US20060106396A1 - Methods for cutting bone - Google Patents

Methods for cutting bone Download PDF

Info

Publication number
US20060106396A1
US20060106396A1 US11/321,192 US32119205A US2006106396A1 US 20060106396 A1 US20060106396 A1 US 20060106396A1 US 32119205 A US32119205 A US 32119205A US 2006106396 A1 US2006106396 A1 US 2006106396A1
Authority
US
United States
Prior art keywords
bone
recited
dies
tibial tubercle
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/321,192
Inventor
Daniel Justin
E. Goble
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zimmer Inc
Original Assignee
MedicineLodge Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MedicineLodge Inc filed Critical MedicineLodge Inc
Priority to US11/321,192 priority Critical patent/US20060106396A1/en
Publication of US20060106396A1 publication Critical patent/US20060106396A1/en
Assigned to SANKATY ADVISORS, LLC reassignment SANKATY ADVISORS, LLC SECURITY AGREEMENT Assignors: MEDICINELODGE, INC.
Assigned to MEDICINELODGE HOLDINGS CORP., MEDICINELODGE, INC. reassignment MEDICINELODGE HOLDINGS CORP. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SANKATY ADVISORS, LLC
Assigned to ZIMMER, INC. reassignment ZIMMER, INC. CORRECTIVE ASSIGNMENT IN RESPONSE TO THE NOTICE OF NON-RECORDATION MAILED 6/16/09 Assignors: MEDICINELODGE, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • A61B17/157Cutting tibia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1604Chisels; Rongeurs; Punches; Stamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1635Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for grafts, harvesting or transplants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1675Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/142Surgical saws ; Accessories therefor with reciprocating saw blades, e.g. with cutting edges at the distal end of the saw blades
    • A61B17/144Surgical saws ; Accessories therefor with reciprocating saw blades, e.g. with cutting edges at the distal end of the saw blades with cutting edges at the side of the saw blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1642Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for producing a curved bore

Definitions

  • the present invention relates to methods for cutting bone using complementary cutting dies.
  • the method can be used for gaining surgical access to the knee cavity by performing a tibial tubercle osteotomy as part of a minimally invasive total or partial knee arthroplasty or other knee related surgery.
  • arthroplasty As a result of accident, deterioration, or other causes, it is often necessary to surgically replace all or portions of a knee joint. Joint replacement is referred to as arthroplasty.
  • Conventional total knee arthroplasty requires a relatively long incision that typically extends longitudinally along the lateral side of the leg spanning across the knee joint. To allow the use of conventional techniques, instruments, and implants, the incision typically extends proximal of the knee and into the muscular tissue. In general, the longer the incision and the more muscular tissue that is cut, the longer it takes for the patient to recover and the greater the potential for infection.
  • FIG. 1 is an elevated front view of a leg in a bent position
  • FIG. 2 is a elevated front view of a tibia of the leg shown in FIG. 1 with a portion of the tibial tuberosity removed;
  • FIG. 3 is an elevated side view of the tibia shown in FIG. 2 ;
  • FIG. 4 is a perspective view of a die cutter
  • FIG. 5 is a perspective view of the arm assembly of the die cutter shown in FIG. 4 ;
  • FIG. 6 is an elevated front view of a guide
  • FIG. 7 is a perspective view of the guide shown in FIG. 6 ;
  • FIG. 8 is a top plan view of the guide shown in FIG. 6 .
  • the present invention relates to methods and corresponding instruments for performing a tibial tubercle osteotomy to gain access to the knee cavity as part of a minimally invasive total or partial knee arthroplasty or other knee related surgery.
  • a knee 10 having an anterior side 12 . Knee 10 is flexed to about 90 degrees.
  • a transverse incision 14 approximately 10 cm long, is made mediolaterally through the skin layer across the midline of knee 10 proximal of the tibial tuberosity.
  • FIG. 2 the tissue is retracted exposing in part a patellar ligament 18 and a tibial tuberosity 20 of a tibia 22 .
  • a portion of tibial tuberosity 20 connected to patellar ligament 18 is now elevated such that patellar ligament 18 remains connected thereto.
  • FIG. 2 shows a lateral view of the proximal end of tibia 22 .
  • a distal portion 30 of tibial tuberosity 20 has been elevated while a proximal portion 32 of tibial tuberosity 20 remains integral with tibia 22 .
  • Patellar ligament 18 is excised from proximal portion 30 of tibial tuberosity 20 so that the distal end of patellar ligament 18 can be freely elevated in connection with distal portion 30 of tibial tuberosity 20 .
  • distal portion 30 of tibial tuberosity 20 is sized such that between about 1 ⁇ 3 to about 1 ⁇ 2 of the central mediolateral width of patella ligament 18 and tibial tuberosity 20 is osteotimized from the proximal end of tibia 22 .
  • about 1 ⁇ 3 to about 1 ⁇ 2 of the distal contact surface of patellar ligament 18 remains connected to distal portion 30 of tibial tuberosity 20 .
  • Tibia 22 has an anterior cut surface 34 .
  • cut surface 34 includes a proximally arched undercut portion 36 formed on the distal end of proximal portion 32 of tibial tuberosity 20 .
  • proximal portion 32 of tibial tuberosity 20 terminates at a distally projecting anterior ridge 42 .
  • Cut surface 34 also includes a distally sloping portion 38 extending from undercut portion 36 to an anterior border 40 of tibia 22 . Cut surface 34 partially bounds a pocket 35 and has a transverse configuration taken along a plane extending proximal to distal that is similar to a vertically bisected heart design as depicted on conventional playing cards. In contrast to forming a smooth bisected heart shape design, cut surface 34 can also form a sharp or slightly rounded inside angle that is typically 90° or less.
  • cut surface 34 also has a substantially wedged shaped transverse configuration taken along a plane extending anterior to posterior. Specifically, cut surface 34 comprises a lateral side 24 and an opposing medial side 26 that each slope inwardly so as to intersect at a vertical midline 28 . In one embodiment, the inside angle ⁇ between lateral side 24 and medial side 26 is in a range between about 60° to about 120° with about 80° to about 100° being more preferred. In alternative embodiments, cut surface 34 can be substantially flat extending mediolaterally or can form a rounded groove.
  • Elevated distal portion 30 of tibial tuberosity 20 has a cut surface 46 that is complementary to cut surface 34 .
  • cut surface 46 is complementary to cut surface 34 .
  • one of the benefits of the configuration of cut surfaces 34 and 46 is that once the procedure is complete, distal portion 30 of tibial tuberosity 20 is easily reinserted within pocket 35 .
  • the complementary mating with undercut surface 36 helps lock distal portion 30 within pocket 35 as distal potion 30 is pulled proximal by patellar ligament 18 .
  • Distal portion 30 of tibial tuberosity 20 can be elevated using a number of different techniques.
  • Die cutter 50 comprises a housing 52 having a substantially box shaped configuration. Housing 52 has a front face 56 and an opposing back face 57 with side faces 58 and 60 extending therebetween. A top face 54 and an opposing bottom face 55 also extend between faces 56 and 57 . Housing 52 bounds a chamber 62 . Chamber 62 communicates with the exterior through an elongated slot 64 formed on front face 52 and an opening 66 formed on each side face 58 and 60 .
  • a handle 68 outwardly projects from top face 54 of housing 52 .
  • a threaded alignment bolt 69 passes through handle 68 and a portion of housing 52 so as to centrally project beyond front face 56 of housing 52 .
  • Alignment bolt 69 threadedly engages with handle 68 and/or housing 52 such that selective rotation of alignment bolt 69 facilitates selective positioning of alignment bolt 69 beyond front face 56 of housing 52 .
  • each translating arm 70 and 72 has a distal end 74 and an opposing proximal end 76 .
  • means are provided for selectively advancing at least one of the first and second translating arms 70 , 72 toward the other.
  • a shaft 78 has threads formed along each end thereof with the threads being oriented in opposing directions.
  • Each translating arm 70 and 72 is threaded onto a corresponding end of shaft 78 . Accordingly, selective rotation of shaft 78 causes translating arms 70 , 72 to either move together or move apart.
  • a socket 83 is formed on each end face of shaft 78 .
  • Shaft 78 is selectively rotated by inserting a tool, such as a drill bit, through one of openings 66 ( FIG. 4 ) of housing 52 and into socket 83 of shaft 78 . Rotation of the tool thus facilitates rotation of shaft 78 .
  • a tool such as a drill bit
  • shaft 78 can be replaced with a variety of other conventional threaded shaft or bolt mechanisms. Furthermore, shaft 78 can be replaced with elongated levered handles or other conventional apparatus that facilitate manual movement of translating arms 70 and 72 . In yet other embodiments, it is appreciated that hydraulic, pneumatic, or electrical mechanisms can be used for movement of translating arms 70 and 72 .
  • a plurality of spaced apart rails 79 outwardly project from each side of each translating arm 70 , 72 .
  • Rails 79 mesh with complementary rails 92 formed on the interior of housing 52 . The meshing of rails 79 and 92 helps to ensure that translating arms 70 , 72 are maintained in alignment during movement. Proper alignment of translating arms 70 , 72 is further maintained by a pin 75 slidably extending through each of translating arms 70 , 72 .
  • each translating arm 70 , 72 extends outside of chamber 62 through slot 64 .
  • Mounted at distal end 74 of each translating arm 70 and 72 is an outwardly sloping head plate 80 .
  • Each head plate 80 has an interior face 81 with an undercut engagement slot 82 formed thereon.
  • Each interior face 81 is disposed in a corresponding plane. The planes intersect so as to form an inside angle that is substantially equal to the angle ⁇ formed on cut surface 34 .
  • Slidably disposed within each slot 82 is a die 84 .
  • Each die 84 has a base 86 that is connected with a corresponding head plate 80 by being slidably engaged within slot 82 . As a result, dies 84 can be easily replaced with new dies or with dies having an alternative configuration.
  • a blade 88 outwardly projects from each base 86 so as to extend orthogonally from interior face 81 of the corresponding head plate 80 .
  • Each blade 88 terminates at a free sharpened edge 90 .
  • Each blade 88 and corresponding sharpened edge 90 has a profile that is the same configuration as the profile of cut surface 34 of tibial tuberosity 20 previously discussed.
  • Blades 88 are disposed so as to opposingly face at an intersecting angle. Accordingly, as shaft 78 is selectively rotated, translating arms 70 , 72 move together causing sharpened edges 90 to mate together.
  • bolt 69 functions as a spacer.
  • bolt 69 can be replaced with a variety of other mechanism that permit selective spacing adjustment. For example, a rod and clamp configuration can be used.
  • shaft 78 is selectively rotated, such as by the use of a drill, so that translating arm 70 and 72 are advanced together. In so doing, the dies 84 penetrate laterally and medially into tibial tuberosity 20 . Dies 84 continue to advance until distal portion 30 of tibial tuberosity 20 is separated from proximal portion 32 thereof.
  • dies 84 produce very clean cut surfaces 34 and 46 with minimal bone loss. As a result, once the subsequent surgical procedure is completed, distal portion 30 can be fit back into pocket 35 with a close tolerance fit. It is appreciated that a variety of alternative configurations of die cutters can be used for selective die cutting of tibial tuberosity 20 .
  • distal portion 30 of tibial tuberosity 20 can also be elevated using a saw blade.
  • Guide 100 comprises a central plate 102 having a front face 104 and an opposing back face 106 . Each of faces 104 and 106 extend between opposing sides 108 and 110 . Extending between front face 104 and back face 106 are a plurality of passageways 112 .
  • first side housing 114 and a second side housing 116 are Formed on sides 108 and 110 of central plate 102 .
  • Each side housing 114 and 116 is formed so as to project beyond front face 104 of central plate 102 .
  • Each of side housings 114 and 116 has an inside face 118 and an opposing outside face 120 .
  • a cavity 122 extends through each of side housings 114 and 116 between faces 118 and 120 .
  • Removably disposed within cavity 122 of side housing 114 is a first template 124 .
  • a second template 126 is disposed within cavity 122 of side housing 116 .
  • Each template 124 and 126 has a substantially box-shaped configuration which includes an inside face 128 and an opposing outside face 130 .
  • Inside face 128 of templates 124 and 126 are each disposed in a corresponding plane. The planes intersect so as to form an inside angle that is substantially equal to the angle ⁇ formed on cut surface 34 .
  • a guide slot 132 extends through each of templates 124 and 126 between inside face 128 and outside face 130 .
  • Each guide slot 132 has a configuration complementary to the profile of cut surface 34 and extends through templates 124 and 126 at an orientation perpendicular to inside face 128 .
  • front face 104 of central plate 102 is biased against the anterior side of tibial tuberosity 20 such that templates 124 and 126 are disposed on the lateral and medial side thereof.
  • Guide slots 132 are aligned with distal portion 30 of tibial tuberosity 20 to be elevated.
  • fasteners such as screws, nails, or the like, are passed through passageways 112 and into tibia 22 so as to securely retain guide 100 to tibia 22 . It is noted that passageways 112 are sloped such that the fasteners extending therethrough extend into portions of tibia 22 outside of distal portion 30 which is to be elevated.
  • a saw blade 140 is passed through guide slot 132 of template 124 from outside face 130 to inside face 128 .
  • Saw blade 140 is moved in a reciprocating manner so as to penetrate half way into tibial tuberosity 20 .
  • saw blade 140 is moved over to template 126 and passed through the guide slot 132 thereof. The process is then repeated.
  • distal portion 30 of tibial tuberosity 20 is freely removable from the remainder of tibia 22 .
  • the fasteners are then removed along with guide 100 .
  • guide 100 can come in a variety of alternative configurations.
  • patellar ligament 18 is retracted proximally, thereby exposing the knee joint. Once the knee joint is exposed, any number of knee related surgical procedures, such as total or partial knee arthroplasty, can be performed. Referring back to FIG. 2 , upon completion of the surgical procedure, patellar ligament 18 is secured back in place by inserting distal portion 30 of tibial tuberosity 20 back into pocket 35 . As a result of undercut portion 36 , distal portion 30 of tibial tuberosity 20 is self-locking within pocket 35 . If desired, however, various types of conventional bone anchors can be used to further secure distal portion 30 of tibial tuberosity 20 within pocket 35 .

Abstract

A method of cutting bone with a bone die cutter includes positioning complementary cutting dies on at least substantially opposing sides of a bone. At least one of the cutting dies is pressed toward the other so that the cutting dies cut a bone portion from the bone. The cut bone portion is separated from the remainder of the bone. The cut bone portion is subsequently reattached to the bone at the location from which it was removed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 10/360,250, filed Feb. 6, 2003, which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. The Field of the Invention
  • The present invention relates to methods for cutting bone using complementary cutting dies. The method can be used for gaining surgical access to the knee cavity by performing a tibial tubercle osteotomy as part of a minimally invasive total or partial knee arthroplasty or other knee related surgery.
  • 2. Related Technology
  • As a result of accident, deterioration, or other causes, it is often necessary to surgically replace all or portions of a knee joint. Joint replacement is referred to as arthroplasty. Conventional total knee arthroplasty requires a relatively long incision that typically extends longitudinally along the lateral side of the leg spanning across the knee joint. To allow the use of conventional techniques, instruments, and implants, the incision typically extends proximal of the knee and into the muscular tissue. In general, the longer the incision and the more muscular tissue that is cut, the longer it takes for the patient to recover and the greater the potential for infection.
  • Accordingly, what is needed are minimally invasive procedures and corresponding apparatus for accessing the knee joint to perform total or partial knee arthroplasty.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various embodiments of the present invention will now be discussed with reference to the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope.
  • FIG. 1 is an elevated front view of a leg in a bent position;
  • FIG. 2 is a elevated front view of a tibia of the leg shown in FIG. 1 with a portion of the tibial tuberosity removed;
  • FIG. 3 is an elevated side view of the tibia shown in FIG. 2;
  • FIG. 4 is a perspective view of a die cutter;
  • FIG. 5 is a perspective view of the arm assembly of the die cutter shown in FIG. 4;
  • FIG. 6 is an elevated front view of a guide;
  • FIG. 7 is a perspective view of the guide shown in FIG. 6; and
  • FIG. 8 is a top plan view of the guide shown in FIG. 6.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention relates to methods and corresponding instruments for performing a tibial tubercle osteotomy to gain access to the knee cavity as part of a minimally invasive total or partial knee arthroplasty or other knee related surgery. By way of example and not by limitation, depicted in FIG. 1 is a knee 10 having an anterior side 12. Knee 10 is flexed to about 90 degrees. A transverse incision 14, approximately 10 cm long, is made mediolaterally through the skin layer across the midline of knee 10 proximal of the tibial tuberosity. As depicted in FIG. 2, the tissue is retracted exposing in part a patellar ligament 18 and a tibial tuberosity 20 of a tibia 22. A portion of tibial tuberosity 20 connected to patellar ligament 18 is now elevated such that patellar ligament 18 remains connected thereto.
  • Specifically, FIG. 2 shows a lateral view of the proximal end of tibia 22. A distal portion 30 of tibial tuberosity 20 has been elevated while a proximal portion 32 of tibial tuberosity 20 remains integral with tibia 22. Patellar ligament 18 is excised from proximal portion 30 of tibial tuberosity 20 so that the distal end of patellar ligament 18 can be freely elevated in connection with distal portion 30 of tibial tuberosity 20. In one embodiment, distal portion 30 of tibial tuberosity 20 is sized such that between about ⅓ to about ½ of the central mediolateral width of patella ligament 18 and tibial tuberosity 20 is osteotimized from the proximal end of tibia 22. Thus about ⅓ to about ½ of the distal contact surface of patellar ligament 18 remains connected to distal portion 30 of tibial tuberosity 20.
  • Tibia 22 has an anterior cut surface 34. With reference to the lateral side view of tibia 22 depicted in FIG. 2, cut surface 34 includes a proximally arched undercut portion 36 formed on the distal end of proximal portion 32 of tibial tuberosity 20. As a result of cut surface 34, proximal portion 32 of tibial tuberosity 20 terminates at a distally projecting anterior ridge 42.
  • Cut surface 34 also includes a distally sloping portion 38 extending from undercut portion 36 to an anterior border 40 of tibia 22. Cut surface 34 partially bounds a pocket 35 and has a transverse configuration taken along a plane extending proximal to distal that is similar to a vertically bisected heart design as depicted on conventional playing cards. In contrast to forming a smooth bisected heart shape design, cut surface 34 can also form a sharp or slightly rounded inside angle that is typically 90° or less.
  • As depicted in FIG. 3, cut surface 34 also has a substantially wedged shaped transverse configuration taken along a plane extending anterior to posterior. Specifically, cut surface 34 comprises a lateral side 24 and an opposing medial side 26 that each slope inwardly so as to intersect at a vertical midline 28. In one embodiment, the inside angle θ between lateral side 24 and medial side 26 is in a range between about 60° to about 120° with about 80° to about 100° being more preferred. In alternative embodiments, cut surface 34 can be substantially flat extending mediolaterally or can form a rounded groove.
  • Elevated distal portion 30 of tibial tuberosity 20 has a cut surface 46 that is complementary to cut surface 34. As will be discussed below in greater detail, one of the benefits of the configuration of cut surfaces 34 and 46 is that once the procedure is complete, distal portion 30 of tibial tuberosity 20 is easily reinserted within pocket 35. The complementary mating with undercut surface 36 helps lock distal portion 30 within pocket 35 as distal potion 30 is pulled proximal by patellar ligament 18.
  • Distal portion 30 of tibial tuberosity 20 can be elevated using a number of different techniques. By way of example and not by limitation, depicted in FIG. 4 is one embodiment of a die cutter 50 incorporating features of the present invention. Die cutter 50 comprises a housing 52 having a substantially box shaped configuration. Housing 52 has a front face 56 and an opposing back face 57 with side faces 58 and 60 extending therebetween. A top face 54 and an opposing bottom face 55 also extend between faces 56 and 57. Housing 52 bounds a chamber 62. Chamber 62 communicates with the exterior through an elongated slot 64 formed on front face 52 and an opening 66 formed on each side face 58 and 60.
  • A handle 68 outwardly projects from top face 54 of housing 52. A threaded alignment bolt 69 passes through handle 68 and a portion of housing 52 so as to centrally project beyond front face 56 of housing 52. Alignment bolt 69 threadedly engages with handle 68 and/or housing 52 such that selective rotation of alignment bolt 69 facilitates selective positioning of alignment bolt 69 beyond front face 56 of housing 52.
  • Partially disposed within chamber 62 of housing 52 are a pair of translating arms 70 and 72. As depicted in FIG. 5, each translating arm 70 and 72 has a distal end 74 and an opposing proximal end 76. In one embodiment of the present invention, means are provided for selectively advancing at least one of the first and second translating arms 70, 72 toward the other. By way of example and not by limitation, a shaft 78 has threads formed along each end thereof with the threads being oriented in opposing directions. Each translating arm 70 and 72 is threaded onto a corresponding end of shaft 78. Accordingly, selective rotation of shaft 78 causes translating arms 70, 72 to either move together or move apart. A socket 83 is formed on each end face of shaft 78. Shaft 78 is selectively rotated by inserting a tool, such as a drill bit, through one of openings 66 (FIG. 4) of housing 52 and into socket 83 of shaft 78. Rotation of the tool thus facilitates rotation of shaft 78.
  • In alternative embodiments for the means for selectively advancing, it is appreciated that shaft 78 can be replaced with a variety of other conventional threaded shaft or bolt mechanisms. Furthermore, shaft 78 can be replaced with elongated levered handles or other conventional apparatus that facilitate manual movement of translating arms 70 and 72. In yet other embodiments, it is appreciated that hydraulic, pneumatic, or electrical mechanisms can be used for movement of translating arms 70 and 72.
  • A plurality of spaced apart rails 79 outwardly project from each side of each translating arm 70, 72. Rails 79 mesh with complementary rails 92 formed on the interior of housing 52. The meshing of rails 79 and 92 helps to ensure that translating arms 70, 72 are maintained in alignment during movement. Proper alignment of translating arms 70, 72 is further maintained by a pin 75 slidably extending through each of translating arms 70, 72.
  • Returning to FIG. 4, distal end 74 of each translating arm 70, 72 extends outside of chamber 62 through slot 64. Mounted at distal end 74 of each translating arm 70 and 72 is an outwardly sloping head plate 80. Each head plate 80 has an interior face 81 with an undercut engagement slot 82 formed thereon. Each interior face 81 is disposed in a corresponding plane. The planes intersect so as to form an inside angle that is substantially equal to the angle θ formed on cut surface 34. Slidably disposed within each slot 82 is a die 84. Each die 84 has a base 86 that is connected with a corresponding head plate 80 by being slidably engaged within slot 82. As a result, dies 84 can be easily replaced with new dies or with dies having an alternative configuration.
  • A blade 88 outwardly projects from each base 86 so as to extend orthogonally from interior face 81 of the corresponding head plate 80. Each blade 88 terminates at a free sharpened edge 90. Each blade 88 and corresponding sharpened edge 90 has a profile that is the same configuration as the profile of cut surface 34 of tibial tuberosity 20 previously discussed. Blades 88 are disposed so as to opposingly face at an intersecting angle. Accordingly, as shaft 78 is selectively rotated, translating arms 70, 72 move together causing sharpened edges 90 to mate together.
  • During use, once tibial tuberosity 20 is exposed as discussed above, die cutter 50 is positioned such that dies 84 are positioned on the lateral and medial side of tibial tuberosity 20. The free end of bolt 69 rests against the anterior surface of tibial tuberosity 20 and helps to facilitate proper positioning of dies 84. In this regard, bolt 69 functions as a spacer. In alternative embodiments, bolt 69 can be replaced with a variety of other mechanism that permit selective spacing adjustment. For example, a rod and clamp configuration can be used.
  • Once die cutter 50 is appropriately positioned, shaft 78 is selectively rotated, such as by the use of a drill, so that translating arm 70 and 72 are advanced together. In so doing, the dies 84 penetrate laterally and medially into tibial tuberosity 20. Dies 84 continue to advance until distal portion 30 of tibial tuberosity 20 is separated from proximal portion 32 thereof.
  • One of the benefits of using this process is that dies 84 produce very clean cut surfaces 34 and 46 with minimal bone loss. As a result, once the subsequent surgical procedure is completed, distal portion 30 can be fit back into pocket 35 with a close tolerance fit. It is appreciated that a variety of alternative configurations of die cutters can be used for selective die cutting of tibial tuberosity 20.
  • In contrast to die cutting tibial tuberosity 20, distal portion 30 of tibial tuberosity 20 can also be elevated using a saw blade. For example, depicted in FIGS. 6-8 is a guide 100. Guide 100 comprises a central plate 102 having a front face 104 and an opposing back face 106. Each of faces 104 and 106 extend between opposing sides 108 and 110. Extending between front face 104 and back face 106 are a plurality of passageways 112.
  • Formed on sides 108 and 110 of central plate 102 is a first side housing 114 and a second side housing 116, respectively. Each side housing 114 and 116 is formed so as to project beyond front face 104 of central plate 102. Each of side housings 114 and 116 has an inside face 118 and an opposing outside face 120. A cavity 122 extends through each of side housings 114 and 116 between faces 118 and 120. Removably disposed within cavity 122 of side housing 114 is a first template 124. A second template 126 is disposed within cavity 122 of side housing 116. Each template 124 and 126 has a substantially box-shaped configuration which includes an inside face 128 and an opposing outside face 130. Inside face 128 of templates 124 and 126 are each disposed in a corresponding plane. The planes intersect so as to form an inside angle that is substantially equal to the angle θ formed on cut surface 34.
  • A guide slot 132 extends through each of templates 124 and 126 between inside face 128 and outside face 130. Each guide slot 132 has a configuration complementary to the profile of cut surface 34 and extends through templates 124 and 126 at an orientation perpendicular to inside face 128.
  • During use, once tibial tuberosity 20 is exposed, front face 104 of central plate 102 is biased against the anterior side of tibial tuberosity 20 such that templates 124 and 126 are disposed on the lateral and medial side thereof. Guide slots 132 are aligned with distal portion 30 of tibial tuberosity 20 to be elevated. Once guide 100 is appropriately positioned, fasteners, such as screws, nails, or the like, are passed through passageways 112 and into tibia 22 so as to securely retain guide 100 to tibia 22. It is noted that passageways 112 are sloped such that the fasteners extending therethrough extend into portions of tibia 22 outside of distal portion 30 which is to be elevated.
  • Once guide 100 is positioned in place, a saw blade 140 is passed through guide slot 132 of template 124 from outside face 130 to inside face 128. Saw blade 140 is moved in a reciprocating manner so as to penetrate half way into tibial tuberosity 20. Once the reciprocating saw blade 140 has completed passage along guide slot 132, saw blade 140 is moved over to template 126 and passed through the guide slot 132 thereof. The process is then repeated. Once both cuttings are performed, distal portion 30 of tibial tuberosity 20 is freely removable from the remainder of tibia 22. The fasteners are then removed along with guide 100. As with die cutters 50, it is appreciated that guide 100 can come in a variety of alternative configurations.
  • As previously mentioned, once distal portion 30 of tibial tuberosity 20 is elevated, patellar ligament 18 is retracted proximally, thereby exposing the knee joint. Once the knee joint is exposed, any number of knee related surgical procedures, such as total or partial knee arthroplasty, can be performed. Referring back to FIG. 2, upon completion of the surgical procedure, patellar ligament 18 is secured back in place by inserting distal portion 30 of tibial tuberosity 20 back into pocket 35. As a result of undercut portion 36, distal portion 30 of tibial tuberosity 20 is self-locking within pocket 35. If desired, however, various types of conventional bone anchors can be used to further secure distal portion 30 of tibial tuberosity 20 within pocket 35.
  • The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (12)

1. A method of cutting bone with a bone die cutter, the method comprising:
positioning complementary cutting dies on at least substantially opposing sides of a bone;
pressing at least one of the cutting dies toward the other so that the cutting dies cut a bone portion from the bone;
separating the cut bone portion from the bone; and
reattaching the cut bone portion to the bone.
2. A method as recited in claim 1, wherein the act of separating the cut bone portion forms a recessed pocket on the bone, the cut bone portion being reattached into the recessed pocket.
3. A method as recited in claim 1, wherein the recessed pocket includes an undercut portion.
4. A method as recited in claim 1, further comprising the act of performing a surgical procedure between the acts of separating and reattaching.
5. A method as recited in claim 1, wherein the cutting dies are positioned on opposing lateral and medial sides of a tibial tubercle such that the cut bone portion comprises at least a portion of the tibial tubercle.
6. A method as recited in claim 5, further comprising performing a total knee arthroplasty or a partial knee arthroplasty between the steps of separating and reattaching.
7. A method as recited in claim 1, wherein the cutting dies are positioned on opposing sides of a distal portion of a tibial tubercle such that the separated cut bone portion comprises the distal portion of the tibial tubercle while a proximal portion of the tibial tubercle remains attached to the tibia.
8. A method as recited in claim 7, wherein the distal portion of the tibial tubercle is separated from the tibia so that at least a portion of a patella ligament remains attached to the distal portion of the tibial tubercle.
9. A method as recited in claim 8, wherein the distal portion of the tibial tubercle is separated from the tibia so that a recessed undercut pocket is at least partially formed on the proximal portion of the tibial tubercle.
10. A method as recited in claim 1, wherein each of the dies has a blade projecting therefrom, the act of positioning the complementary cutting dies comprising positioning the dies so that the blades intersect at an angle when the blades are brought together.
11. A method as recited in claim 1, wherein each of the dies has a transverse cross sectional configuration that corresponds substantially to the contour of an exterior surface of a vertically bisected heart design.
12. A method as recited in claim 1, wherein the step of positioning complementary cutting dies comprises positioning a die cutter adjacent to the bone, the die cutter comprising a housing having a pair of translation arms extending therefrom, each cutting die being disposed at the end of a corresponding translation arm.
US11/321,192 2003-02-06 2005-12-29 Methods for cutting bone Abandoned US20060106396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/321,192 US20060106396A1 (en) 2003-02-06 2005-12-29 Methods for cutting bone

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/360,250 US7112204B2 (en) 2003-02-06 2003-02-06 Tibial tubercle osteotomy for total knee arthroplasty and instruments and implants therefor
FR0408218A FR2865627B1 (en) 2003-02-06 2004-07-23 TIBIAL TUBER OSTEOTOMY FOR TOTAL KNEE ARTHROPLASTY AND INSTRUMENTS AND IMPLANTS
US11/321,192 US20060106396A1 (en) 2003-02-06 2005-12-29 Methods for cutting bone

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/360,250 Division US7112204B2 (en) 2003-02-06 2003-02-06 Tibial tubercle osteotomy for total knee arthroplasty and instruments and implants therefor

Publications (1)

Publication Number Publication Date
US20060106396A1 true US20060106396A1 (en) 2006-05-18

Family

ID=34921450

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/360,250 Active 2024-08-30 US7112204B2 (en) 2003-02-06 2003-02-06 Tibial tubercle osteotomy for total knee arthroplasty and instruments and implants therefor
US11/321,192 Abandoned US20060106396A1 (en) 2003-02-06 2005-12-29 Methods for cutting bone
US11/344,877 Active 2027-01-29 US8262664B2 (en) 2003-02-06 2006-02-01 Methods for performing a tibial tubercle osteotomy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/360,250 Active 2024-08-30 US7112204B2 (en) 2003-02-06 2003-02-06 Tibial tubercle osteotomy for total knee arthroplasty and instruments and implants therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/344,877 Active 2027-01-29 US8262664B2 (en) 2003-02-06 2006-02-01 Methods for performing a tibial tubercle osteotomy

Country Status (7)

Country Link
US (3) US7112204B2 (en)
JP (1) JP4499441B2 (en)
AU (1) AU2004200301B2 (en)
CA (1) CA2456997C (en)
DE (1) DE102004005512B4 (en)
FR (2) FR2850858B1 (en)
GB (3) GB2398015B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050251147A1 (en) * 2004-05-07 2005-11-10 Novak Vincent P Open wedge osteotomy system and surgical method
US20060149274A1 (en) * 2003-02-06 2006-07-06 Medincelodge, Inc. Methods for performing a tibial tubercle osteotomy
US20060217808A1 (en) * 2005-01-31 2006-09-28 Novak Vincent P Multi-part implant for open wedge knee osteotomies
US20060241636A1 (en) * 2005-01-31 2006-10-26 Novak Vincent P Method and apparatus for forming a wedge-like opening in a bone for an open wedge osteotomy
US20070005065A1 (en) * 2005-06-17 2007-01-04 Fernandez Dell Oca Alberto A Aiming arm hole shaped to perform an incision through, and method to use that same
US20070213830A1 (en) * 2005-01-31 2007-09-13 Ammann Kelly G Method and apparatus for performing an open wedge, high tibial osteotomy
US20070244487A1 (en) * 2005-01-31 2007-10-18 Ammann Kelly G Method and appartus for performing an open, wedge, high tibial osteotomy
US20080140213A1 (en) * 2005-01-31 2008-06-12 Ammann Kelly G Method and apparatus for performing an open wedge, high tibial osteotomy
US20080147074A1 (en) * 2005-01-31 2008-06-19 Ammann Kelly G Method and apparatus for performing a high tibial, dome osteotomy
US20080208197A1 (en) * 2006-11-30 2008-08-28 Kelly Ammann Method and apparatus for performing an open wedge, high tibial osteotomy
US20080208199A1 (en) * 2006-11-22 2008-08-28 Kelly Ammann Method and apparatus for performing an open wedge, high tibial osteotomy
US20090054899A1 (en) * 2005-01-31 2009-02-26 Ammann Kelly G Method and apparatus for performing an open wedge, high tibial osteotomy
US20090287217A1 (en) * 2005-01-31 2009-11-19 Kelly Ammann Method and apparatus for performing an open wedge, high tibial osteotomy
KR101049647B1 (en) * 2006-02-10 2011-07-14 콸콤 인코포레이티드 Method and apparatus for safely booting from an external storage device
US8083749B2 (en) 2006-12-01 2011-12-27 Arthrex, Inc. Method and apparatus for performing an open wedge, low femoral osteotomy
US8137406B2 (en) 2006-09-27 2012-03-20 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
CN103458803A (en) * 2011-03-31 2013-12-18 德普伊产品公司 Bone graft shaper
US8771279B2 (en) 2005-01-31 2014-07-08 Arthrex, Inc. Method and apparatus for performing an osteotomy in bone
US8906026B2 (en) 2005-01-31 2014-12-09 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US20150071885A1 (en) * 2013-09-12 2015-03-12 Klsmc Stem Cells Sdn Bhd Osteotomy below the tibial tuberosity by multiple drilling

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105327B2 (en) 2003-03-31 2012-01-31 Depuy Products, Inc. Punch, implant and associated method
US8366713B2 (en) 2003-03-31 2013-02-05 Depuy Products, Inc. Arthroplasty instruments and associated method
US7517364B2 (en) 2003-03-31 2009-04-14 Depuy Products, Inc. Extended articulation orthopaedic implant and associated method
US8545506B2 (en) 2003-03-31 2013-10-01 DePuy Synthes Products, LLC Cutting guide for use with an extended articulation orthopaedic implant
US7935120B2 (en) * 2004-04-30 2011-05-03 Zimmer Technology, Inc. Posterior femur rough cut guide for minimally invasive knee arthroplasty
US20060200158A1 (en) * 2005-01-29 2006-09-07 Farling Toby N Apparatuses and methods for arthroplastic surgery
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
US9173662B2 (en) 2007-09-30 2015-11-03 DePuy Synthes Products, Inc. Customized patient-specific tibial cutting blocks
US8357111B2 (en) 2007-09-30 2013-01-22 Depuy Products, Inc. Method and system for designing patient-specific orthopaedic surgical instruments
WO2011106400A1 (en) 2010-02-25 2011-09-01 Depuy Products, Inc. Customized patient-specific tibial cutting blocks
EP2957244B1 (en) 2007-09-30 2020-04-15 DePuy Products, Inc. Method of generating a customized patient-specific orthopaedic surgical instrumentation
WO2011106399A1 (en) 2010-02-25 2011-09-01 Depuy Products, Inc. Customized patient-specific bone cutting blocks
US8353915B2 (en) * 2008-06-19 2013-01-15 Arthrex, Inc. AMZ tibial tuberosity transfer system
EP2781197B8 (en) 2009-08-27 2018-06-27 The Foundry, LLC Apparatus for force redistribution in articular joints
US10349980B2 (en) 2009-08-27 2019-07-16 The Foundry, Llc Method and apparatus for altering biomechanics of the shoulder
US9668868B2 (en) 2009-08-27 2017-06-06 Cotera, Inc. Apparatus and methods for treatment of patellofemoral conditions
US9861408B2 (en) 2009-08-27 2018-01-09 The Foundry, Llc Method and apparatus for treating canine cruciate ligament disease
US9278004B2 (en) 2009-08-27 2016-03-08 Cotera, Inc. Method and apparatus for altering biomechanics of the articular joints
ES2704658T3 (en) 2010-02-25 2019-03-19 Depuy Products Inc Custom patient-specific bone cutting blocks
WO2011106407A1 (en) 2010-02-25 2011-09-01 Depuy Products, Inc. Method of fabricating customized patient-specific bone cutting blocks
US8728084B2 (en) 2011-06-27 2014-05-20 Biomet Sports Medicine, Llc Apparatus for repairing bone defects
US8870884B2 (en) 2011-06-27 2014-10-28 Biomet Sports Medicine, Llc Method for repairing bone defects
US8641721B2 (en) 2011-06-30 2014-02-04 DePuy Synthes Products, LLC Customized patient-specific orthopaedic pin guides
US9468466B1 (en) 2012-08-24 2016-10-18 Cotera, Inc. Method and apparatus for altering biomechanics of the spine
US20160015426A1 (en) 2014-07-15 2016-01-21 Treace Medical Concepts, Inc. Bone positioning and cutting system and method
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9687250B2 (en) 2015-01-07 2017-06-27 Treace Medical Concepts, Inc. Bone cutting guide systems and methods
US10898211B2 (en) 2015-01-14 2021-01-26 Crossroads Extremity Systems, Llc Opening and closing wedge osteotomy guide and method
US10292713B2 (en) 2015-01-28 2019-05-21 First Ray, LLC Freeform tri-planar osteotomy guide and method
WO2016134154A1 (en) 2015-02-18 2016-08-25 Treace Medical Concepts, Inc. Pivotable bone cutting guide useful for bone realignment and compression techniques
US10376268B2 (en) 2015-02-19 2019-08-13 First Ray, LLC Indexed tri-planar osteotomy guide and method
US10653467B2 (en) 2015-05-06 2020-05-19 Treace Medical Concepts, Inc. Intra-osseous plate system and method
US9622805B2 (en) 2015-08-14 2017-04-18 Treace Medical Concepts, Inc. Bone positioning and preparing guide systems and methods
US10849663B2 (en) 2015-07-14 2020-12-01 Treace Medical Concepts, Inc. Bone cutting guide systems and methods
JP6985248B2 (en) 2015-07-14 2021-12-22 トリース メディカル コンセプツ,インコーポレイティド Bone positioning guide
CA2998727A1 (en) 2015-08-14 2017-02-23 Treace Medical Concepts, Inc. Tarsal-metatarsal joint procedure utilizing fulcrum
US11278337B2 (en) 2015-08-14 2022-03-22 Treace Medical Concepts, Inc. Tarsal-metatarsal joint procedure utilizing fulcrum
JP6940488B2 (en) 2015-09-18 2021-09-29 トリース メディカル コンセプツ,インコーポレイティド Fitting spacer system and method
CN106175874B (en) * 2016-06-29 2018-11-02 陕西东望科技有限公司 A kind of DDH osteotomy guide plate and its making and use method
US10512470B1 (en) 2016-08-26 2019-12-24 Treace Medical Concepts, Inc. Osteotomy procedure for correcting bone misalignment
US10524808B1 (en) 2016-11-11 2020-01-07 Treace Medical Concepts, Inc. Devices and techniques for performing an osteotomy procedure on a first metatarsal to correct a bone misalignment
US10939939B1 (en) 2017-02-26 2021-03-09 Treace Medical Concepts, Inc. Fulcrum for tarsal-metatarsal joint procedure
US11266449B2 (en) 2017-12-19 2022-03-08 Orthopediatrics Corp Osteotomy device and methods
US11051829B2 (en) 2018-06-26 2021-07-06 DePuy Synthes Products, Inc. Customized patient-specific orthopaedic surgical instrument
EP3820387A4 (en) 2018-07-11 2022-07-06 Treace Medical Concepts, Inc. Compressor-distractor for angularly realigning bone portions
WO2020014660A1 (en) 2018-07-12 2020-01-16 Treace Medical Concepts, Inc. Multi-diameter bone pin for installing and aligning bone fixation plate while minimizing bone damage
JP2022504346A (en) * 2018-10-05 2022-01-13 スミス アンド ネフュー インコーポレイテッド Tendon collection system
US11607250B2 (en) 2019-02-13 2023-03-21 Treace Medical Concepts, Inc. Tarsal-metatarsal joint procedure utilizing compressor-distractor and instrument providing sliding surface
CA3146564A1 (en) 2019-08-07 2021-02-11 Jason May Bi-planar instrument for bone cutting and joint realignment procedure
US11889998B1 (en) 2019-09-12 2024-02-06 Treace Medical Concepts, Inc. Surgical pin positioning lock
US11890039B1 (en) 2019-09-13 2024-02-06 Treace Medical Concepts, Inc. Multi-diameter K-wire for orthopedic applications
AU2020344704A1 (en) 2019-09-13 2022-04-14 Treace Medical Concepts, Inc. Patient-specific surgical methods and instrumentation
US11622797B2 (en) 2020-01-31 2023-04-11 Treace Medical Concepts, Inc. Metatarsophalangeal joint preparation and metatarsal realignment for fusion
CA3171886A1 (en) 2020-02-19 2021-08-26 Crossroads Extremity Systems, Llc Systems and methods for lapidus repair of bunions
CN113317842B (en) * 2021-06-18 2023-03-24 中国人民解放军陆军军医大学第一附属医院 Knee joint patella dislocation osteotomy navigation system and navigation method thereof
USD1011524S1 (en) 2022-02-23 2024-01-16 Treace Medical Concepts, Inc. Compressor-distractor for the foot

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US487068A (en) * 1892-11-29 Parturition-shears
US3835860A (en) * 1973-06-21 1974-09-17 H Garretson Surgical bone punch
US4180909A (en) * 1978-03-14 1980-01-01 Anders Lind Knife with exchangeable blades
US4201213A (en) * 1978-01-30 1980-05-06 Codman & Shurtleff, Inc. Surgical tool
US4208792A (en) * 1978-10-10 1980-06-24 Parker Manufacturing Company Shearing tool
US4733663A (en) * 1986-07-02 1988-03-29 Farley Daniel K Medical instrument for removing bone
US4777948A (en) * 1984-01-16 1988-10-18 Wright David W Surgical tool
US4990148A (en) * 1989-01-13 1991-02-05 Codman & Shurtleff, Inc. Thin footplate rongeur
US5019081A (en) * 1986-12-10 1991-05-28 Watanabe Robert S Laminectomy surgical process
US5026375A (en) * 1989-10-25 1991-06-25 Origin Medsystems, Inc. Surgical cutting instrument
US5112334A (en) * 1990-10-25 1992-05-12 Alchermes Stephen L Surgical instrument for facilitating accurate osteotomy cuts in bone and method for utilizing same
US5470328A (en) * 1994-07-21 1995-11-28 Snowden-Pencer, Inc. Surgical instrument handle and actuator means
US5582618A (en) * 1993-01-12 1996-12-10 R.J. Surgical Instruments, Inc. Surgical cutting instrument
US5617633A (en) * 1995-06-09 1997-04-08 Lee; Hee U. Finger/toe nail clipper assembly
US5649947A (en) * 1990-11-09 1997-07-22 Arthrotek, Inc. Surgical instrument
US5681314A (en) * 1996-06-21 1997-10-28 Lawrence M. Shall Cutting a bone graft
US5716405A (en) * 1993-03-05 1998-02-10 Mittelman; Harry Rhinoplasty kit
US5766177A (en) * 1996-04-02 1998-06-16 Oceaneering International, Inc. Rongeur
US5851214A (en) * 1994-10-07 1998-12-22 United States Surgical Corporation Surgical instrument useful for endoscopic procedures
US5873886A (en) * 1995-04-04 1999-02-23 United States Surgical Corporation Surgical cutting apparatus
US5911724A (en) * 1995-05-26 1999-06-15 Mathys Medizinaltechnik Ag Instrument for adjustment osteotomy of a lower extremity
US6200320B1 (en) * 1989-04-24 2001-03-13 Gary Karlin Michelson Surgical rongeur
US6321282B1 (en) * 1999-10-19 2001-11-20 Rambus Inc. Apparatus and method for topography dependent signaling
US20020107522A1 (en) * 2001-02-02 2002-08-08 Frederic Picard Probe and associated system and method for facilitating planar osteotomy during arthoplasty
US20020165552A1 (en) * 2001-03-29 2002-11-07 Duffner David W. Adjustable tibial osteotomy jig and method
US20030028196A1 (en) * 2000-01-14 2003-02-06 Bonutti Peter M. Method of performing surgery
US20030135217A1 (en) * 2002-01-14 2003-07-17 Buttermann Glenn Robin Apparatus and method for performing spinal surgery
US20040003331A1 (en) * 2002-06-28 2004-01-01 Salmon Joseph H. Method and apparatus for optimizing timing for a multi-drop bus
US20040070409A1 (en) * 2002-10-11 2004-04-15 Mobley James B. Adaptive reference voltage method and system
US20040153066A1 (en) * 2003-02-03 2004-08-05 Coon Thomas M. Apparatus for knee surgery and method of use

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506711Y2 (en) * 1990-12-27 1996-08-14 株式会社島津製作所 Bioabsorbable medical material cutting tool
DE4219939C2 (en) 1992-06-18 1995-10-19 Klaus Dipl Ing Radermacher Device for aligning, positioning and guiding machining tools, machining or measuring devices for machining a bony structure and method for producing this device
US5514139A (en) * 1994-09-02 1996-05-07 Hudson Surgical Design, Inc. Method and apparatus for femoral resection
US5643270A (en) 1995-08-03 1997-07-01 Combs; C. Robert Multi-plane curvilinear saw, guide and method
US5601563A (en) * 1995-08-25 1997-02-11 Zimmer, Inc. Orthopaedic milling template with attachable cutting guide
US5716361A (en) * 1995-11-02 1998-02-10 Masini; Michael A. Bone cutting guides for use in the implantation of prosthetic joint components
DE29718969U1 (en) * 1997-10-24 1998-03-19 Zepf Christoph Dismountable bone punch
US6497726B1 (en) * 2000-01-11 2002-12-24 Regeneration Technologies, Inc. Materials and methods for improved bone tendon bone transplantation
US6702820B2 (en) 2000-10-24 2004-03-09 John B. Mazur Surgical cutting instrument having concative jaw tips
DE10060769C2 (en) 2000-12-07 2003-07-24 Storz Karl Gmbh & Co Kg Medical instrument
DE10061512A1 (en) * 2000-12-08 2002-06-20 Tontarra Medizintechnik Gmbh Surgical instrument
US6648894B2 (en) 2000-12-21 2003-11-18 Stryker Spine Bone graft forming guide and method of forming bone grafts
US7699851B2 (en) 2002-08-19 2010-04-20 Dalton Brian E Bone cutting jig system for spinal implant
US7112204B2 (en) * 2003-02-06 2006-09-26 Medicinelodge, Inc. Tibial tubercle osteotomy for total knee arthroplasty and instruments and implants therefor
US8388690B2 (en) * 2003-10-03 2013-03-05 Linvatec Corporation Osteotomy system
US20100076564A1 (en) * 2008-09-23 2010-03-25 Schilling Eric M Tibial tuberosity advancement implant

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US487068A (en) * 1892-11-29 Parturition-shears
US3835860A (en) * 1973-06-21 1974-09-17 H Garretson Surgical bone punch
US4201213A (en) * 1978-01-30 1980-05-06 Codman & Shurtleff, Inc. Surgical tool
US4180909A (en) * 1978-03-14 1980-01-01 Anders Lind Knife with exchangeable blades
US4208792A (en) * 1978-10-10 1980-06-24 Parker Manufacturing Company Shearing tool
US4777948A (en) * 1984-01-16 1988-10-18 Wright David W Surgical tool
US4733663A (en) * 1986-07-02 1988-03-29 Farley Daniel K Medical instrument for removing bone
US5019081A (en) * 1986-12-10 1991-05-28 Watanabe Robert S Laminectomy surgical process
US4990148A (en) * 1989-01-13 1991-02-05 Codman & Shurtleff, Inc. Thin footplate rongeur
US6200320B1 (en) * 1989-04-24 2001-03-13 Gary Karlin Michelson Surgical rongeur
US5026375A (en) * 1989-10-25 1991-06-25 Origin Medsystems, Inc. Surgical cutting instrument
US5112334A (en) * 1990-10-25 1992-05-12 Alchermes Stephen L Surgical instrument for facilitating accurate osteotomy cuts in bone and method for utilizing same
US5649947A (en) * 1990-11-09 1997-07-22 Arthrotek, Inc. Surgical instrument
US5582618A (en) * 1993-01-12 1996-12-10 R.J. Surgical Instruments, Inc. Surgical cutting instrument
US5716405A (en) * 1993-03-05 1998-02-10 Mittelman; Harry Rhinoplasty kit
US5470328A (en) * 1994-07-21 1995-11-28 Snowden-Pencer, Inc. Surgical instrument handle and actuator means
US5851214A (en) * 1994-10-07 1998-12-22 United States Surgical Corporation Surgical instrument useful for endoscopic procedures
US5873886A (en) * 1995-04-04 1999-02-23 United States Surgical Corporation Surgical cutting apparatus
US5911724A (en) * 1995-05-26 1999-06-15 Mathys Medizinaltechnik Ag Instrument for adjustment osteotomy of a lower extremity
US5617633A (en) * 1995-06-09 1997-04-08 Lee; Hee U. Finger/toe nail clipper assembly
US5766177A (en) * 1996-04-02 1998-06-16 Oceaneering International, Inc. Rongeur
US5681314A (en) * 1996-06-21 1997-10-28 Lawrence M. Shall Cutting a bone graft
US6321282B1 (en) * 1999-10-19 2001-11-20 Rambus Inc. Apparatus and method for topography dependent signaling
US20030028196A1 (en) * 2000-01-14 2003-02-06 Bonutti Peter M. Method of performing surgery
US20020107522A1 (en) * 2001-02-02 2002-08-08 Frederic Picard Probe and associated system and method for facilitating planar osteotomy during arthoplasty
US20020165552A1 (en) * 2001-03-29 2002-11-07 Duffner David W. Adjustable tibial osteotomy jig and method
US20030135217A1 (en) * 2002-01-14 2003-07-17 Buttermann Glenn Robin Apparatus and method for performing spinal surgery
US20040003331A1 (en) * 2002-06-28 2004-01-01 Salmon Joseph H. Method and apparatus for optimizing timing for a multi-drop bus
US20040070409A1 (en) * 2002-10-11 2004-04-15 Mobley James B. Adaptive reference voltage method and system
US20040153066A1 (en) * 2003-02-03 2004-08-05 Coon Thomas M. Apparatus for knee surgery and method of use

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060149274A1 (en) * 2003-02-06 2006-07-06 Medincelodge, Inc. Methods for performing a tibial tubercle osteotomy
US8262664B2 (en) 2003-02-06 2012-09-11 Zimmer, Inc. Methods for performing a tibial tubercle osteotomy
US20050251147A1 (en) * 2004-05-07 2005-11-10 Novak Vincent P Open wedge osteotomy system and surgical method
US20050273114A1 (en) * 2004-05-07 2005-12-08 Novak Vincent P Open wedge osteotomy system and surgical method
US8083746B2 (en) 2004-05-07 2011-12-27 Arthrex, Inc. Open wedge osteotomy system and surgical method
US8062301B2 (en) 2005-01-31 2011-11-22 Arthrex, Inc. Method and apparatus for performing a high tibial, dome osteotomy
US8211112B2 (en) 2005-01-31 2012-07-03 Arthrex, Inc. Multi-part implant for open wedge knee osteotomies
US20070244487A1 (en) * 2005-01-31 2007-10-18 Ammann Kelly G Method and appartus for performing an open, wedge, high tibial osteotomy
US20080140213A1 (en) * 2005-01-31 2008-06-12 Ammann Kelly G Method and apparatus for performing an open wedge, high tibial osteotomy
US20080147074A1 (en) * 2005-01-31 2008-06-19 Ammann Kelly G Method and apparatus for performing a high tibial, dome osteotomy
US9707023B2 (en) 2005-01-31 2017-07-18 Arthrex, Inc. Apparatus for performing an open wedge, high tibial osteotomy
US9693787B2 (en) 2005-01-31 2017-07-04 Arthrex, Inc. Apparatus for performing an open wedge, high tibial osteotomy
US20090054899A1 (en) * 2005-01-31 2009-02-26 Ammann Kelly G Method and apparatus for performing an open wedge, high tibial osteotomy
US20090287217A1 (en) * 2005-01-31 2009-11-19 Kelly Ammann Method and apparatus for performing an open wedge, high tibial osteotomy
US7935119B2 (en) 2005-01-31 2011-05-03 Ibalance Medical, Inc. Method for performing an open wedge, high tibial osteotomy
US7967823B2 (en) 2005-01-31 2011-06-28 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US9113920B2 (en) 2005-01-31 2015-08-25 Arthrex, Inc. Method and apparatus for performing an open wedge osteotomy
US20110218540A1 (en) * 2005-01-31 2011-09-08 Ammann Kelly G Method and Apparatus for Performing An Open Wedge Osteotomy
US8906026B2 (en) 2005-01-31 2014-12-09 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US8888785B2 (en) 2005-01-31 2014-11-18 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US20060241636A1 (en) * 2005-01-31 2006-10-26 Novak Vincent P Method and apparatus for forming a wedge-like opening in a bone for an open wedge osteotomy
US8834475B2 (en) 2005-01-31 2014-09-16 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US20070213830A1 (en) * 2005-01-31 2007-09-13 Ammann Kelly G Method and apparatus for performing an open wedge, high tibial osteotomy
US20060217808A1 (en) * 2005-01-31 2006-09-28 Novak Vincent P Multi-part implant for open wedge knee osteotomies
US8771279B2 (en) 2005-01-31 2014-07-08 Arthrex, Inc. Method and apparatus for performing an osteotomy in bone
US8496662B2 (en) 2005-01-31 2013-07-30 Arthrex, Inc. Method and apparatus for forming a wedge-like opening in a bone for an open wedge osteotomy
US8540777B2 (en) 2005-01-31 2013-09-24 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US8702715B2 (en) 2005-01-31 2014-04-22 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US20070005065A1 (en) * 2005-06-17 2007-01-04 Fernandez Dell Oca Alberto A Aiming arm hole shaped to perform an incision through, and method to use that same
KR101049647B1 (en) * 2006-02-10 2011-07-14 콸콤 인코포레이티드 Method and apparatus for safely booting from an external storage device
US8137406B2 (en) 2006-09-27 2012-03-20 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US8709052B2 (en) 2006-11-22 2014-04-29 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US8409209B2 (en) 2006-11-22 2013-04-02 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US20080208199A1 (en) * 2006-11-22 2008-08-28 Kelly Ammann Method and apparatus for performing an open wedge, high tibial osteotomy
US20080208197A1 (en) * 2006-11-30 2008-08-28 Kelly Ammann Method and apparatus for performing an open wedge, high tibial osteotomy
US8083749B2 (en) 2006-12-01 2011-12-27 Arthrex, Inc. Method and apparatus for performing an open wedge, low femoral osteotomy
CN103458803A (en) * 2011-03-31 2013-12-18 德普伊产品公司 Bone graft shaper
US20150071885A1 (en) * 2013-09-12 2015-03-12 Klsmc Stem Cells Sdn Bhd Osteotomy below the tibial tuberosity by multiple drilling
US9486228B2 (en) * 2013-09-12 2016-11-08 Klsmc Stem Cells Sdn Bhd Osteotomy below the tibial tuberosity by multiple drilling

Also Published As

Publication number Publication date
GB2437003B (en) 2007-12-27
DE102004005512A1 (en) 2004-08-19
US7112204B2 (en) 2006-09-26
FR2850858B1 (en) 2006-05-12
GB2430627B (en) 2007-12-27
FR2850858A1 (en) 2004-08-13
FR2865627B1 (en) 2010-03-19
US8262664B2 (en) 2012-09-11
US20060149274A1 (en) 2006-07-06
AU2004200301A1 (en) 2004-08-26
JP4499441B2 (en) 2010-07-07
GB0401992D0 (en) 2004-03-03
US20040158255A1 (en) 2004-08-12
GB2398015B (en) 2007-09-19
AU2004200301B2 (en) 2009-02-05
GB2398015A (en) 2004-08-11
CA2456997A1 (en) 2004-08-06
FR2865627A1 (en) 2005-08-05
JP2004237110A (en) 2004-08-26
GB2430627A (en) 2007-04-04
GB0713156D0 (en) 2007-08-15
CA2456997C (en) 2011-04-26
GB2437003A (en) 2007-10-10
DE102004005512B4 (en) 2015-11-05
GB0620573D0 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US8262664B2 (en) Methods for performing a tibial tubercle osteotomy
US6056754A (en) Method and apparatus for patella resection and guide handle
DE69534232T2 (en) DEVICE FOR FEMUR AND TIBIAR RESECTION
US10299800B2 (en) Surgical instrumentation and methods of use for implanting a prosthesis
US9421022B2 (en) Method and apparatus for total knee arthroplasty
US7819878B2 (en) Tibial condylar hemiplasty tissue preparation instruments and methods
US7578824B2 (en) Methods and apparatus for forming a tunnel through a proximal end of a tibia
JP5180123B2 (en) Saw blade for cutting a predetermined part of the human body structure
US7462199B2 (en) Methods for mounting a tibial condylar implant
JP3858201B2 (en) Distal thigh size measuring instrument
JP2020096871A (en) Foot joint replacement system and method
US9216022B2 (en) Methods and instruments for forming non-circular cartilage grafts
US9066804B2 (en) Method and apparatus for femoral and tibial resection
US4474177A (en) Method and apparatus for shaping a distal femoral surface
US20040153066A1 (en) Apparatus for knee surgery and method of use
US7608079B1 (en) Unicondylar knee apparatus and system
US11076864B2 (en) Tissue removal instrument
EP3166510B1 (en) Apparatus for surgically replacing a human ankle joint

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANKATY ADVISORS, LLC,MASSACHUSETTS

Free format text: SECURITY AGREEMENT;ASSIGNOR:MEDICINELODGE, INC.;REEL/FRAME:018720/0476

Effective date: 20070102

Owner name: SANKATY ADVISORS, LLC, MASSACHUSETTS

Free format text: SECURITY AGREEMENT;ASSIGNOR:MEDICINELODGE, INC.;REEL/FRAME:018720/0476

Effective date: 20070102

AS Assignment

Owner name: MEDICINELODGE, INC., UTAH

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SANKATY ADVISORS, LLC;REEL/FRAME:021985/0342

Effective date: 20081216

Owner name: MEDICINELODGE HOLDINGS CORP., UTAH

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SANKATY ADVISORS, LLC;REEL/FRAME:021985/0342

Effective date: 20081216

Owner name: MEDICINELODGE, INC.,UTAH

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SANKATY ADVISORS, LLC;REEL/FRAME:021985/0342

Effective date: 20081216

Owner name: MEDICINELODGE HOLDINGS CORP.,UTAH

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SANKATY ADVISORS, LLC;REEL/FRAME:021985/0342

Effective date: 20081216

AS Assignment

Owner name: ZIMMER, INC., INDIANA

Free format text: CORRECTIV;ASSIGNOR:MEDICINELODGE, INC.;REEL/FRAME:022868/0731

Effective date: 20090303

Owner name: ZIMMER, INC.,INDIANA

Free format text: CORRECTIVE ASSIGNMENT IN RESPONSE TO THE NOTICE OF NON-RECORDATION MAILED 6/16/09;ASSIGNOR:MEDICINELODGE, INC.;REEL/FRAME:022868/0731

Effective date: 20090303

Owner name: ZIMMER, INC., INDIANA

Free format text: CORRECTIVE ASSIGNMENT IN RESPONSE TO THE NOTICE OF NON-RECORDATION MAILED 6/16/09;ASSIGNOR:MEDICINELODGE, INC.;REEL/FRAME:022868/0731

Effective date: 20090303

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION