall portion 12.
  • FIG. 11 a shows a top view of a contact device in accordance with the preferred embodiment of the invention. The device 20 is preferably configured for cleaning dentition. The device 20 has a handle portion 27 for griping and manipulating the device 20 during a cleaning operation. The device 20 has at least one primary structure 29 that preferably forms two sides 21 and 21′ giving the device 20 a cleaning cavity or channel. Preferably, the primary structure 29 has a plurality of nodular protrusions 21 that contact surfaces of teeth and gums or dentures during a cleaning operation. The device 20 also preferably has a plurality of bristle structures 23 and 24 that protrude from inner surfaces of the primary structure 29. The primary structure 29 is attached to the handle portion 27 through a support structure 28. The support structure 28 is preferably a channel support structure that is formed of rigid or flexible materials. Alternatively, the channel 28 comprises interspersed flexible segments 25 and rigid segments 26, which allow the channel structure 28 to bend and deform as required during use. Protruding from the channel structure 28 are bristle sections 22 and 23 that have any number of bristles with any number bristle arrangements or configurations. The bristle sections 22 and 23 are comprised of needle-like bristles having any resiliency, texture, geometry or hardness required to facilitate the cleaning of teeth and dentures. The bristles are preferably formed by fiber drawing procedures known in the art. The bristles are formed from nylon, polyester, polyamide or any other suitable plastic resin.
  • FIG. 11 b shows a perspective side view of the dentition cleaning device 20 shown in FIG. 11 a. The nodular protrusions on sides 21 and 21′ preferable protrude farther than the bristle structures 22 and 23 such that the primary structure 19 cups teeth and dentition within the channel of bristles.
  • The preferred embodiment of the instant invention is particularly useful for guiding and controlling contact positions and angles of the bristle on gums and teeth. The device 20 is also particularly useful for cleaning teeth and gums of persons wearing orthodontia. The device 20 allows bristles to be positioned at angles relative orthodontia that are difficult or impossible to obtain with a conventional toothbrush.
  • FIG. 11 c illustrates a cross-sectional view 30 of a contact device in accordance with the instant invention. The L-shaped primary structures 31 and 31′ are attached to a support structure 36. The support structure 36 is formed of rigid or flexible materials. The support structure 36 preferably has interspersed flexible segments and rigid segments, as described above and shown in FIG. 11 a, which allow the support structure 36 to bend and deform as required during use. Protruding from the support structure 36 are bristle structures 32 and 32′. Protruding from inner surfaces of the structures 31 and 31′ are bristles structures 33/33′ and 34/34′, respectively. The flexible backbone structure 36 described is also useful in numerous other devices that are configured to contact and/or clean protruding and/or elongated structures with complex geometries, such as teeth and dentures. In accordance with an embodiment of the invention, the L-shaped primary structures 31 and 31′ extended to form a continuous channel or a channel section.
  • FIG. 12 a shows a cross-sectional view of a dentition device 40 in the elongated direction of the dentition device 40. The dentition device 40 includes a handle 41 and support structure 41′ that are formed from a first polymeric material. The dentition device 40 preferably includes bristles 43 that protrude the support structure 41′. The dentition device 40 also includes a resilient contact structure 45 (primary structure) that is formed from a second polymeric material. The resilient contact structure 45 preferably includes end nodules and/or squeegees 47 that protrude upward in a direction similar to the bristle 43. The first material that forms the handle 41 and the support structure 41′ is preferably a hard semi-rigid polymeric material with a hardness value that is greater than 90 Shores. The second material that forms the resilient contact structure 45 is preferably a softer resilient material with a hardness value that is less than 90 Shores, such that portions of resilient contact structure 45, including the nodules and/or squeegees 47 can be resiliently displaced from the support structure 41′, as described in detail above.
  • FIG. 12 b shows a cross-sectional view of the dentition device 40 along the width of the dentition cleaning device 40. The dentition device 40 is shown in FIG. 2 b with the resilient contact structure 45 and being resilient displaced outward from the support structure 41′ along both sides of the dentition device 40. Form the view shown in FIG. 2 b it can be seen that there are also bristles 43′ and 42″ that protrude upward from portions of the resilient contact structure 45 and are resiliently displaced from the support structure 41′ along with side nodules and/or squeegees 48 and 48′. The bristles 43 and 43′ are preferably set onto the resilient contact structure 45 through bristle boat structures 46 and 46′ that are formed from the same material as the support structure 41′ or a different material that is suitable for securing or anchoring the bristles 43′ and 43″ to the resilient contact structure 45.
  • FIG. 12 c shows a top schematic view of the dentition device that includes the handle 41, the support structure 41′, the resilient contact structure 45, the bristle boats 46 and 46′, the bristles 43, 43′ and 43″, the end nodules and/or squeegees 47 and the side nodules and/or squeegees 48′ and 48″. For completeness, FIG. 12 d shows a perspective view of the dentition device 40. The bristles 43′ and 43″ shown in FIGS. 12 a-c have been removed from FIG. 12 d for clarity. Note that the support structure 41′ is over molded by the resilient contact structure 45, as indicated by the dotted line.
  • FIG. 13 a shows a cross-sectional view of a dentition device 50 in the elongated direction of the dentition device 50, in accordance with yet further embodiments of the invention. The dentition device 50 includes a handle 51 and support structure 51′ that are formed from a first polymeric material. The dentition device 50 preferably includes bristles 53 and 53′ that protrude the support structure 51′ and a bristle boat 56, respectively. The bristle boat 56 is formed from a material that is suitable for holding and securing the bristles 53′, as described above. The dentition device 50 also includes a resilient contact structure 55 that is formed from a second polymeric material. The resilient contact structure 55 preferably includes end nodules and/or squeegees 57 that protrudes upward in a direction similar to the bristle 43. The first material that forms the handle 51 and the primary structure 51′ is preferably a hard semi-rigid polymeric material with a hardness value that is greater than 90 Shores. The second material that forms the resilient contact structure 55 is preferably a softer resilient material with a hardness value that is less than 90 Shores, such that portions of resilient contact structure 55, including the end nodules and/or squeegees 57 can be resiliently displaced from the support structure 51′.
  • FIG. 13 b shows the a cross-sectional view of the dentition device 50 in the elongated direction of the dentition device 50 and with the resilient contact structure 55 being resiliently displaced from the support structure 51′ through a flexible region 55′ of the secondary structure 55. Note that the bristles 53′ are displaced in the elongated direction with the with the resilient contact structure 55.
  • FIG. 13 c shows a top schematic view of the dentition device 50 that includes the handle 51, the support structure 51′, the resilient contact structure 55, the bristle boat 56, the bristles 53 and 53′, the end nodules and/or squeegees 57 and the side nodules and/or squeegees 58′ and 58″. For completeness, FIG. 12 d shows a perspective view of the dentition device 50. Note that the support structure 51′ and the bristle boat 56 are over molded by the resilient contact structure 55, as indicated by the dotted lines. FIGS. 14 a-c illustrate several views of contact elements that include primary squeegee structures that surround bristles also referred to herein as bristle boots.
  • FIGS. 14 a-b show a prospective view and side view of a contact element 1400 that includes a primary squeegee or bristle boot 1403 that protrudes from a support 1401 and surrounds bristles 1407 and 1407′. The bristles 1407 and 1407′ can also protrude from the support 1401 and/or a portion of the bristle boot 1403. The contact element 1400 also preferably includes a secondary squeegee structure or squeegee wall 1405 that protrudes from a top portion 1404 of the bristle boot 1403 and provides a wiping edge 1409. Where the contact element 1400 is used in a dentition cleaning device, the secondary squeegee or squeegee wall 1405 helps to guide bristles 1407 and 1407′ between teeth and under the gum-line, while the bristle boot 1403 provides structural integrity for the bristles 1407 and 1407′, which is particularly beneficial when the bristles 1407 and 1407′ are very fine and/or soft. Alternatively, or in addition to the secondary squeegee or squeegee wall 1405, the contact element 1400 includes nodules or finger that protrude from the top portion 1404 of the bristle boot 1403.
  • Referring to FIG. 14 b, the bristles 1407 and 1407′ can extend through a compartment 1406 of the primary squeegee structure of bristle boot 1403, as indicated by the dotted or dashed lines and can be anchored or secured to the support 1401 through a bristle boat or bristle anchor structure 1402, such as described previously above.
  • FIG. 14 c shows a prospective view of a contact element 1410 that includes a cylindrical bristle boot 1413 that protrudes from a surface 1406 of a support 1411 and surrounds bristles 1415. The bristles 1415 can protrude from the support 1401 and/or a portion of the bristle boot 1403. The contact element 1403 also preferably includes secondary squeegees or squeegee walls 417 and 1419 that protrude from a top portion 1416 of the bristle boot 1403 and provides wiping edges 1421 and 1423. Alternatively, or in addition to the secondary squeegees or squeegee walls 1417, the contact element 1410 can include nodules or finger that protrude from the top portion 1416 of the bristle boot 1413.
  • FIGS. 15 a-b show schematic representations of cleaning heads 1500 and 1510 of dentition cleaning devices or systems that includes bristle boots that surround bristles and that preferably includes one or more secondary squeegee structures 1417 and 1419 and/or nodule structures, such as described above with reference to FIGS. 14 a-c.
  • Referring to FIG. 15 a, the cleaning head 1500 includes a neck portion 1502 that is configured to attach to, or is attached to, a manual or electric handle (not shown). The cleaning head 1500 includes a plurality of bristle boots 1503 and 1503′ that surround bristles protruding from a support surface 1501 of the cleaning head 1500. The cleaning head 1500 can also includes a plurality of squeegees 1505 and 1505′ that can be straight, curved or otherwise contoured, that also protrude from the support surface 1501 of the cleaning head 1500. Further, the cleaning head 1500 can include bristle tufts and/or nodules 1507 that also protrude from the support surface 1501 of the cleaning head 1500.
  • Referring to FIG. 15 b the cleaning head 1510 includes a neck portion 1512 that is configured to attach to, or is attached to, a manual or electric handle (not shown). The cleaning head 1510 includes a plurality of elongated bristle boots 1513 and 1513′ that extend along opposed sides or edges of the a support surface 1511 and surround bristles protruding from a support surface 1511 of the cleaning head 1510. The cleaning head 1510 can also includes a plurality of squeegees 1515 and 1515′ that can be straight, curved or otherwise contoured, that also protrude from the support surface 1511 of the cleaning head 1510. Further, the cleaning head 1510 can include bristle tufts and/or nodules 1517 that also protrude from the support surface 1511 of the cleaning head 1510.
  • FIG. 16 shows an electric powered oral-care apparatus 1600 comprising a power cleaning head 1601 with one or more regions 1603 and 1605 that move and that include one or more contact elements that includes primary structures, secondary structures and bristles, such as described above with reference to FIGS. 2 a-l, 3 a-j, 4 a-b, 5 a-b, 9 a-c, and 14 a-c. In accordance with the embodiments of the invention, the electric powered oral-care apparatus 1600 comprises a power or recharging station 1609 for docking a body portion 1611 of the oral-care apparatus 1600. The power or recharging station 1609 comprises means 1615 for plugging the power or recharging station 1609 into an electrical receptacle and recharging a battery (not shown) housed within the body portion 1611 of the oral-care apparatus 1600, wherein the battery is configured for providing power to a driver mechanism (not shown) that moves one or both of the regions 1603 and 1605. Alternatively, or in addition to the power supply mechanism described above, the apparatus 1600 can be configured to be powered with disposable batteries (not shown) that are housed in the body portion 1611 of the oral-care apparatus 1600. Preferably, the oral-care apparatus 200 has a power switch 1613 for energizing the power head 1601 to move the power cleaning head 1601 on or turn it off. Also, the oral-care apparatus 1600 can include any number of timer mechanisms to indicate to a user a preferred amount of time to clean teeth and gums with the oral-care apparatus 1600. For example, the oral-care apparatus 1600 can be configured to automatically shut off in a predetermined period of time after being energized with the power switch 1613. The power cleaning head 1601 and/or the one or more regions 1603 and 1605 power cleaning head 1601 can be configured to rotate, oscillate, vibrate or otherwise move.
  • It will be clear to one skilled in the art that the above embodiment may be altered in many ways without departing from the scope of the invention. While the present invention has been described for use in oral-care, it can be used in any number of contact cleaning devices and applicators devices. Further any number of structural geometries, combinations of geometries, materials and combinations of material may be used to configure a device with a multi-structural contact element in accordance with the instant invention. Devices of the instant invention can be configured any number or multi-structural contact elements and configured with handles having any number of shape, sizes and extension angles relative to the multi-structural contact elements. Accordingly, the scope of the invention should be determined by the following claims and their legal equivalents.

Claims (19)

1. A device comprising a cleaning head, the cleaning head comprising;
a) a support structure;
b) resilient contact element protruding from a surface of the support structure, the resilient contact element comprising a primary squeegee structure and a secondary structure protruding from a surface of the primary squeegee structure; and
c) bristles.
2. The device of claim 1, wherein the secondary structure is a squeegee.
3. The device of claim 1, wherein the secondary structure is a nodule.
4. The device of claim 1, wherein the primary squeegee structure surrounds a portion of the bristles.
5. The device of claim 1, further comprising a handle configured to couple to the cleaning head.
6. The device of claim 1, further comprising squeegees protruding from the surface of the support.
7. The device of claim 6, where the squeegee are curved.
8. A device comprising:
a) a support with a plurality of bristle boots;
b) bristle tufts protruding from compartments of the bristle boots; and
c) resilient contact structures protruding one or more surface of the bristle boots
9. The device of claim 8, wherein resilient contact structures comprise squeegees.
10. The device of claim 8, wherein resilient contact structures comprise nodules.
11. The device of claim 8, further comprising a handle configured to couple to the cleaning head.
12. The device of claim 8, further comprising of squeegees protruding from a surface of the support.
13. The device of claim 12, where the squeegees are curved.
14. A device comprising:
a) elongated bristle boots that extend along opposed sides of a cleaning head and that surround a first set of bristle tufts; and
b) a second set of bristle tufts protruding from a region of the cleaning head between elongated bristle boots,
15. The device of claim 14, further comprising squeegees protruding from the region of the cleaning head between the elongated bristle boots.
16. The device of claim 14, further comprising secondary resilient structures protruding from surfaces of the elongated bristle boots.
17. The device of claim 16, wherein the secondary resilient structures include one or more squeegees or nodules.
18. A device comprising a cleaning head with resilient contact elements resiliently coupled to the cleaning head, the resilient contact elements including primary structures, secondary structures and bristle.
19. The device of claim 18, further comprising an electric powered handle for coupling to the cleaning head and moving the resilient contact elements.
US11/173,313 2000-09-19 2005-06-30 Oral care device with multi-structural contact elements Abandoned US20060230563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/173,313 US20060230563A1 (en) 2000-09-19 2005-06-30 Oral care device with multi-structural contact elements
PCT/US2006/025847 WO2007005753A2 (en) 2005-06-30 2006-06-30 Oral care device with multi-structural contact elements

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US23358000P 2000-09-19 2000-09-19
US09/957,302 US6865767B1 (en) 2000-06-05 2001-09-19 Device with multi-structural contact elements
US10/925,582 US7434288B2 (en) 2000-09-19 2004-08-24 Oral care device with multi-structural contact elements
US11/173,313 US20060230563A1 (en) 2000-09-19 2005-06-30 Oral care device with multi-structural contact elements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/925,582 Continuation-In-Part US7434288B2 (en) 2000-09-19 2004-08-24 Oral care device with multi-structural contact elements

Publications (1)

Publication Number Publication Date
US20060230563A1 true US20060230563A1 (en) 2006-10-19

Family

ID=37605106

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/173,313 Abandoned US20060230563A1 (en) 2000-09-19 2005-06-30 Oral care device with multi-structural contact elements

Country Status (2)

Country Link
US (1) US20060230563A1 (en)
WO (1) WO2007005753A2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100050356A1 (en) * 2008-08-29 2010-03-04 Colgate-Palmolive Company Oral care implement
USD631257S1 (en) 2009-12-15 2011-01-25 Colgate-Palmolive Company Toothbrush
USD632084S1 (en) 2008-08-29 2011-02-08 Colgate-Palmolive Company Toothbrush
USD632484S1 (en) 2009-12-18 2011-02-15 Eduardo Jimenez Toothbrush handle with tissue cleaner
US7934284B2 (en) 2003-02-11 2011-05-03 Braun Gmbh Toothbrushes
USD642802S1 (en) 2008-08-29 2011-08-09 Colgate-Palmolive Company Toothbrush
USD642804S1 (en) 2009-12-15 2011-08-09 Colgate-Palmolive Company Toothbrush
USD642803S1 (en) 2008-08-29 2011-08-09 Colgate-Palmolive Company Toothbrush
USD651407S1 (en) 2009-01-23 2012-01-03 Colgate-Palmolive Company Toothbrush
USD654270S1 (en) 2009-12-18 2012-02-21 Colgate-Palmolive Company Toothbrush handle
USD654696S1 (en) 2009-12-18 2012-02-28 Colgate-Palmolive Company Toothbrush handle with tissue cleaner
USD654695S1 (en) 2009-12-18 2012-02-28 Colgate-Palmolive Company Toothbrush
USD655918S1 (en) 2009-12-15 2012-03-20 Colgate-Palmolive Company Toothbrush
USD655916S1 (en) 2008-08-29 2012-03-20 Colgate-Palmolive Company Toothbrush
USD655917S1 (en) 2009-12-15 2012-03-20 Colgate-Palmolive Company Toothbrush
USD657569S1 (en) 2010-02-26 2012-04-17 Colgate-Palmolive Company Head portion of an oral care implement
USD657568S1 (en) 2010-02-26 2012-04-17 Colgate-Palmolive Company Oral care implement
USD671325S1 (en) 2009-12-15 2012-11-27 Colgate-Palmolive Company Toothbrush
USD675830S1 (en) 2009-12-18 2013-02-12 Colgate-Palmolive Company Toothbrush
US8523888B2 (en) * 2006-12-18 2013-09-03 Colgate-Palmolive Company Oral care implement
US8584299B2 (en) 2003-04-23 2013-11-19 The Procter & Gamble Company Electric toothbrushes
US8863345B2 (en) 2009-12-18 2014-10-21 Colgate-Palmolive Company Oral care implement having a closed-loop arrangement of cleaning elements
US9750334B2 (en) 2011-01-04 2017-09-05 Trisa Holding Ag Toothbrush with injection-moulded bristles and method and apparatus for producing the same
USD808659S1 (en) * 2012-06-20 2018-01-30 Braun Gmbh Toothbrush head with tongue cleaner
US10299577B2 (en) 2012-07-02 2019-05-28 Trisa Holding Ag Method for producing brushes, in particular interdental brushes, and brush, in particular interdental brush, and product group comprising a plurality of brushes
CN110946489A (en) * 2019-12-20 2020-04-03 吉村信一郎 Toilet cleaning brush
US11197540B2 (en) 2016-06-28 2021-12-14 The Procter & Gamble Company Method of making a brush and brush
US11406172B2 (en) 2016-06-27 2022-08-09 The Procter & Gamble Company Toothbrush heads comprising a two-component cleaning element and method for producing the same
US11617432B2 (en) 2019-06-21 2023-04-04 The Procter & Gamble Company Hole perforation plate for manufacturing of a toothbrush head and part thereof
US11622618B2 (en) 2018-12-13 2023-04-11 Colgate-Palmolive Company Oral care implement
US11832717B2 (en) 2019-06-21 2023-12-05 The Procter & Gamble Company Method for producing a toothbrush head
US11844419B2 (en) 2019-06-21 2023-12-19 The Procter & Gamble Company Cleaning element carrier and toothbrush head comprising it
US11944189B2 (en) 2019-06-21 2024-04-02 The Procter & Gamble Company Method for producing a toothbrush head or a part thereof

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34109A (en) * 1862-01-07 Improved brush
US66834A (en) * 1867-07-16 peters
US104886A (en) * 1870-06-28 Improved scrubber and cleaner
US116030A (en) * 1871-06-20 Improvement in scrubbing-brushes
US116346A (en) * 1871-06-27 Improvement in scrubbing-brushes
US214701A (en) * 1879-04-22 Improvement in locomotives for single railways
US218431A (en) * 1879-08-12 Improvement in scouring and scrubbing brushes
US290515A (en) * 1883-12-18 battson
US305735A (en) * 1884-09-30 Cash and parcel carrier
US411910A (en) * 1889-10-01 Herman e
US620151A (en) * 1899-02-28 John kjellen
US742639A (en) * 1902-11-03 1903-10-27 Harry E Harlan Toilet article.
US907842A (en) * 1908-03-25 1908-12-29 George H Meuzies Horse-brush.
US915251A (en) * 1908-03-21 1909-03-16 John Vanderslice Massage device.
US1006630A (en) * 1909-11-02 1911-10-24 Walter H Clarke Wiping and rubbing device.
US1128139A (en) * 1913-10-31 1915-02-09 John P Hoffman Tooth-brush.
US1142698A (en) * 1914-04-09 1915-06-08 Edwin W Grove Combination-brush.
US1188823A (en) * 1916-03-22 1916-06-27 Theodore R Plank Tooth-brush attachment.
US1191556A (en) * 1915-08-31 1916-07-18 Philip W Blake Tooth-brush.
US1268544A (en) * 1918-04-12 1918-06-04 Lorwin N Cates Tooth-brush.
US1297272A (en) * 1917-12-01 1919-03-11 Louise B Strang Brush.
US1405279A (en) * 1920-12-04 1922-01-31 William M Cassedy Toothbrush
US1500274A (en) * 1921-08-31 1924-07-08 Nicholas D Scarling Window cleaner
US1526267A (en) * 1924-09-03 1925-02-10 Dessau Morland Micholl Rubber article
US1578074A (en) * 1925-07-28 1926-03-23 Chandler Jermain Rubber toothbrush
US1588785A (en) * 1924-06-30 1926-06-15 Robert H Van Sant Toothbrush
US1598224A (en) * 1925-05-23 1926-08-31 Robert H Van Sant Toothbrush
US1705249A (en) * 1928-02-25 1929-03-12 George A Henry Massage brush
US1707118A (en) * 1927-10-10 1929-03-26 Goldberg Abraham Toothbrush
US1720017A (en) * 1928-04-25 1929-07-09 Grady R Touchstone Dental cleaning brush
US1766529A (en) * 1928-10-26 1930-06-24 Cecil R Peirson Windshield cleaner
US1833555A (en) * 1930-07-09 1931-11-24 John P Bell Combined tooth cleaning and gum massaging device
US1852480A (en) * 1930-05-12 1932-04-05 Josef Ruetz Toothbrush
US1861347A (en) * 1931-03-04 1932-05-31 Ernest G Johnson Toothbrush
US1868893A (en) * 1928-08-20 1932-07-26 Gentle Robert Bruce Portable massage and spray apparatus
US1910414A (en) * 1931-03-19 1933-05-23 Varga Imre Tooth cleaning appliance with resilient cleaning members
US1924152A (en) * 1931-11-02 1933-08-29 David M Coney Toothbrush
US1965009A (en) * 1933-03-13 1934-07-03 Roderick G Stevens Rubber finger stall toothbrush
US1993662A (en) * 1931-09-18 1935-03-05 Harry A Green Attachment for toothbrushes
US1993763A (en) * 1933-11-03 1935-03-12 Touchstone & Sparkman Inc Dental cleaning brush
US2008636A (en) * 1933-11-28 1935-07-16 Charles W Brynan Brushless shaving cream spreader cap for collapsible tubes
US2042239A (en) * 1934-01-18 1936-05-26 Andrew J Planding Tooth brush
US2059914A (en) * 1935-07-18 1936-11-03 Henry D Kane Tooth brush
US2088839A (en) * 1936-05-27 1937-08-03 David M Coney Tooth brush
US2117174A (en) * 1936-11-13 1938-05-10 James M Jones Tooth brush
US2129082A (en) * 1935-09-13 1938-09-06 Ralph W Byrer Gum massaging appliance
US2139245A (en) * 1937-01-25 1938-12-06 Floyd H Ogden Tooth brush attachment
US2144408A (en) * 1938-06-13 1939-01-17 Carl J H Grunwald Tooth brush attachment
US2154846A (en) * 1938-04-08 1939-04-18 George H Heymann Massage device
US2164219A (en) * 1939-06-27 mcgerry
US2219753A (en) * 1938-05-21 1940-10-29 Walter C Mayland Toothbrush
US2226145A (en) * 1938-01-17 1940-12-24 Calvin L Smith Motor driven tooth cleaning device
US2244699A (en) * 1939-01-03 1941-06-10 Theodore A Hosey Cleaning device for teeth
US2279355A (en) * 1940-03-28 1942-04-14 Harry L Wilensky Tooth cleaning and gum massaging brush
US2312828A (en) * 1940-11-30 1943-03-02 Emil G Adamsson Toothbrush
US2321333A (en) * 1941-01-27 1943-06-08 Harriet E Cole Closure device
US2334796A (en) * 1941-02-06 1943-11-23 Steinmetz Samuel Cleaning implement
US2443461A (en) * 1946-08-01 1948-06-15 George A Kempster Teeth cleaning and polishing applicator
US2516491A (en) * 1945-10-08 1950-07-25 Henry A Swastek Massage and shampoo device
US2518765A (en) * 1945-10-29 1950-08-15 Ecker Louis Cleaning device having a brush and flanking sponge and squeegee elements
US2534086A (en) * 1948-01-13 1950-12-12 Peter S Vosbikian Window cleaner
US2545814A (en) * 1945-09-15 1951-03-20 George A Kempster Device for treating teeth and gums
US2587382A (en) * 1950-02-02 1952-02-26 Stafford M Pyne Window washer and wiper
US2637870A (en) * 1949-01-11 1953-05-12 Max H Cohen Toothbrush construction
US2644974A (en) * 1947-07-29 1953-07-14 Productive Inventions Inc Cleaning pad for windshields
US2702914A (en) * 1950-11-04 1955-03-01 Levi O Kittle Toothbrush
US2715745A (en) * 1950-10-26 1955-08-23 Donald O Jacobsen Window washing sponge and squeegee
US2757668A (en) * 1952-02-07 1956-08-07 Meyer-Saladin Oskar Emanuel Apparatus for the cleansing treatment of parts of the body
US2807820A (en) * 1952-07-01 1957-10-01 Dinhofer Milton Flexible brush head and means to retain it in a predetermined position
US2815601A (en) * 1955-04-12 1957-12-10 North Star Varnish Company Wood graining device
US2875458A (en) * 1955-08-19 1959-03-03 George S Tsuda Electric toothbrush with improved toothbrush holder
US2884151A (en) * 1956-11-01 1959-04-28 Joseph B Biederman Bottle cap
US2946072A (en) * 1957-11-26 1960-07-26 Edward Z Filler Massage and brush type single-use toothbrush
US2987742A (en) * 1955-02-07 1961-06-13 Levi O Kittle Brush having foam rubber massage and polishing pad therefor
US3103027A (en) * 1960-11-30 1963-09-10 Marjorie A Birch Combined tooth brush and gum massager
US3110052A (en) * 1961-05-08 1963-11-12 Fuller Brush Co Squeegee having a handle particularly adapted for detachable connection to a brush
US3133546A (en) * 1961-05-24 1964-05-19 Valden Company Combination comb and brush
US3181193A (en) * 1962-01-16 1965-05-04 Warren H Nobles Floor cleaning brushes
US3195537A (en) * 1962-09-25 1965-07-20 John V Blasi Power driven tooth cleaner and gum stimulator
US3230562A (en) * 1963-07-19 1966-01-25 Marjorie A Birch Tooth brush and gum massager
US3231925A (en) * 1964-02-06 1966-02-01 Joseph Leclair Disposable toothbrush
US3261354A (en) * 1963-04-04 1966-07-19 Shpuntoff Harry Tooth cleaning tool
US3359588A (en) * 1964-12-14 1967-12-26 Kobler Paul Massage device
US3467247A (en) * 1967-10-26 1969-09-16 Pantasate Co Of New York Inc T Shock-absorbing one-piece tray for supporting elongated articles
US3563233A (en) * 1969-03-17 1971-02-16 Albert G Bodine Sonic dental tool for massaging gums
US3734279A (en) * 1971-06-30 1973-05-22 Union Carbide Corp Display tray
US3868016A (en) * 1973-03-05 1975-02-25 Medicotech Company Magnetized surgical instrument tray restraint
US3977084A (en) * 1974-08-26 1976-08-31 Tsset Scientific And Pharmaceutical Limited Dental hygienic device
US4913133A (en) * 1988-06-28 1990-04-03 Edward Tichy Hand held periodontic tool
US5265729A (en) * 1992-09-14 1993-11-30 Thomson-Leeds Company, Inc. Article display and dispensing tray
US5289605A (en) * 1991-12-10 1994-03-01 Armbruster Joseph M DC powered scrubber
US5405004A (en) * 1992-03-23 1995-04-11 Vest; Gary W. Tool and parts tray
US5573117A (en) * 1995-06-01 1996-11-12 Adams Mfg. Corp. Product shipping and display system
US5802656A (en) * 1995-12-01 1998-09-08 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Toothbrush with flexibly mounted bristles
US5987791A (en) * 1993-04-27 1999-11-23 Paine; Leslie Mounting and display device for card-like items
US6364126B1 (en) * 2000-06-12 2002-04-02 Robert Enriquez Magnetic refrigerator organizer
US6421867B1 (en) * 1997-08-07 2002-07-23 Coronet-Werke Gmbh Brush, in particular for an electric toothbrush
US6536066B2 (en) * 2001-07-25 2003-03-25 Pulse Innovations Inc. Toothbrush oscillating head
US6693537B2 (en) * 2001-05-30 2004-02-17 Ruth Frank Storage tray

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859969B2 (en) * 1999-06-11 2005-03-01 James A. Gavney, Jr. Multi-directional wiping elements and device using the same
US6319332B1 (en) * 1999-06-11 2001-11-20 James Albert Gavney, Jr. Squeegee device and system
US20030140442A1 (en) * 2002-01-31 2003-07-31 Yoshihiro Aoyama Toothbrush head

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US218431A (en) * 1879-08-12 Improvement in scouring and scrubbing brushes
US2164219A (en) * 1939-06-27 mcgerry
US104886A (en) * 1870-06-28 Improved scrubber and cleaner
US116030A (en) * 1871-06-20 Improvement in scrubbing-brushes
US116346A (en) * 1871-06-27 Improvement in scrubbing-brushes
US214701A (en) * 1879-04-22 Improvement in locomotives for single railways
US66834A (en) * 1867-07-16 peters
US290515A (en) * 1883-12-18 battson
US620151A (en) * 1899-02-28 John kjellen
US411910A (en) * 1889-10-01 Herman e
US305735A (en) * 1884-09-30 Cash and parcel carrier
US34109A (en) * 1862-01-07 Improved brush
US742639A (en) * 1902-11-03 1903-10-27 Harry E Harlan Toilet article.
US915251A (en) * 1908-03-21 1909-03-16 John Vanderslice Massage device.
US907842A (en) * 1908-03-25 1908-12-29 George H Meuzies Horse-brush.
US1006630A (en) * 1909-11-02 1911-10-24 Walter H Clarke Wiping and rubbing device.
US1128139A (en) * 1913-10-31 1915-02-09 John P Hoffman Tooth-brush.
US1142698A (en) * 1914-04-09 1915-06-08 Edwin W Grove Combination-brush.
US1191556A (en) * 1915-08-31 1916-07-18 Philip W Blake Tooth-brush.
US1188823A (en) * 1916-03-22 1916-06-27 Theodore R Plank Tooth-brush attachment.
US1297272A (en) * 1917-12-01 1919-03-11 Louise B Strang Brush.
US1268544A (en) * 1918-04-12 1918-06-04 Lorwin N Cates Tooth-brush.
US1405279A (en) * 1920-12-04 1922-01-31 William M Cassedy Toothbrush
US1500274A (en) * 1921-08-31 1924-07-08 Nicholas D Scarling Window cleaner
US1588785A (en) * 1924-06-30 1926-06-15 Robert H Van Sant Toothbrush
US1526267A (en) * 1924-09-03 1925-02-10 Dessau Morland Micholl Rubber article
US1598224A (en) * 1925-05-23 1926-08-31 Robert H Van Sant Toothbrush
US1578074A (en) * 1925-07-28 1926-03-23 Chandler Jermain Rubber toothbrush
US1707118A (en) * 1927-10-10 1929-03-26 Goldberg Abraham Toothbrush
US1705249A (en) * 1928-02-25 1929-03-12 George A Henry Massage brush
US1720017A (en) * 1928-04-25 1929-07-09 Grady R Touchstone Dental cleaning brush
US1868893A (en) * 1928-08-20 1932-07-26 Gentle Robert Bruce Portable massage and spray apparatus
US1766529A (en) * 1928-10-26 1930-06-24 Cecil R Peirson Windshield cleaner
US1852480A (en) * 1930-05-12 1932-04-05 Josef Ruetz Toothbrush
US1833555A (en) * 1930-07-09 1931-11-24 John P Bell Combined tooth cleaning and gum massaging device
US1861347A (en) * 1931-03-04 1932-05-31 Ernest G Johnson Toothbrush
US1910414A (en) * 1931-03-19 1933-05-23 Varga Imre Tooth cleaning appliance with resilient cleaning members
US1993662A (en) * 1931-09-18 1935-03-05 Harry A Green Attachment for toothbrushes
US1924152A (en) * 1931-11-02 1933-08-29 David M Coney Toothbrush
US1965009A (en) * 1933-03-13 1934-07-03 Roderick G Stevens Rubber finger stall toothbrush
US1993763A (en) * 1933-11-03 1935-03-12 Touchstone & Sparkman Inc Dental cleaning brush
US2008636A (en) * 1933-11-28 1935-07-16 Charles W Brynan Brushless shaving cream spreader cap for collapsible tubes
US2042239A (en) * 1934-01-18 1936-05-26 Andrew J Planding Tooth brush
US2059914A (en) * 1935-07-18 1936-11-03 Henry D Kane Tooth brush
US2129082A (en) * 1935-09-13 1938-09-06 Ralph W Byrer Gum massaging appliance
US2088839A (en) * 1936-05-27 1937-08-03 David M Coney Tooth brush
US2117174A (en) * 1936-11-13 1938-05-10 James M Jones Tooth brush
US2139245A (en) * 1937-01-25 1938-12-06 Floyd H Ogden Tooth brush attachment
US2226145A (en) * 1938-01-17 1940-12-24 Calvin L Smith Motor driven tooth cleaning device
US2154846A (en) * 1938-04-08 1939-04-18 George H Heymann Massage device
US2219753A (en) * 1938-05-21 1940-10-29 Walter C Mayland Toothbrush
US2144408A (en) * 1938-06-13 1939-01-17 Carl J H Grunwald Tooth brush attachment
US2244699A (en) * 1939-01-03 1941-06-10 Theodore A Hosey Cleaning device for teeth
US2279355A (en) * 1940-03-28 1942-04-14 Harry L Wilensky Tooth cleaning and gum massaging brush
US2312828A (en) * 1940-11-30 1943-03-02 Emil G Adamsson Toothbrush
US2321333A (en) * 1941-01-27 1943-06-08 Harriet E Cole Closure device
US2334796A (en) * 1941-02-06 1943-11-23 Steinmetz Samuel Cleaning implement
US2545814A (en) * 1945-09-15 1951-03-20 George A Kempster Device for treating teeth and gums
US2516491A (en) * 1945-10-08 1950-07-25 Henry A Swastek Massage and shampoo device
US2518765A (en) * 1945-10-29 1950-08-15 Ecker Louis Cleaning device having a brush and flanking sponge and squeegee elements
US2443461A (en) * 1946-08-01 1948-06-15 George A Kempster Teeth cleaning and polishing applicator
US2644974A (en) * 1947-07-29 1953-07-14 Productive Inventions Inc Cleaning pad for windshields
US2534086A (en) * 1948-01-13 1950-12-12 Peter S Vosbikian Window cleaner
US2637870A (en) * 1949-01-11 1953-05-12 Max H Cohen Toothbrush construction
US2587382A (en) * 1950-02-02 1952-02-26 Stafford M Pyne Window washer and wiper
US2715745A (en) * 1950-10-26 1955-08-23 Donald O Jacobsen Window washing sponge and squeegee
US2702914A (en) * 1950-11-04 1955-03-01 Levi O Kittle Toothbrush
US2757668A (en) * 1952-02-07 1956-08-07 Meyer-Saladin Oskar Emanuel Apparatus for the cleansing treatment of parts of the body
US2807820A (en) * 1952-07-01 1957-10-01 Dinhofer Milton Flexible brush head and means to retain it in a predetermined position
US2987742A (en) * 1955-02-07 1961-06-13 Levi O Kittle Brush having foam rubber massage and polishing pad therefor
US2815601A (en) * 1955-04-12 1957-12-10 North Star Varnish Company Wood graining device
US2875458A (en) * 1955-08-19 1959-03-03 George S Tsuda Electric toothbrush with improved toothbrush holder
US2884151A (en) * 1956-11-01 1959-04-28 Joseph B Biederman Bottle cap
US2946072A (en) * 1957-11-26 1960-07-26 Edward Z Filler Massage and brush type single-use toothbrush
US3103027A (en) * 1960-11-30 1963-09-10 Marjorie A Birch Combined tooth brush and gum massager
US3110052A (en) * 1961-05-08 1963-11-12 Fuller Brush Co Squeegee having a handle particularly adapted for detachable connection to a brush
US3133546A (en) * 1961-05-24 1964-05-19 Valden Company Combination comb and brush
US3181193A (en) * 1962-01-16 1965-05-04 Warren H Nobles Floor cleaning brushes
US3195537A (en) * 1962-09-25 1965-07-20 John V Blasi Power driven tooth cleaner and gum stimulator
US3261354A (en) * 1963-04-04 1966-07-19 Shpuntoff Harry Tooth cleaning tool
US3230562A (en) * 1963-07-19 1966-01-25 Marjorie A Birch Tooth brush and gum massager
US3231925A (en) * 1964-02-06 1966-02-01 Joseph Leclair Disposable toothbrush
US3359588A (en) * 1964-12-14 1967-12-26 Kobler Paul Massage device
US3467247A (en) * 1967-10-26 1969-09-16 Pantasate Co Of New York Inc T Shock-absorbing one-piece tray for supporting elongated articles
US3563233A (en) * 1969-03-17 1971-02-16 Albert G Bodine Sonic dental tool for massaging gums
US3734279A (en) * 1971-06-30 1973-05-22 Union Carbide Corp Display tray
US3868016A (en) * 1973-03-05 1975-02-25 Medicotech Company Magnetized surgical instrument tray restraint
US3977084A (en) * 1974-08-26 1976-08-31 Tsset Scientific And Pharmaceutical Limited Dental hygienic device
US4913133A (en) * 1988-06-28 1990-04-03 Edward Tichy Hand held periodontic tool
US5289605A (en) * 1991-12-10 1994-03-01 Armbruster Joseph M DC powered scrubber
US5405004A (en) * 1992-03-23 1995-04-11 Vest; Gary W. Tool and parts tray
US5265729A (en) * 1992-09-14 1993-11-30 Thomson-Leeds Company, Inc. Article display and dispensing tray
US5987791A (en) * 1993-04-27 1999-11-23 Paine; Leslie Mounting and display device for card-like items
US5573117A (en) * 1995-06-01 1996-11-12 Adams Mfg. Corp. Product shipping and display system
US5802656A (en) * 1995-12-01 1998-09-08 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Toothbrush with flexibly mounted bristles
US6421867B1 (en) * 1997-08-07 2002-07-23 Coronet-Werke Gmbh Brush, in particular for an electric toothbrush
US6364126B1 (en) * 2000-06-12 2002-04-02 Robert Enriquez Magnetic refrigerator organizer
US6693537B2 (en) * 2001-05-30 2004-02-17 Ruth Frank Storage tray
US6536066B2 (en) * 2001-07-25 2003-03-25 Pulse Innovations Inc. Toothbrush oscillating head

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8695149B2 (en) 2003-02-11 2014-04-15 Braun Gmbh Toothbrushes
US7934284B2 (en) 2003-02-11 2011-05-03 Braun Gmbh Toothbrushes
US7958589B2 (en) 2003-02-11 2011-06-14 The Gillette Company Toothbrushes
US8955186B2 (en) 2003-04-23 2015-02-17 The Procter & Gamble Company Electric toothbrushes
US8584299B2 (en) 2003-04-23 2013-11-19 The Procter & Gamble Company Electric toothbrushes
US8523888B2 (en) * 2006-12-18 2013-09-03 Colgate-Palmolive Company Oral care implement
US9549607B2 (en) * 2008-08-29 2017-01-24 Colgate-Palmolive Company Oral care implement
US8776302B2 (en) 2008-08-29 2014-07-15 Colgate-Palmolive Company Oral care implement
USD642803S1 (en) 2008-08-29 2011-08-09 Colgate-Palmolive Company Toothbrush
USD632084S1 (en) 2008-08-29 2011-02-08 Colgate-Palmolive Company Toothbrush
USD642802S1 (en) 2008-08-29 2011-08-09 Colgate-Palmolive Company Toothbrush
US20140310899A1 (en) * 2008-08-29 2014-10-23 Colgate-Palmolive Company Oral care implement
USD655916S1 (en) 2008-08-29 2012-03-20 Colgate-Palmolive Company Toothbrush
US20100050356A1 (en) * 2008-08-29 2010-03-04 Colgate-Palmolive Company Oral care implement
USD651407S1 (en) 2009-01-23 2012-01-03 Colgate-Palmolive Company Toothbrush
USD658886S1 (en) 2009-01-23 2012-05-08 Colgate-Palmolive Company Toothbrush
USD671325S1 (en) 2009-12-15 2012-11-27 Colgate-Palmolive Company Toothbrush
USD655917S1 (en) 2009-12-15 2012-03-20 Colgate-Palmolive Company Toothbrush
USD655918S1 (en) 2009-12-15 2012-03-20 Colgate-Palmolive Company Toothbrush
USD642804S1 (en) 2009-12-15 2011-08-09 Colgate-Palmolive Company Toothbrush
USD631257S1 (en) 2009-12-15 2011-01-25 Colgate-Palmolive Company Toothbrush
USD831359S1 (en) 2009-12-18 2018-10-23 Colgate-Palmolive Company Toothbrush
USD670503S1 (en) 2009-12-18 2012-11-13 Colgate-Palmolive Company Head portion of a toothbrush
USD671326S1 (en) 2009-12-18 2012-11-27 Colgate-Palmolive Company Toothbrush handle
USD670505S1 (en) 2009-12-18 2012-11-13 Colgate-Palmolive Company Toothbrush handle with tissue cleaner
USD675830S1 (en) 2009-12-18 2013-02-12 Colgate-Palmolive Company Toothbrush
USD841335S1 (en) 2009-12-18 2019-02-26 Colgate-Palmolive Company Toothbrush
USD669688S1 (en) 2009-12-18 2012-10-30 Colgate-Palmolive Company Head portion of a toothbrush
USD832586S1 (en) 2009-12-18 2018-11-06 Colgate-Palmolive Company Toothbrush
USD632484S1 (en) 2009-12-18 2011-02-15 Eduardo Jimenez Toothbrush handle with tissue cleaner
USD669689S1 (en) 2009-12-18 2012-10-30 Colgate-Palmolive Company Toothbrush handle with tissue cleaner
USD821755S1 (en) 2009-12-18 2018-07-03 Colgate-Palmolive Company Toothbrush
USD869171S1 (en) * 2009-12-18 2019-12-10 Colgate-Palmolive Company Toothbrush
USD915077S1 (en) 2009-12-18 2021-04-06 Colgate-Palmolive Company Toothbrush
US8863345B2 (en) 2009-12-18 2014-10-21 Colgate-Palmolive Company Oral care implement having a closed-loop arrangement of cleaning elements
USD654695S1 (en) 2009-12-18 2012-02-28 Colgate-Palmolive Company Toothbrush
USD654696S1 (en) 2009-12-18 2012-02-28 Colgate-Palmolive Company Toothbrush handle with tissue cleaner
USD654270S1 (en) 2009-12-18 2012-02-21 Colgate-Palmolive Company Toothbrush handle
USD771953S1 (en) 2010-02-26 2016-11-22 Colgate-Palmolive Company Head portion of an oral care implement
USD713151S1 (en) 2010-02-26 2014-09-16 Colgate-Palmolive Company Head portion of an oral care implement
USD657569S1 (en) 2010-02-26 2012-04-17 Colgate-Palmolive Company Head portion of an oral care implement
USD657568S1 (en) 2010-02-26 2012-04-17 Colgate-Palmolive Company Oral care implement
USD692242S1 (en) 2010-02-26 2013-10-29 Colgate-Palmolive Company Oral care implement
USD690518S1 (en) 2010-02-26 2013-10-01 Colgate-Palmolive Company Head portion of an oral care implement
USD680748S1 (en) 2010-02-26 2013-04-30 Colgate-Palmolive Company Oral care implement
USD848154S1 (en) 2010-02-26 2019-05-14 Colgate-Palmolive Company Head portion of an oral care implement
US10835025B2 (en) 2011-01-04 2020-11-17 Trisa Holding Ag Toothbrush with injection-moulded bristles and method and apparatus for producing the same
US9750334B2 (en) 2011-01-04 2017-09-05 Trisa Holding Ag Toothbrush with injection-moulded bristles and method and apparatus for producing the same
USD808659S1 (en) * 2012-06-20 2018-01-30 Braun Gmbh Toothbrush head with tongue cleaner
US10299577B2 (en) 2012-07-02 2019-05-28 Trisa Holding Ag Method for producing brushes, in particular interdental brushes, and brush, in particular interdental brush, and product group comprising a plurality of brushes
US11622617B2 (en) 2012-07-02 2023-04-11 Trisa Holding Ag Method for producing brushes, in particular interdental brushes, and brush, in particular interdental brush, and product group comprising a plurality of brushes
US11406172B2 (en) 2016-06-27 2022-08-09 The Procter & Gamble Company Toothbrush heads comprising a two-component cleaning element and method for producing the same
US11197540B2 (en) 2016-06-28 2021-12-14 The Procter & Gamble Company Method of making a brush and brush
US11622618B2 (en) 2018-12-13 2023-04-11 Colgate-Palmolive Company Oral care implement
US11617432B2 (en) 2019-06-21 2023-04-04 The Procter & Gamble Company Hole perforation plate for manufacturing of a toothbrush head and part thereof
US11832717B2 (en) 2019-06-21 2023-12-05 The Procter & Gamble Company Method for producing a toothbrush head
US11844419B2 (en) 2019-06-21 2023-12-19 The Procter & Gamble Company Cleaning element carrier and toothbrush head comprising it
US11944189B2 (en) 2019-06-21 2024-04-02 The Procter & Gamble Company Method for producing a toothbrush head or a part thereof
CN110946489A (en) * 2019-12-20 2020-04-03 吉村信一郎 Toilet cleaning brush

Also Published As

Publication number Publication date
WO2007005753A3 (en) 2008-10-02
WO2007005753A2 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US20060230563A1 (en) Oral care device with multi-structural contact elements
US6865767B1 (en) Device with multi-structural contact elements
US7434288B2 (en) Oral care device with multi-structural contact elements
EP1585406B1 (en) Multi-directional wiping elements and device using the same
EP3111798B1 (en) Oral-care device and system
KR101263949B1 (en) Toothbrush with enhanced cleaning effects
US7814603B2 (en) Powered toothbrush with polishing elements
US20040134007A1 (en) Toothbrush
KR20130057495A (en) Oral care implement
JPH07227318A (en) Tooth brush
JPH09182623A (en) Toothbrush

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION