US20060153728A1 - Synthesis of bulk, fully dense nanostructured metals and metal matrix composites - Google Patents

Synthesis of bulk, fully dense nanostructured metals and metal matrix composites Download PDF

Info

Publication number
US20060153728A1
US20060153728A1 US11/033,099 US3309905A US2006153728A1 US 20060153728 A1 US20060153728 A1 US 20060153728A1 US 3309905 A US3309905 A US 3309905A US 2006153728 A1 US2006153728 A1 US 2006153728A1
Authority
US
United States
Prior art keywords
reinforcement
metal
temperature
aluminum
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/033,099
Inventor
Julie Schoenung
Jichun Ye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/033,099 priority Critical patent/US20060153728A1/en
Assigned to NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY reassignment NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: CALIFORNIA, UNIVERSITY OF
Priority to PCT/US2006/000598 priority patent/WO2006076260A1/en
Publication of US20060153728A1 publication Critical patent/US20060153728A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/049Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising at particular temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to the production of nanostructured materials through cryomilling and spark plasma sintering.
  • Nanostructured material is material with a microstructure the characteristic length of which is on the order of a few (typically 1-500) nanometers.
  • Microstructure refers to the chemical composition, the arrangement of the atoms (the atomic structure), and the size of a solid in one, two, or three dimensions.
  • Nanostructured materials have received increasing attention due to their superior physical and mechanical properties. They are used in the electronic industry, telecommunication, electrical, magnetic, structural, optical, catalytic, biomedical, drug delivery, and in consumer goods.
  • Nanostructured materials have generally been produced by (1) powder metallurgy, (2) deposition to bulk nanostructured materials, and (3) structural refinement by severe plastic deformation.
  • powder metallurgy processes nanostructured materials are commonly made via mechanical milling of powder and subsequent consolidation of the powder into bulk materials.
  • contamination is unavoidable during mechanical milling, either from the processing media or atmosphere, and grain growth during consolidation can occur. Modification of these methods, however, can lead to the development of processes that are more practical.
  • sol-gel solution-gelation
  • Physical or thermal processing involves the formation and collection of nanoparticles through the rapid cooling of a supersaturated vapor (gas phase condensation, U.S. Pat. No. 5,128,081).
  • Thermal processes create the supersaturated vapor in a variety of ways, including laser ablation, plasma torch synthesis, combustion flame, exploding wires, spark erosion, electron beam evaporation, sputtering (ion collision).
  • laser ablation for example, a high-energy pulsed laser is focused on a target containing the material to be processed.
  • the high temperature of the resulting plasma (greater than 10,000° K) vaporizes the material quickly allowing the process to operate at room temperature.
  • the process is capable of producing a variety of nanostructured materials on the laboratory scale, but it has the disadvantage of being extremely expensive due to the inherent energy inefficiency of lasers, and, therefore, is not suitable for industrial scale production.
  • Cryogenic milling or cryomilling is a modified mechanical milling technique where the mechanical milling is carried out at cryogenic temperatures, usually in liquid nitrogen or a similar chilled atmosphere.
  • Cryomilling has been employed to successfully fabricate nanostructured aluminum alloy powders and powders for aluminum metal matrix composites, which exhibit good thermal stability, because the cryogenic temperature retards the recovery of the aluminum. Strain is accumulated during cryomilling, leading to dislocation activity, ultimately causing the formation of nanoscaled grains within the cryomilled powder.
  • cryomilled aluminum alloys and aluminum metal matrix composite powders have nanoscaled structures with very good thermal stability. Also, cryomilling can be easily scaled up to produce tonnage quantities. Thus, cryomilling is one of the few processing approaches available for the fabrication of large quantities of nanostructured metal powders.
  • U.S. Pat. No. 4,818,481 to Luton et al. discloses the use of cryomilling to disperse a second phase within an aluminum alloy where the repeated fracture and cold-welding of metal powder involved in ball milling causes strain energy to be stored within the milled particles. This strain energy is introduced through the formation of dislocations, which result in decreased grain size compared to that of the starting powders. The decreased grain size also corresponds to a dispersed secondary phase within the alloy which, in turn, results in improved mechanical properties in the finished product. Different types of oxide dispersions can be dispersed within aluminum alloys by this method.
  • the nanostructured powders described above must be consolidated into bulk materials.
  • Traditional consolidation approaches such as hot pressing (HP), hot isostatic pressing (HIP), and cold isostatic pressing (CIP) have been employed for consolidation into bulk materials.
  • HP hot pressing
  • HIP hot isostatic pressing
  • CIP cold isostatic pressing
  • U.S. Patent Application Publication No. 2004/0065173 to Fritzemeier et al. discloses aluminum alloys produced by blending aluminum with two other metals by cryomilling. The cryomilled alloy is subsequently consolidated by HIP.
  • These consolidation methods require degassing to remove the process control agents that are normally added during cryomilling and other gases to improve the efficiency of consolidation.
  • the present invention provides methods for the synthesis of fully dense nanostructured materials, such as nanostructured aluminum alloys and aluminum metal matrix composites.
  • the compositions thus synthesized find use in the defense industry, aerospace industry, electronics industry, and in biotechnology and drug delivery, among others.
  • the invention provides methods for the synthesis of nanostructured materials where the starting materials are cryogenically milled and consolidated by spark plasma sintering.
  • the invention provides nanostructured aluminum alloys and aluminum metal matrix composites with improved mechanical properties, such as microhardness or strength.
  • the nanostructured aluminum alloys and aluminum metal matrix composites thus produced find use in the defense industry, aerospace industry, electronics industry, and in biotechnology and drug delivery, among others.
  • the invention provides methods for producing nanostructured materials, where the methods comprise (a) providing metal powder and optionally a reinforcement, (b) mechanically milling (a) at cryogenic temperatures to provide nanostructured powders, (c) removing gaseous components from the cryomilled powders, and (d) consolidating the cryomilled powder by spark plasma sintering.
  • the metal powder can be Al, Be, Ca, Sr, Ba, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W, or combinations thereof, and preferably is an aluminum alloy.
  • the reinforcement can be oxides, carbides, nitrides, borides, metals, intermetallics, or alloys. Thus, the reinforcement can be boron carbide, silicon carbide, aluminum nitride, or aluminum oxide.
  • the invention provides methods for producing nanostructured aluminum alloys, the methods comprising (a) providing aluminum alloy and a reinforcement, (b) mechanically milling (a) at a temperature of about ⁇ 150° C. to about ⁇ 300° C., (c) removing gaseous components from (b), and (d) consolidating (c) by spark plasma sintering.
  • the aluminum alloy can additionally contain a metal powder such as Fe, Co, Ni, Cu, Zn, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W, or combinations thereof.
  • the reinforcement can be oxides, carbides, nitrides, borides, metals, intermetallics, or alloys.
  • the reinforcement can be boron carbide, silicon carbide, aluminum nitride, or aluminum oxide.
  • FIG. 1 illustrates a bright field transmission electron microscopy (TEM) image for the bulk 5083 Al processes by cryomilling and SPS.
  • TEM transmission electron microscopy
  • FIG. 2 illustrates a dark field TEM image for the bulk 5083 Al processes by cryomilling and SPS.
  • nanostructured material generally refers to a material having average grain sizes on the order of nanometers.
  • nanostructured materials may include those alloys having an average grain size of 500 nanometers (nm) or less.
  • cryomilling describes the fine milling of metallic constituents at extremely low temperatures. Cryomilling takes place within a ball mill such as an attritor with metallic or ceramic balls. During milling, the mill temperature is lowered by using liquid nitrogen, liquid argon, liquid helium, liquid neon, liquid krypton or liquid xenon. In an attritor, energy is supplied in the form of motion to the balls within the attritor, which impinge portions of the metal alloy powder within the attritor, causing repeated fracturing and welding of the metal.
  • the term “powder” or “particle” are used interchangeably and encompass oxides, carbides, nitrides, borides, chalcogenides, halides, metals, intermetallics, ceramics, polymers, alloys, and combinations thereof.
  • the term includes single metal, multi-metal, and complex compositions. Further, the terms include one-dimensional materials (fibers, tubes), two-dimensional materials (platelets, films, laminates, planar), and three-dimensional materials (spheres, cones, ovals, cylindrical, cubes, monoclinic, parallelepipeds, dumbbells, hexagonal, truncated dodecahedron, irregular shaped structures, and the like).
  • nanopowders or “nanostructured powders,” are used interchangeably and refer to powders having a mean grain size less than about 500 nm, preferably less than about 250 nm, or more preferably less than about 100 nm.
  • the term “alloy” describes a solid comprising two or more elements, such as aluminum and a second metal selected from magnesium, lithium, silicon, titanium, and zirconium.
  • the alloy may contain metals such as Be, Ca, Sr, Ba, Ra, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W, or combinations thereof.
  • the present invention discloses methods for synthesizing nanostructured materials, and compositions thereof.
  • the synthesis employs a combined processing route where cryomilling and spark plasma sintering (SPS) are used to synthesize and consolidate nanostructured materials.
  • SPS spark plasma sintering
  • the methods of the invention have the advantage of having shorter consolidation time and lower consolidation temperature.
  • the inventive methods do not require the use of high pressure gases, such as high pressure argon that is normally required by the existing methods, e.g. HIP.
  • the inventive methods allow for suspending severe grain growth and maintaining the nanostructure due to the lower consolidation temperature and shorter consolidation time.
  • the inventive methods do not require secondary consolidation steps, e.g.
  • the sintering occurs in vacuum in the presence of a strong reducing agent, e.g., the graphite that is used as the film and die.
  • a strong reducing agent e.g., the graphite that is used as the film and die.
  • the consolidation of the nanostructured material to full density does not require a degassing step, and the consolidated materials have good thermal stability, i.e., grains remain in the nanometer scale even after consolidation and use.
  • the SPS sample contains two distinct regions with different grain sizes. The small (nano) sized grains contribute to high strength, while the large (submicron) sized grains enhance the ductility of the materials.
  • the lower processing cost of SPS compensates for the higher processing cost of cryomilling, thus making the combined processing route economically feasible and scalable.
  • the methods of the present invention can be used with metals with low melting temperatures, such as Ni, Fe, Cu, and Al, and mixtures thereof, or with refractory metals, such as Ti, Nb, Mo, Ta, and W, metal matrix composites, and intermetallics.
  • the metal powder to be processed is pre-alloyed powder that can be used directly in the cryomilling process.
  • the powder to be processed is non-alloyed powder wherein two or more different metal powders are added to the cryomill, and the cryomilling process is used to mix together the metal constituents thereby alloying the metals.
  • the methods of the present invention can be used with low melting metals, such as Ni, Fe, Cu, and Al, and mixtures thereof, and one or more other metals.
  • the starting metals are manipulated in a substantially oxygen free atmosphere.
  • the metal is aluminum
  • the aluminum is preferably supplied by atomizing the aluminum from an aluminum source and collecting and storing the atomized aluminum in a container under an argon or nitrogen atmosphere.
  • the inert atmosphere prevents the surface of the aluminum particles from excessive oxidation and prevents contaminants such as moisture from reacting with the raw metal powder.
  • other metals that can readily oxidize are treated in the same manner as aluminum prior to and after milling.
  • the metal for use in the invention can be selected from a Group 2A metal, such as Be or Mg, and mixtures thereof, a Group 3A metal, such as Al, and mixtures thereof, a Group 4A metal, such Sn or Pb, and mixtures thereof, a Group V metal, such as V or Nb, and mixtures thereof, a Group VI metal including Cr, W, or Mo, and mixtures thereof, VII metal, such as, Mn, or Re, a Group VIII metal including Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and mixtures thereof, the lanthanides, such as Ce, Eu, Er, or Yb and mixtures thereof, or transition metals such as Cu, Ag, Au, Zn, Cd, Sc, Y, or La and mixtures thereof.
  • a Group 2A metal such as Be or Mg, and mixtures thereof
  • a Group 3A metal such as Al, and mixtures thereof
  • a Group 4A metal such Sn or Pb
  • a Group V metal such
  • mixtures of metals such as bimetallics, which may be employed by the present invention include Fe—Al, Al—Mg, Co—Cr, Co—W, Co—Mo, Ni—Cr, Ni—W, Ni—Mo, Ru—Cr, Ru—W, Ru—Mo, Rh—Cr, Rh—W, Rh—Mo, Pd—Cr, Pd—W, Pd—Mo, Ir—Cr, Ir—W, Pt—W, and Pt—Mo.
  • the metal is aluminum, iron, cobalt, nickel, titanium, copper, molybdenum, or a mixture thereof.
  • the metal or mixture of metals can be processed to obtain the desired grain size and grain size distribution.
  • elemental compositions include, but are not limited to, (a) precious metals such as platinum, palladium, gold, silver, rhodium, ruthenium and their alloys; (b) base and rare earth metals such as iron, nickel, manganese, cobalt, aluminum, copper, zinc, titanium, samarium, cerium, europium, erbium, and neodymium; (c) semi-metals such as boron, silicon, tin, indium, selenium, tellurium, and bismuth; (d) non-metals such as carbon, phosphorus, and halogens; and (e) alloys such as steel, shape memory alloys, aluminum alloys, manganese alloys, and superplastic alloys.
  • precious metals such as platinum, palladium, gold, silver, rhodium, ruthenium and their alloys
  • base and rare earth metals such as iron, nickel, manganese, cobalt, aluminum, copper, zinc, titanium, sama
  • the starting metal powder can additionally be mixed with a certain amount of reinforcement, also called ceramic composition (oxide, carbide, nitride, boride, chalcogenide), or an intermetallic composition (aluminide, silicide) or an elemental composition.
  • ceramic composition oxide, carbide, nitride, boride, chalcogenide
  • intermetallic composition aluminide, silicide
  • Ceramic composition examples include, but are not limited to (a) simple oxides such as aluminum oxide, silicon oxide, zirconium oxide, cerium oxide, yttrium oxide, bismuth oxide, titanium oxide, iron oxide, nickel oxide, zinc oxide, molybdenum oxide, manganese oxide, magnesium oxide, calcium oxide, and tin oxide; (b) multi-metal oxides such as aluminum silicon oxide, copper zinc oxide, nickel iron oxide, magnesium aluminum oxide, calcium aluminum oxide, calcium aluminum silicon oxide, indium tin oxide, yttrium zirconium oxide, calcium cerium oxide, scandium yttrium zirconium oxide, barium titanium oxide, barium iron oxide and silver copper zinc oxide; (c) carbides such as silicon carbide, boron carbide, iron carbide, titanium carbide, zirconium carbide, hafnium carbide, molybdenum carbide, and vanadium carbide; (d) nitrides such as silicon nitride, boron nitride, iron nitrid
  • the starting metal powders can be mixed with some compounds other than ceramics.
  • Such compounds may include, for instance, organometallic compounds such as metal alkoxides, as well as nitrates, carbonates, sulfates, and hydroxides. These may be in the form of a powder or a liquid.
  • the molar equivalents for the ceramic to be added there is no particular limitation on the molar equivalents for the ceramic to be added.
  • the molar ratio of metals to added ceramic reinforcement is preferably 1000:1 to about 1:1, preferably about 500:1 to about 5:1, and more preferably about 100:1 to about 10:1
  • powders can be cryomilled, wherein fracturing and welding of the metal particles is carried out in a very low temperature environment.
  • the milling can be using shaker type mills, attritor mills, planetary mills, ball mills, or rotary mills.
  • the cryomilling of the metal powder takes place within an attritor.
  • the attritor is typically a cylindrical vessel filled with a large number of ceramic or metallic spherical balls.
  • a single fixed-axis shaft is disposed within the attritor vessel, and there are several radial arms extending from the shaft. As the shaft is turned, the arms cause the spherical balls to move about the attritor.
  • the attritor contains metal powder and the attritor is activated, portions of the metal powder are impinged between the metal balls as they move about the attritor.
  • the force of the metal balls repeatedly impinges the metal particles and causes the metal particles to be continually fractured and welded together.
  • the milling of the powders at low temperatures imparts a high degree of plastic strain within the powder particles.
  • the repeated deformation causes a buildup of dislocation substructure within the particles.
  • the dislocations evolve into cellular networks that become high-angle grain boundaries separating the very small grains of the metal. Grain size as small as approximately 10 ⁇ 8 meter have been observed via electron microscopy and measured by x-ray diffraction. Structures having dimensions smaller than 10 ⁇ 7 meter, such as those found in the material produced at this stage in the invented process, are commonly referred to as nanostructured.
  • an organic polymer such as polyethylene glycol, polyvinyl alcohol, and the like, or organic acids, such as stearic acid, ethyl acetate, ethylene bidisteramide and dodecane may be added as one of the components to be milled with the metal powder.
  • organic components such as stearic acid, ethyl acetate, ethylene bidisteramide and dodecane may be added as one of the components to be milled with the metal powder.
  • the temperature of the metal powder is preferably about ⁇ 150° C. or lower, such as about ⁇ 300° C.
  • the temperature of the metal powder is reduced by using liquefied inert gases, such as liquid nitrogen (bp ⁇ 196° C.), liquid argon (bp ⁇ 186° C.), liquid helium (bp ⁇ 269° C.), liquid neon, liquid krypton or liquid xenon.
  • liquefied inert gases such as liquid nitrogen (bp ⁇ 196° C.), liquid argon (bp ⁇ 186° C.), liquid helium (bp ⁇ 269° C.), liquid neon, liquid krypton or liquid xenon.
  • liquid gases is a convenient way to lower the temperature of the entire cryomilling system.
  • surrounding the metal powder in liquid gases limits exposure of the metal powder to oxygen or moisture.
  • the liquid gas is placed inside the attritor, in contact with the metal particles and the attritor balls.
  • the operating parameters of the cryomill will depend upon the size of the attritor.
  • a 150 liter (40 gal) attritor is preferably operated at a speed of about 100 to 400 rpm.
  • the amount of powder added to the attritor is dependent upon the size and number of balls within the attritor vessel.
  • a 150 liter attritor filled with 640 kg of 0.25′′ diameter steel balls up to approximately 20 kg of metal powder may be milled at any one time. Milling is continued for a time sufficient to reach an equilibrium nanostructured grain size within the metal.
  • the metal alloy powder is a homogenous solid solution of aluminum and the secondary metal, optionally having other added tertiary metal components and optionally having minor amounts of metallic precipitate interspersed within the alloy and optionally having ceramic reinforcements interspersed within the alloy.
  • Grain structure within the alloy is very stable and grain size is less than 500 nm. Depending on the alloy and extent of milling the average grain size is less than about 300 nm, and preferably may be lower than about 100 nm.
  • the metal alloy powder After the metal alloy powder, with the proper composition and grain structure, is produced, it is consolidated into a form that may be shaped into a useful object.
  • the consolidation may be by hot pressing (HP), hot isostatic pressing (HIP), cold isostatic pressing (CIP), or spark plasma sintering (SPS).
  • the consolidation is preferably by HIP or SPS, more preferably SPS. If consolidation is by HIP, the metal powder can be canned, degassed, and then compacted and welded. After consolidating, the solid mass of the metal may be worked and shaped. The consolidated metal can be extruded into a usable metal component, and forged if necessary. Further, there are no particular limitations concerning the conditions of the HIP treatment and can be varied.
  • the HIP treatment above may be carried out under an inert atmosphere such as of nitrogen, argon, or helium and the retention time at the treatment temperature and pressure may be in a range of from 0.5 to 3 hours, and particularly, approximately in a range of from 1 to 2 hours.
  • an inert atmosphere such as of nitrogen, argon, or helium
  • the retention time at the treatment temperature and pressure may be in a range of from 0.5 to 3 hours, and particularly, approximately in a range of from 1 to 2 hours.
  • the metal alloy is preferably consolidated by SPS.
  • the SPS system can be commercially obtained, such as Dr. Sinter 1050 apparatus (Sumitomo Coal Mining Co., Japan).
  • Dr. Sinter 1050 apparatus Suditomo Coal Mining Co., Japan.
  • a graphite die with an inner diameter of about 20 mm to about 100 mm is used. The larger inner diameter is selected for the fabrication of large pieces of bulk materials.
  • the uniaxial pressure for SPS can be applied by the top and bottom graphite punches thereby eliminating the need for high-pressure argon.
  • the alloy from cryomilling is degassed to remove the gaseous materials, including stearic acid. The removal of gaseous components is preferably carried out at a temperature between about 200° C.
  • the alloy in the SPS system is heated at a rate of about 10-500° C./min and held at the sintering temperature for about 1 min to about 60 min, preferably about 2 min to about 15 min.
  • the sintering temperature is carried out at a temperature between about 40% and 100% of the absolute melting temperature of the metal phase, preferably between about 60% and about 95% of the absolute melting temperature of the metal phase, more preferably about 80% and about 95% of the absolute melting temperature of the metal phase.
  • the sintered alloy obtained by cryomilling and SPS consolidation has a relative density with respect to the theoretical density of about 99.0% or higher, preferably about 99.6% or higher, more preferably about 99.7% or higher, and particularly preferably, about 99.8% or higher.
  • a relative density lower than 99.0% is not preferred, because the resulting alloy exhibits impaired strength and hardness at room temperature as well as at high temperatures.
  • the density of aluminum 5083 according to the present invention is preferably 2.63 g/cm 3 , and more preferably, 2.65 g/cm 3 or higher (the upper limit is the theoretical density of the resulting material). Setting the density in the above range is preferred, because the sintered materials can be sufficiently densified for improving strength and hardness, while also improving abrasion resistance.
  • the alloy powder is handled in an inert atmosphere, such as a dry nitrogen or an argon atmosphere or in vacuum.
  • the inert atmosphere prevents oxidation of the surface of the alloy powder particles.
  • the inert atmosphere further prevents the introduction of moisture to the alloy and prevents other contaminants, which might be problematic in the extruded solid, from entering the powder.
  • the size and distribution of grains within the nanostructured material produced by the present invention may be verified by any suitable method.
  • One method of verification uses an X-ray diffraction pattern (XRD). XRD measurements can be performed using Cu K ⁇ radiation in a Siemens D5000 diffractometer equipped with a graphite monochromator. The grain size of the material can be calculated on the basis of the peak broadening. The methods described above may be used to produce nanostructured materials with a certain size distribution.
  • the sintered aluminum according to the present invention has an average grain size of 500 nm or smaller, preferably from 1 nm to about 300 nm, more preferably, from 3 nm to about 200 nm, further preferably, from 5 nm to about 150 nm.
  • the nanostructured materials comprise grains between about 3 nm and about 10 nm in size.
  • the nanostructured materials comprise grains between about 5 nm and about 50 nm in size.
  • the nanostructured materials comprise grains between about 20 nm and about 40 nm in size.
  • the calculation from XRD peak broadening shows us the average grain size is 25 nm for as-cryomilled Al powders, 40 nm for degassed powders, and 44-60 nm for SPS-consolidated powders depending on the sintering parameters.
  • TEM transmission electron microscopy
  • a suitable model is the Phillips CM300 FEG TEM that is commercially available from FEI Company of Hillsboro, Oreg.
  • the metal nanoparticles are typically thinned to achieve a foil that is thin enough for an electron beam to pass through.
  • the TEM samples can be prepared using any of the known art procedures. For example, the powders and epoxy can be mixed to create a slurry, which can then be mounted into a stainless steel nut, sliced from a stainless steel pipe with an outside diameter of 3 mm and an inside diameter of 2 mm, to form a 3-mm diameter disk.
  • the disk can be ground and dimpled to a thickness of approximately 30 ⁇ m using a dimpler fitted with alumina grinders.
  • the particle size of the alumina grinders descend from a 3 ⁇ m grade to a 1 ⁇ m grade.
  • Further thinning perforation process can be carried out using a Gatan 600 argon ion mill at the temperature of near liquid nitrogen temperature (the extension of sample holder can be soaked in liquid nitrogen) with an angle range from 22° to 10°.
  • the TEM apparatus is then used to obtain micrographs of the particles that can be used to determine the grain size and grain size distribution of the nanostructure powder created.
  • the methods of the present invention synthesize sintered aluminum 5083 having high strength and hardness. More specifically, the sintered aluminum 5083 yields a Vicker's hardness of 100 or higher, preferably 120 or higher, and more preferably, 160 or higher.
  • the nanostructured materials of the present invention have numerous applications in industries such as, but not limited to, space shuttle and satellite components, jet aircraft components, helicopter roof control spiders and swashplates, combustion engine components, brake rotors, gear box components, missile components, armor vehicle body and components, diesel pistons, bicycle frames and components, automotive propeller shaft, corrosion sensitive applications, biomedical, sensor, electronic, telecommunications, optics, electrical, photonic, thermal, piezo, magnetic and electrochemical products.
  • Bulk nanostructured aluminum 5083 alloys reinforced with 10 wt % particulate B 4 C were synthesized by cryomilling and spark plasma sintering.
  • a small amount of stearic acid (0.2 wt %) was added into the milling chamber as a process control agent to prevent severe adhesion of the powders onto the chamber and milling balls.
  • the cryomilled powder was degassed at 400° C., and loaded into a graphite die and cold pressed through the punches under a load of 2000 pounds for one minute.
  • the powder was consolidated using spark plasma sintering apparatus under vacuum.
  • the ramping time from room temperature to 350° C. was 3 minutes.
  • the powders were then kept at 350° C. for 3 minutes under the uniaxial sintering pressure of 80 MPa.
  • the densities of the compacts thus obtained were measured using Archimedes method.
  • the hardness at room temperature for the sintered composite was obtained by the Vicker's hardness measurement method under a load of 2.942N.
  • the density of the bulk materials is 2.64 g/cm 3 , 99.9% of the theoretical density.
  • the hardness for this bulk composite is 288.7 HV and the average grain size in the aluminum 5083 matrix is 56 nm.
  • the x-ray diffraction (XRD) pattern of sintered B 4 C reinforced aluminum composites shows that the compacts are nanostructured materials.
  • Bulk nanostructured aluminum 5083 alloys reinforced with 10 wt % particulate B 4 C were synthesized by cryomilling and spark plasma sintering following the procedure of Example 1, except the cryomilled powder was not degassed at 400° C. before being subjected to spark plasma sintering and the powders were held at 350° C. for 2 minutes after the temperature reached 350° C. during plasma sintering.
  • the densities of the compacts thus obtained were measured using Archimedes method.
  • the densities of the bulk materials were 2.65 g/cm 3 , 100% of the theoretical density.
  • XRD, and hardness testing were used to characterize the consolidated compacts, and results showed that the hardness for this bulk composite is 233.3 HV with an average grain size of 44.8 nm in the matrix.
  • the grain size for SPS 5083 Al in the small-grained region is comparable to the Al grains in the as-cryomilled 5083 Al powders, indicating that the small grain size can be retained after consolidation by SPS.
  • Some grains in the cryomilled powders grew during SPS, forming the region containing the larger grains. These larger grains have a wide distribution in size, from 50 to 200 nm.
  • the presence of the small grains in the SPS 5083 Al contributes to the higher strength of the material, while the presence of the large grains contributes to the ductility of the material.
  • the densities of the compacts thus obtained were measured using Archimedes method.
  • the densities of the bulk materials were 2.63 g/cm 3 , 99.0% of the theoretical density.
  • XRD, and hardness testing were used to characterize the consolidated compacts, and results showed that the hardness for this bulk material is 165.3 HV with an average grain size of 56.6 nm.

Abstract

Bulk nanostructured alloys, such as aluminum 5083 alloys reinforced with 10 wt. % particulate B4C, was synthesized by cryomilling and spark plasma sintering. Material for the alloy are selected and the selected raw materials are cryomilled, mechanical milling at cryogenic temperatures, to fabricate nanostructured alloys at low temperatures. The cryomilled powders are then degassed, and consolidated using spark plasma sintering into dense bulk materials. The material thus obtained achieved near full density bulk materials, while retaining the nanocrystalline nature. The densities of the compacts were measured using Archimedes method. XRD, SEM, TEM, and hardness testing were used to characterize the cryomilled powders and consolidated compacts.

Description

    GOVERNMENT INTEREST
  • This invention was made with support of government grants N00014-03-C-0164 from the Office of Naval Research. Therefore, the United States government may have certain rights in the invention.
  • FIELD OF INVENTION
  • The present invention relates to the production of nanostructured materials through cryomilling and spark plasma sintering.
  • BACKGROUND
  • Nanostructured material is material with a microstructure the characteristic length of which is on the order of a few (typically 1-500) nanometers. Microstructure refers to the chemical composition, the arrangement of the atoms (the atomic structure), and the size of a solid in one, two, or three dimensions. Nanostructured materials have received increasing attention due to their superior physical and mechanical properties. They are used in the electronic industry, telecommunication, electrical, magnetic, structural, optical, catalytic, biomedical, drug delivery, and in consumer goods.
  • Nanostructured materials have generally been produced by (1) powder metallurgy, (2) deposition to bulk nanostructured materials, and (3) structural refinement by severe plastic deformation. In powder metallurgy processes, nanostructured materials are commonly made via mechanical milling of powder and subsequent consolidation of the powder into bulk materials. There are several disadvantages with this approach. Contamination is unavoidable during mechanical milling, either from the processing media or atmosphere, and grain growth during consolidation can occur. Modification of these methods, however, can lead to the development of processes that are more practical. For instance, it has been reported that mechanical milling under liquid nitrogen can prevent the powders from being severely oxidized from air, and small nitride or oxy-nitride particles, which are within the size of 2-10 nm, are produced in-situ during milling. These dispersoids, as they are called, can both strengthen the metal and enhance the thermal stability (i.e., control the grain growth) of the nanostructured materials. As another example, if the temperature and/or period to consolidate nanostructured powders into fully dense bulk materials can be reduced, severe grain growth can be suspended and thus the nanostructure can again be retained.
  • With chemical processes, nanostructured materials are created from a reaction with organometallics that precipitate particles of varying sizes and shapes. The process can, however, introduce excess carbon and/or nitrogen into the final composition. An alternative approach is the solution-gelation (sol-gel) process where ceramic production is similar to organometallic processes, except sol-gel materials may be either organic or inorganic. Both approaches involve a high cost of raw materials and capital equipment, limiting their commercial acceptance.
  • Physical or thermal processing involves the formation and collection of nanoparticles through the rapid cooling of a supersaturated vapor (gas phase condensation, U.S. Pat. No. 5,128,081). Thermal processes create the supersaturated vapor in a variety of ways, including laser ablation, plasma torch synthesis, combustion flame, exploding wires, spark erosion, electron beam evaporation, sputtering (ion collision). In laser ablation, for example, a high-energy pulsed laser is focused on a target containing the material to be processed. The high temperature of the resulting plasma (greater than 10,000° K) vaporizes the material quickly allowing the process to operate at room temperature. The process is capable of producing a variety of nanostructured materials on the laboratory scale, but it has the disadvantage of being extremely expensive due to the inherent energy inefficiency of lasers, and, therefore, is not suitable for industrial scale production.
  • Mechanical milling has been widely used to fabricate nanostructured metal powder and powder for metal matrix composites. However, it can be difficult to obtain nanostructured aluminum alloys with conventional mechanical milling, because of the high recrystallization rate due to the low melting temperature of aluminum. Cryogenic milling or cryomilling is a modified mechanical milling technique where the mechanical milling is carried out at cryogenic temperatures, usually in liquid nitrogen or a similar chilled atmosphere. Cryomilling has been employed to successfully fabricate nanostructured aluminum alloy powders and powders for aluminum metal matrix composites, which exhibit good thermal stability, because the cryogenic temperature retards the recovery of the aluminum. Strain is accumulated during cryomilling, leading to dislocation activity, ultimately causing the formation of nanoscaled grains within the cryomilled powder. The combined effect of the ultra-fine dispersion of particles formed during cryomilling and the reduced grain size is a powder that can be used to make a bulk material with relatively high strength. This type of material will also exhibit better creep resistance compared to its conventional counterpart. It has been reported that cryomilled aluminum alloys and aluminum metal matrix composite powders have nanoscaled structures with very good thermal stability. Also, cryomilling can be easily scaled up to produce tonnage quantities. Thus, cryomilling is one of the few processing approaches available for the fabrication of large quantities of nanostructured metal powders.
  • U.S. Pat. No. 4,818,481 to Luton et al. discloses the use of cryomilling to disperse a second phase within an aluminum alloy where the repeated fracture and cold-welding of metal powder involved in ball milling causes strain energy to be stored within the milled particles. This strain energy is introduced through the formation of dislocations, which result in decreased grain size compared to that of the starting powders. The decreased grain size also corresponds to a dispersed secondary phase within the alloy which, in turn, results in improved mechanical properties in the finished product. Different types of oxide dispersions can be dispersed within aluminum alloys by this method.
  • The nanostructured powders described above must be consolidated into bulk materials. Traditional consolidation approaches, such as hot pressing (HP), hot isostatic pressing (HIP), and cold isostatic pressing (CIP) have been employed for consolidation into bulk materials. U.S. Patent Application Publication No. 2004/0065173 to Fritzemeier et al. discloses aluminum alloys produced by blending aluminum with two other metals by cryomilling. The cryomilled alloy is subsequently consolidated by HIP. These consolidation methods require degassing to remove the process control agents that are normally added during cryomilling and other gases to improve the efficiency of consolidation. Further, these traditional consolidation approaches need very high pressures, on the order of GPa, which is provided by high-pressure argon, and long cycle time that can last for several hours. Aluminum particles are covered with aluminum oxide films and these oxides cannot be easily broken during consolidation which will result in less dense materials thereby negatively affecting the properties of the nanostructured materials. Therefore, a secondary processing technique, such as extrusion, is required to improve the density further and break the oxides. However, the high temperatures and long consolidation times required by these processes result in the grain growth of the nanostructured aluminum.
  • Therefore, there is a need for processes for making nanostructured materials where the processes are scalable for commercial production of nanostructured materials.
  • SUMMARY
  • The present invention provides methods for the synthesis of fully dense nanostructured materials, such as nanostructured aluminum alloys and aluminum metal matrix composites. The compositions thus synthesized find use in the defense industry, aerospace industry, electronics industry, and in biotechnology and drug delivery, among others.
  • In one aspect, the invention provides methods for the synthesis of nanostructured materials where the starting materials are cryogenically milled and consolidated by spark plasma sintering.
  • In another aspect, the invention provides nanostructured aluminum alloys and aluminum metal matrix composites with improved mechanical properties, such as microhardness or strength. The nanostructured aluminum alloys and aluminum metal matrix composites thus produced find use in the defense industry, aerospace industry, electronics industry, and in biotechnology and drug delivery, among others.
  • In another aspect, the invention provides methods for producing nanostructured materials, where the methods comprise (a) providing metal powder and optionally a reinforcement, (b) mechanically milling (a) at cryogenic temperatures to provide nanostructured powders, (c) removing gaseous components from the cryomilled powders, and (d) consolidating the cryomilled powder by spark plasma sintering. The metal powder can be Al, Be, Ca, Sr, Ba, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W, or combinations thereof, and preferably is an aluminum alloy. The reinforcement can be oxides, carbides, nitrides, borides, metals, intermetallics, or alloys. Thus, the reinforcement can be boron carbide, silicon carbide, aluminum nitride, or aluminum oxide.
  • In another aspect, the invention provides methods for producing nanostructured aluminum alloys, the methods comprising (a) providing aluminum alloy and a reinforcement, (b) mechanically milling (a) at a temperature of about −150° C. to about −300° C., (c) removing gaseous components from (b), and (d) consolidating (c) by spark plasma sintering. The aluminum alloy can additionally contain a metal powder such as Fe, Co, Ni, Cu, Zn, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W, or combinations thereof. The reinforcement can be oxides, carbides, nitrides, borides, metals, intermetallics, or alloys. Thus, the reinforcement can be boron carbide, silicon carbide, aluminum nitride, or aluminum oxide.
  • These and other aspects of the present invention will become evident upon reference to the following detailed description. In addition, various references are set forth herein which describe in more detail certain procedures or compositions, and are therefore incorporated by reference in their entirety.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 illustrates a bright field transmission electron microscopy (TEM) image for the bulk 5083 Al processes by cryomilling and SPS.
  • FIG. 2 illustrates a dark field TEM image for the bulk 5083 Al processes by cryomilling and SPS.
  • DETAILED DESCRIPTION
  • I. Definitions
  • Unless otherwise stated, the following terms used in this application, including the specification and claims, have the definitions given below. It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. The practice of the present invention will employ, unless otherwise indicated, conventional methods of material science and physical chemistry, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Lü L, Lai M O. Mechanical Alloying, Kluwer Academic Publishers, 1998, Boston, Mass.; Suryanarayana C. Progr Mater Sci 2001; 46: 1-184; Xie G Q, Ohashi O, Yoshioka T, Song M H, Mitsuishi K, Yasuda H, Furuya K, Noda T MATERIALS TRANSACTIONS, 42 (9): 1846-1849 SEP 2001; and Cabanas-Moreno J G, Calderon H A, Umemoto M, ADVANCED STRUCTURAL MATERIALS SCIENCE FORUM, 442: 133-142 2003.
  • All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.
  • The term “nanostructured material” generally refers to a material having average grain sizes on the order of nanometers. For purposes of the disclosure, nanostructured materials may include those alloys having an average grain size of 500 nanometers (nm) or less.
  • As used herein, “cryomilling” describes the fine milling of metallic constituents at extremely low temperatures. Cryomilling takes place within a ball mill such as an attritor with metallic or ceramic balls. During milling, the mill temperature is lowered by using liquid nitrogen, liquid argon, liquid helium, liquid neon, liquid krypton or liquid xenon. In an attritor, energy is supplied in the form of motion to the balls within the attritor, which impinge portions of the metal alloy powder within the attritor, causing repeated fracturing and welding of the metal.
  • As used herein, the term “powder” or “particle” are used interchangeably and encompass oxides, carbides, nitrides, borides, chalcogenides, halides, metals, intermetallics, ceramics, polymers, alloys, and combinations thereof. The term includes single metal, multi-metal, and complex compositions. Further, the terms include one-dimensional materials (fibers, tubes), two-dimensional materials (platelets, films, laminates, planar), and three-dimensional materials (spheres, cones, ovals, cylindrical, cubes, monoclinic, parallelepipeds, dumbbells, hexagonal, truncated dodecahedron, irregular shaped structures, and the like).
  • As used herein, the terms “nanopowders” or “nanostructured powders,” are used interchangeably and refer to powders having a mean grain size less than about 500 nm, preferably less than about 250 nm, or more preferably less than about 100 nm.
  • As used herein, the term “alloy” describes a solid comprising two or more elements, such as aluminum and a second metal selected from magnesium, lithium, silicon, titanium, and zirconium. In addition, the alloy may contain metals such as Be, Ca, Sr, Ba, Ra, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W, or combinations thereof.
  • II. Modes of Carrying Out the Invention
  • The present invention discloses methods for synthesizing nanostructured materials, and compositions thereof. The synthesis employs a combined processing route where cryomilling and spark plasma sintering (SPS) are used to synthesize and consolidate nanostructured materials. The methods of the invention have the advantage of having shorter consolidation time and lower consolidation temperature. The inventive methods do not require the use of high pressure gases, such as high pressure argon that is normally required by the existing methods, e.g. HIP. The inventive methods allow for suspending severe grain growth and maintaining the nanostructure due to the lower consolidation temperature and shorter consolidation time. The inventive methods do not require secondary consolidation steps, e.g. extrusion, because the potential for formation of an oxide film is lowered as a result of the process conditions: the sintering occurs in vacuum in the presence of a strong reducing agent, e.g., the graphite that is used as the film and die. Further, the consolidation of the nanostructured material to full density does not require a degassing step, and the consolidated materials have good thermal stability, i.e., grains remain in the nanometer scale even after consolidation and use. The SPS sample contains two distinct regions with different grain sizes. The small (nano) sized grains contribute to high strength, while the large (submicron) sized grains enhance the ductility of the materials. In addition, the lower processing cost of SPS compensates for the higher processing cost of cryomilling, thus making the combined processing route economically feasible and scalable.
  • The methods of the present invention can be used with metals with low melting temperatures, such as Ni, Fe, Cu, and Al, and mixtures thereof, or with refractory metals, such as Ti, Nb, Mo, Ta, and W, metal matrix composites, and intermetallics. In one aspect, the metal powder to be processed is pre-alloyed powder that can be used directly in the cryomilling process. In another aspect, the powder to be processed is non-alloyed powder wherein two or more different metal powders are added to the cryomill, and the cryomilling process is used to mix together the metal constituents thereby alloying the metals.
  • The methods of the present invention can be used with low melting metals, such as Ni, Fe, Cu, and Al, and mixtures thereof, and one or more other metals. Preferably, the starting metals are manipulated in a substantially oxygen free atmosphere. For example, if the metal is aluminum, the aluminum is preferably supplied by atomizing the aluminum from an aluminum source and collecting and storing the atomized aluminum in a container under an argon or nitrogen atmosphere. The inert atmosphere prevents the surface of the aluminum particles from excessive oxidation and prevents contaminants such as moisture from reacting with the raw metal powder. Preferably, other metals that can readily oxidize are treated in the same manner as aluminum prior to and after milling.
  • The metal for use in the invention can be selected from a Group 2A metal, such as Be or Mg, and mixtures thereof, a Group 3A metal, such as Al, and mixtures thereof, a Group 4A metal, such Sn or Pb, and mixtures thereof, a Group V metal, such as V or Nb, and mixtures thereof, a Group VI metal including Cr, W, or Mo, and mixtures thereof, VII metal, such as, Mn, or Re, a Group VIII metal including Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and mixtures thereof, the lanthanides, such as Ce, Eu, Er, or Yb and mixtures thereof, or transition metals such as Cu, Ag, Au, Zn, Cd, Sc, Y, or La and mixtures thereof. Specific examples of mixtures of metals, such as bimetallics, which may be employed by the present invention include Fe—Al, Al—Mg, Co—Cr, Co—W, Co—Mo, Ni—Cr, Ni—W, Ni—Mo, Ru—Cr, Ru—W, Ru—Mo, Rh—Cr, Rh—W, Rh—Mo, Pd—Cr, Pd—W, Pd—Mo, Ir—Cr, Ir—W, Pt—W, and Pt—Mo. Preferably, the metal is aluminum, iron, cobalt, nickel, titanium, copper, molybdenum, or a mixture thereof. The metal or mixture of metals can be processed to obtain the desired grain size and grain size distribution. Examples of elemental compositions include, but are not limited to, (a) precious metals such as platinum, palladium, gold, silver, rhodium, ruthenium and their alloys; (b) base and rare earth metals such as iron, nickel, manganese, cobalt, aluminum, copper, zinc, titanium, samarium, cerium, europium, erbium, and neodymium; (c) semi-metals such as boron, silicon, tin, indium, selenium, tellurium, and bismuth; (d) non-metals such as carbon, phosphorus, and halogens; and (e) alloys such as steel, shape memory alloys, aluminum alloys, manganese alloys, and superplastic alloys.
  • The starting metal powder can additionally be mixed with a certain amount of reinforcement, also called ceramic composition (oxide, carbide, nitride, boride, chalcogenide), or an intermetallic composition (aluminide, silicide) or an elemental composition. Examples of ceramic composition include, but are not limited to (a) simple oxides such as aluminum oxide, silicon oxide, zirconium oxide, cerium oxide, yttrium oxide, bismuth oxide, titanium oxide, iron oxide, nickel oxide, zinc oxide, molybdenum oxide, manganese oxide, magnesium oxide, calcium oxide, and tin oxide; (b) multi-metal oxides such as aluminum silicon oxide, copper zinc oxide, nickel iron oxide, magnesium aluminum oxide, calcium aluminum oxide, calcium aluminum silicon oxide, indium tin oxide, yttrium zirconium oxide, calcium cerium oxide, scandium yttrium zirconium oxide, barium titanium oxide, barium iron oxide and silver copper zinc oxide; (c) carbides such as silicon carbide, boron carbide, iron carbide, titanium carbide, zirconium carbide, hafnium carbide, molybdenum carbide, and vanadium carbide; (d) nitrides such as silicon nitride, boron nitride, iron nitride, titanium nitride, zirconium nitride, hafnium nitride, molybdenum nitride, and vanadium nitride; (e) borides such as silicon boride, iron boride, titanium diboride, zirconium boride, hafnium boride, molybdenum boride, and vanadium boride; and (f) complex ceramics such as titanium carbonitride, titanium silicon carbide, zirconium carbonitride, zirconium carboxide, titanium oxynitride, molybdenum oxynitride, and molybdenum carbonitride.
  • In another aspect, the starting metal powders can be mixed with some compounds other than ceramics. Such compounds may include, for instance, organometallic compounds such as metal alkoxides, as well as nitrates, carbonates, sulfates, and hydroxides. These may be in the form of a powder or a liquid.
  • In the case of preparing a mixture containing ceramic and metals or alloys in obtaining the sintered compact according to the present invention, there is no particular limitation on the molar equivalents for the ceramic to be added. However, the molar ratio of metals to added ceramic reinforcement is preferably 1000:1 to about 1:1, preferably about 500:1 to about 5:1, and more preferably about 100:1 to about 10:1
  • Once the constituents of the metal or metal mixture and ceramic reinforcement are selected, powders can be cryomilled, wherein fracturing and welding of the metal particles is carried out in a very low temperature environment. The milling can be using shaker type mills, attritor mills, planetary mills, ball mills, or rotary mills. Preferably the cryomilling of the metal powder takes place within an attritor. The attritor is typically a cylindrical vessel filled with a large number of ceramic or metallic spherical balls. A single fixed-axis shaft is disposed within the attritor vessel, and there are several radial arms extending from the shaft. As the shaft is turned, the arms cause the spherical balls to move about the attritor. When the attritor contains metal powder and the attritor is activated, portions of the metal powder are impinged between the metal balls as they move about the attritor. The force of the metal balls repeatedly impinges the metal particles and causes the metal particles to be continually fractured and welded together.
  • The milling of the powders at low temperatures imparts a high degree of plastic strain within the powder particles. During cryomilling, the repeated deformation causes a buildup of dislocation substructure within the particles. After repeated deformation, the dislocations evolve into cellular networks that become high-angle grain boundaries separating the very small grains of the metal. Grain size as small as approximately 10−8 meter have been observed via electron microscopy and measured by x-ray diffraction. Structures having dimensions smaller than 10−7 meter, such as those found in the material produced at this stage in the invented process, are commonly referred to as nanostructured.
  • During milling, an organic polymer, such as polyethylene glycol, polyvinyl alcohol, and the like, or organic acids, such as stearic acid, ethyl acetate, ethylene bidisteramide and dodecane may be added as one of the components to be milled with the metal powder. The addition of organic components promotes the fracturing of metal particles during milling, and prevents the severe adhesion of the metal powders onto the milling media and milling tools.
  • During milling, the temperature of the metal powder is preferably about −150° C. or lower, such as about −300° C. Typically, the temperature of the metal powder is reduced by using liquefied inert gases, such as liquid nitrogen (bp −196° C.), liquid argon (bp −186° C.), liquid helium (bp −269° C.), liquid neon, liquid krypton or liquid xenon. The use of liquid gases is a convenient way to lower the temperature of the entire cryomilling system. Further, surrounding the metal powder in liquid gases limits exposure of the metal powder to oxygen or moisture. In operation, the liquid gas is placed inside the attritor, in contact with the metal particles and the attritor balls.
  • The operating parameters of the cryomill will depend upon the size of the attritor. For example, a 150 liter (40 gal) attritor is preferably operated at a speed of about 100 to 400 rpm. The amount of powder added to the attritor is dependent upon the size and number of balls within the attritor vessel. For a 150 liter attritor filled with 640 kg of 0.25″ diameter steel balls, up to approximately 20 kg of metal powder may be milled at any one time. Milling is continued for a time sufficient to reach an equilibrium nanostructured grain size within the metal.
  • After milling, the metal alloy powder is a homogenous solid solution of aluminum and the secondary metal, optionally having other added tertiary metal components and optionally having minor amounts of metallic precipitate interspersed within the alloy and optionally having ceramic reinforcements interspersed within the alloy. Grain structure within the alloy is very stable and grain size is less than 500 nm. Depending on the alloy and extent of milling the average grain size is less than about 300 nm, and preferably may be lower than about 100 nm.
  • After the metal alloy powder, with the proper composition and grain structure, is produced, it is consolidated into a form that may be shaped into a useful object. The consolidation may be by hot pressing (HP), hot isostatic pressing (HIP), cold isostatic pressing (CIP), or spark plasma sintering (SPS). The consolidation is preferably by HIP or SPS, more preferably SPS. If consolidation is by HIP, the metal powder can be canned, degassed, and then compacted and welded. After consolidating, the solid mass of the metal may be worked and shaped. The consolidated metal can be extruded into a usable metal component, and forged if necessary. Further, there are no particular limitations concerning the conditions of the HIP treatment and can be varied. Further, the HIP treatment above may be carried out under an inert atmosphere such as of nitrogen, argon, or helium and the retention time at the treatment temperature and pressure may be in a range of from 0.5 to 3 hours, and particularly, approximately in a range of from 1 to 2 hours.
  • The metal alloy is preferably consolidated by SPS. The SPS system can be commercially obtained, such as Dr. Sinter 1050 apparatus (Sumitomo Coal Mining Co., Japan). Typically in SPS, a graphite die with an inner diameter of about 20 mm to about 100 mm is used. The larger inner diameter is selected for the fabrication of large pieces of bulk materials. The uniaxial pressure for SPS can be applied by the top and bottom graphite punches thereby eliminating the need for high-pressure argon. Typically, the alloy from cryomilling is degassed to remove the gaseous materials, including stearic acid. The removal of gaseous components is preferably carried out at a temperature between about 200° C. and 600° C., more preferably at a temperature between about 300° C. and 500° C. Then, the alloy in the SPS system is heated at a rate of about 10-500° C./min and held at the sintering temperature for about 1 min to about 60 min, preferably about 2 min to about 15 min. The sintering temperature is carried out at a temperature between about 40% and 100% of the absolute melting temperature of the metal phase, preferably between about 60% and about 95% of the absolute melting temperature of the metal phase, more preferably about 80% and about 95% of the absolute melting temperature of the metal phase. Thus, the shorter sintering time and elimination of the requirement for high-pressure argon make SPS an economically effective consolidation process.
  • The sintered alloy obtained by cryomilling and SPS consolidation has a relative density with respect to the theoretical density of about 99.0% or higher, preferably about 99.6% or higher, more preferably about 99.7% or higher, and particularly preferably, about 99.8% or higher. In this manner, the residual pores in the nanostructured alloy can be easily expelled resulting in complete extinction of residual pores in the sintered materials. A relative density lower than 99.0% is not preferred, because the resulting alloy exhibits impaired strength and hardness at room temperature as well as at high temperatures. Thus, the density of aluminum 5083 according to the present invention is preferably 2.63 g/cm3, and more preferably, 2.65 g/cm3 or higher (the upper limit is the theoretical density of the resulting material). Setting the density in the above range is preferred, because the sintered materials can be sufficiently densified for improving strength and hardness, while also improving abrasion resistance.
  • At all times from cryomilling through the completion of consolidation, the alloy powder is handled in an inert atmosphere, such as a dry nitrogen or an argon atmosphere or in vacuum. The inert atmosphere prevents oxidation of the surface of the alloy powder particles. The inert atmosphere further prevents the introduction of moisture to the alloy and prevents other contaminants, which might be problematic in the extruded solid, from entering the powder.
  • The size and distribution of grains within the nanostructured material produced by the present invention may be verified by any suitable method. One method of verification uses an X-ray diffraction pattern (XRD). XRD measurements can be performed using Cu Kα radiation in a Siemens D5000 diffractometer equipped with a graphite monochromator. The grain size of the material can be calculated on the basis of the peak broadening. The methods described above may be used to produce nanostructured materials with a certain size distribution. When one of the metals is aluminum, the sintered aluminum according to the present invention has an average grain size of 500 nm or smaller, preferably from 1 nm to about 300 nm, more preferably, from 3 nm to about 200 nm, further preferably, from 5 nm to about 150 nm. In an embodiment, the nanostructured materials comprise grains between about 3 nm and about 10 nm in size. In another embodiment, the nanostructured materials comprise grains between about 5 nm and about 50 nm in size. In still another embodiment, the nanostructured materials comprise grains between about 20 nm and about 40 nm in size. The calculation from XRD peak broadening shows us the average grain size is 25 nm for as-cryomilled Al powders, 40 nm for degassed powders, and 44-60 nm for SPS-consolidated powders depending on the sintering parameters.
  • Another method of verification is transmission electron microscopy (TEM). A suitable model is the Phillips CM300 FEG TEM that is commercially available from FEI Company of Hillsboro, Oreg. In order to take a TEM micrograph, the metal nanoparticles are typically thinned to achieve a foil that is thin enough for an electron beam to pass through. The TEM samples can be prepared using any of the known art procedures. For example, the powders and epoxy can be mixed to create a slurry, which can then be mounted into a stainless steel nut, sliced from a stainless steel pipe with an outside diameter of 3 mm and an inside diameter of 2 mm, to form a 3-mm diameter disk. The disk can be ground and dimpled to a thickness of approximately 30 μm using a dimpler fitted with alumina grinders. The particle size of the alumina grinders descend from a 3 μm grade to a 1 μm grade. Further thinning perforation process can be carried out using a Gatan 600 argon ion mill at the temperature of near liquid nitrogen temperature (the extension of sample holder can be soaked in liquid nitrogen) with an angle range from 22° to 10°. The TEM apparatus is then used to obtain micrographs of the particles that can be used to determine the grain size and grain size distribution of the nanostructure powder created.
  • The methods of the present invention synthesize sintered aluminum 5083 having high strength and hardness. More specifically, the sintered aluminum 5083 yields a Vicker's hardness of 100 or higher, preferably 120 or higher, and more preferably, 160 or higher.
  • The nanostructured materials of the present invention have numerous applications in industries such as, but not limited to, space shuttle and satellite components, jet aircraft components, helicopter roof control spiders and swashplates, combustion engine components, brake rotors, gear box components, missile components, armor vehicle body and components, diesel pistons, bicycle frames and components, automotive propeller shaft, corrosion sensitive applications, biomedical, sensor, electronic, telecommunications, optics, electrical, photonic, thermal, piezo, magnetic and electrochemical products.
  • EXAMPLES
  • Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.
  • Example 1
  • Bulk nanostructured aluminum 5083 alloys reinforced with 10 wt % particulate B4C were synthesized by cryomilling and spark plasma sintering. Coarse-grained aluminum 5083 alloy and hard B4C, having a particle size of a few microns, were cryomilled at a temperature of −180° C. using a Szegvari attritor with the ball-to-powder ratio of 32:1 and rotation speed of 180 rpm for 8 h. A small amount of stearic acid (0.2 wt %) was added into the milling chamber as a process control agent to prevent severe adhesion of the powders onto the chamber and milling balls. The cryomilled powder was degassed at 400° C., and loaded into a graphite die and cold pressed through the punches under a load of 2000 pounds for one minute.
  • The powder was consolidated using spark plasma sintering apparatus under vacuum. The ramping time from room temperature to 350° C. was 3 minutes. The powders were then kept at 350° C. for 3 minutes under the uniaxial sintering pressure of 80 MPa.
  • The densities of the compacts thus obtained were measured using Archimedes method. The hardness at room temperature for the sintered composite was obtained by the Vicker's hardness measurement method under a load of 2.942N.
  • The density of the bulk materials is 2.64 g/cm3, 99.9% of the theoretical density. The hardness for this bulk composite is 288.7 HV and the average grain size in the aluminum 5083 matrix is 56 nm.
  • The x-ray diffraction (XRD) pattern of sintered B4C reinforced aluminum composites shows that the compacts are nanostructured materials.
  • Example 2
  • Bulk nanostructured aluminum 5083 alloys reinforced with 10 wt % particulate B4C were synthesized by cryomilling and spark plasma sintering following the procedure of Example 1, except the cryomilled powder was not degassed at 400° C. before being subjected to spark plasma sintering and the powders were held at 350° C. for 2 minutes after the temperature reached 350° C. during plasma sintering.
  • The densities of the compacts thus obtained were measured using Archimedes method. The densities of the bulk materials were 2.65 g/cm3, 100% of the theoretical density. XRD, and hardness testing were used to characterize the consolidated compacts, and results showed that the hardness for this bulk composite is 233.3 HV with an average grain size of 44.8 nm in the matrix.
  • Example 3
  • Bulk nanostructured aluminum 5083 alloys were synthesized by cryomilling and spark plasma sintering following the procedure of Example 2. The microstructures of the compacts thus obtained were investigated using transmission electron microscopy (TEM), shown in FIGS. 1 and 2. The SPS sample contains two distinct regions with different grain sizes. The region with the large grains is in the upper left corner in FIG. 1, and the region with the small grains is in the remainder. In this small-grained region, most of the Al grains are below 50 nm in size, and some Al grains are as small as 20 nm. As a basis for comparison, the average grain size for as-cryomilled 5083 Al powder is 25 nm, with a grain size distribution of 15-60 nm. Thus, the grain size for SPS 5083 Al in the small-grained region is comparable to the Al grains in the as-cryomilled 5083 Al powders, indicating that the small grain size can be retained after consolidation by SPS. Some grains in the cryomilled powders grew during SPS, forming the region containing the larger grains. These larger grains have a wide distribution in size, from 50 to 200 nm. The presence of the small grains in the SPS 5083 Al contributes to the higher strength of the material, while the presence of the large grains contributes to the ductility of the material.
  • The densities of the compacts thus obtained were measured using Archimedes method. The densities of the bulk materials were 2.63 g/cm3, 99.0% of the theoretical density. XRD, and hardness testing were used to characterize the consolidated compacts, and results showed that the hardness for this bulk material is 165.3 HV with an average grain size of 56.6 nm.
  • While the invention has been particularly shown and described with reference to a preferred embodiment and various alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention. All printed patents and publications referred to in this application are hereby incorporated herein in their entirety by this reference.

Claims (34)

1. A method for producing nanostructured materials, the method comprising:
(a) providing a metal powder and optionally a reinforcement;
(b) mechanically milling (a) at a cryogenic temperature (cryomilling) to provide a nanostructured powder;
(c) removing gaseous components from the cryomilled powder; and
(d) consolidating the cryomilled powder by spark plasma sintering, wherein the nanostructured material thus produced has a relative density of about 99.0% or higher and an average grain size of less than 100 nm.
2. The method of claim 1, wherein the reinforcement is selected from the group consisting of oxides, carbides, nitrides, borides, metals, intermetallics, and alloys.
3. The method of claim 1, wherein the metal powder is selected from the group consisting of Al, Be, Ca, Sr, Ba, Ra, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, and W, and combinations thereof.
4. The method of claim 1, wherein the metal powder is an aluminum alloy.
5. The method of claim 1, wherein the reinforcement is boron carbide.
6. The method of claim 1, wherein the reinforcement is silicon carbide.
7. The method of claim 1, wherein the reinforcement is aluminum nitride.
8. The method of claim 1, wherein the reinforcement is aluminum oxide.
9. The method of claim 1, wherein the reinforcement is in the form of a particulate.
10. The method of claim 1, wherein the reinforcement is in the form of a platelet.
11. The method of claim 1, wherein the reinforcement is in the form of a whisker.
12. The method of claim 1, wherein cryomilling is continued until an equilibrium grain size of the metal is reached.
13. The method of claim 12, wherein cryomilling is continued between 6 and 10 hours.
14. The method of claim 1, wherein the removal of gaseous component occurs at a temperature between about 200° C. and 600° C.
15. The method of claim 14, wherein the removal of gaseous components occurs at a temperature between about 300° C. and 500° C.
16. The method of claim 1, wherein the spark plasma sintering is carried out at a temperature between 40% and 100% of the absolute melting temperature of the metal phase.
17. The method of claim 1, wherein spark plasma sintering is carried out with different ramping rates and various holding time.
18. The method of claim 1, wherein removal of gaseous components and consolidation of the cryomilled-powder occur simultaneously, to form a fully dense material without a separate degassing step.
19. The method of claim 1, wherein the cryogenic temperature is provided by liquid nitrogen or liquid argon.
20. The method of claim 1, wherein the mechanical milling is conducted in a shaker type mill, an attritor mill, a planetary mill, a ball mill, or a rotary mill.
21. A method for producing nanostructured aluminum alloy, the method comprising:
(a) providing aluminum alloy and a reinforcement
(b) mechanically milling (a) at a temperature of about −150° C. to about −300° C.;
(c) removing gaseous components from (b); and
(d) consolidating (c) by spark plasma sintering, wherein the nanostructured aluminum alloy thus produced has a density of 2.63 g/cm3 or higher and an average grain size of less than 100 nm.
22. The method of claim 21, wherein the reinforcement is selected from the group consisting of oxides, carbides, nitrides, borides, metals, intermetallics, and alloys.
23. The method of claim 21, wherein the aluminum alloy is aluminum and another metal powder selected from the group consisting of Be, Ca, Sr, Ba, Ra, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, and W, and combinations thereof.
24. The method of claim 21, wherein the reinforcement is boron carbide.
25. The method of claim 21, wherein the reinforcement is silicon carbide.
26. The method of claim 21, wherein the reinforcement is aluminum nitride.
27. The method of claim 21, wherein the reinforcement is aluminum oxide.
28. The method of claim 21, wherein cryomilling is continued until equilibrium grain size of the metal is reached.
29. The method of claim 28, wherein cryomilling is continued between 6 and 10 hours.
30. The method of claim 21, wherein the removal of gaseous component occurs at a temperature between about 200° C. and 600° C.
31. The method of claim 30, wherein the removal of gaseous components occurs at a temperature between about 300° C. and 500° C.
32. The method of claim 21, wherein removal of gaseous components and consolidation of the cryomilled powder occur simultaneously, to form a fully dense material without a separate degassing step.
33. The method of claim 21, wherein the temperature is provided by liquid nitrogen or liquid argon.
34. The method of claim 21, wherein the spark plasma consolidation is carried out at about 350° C.
US11/033,099 2005-01-10 2005-01-10 Synthesis of bulk, fully dense nanostructured metals and metal matrix composites Abandoned US20060153728A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/033,099 US20060153728A1 (en) 2005-01-10 2005-01-10 Synthesis of bulk, fully dense nanostructured metals and metal matrix composites
PCT/US2006/000598 WO2006076260A1 (en) 2005-01-10 2006-01-09 Synthesis of bulk, fully dense nanostructured metals and metal matrix composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/033,099 US20060153728A1 (en) 2005-01-10 2005-01-10 Synthesis of bulk, fully dense nanostructured metals and metal matrix composites

Publications (1)

Publication Number Publication Date
US20060153728A1 true US20060153728A1 (en) 2006-07-13

Family

ID=36653427

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/033,099 Abandoned US20060153728A1 (en) 2005-01-10 2005-01-10 Synthesis of bulk, fully dense nanostructured metals and metal matrix composites

Country Status (2)

Country Link
US (1) US20060153728A1 (en)
WO (1) WO2006076260A1 (en)

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060237134A1 (en) * 2005-04-20 2006-10-26 The Boeing Company Method for preparing pre-coated, ultra-fine, submicron grain high-temperature aluminum and aluminum-alloy components and components prepared thereby
US20080131307A1 (en) * 2006-12-05 2008-06-05 Bampton Clifford C Micro-grained, cryogenic-milled copper alloys and process
US20080131719A1 (en) * 2004-12-28 2008-06-05 Nippon Light Metal Company Ltd. Method For Producing Aluminum Composite Material
KR100841418B1 (en) 2006-11-29 2008-06-25 희성금속 주식회사 Fabrication of a precious metal target using a spark plasma sintering
US20090061229A1 (en) * 2007-09-04 2009-03-05 The Regents Of The University Of California Diamondoid stabilized fine-grained metals
US20090142590A1 (en) * 2007-12-03 2009-06-04 General Electric Company Composition and method
US20090176090A1 (en) * 2008-01-04 2009-07-09 Sungkyunkwan University Foundation For Corporate Collaboration Method for efficient al-c covalent bond formation between aluminum and carbon material
US20100001648A1 (en) * 2006-12-12 2010-01-07 Inverto Nv Led lighting that has continuous and adjustable color temperature (ct), while maintaining a high cri
US20100278679A1 (en) * 2006-12-05 2010-11-04 Barun Majumdar Nanophase cryogenic-milled copper alloys and process
USD627900S1 (en) 2008-05-07 2010-11-23 SDCmaterials, Inc. Glove box
US7897127B2 (en) 2007-05-11 2011-03-01 SDCmaterials, Inc. Collecting particles from a fluid stream via thermophoresis
US20120052318A1 (en) * 2010-08-31 2012-03-01 Cap Daniel P Structure having nanophase titanium node and nanophase aluminum struts
CN102534345A (en) * 2012-02-28 2012-07-04 东北大学 Blocky iron nitride-aluminum sintered material and preparation method thereof
WO2012094221A2 (en) * 2011-01-03 2012-07-12 Imra America, Inc. Composite nanoparticles and methods for making the same
WO2013000147A1 (en) * 2011-06-30 2013-01-03 阿尔斯通电网公司 Copper-chromium contactor and manufacturing method thereof
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
CN103331449A (en) * 2013-06-05 2013-10-02 华南理工大学 Ultrahigh-plasticity double-size-distribution superfine crystal/micrometer crystal block iron material and preparation method thereof
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
WO2014117071A1 (en) * 2013-01-25 2014-07-31 University Of Florida Research Foundation, Inc. Synthesis and processing of ultra high hardness boron carbide
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US20140341772A1 (en) * 2013-05-16 2014-11-20 Kennametal lndia Limited Methods Of Milling Carbide And Applications Thereof
US9004240B2 (en) 2013-02-27 2015-04-14 Integran Technologies Inc. Friction liner
US20150147590A1 (en) * 2013-11-22 2015-05-28 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Bulk Monolithic Nano-Heterostructures and Method of Making the Same
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9211586B1 (en) * 2011-02-25 2015-12-15 The United States Of America As Represented By The Secretary Of The Army Non-faceted nanoparticle reinforced metal matrix composite and method of manufacturing the same
US9366106B2 (en) 2011-04-28 2016-06-14 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US20160167129A1 (en) * 2014-12-16 2016-06-16 Gamma Technology, LLC Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
CN105792966A (en) * 2013-12-06 2016-07-20 斯内克马公司 Method for producing a part by selective melting of powder
US9410228B2 (en) * 2009-12-09 2016-08-09 Industry-Academic Cooperation Foundation Yonsei University Metal matrix composite, and preparation method thereof
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
CN106001560A (en) * 2016-05-25 2016-10-12 北京理工大学 Preparation method for nanocrystalline silver bar
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US20170073276A1 (en) * 2015-09-11 2017-03-16 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Transparent Nanocomposite Ceramics Built From Core/Shell Nanoparticles
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9631138B2 (en) 2011-04-28 2017-04-25 Baker Hughes Incorporated Functionally gradient composite article
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9802250B2 (en) 2011-08-30 2017-10-31 Baker Hughes Magnesium alloy powder metal compact
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
US9925589B2 (en) 2011-08-30 2018-03-27 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US9963344B2 (en) * 2015-01-21 2018-05-08 National Technology & Engineering Solution of Sandia, LLC Method to synthesize bulk iron nitride
US20180142331A1 (en) * 2016-11-10 2018-05-24 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Cemented carbide containing tungsten carbide and finegrained iron alloy binder
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US10092953B2 (en) 2011-07-29 2018-10-09 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US10209208B2 (en) 2013-05-21 2019-02-19 Massachusetts Institute Of Technology Stable nanocrystalline ordering alloy systems and methods of identifying same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
CN109746441A (en) * 2017-11-08 2019-05-14 中国科学院沈阳自动化研究所 A kind of laser gain material manufacture combined machining method of laser impact intensified auxiliary
US10301909B2 (en) 2011-08-17 2019-05-28 Baker Hughes, A Ge Company, Llc Selectively degradable passage restriction
CN109972021A (en) * 2019-03-25 2019-07-05 东南大学 The preparation method of high saturation and magnetic intensity Fe-P system powder metallurgy magnetic-friction material
CN110102762A (en) * 2019-04-24 2019-08-09 北京遥感设备研究所 A kind of Mn-Cu and Fe-Ni dissimilar material gradient-structure manufacturing process
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10407757B2 (en) * 2013-03-14 2019-09-10 Massachusetts Institute Of Technology Sintered nanocrystalline alloys
US10669797B2 (en) 2009-12-08 2020-06-02 Baker Hughes, A Ge Company, Llc Tool configured to dissolve in a selected subsurface environment
CN113084180A (en) * 2021-04-14 2021-07-09 宁波中乌新材料产业技术研究院有限公司 Preparation method of titanium alloy spherical powder
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
EP3998364A4 (en) * 2019-07-08 2022-08-31 Pukyong National University Industry - University Cooperation Foundation Method for preparing metal-polymer composite material with high heat dissipation and electrical insulation performance and composite material prepared thereby
WO2022208031A1 (en) * 2021-03-31 2022-10-06 Sintermat Method for manufacturing a precious metal part based on sps sintering and precious metal part thus produced
US11644288B2 (en) 2015-09-17 2023-05-09 Massachusetts Institute Of Technology Nanocrystalline alloy penetrators
US11650193B2 (en) 2012-03-12 2023-05-16 Massachusetts Institute Of Technology Stable binary nanocrystalline alloys and methods of identifying same
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956107B1 (en) * 2007-01-31 2019-06-26 Nippon Light Metal Company, Ltd. Aluminum powder alloy composite material for absorbing neutrons, process of production thereof and basket made thereof
TWI637839B (en) * 2016-03-22 2018-10-11 國立中興大學 Laminated manufacturing method and processing machine thereof
RU2640055C1 (en) * 2016-11-30 2017-12-26 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (ТПУ) Metal-ceramic composite and method of its production (versions)
CN108326306A (en) * 2018-01-09 2018-07-27 武汉大学 A kind of porous nano metal preparation method of controlled porosity
CN110238404A (en) * 2019-05-30 2019-09-17 西北工业大学 A kind of high energy beam increasing material manufacturing method of dissimilar materials complex structural member

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292079A (en) * 1978-10-16 1981-09-29 The International Nickel Co., Inc. High strength aluminum alloy and process
US4557893A (en) * 1983-06-24 1985-12-10 Inco Selective Surfaces, Inc. Process for producing composite material by milling the metal to 50% saturation hardness then co-milling with the hard phase
US4647304A (en) * 1983-08-17 1987-03-03 Exxon Research And Engineering Company Method for producing dispersion strengthened metal powders
US4722751A (en) * 1983-12-19 1988-02-02 Sumitomo Electric Industries, Ltd. Dispersion-strengthened heat- and wear-resistant aluminum alloy and process for producing same
US4818481A (en) * 1987-03-09 1989-04-04 Exxon Research And Engineering Company Method of extruding aluminum-base oxide dispersion strengthened
US4909840A (en) * 1987-04-29 1990-03-20 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Process of manufacturing nanocrystalline powders and molded bodies
US5723799A (en) * 1995-07-07 1998-03-03 Director General Of Agency Of Industrial Science And Technology Method for production of metal-based composites with oxide particle dispersion
US5902943A (en) * 1995-05-02 1999-05-11 The University Of Queensland Aluminium alloy powder blends and sintered aluminium alloys
US20030102099A1 (en) * 2001-08-08 2003-06-05 Tapesh Yadav Nano-dispersed powders and methods for their manufacture
US20050109158A1 (en) * 2003-11-25 2005-05-26 The Boeing Company Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby
US6902699B2 (en) * 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292079A (en) * 1978-10-16 1981-09-29 The International Nickel Co., Inc. High strength aluminum alloy and process
US4557893A (en) * 1983-06-24 1985-12-10 Inco Selective Surfaces, Inc. Process for producing composite material by milling the metal to 50% saturation hardness then co-milling with the hard phase
US4647304A (en) * 1983-08-17 1987-03-03 Exxon Research And Engineering Company Method for producing dispersion strengthened metal powders
US4722751A (en) * 1983-12-19 1988-02-02 Sumitomo Electric Industries, Ltd. Dispersion-strengthened heat- and wear-resistant aluminum alloy and process for producing same
US4818481A (en) * 1987-03-09 1989-04-04 Exxon Research And Engineering Company Method of extruding aluminum-base oxide dispersion strengthened
US4909840A (en) * 1987-04-29 1990-03-20 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Process of manufacturing nanocrystalline powders and molded bodies
US5902943A (en) * 1995-05-02 1999-05-11 The University Of Queensland Aluminium alloy powder blends and sintered aluminium alloys
US5723799A (en) * 1995-07-07 1998-03-03 Director General Of Agency Of Industrial Science And Technology Method for production of metal-based composites with oxide particle dispersion
US20030102099A1 (en) * 2001-08-08 2003-06-05 Tapesh Yadav Nano-dispersed powders and methods for their manufacture
US6902699B2 (en) * 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
US20050109158A1 (en) * 2003-11-25 2005-05-26 The Boeing Company Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131719A1 (en) * 2004-12-28 2008-06-05 Nippon Light Metal Company Ltd. Method For Producing Aluminum Composite Material
US7998401B2 (en) * 2004-12-28 2011-08-16 Nippon Light Metal Company, Ltd. Method for producing aluminum composite material
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US8137755B2 (en) * 2005-04-20 2012-03-20 The Boeing Company Method for preparing pre-coated, ultra-fine, submicron grain high-temperature aluminum and aluminum-alloy components and components prepared thereby
US20060237134A1 (en) * 2005-04-20 2006-10-26 The Boeing Company Method for preparing pre-coated, ultra-fine, submicron grain high-temperature aluminum and aluminum-alloy components and components prepared thereby
KR100841418B1 (en) 2006-11-29 2008-06-25 희성금속 주식회사 Fabrication of a precious metal target using a spark plasma sintering
US8784728B2 (en) * 2006-12-05 2014-07-22 The Boeing Company Micro-grained, cryogenic-milled copper alloys and process
US20080131307A1 (en) * 2006-12-05 2008-06-05 Bampton Clifford C Micro-grained, cryogenic-milled copper alloys and process
US20100278679A1 (en) * 2006-12-05 2010-11-04 Barun Majumdar Nanophase cryogenic-milled copper alloys and process
US8795585B2 (en) * 2006-12-05 2014-08-05 The Boeing Company Nanophase cryogenic-milled copper alloys and process
US20100001648A1 (en) * 2006-12-12 2010-01-07 Inverto Nv Led lighting that has continuous and adjustable color temperature (ct), while maintaining a high cri
US7905942B1 (en) 2007-05-11 2011-03-15 SDCmaterials, Inc. Microwave purification process
US7897127B2 (en) 2007-05-11 2011-03-01 SDCmaterials, Inc. Collecting particles from a fluid stream via thermophoresis
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8956574B2 (en) 2007-05-11 2015-02-17 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US8142619B2 (en) 2007-05-11 2012-03-27 Sdc Materials Inc. Shape of cone and air input annulus
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8663571B2 (en) 2007-05-11 2014-03-04 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US8051724B1 (en) 2007-05-11 2011-11-08 SDCmaterials, Inc. Long cool-down tube with air input joints
US8604398B1 (en) 2007-05-11 2013-12-10 SDCmaterials, Inc. Microwave purification process
US8524631B2 (en) * 2007-05-11 2013-09-03 SDCmaterials, Inc. Nano-skeletal catalyst
US8076258B1 (en) 2007-05-11 2011-12-13 SDCmaterials, Inc. Method and apparatus for making recyclable catalysts
US8574408B2 (en) 2007-05-11 2013-11-05 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8628599B2 (en) * 2007-09-04 2014-01-14 The Regents Of The University Of California Diamondoid stabilized fine-grained metals
US20090061229A1 (en) * 2007-09-04 2009-03-05 The Regents Of The University Of California Diamondoid stabilized fine-grained metals
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US8759248B2 (en) 2007-10-15 2014-06-24 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US8507402B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US20090142590A1 (en) * 2007-12-03 2009-06-04 General Electric Company Composition and method
US20090176090A1 (en) * 2008-01-04 2009-07-09 Sungkyunkwan University Foundation For Corporate Collaboration Method for efficient al-c covalent bond formation between aluminum and carbon material
USD627900S1 (en) 2008-05-07 2010-11-23 SDCmaterials, Inc. Glove box
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US10669797B2 (en) 2009-12-08 2020-06-02 Baker Hughes, A Ge Company, Llc Tool configured to dissolve in a selected subsurface environment
US9410228B2 (en) * 2009-12-09 2016-08-09 Industry-Academic Cooperation Foundation Yonsei University Metal matrix composite, and preparation method thereof
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8828328B1 (en) 2009-12-15 2014-09-09 SDCmaterails, Inc. Methods and apparatuses for nano-materials powder treatment and preservation
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US8821786B1 (en) * 2009-12-15 2014-09-02 SDCmaterials, Inc. Method of forming oxide dispersion strengthened alloys
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9090475B1 (en) 2009-12-15 2015-07-28 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for silicon SiO2
US9119309B1 (en) 2009-12-15 2015-08-25 SDCmaterials, Inc. In situ oxide removal, dispersal and drying
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US20120052318A1 (en) * 2010-08-31 2012-03-01 Cap Daniel P Structure having nanophase titanium node and nanophase aluminum struts
US8784998B2 (en) * 2010-08-31 2014-07-22 Aerojet Rocketdyne Of De, Inc. Structure having nanophase titanium node and nanophase aluminum struts
WO2012094221A3 (en) * 2011-01-03 2014-04-24 Imra America, Inc. Composite nanoparticles and methods for making the same
US8802234B2 (en) 2011-01-03 2014-08-12 Imra America, Inc. Composite nanoparticles and methods for making the same
WO2012094221A2 (en) * 2011-01-03 2012-07-12 Imra America, Inc. Composite nanoparticles and methods for making the same
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9211586B1 (en) * 2011-02-25 2015-12-15 The United States Of America As Represented By The Secretary Of The Army Non-faceted nanoparticle reinforced metal matrix composite and method of manufacturing the same
US9366106B2 (en) 2011-04-28 2016-06-14 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US10335858B2 (en) 2011-04-28 2019-07-02 Baker Hughes, A Ge Company, Llc Method of making and using a functionally gradient composite tool
US9631138B2 (en) 2011-04-28 2017-04-25 Baker Hughes Incorporated Functionally gradient composite article
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
WO2013000147A1 (en) * 2011-06-30 2013-01-03 阿尔斯通电网公司 Copper-chromium contactor and manufacturing method thereof
US10697266B2 (en) 2011-07-22 2020-06-30 Baker Hughes, A Ge Company, Llc Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US10092953B2 (en) 2011-07-29 2018-10-09 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US10301909B2 (en) 2011-08-17 2019-05-28 Baker Hughes, A Ge Company, Llc Selectively degradable passage restriction
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9802250B2 (en) 2011-08-30 2017-10-31 Baker Hughes Magnesium alloy powder metal compact
US9925589B2 (en) 2011-08-30 2018-03-27 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US10737321B2 (en) 2011-08-30 2020-08-11 Baker Hughes, A Ge Company, Llc Magnesium alloy powder metal compact
US11090719B2 (en) 2011-08-30 2021-08-17 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
CN102534345A (en) * 2012-02-28 2012-07-04 东北大学 Blocky iron nitride-aluminum sintered material and preparation method thereof
US11650193B2 (en) 2012-03-12 2023-05-16 Massachusetts Institute Of Technology Stable binary nanocrystalline alloys and methods of identifying same
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US10612659B2 (en) 2012-05-08 2020-04-07 Baker Hughes Oilfield Operations, Llc Disintegrable and conformable metallic seal, and method of making the same
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
WO2014117071A1 (en) * 2013-01-25 2014-07-31 University Of Florida Research Foundation, Inc. Synthesis and processing of ultra high hardness boron carbide
US9604885B2 (en) 2013-01-25 2017-03-28 University Of Florida Research Foundation, Inc. Synthesis and processing of ultra high hardness boron carbide
US9004240B2 (en) 2013-02-27 2015-04-14 Integran Technologies Inc. Friction liner
US10407757B2 (en) * 2013-03-14 2019-09-10 Massachusetts Institute Of Technology Sintered nanocrystalline alloys
US11674205B2 (en) 2013-03-14 2023-06-13 Massachusetts Institute Of Technology Alloys comprising chromium and second metal material
US11634797B2 (en) 2013-03-14 2023-04-25 Massachusetts Institute Of Technology Sintered nanocrystalline alloys
CN104162476A (en) * 2013-05-16 2014-11-26 钴碳化钨硬质合金印度有限公司 Methods of milling carbide and applications thereof
US20140341772A1 (en) * 2013-05-16 2014-11-20 Kennametal lndia Limited Methods Of Milling Carbide And Applications Thereof
US10040123B2 (en) * 2013-05-16 2018-08-07 Kennametal India Limited Methods of milling carbide and applications thereof
US10585054B2 (en) 2013-05-21 2020-03-10 Massachusetts Institute Of Technology Stable nanocrystalline ordering alloy systems and methods of identifying same
US10209208B2 (en) 2013-05-21 2019-02-19 Massachusetts Institute Of Technology Stable nanocrystalline ordering alloy systems and methods of identifying same
CN103331449A (en) * 2013-06-05 2013-10-02 华南理工大学 Ultrahigh-plasticity double-size-distribution superfine crystal/micrometer crystal block iron material and preparation method thereof
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US10751801B2 (en) * 2013-11-22 2020-08-25 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Bulk monolithic nano-heterostructures and method of making the same
US20150147590A1 (en) * 2013-11-22 2015-05-28 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Bulk Monolithic Nano-Heterostructures and Method of Making the Same
CN105792966A (en) * 2013-12-06 2016-07-20 斯内克马公司 Method for producing a part by selective melting of powder
US11613952B2 (en) 2014-02-21 2023-03-28 Terves, Llc Fluid activated disintegrating metal system
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US20160167129A1 (en) * 2014-12-16 2016-06-16 Gamma Technology, LLC Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
US10058917B2 (en) * 2014-12-16 2018-08-28 Gamma Technology, LLC Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
US9963344B2 (en) * 2015-01-21 2018-05-08 National Technology & Engineering Solution of Sandia, LLC Method to synthesize bulk iron nitride
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US20170073276A1 (en) * 2015-09-11 2017-03-16 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Transparent Nanocomposite Ceramics Built From Core/Shell Nanoparticles
US10513462B2 (en) * 2015-09-11 2019-12-24 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Transparent nanocomposite ceramics built from core/shell nanoparticles
US11644288B2 (en) 2015-09-17 2023-05-09 Massachusetts Institute Of Technology Nanocrystalline alloy penetrators
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN106001560A (en) * 2016-05-25 2016-10-12 北京理工大学 Preparation method for nanocrystalline silver bar
US11434549B2 (en) * 2016-11-10 2022-09-06 The United States Of America As Represented By The Secretary Of The Army Cemented carbide containing tungsten carbide and finegrained iron alloy binder
US20180142331A1 (en) * 2016-11-10 2018-05-24 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Cemented carbide containing tungsten carbide and finegrained iron alloy binder
US11725262B2 (en) 2016-11-10 2023-08-15 The United States Of America As Represented By The Secretary Of The Army Cemented carbide containing tungsten carbide and fine grained iron alloy binder
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite
US11898223B2 (en) 2017-07-27 2024-02-13 Terves, Llc Degradable metal matrix composite
CN109746441A (en) * 2017-11-08 2019-05-14 中国科学院沈阳自动化研究所 A kind of laser gain material manufacture combined machining method of laser impact intensified auxiliary
CN109972021A (en) * 2019-03-25 2019-07-05 东南大学 The preparation method of high saturation and magnetic intensity Fe-P system powder metallurgy magnetic-friction material
CN110102762A (en) * 2019-04-24 2019-08-09 北京遥感设备研究所 A kind of Mn-Cu and Fe-Ni dissimilar material gradient-structure manufacturing process
EP3998364A4 (en) * 2019-07-08 2022-08-31 Pukyong National University Industry - University Cooperation Foundation Method for preparing metal-polymer composite material with high heat dissipation and electrical insulation performance and composite material prepared thereby
WO2022208031A1 (en) * 2021-03-31 2022-10-06 Sintermat Method for manufacturing a precious metal part based on sps sintering and precious metal part thus produced
FR3121375A1 (en) * 2021-03-31 2022-10-07 Sintermat Process for manufacturing precious metal parts based on SPS sintering and precious metal part thus obtained
CN113084180A (en) * 2021-04-14 2021-07-09 宁波中乌新材料产业技术研究院有限公司 Preparation method of titanium alloy spherical powder

Also Published As

Publication number Publication date
WO2006076260A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
US20060153728A1 (en) Synthesis of bulk, fully dense nanostructured metals and metal matrix composites
Alshataif et al. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review
EP1405927B1 (en) Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
US9211586B1 (en) Non-faceted nanoparticle reinforced metal matrix composite and method of manufacturing the same
US7435306B2 (en) Method for preparing rivets from cryomilled aluminum alloys and rivets produced thereby
WO2005079209A2 (en) Nanocrystalline material layers using cold spray
Suryanarayana et al. Mechanochemical synthesis of nanocrystalline metal powders
EP2403967A2 (en) High strength l1 2 aluminum alloys produced by cryomilling
Bostan et al. Microstructure characteristics in Al-C system after mechanical alloying and high temperature treatment
CN112226639B (en) In-situ ultrafine grain TiC reinforced titanium-based composite material based on cyclohexene ball milling medium and preparation method thereof
Yuan et al. Effect of mechanical alloying and sintering process on microstructure and mechanical properties of Al-Ni-Y-Co-La alloy
US7592073B2 (en) Rhenium composite alloys and a method of preparing same
Xiong et al. (Ti, W) C–Ni cermets by laser engineered net shaping
Salem et al. Bulk behavior of ball milled AA2124 nanostructured powders reinforced with TiC
WO2023091573A1 (en) Metal matrix composites and methods of making and use thereof
Zhu et al. Microstructure and mechanical properties of mechanically alloyed and HIP-consolidated Fe3Al
Wang et al. Sintering Behavior of Tungsten Heavy Alloy Products Made by Plasma Spray Forming
WO2006137911A2 (en) Method and apparatus for an equal channel angular pressing (ecap) consolidation process for cryomilled nanocrystalline metal powders
Chaira et al. Fabrication of nanostructured materials by mechanical milling
Suryanarayana et al. Consolidation of nanocrystalline powders
Gujba Development and characterization of carbon nanotubes (CNTs) and silicon carbide (SiC) reinforced al-based nanocomposites
Bhuiyan Boron Nitride nanotube reinforced Titanium matrix composite
Moh'd Saleh Ahmad Synthesis and Characterization of High-Performance, Aluminum/Graphene Nanocomposites for Light-Weighting Applications towards Energy Efficiency Goals
Herrera Hernández et al. Electrochemical Properties of Al2O3-Fe/Si Composites Prepared by High-Energy Mechanical Milling
Gusaiwal Synthesis of Al-Si-Ni Nanostructured Materials by Mechanical Alloying

Legal Events

Date Code Title Description
AS Assignment

Owner name: NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTE

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:CALIFORNIA, UNIVERSITY OF;REEL/FRAME:016964/0163

Effective date: 20050412

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION