US20060074375A1 - Shunt device and method for treating glaucoma - Google Patents

Shunt device and method for treating glaucoma Download PDF

Info

Publication number
US20060074375A1
US20060074375A1 US11/295,066 US29506605A US2006074375A1 US 20060074375 A1 US20060074375 A1 US 20060074375A1 US 29506605 A US29506605 A US 29506605A US 2006074375 A1 US2006074375 A1 US 2006074375A1
Authority
US
United States
Prior art keywords
tubular body
canal
eye
implantation
aqueous humor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/295,066
Inventor
Olav Bergheim
Morteza (Mory) Gharib
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/295,066 priority Critical patent/US20060074375A1/en
Publication of US20060074375A1 publication Critical patent/US20060074375A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • A61K9/0051Ocular inserts, ocular implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • A61M27/002Implant devices for drainage of body fluids from one part of the body to another
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00891Glaucoma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0612Eyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting
    • Y10S623/905Eye

Definitions

  • the present invention generally relates to improved medical devices and methods for the reduction of elevated pressure in organs of the human body. More particularly, the present invention relates to the treatment of glaucoma by trabecular bypass surgery, which is a means for using an implant or seton, such as a micro stent, shunt or the like, to bypass diseased trabecular meshwork at the level of trabecular meshwork and use/restore existing outflow pathways.
  • trabecular bypass surgery is a means for using an implant or seton, such as a micro stent, shunt or the like, to bypass diseased trabecular meshwork at the level of trabecular meshwork and use/restore existing outflow pathways.
  • Glaucoma is a group of eye diseases that causes pathological changes in the optic disk and corresponding visual field loss resulting in blindness if untreated. Intraocular pressure elevation is the major etiologic factor in all glaucomas.
  • the source of resistance to outflow is in the trabecular meshwork.
  • the tissue of the trabecular meshwork allows the “aqueous” to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueousveins.
  • the aqueous or aqueous humor is a transparent liquid that fills the region between the cornea at the front of the eye and the lens.
  • the aqueous humor is constantly secreted by the ciliary body around the lens, so there is a continuous flow of the aqueous humor from the ciliary body to the eye's front chamber.
  • the eye's pressure is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) or via uveal scleral outflow (minor route).
  • the trabecular meshwork is located between the outer rim of the iris and the internal periphery of the cornea. The portion of the trabecular meshwork adjacent to Schlemm's canal causes most of the resistance to aqueous outflow (juxtacanilicular meshwork).
  • Glaucoma is grossly classified into two categories: closed-angle glaucoma and open-angle glaucoma.
  • the closed-angle glaucoma is caused by closure of the anterior angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous humor from the anterior chamber of the eye.
  • Open-angle glaucoma is any glaucoma in which the angle of the anterior chamber remains open, but the exit of aqueous through the trabecular meshwork is diminished. The exact cause for diminished filtration is unknown for most cases of open-angle glaucoma.
  • secondary open-angle glaucomas which may include edema or swelling of the trabecular spaces (from steroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.
  • Surgical therapy for open-angle glaucoma consists of laser (trabeculoplasty), trabeculectomy and aqueous shunting implants after failure of trabeculectomy or if trabeculectomy is unlikely to succeed.
  • Trabeculectomy is a major surgery which is most widely used and is augmented with topically applied anticancer drugs such as 5-flurouracil or mitomycin-c to decrease scarring and increase surgical success.
  • trabeculectomies Approximately 100,000 trabeculectomies are performed on Medicare age patients per year in the United States. This number would increase if the morbidity associated with trabeculectomy could be decreased.
  • the current morbidity associated with trabeculectomy consists of failure (10-15%), infection (a life long risk about 2-5%), choroidal hemorrhage (1%, a severe internal hemorrhage from pressure too low resulting in visual loss), cataract formation, and hypotony maculopathy (potentially reversible visual loss from pressure too low).
  • goniotomy/trabeculotomy and other mechanical disruption of the trabecular meshwork, such as trabeculopuncture, goniophotoablation, laser trabecular ablation and goniocurretage. They are briefly described below.
  • Goniotomy/Trabeculotomy are simple and directed techniques of microsurgical dissection with mechanical disruption of the trabecular meshwork. These initially had early favorable responses in the treatment of open-angle glaucoma. However, long-term review of surgical results showed only limited success in adults. In retrospect, these procedures probably failed secondary to repair mechanisms and a process of “filling in”. The filling in is the result of a healing process which has the detrimental effect of collapsing and closing in of the created opening throughout the trabecular meshwork. Once the created openings close, the pressure builds back up and the surgery fails.
  • Nd Neodymiun
  • YAG lasers also have been investigated as an optically invasive technique for creating full-thickness holes in trabecular meshwork.
  • the relatively small hole created by this trabeculopuncture technique exhibits a filling in effect and fails.
  • Goniophotoablation is disclosed by Berlin in U.S. Pat. No. 4,846,172, and describes the use of an excimer laser to treat glaucoma by ablating the trabecular meshwork. This was not demonstrated by clinical trial to succeed. Hill et al. used an Erbium:YAG laser to create full thickness holes through trabecular meshwork (Hill et al., Lasers in Surgery and Medicine 11:341-346, 1991). This technique was investigated in a primate model and a limited human clinical trial at the University of California, Irvine. Although morbidity was zero in both trials, success rates did not warrant further human trials. Failure again was from filling in of created defects in trabecular meshwork by repair mechanisms. Neither of these is a valid surgical technique for the treatment of glaucoma.
  • Goniocurretage This is an ab-interno (from the inside) mechanical disruptive technique. This uses an instrument similar to a cyclodialysis spatula with a microcurrette at the tip. Initial results are similar to trabeculotomy that fails secondary to repair mechanisms and a process of filling in.
  • Viscocanulostomy (VC) and non-penetrating trabeculectomy (NPT) are two new variations of filtering surgery. These are ab-externo (from the outside), major ocular procedures in which Schlemm's canal is surgically exposed by making a large and very deep scleral flap.
  • ab-externo from the outside
  • Schlemm's canal is canulated and viscoelastic substance injected (which dilates Schlemm's canal and the aqueous collector channels).
  • NPT non-penetrating trabeculectomy
  • Trabeculectomy, VC, and NPT are performed under a conjunctival and scleral flap, such that the aqueous humor is drained onto the surface of the eye or into the tissues located within the lateral wall of the eye. Normal physiological outflows are not used. These surgical operations are major procedures with significant ocular morbidity. When Trabeculectomy, VC, and NPT are thought to have a low chance for success, a number of implantable drainage devices have been used to ensure that the desired filtration and outflow of aqueous humor through the surgical opening will continue. The risk of placing a glaucoma drainage implant also includes hemorrhage, infection and postoperative double vision that is a complication unique to drainage implants.
  • the trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous and, as such, are logical targets for surgical removal in the treatment of open-angle glaucoma.
  • minimal amounts of tissue are altered and existing physiologic outflow pathways are utilized.
  • Trabecular bypass surgery has the potential for much lower risks of choroidal hemorrhage, infection and uses existing physiologic outflow mechanisms. This surgery could be performed under topical anesthesia in a physician's office with rapid visual recovery.
  • Trabecular bypass surgery is an innovative surgery which uses a micro stent, shunt, or other implant to bypass diseased trabecular meshwork alone at the level of trabecular meshwork and use or restore existing outflow pathways.
  • the object of the present invention is to provide a means and methods for treating elevated intraocular pressure in a manner which is simple, effective, disease site specific and can be performed on an outpatient basis.
  • the seton has an inlet portion configured to extend through a portion of the trabecular meshwork of an eye, and an outlet portion configured to extend into Schlemm's canal of the eye, wherein the inlet portion is disposed at an angle relative to the outlet portion.
  • the outlet portion has a lumen with an oval cross-section having a long axis.
  • the outlet portion in certain embodiments has a longitudinal axis, such that the long axis of the oval cross-section and the longitudinal axis of the outlet portion define a plane, the inlet portion having a longitudinal axis which lies outside the plane at an angle ⁇ (theta) thereto.
  • the seton comprises an inlet portion, configured to extend through a portion of the trabecular meshwork; an outlet portion, configured to extend into Schlemm's canal; and at least one protrusion on the outlet portion, configured to exert traction against an inner surface of Schlemm's canal.
  • This protrusion can comprise at least one barb or ridge.
  • Some preferred embodiments comprise an inlet portion configured to extend through a portion of the trabecular meshwork, an outlet portion configured to extend into Schlemm's canal, and a one-way valve within the inlet and/or outlet portions.
  • a method for delivering a seton within an eye comprising providing an elongate guide member, advancing a distal end of the guide member through at least a portion of the trabecular meshwork of the eye, advancing the seton along the guide member toward the distal end, and positioning the seton to conduct aqueous humor between the anterior chamber of the eye and Schlemm's canal.
  • the advancing of the guide member comprises advancing it from the anterior chamber into the trabecular meshwork.
  • the positioning comprises positioning an end of the seton within Schlemm's canal adjacent to an aqueous collection channel.
  • Certain preferred embodiments include an apparatus for delivering a seton to the anterior chamber of an eye comprising an elongate tube having a lumen, an outer surface, and a distal end; a removable, elongate guide member within the lumen, configured to permit the seton to be advanced and to be positioned in the trabecular meshwork of the eye.
  • This apparatus can further comprise a cutting member positioned at the distal end of the tube.
  • the cutting member can be selected from the group consisting of a knife, a laser probe, a pointed guide member, a sharpened distal end of said tube, and an ultrasonic cutter.
  • the apparatus can also further comprise an opening in the outer surface of the tube, configured to allow fluid infusion into the eye.
  • an apparatus for delivering a seton in an eye comprises an elongate member adapted for insertion into an anterior chamber of the eye, the elongate member having a distal end portion configured to retain the seton therein, the distal end portion comprising a cutting member configured to form an opening in the trabecular meshwork of the eye for receipt of the seton, such that one end of the seton is in Schlemm's canal.
  • the elongate member can further comprise a lumen which conducts fluid toward said distal end portion.
  • the preferred embodiment provides further surgical treatment of glaucoma (trabecular bypass surgery) at the level of trabecular meshwork and restores existing physiological outflow pathways.
  • An implant bypasses diseased trabecular meshwork at the level of trabecular meshwork and which restores existing physiological outflow pathways.
  • the implant has an inlet end, an outlet end and a lumen therebetween. The inlet is positioned in the anterior chamber at the level of the internal trabecular meshwork and the outlet end is positioned at about the exterior surface of the diseased trabecular meshwork and/or into fluid collection channels of the existing outflow pathways.
  • trabecular bypass surgery creates an opening or a hole through the diseased trabecular meshwork through minor microsurgery.
  • a biocompatible elongated implant is placed within the hole as a seton, which may include, for example, a solid rod or hollow tube.
  • the seton implant may be positioned across the diseased trabecular meshwork alone and it does not extend into the eye wall or sclera.
  • the inlet end of the implant is exposed to the anterior chamber of the eye while the outlet end is positioned at the exterior surface of the trabecular meshwork.
  • the outlet end is positioned at and over the exterior surface of the trabecular meshwork and into the fluid collection channels of the existing outflow pathways. In still another embodiment, the outlet end is positioned in the Schlemm's canal. In an alternative embodiment, the outlet end enters into fluid collection channels up to the level of the aqueous veins with the seton inserted in a retrograde or antegrade fashion.
  • the seton implant is made of biocompatible material, which is either hollow to allow the flow of aqueous humor or solid biocompatible material that imbibes aqueous.
  • the material for the seton may be selected from the group consisting of porous material, semi-rigid material, soft material, hydrophilic material, hydrophobic material, hydrogel, elastic material, and the like.
  • the seton implant may be rigid or it may be made of relatively soft material and is somewhat curved at its distal section to fit into the existing physiological outflow pathways, such as Schlemm's canal.
  • the distal section inside the outflow pathways may have an oval shape to stabilize the seton in place without undue suturing.
  • Stabilization or retention of the seton may be further strengthened by a taper end and/or by at least one ridge or rib on the exterior surface of the distal section of the seton, or other surface alterations designed to retain the seton.
  • the seton may include a micropump, one way valve, or semi-permeable membrane if reflux of red blood cells or serum protein becomes a clinical problem. It may also be useful to use a biocompatible material that hydrates and expands after implantation so that the seton is locked into position around the trabecular meshwork opening or around the distal section of the seton.
  • trabecular bypass surgery as disclosed herein, and the use of a seton implant to bypass diseased trabecular meshwork at the level of trabecular meshwork and thereby use existing outflow pathways is that the treatment of glaucoma is substantially simpler than in existing therapies.
  • a further advantage of the invention is the utilization of simple microsurgery that may be performed on an outpatient basis with rapid visual recovery and greatly decreased morbidity.
  • Physiological outflow mechanisms are used or re-established by the implant of the present invention, in contradistinction with previously disclosed methodologies.
  • FIG. 1 is a sectional view of an eye for illustration purposes.
  • FIG. 2 is a close-up sectional view, showing the anatomical diagram of trabecular meshwork and the anterior chamber of the eye.
  • FIG. 3 is an embodiment of the seton implant constructed according to the principles of the invention.
  • FIG. 4 is a top cross-sectional view of section 1 - 1 of FIG. 3 .
  • FIG. 5 is another embodiment of the seton implant constructed in accordance with the principles of the invention.
  • FIG. 6 is a perspective view illustrating the seton implant of the present invention positioned within the tissue of an eye.
  • FIG. 7 is an alternate exemplary method for placing a seton implant at the implant site.
  • a seton implant is used to bypass diseased trabecular meshwork at the level of trabecular meshwork to use or restore existing outflow pathways and methods thereof.
  • FIG. 1 shows a sectional view of an eye 10
  • FIG. 2 shows a close-up view, showing the relative anatomical locations of the trabecular meshwork, the anterior chamber, and Schlemm's canal.
  • Thick collagenous tissue known as sclera 11 covers the entire eye 10 except that portion covered by the cornea 12 .
  • the cornea 12 is a thin transparent tissue that focuses and transmits light into the eye and the pupil 14 which is the circular hole in the center of the iris 13 (colored portion of the eye).
  • the cornea 12 merges into the sclera 11 at a juncture referred to as the limbus 15 .
  • the ciliary body 16 begins internally in the eye and extends along the interior of the sclera 11 and becomes the choroid 17 .
  • the choroid 17 is a vascular layer of the eye underlying retina 18 .
  • the optic nerve 19 transmits visual information to the brain and is sequentially destroyed by glaucoma.
  • the anterior chamber 20 of the eye 10 which is bound anteriorly by the cornea 12 and posteriorly by the iris 13 and lens 26 , is filled with aqueous.
  • Aqueous is produced primarily by the ciliary body 16 and reaches the anterior chamber angle 25 formed between the iris 13 and the cornea 12 through the pupil 14 .
  • the aqueous is removed through the trabecular meshwork 21 .
  • Aqueous passes through trabecular meshwork 21 into Schlemm's canal 22 and through the aqueous veins 23 which merge with blood-carrying veins and into venous circulation.
  • Intraocular pressure of the eye 10 is maintained by the intricate balance of secretion and outflow of the aqueous in the manner described above.
  • Glaucoma is characterized by the excessive buildup of aqueous fluid in the anterior chamber 20 which produces an increase in intraocular pressure (fluids are relatively incompressible and pressure is directed equally to all areas of the eye).
  • the trabecular meshwork 21 constitutes a small portion of the sclera 11 . It is understandable that creating a hole or opening for implanting a device through the tissues of the conjunctiva 24 and sclera 11 is relatively a major surgery as compared to a surgery for implanting a device through the trabecular meshwork 21 only.
  • a seton implant 31 of the present invention for either using or restoring existing outflow pathways positioned through the trabecular meshwork 21 is illustrated in FIG. 5 .
  • a method for increasing aqueous humor outflow in an eye of a patient to reduce the intraocular pressure therein comprises bypassing diseased trabecular meshwork at the level of the trabecular meshwork and thereby restoring existing outflow pathways.
  • a method for increasing aqueous humor outflow in an eye of a patient to reduce an intraocular pressure therein is disclosed.
  • the method comprises bypassing diseased trabecular meshwork at a level of said trabecular meshwork with a seton implant and using existing outflow pathways.
  • the seton implant 31 may be an elongated seton or other appropriate shape, size or configuration.
  • the seton has an inlet end, an outlet end and a lumen therebetween, wherein the inlet end is positioned at an anterior chamber of the eye and the outlet end is positioned at about an exterior surface of said diseased trabecular meshwork.
  • the outlet end may be positioned into fluid collection channels of the existing outflow pathways.
  • the existing outflow pathways may comprise Schlemm's canal 22 .
  • the outlet end may be further positioned into fluid collection channels up to the level of the aqueous veins with the seton inserted either in a retrograde or antegrade fashion with respect to the existing outflow pathways.
  • a method for increasing aqueous humor outflow in an eye of a patient to reduce an intraocular pressure therein.
  • the method comprises (a) creating an opening in trabecular meshwork, wherein the trabecular meshwork comprises an interior side and exterior side; (b) inserting a seton implant into the opening; and (c) transporting the aqueous humor by said seton implant to bypass the trabecular meshwork at the level of said trabecular meshwork from the interior side to the exterior side of the trabecular meshwork.
  • FIG. 3 shows an embodiment of the seton implant 31 constructed according to the principles of the invention.
  • the seton implant may comprise a biocompatible material, such as a medical grade silicone, for example, the material sold under the trademark SilasticTM, which is available from Dow Corning Corporation of Midland, Mich., or polyurethane, which is sold under the trademark PellethaneTM, which is also available from Dow Coming Corporation.
  • SilasticTM which is available from Dow Corning Corporation of Midland, Mich.
  • PellethaneTM which is also available from Dow Coming Corporation.
  • biocompatible materials such as polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, tetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilison, mixture of biocompatible materials, and the like.
  • a composite biocompatible material by surface coating the above-mentioned biomaterial may be used, wherein the coating material may be selected from the group consisting of polytetrafluoroethlyene (PTFE), polyimide, hydrogel, heparin, therapeutic drugs, and the like.
  • PTFE polytetrafluoroethlyene
  • the seton implant 31 comprises an elongated tubular element having a distal section 32 and an inlet section 44 .
  • a rigid or flexible distal section 32 is positioned inside one of the existing outflow pathways.
  • the distal section may have either a tapered outlet end 33 or have at least one ridge 37 or other retention device protruding radially outwardly for stabilizing the seton implant inside said existing outflow pathways after implantation.
  • the outer surface of the distal section 32 may comprise a stubbed surface, a ribbed surface, a surface with pillars, a textured surface, or the like.
  • the outer surface 36 , including the outer region 35 and inner region 34 at the outlet end 33 , of the seton implant is biocompatible and tissue compatible so that the interaction/irritation between the outer surface and the surrounding tissue is minimized.
  • the seton implant may comprise at least one opening at a location proximal the distal section 32 , away from the outlet end 33 , to allow flow of aqueous in more than one direction. The at least one opening may be located on the distal section 32 at about opposite of the outlet end 33 .
  • the seton implant 31 may have a one-way flow controlling means 39 for allowing one-way aqueous flow 40 .
  • the one-way flow controlling means 39 may be selected from the group consisting of a check valve, a slit valve, a micropump, a semi-permeable membrane, or the like.
  • at least one optional opening 41 in the proximal portion of the distal section 32 , at a location away from the outlet end 33 , and in an exemplary embodiment at the opposite end of the outlet end 33 is provided.
  • FIG. 4 shows a top cross-sectional view of FIG. 3 .
  • the shape of the opening of the outlet end 33 and the remaining body of the distal section 32 may be oval, round or some other shape adapted to conform to the shape of the existing outflow pathways. This configuration will match the contour of Schlemm's canal to stabilize the inlet section with respect to the iris and cornea by preventing rotation.
  • the seton implant of the present invention may have a length between about 0.5 mm to over a meter, depending on the body cavity the seton implant applies to.
  • the outside diameter of the seton implant may range from about 30 ⁇ m to about 500 ⁇ m.
  • the lumen diameter is preferably in the range between about 20 ⁇ m to about 150 ⁇ m.
  • the seton implant may have a plurality of lumens to facilitate multiple flow transportation.
  • the distal section may be curved at an angle between about 30 degrees to about 150 degrees, in an exemplary embodiment at around 70-110 degrees, with reference to the inlet section 44 .
  • FIG. 5 shows another embodiment of the seton implant 45 constructed in accordance with the principles of the invention.
  • the seton implant 45 may comprise at least two sections: an inlet section 47 and an outlet section 46 .
  • the outlet section has an outlet opening 48 that is at the outlet end of the seton implant 45 .
  • the shape of the outlet opening 48 is preferably an oval shape to conform to the contour of the existing outflow pathways.
  • a portion of the inlet section 47 adjacent the joint region to the outlet section 46 will be positioned essentially through the diseased trabecular meshwork while the remainder of the inlet section 47 and the outlet section 46 are outside the trabecular meshwork. As shown in FIG.
  • the long axis of the oval shape opening 48 lies in a first plane formed by an X-axis and a Y-axis.
  • the inlet section 47 may preferably lie at an elevated second plane, at an angle ⁇ , from the first plane formed by an imaginary inlet section 47 A and the outlet section 46 .
  • the angle ⁇ may be between about 30 degrees and about 150 degrees.
  • FIG. 6 shows a perspective view illustrating the seton implant 31 , 45 of the present invention positioned within the tissue of an eye 10 .
  • a hole/opening is created through the diseased trabecular meshwork 21 .
  • the distal section 32 of the seton implant 31 is inserted into the hole, wherein the inlet end 38 is exposed to the anterior chamber 20 while the outlet end 33 is positioned at about an exterior surface 43 of said diseased trabecular meshwork 21 .
  • the outlet end 33 may further enter into fluid collection channels of the existing outflow pathways.
  • the means for forming a hole/opening in the trabecular mesh 21 may comprise an incision with a microknife, an incision by a pointed guidewire, a sharpened applicator, a screw shaped applicator, an irrigating applicator, or a barbed applicator.
  • the trabecular meshwork may be dissected off with an instrument similar to a retinal pick or microcurrette. The opening may alternately be created by retrogade fiberoptic laser ablation.
  • FIG. 7 shows an illustrative method for placing a seton implant at the implant site.
  • An irrigating knife or applicator 51 comprises a syringe portion 54 and a cannula portion 55 .
  • the distal section of the cannula portion 55 has at least one irrigating hole 53 and a distal space 56 for holding a seton implant 31 .
  • the proximal end 57 of the lumen of the distal space 56 is sealed from the remaining lumen of the cannula portion 55 .
  • the seton may be advanced over the guidewire or a fiberoptic (retrograde).
  • the seton is directly placed on the delivery applicator and advanced to the implant site, wherein the delivery applicator holds the seton securely during the delivery stage and releases it during the deployment stage.
  • the patient is placed in the supine position, prepped, draped and anesthesia obtained.
  • a small (less than 1 mm) self sealing incision is made.
  • an incision is made in trabecular meshwork with an irrigating knife.
  • the seton 31 is then advanced through the cornea incision 52 across the anterior chamber 20 held in an irrigating applicator 51 under gonioscopic (lens) or endoscopic guidance.
  • the applicator is withdrawn and the surgery concluded.
  • the irrigating knife may be within a size range of 20 to 40 gauges, preferably about 30 gauge.

Abstract

Surgical methods and related medical devices for treating glaucoma are disclosed. The method comprises trabecular bypass surgery, which involve bypassing diseased trabecular meshwork with the use of a seton implant. The seton implant is used to prevent a healing process known as filling in, which has a tendency to close surgically created openings in the trabecular meshwork. The surgical method and novel implant are addressed to the trabecular meshwork, which is a major site of resistance to outflow in glaucoma. In addition to bypassing the diseased trabecular meshwork at the level of the trabecular meshwork, existing outflow pathways are also used or restored. The seton implant is positioned through the trabecular meshwork so that an inlet end of the seton implant is exposed to the anterior chamber of the eye and an outlet end is positioned into fluid collection channels at about an exterior surface of the trabecular meshwork or up to the level of aqueous veins.

Description

    RELATED APPLICATIONS
  • This patent application is a continuation application of U.S. patent application Ser. No. 10/395,631, filed Mar. 21, 2003, which is a continuation application of U.S. patent application Ser. No. 09/549,350, filed Apr. 14, 2000, the contents of which are incorporated in its entirety by reference herein.
  • FIELD OF THE INVENTION
  • The present invention generally relates to improved medical devices and methods for the reduction of elevated pressure in organs of the human body. More particularly, the present invention relates to the treatment of glaucoma by trabecular bypass surgery, which is a means for using an implant or seton, such as a micro stent, shunt or the like, to bypass diseased trabecular meshwork at the level of trabecular meshwork and use/restore existing outflow pathways.
  • BACKGROUND OF THE INVENTION
  • About two percent of people in the United States have glaucoma. Glaucoma is a group of eye diseases that causes pathological changes in the optic disk and corresponding visual field loss resulting in blindness if untreated. Intraocular pressure elevation is the major etiologic factor in all glaucomas.
  • In glaucomas associated with an elevation in eye pressure the source of resistance to outflow is in the trabecular meshwork. The tissue of the trabecular meshwork allows the “aqueous” to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueousveins. The aqueous or aqueous humor is a transparent liquid that fills the region between the cornea at the front of the eye and the lens. The aqueous humor is constantly secreted by the ciliary body around the lens, so there is a continuous flow of the aqueous humor from the ciliary body to the eye's front chamber. The eye's pressure is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) or via uveal scleral outflow (minor route). The trabecular meshwork is located between the outer rim of the iris and the internal periphery of the cornea. The portion of the trabecular meshwork adjacent to Schlemm's canal causes most of the resistance to aqueous outflow (juxtacanilicular meshwork).
  • Glaucoma is grossly classified into two categories: closed-angle glaucoma and open-angle glaucoma. The closed-angle glaucoma is caused by closure of the anterior angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous humor from the anterior chamber of the eye. Open-angle glaucoma is any glaucoma in which the angle of the anterior chamber remains open, but the exit of aqueous through the trabecular meshwork is diminished. The exact cause for diminished filtration is unknown for most cases of open-angle glaucoma. However, there are secondary open-angle glaucomas which may include edema or swelling of the trabecular spaces (from steroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.
  • All current therapies for glaucoma are directed at decreasing intraocular pressure. This is initially by medical therapy with drops or pills that reduce the production of aqueous humor or increase the outflow of aqueous. However, these various drug therapies for glaucoma are sometimes associated with significant side effects, such as headache, blurred vision, allergic reactions, death from cardiopulmonary complications and potential interactions with other drugs. When the drug therapy fails, surgical therapy is used. Surgical therapy for open-angle glaucoma consists of laser (trabeculoplasty), trabeculectomy and aqueous shunting implants after failure of trabeculectomy or if trabeculectomy is unlikely to succeed. Trabeculectomy is a major surgery which is most widely used and is augmented with topically applied anticancer drugs such as 5-flurouracil or mitomycin-c to decrease scarring and increase surgical success.
  • Approximately 100,000 trabeculectomies are performed on Medicare age patients per year in the United States. This number would increase if the morbidity associated with trabeculectomy could be decreased. The current morbidity associated with trabeculectomy consists of failure (10-15%), infection (a life long risk about 2-5%), choroidal hemorrhage (1%, a severe internal hemorrhage from pressure too low resulting in visual loss), cataract formation, and hypotony maculopathy (potentially reversible visual loss from pressure too low).
  • If it were possible to bypass the local resistance to outflow of aqueous at the point of the resistance and use existing outflow mechanisms, surgical morbidity would greatly decrease. The reason for this is that the episcleral aqueous veins have a backpressure that would prevent the eye pressure from going too low. This would virtually eliminate the risk of hypotony maculopathy and choroidal hemorrhage. Furthermore, visual recovery would be very rapid and risk of infection would be very small (a reduction from 2-5% to 0.05%). Because of these reasons surgeons have tried for decades to develop a workable surgery for the trabecular meshwork.
  • The previous techniques, which have been tried, are goniotomy/trabeculotomy, and other mechanical disruption of the trabecular meshwork, such as trabeculopuncture, goniophotoablation, laser trabecular ablation and goniocurretage. They are briefly described below.
  • Goniotomy/Trabeculotomy: Goniotomy and trabeculotomy are simple and directed techniques of microsurgical dissection with mechanical disruption of the trabecular meshwork. These initially had early favorable responses in the treatment of open-angle glaucoma. However, long-term review of surgical results showed only limited success in adults. In retrospect, these procedures probably failed secondary to repair mechanisms and a process of “filling in”. The filling in is the result of a healing process which has the detrimental effect of collapsing and closing in of the created opening throughout the trabecular meshwork. Once the created openings close, the pressure builds back up and the surgery fails.
  • Trabeculopuncture: Q-switched Neodymiun (Nd):YAG lasers also have been investigated as an optically invasive technique for creating full-thickness holes in trabecular meshwork. However, the relatively small hole created by this trabeculopuncture technique exhibits a filling in effect and fails.
  • Goniophotoablation/Laser Trabecular Ablation: Goniophotoablation is disclosed by Berlin in U.S. Pat. No. 4,846,172, and describes the use of an excimer laser to treat glaucoma by ablating the trabecular meshwork. This was not demonstrated by clinical trial to succeed. Hill et al. used an Erbium:YAG laser to create full thickness holes through trabecular meshwork (Hill et al., Lasers in Surgery and Medicine 11:341-346, 1991). This technique was investigated in a primate model and a limited human clinical trial at the University of California, Irvine. Although morbidity was zero in both trials, success rates did not warrant further human trials. Failure again was from filling in of created defects in trabecular meshwork by repair mechanisms. Neither of these is a valid surgical technique for the treatment of glaucoma.
  • Goniocurretage: This is an ab-interno (from the inside) mechanical disruptive technique. This uses an instrument similar to a cyclodialysis spatula with a microcurrette at the tip. Initial results are similar to trabeculotomy that fails secondary to repair mechanisms and a process of filling in.
  • Although trabeculectomy is the most commonly performed filtering surgery, Viscocanulostomy (VC) and non-penetrating trabeculectomy (NPT) are two new variations of filtering surgery. These are ab-externo (from the outside), major ocular procedures in which Schlemm's canal is surgically exposed by making a large and very deep scleral flap. In the VC procedure, Schlemm's canal is canulated and viscoelastic substance injected (which dilates Schlemm's canal and the aqueous collector channels). In the NPT procedure, the inner wall of Schlemm's canal is stripped off after surgically exposing the canal.
  • Trabeculectomy, VC, and NPT are performed under a conjunctival and scleral flap, such that the aqueous humor is drained onto the surface of the eye or into the tissues located within the lateral wall of the eye. Normal physiological outflows are not used. These surgical operations are major procedures with significant ocular morbidity. When Trabeculectomy, VC, and NPT are thought to have a low chance for success, a number of implantable drainage devices have been used to ensure that the desired filtration and outflow of aqueous humor through the surgical opening will continue. The risk of placing a glaucoma drainage implant also includes hemorrhage, infection and postoperative double vision that is a complication unique to drainage implants.
  • Examples of implantable shunts or devices for maintaining an opening for the release of aqueous humor from the anterior chamber of the eye to the sclera or space underneath conjunctiva have been disclosed in U.S. Pat. No. 6,007,511 (Prywes), U.S. Pat. No. 6,007,510 (Nigam), U.S. Pat. No. 5,893,837 (Eagles et al.), U.S. Pat. No. 5,882,327 (Jacob), U.S. Pat. No. 5,879,319 (Pynson et al.), U.S. Pat. No. 5,807,302 (Wandel), U.S. Pat. No. 5,752,928 (de Roulhac et al.), U.S. Pat. No. 5,743,868 (Brown et al.), U.S. Pat. No. 5,704,907 (Nordquist et al.), U.S. Pat. No. 5,626,559 (Solomon), U.S. Pat. No. 5,626,558 (Suson), U.S. Pat. No. 5,601,094 (Reiss), RE. 35,390 (Smith), U.S. Pat. No. 5,558,630 (Fisher), U.S. Pat. No. 5,558,629 (Baerveldt et al.), U.S. Pat. No. 5,520,631 (Nordquist et al.), U.S. Pat. No. 5,476,445 (Baerveldt et al.), U.S. Pat. No. 5,454,796 (Krupin), U.S. Pat. No. 5,433,701 (Rubinstein), U.S. Pat. No. 5,397,300 (Baerveldt et al.), U.S. Pat. No. 5,372,577 (Ungerleider), U.S. Pat. No. 5,370,607 (Memmen), U.S. Pat. No. 5,338,291 (Speckman et al.), U.S. Pat. No. 5,300,020 (L'Esperance, Jr.), U.S. Pat. No. 5,178,604 (Baerveldt et al.), U.S. Pat. No. 5,171,213 (Price, Jr.), U.S. Pat. No. 5,041,081 (Odrich), U.S. Pat. No. 4,968,296 (Ritch et al.), U.S. Pat. No. 4,936,825 (Ungerleider), U.S. Pat. No. 4,886,488 (White), U.S. Pat. No. 4,750,901 (Molteno), U.S. Pat. No. 4,634,418 (Binder), U.S. Pat. No. 4,604,087 (Joseph), U.S. Pat. No. 4,554,918 (White), U.S. Pat. No. 4,521,210 (Wong), U.S. Pat. No. 4,428,746 (Mendez), U.S. Pat. No. 4,402,681 (Haas et al.), U.S. Pat. No. 4,175,563 (Arenberg et al.), and U.S. Pat. No. 4,037,604 (Newkirk).
  • All of the above embodiments and variations thereof have numerous disadvantages and moderate success rates. They involve substantial trauma to the eye and require great surgical skill by creating a hole over the full thickness of the sclera/cornea into the subconjunctival space. Furthermore, normal physiological outflow pathways are not used. The procedures are mostly performed in an operating room generating a facility fee, anesthesiologist's professional fee and have a prolonged recovery time for vision. The complications of filtration surgery have inspired ophthalmic surgeons to look at other approaches to lowering intraocular pressure.
  • The trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous and, as such, are logical targets for surgical removal in the treatment of open-angle glaucoma. In addition, minimal amounts of tissue are altered and existing physiologic outflow pathways are utilized. Trabecular bypass surgery has the potential for much lower risks of choroidal hemorrhage, infection and uses existing physiologic outflow mechanisms. This surgery could be performed under topical anesthesia in a physician's office with rapid visual recovery.
  • Therefore, there is a great clinical need for the treatment of glaucoma by a method that would be faster, safer and less expensive than currently available modalities. Trabecular bypass surgery is an innovative surgery which uses a micro stent, shunt, or other implant to bypass diseased trabecular meshwork alone at the level of trabecular meshwork and use or restore existing outflow pathways. The object of the present invention is to provide a means and methods for treating elevated intraocular pressure in a manner which is simple, effective, disease site specific and can be performed on an outpatient basis.
  • SUMMARY OF THE INVENTION
  • In some preferred embodiments, the seton has an inlet portion configured to extend through a portion of the trabecular meshwork of an eye, and an outlet portion configured to extend into Schlemm's canal of the eye, wherein the inlet portion is disposed at an angle relative to the outlet portion. In some embodiments, the outlet portion has a lumen with an oval cross-section having a long axis.
  • The outlet portion in certain embodiments has a longitudinal axis, such that the long axis of the oval cross-section and the longitudinal axis of the outlet portion define a plane, the inlet portion having a longitudinal axis which lies outside the plane at an angle θ (theta) thereto.
  • In some preferred arrangements, the seton comprises an inlet portion, configured to extend through a portion of the trabecular meshwork; an outlet portion, configured to extend into Schlemm's canal; and at least one protrusion on the outlet portion, configured to exert traction against an inner surface of Schlemm's canal. This protrusion can comprise at least one barb or ridge.
  • Some preferred embodiments comprise an inlet portion configured to extend through a portion of the trabecular meshwork, an outlet portion configured to extend into Schlemm's canal, and a one-way valve within the inlet and/or outlet portions.
  • A method for delivering a seton within an eye is disclosed, comprising providing an elongate guide member, advancing a distal end of the guide member through at least a portion of the trabecular meshwork of the eye, advancing the seton along the guide member toward the distal end, and positioning the seton to conduct aqueous humor between the anterior chamber of the eye and Schlemm's canal.
  • In certain embodiments, the advancing of the guide member comprises advancing it from the anterior chamber into the trabecular meshwork. In further embodiments, the positioning comprises positioning an end of the seton within Schlemm's canal adjacent to an aqueous collection channel.
  • Certain preferred embodiments include an apparatus for delivering a seton to the anterior chamber of an eye comprising an elongate tube having a lumen, an outer surface, and a distal end; a removable, elongate guide member within the lumen, configured to permit the seton to be advanced and to be positioned in the trabecular meshwork of the eye. This apparatus can further comprise a cutting member positioned at the distal end of the tube. The cutting member can be selected from the group consisting of a knife, a laser probe, a pointed guide member, a sharpened distal end of said tube, and an ultrasonic cutter. The apparatus can also further comprise an opening in the outer surface of the tube, configured to allow fluid infusion into the eye.
  • In further preferred embodiments, an apparatus for delivering a seton in an eye, comprises an elongate member adapted for insertion into an anterior chamber of the eye, the elongate member having a distal end portion configured to retain the seton therein, the distal end portion comprising a cutting member configured to form an opening in the trabecular meshwork of the eye for receipt of the seton, such that one end of the seton is in Schlemm's canal. The elongate member can further comprise a lumen which conducts fluid toward said distal end portion.
  • The preferred embodiment provides further surgical treatment of glaucoma (trabecular bypass surgery) at the level of trabecular meshwork and restores existing physiological outflow pathways. An implant bypasses diseased trabecular meshwork at the level of trabecular meshwork and which restores existing physiological outflow pathways. The implant has an inlet end, an outlet end and a lumen therebetween. The inlet is positioned in the anterior chamber at the level of the internal trabecular meshwork and the outlet end is positioned at about the exterior surface of the diseased trabecular meshwork and/or into fluid collection channels of the existing outflow pathways.
  • In accordance with a preferred method, trabecular bypass surgery creates an opening or a hole through the diseased trabecular meshwork through minor microsurgery. To prevent “filling in” of the hole, a biocompatible elongated implant is placed within the hole as a seton, which may include, for example, a solid rod or hollow tube. In one exemplary embodiment, the seton implant may be positioned across the diseased trabecular meshwork alone and it does not extend into the eye wall or sclera. In another embodiment, the inlet end of the implant is exposed to the anterior chamber of the eye while the outlet end is positioned at the exterior surface of the trabecular meshwork. In another exemplary embodiment, the outlet end is positioned at and over the exterior surface of the trabecular meshwork and into the fluid collection channels of the existing outflow pathways. In still another embodiment, the outlet end is positioned in the Schlemm's canal. In an alternative embodiment, the outlet end enters into fluid collection channels up to the level of the aqueous veins with the seton inserted in a retrograde or antegrade fashion.
  • According to the preferred embodiment, the seton implant is made of biocompatible material, which is either hollow to allow the flow of aqueous humor or solid biocompatible material that imbibes aqueous. The material for the seton may be selected from the group consisting of porous material, semi-rigid material, soft material, hydrophilic material, hydrophobic material, hydrogel, elastic material, and the like.
  • In further accordance with the preferred embodiment, the seton implant may be rigid or it may be made of relatively soft material and is somewhat curved at its distal section to fit into the existing physiological outflow pathways, such as Schlemm's canal. The distal section inside the outflow pathways may have an oval shape to stabilize the seton in place without undue suturing. Stabilization or retention of the seton may be further strengthened by a taper end and/or by at least one ridge or rib on the exterior surface of the distal section of the seton, or other surface alterations designed to retain the seton.
  • In one embodiment, the seton may include a micropump, one way valve, or semi-permeable membrane if reflux of red blood cells or serum protein becomes a clinical problem. It may also be useful to use a biocompatible material that hydrates and expands after implantation so that the seton is locked into position around the trabecular meshwork opening or around the distal section of the seton.
  • One of the advantages of trabecular bypass surgery, as disclosed herein, and the use of a seton implant to bypass diseased trabecular meshwork at the level of trabecular meshwork and thereby use existing outflow pathways is that the treatment of glaucoma is substantially simpler than in existing therapies. A further advantage of the invention is the utilization of simple microsurgery that may be performed on an outpatient basis with rapid visual recovery and greatly decreased morbidity. Finally, a distinctly different approach is used than is found in existing implants. Physiological outflow mechanisms are used or re-established by the implant of the present invention, in contradistinction with previously disclosed methodologies.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Additional objects and features of the present invention will become more apparent and the invention itself will be best understood from the following Detailed Description of Exemplary Embodiments, when read with reference to the accompanying drawings.
  • FIG. 1 is a sectional view of an eye for illustration purposes.
  • FIG. 2 is a close-up sectional view, showing the anatomical diagram of trabecular meshwork and the anterior chamber of the eye.
  • FIG. 3 is an embodiment of the seton implant constructed according to the principles of the invention.
  • FIG. 4 is a top cross-sectional view of section 1-1 of FIG. 3.
  • FIG. 5 is another embodiment of the seton implant constructed in accordance with the principles of the invention.
  • FIG. 6 is a perspective view illustrating the seton implant of the present invention positioned within the tissue of an eye.
  • FIG. 7 is an alternate exemplary method for placing a seton implant at the implant site.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to FIGS. 1 to 7, what is shown is a method for the treatment of glaucoma by trabecular bypass surgery. In particular, a seton implant is used to bypass diseased trabecular meshwork at the level of trabecular meshwork to use or restore existing outflow pathways and methods thereof.
  • For background illustration purposes, FIG. 1 shows a sectional view of an eye 10, while FIG. 2 shows a close-up view, showing the relative anatomical locations of the trabecular meshwork, the anterior chamber, and Schlemm's canal. Thick collagenous tissue known as sclera 11 covers the entire eye 10 except that portion covered by the cornea 12. The cornea 12 is a thin transparent tissue that focuses and transmits light into the eye and the pupil 14 which is the circular hole in the center of the iris 13 (colored portion of the eye). The cornea 12 merges into the sclera 11 at a juncture referred to as the limbus 15. The ciliary body 16 begins internally in the eye and extends along the interior of the sclera 11 and becomes the choroid 17. The choroid 17 is a vascular layer of the eye underlying retina 18. The optic nerve 19 transmits visual information to the brain and is sequentially destroyed by glaucoma.
  • The anterior chamber 20 of the eye 10, which is bound anteriorly by the cornea 12 and posteriorly by the iris 13 and lens 26, is filled with aqueous. Aqueous is produced primarily by the ciliary body 16 and reaches the anterior chamber angle 25 formed between the iris 13 and the cornea 12 through the pupil 14. In a normal eye, the aqueous is removed through the trabecular meshwork 21. Aqueous passes through trabecular meshwork 21 into Schlemm's canal 22 and through the aqueous veins 23 which merge with blood-carrying veins and into venous circulation. Intraocular pressure of the eye 10 is maintained by the intricate balance of secretion and outflow of the aqueous in the manner described above. Glaucoma is characterized by the excessive buildup of aqueous fluid in the anterior chamber 20 which produces an increase in intraocular pressure (fluids are relatively incompressible and pressure is directed equally to all areas of the eye).
  • As shown in FIG. 2, the trabecular meshwork 21 constitutes a small portion of the sclera 11. It is understandable that creating a hole or opening for implanting a device through the tissues of the conjunctiva 24 and sclera 11 is relatively a major surgery as compared to a surgery for implanting a device through the trabecular meshwork 21 only. A seton implant 31 of the present invention for either using or restoring existing outflow pathways positioned through the trabecular meshwork 21 is illustrated in FIG. 5.
  • In a first embodiment, a method for increasing aqueous humor outflow in an eye of a patient to reduce the intraocular pressure therein. The method comprises bypassing diseased trabecular meshwork at the level of the trabecular meshwork and thereby restoring existing outflow pathways. Alternately, a method for increasing aqueous humor outflow in an eye of a patient to reduce an intraocular pressure therein is disclosed. The method comprises bypassing diseased trabecular meshwork at a level of said trabecular meshwork with a seton implant and using existing outflow pathways. The seton implant 31 may be an elongated seton or other appropriate shape, size or configuration. In one embodiment of an elongated seton implant, the seton has an inlet end, an outlet end and a lumen therebetween, wherein the inlet end is positioned at an anterior chamber of the eye and the outlet end is positioned at about an exterior surface of said diseased trabecular meshwork. Furthermore, the outlet end may be positioned into fluid collection channels of the existing outflow pathways. Optionally the existing outflow pathways may comprise Schlemm's canal 22. The outlet end may be further positioned into fluid collection channels up to the level of the aqueous veins with the seton inserted either in a retrograde or antegrade fashion with respect to the existing outflow pathways.
  • In a further alternate embodiment, a method is disclosed for increasing aqueous humor outflow in an eye of a patient to reduce an intraocular pressure therein. The method comprises (a) creating an opening in trabecular meshwork, wherein the trabecular meshwork comprises an interior side and exterior side; (b) inserting a seton implant into the opening; and (c) transporting the aqueous humor by said seton implant to bypass the trabecular meshwork at the level of said trabecular meshwork from the interior side to the exterior side of the trabecular meshwork.
  • FIG. 3 shows an embodiment of the seton implant 31 constructed according to the principles of the invention. The seton implant may comprise a biocompatible material, such as a medical grade silicone, for example, the material sold under the trademark Silastic™, which is available from Dow Corning Corporation of Midland, Mich., or polyurethane, which is sold under the trademark Pellethane™, which is also available from Dow Coming Corporation. In an alternate embodiment, other biocompatible materials (biomaterials) may be used, such as polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, tetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilison, mixture of biocompatible materials, and the like. In a further alternate embodiment, a composite biocompatible material by surface coating the above-mentioned biomaterial may be used, wherein the coating material may be selected from the group consisting of polytetrafluoroethlyene (PTFE), polyimide, hydrogel, heparin, therapeutic drugs, and the like.
  • The main purpose of the seton implant is to assist in facilitating the outflow of aqueous in an outward direction 40 into the Schlemm's canal and subsequently into the aqueous collectors and the aqueous veins so that the intraocular pressure is balanced. In one embodiment, the seton implant 31 comprises an elongated tubular element having a distal section 32 and an inlet section 44. A rigid or flexible distal section 32 is positioned inside one of the existing outflow pathways. The distal section may have either a tapered outlet end 33 or have at least one ridge 37 or other retention device protruding radially outwardly for stabilizing the seton implant inside said existing outflow pathways after implantation. For stabilization purposes, the outer surface of the distal section 32 may comprise a stubbed surface, a ribbed surface, a surface with pillars, a textured surface, or the like. The outer surface 36, including the outer region 35 and inner region 34 at the outlet end 33, of the seton implant is biocompatible and tissue compatible so that the interaction/irritation between the outer surface and the surrounding tissue is minimized. The seton implant may comprise at least one opening at a location proximal the distal section 32, away from the outlet end 33, to allow flow of aqueous in more than one direction. The at least one opening may be located on the distal section 32 at about opposite of the outlet end 33.
  • In another exemplary embodiment, the seton implant 31 may have a one-way flow controlling means 39 for allowing one-way aqueous flow 40. The one-way flow controlling means 39 may be selected from the group consisting of a check valve, a slit valve, a micropump, a semi-permeable membrane, or the like. To enhance the outflow efficiency, at least one optional opening 41 in the proximal portion of the distal section 32, at a location away from the outlet end 33, and in an exemplary embodiment at the opposite end of the outlet end 33, is provided.
  • FIG. 4 shows a top cross-sectional view of FIG. 3. The shape of the opening of the outlet end 33 and the remaining body of the distal section 32 may be oval, round or some other shape adapted to conform to the shape of the existing outflow pathways. This configuration will match the contour of Schlemm's canal to stabilize the inlet section with respect to the iris and cornea by preventing rotation.
  • As shown in FIG. 3, the seton implant of the present invention may have a length between about 0.5 mm to over a meter, depending on the body cavity the seton implant applies to. The outside diameter of the seton implant may range from about 30 μm to about 500 μm. The lumen diameter is preferably in the range between about 20 μm to about 150 μm. The seton implant may have a plurality of lumens to facilitate multiple flow transportation. The distal section may be curved at an angle between about 30 degrees to about 150 degrees, in an exemplary embodiment at around 70-110 degrees, with reference to the inlet section 44.
  • FIG. 5 shows another embodiment of the seton implant 45 constructed in accordance with the principles of the invention. In an exemplary embodiment, the seton implant 45 may comprise at least two sections: an inlet section 47 and an outlet section 46. The outlet section has an outlet opening 48 that is at the outlet end of the seton implant 45. The shape of the outlet opening 48 is preferably an oval shape to conform to the contour of the existing outflow pathways. A portion of the inlet section 47 adjacent the joint region to the outlet section 46 will be positioned essentially through the diseased trabecular meshwork while the remainder of the inlet section 47 and the outlet section 46 are outside the trabecular meshwork. As shown in FIG. 5, the long axis of the oval shape opening 48 lies in a first plane formed by an X-axis and a Y-axis. To better conform to the anatomical contour of the anterior chamber 20, the trabecular meshwork 21 and the existing outflow pathways, the inlet section 47 may preferably lie at an elevated second plane, at an angle θ, from the first plane formed by an imaginary inlet section 47A and the outlet section 46. The angle θ may be between about 30 degrees and about 150 degrees.
  • FIG. 6 shows a perspective view illustrating the seton implant 31, 45 of the present invention positioned within the tissue of an eye 10. A hole/opening is created through the diseased trabecular meshwork 21. The distal section 32 of the seton implant 31 is inserted into the hole, wherein the inlet end 38 is exposed to the anterior chamber 20 while the outlet end 33 is positioned at about an exterior surface 43 of said diseased trabecular meshwork 21. In a further embodiment, the outlet end 33 may further enter into fluid collection channels of the existing outflow pathways.
  • In one embodiment, the means for forming a hole/opening in the trabecular mesh 21 may comprise an incision with a microknife, an incision by a pointed guidewire, a sharpened applicator, a screw shaped applicator, an irrigating applicator, or a barbed applicator. Alternatively, the trabecular meshwork may be dissected off with an instrument similar to a retinal pick or microcurrette. The opening may alternately be created by retrogade fiberoptic laser ablation.
  • FIG. 7 shows an illustrative method for placing a seton implant at the implant site. An irrigating knife or applicator 51 comprises a syringe portion 54 and a cannula portion 55. The distal section of the cannula portion 55 has at least one irrigating hole 53 and a distal space 56 for holding a seton implant 31. The proximal end 57 of the lumen of the distal space 56 is sealed from the remaining lumen of the cannula portion 55.
  • For positioning the seton 31 in the hole or opening through the trabecular meshwork, the seton may be advanced over the guidewire or a fiberoptic (retrograde). In another embodiment, the seton is directly placed on the delivery applicator and advanced to the implant site, wherein the delivery applicator holds the seton securely during the delivery stage and releases it during the deployment stage.
  • In an exemplary embodiment of the trabecular meshwork surgery, the patient is placed in the supine position, prepped, draped and anesthesia obtained. In one embodiment, a small (less than 1 mm) self sealing incision is made. Through the cornea opposite the seton placement site, an incision is made in trabecular meshwork with an irrigating knife. The seton 31 is then advanced through the cornea incision 52 across the anterior chamber 20 held in an irrigating applicator 51 under gonioscopic (lens) or endoscopic guidance. The applicator is withdrawn and the surgery concluded. The irrigating knife may be within a size range of 20 to 40 gauges, preferably about 30 gauge.
  • From the foregoing description, it should now be appreciated that a novel approach for the surgical treatment of glaucoma has been disclosed for releasing excessive intraocular pressure. While the invention has been described with reference to a specific embodiment, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications and applications may occur to those who are skilled in the art, without departing from the true spirit and scope of the invention, as described by the appended claims.

Claims (13)

1. An ocular device comprising:
a solid-walled tubular body for implantation into Schlemm's canal of a living eye wherein at least a portion of the tubular device comprises a non-linear aqueous humor directing channel;
wherein said tubular body is configured and dimensioned such that implantation of said tubular body in living tissue of said canal directs dynamic flow of aqueous humor from an anterior chamber of said living eye and through said non-linear aqueous humor directing channel toward episcleral veins; and
wherein the device comprises a therapeutic agent.
2. An ocular device comprising:
a solid-walled tubular body for implantation into Schlemm's canal of a living eye wherein at least a portion of the tubular device comprises a non-linear aqueous humor directing channel;
wherein said tubular body is configured and dimensioned such that implantation of said tubular body in living tissue of said canal directs dynamic flow of aqueous humor from an anterior chamber of said living eye and through said non-linear aqueous humor directing channel toward episcleral veins; and
wherein the device comprises a V-shape.
3. The ocular device of claim 2, wherein said tubular body comprises first and second elongate lumens.
4. An ocular device comprising:
a solid-walled tubular body adapted to be received in Schlemm's canal of a living eye;
wherein the tubular body is dimensioned to allow non-linear fluid communication;
wherein said tubular body is configured and dimensioned such that implantation of said tubular body in living tissue of said canal directs dynamic flow of aqueous humor toward episcleral veins; and
wherein the device comprises a therapeutic agent.
5. An ocular device comprising:
a solid-walled tubular body adapted to be received in Schlemm's canal of a living eye;
wherein the tubular body is dimensioned to allow non-linear fluid communication;
wherein said tubular body is configured and dimensioned such that implantation of said tubular body in living tissue of said canal directs dynamic flow of aqueous humor toward episcleral veins; and
wherein the device comprises a V-shape.
6. An ocular device comprising:
a solid-walled tubular body for implantation into Schlemm's canal of an eye wherein at least a portion of the tubular device comprises a curved aqueous humor directing channel;
wherein said tubular body is configured and dimensioned such that implantation of said tubular body in living tissue of said canal directs dynamic flow of aqueous humor from an anterior chamber of said eye and through said curved aqueous humor directing channel toward aqueous veins; and
wherein the device is coated with a therapeutic agent.
7. An ocular device comprising:
a solid-walled tubular body for implantation into Schlemm's canal of an eye wherein at least a portion of the tubular device comprises a curved aqueous humor directing channel;
wherein said tubular body is configured and dimensioned such that implantation of said tubular body in living tissue of said canal directs dynamic flow of aqueous humor from an anterior chamber of said eye and through said curved aqueous humor directing channel toward aqueous veins; and
wherein the device comprises an inlet section and a distal section, wherein the distal section extends at an angle between about 30 degrees to about 150 degrees with reference to the inlet section.
8. The ocular device of claim 7, wherein said tubular body comprises a plurality of elongate lumens.
9. An ocular device comprising:
a solid-walled tubular body adapted to be received in Schlemm's canal of an eye;
wherein the tubular body is dimensioned to allow non-linear fluid communication;
wherein said tubular body is configured and dimensioned such that implantation of said tubular body in living tissue of said canal directs dynamic flow of aqueous humor toward aqueous veins; and
wherein the device is coated with a therapeutic agent.
10. An ocular device comprising:
a solid-walled tubular body adapted to be received in Schlemm's canal of an eye;
wherein the tubular body is dimensioned to allow non-linear fluid communication;
wherein said tubular body is configured and dimensioned such that implantation of said tubular body in living tissue of said canal directs dynamic flow of aqueous humor toward aqueous veins; and
wherein the device comprises an inlet section and a distal section, wherein the distal section extends at an angle between about 30 degrees to about 150 degrees with reference to the inlet section.
11. An ocular device comprising:
a solid-walled tubular body for implantation into Schlemm's canal of an eye comprising a portion for insertion into said canal, and a portion sized to extend from a position within said canal to a position within an anterior chamber of said eye;
wherein said tubular body comprises a biocompatible material and is configured and dimensioned such that implantation of said tubular body in living tissue of said canal permits dynamic flow of aqueous humor toward an aqueous venous system of said eye; and
wherein said tubular body is coated with a therapeutic agent.
12. An ocular device comprising:
a solid-walled tubular body for implantation into Schlemm's canal of an eye comprising a portion for insertion into said canal, and a portion sized to extend from a position within said canal to a position within an anterior chamber of said eye;
wherein said tubular body comprises a biocompatible material and is configured and dimensioned such that implantation of said tubular body in living tissue of said canal permits dynamic flow of aqueous humor toward an episcleral venous system of said eye; and
wherein said tubular body further comprises a stabilizing portion for stabilizing the tubular body in Schlemm's canal.
13. An ocular device comprising:
a solid-walled tubular body for implantation into Schlemm's canal of an eye comprising a portion for insertion into said canal, and a portion sized to extend from a position within said canal to a position within an anterior chamber of said eye;
wherein said tubular body comprises a biocompatible material and is configured and dimensioned such that implantation of said tubular body in living tissue of said canal permits dynamic flow of aqueous humor toward a venous system of said eye, and
wherein said tubular body has an outer diameter of between 0.03 mm and 0.5 mm.
US11/295,066 2000-04-14 2005-12-06 Shunt device and method for treating glaucoma Abandoned US20060074375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/295,066 US20060074375A1 (en) 2000-04-14 2005-12-06 Shunt device and method for treating glaucoma

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/549,350 US6638239B1 (en) 2000-04-14 2000-04-14 Apparatus and method for treating glaucoma
US10/395,631 US7297130B2 (en) 2000-04-14 2003-03-21 Implant with anchor
US11/295,066 US20060074375A1 (en) 2000-04-14 2005-12-06 Shunt device and method for treating glaucoma

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/395,631 Continuation US7297130B2 (en) 2000-04-14 2003-03-21 Implant with anchor

Publications (1)

Publication Number Publication Date
US20060074375A1 true US20060074375A1 (en) 2006-04-06

Family

ID=24192643

Family Applications (25)

Application Number Title Priority Date Filing Date
US09/549,350 Expired - Lifetime US6638239B1 (en) 2000-04-14 2000-04-14 Apparatus and method for treating glaucoma
US09/704,276 Expired - Lifetime US6736791B1 (en) 2000-04-14 2000-11-01 Glaucoma treatment device
US10/309,711 Expired - Lifetime US6955656B2 (en) 2000-04-14 2002-12-04 Apparatus and method for treating glaucoma
US10/395,633 Abandoned US20030181848A1 (en) 2000-04-14 2003-03-21 Implant with drug coating
US10/395,472 Abandoned US20030187384A1 (en) 2000-04-14 2003-03-21 Implant with a micropump
US10/395,627 Expired - Lifetime US6780164B2 (en) 2000-04-14 2003-03-21 L-shaped implant with bi-directional flow
US10/395,631 Expired - Lifetime US7297130B2 (en) 2000-04-14 2003-03-21 Implant with anchor
US10/782,382 Abandoned US20040210185A1 (en) 2000-04-14 2004-02-19 Glaucoma implant kit
US10/824,052 Abandoned US20040254519A1 (en) 2000-04-14 2004-04-14 Glaucoma treatment device
US10/889,254 Expired - Fee Related US8273050B2 (en) 2000-04-14 2004-07-12 Ocular implant with anchor and therapeutic agent
US11/124,440 Expired - Lifetime US7867205B2 (en) 2000-04-14 2005-05-06 Method of delivering an implant for treating an ocular disorder
US11/123,443 Abandoned US20050209549A1 (en) 2000-04-14 2005-05-06 Glaucoma implant with multiple openings
US11/295,066 Abandoned US20060074375A1 (en) 2000-04-14 2005-12-06 Shunt device and method for treating glaucoma
US11/294,794 Abandoned US20060084907A1 (en) 2000-04-14 2005-12-06 Shunt device and method for treating glaucoma
US11/412,454 Abandoned US20060195056A1 (en) 2000-04-14 2006-04-27 Shunt device and method for treating glaucoma
US11/412,581 Abandoned US20060195055A1 (en) 2000-04-14 2006-04-27 Shunt device and method for treating glaucoma
US11/836,109 Abandoned US20070282244A1 (en) 2000-04-14 2007-08-08 Glaucoma implant with anchor
US11/836,118 Abandoned US20070282245A1 (en) 2000-04-14 2007-08-08 Glaucoma implant with valve
US11/841,967 Abandoned US20080045878A1 (en) 2000-04-14 2007-08-20 Therapeutic shunt device and method for treating glaucoma
US12/366,242 Expired - Fee Related US8808219B2 (en) 2000-04-14 2009-02-05 Implant delivery device and methods thereof for treatment of ocular disorders
US12/366,565 Expired - Lifetime US8801648B2 (en) 2000-04-14 2009-02-05 Ocular implant with anchor and methods thereof
US12/437,482 Expired - Lifetime US8333742B2 (en) 2000-04-14 2009-05-07 Method of delivering an implant for treating an ocular disorder
US12/914,940 Expired - Lifetime US9993368B2 (en) 2000-04-14 2010-10-28 System and method for treating an ocular disorder
US13/623,767 Expired - Fee Related US8814820B2 (en) 2000-04-14 2012-09-20 Ocular implant with therapeutic agent and methods thereof
US16/003,919 Expired - Lifetime US10485702B2 (en) 2000-04-14 2018-06-08 System and method for treating an ocular disorder

Family Applications Before (12)

Application Number Title Priority Date Filing Date
US09/549,350 Expired - Lifetime US6638239B1 (en) 2000-04-14 2000-04-14 Apparatus and method for treating glaucoma
US09/704,276 Expired - Lifetime US6736791B1 (en) 2000-04-14 2000-11-01 Glaucoma treatment device
US10/309,711 Expired - Lifetime US6955656B2 (en) 2000-04-14 2002-12-04 Apparatus and method for treating glaucoma
US10/395,633 Abandoned US20030181848A1 (en) 2000-04-14 2003-03-21 Implant with drug coating
US10/395,472 Abandoned US20030187384A1 (en) 2000-04-14 2003-03-21 Implant with a micropump
US10/395,627 Expired - Lifetime US6780164B2 (en) 2000-04-14 2003-03-21 L-shaped implant with bi-directional flow
US10/395,631 Expired - Lifetime US7297130B2 (en) 2000-04-14 2003-03-21 Implant with anchor
US10/782,382 Abandoned US20040210185A1 (en) 2000-04-14 2004-02-19 Glaucoma implant kit
US10/824,052 Abandoned US20040254519A1 (en) 2000-04-14 2004-04-14 Glaucoma treatment device
US10/889,254 Expired - Fee Related US8273050B2 (en) 2000-04-14 2004-07-12 Ocular implant with anchor and therapeutic agent
US11/124,440 Expired - Lifetime US7867205B2 (en) 2000-04-14 2005-05-06 Method of delivering an implant for treating an ocular disorder
US11/123,443 Abandoned US20050209549A1 (en) 2000-04-14 2005-05-06 Glaucoma implant with multiple openings

Family Applications After (12)

Application Number Title Priority Date Filing Date
US11/294,794 Abandoned US20060084907A1 (en) 2000-04-14 2005-12-06 Shunt device and method for treating glaucoma
US11/412,454 Abandoned US20060195056A1 (en) 2000-04-14 2006-04-27 Shunt device and method for treating glaucoma
US11/412,581 Abandoned US20060195055A1 (en) 2000-04-14 2006-04-27 Shunt device and method for treating glaucoma
US11/836,109 Abandoned US20070282244A1 (en) 2000-04-14 2007-08-08 Glaucoma implant with anchor
US11/836,118 Abandoned US20070282245A1 (en) 2000-04-14 2007-08-08 Glaucoma implant with valve
US11/841,967 Abandoned US20080045878A1 (en) 2000-04-14 2007-08-20 Therapeutic shunt device and method for treating glaucoma
US12/366,242 Expired - Fee Related US8808219B2 (en) 2000-04-14 2009-02-05 Implant delivery device and methods thereof for treatment of ocular disorders
US12/366,565 Expired - Lifetime US8801648B2 (en) 2000-04-14 2009-02-05 Ocular implant with anchor and methods thereof
US12/437,482 Expired - Lifetime US8333742B2 (en) 2000-04-14 2009-05-07 Method of delivering an implant for treating an ocular disorder
US12/914,940 Expired - Lifetime US9993368B2 (en) 2000-04-14 2010-10-28 System and method for treating an ocular disorder
US13/623,767 Expired - Fee Related US8814820B2 (en) 2000-04-14 2012-09-20 Ocular implant with therapeutic agent and methods thereof
US16/003,919 Expired - Lifetime US10485702B2 (en) 2000-04-14 2018-06-08 System and method for treating an ocular disorder

Country Status (9)

Country Link
US (25) US6638239B1 (en)
EP (4) EP2260803B1 (en)
JP (4) JP3985019B2 (en)
AT (1) ATE429882T1 (en)
AU (4) AU4552201A (en)
CA (3) CA2404037C (en)
DE (1) DE60138540D1 (en)
ES (2) ES2324700T3 (en)
WO (1) WO2001078631A2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070088242A1 (en) * 2003-11-14 2007-04-19 Coroneo Minas T Ocular pressure regulation
US20070149915A1 (en) * 2003-05-05 2007-06-28 Judith Yablonski Internal shunt and method for treating glaucoma
US20070191863A1 (en) * 2006-01-17 2007-08-16 De Juan Eugene Jr Glaucoma Treatment Device
US20070233037A1 (en) * 2006-01-17 2007-10-04 Gifford Hanson S Iii Drug Delivery Treatment Device
US20090082860A1 (en) * 2007-09-24 2009-03-26 Schieber Andrew T Ocular Implants with Asymmetric Flexibility
US20090132040A1 (en) * 2007-11-20 2009-05-21 Ivantis, Inc. Ocular Implant Delivery System and Method
US20100121342A1 (en) * 2007-11-20 2010-05-13 Schieber Andrew T Methods and Apparatus for Delivering Ocular Implants Into the Eye
US20100137981A1 (en) * 2008-06-25 2010-06-03 Silvestrini Thomas A Ocular implant with shape change capabilities
US7740604B2 (en) 2007-09-24 2010-06-22 Ivantis, Inc. Ocular implants for placement in schlemm's canal
US20100274258A1 (en) * 2009-01-28 2010-10-28 Silvestrini Thomas A Ocular implant with stiffness qualities, methods of implantation and system
US20110009874A1 (en) * 2009-07-09 2011-01-13 John Wardle Single Operator Device for Delivering an Ocular Implant
US20110009958A1 (en) * 2009-07-09 2011-01-13 John Wardle Ocular Implants and Methods for Delivering Ocular Implants Into the Eye
US8267882B2 (en) 2008-03-05 2012-09-18 Ivantis, Inc. Methods and apparatus for treating glaucoma
US8372026B2 (en) 2007-09-24 2013-02-12 Ivantis, Inc. Ocular implant architectures
US8529492B2 (en) 2009-12-23 2013-09-10 Trascend Medical, Inc. Drug delivery devices and methods
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US8672870B2 (en) 2007-07-17 2014-03-18 Transcend Medical, Inc. Ocular implant with hydrogel expansion capabilities
US8808222B2 (en) 2007-11-20 2014-08-19 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US9155656B2 (en) 2012-04-24 2015-10-13 Transcend Medical, Inc. Delivery system for ocular implant
US9173775B2 (en) 2012-03-26 2015-11-03 Glaukos Corporation System for delivering multiple ocular implants
US9358156B2 (en) 2012-04-18 2016-06-07 Invantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US9480598B2 (en) 2012-09-17 2016-11-01 Novartis Ag Expanding ocular implant devices and methods
US9510973B2 (en) 2010-06-23 2016-12-06 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
US9579234B2 (en) 2009-10-23 2017-02-28 Ivantis, Inc. Ocular implant system and method
US9763829B2 (en) 2012-11-14 2017-09-19 Novartis Ag Flow promoting ocular implant
US9855167B2 (en) 2012-03-20 2018-01-02 Sight Sciences, Inc. Ocular delivery systems and methods
US9883969B2 (en) 2011-12-08 2018-02-06 Aquesys, Inc. Intrascleral shunt placement
US9980854B2 (en) 2010-11-15 2018-05-29 Aquesys, Inc. Shunt placement through the sclera
US9987163B2 (en) 2013-04-16 2018-06-05 Novartis Ag Device for dispensing intraocular substances
US10004638B2 (en) 2010-11-15 2018-06-26 Aquesys, Inc. Intraocular shunt delivery
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US10159601B2 (en) 2000-05-19 2018-12-25 Ivantis, Inc. Delivery system and method of use for the eye
US10195079B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular implant
US10299958B2 (en) 2015-03-31 2019-05-28 Sight Sciences, Inc. Ocular delivery systems and methods
US10307293B2 (en) 2010-11-15 2019-06-04 Aquesys, Inc. Methods for intraocular shunt placement
US10314742B2 (en) 2006-06-26 2019-06-11 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US10369048B2 (en) 2013-06-28 2019-08-06 Aquesys, Inc. Intraocular shunt implantation
US10406030B2 (en) 2010-02-05 2019-09-10 Sight Sciences, Inc. Intraocular implants and related kits and methods
US10463537B2 (en) 2015-06-03 2019-11-05 Aquesys Inc. Ab externo intraocular shunt placement
US10524959B2 (en) 2013-02-27 2020-01-07 Aquesys, Inc. Intraocular shunt implantation methods and devices
US10617558B2 (en) 2012-11-28 2020-04-14 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US10709547B2 (en) 2014-07-14 2020-07-14 Ivantis, Inc. Ocular implant delivery system and method
US10842671B2 (en) 2010-11-15 2020-11-24 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US11019997B2 (en) 2015-03-20 2021-06-01 Glaukos Corporation Gonioscopic devices
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
US11197779B2 (en) 2015-08-14 2021-12-14 Ivantis, Inc. Ocular implant with pressure sensor and delivery system
USD938585S1 (en) 2017-10-27 2021-12-14 Glaukos Corporation Implant delivery apparatus
US11246753B2 (en) 2017-11-08 2022-02-15 Aquesys, Inc. Manually adjustable intraocular flow regulation
US11253394B2 (en) 2013-03-15 2022-02-22 Dose Medical Corporation Controlled drug delivery ocular implants and methods of using same
US11318043B2 (en) 2016-04-20 2022-05-03 Dose Medical Corporation Bioresorbable ocular drug delivery device
US11376040B2 (en) 2017-10-06 2022-07-05 Glaukos Corporation Systems and methods for delivering multiple ocular implants
US11504270B1 (en) 2019-09-27 2022-11-22 Sight Sciences, Inc. Ocular delivery systems and methods
US11523938B2 (en) 2013-03-15 2022-12-13 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US11540940B2 (en) 2021-01-11 2023-01-03 Alcon Inc. Systems and methods for viscoelastic delivery
US11559430B2 (en) 2013-03-15 2023-01-24 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
US11744458B2 (en) 2017-02-24 2023-09-05 Glaukos Corporation Gonioscopes
US11744734B2 (en) 2007-09-24 2023-09-05 Alcon Inc. Method of implanting an ocular implant
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity

Families Citing this family (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313454B2 (en) 1997-11-20 2012-11-20 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
BR0010055A (en) 1999-04-26 2002-04-09 Gmp Vision Solutions Inc Bypass device and use thereof
US7229469B1 (en) 1999-10-02 2007-06-12 Quantumcor, Inc. Methods for treating and repairing mitral valve annulus
US20050119737A1 (en) * 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US20040111050A1 (en) * 2000-04-14 2004-06-10 Gregory Smedley Implantable ocular pump to reduce intraocular pressure
US20050277864A1 (en) * 2000-04-14 2005-12-15 David Haffner Injectable gel implant for glaucoma treatment
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US6638239B1 (en) * 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US7135009B2 (en) * 2001-04-07 2006-11-14 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
CA2446143C (en) 2000-05-19 2010-01-19 Michael S. Berlin Delivery system and method of use for the eye
US8679089B2 (en) 2001-05-21 2014-03-25 Michael S. Berlin Glaucoma surgery methods and systems
ES2312456T3 (en) * 2000-08-30 2009-03-01 Johns Hopkins University DEVICES FOR INTRAOCULAR SUPPLY OF PHARMACOS.
US6962573B1 (en) 2000-10-18 2005-11-08 Wilcox Michael J C-shaped cross section tubular ophthalmic implant for reduction of intraocular pressure in glaucomatous eyes and method of use
US6881198B2 (en) * 2001-01-09 2005-04-19 J. David Brown Glaucoma treatment device and method
EP2335660B1 (en) 2001-01-18 2018-03-28 The Regents of The University of California Minimally invasive glaucoma surgical instrument
US7488303B1 (en) 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US6981958B1 (en) * 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
AT409586B (en) * 2001-04-26 2002-09-25 Clemens Dr Vass Implant draining aqueous humor from anterior chamber of eye into Schlemm's channel, includes fixation plate for stabilization on sclera
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
AU2002305400A1 (en) 2001-05-03 2002-11-18 Glaukos Corporation Medical device and methods of use for glaucoma treatment
US7331984B2 (en) * 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US20030100830A1 (en) * 2001-11-27 2003-05-29 Sheng-Ping Zhong Implantable or insertable medical devices visible under magnetic resonance imaging
WO2003073968A2 (en) 2002-02-28 2003-09-12 Gmp Vision Solutions, Inc. Device and method for monitoring aqueous flow within the eye
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US7951155B2 (en) * 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20030229303A1 (en) * 2002-03-22 2003-12-11 Haffner David S. Expandable glaucoma implant and methods of use
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US20040147870A1 (en) * 2002-04-08 2004-07-29 Burns Thomas W. Glaucoma treatment kit
US20040024345A1 (en) * 2002-04-19 2004-02-05 Morteza Gharib Glaucoma implant with valveless flow bias
US7192412B1 (en) * 2002-09-14 2007-03-20 Glaukos Corporation Targeted stent placement and multi-stent therapy
US7160264B2 (en) * 2002-12-19 2007-01-09 Medtronic-Xomed, Inc. Article and method for ocular aqueous drainage
US20040216749A1 (en) * 2003-01-23 2004-11-04 Hosheng Tu Vasomodulation during glaucoma surgery
US20040193095A1 (en) * 2003-03-29 2004-09-30 Shadduck John H. Implants for treating ocular hypertension, methods of use and methods of fabrication
EP1633320A2 (en) 2003-05-02 2006-03-15 SurModics, Inc. Implantable controlled release bioactive agent delivery device
US8246974B2 (en) * 2003-05-02 2012-08-21 Surmodics, Inc. Medical devices and methods for producing the same
US20040236343A1 (en) * 2003-05-23 2004-11-25 Taylor Jon B. Insertion tool for ocular implant and method for using same
CA2528060C (en) 2003-06-10 2012-12-11 Neomedix Corporation Device and methods useable for treatment of glaucoma and other surgical procedures
ES2386994T3 (en) 2003-06-10 2012-09-10 Neomedix Corporation Tubular cutting device
CA2529495C (en) * 2003-06-16 2013-02-05 Solx, Inc. Shunt for the treatment of glaucoma
US20050149093A1 (en) * 2003-10-30 2005-07-07 Pokorney James L. Valve bypass graft device, tools, and method
AU2004296205B2 (en) * 2003-12-05 2009-11-12 Innfocus, Llc Glaucoma implant device
AU2004297967C1 (en) * 2003-12-05 2011-10-27 Innolene Llc Improved ocular lens
US20050250788A1 (en) * 2004-01-30 2005-11-10 Hosheng Tu Aqueous outflow enhancement with vasodilated aqueous cavity
US20050194303A1 (en) * 2004-03-02 2005-09-08 Sniegowski Jeffry J. MEMS flow module with filtration and pressure regulation capabilities
US20060219627A1 (en) * 2005-03-31 2006-10-05 Rodgers M S MEMS filter module with concentric filtering walls
US20060173399A1 (en) * 2005-02-01 2006-08-03 Rodgers M S MEMS flow module with pivoting-type baffle
US7544176B2 (en) * 2005-06-21 2009-06-09 Becton, Dickinson And Company Glaucoma implant having MEMS flow module with flexing diaphragm for pressure regulation
US7384550B2 (en) * 2004-02-24 2008-06-10 Becton, Dickinson And Company Glaucoma implant having MEMS filter module
US20060036207A1 (en) * 2004-02-24 2006-02-16 Koonmen James P System and method for treating glaucoma
US7364564B2 (en) * 2004-03-02 2008-04-29 Becton, Dickinson And Company Implant having MEMS flow module with movable, flow-controlling baffle
US7226540B2 (en) * 2004-02-24 2007-06-05 Becton, Dickinson And Company MEMS filter module
US20060206049A1 (en) * 2005-03-14 2006-09-14 Rodgers M S MEMS flow module with piston-type pressure regulating structure
US20050232972A1 (en) * 2004-04-15 2005-10-20 Steven Odrich Drug delivery via punctal plug
WO2005104992A1 (en) * 2004-04-26 2005-11-10 Bioduct Llc Stent for avascular meniscal repair and regeneration
KR20070036044A (en) * 2004-04-29 2007-04-02 아이싸이언스 인터벤셔날 코포레이션 Apparatus and method for ocular treatment
SE0401182D0 (en) * 2004-05-05 2004-05-05 Q Med Ab Novel use of a viscoelastic composition
US20050283108A1 (en) * 2004-06-10 2005-12-22 Savage James A Apparatus and method for non-pharmacological treatment of glaucoma and lowering intraocular pressure
US20060024350A1 (en) * 2004-06-24 2006-02-02 Varner Signe E Biodegradable ocular devices, methods and systems
JP2008504938A (en) * 2004-07-02 2008-02-21 レイザー,エリオット Treatment medium delivery apparatus and method for delivering treatment medium to eyes using the delivery apparatus
US20060034891A1 (en) * 2004-08-12 2006-02-16 Laurie Lawin Biodegradable controlled release bioactive agent delivery device
US8246569B1 (en) * 2004-08-17 2012-08-21 California Institute Of Technology Implantable intraocular pressure drain
TR200403298A1 (en) * 2004-12-03 2006-02-21 Kutluhan Ahmet Mastoid antral ventilation tube
US7594899B2 (en) * 2004-12-03 2009-09-29 Innfocus, Llc Glaucoma implant device
US20070141116A1 (en) * 2004-12-03 2007-06-21 Leonard Pinchuk Glaucoma Implant Device
US7837644B2 (en) * 2004-12-03 2010-11-23 Innfocus, Llc Glaucoma implant device
US20070118065A1 (en) * 2004-12-03 2007-05-24 Leonard Pinchuk Glaucoma Implant Device
CA2592459C (en) * 2004-12-16 2017-08-22 Iscience Interventional Corporation Ophthalmic implant for treatment of glaucoma
US20120010702A1 (en) * 2004-12-16 2012-01-12 Iscience Interventional Corporation Ophthalmic implant for treatment of glaucoma
JP2008537684A (en) * 2005-01-24 2008-09-25 ニューロシステック コーポレイション Devices and methods for delivering therapeutic and / or other agents to the inner ear and other tissues
US7331991B2 (en) * 2005-02-25 2008-02-19 California Institute Of Technology Implantable small percutaneous valve and methods of delivery
US20090043365A1 (en) 2005-07-18 2009-02-12 Kolis Scientific, Inc. Methods, apparatuses, and systems for reducing intraocular pressure as a means of preventing or treating open-angle glaucoma
ATE543914T1 (en) * 2005-09-01 2012-02-15 Bristol Myers Squibb Co BIOMARRKERS AND METHODS FOR DETERMINING SENSITIVITY TO VEGFR2 MODULATOR.
JP2009508584A (en) * 2005-09-16 2009-03-05 ビージー インプラント インコーポレイテッド Glaucoma treatment apparatus and method
DE102005051550A1 (en) * 2005-10-27 2007-05-03 Fibertex A/S Superhydrophobic coating of a polymer fleece, in particular a polypropylene fleece
US20070106200A1 (en) * 2005-11-08 2007-05-10 Brian Levy Intraocular shunt device and method
US7780724B2 (en) * 2006-02-24 2010-08-24 California Institute Of Technology Monolithic in situ forming valve system
US20080275550A1 (en) * 2006-02-24 2008-11-06 Arash Kheradvar Implantable small percutaneous valve and methods of delivery
BRPI0709672B8 (en) 2006-03-31 2021-06-22 3088922 Inc ocular implant insertable into an ocular lumen and method of delivering a therapeutic agent to an eye
US20070293807A1 (en) * 2006-05-01 2007-12-20 Lynch Mary G Dual drainage pathway shunt device and method for treating glaucoma
US8267905B2 (en) * 2006-05-01 2012-09-18 Neurosystec Corporation Apparatus and method for delivery of therapeutic and other types of agents
US20080097620A1 (en) 2006-05-26 2008-04-24 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US7803148B2 (en) 2006-06-09 2010-09-28 Neurosystec Corporation Flow-induced delivery from a drug mass
US9095411B2 (en) 2010-11-15 2015-08-04 Aquesys, Inc. Devices for deploying intraocular shunts
US8801766B2 (en) 2010-11-15 2014-08-12 Aquesys, Inc. Devices for deploying intraocular shunts
US8758290B2 (en) 2010-11-15 2014-06-24 Aquesys, Inc. Devices and methods for implanting a shunt in the suprachoroidal space
US20080108933A1 (en) * 2006-06-30 2008-05-08 Dao-Yi Yu Methods, Systems and Apparatus for Relieving Pressure in an Organ
US8828070B2 (en) 2010-11-15 2014-09-09 Aquesys, Inc. Devices for deploying intraocular shunts
US10085884B2 (en) 2006-06-30 2018-10-02 Aquesys, Inc. Intraocular devices
US8308701B2 (en) * 2010-11-15 2012-11-13 Aquesys, Inc. Methods for deploying intraocular shunts
US8974511B2 (en) 2010-11-15 2015-03-10 Aquesys, Inc. Methods for treating closed angle glaucoma
US8852137B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for implanting a soft gel shunt in the suprachoroidal space
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
EP3351211B1 (en) 2006-07-11 2023-09-06 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders
US8911496B2 (en) 2006-07-11 2014-12-16 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
CA2659330A1 (en) * 2006-07-31 2008-02-07 Neurosystec Corporation Nanoparticle drug formulations
US20080033487A1 (en) * 2006-08-07 2008-02-07 Bioduct, Llc Medical device for repair of tissue and method for implantation and fixation
EP2051646A4 (en) * 2006-08-07 2014-06-11 Howmedica Osteonics Corp Insertion system for implanting a medical device and surgical methods
US20080071274A1 (en) * 2006-09-15 2008-03-20 Ensign Michael D Percutaneous Screw Assembly and Placement Method
US8187266B2 (en) * 2006-09-29 2012-05-29 Quantumcor, Inc. Surgical probe and methods for targeted treatment of heart structures
JP5748407B2 (en) * 2006-11-10 2015-07-15 グローコス コーポレーション Uveal sclera shunt
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
JP4957258B2 (en) * 2007-01-15 2012-06-20 富士通株式会社 Step counting device and step counting method
US8089635B2 (en) 2007-01-22 2012-01-03 California Institute Of Technology Method and system for fast three-dimensional imaging using defocusing and feature recognition
AU2008209480A1 (en) 2007-01-22 2008-07-31 California Institute Of Technology Method for quantitative 3-D imaging
KR20100017235A (en) * 2007-04-23 2010-02-16 캘리포니아 인스티튜트 오브 테크놀로지 An aperture system with spatially-biased aperture for defocusing-based imaging
US20080277332A1 (en) * 2007-05-11 2008-11-13 Becton, Dickinson And Company Micromachined membrane filter device for a glaucoma implant and method for making the same
EP2173276A4 (en) 2007-08-02 2015-07-08 Bio Connect Systems Implantable flow connector
US9282967B2 (en) 2007-08-02 2016-03-15 Bioconnect Systems, Inc. Implantable flow connector
US20090043242A1 (en) * 2007-08-07 2009-02-12 Becton, Dickinson And Company Instruments and methods for implanting corneal implant via extra-and intra-cameral routes
JP5524841B2 (en) * 2007-09-07 2014-06-18 キュー エル ティー インク. Lacrimal implant and related methods
CA2698574A1 (en) * 2007-09-07 2009-03-19 Qlt Plug Delivery, Inc. Insertion and extraction tools for lacrimal implants
AU2008300013A1 (en) 2007-09-07 2009-03-19 Qlt Inc. Drug cores for sustained release of therapeutic agents
EP2205193A2 (en) 2007-09-07 2010-07-14 QLT Plug Delivery, Inc. Lacrimal implant detection
FR2924913B1 (en) * 2007-12-18 2010-02-05 Alain Telandro SYSTEM FOR MEASURING OCULAR PRESSURE
WO2009096855A1 (en) * 2008-01-28 2009-08-06 Milux Holding Sa Blood clot removal device, system, and method
US8109896B2 (en) * 2008-02-11 2012-02-07 Optonol Ltd. Devices and methods for opening fluid passageways
MX2010008998A (en) * 2008-02-18 2010-11-26 Qlt Plug Delivery Inc Lacrimal implants and related methods.
CN104623741A (en) 2008-04-30 2015-05-20 马缇医疗股份有限公司 Composite lacrimal insert and related methods
NZ588938A (en) * 2008-05-09 2013-03-28 Mati Therapeutics Inc Sustained release delivery of active agents to treat glaucoma and ocular hypertension
US8157759B2 (en) * 2008-05-16 2012-04-17 Ocumatrix, Inc. Method and apparatus for fluid drainage of the eye
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8628492B2 (en) * 2008-07-01 2014-01-14 California Institute Of Technology Implantable glaucoma drainage device
EP2428932A1 (en) * 2008-08-27 2012-03-14 California Institute of Technology Method and device for high-resolution three-dimensional imaging which obtains camera pose using defocusing
US8353856B2 (en) 2008-11-05 2013-01-15 Abbott Medical Optics Inc. Glaucoma drainage shunts and methods of use
AU2010215745A1 (en) * 2009-02-23 2011-09-01 Qlt Inc. Lacrimal implants and related methods
AU2010229789B2 (en) * 2009-03-26 2014-11-13 Johnson & Johnson Surgical Vision, Inc. Glaucoma shunts with flow management and improved surgical performance
US8764696B2 (en) * 2009-06-16 2014-07-01 Mobius Therapeutics, Inc. Medical drainage devices with carbon-based structures for inhibiting growth of fibroblasts
US8773507B2 (en) 2009-08-11 2014-07-08 California Institute Of Technology Defocusing feature matching system to measure camera pose with interchangeable lens cameras
EP2289555A1 (en) * 2009-08-24 2011-03-02 OrgaNext Research B.V. Method of treating frailty
WO2011031538A2 (en) * 2009-08-27 2011-03-17 California Institute Of Technology Accurate 3d object reconstruction using a handheld device with a projected light pattern
US20110066226A1 (en) * 2009-09-15 2011-03-17 Medtronic Vascular, Inc. Implantable Venous Valve for Treatment of Erectile Dysfunction
US8419673B2 (en) * 2009-09-21 2013-04-16 Alcon Research, Ltd. Glaucoma drainage device with pump
EP2480186A1 (en) * 2009-09-21 2012-08-01 Vidus Ocular, Inc. Uveoscleral drainage device
US8257295B2 (en) 2009-09-21 2012-09-04 Alcon Research, Ltd. Intraocular pressure sensor with external pressure compensation
US20110105990A1 (en) * 2009-11-04 2011-05-05 Silvestrini Thomas A Zonal drug delivery device and method
US8771216B2 (en) * 2009-11-06 2014-07-08 University Hospitals Of Cleveland Fluid communication device and method of use thereof
WO2011089605A2 (en) * 2010-01-22 2011-07-28 The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center Ocular shunt
US8545430B2 (en) 2010-06-09 2013-10-01 Transcend Medical, Inc. Expandable ocular devices
DK2612297T3 (en) 2010-09-03 2017-11-13 California Inst Of Techn THREE-DIMENSIONAL IMAGE SYSTEM
US9022967B2 (en) 2010-10-08 2015-05-05 Sinopsys Surgical, Inc. Implant device, tool, and methods relating to treatment of paranasal sinuses
US8585629B2 (en) 2010-11-15 2013-11-19 Aquesys, Inc. Systems for deploying intraocular shunts
US9668915B2 (en) 2010-11-24 2017-06-06 Dose Medical Corporation Drug eluting ocular implant
US20120283557A1 (en) 2011-05-05 2012-11-08 Berlin Michael S Methods and Apparatuses for the Treatment of Glaucoma using visible and infrared ultrashort laser pulses
US10245178B1 (en) 2011-06-07 2019-04-02 Glaukos Corporation Anterior chamber drug-eluting ocular implant
WO2013011511A1 (en) 2011-07-18 2013-01-24 Mor Research Applications Ltd. A device for adjusting the intraocular pressure
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
CA2846384C (en) 2011-08-29 2020-12-15 Qlt Inc. Sustained release delivery of active agents to treat glaucoma and ocular hypertension
US9974685B2 (en) 2011-08-29 2018-05-22 Mati Therapeutics Drug delivery system and methods of treating open angle glaucoma and ocular hypertension
EP4193907A1 (en) 2011-09-13 2023-06-14 Glaukos Corporation Intraocular physiological sensor
US8765210B2 (en) 2011-12-08 2014-07-01 Aquesys, Inc. Systems and methods for making gelatin shunts
WO2013090231A1 (en) 2011-12-13 2013-06-20 Alcon Research, Ltd. Active drainage systems with dual-input pressure-driven valves
US9339187B2 (en) 2011-12-15 2016-05-17 Alcon Research, Ltd. External pressure measurement system and method for an intraocular implant
US9314600B2 (en) 2012-04-15 2016-04-19 Bioconnect Systems, Inc. Delivery system for implantable flow connector
US10434293B2 (en) 2012-04-15 2019-10-08 Tva Medical, Inc. Implantable flow connector
US10682254B2 (en) 2012-04-24 2020-06-16 The Regents Of The University Of Colorado, A Body Corporate Intraocular device for dual incisions
US9872799B2 (en) 2012-04-24 2018-01-23 The Regents Of The University Of Colorado, A Body Corporate Intraocular device for dual incisions
US8858491B2 (en) * 2012-05-23 2014-10-14 Alcon Research, Ltd. Pre-biased membrane valve
MX351261B (en) 2012-06-01 2017-10-06 Surmodics Inc Apparatus and method for coating balloon catheters.
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
US10265161B2 (en) 2012-08-07 2019-04-23 Regeneye L. L. C. Ocular collar stent for treating narrowing of the irideocorneal angle
US9974645B2 (en) 2012-08-07 2018-05-22 RegenEye, L.L.C. Method of reducing the occurrence of macular and neuroretinal degenerations by alleviating age related retinal stresses as a contributing factor in a mammalian eye
US9308082B2 (en) * 2012-08-07 2016-04-12 RegenEye, L.L.C. Ocular collar stent for treating narrowing of the irideocorneal angle
US9107728B2 (en) * 2012-09-23 2015-08-18 Mark Philip Breazzano Eyeball stabilizing apparatus and method of use
US10070850B2 (en) * 2012-10-19 2018-09-11 Cook Medical Technologies Llc Vascular closure with multiple connections
US11090468B2 (en) 2012-10-25 2021-08-17 Surmodics, Inc. Apparatus and methods for coating medical devices
US9572712B2 (en) 2012-12-17 2017-02-21 Novartis Ag Osmotically actuated fluidic valve
US9295389B2 (en) 2012-12-17 2016-03-29 Novartis Ag Systems and methods for priming an intraocular pressure sensor in an intraocular implant
US9528633B2 (en) 2012-12-17 2016-12-27 Novartis Ag MEMS check valve
DK2958530T3 (en) 2013-02-19 2018-12-10 Aquesys Inc ADJUSTABLE FLOW PRESSURE EQUALIZATION
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US20140276347A1 (en) * 2013-03-15 2014-09-18 University Of Rochester Intraosseous shunts
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US9226851B2 (en) 2013-08-24 2016-01-05 Novartis Ag MEMS check valve chip and methods
JP6574780B2 (en) 2013-11-14 2019-09-11 アクエシス, インコーポレイテッド Intraocular shunt inserter
MD4355C1 (en) * 2014-01-29 2016-02-29 АЛСАЛИЕМ Сулайман Shunt with valve for normalization of intraocular pressure
US20150342875A1 (en) * 2014-05-29 2015-12-03 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
EP4242614A3 (en) 2014-07-01 2023-11-29 Injectsense, Inc. Hermetically sealed implant sensors with vertical stacking architecture
EP3164061A4 (en) 2014-07-01 2018-01-10 Injectsense, Inc. Methods and devices for implantation of intraocular pressure sensors
JP2017522122A (en) 2014-07-24 2017-08-10 シノプシス サージカル インコーポレイテッドSinopsys Surgical,Inc. Sinus access implant device and related products and methods
JP6355127B2 (en) * 2014-07-25 2018-07-11 一般財団法人電力中央研究所 Fluorescence observation system
US11293872B2 (en) * 2014-09-18 2022-04-05 Universiteit Gent Laser ablation probe
EP3240510A4 (en) 2014-12-31 2018-09-19 Microoptx Inc. Glaucoma treatment devices and methods
US9744076B2 (en) 2015-03-16 2017-08-29 Jeannette M. A. da Silva Curiel Method and apparatus for inserting an implant in the cornea of the eye
GB2540582A (en) * 2015-07-22 2017-01-25 Edwards Ltd Apparatus for evacuating a corrosive effluent gas stream from a processing chamber
WO2017059272A1 (en) 2015-09-30 2017-04-06 Microoptx Inc. Dry eye treatment devices and methods
US10779991B2 (en) 2015-12-23 2020-09-22 The Regents of the University of Colorado, a body corporated Ophthalmic knife and methods of use
EP3393382A4 (en) 2015-12-23 2019-09-04 The Regents of The University of Colorado, A Body Corporate An ophthalmic knife and methods of use
US11406264B2 (en) 2016-01-25 2022-08-09 California Institute Of Technology Non-invasive measurement of intraocular pressure
RU2018142990A (en) 2016-06-02 2020-06-05 Эквисис, Инк. INTERNAL EYE DELIVERY OF MEDICINES
KR102573821B1 (en) 2017-02-16 2023-08-31 마이크로서지컬 테크놀로지, 인코퍼레이티드 Apparatus, system and method for minimally invasive glaucoma surgery
CA3070108A1 (en) 2017-07-20 2019-01-24 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11166849B2 (en) 2017-07-20 2021-11-09 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
EP3668460A4 (en) 2017-08-17 2021-05-05 Aspip Inc. Method, device, and system for treatment of elevated intraocular pressure
AU2018338092A1 (en) 2017-09-20 2020-03-19 Sinopsys Surgical, Inc. Paranasal sinus fluid access implantation tools, assemblies, kits and methods
WO2019068026A1 (en) 2017-09-29 2019-04-04 Glaukos Corporation Intraocular physiological sensor
CA3089342A1 (en) 2018-01-23 2019-08-01 Avisi Technologies, LLC Method and device for treating eye disease
EP3755287A1 (en) * 2018-02-22 2020-12-30 Ivantis, Inc. Ocular implant and delivery system
US11135089B2 (en) 2018-03-09 2021-10-05 Aquesys, Inc. Intraocular shunt inserter
US10952898B2 (en) 2018-03-09 2021-03-23 Aquesys, Inc. Intraocular shunt inserter
CN112312868B (en) * 2018-04-12 2023-12-22 新世界医学有限公司 Device and method for intraocular fluid injection
US11672701B2 (en) 2018-10-25 2023-06-13 Amo Groningen B.V. Bleb control glaucoma shunts
US11628466B2 (en) 2018-11-29 2023-04-18 Surmodics, Inc. Apparatus and methods for coating medical devices
TWI695716B (en) * 2019-03-26 2020-06-11 巨晰光纖股份有限公司 Diversion bracket for eyeball drainage
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices
JP2022552284A (en) 2019-10-10 2022-12-15 シファメド・ホールディングス・エルエルシー Adjustable flow glaucoma shunt and related systems and methods
WO2021113399A1 (en) 2019-12-04 2021-06-10 The Regents Of The University Of Colorado, A Body Corporate An ophtalmic knife
WO2021151007A1 (en) 2020-01-23 2021-07-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
CA3167488A1 (en) 2020-02-14 2021-08-19 Eric Schultz Shunting systems with rotation-based flow control assemblies, and associated systems and methods
US11737920B2 (en) 2020-02-18 2023-08-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
US11766355B2 (en) 2020-03-19 2023-09-26 Shifamed Holdings, Llc Intraocular shunts with low-profile actuation elements and associated systems and methods
JP2023522332A (en) 2020-04-16 2023-05-30 シファメド・ホールディングス・エルエルシー ADJUSTABLE GLAUCOMA TREATMENT DEVICES AND RELATED SYSTEMS AND METHODS
WO2022159723A1 (en) 2021-01-22 2022-07-28 Shifamed Holdings, Llc Adjustable shunting systems with plate assemblies, and associated systems and methods
WO2023278807A1 (en) * 2021-06-30 2023-01-05 Aquesys, Inc. Glaucoma treatment systems and procedures
US11877954B2 (en) 2022-03-16 2024-01-23 Sight Sciences, Inc. Devices and methods for intraocular tissue manipulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533768B1 (en) * 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof

Family Cites Families (670)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US557453A (en) 1896-03-31 thompson
DE90152C (en) *
US2031754A (en) 1932-11-04 1936-02-25 Ernest J Sweetland Extensible coupling
US2127903A (en) 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
US2269963A (en) 1940-06-01 1942-01-13 Wappler Frederick Charles Implanting device
US3159161A (en) 1962-11-14 1964-12-01 Ness Richard Alton Fistulizing canaliculus
US3439675A (en) * 1966-06-14 1969-04-22 Becton Dickinson Co Deformable needle assembly
US3915172A (en) 1970-05-27 1975-10-28 Ceskoslovenska Akademie Ved Capillary drain for glaucoma
US3717151A (en) 1971-03-11 1973-02-20 R Collett Flesh penetrating apparatus
US3788327A (en) 1971-03-30 1974-01-29 H Donowitz Surgical implant device
US3785327A (en) * 1971-09-28 1974-01-15 A Smith Liquid propulsion apparatus and method of fabrication
SE353590B (en) 1971-10-01 1973-02-05 J Kaller
US3948871A (en) 1972-04-21 1976-04-06 George H. Butterfield And Son Composition for hard type contact lens with wettable surface
US3863623A (en) 1972-06-19 1975-02-04 Medical College Of Georgia Fou Method for microscintigraphic evaluation studies
US3948271A (en) 1972-11-07 1976-04-06 Taichiro Akiyama Drain for the eardrum and apparatus for introducing the same
US3949750A (en) 1974-10-07 1976-04-13 Freeman Jerre M Punctum plug and method for treating keratoconjunctivitis sicca (dry eye) and other ophthalmic aliments using same
US3976077A (en) 1975-02-03 1976-08-24 Kerfoot Jr Franklin W Eye surgery device
JPS5255402A (en) 1975-10-31 1977-05-06 Fujitsu Ltd Signal transmission/reception unit
US4037604A (en) 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4043346A (en) 1976-03-10 1977-08-23 Baylor College Of Medicine Catheter
US4030480A (en) 1976-05-13 1977-06-21 Ernst Jochen Meyer Ocular decompression process
US4168697A (en) 1977-01-17 1979-09-25 Cantekin Erdem I Middle ear ventilating tube and method
US4113088A (en) 1977-06-06 1978-09-12 Binkhorst Richard D Sterile package
US4175563A (en) 1977-10-05 1979-11-27 Arenberg Irving K Biological drainage shunt
US4299227A (en) 1979-10-19 1981-11-10 Lincoff Harvey A Ophthalmological appliance
US4402681A (en) 1980-08-23 1983-09-06 Haas Joseph S Artificial implant valve for the regulation of intraocular pressure
US4366582A (en) * 1980-12-01 1983-01-04 Faulkner Gerald D Posterior chamber intraocular lens
NO147900C (en) 1981-03-12 1983-07-06 Finn Skjaerpe MICROSURGICAL INSTRUMENT.
US4457757A (en) 1981-07-20 1984-07-03 Molteno Anthony C B Device for draining aqueous humour
US4428746A (en) 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4449529A (en) 1981-11-18 1984-05-22 Becton Dickinson And Company Automatic retractable lancet assembly
DE3206834A1 (en) * 1982-02-26 1983-09-15 Walter Dr. 4000 Düsseldorf Messingschlager DRAINAGE TUBE FOR USE IN AN OPERATIONAL ACCESS TO A BODY RECOVERY
US4554918A (en) 1982-07-28 1985-11-26 White Thomas C Ocular pressure relief device
JPS5985153A (en) 1982-11-08 1984-05-17 Hitachi Ltd Redundancy controller
US4521210A (en) 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
FR2553658A1 (en) 1983-10-19 1985-04-26 Neidich Warren Implant valve for curing glaucoma
US4560383A (en) * 1983-10-27 1985-12-24 Leiske Larry G Anterior chamber intraocular lens
US4578058A (en) * 1984-04-02 1986-03-25 Grandon Stanley C Intraocular catheter apparatus and method of use
US4787885A (en) 1984-04-06 1988-11-29 Binder Perry S Hydrogel seton
US4634418A (en) 1984-04-06 1987-01-06 Binder Perry S Hydrogel seton
DE3447642C1 (en) 1984-12-28 1986-09-18 Bernhard M. Dr. 5600 Wuppertal Cramer Steerable guidewire for catheters
US4604087A (en) 1985-02-26 1986-08-05 Joseph Neil H Aqueous humor drainage device
US4642090A (en) 1985-03-04 1987-02-10 Utrata Peter J Disposable combination scalpel blade and incision irrigator for ophthalmological use
US4820626A (en) 1985-06-06 1989-04-11 Thomas Jefferson University Method of treating a synthetic or naturally occuring surface with microvascular endothelial cells, and the treated surface itself
US4718907A (en) 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4632842A (en) 1985-06-20 1986-12-30 Atrium Medical Corporation Glow discharge process for producing implantable devices
US4883864A (en) 1985-09-06 1989-11-28 Minnesota Mining And Manufacturing Company Modified collagen compound and method of preparation
US4737322A (en) 1985-09-27 1988-04-12 Staar Surgical Company Intraocular lens structure with polyimide haptic portion and methods for fabrication
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4692142A (en) 1986-02-24 1987-09-08 Dignam Bernard J Sutureless infusion cannula for ophthalmic surgery
NZ215409A (en) 1986-03-07 1989-02-24 Anthony Christopher Be Molteno Implant for drainage of aqueous humour in glaucoma
CH670760A5 (en) 1986-06-02 1989-07-14 Sulzer Ag
US4722724A (en) 1986-06-23 1988-02-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4826478A (en) 1986-06-23 1989-05-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4867173A (en) 1986-06-30 1989-09-19 Meadox Surgimed A/S Steerable guidewire
US4863457A (en) 1986-11-24 1989-09-05 Lee David A Drug delivery device
US4782819A (en) 1987-02-25 1988-11-08 Adair Edwin Lloyd Optical catheter
US4846793A (en) 1987-03-18 1989-07-11 Endocon, Inc. Injector for implanting multiple pellet medicaments
DE3715699A1 (en) * 1987-05-12 1988-12-01 Foerster Ernst CATHETER AND ENDOSCOPE FOR THE TRANSPAPILLARY DISPLAY OF THE GALLEN BLADDER
US4828439A (en) 1987-05-15 1989-05-09 Giannuzzi Louis Screw anchor
US4846172A (en) 1987-05-26 1989-07-11 Berlin Michael S Laser-delivery eye-treatment method
US4900300A (en) 1987-07-06 1990-02-13 Lee David A Surgical instrument
US4886488A (en) 1987-08-06 1989-12-12 White Thomas C Glaucoma drainage the lacrimal system and method
AU2308988A (en) 1987-08-06 1989-03-01 Thomas C. White Glaucoma drainage in the lacrimal system
EP0375676A1 (en) 1987-08-19 1990-07-04 BERG, Olle A drainage tube for sinus maxillaris, a means for its insertion and a means for making a hole for its positioning
US4870953A (en) 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
US4853224A (en) 1987-12-22 1989-08-01 Visionex Biodegradable ocular implants
US4997652A (en) 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
US5053044A (en) 1988-01-11 1991-10-01 Devices For Vascular Intervention, Inc. Catheter and method for making intravascular incisions
US4800870A (en) * 1988-03-11 1989-01-31 Reid Jr Ben A Method and apparatus for bile duct exploration
US4936825A (en) 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
CA1334168C (en) * 1988-04-26 1995-01-31 Louis M. De Santis Antiglaucoma compositions containing combinations of .alpha.-2 agonists and .beta. blockers
JP2672974B2 (en) 1988-06-10 1997-11-05 株式会社メニコン Intraocular lens
US5005577A (en) 1988-08-23 1991-04-09 Frenkel Ronald E P Intraocular lens pressure monitoring device
AU4191989A (en) 1988-08-24 1990-03-23 Marvin J. Slepian Biodegradable polymeric endoluminal sealing
US5681275A (en) 1988-10-07 1997-10-28 Ahmed; Abdul Mateen Ophthalmological device with adaptable multiple distribution plates
US5785674A (en) 1988-10-07 1998-07-28 Mateen; Ahmed Abdul Device and method for treating glaucoma
FR2644058B1 (en) 1989-03-10 1994-06-03 France Chirurgie Instr MEATIC PLUG FOR LACRYMAL PATHOLOGY
US5098443A (en) * 1989-03-23 1992-03-24 University Of Miami Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents
US5116327A (en) 1989-06-05 1992-05-26 Helix Medical, Inc. Hysterectomy drain appliance
US4991602A (en) * 1989-06-27 1991-02-12 Flexmedics Corporation Flexible guide wire with safety tip
US5817075A (en) * 1989-08-14 1998-10-06 Photogenesis, Inc. Method for preparation and transplantation of planar implants and surgical instrument therefor
SG49267A1 (en) 1989-08-14 1998-05-18 Photogenesis Inc Surgical instrument and cell isolation and transplantation
US4986810A (en) 1989-09-01 1991-01-22 Neal Semrad Toggle catheter
US5169386A (en) 1989-09-11 1992-12-08 Bruce B. Becker Method and catheter for dilatation of the lacrimal system
FR2651668B1 (en) 1989-09-12 1991-12-27 Leon Claude MICROSCOPE-ENDOSCOPE ASSEMBLY USEFUL IN PARTICULAR IN SURGERY.
US5053040A (en) 1989-11-09 1991-10-01 Goldsmith Iii Manning M Method of performing a myringotomy
USRE35390E (en) 1989-11-17 1996-12-03 Smith; Stewart G. Pressure relieving device and process for implanting
US4946436A (en) 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5164188A (en) 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US5180632A (en) * 1989-12-18 1993-01-19 Carapace Orthopedic casting material having reduced tack and reduced slip
US5092837A (en) 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US4968296A (en) 1989-12-20 1990-11-06 Robert Ritch Transscleral drainage implant device for the treatment of glaucoma
DE4030004A1 (en) 1990-01-05 1992-03-26 Heino Dr Hermeking INSTRUMENT WITH HOOK PLATE FOR IMPLANTING AN ARTIFICIAL LENS
US5221255A (en) * 1990-01-10 1993-06-22 Mahurkar Sakharam D Reinforced multiple lumen catheter
RU2022539C1 (en) 1990-01-29 1994-11-15 Мир Сергеевич Ремизов Method of treating glaucoma
US5073163A (en) 1990-01-29 1991-12-17 Lippman Myron E Apparatus for treating glaucoma
US5180362A (en) 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5129895A (en) 1990-05-16 1992-07-14 Sunrise Technologies, Inc. Laser sclerostomy procedure
US5041081A (en) 1990-05-18 1991-08-20 Odrich Ronald B Ocular implant for controlling glaucoma
US5127901A (en) * 1990-05-18 1992-07-07 Odrich Ronald B Implant with subconjunctival arch
US5397300A (en) 1990-05-31 1995-03-14 Iovision, Inc. Glaucoma implant
US5476445A (en) 1990-05-31 1995-12-19 Iovision, Inc. Glaucoma implant with a temporary flow restricting seal
US5178604A (en) 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
WO1992000112A1 (en) 1990-06-25 1992-01-09 Ungerleider Bruce A Apparatus for reducing intraocular pressure
US5725529A (en) 1990-09-25 1998-03-10 Innovasive Devices, Inc. Bone fastener
US5688261A (en) 1990-11-07 1997-11-18 Premier Laser Systems, Inc. Transparent laser surgical probe
US5273530A (en) 1990-11-14 1993-12-28 The University Of Rochester Intraretinal delivery and withdrawal instruments
JP2615268B2 (en) * 1991-02-15 1997-05-28 矢崎総業株式会社 Carbon yarn and method for producing the same
US5454796A (en) 1991-04-09 1995-10-03 Hood Laboratories Device and method for controlling intraocular fluid pressure
US5312394A (en) 1991-04-29 1994-05-17 Hugh Beckman Apparatus and method for surgically performing a filtering operation on an eye for glaucoma
US5246451A (en) 1991-04-30 1993-09-21 Medtronic, Inc. Vascular prosthesis and method
US5358492A (en) 1991-05-02 1994-10-25 Feibus Miriam H Woven surgical drain and method of making
US6007511A (en) 1991-05-08 1999-12-28 Prywes; Arnold S. Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation
US5300020A (en) 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5171213A (en) 1991-08-14 1992-12-15 Price Jr Francis W Technique for fistulization of the eye and an eye filtration prosthesis useful therefor
US5326345A (en) 1991-08-14 1994-07-05 Price Jr Francis W Eye filtration prostheses
EP0601055B1 (en) 1991-08-16 2000-06-07 GALIN, Miles A. Medicament coated refractive anterior chamber ocular implant
US5464450A (en) 1991-10-04 1995-11-07 Scimed Lifesystems Inc. Biodegradable drug delivery vascular stent
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
GB2260585A (en) 1991-10-09 1993-04-21 Avdel Systems Ltd Self-plugging blind rivet
GB9122169D0 (en) 1991-10-18 1991-11-27 Bp Solar Ltd Electrochemical process
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5360399A (en) 1992-01-10 1994-11-01 Robert Stegmann Method and apparatus for maintaining the normal intraocular pressure
US5207685A (en) 1992-02-11 1993-05-04 Cinberg James Z Tympanic ventilation tube and related technique
US5334137A (en) 1992-02-21 1994-08-02 Eagle Vision, Inc. Lacrimal fluid control device
US5346464A (en) 1992-03-10 1994-09-13 Camras Carl B Method and apparatus for reducing intraocular pressure
US5284476A (en) * 1992-03-20 1994-02-08 Koch Paul S Nuclear hydrolysis cannula
US5415666A (en) 1992-03-23 1995-05-16 Advanced Surgical, Inc. Tethered clamp retractor
US5380290A (en) * 1992-04-16 1995-01-10 Pfizer Hospital Products Group, Inc. Body access device
US5368601A (en) 1992-04-30 1994-11-29 Lasersurge, Inc. Trocar wound closure device
US5370641A (en) 1992-05-22 1994-12-06 O'donnell, Jr.; Francis E. Laser trabeculodissection
US5629008A (en) * 1992-06-02 1997-05-13 C.R. Bard, Inc. Method and device for long-term delivery of drugs
DE4219299C2 (en) 1992-06-12 1994-03-24 Leica Mikroskopie & Syst microscope
US5767079A (en) 1992-07-08 1998-06-16 Celtrix Pharmaceuticals, Inc. Method of treating ophthalmic disorders using TGF -β
US5290295A (en) 1992-07-15 1994-03-01 Querals & Fine, Inc. Insertion tool for an intraluminal graft procedure
US6197056B1 (en) * 1992-07-15 2001-03-06 Ras Holding Corp. Segmented scleral band for treatment of presbyopia and other eye disorders
WO1994002081A1 (en) 1992-07-16 1994-02-03 Wong Vernon G Eye implant suitable for relief of glaucoma
JP3739411B2 (en) 1992-09-08 2006-01-25 敬二 伊垣 Vascular stent, manufacturing method thereof, and vascular stent device
US5318513A (en) 1992-09-24 1994-06-07 Leib Martin L Canalicular balloon fixation stent
US5370607A (en) 1992-10-28 1994-12-06 Annuit Coeptis, Inc. Glaucoma implant device and method for implanting same
WO1994013234A1 (en) 1992-12-17 1994-06-23 Michael Andrew Coote Implant device and method for treatment of glaucoma
US5338291A (en) 1993-02-03 1994-08-16 Pudenz-Schulte Medical Research Corporation Glaucoma shunt and method for draining aqueous humor
SG49754A1 (en) 1993-03-16 1998-06-15 Photogenesis Inc Method for preparation and transplantation of volute grafts and surgical instrument therefor
US5342370A (en) 1993-03-19 1994-08-30 University Of Miami Method and apparatus for implanting an artifical meshwork in glaucoma surgery
IL105828A (en) 1993-05-28 1999-06-20 Medinol Ltd Medical stent
US6184250B1 (en) * 1993-08-03 2001-02-06 Alcon Laboratories, Inc. Use of cloprostenol and fluprostenol analogues to treat glaucoma and ocular hypertension
US5653724A (en) 1993-08-18 1997-08-05 Imonti; Maurice M. Angled phacoemulsifier tip
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
FR2710269A1 (en) 1993-09-22 1995-03-31 Voir Vivre Implantable device for the treatment of edemas.
FI934513A (en) 1993-10-13 1995-04-14 Leiras Oy Anordning Foer injection with implant
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5695479A (en) * 1993-11-01 1997-12-09 Jagpal; Ravindar Instrument, system, kit and method for catheterization procedures
US5443505A (en) 1993-11-15 1995-08-22 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5445637A (en) * 1993-12-06 1995-08-29 American Cyanamid Company Method and apparatus for preventing posterior capsular opacification
AU686315B2 (en) 1994-02-07 1998-02-05 Kabushikikaisya Igaki Iryo Sekkei Stent device and stent supply system
US5743868A (en) 1994-02-14 1998-04-28 Brown; Reay H. Corneal pressure-regulating implant device
US6135977A (en) 1994-02-16 2000-10-24 Possis Medical, Inc. Rheolytic catheter
US5516522A (en) 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US6165210A (en) * 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
AU704591B2 (en) * 1994-04-04 1999-04-29 William R. Freeman Use of phosphonylmethoxyalkyl nucleosides for the treatment of raised intraocular pressure
US5716394A (en) 1994-04-29 1998-02-10 W. L. Gore & Associates, Inc. Blood contact surfaces using extracellular matrix synthesized in vitro
IL109499A (en) 1994-05-02 1998-01-04 Univ Ramot Implant device for draining excess intraocular fluid
FR2721499B1 (en) 1994-06-22 1997-01-03 Opsia Trabeculectomy implant.
US6405732B1 (en) * 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US5725546A (en) 1994-06-24 1998-03-10 Target Therapeutics, Inc. Detachable microcoil delivery catheter
US6177427B1 (en) * 1994-06-28 2001-01-23 Alcon Laboratories, Inc. Treatment of glaucoma and ocular hypertension
US5520631A (en) 1994-07-22 1996-05-28 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US6102045A (en) 1994-07-22 2000-08-15 Premier Laser Systems, Inc. Method and apparatus for lowering the intraocular pressure of an eye
US5704907A (en) 1994-07-22 1998-01-06 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5599534A (en) * 1994-08-09 1997-02-04 University Of Nebraska Reversible gel-forming composition for sustained delivery of bio-affecting substances, and method of use
US5665114A (en) 1994-08-12 1997-09-09 Meadox Medicals, Inc. Tubular expanded polytetrafluoroethylene implantable prostheses
US5462558A (en) 1994-08-29 1995-10-31 United States Surgical Corporation Suture clip applier
DE4433104C1 (en) 1994-09-16 1996-05-02 Fraunhofer Ges Forschung Device for measuring mechanical properties of biological tissue
US5702419A (en) 1994-09-21 1997-12-30 Wake Forest University Expandable, intraluminal stents
US5627886A (en) * 1994-09-22 1997-05-06 Electronic Data Systems Corporation System and method for detecting fraudulent network usage patterns using real-time network monitoring
US6063116A (en) 1994-10-26 2000-05-16 Medarex, Inc. Modulation of cell proliferation and wound healing
US6063396A (en) 1994-10-26 2000-05-16 Houston Biotechnology Incorporated Methods and compositions for the modulation of cell proliferation and wound healing
US5643321A (en) 1994-11-10 1997-07-01 Innovasive Devices Suture anchor assembly and methods
JP3642812B2 (en) 1994-11-17 2005-04-27 株式会社町田製作所 Medical observation device
US5601094A (en) 1994-11-22 1997-02-11 Reiss; George R. Ophthalmic shunt
BR9509845A (en) * 1994-12-02 1997-12-30 Intel Corp Microprocessor with compacting operation of composite operating elements
US6228873B1 (en) 1994-12-09 2001-05-08 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US5725493A (en) * 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
US5433701A (en) 1994-12-21 1995-07-18 Rubinstein; Mark H. Apparatus for reducing ocular pressure
US5891084A (en) * 1994-12-27 1999-04-06 Lee; Vincent W. Multiple chamber catheter delivery system
US5556400A (en) 1994-12-27 1996-09-17 Tunis; Scott W. Methods of preparing and inserting flexible intraocular lenses and a configuration for flexible intraocular lenses
JP2689932B2 (en) 1994-12-30 1997-12-10 日本電気株式会社 Radio selective call receiver
US5558630A (en) 1994-12-30 1996-09-24 Fisher; Bret L. Intrascleral implant and method for the regulation of intraocular pressure
GB2296663A (en) 1995-01-03 1996-07-10 Ahmed Salih Mahmud Drainage device for alleviating excess ophthalmic fluid pressure
JPH10513455A (en) 1995-02-10 1998-12-22 ザ ユニバーシティ オブ トロント イノベーションズ ファウンデーション Deprenyl compounds for the treatment of glaucoma
US5792099A (en) 1995-02-14 1998-08-11 Decamp; Dennis Syringe and cannula for insertion of viscoelastic material into an eye and method of using same
US6231600B1 (en) * 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US6059772A (en) 1995-03-10 2000-05-09 Candela Corporation Apparatus and method for treating glaucoma using a gonioscopic laser trabecular ablation procedure
BE1009278A3 (en) 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and medical device with a stake as.
US5626558A (en) 1995-05-05 1997-05-06 Suson; John Adjustable flow rate glaucoma shunt and method of using same
IL113723A (en) 1995-05-14 2002-11-10 Optonol Ltd Intraocular implant
CN1283324C (en) 1995-05-14 2006-11-08 奥普通诺尔有限公司 Intraocular implant, delivery device, and method of implantation
US5968058A (en) 1996-03-27 1999-10-19 Optonol Ltd. Device for and method of implanting an intraocular implant
WO1996037167A1 (en) 1995-05-25 1996-11-28 Raychem Corporation Stent assembly
US5723005A (en) 1995-06-07 1998-03-03 Herrick Family Limited Partnership Punctum plug having a collapsible flared section and method
AU5776696A (en) 1995-06-08 1997-01-09 Bard Galway Limited Bifurcated endovascular stent
US6194415B1 (en) * 1995-06-28 2001-02-27 Allergan Sales, Inc. Method of using (2-imidazolin-2-ylamino) quinoxoalines in treating neural injury
US5913852A (en) 1995-07-21 1999-06-22 Nemours Foundation Drain cannula
US5934285A (en) 1995-07-27 1999-08-10 Michiel S. Kritzinger Method for reducing irregular astigmatism and debris/epithelium in the interface during lamellar corneal flap/cap surgery
US5766243A (en) 1995-08-21 1998-06-16 Oasis Medical, Inc. Abrasive polished canalicular implant
US5626658A (en) * 1995-09-05 1997-05-06 Mcardle; Blaise Method of enhancing internal adhesion of cementitious compositions and compositions therefor
US5662600A (en) 1995-09-29 1997-09-02 Pudenz-Schulte Medical Research Corporation Burr-hole flow control device
US6099558A (en) 1995-10-10 2000-08-08 Edwards Lifesciences Corp. Intraluminal grafting of a bifuricated artery
US5836939A (en) 1995-10-25 1998-11-17 Plc Medical Systems, Inc. Surgical laser handpiece
US5741292A (en) 1995-10-26 1998-04-21 Eagle Vision Punctum dilating and plug inserting instrument with push-button plug release
US5651783A (en) 1995-12-20 1997-07-29 Reynard; Michael Fiber optic sleeve for surgical instruments
AU1201297A (en) * 1995-12-21 1997-07-17 Pharmacia & Upjohn Ab Ophthalmic treatment
US5741282A (en) 1996-01-22 1998-04-21 The Anspach Effort, Inc. Soft tissue fastener device
US5722948A (en) 1996-02-14 1998-03-03 Gross; Fredric J. Covering for an ocular device
US6299895B1 (en) 1997-03-24 2001-10-09 Neurotech S.A. Device and method for treating ophthalmic diseases
US5807302A (en) 1996-04-01 1998-09-15 Wandel; Thaddeus Treatment of glaucoma
US6629981B2 (en) 2000-07-06 2003-10-07 Endocare, Inc. Stent delivery system
US5830179A (en) 1996-04-09 1998-11-03 Endocare, Inc. Urological stent therapy system and method
US5865831A (en) 1996-04-17 1999-02-02 Premier Laser Systems, Inc. Laser surgical procedures for treatment of glaucoma
NL1002898C2 (en) 1996-04-18 1997-10-21 Cordis Europ Catheter with marker sleeve.
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US6530896B1 (en) * 1996-05-13 2003-03-11 James B. Elliott Apparatus and method for introducing an implant
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5669501A (en) 1996-06-05 1997-09-23 Xomed Surgical Products, Inc. Package and method for delivering a medical implant
US5902523A (en) * 1996-06-26 1999-05-11 Allergan IOLs and production methods for same
US5681323A (en) 1996-07-15 1997-10-28 Arick; Daniel S. Emergency cricothyrotomy tube insertion
US5755682A (en) 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US6120460A (en) 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US5830139A (en) 1996-09-04 1998-11-03 Abreu; Marcio M. Tonometer system for measuring intraocular pressure by applanation and/or indentation
US5655548A (en) 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
RU2143250C1 (en) 1996-09-25 1999-12-27 Астахов Сергей Юрьевич Method for treating patients suffering from a combination of glaucoma and cataract
US5733256A (en) 1996-09-26 1998-03-31 Micro Medical Devices Integrated phacoemulsification system
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
US6881197B1 (en) 1996-10-25 2005-04-19 Anamed, Inc. Sutureless implantable device and method for treatment of glaucoma
US6007510A (en) 1996-10-25 1999-12-28 Anamed, Inc. Implantable devices and methods for controlling the flow of fluids within the body
US5807244A (en) 1996-11-15 1998-09-15 Barot; Jagdish Shantilal Single use disposable iris retractor
US5941250A (en) * 1996-11-21 1999-08-24 University Of Louisville Research Foundation Inc. Retinal tissue implantation method
AUPO394496A0 (en) 1996-11-29 1997-01-02 Lions Eye Institute Biological microfistula tube and implantation method and apparatus
FR2757068B1 (en) 1996-12-13 1999-04-23 Jussmann Alberto SELF-FIXING DRAIN
DE19651951C2 (en) 1996-12-16 2002-06-27 Adeva Medical Ges Fuer Entwick Shunt valve
US6261256B1 (en) 1996-12-20 2001-07-17 Abdul Mateen Ahmed Pocket medical valve & method
GB9700390D0 (en) 1997-01-10 1997-02-26 Biocompatibles Ltd Device for use in the eye
US5713844A (en) 1997-01-10 1998-02-03 Peyman; Gholam A. Device and method for regulating intraocular pressure
US6780165B2 (en) 1997-01-22 2004-08-24 Advanced Medical Optics Micro-burst ultrasonic power delivery
DE19705815C2 (en) * 1997-02-15 1999-02-11 Heidelberg Engineering Optisch Medical device for microsurgery on the eye
FR2759577B1 (en) 1997-02-17 1999-08-06 Corneal Ind DEEP SCLERECTOMY IMPLANT
US6071286A (en) 1997-02-19 2000-06-06 Mawad; Michel E. Combination angioplasty balloon/stent deployment device
US5893837A (en) 1997-02-28 1999-04-13 Staar Surgical Company, Inc. Glaucoma drain implanting device and method
US5801094A (en) 1997-02-28 1998-09-01 United Microelectronics Corporation Dual damascene process
US6059812A (en) 1997-03-21 2000-05-09 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
JP3827429B2 (en) 1997-04-03 2006-09-27 オリンパス株式会社 Surgical microscope
US5882327A (en) 1997-04-17 1999-03-16 Jacob; Jean T. Long-term glaucoma drainage implant
US6033418A (en) * 1997-04-25 2000-03-07 New Jersey Institute Of Technology Method and device for corneal shaping and refractive correction
US6050970A (en) 1997-05-08 2000-04-18 Pharmacia & Upjohn Company Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US5752928A (en) 1997-07-14 1998-05-19 Rdo Medical, Inc. Glaucoma pressure regulator
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US5830171A (en) 1997-08-12 1998-11-03 Odyssey Medical, Inc. Punctal occluder
EP0898947A3 (en) 1997-08-15 1999-09-08 GRIESHABER & CO. AG SCHAFFHAUSEN Method and apparatus to improve the outflow of the aqueous humor of an eye
US6004302A (en) 1997-08-28 1999-12-21 Brierley; Lawrence A. Cannula
US6203513B1 (en) 1997-11-20 2001-03-20 Optonol Ltd. Flow regulating implant, method of manufacture, and delivery device
US8313454B2 (en) 1997-11-20 2012-11-20 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
US6036682A (en) 1997-12-02 2000-03-14 Scimed Life Systems, Inc. Catheter having a plurality of integral radiopaque bands
EP1039847A1 (en) 1997-12-15 2000-10-04 Prolifix Medical, Inc. Vascular stent for reduction of restenosis
US6050999A (en) * 1997-12-18 2000-04-18 Keravision, Inc. Corneal implant introducer and method of use
US6682500B2 (en) 1998-01-29 2004-01-27 David Soltanpour Synthetic muscle based diaphragm pump apparatuses
US6168575B1 (en) * 1998-01-29 2001-01-02 David Pyam Soltanpour Method and apparatus for controlling intraocular pressure
US7780623B2 (en) 1998-01-29 2010-08-24 Soltanpour David P Implantable pump apparatuses
US6589198B1 (en) 1998-01-29 2003-07-08 David Soltanpour Implantable micro-pump assembly
US6224570B1 (en) 1998-02-06 2001-05-01 Possis Medical, Inc. Rheolytic thrombectomy catheter and method of using same
US6030416A (en) 1998-02-13 2000-02-29 Pharmacia & Upjohn Ab Medical implants of stretch-crystallizable elastomers and methods of implantation
FR2777442B1 (en) 1998-04-21 2000-07-28 Tornier Sa REVERSIBLE EXPANSION SUTURE ANCHOR
EP1071414A1 (en) 1998-04-24 2001-01-31 Mitokor Compounds and methods for treating mitochondria-associated diseases
US6371960B2 (en) 1998-05-19 2002-04-16 Bausch & Lomb Surgical, Inc. Device for inserting a flexible intraocular lens
US6231853B1 (en) * 1998-06-01 2001-05-15 Incyte Pharmaceuticals, Inc. Human glutathione peroxidase-6
US6306114B1 (en) 1998-06-16 2001-10-23 Eagle Vision, Inc. Valved canalicular plug for lacrimal duct occlusion
US6077299A (en) * 1998-06-22 2000-06-20 Eyetronic, Llc Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma
US6319274B1 (en) 1998-06-22 2001-11-20 John H. Shadduck Devices and techniques for light-mediated stimulation of trabecular meshwork in glaucoma therapy
US6402734B1 (en) 1998-07-02 2002-06-11 Jeffrey N. Weiss Apparatus and method for cannulating retinal blood vessels
US6591838B2 (en) 1998-07-06 2003-07-15 Scimed Life Systems, Inc. Implant system and method for bulking tissue
US6378526B1 (en) * 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
US6309374B1 (en) 1998-08-03 2001-10-30 Insite Vision Incorporated Injection apparatus and method of using same
US6146387A (en) 1998-08-26 2000-11-14 Linvatec Corporation Cannulated tissue anchor system
DE19840047B4 (en) 1998-09-02 2004-07-08 Neuhann, Thomas, Prof.Dr.med. Device for the targeted improvement and / or permanent guarantee of the permeability for eye chamber water through the trabecular mechanism in the Schlemm's Canal
KR100300527B1 (en) 1998-09-03 2001-10-27 윤덕용 Remote pressure monitoring device of sealed type and manufacture method for the same
US6290728B1 (en) 1998-09-10 2001-09-18 Percardia, Inc. Designs for left ventricular conduit
EP1112043B1 (en) 1998-09-10 2006-04-05 Percardia, Inc. Tmr shunt
US6264668B1 (en) 1998-09-16 2001-07-24 Arnold S. Prywes Ophthalmologic instrument for producing a fistula in the sclera
EP1447058A1 (en) 1998-09-30 2004-08-18 Bard Peripheral Vascular, Inc. Delivery mechanism for implantable stent
US6241721B1 (en) 1998-10-09 2001-06-05 Colette Cozean Laser surgical procedures for treatment of glaucoma
US6254612B1 (en) 1998-10-22 2001-07-03 Cordis Neurovascular, Inc. Hydraulic stent deployment system
GB9827415D0 (en) 1998-12-11 1999-02-03 Wild Andrew M Surgical apparatus and method for occluding a body passageway
US6454787B1 (en) 1998-12-11 2002-09-24 C. R. Bard, Inc. Collagen hemostatic foam
US6363938B2 (en) 1998-12-22 2002-04-02 Angiotrax, Inc. Methods and apparatus for perfusing tissue and/or stimulating revascularization and tissue growth
US6348042B1 (en) * 1999-02-02 2002-02-19 W. Lee Warren, Jr. Bioactive shunt
US6193656B1 (en) 1999-02-08 2001-02-27 Robert E. Jeffries Intraocular pressure monitoring/measuring apparatus and method
US6231597B1 (en) 1999-02-16 2001-05-15 Mark E. Deem Apparatus and methods for selectively stenting a portion of a vessel wall
US6217895B1 (en) * 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
BR0010055A (en) * 1999-04-26 2002-04-09 Gmp Vision Solutions Inc Bypass device and use thereof
US20050119601A9 (en) * 1999-04-26 2005-06-02 Lynch Mary G. Shunt device and method for treating glaucoma
US6699210B2 (en) 1999-04-27 2004-03-02 The Arizona Board Of Regents Glaucoma shunt and a method of making and surgically implanting the same
DE19920615A1 (en) 1999-05-05 2000-12-07 Tui Laser Ag Device for treating glaucorn of the eye
US6342058B1 (en) 1999-05-14 2002-01-29 Valdemar Portney Iris fixated intraocular lens and instrument for attaching same to an iris
US6558342B1 (en) 1999-06-02 2003-05-06 Optonol Ltd. Flow control device, introducer and method of implanting
US6306120B1 (en) 1999-06-07 2001-10-23 Ben Gee Tan Applicator and method for delivery of mitomycin to eye tissues during glaucoma filtering surgery
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US6221078B1 (en) 1999-06-25 2001-04-24 Stephen S. Bylsma Surgical implantation apparatus
US20080277007A1 (en) 1999-06-28 2008-11-13 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
DK1065378T3 (en) 1999-06-28 2002-07-29 California Inst Of Techn Elastomeric micropump and micro valve systems
US8550119B2 (en) 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7144616B1 (en) 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6201001B1 (en) * 1999-08-02 2001-03-13 Abbott Laboratories Imidazole antiproliferative agents
US6596296B1 (en) 1999-08-06 2003-07-22 Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
US7033603B2 (en) * 1999-08-06 2006-04-25 Board Of Regents The University Of Texas Drug releasing biodegradable fiber for delivery of therapeutics
WO2001013832A1 (en) 1999-08-23 2001-03-01 Conceptus, Inc. Insertion/deployment catheter system for intrafallopian contraception
US6605053B1 (en) 1999-09-10 2003-08-12 Percardia, Inc. Conduit designs and related methods for optimal flow control
US6187016B1 (en) * 1999-09-14 2001-02-13 Daniel G. Hedges Stent retrieval device
US6416777B1 (en) 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
ATE283013T1 (en) 1999-10-21 2004-12-15 Alcon Inc MEDICATION DELIVERY DEVICE
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6579235B1 (en) * 1999-11-01 2003-06-17 The Johns Hopkins University Method for monitoring intraocular pressure using a passive intraocular pressure sensor and patient worn monitoring recorder
US7758624B2 (en) 2000-11-13 2010-07-20 C. R. Bard, Inc. Implant delivery device
US6287313B1 (en) 1999-11-23 2001-09-11 Sdgi Holdings, Inc. Screw delivery system and method
JP2003514616A (en) 1999-11-24 2003-04-22 グリースハーバー ウント コンパニー アーゲー シャフハウゼン Apparatus for improving the outflow of aqueous humor in a living eye
DE29920949U1 (en) 1999-11-29 2000-04-27 Bugge Mogens Suction tube for surgical purposes
US20020072673A1 (en) 1999-12-10 2002-06-13 Yamamoto Ronald K. Treatment of ocular disease
US6450937B1 (en) 1999-12-17 2002-09-17 C. R. Bard, Inc. Needle for implanting brachytherapy seeds
WO2001049227A1 (en) 2000-01-03 2001-07-12 Johns Hopkins University Surgical devices and methods of use thereof for enhanced tactile perception
WO2001049352A2 (en) 2000-01-03 2001-07-12 Johns Hopkins University Device and method for manual retinal vein catheterization
US6726676B2 (en) 2000-01-05 2004-04-27 Grieshaber & Co. Ag Schaffhausen Method of and device for improving the flow of aqueous humor within the eye
US20050119737A1 (en) 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
PL362931A1 (en) 2000-01-12 2004-11-02 Becton, Dickinson And Company Systems and methods for reducing intraocular pressure
US20030212383A1 (en) 2001-01-05 2003-11-13 Dana Cote System and methods for reducing intraocular pressure
US6589203B1 (en) 2000-01-26 2003-07-08 Peter Mitrev Glaucoma drainage device implant
US6375642B1 (en) 2000-02-15 2002-04-23 Grieshaber & Co. Ag Schaffhausen Method of and device for improving a drainage of aqueous humor within the eye
US6471666B1 (en) 2000-02-24 2002-10-29 Steven A. Odrich Injectable glaucoma device
US6623283B1 (en) 2000-03-08 2003-09-23 Autosplice, Inc. Connector with base having channels to facilitate surface mount solder attachment
US7077848B1 (en) 2000-03-11 2006-07-18 John Hopkins University Sutureless occular surgical methods and instruments for use in such methods
US6613343B2 (en) 2000-04-12 2003-09-02 Pharmacia Groningen Bv Injectable intraocular accommodating lens
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US20050049578A1 (en) * 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US20030060752A1 (en) * 2000-04-14 2003-03-27 Olav Bergheim Glaucoma device and methods thereof
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US20040111050A1 (en) * 2000-04-14 2004-06-10 Gregory Smedley Implantable ocular pump to reduce intraocular pressure
US7135009B2 (en) 2001-04-07 2006-11-14 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US20020143284A1 (en) 2001-04-03 2002-10-03 Hosheng Tu Drug-releasing trabecular implant for glaucoma treatment
US20050277864A1 (en) 2000-04-14 2005-12-15 David Haffner Injectable gel implant for glaucoma treatment
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
ATE464031T1 (en) 2000-05-08 2010-04-15 Optima Ltd I NON-PENETRATING FILTRATION SURGERY
US8679089B2 (en) 2001-05-21 2014-03-25 Michael S. Berlin Glaucoma surgery methods and systems
CA2446143C (en) * 2000-05-19 2010-01-19 Michael S. Berlin Delivery system and method of use for the eye
US9603741B2 (en) 2000-05-19 2017-03-28 Michael S. Berlin Delivery system and method of use for the eye
US6561974B1 (en) * 2000-05-31 2003-05-13 Grieshaber & Co. Ag Schaffhausen Device for use in a surgical procedure on an eye of a living being, and method of retracting the iris
AU2001268253A1 (en) 2000-06-19 2002-01-02 Glaukos Corporation Stented trabecular shunt and methods thereof
US6582453B1 (en) 2000-07-14 2003-06-24 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US6629992B2 (en) 2000-08-04 2003-10-07 Advanced Cardiovascular Systems, Inc. Sheath for self-expanding stent
US6699211B2 (en) * 2000-08-22 2004-03-02 James A. Savage Method and apparatus for treatment of glaucoma
FR2813521B1 (en) 2000-09-01 2003-06-13 Ioltechnologie Production GLAUCOME DRAIN
US6428501B1 (en) 2000-09-19 2002-08-06 K2 Limited Partnership U/A/D Surgical instrument sleeve
US6730056B1 (en) * 2000-09-21 2004-05-04 Motorola, Inc. Eye implant for treating glaucoma and method for manufacturing same
US6962573B1 (en) 2000-10-18 2005-11-08 Wilcox Michael J C-shaped cross section tubular ophthalmic implant for reduction of intraocular pressure in glaucomatous eyes and method of use
US6428566B1 (en) 2000-10-31 2002-08-06 Advanced Cardiovascular Systems, Inc. Flexible hoop and link sheath for a stent delivery system
WO2002036052A1 (en) 2000-11-01 2002-05-10 Glaukos Corporation Glaucoma treatment device
FR2817912B1 (en) 2000-12-07 2003-01-17 Hispano Suiza Sa REDUCER TAKING OVER THE AXIAL EFFORTS GENERATED BY THE BLOWER OF A TURBO-JET
DE10062478A1 (en) 2000-12-14 2002-07-04 Glautec Ag Glaucoma treatment device
US6544208B2 (en) 2000-12-29 2003-04-08 C. Ross Ethier Implantable shunt device
US6881198B2 (en) 2001-01-09 2005-04-19 J. David Brown Glaucoma treatment device and method
US6595945B2 (en) 2001-01-09 2003-07-22 J. David Brown Glaucoma treatment device and method
DE10200617A1 (en) 2001-01-17 2002-07-18 Humanoptics Ag Implant for determining pressure of fluid in the eye chamber, has transceiver for transmitting measurement values to corresponding data processor transceiver to permit continuous pressure measurement
EP2335660B1 (en) 2001-01-18 2018-03-28 The Regents of The University of California Minimally invasive glaucoma surgical instrument
US6827738B2 (en) 2001-01-30 2004-12-07 Timothy R. Willis Refractive intraocular implant lens and method
ATE337766T1 (en) 2001-02-23 2006-09-15 Refocus Ocular Inc CUTTING DEVICE FOR SCLEROTIC IMPLANTS
DE60238665D1 (en) 2001-02-27 2011-02-03 Senju Pharma Co DRUG RELIEF SYSTEM FROM A BIODEGRADABLE POLYMER
JP2004525695A (en) 2001-03-16 2004-08-26 グローコス コーポレーション Applicator and method for positioning trabecular shunt for glaucoma treatment
US6585753B2 (en) 2001-03-28 2003-07-01 Scimed Life Systems, Inc. Expandable coil stent
US6666841B2 (en) 2001-05-02 2003-12-23 Glaukos Corporation Bifurcatable trabecular shunt for glaucoma treatment
US6981958B1 (en) 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
US7488303B1 (en) 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
DE10118933A1 (en) 2001-04-18 2002-11-14 Glautec Ag Glaucoma treatment device
AT409586B (en) 2001-04-26 2002-09-25 Clemens Dr Vass Implant draining aqueous humor from anterior chamber of eye into Schlemm's channel, includes fixation plate for stabilization on sclera
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
AU2002305400A1 (en) 2001-05-03 2002-11-18 Glaukos Corporation Medical device and methods of use for glaucoma treatment
US6533769B2 (en) 2001-05-03 2003-03-18 Holmen Joergen Method for use in cataract surgery
DE10127666A1 (en) 2001-06-07 2003-01-09 Glautec Ag Apparatus for glaucoma treatment by means of a laser catheter includes a stent made of a material which dissolves after a certain time
WO2002103210A1 (en) 2001-06-15 2002-12-27 Hansford Derek J Nanopump devices and methods
US7592016B2 (en) 2001-06-28 2009-09-22 Regents Of The University Of California Methods for preparing and using implantable substance delivery devices
US8267995B2 (en) 2001-08-03 2012-09-18 David Castillejos Method and intra sclera implant for treatment of glaucoma and presbyopia
RU2197206C1 (en) 2001-08-15 2003-01-27 Свадовский Александр Игоревич Method for treating the cases of glaucoma
CA2457137A1 (en) 2001-08-16 2003-02-27 Gmp Vision Solutions, Inc. Improved shunt device and method for treating glaucoma
US7331984B2 (en) * 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
IN2014DN10834A (en) 2001-09-17 2015-09-04 Psivida Inc
US6767346B2 (en) 2001-09-20 2004-07-27 Endocare, Inc. Cryosurgical probe with bellows shaft
US20030097151A1 (en) * 2001-10-25 2003-05-22 Smedley Gregory T. Apparatus and mitochondrial treatment for glaucoma
US7163543B2 (en) * 2001-11-08 2007-01-16 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20030093084A1 (en) * 2001-11-13 2003-05-15 Optonol Ltd. Delivery devices for flow regulating implants
EP1448124A1 (en) 2001-11-15 2004-08-25 Optotech Ltd. Non-penetrating filtration surgery
US6802829B2 (en) 2001-11-16 2004-10-12 Infinite Vision, Llc Spray device
US8491549B2 (en) 2001-11-21 2013-07-23 Iscience Interventional Corporation Ophthalmic microsurgical system
EP1810645B1 (en) 2001-11-22 2010-07-28 Eduard Anton Haefliger Device and method for performing ophthalmologic operations
US20030105456A1 (en) 2001-12-04 2003-06-05 J.T. Lin Apparatus and methods for prevention of age-related macular degeneration and other eye diseases
US6893413B2 (en) 2002-01-07 2005-05-17 Eric C. Martin Two-piece stent combination for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US6966888B2 (en) 2002-01-13 2005-11-22 Eagle Vision, Inc. Sinus valved glaucoma shunt
US20030153863A1 (en) 2002-02-13 2003-08-14 Patel Anilbhai S. Implant system for glaucoma surgery
WO2003073968A2 (en) 2002-02-28 2003-09-12 Gmp Vision Solutions, Inc. Device and method for monitoring aqueous flow within the eye
US20060200113A1 (en) 2002-03-07 2006-09-07 David Haffner Liquid jet for glaucoma treatment
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20030229303A1 (en) 2002-03-22 2003-12-11 Haffner David S. Expandable glaucoma implant and methods of use
US6902577B2 (en) 2002-03-29 2005-06-07 Isaac Lipshitz Intraocular lens implant with mirror
US20040147870A1 (en) 2002-04-08 2004-07-29 Burns Thomas W. Glaucoma treatment kit
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US20030195438A1 (en) 2002-04-12 2003-10-16 Petillo Phillip J. Method and apparatus to treat glaucoma
US20040024345A1 (en) * 2002-04-19 2004-02-05 Morteza Gharib Glaucoma implant with valveless flow bias
US7041114B2 (en) 2002-05-01 2006-05-09 D.O.T. Dan Ophthalmic Technologies Ltd. Surgical tool and method for extracting tissue from wall of an organ
AU2003241530A1 (en) 2002-05-20 2003-12-12 Refocus Group, Inc. System and method for determining a position for a scleral pocket for a scleral prosthesis
CA2487733C (en) 2002-05-29 2011-07-05 University Of Saskatchewan Technologies Inc. A shunt and method treatment of glaucoma
EP1932484B1 (en) 2002-06-11 2011-04-27 Tyco Healthcare Group LP Hernia mesh tacks
US20040243227A1 (en) 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20030236483A1 (en) * 2002-06-25 2003-12-25 Ren David H Dual drainage ocular shunt for glaucoma
CN100591372C (en) 2002-07-19 2010-02-24 耶鲁大学 Uveoscleral drainage device
US20070219632A1 (en) 2002-08-02 2007-09-20 David Castillejos Method and intra-sclera implant for treatment of glaucoma and presbyopia
US7192412B1 (en) * 2002-09-14 2007-03-20 Glaukos Corporation Targeted stent placement and multi-stent therapy
WO2004026347A2 (en) 2002-09-17 2004-04-01 Iscience Surgical Corporation Apparatus and method for surgical bypass of aqueous humor
JP3688287B1 (en) 2002-09-18 2005-08-24 アラーガン、インコーポレイテッド Device for delivering an ophthalmic implant
USRE40722E1 (en) 2002-09-27 2009-06-09 Surmodics, Inc. Method and apparatus for coating of substrates
US7192484B2 (en) 2002-09-27 2007-03-20 Surmodics, Inc. Advanced coating apparatus and method
AU2003291377A1 (en) 2002-11-06 2004-06-03 Gmp Vision Solutions, Inc. Storage apparatus for surgical implant device
US7001426B2 (en) 2002-11-18 2006-02-21 The Institute For Eye Research One-piece minicapsulorhexis valve
US7160264B2 (en) 2002-12-19 2007-01-09 Medtronic-Xomed, Inc. Article and method for ocular aqueous drainage
US7544368B2 (en) 2002-12-20 2009-06-09 Life Spring Biotech Co., Ltd. Structure for modulating intraocular pressure
JP2004208898A (en) 2002-12-27 2004-07-29 Japan Science & Technology Agency Hydatoid discharging implant for glaucoma treatment
US20040162545A1 (en) 2003-02-14 2004-08-19 Brown J. David Bypass for glaucoma drainage device
RU2361552C2 (en) 2003-02-18 2009-07-20 Хампар КАРАГЕОЗЯН Ways and devices for drainage of liquids and ophthalmotonus pressure dropping
US7297154B2 (en) 2003-02-24 2007-11-20 Maxwell Sensors Inc. Optical apparatus for detecting and treating vulnerable plaque
USD490152S1 (en) * 2003-02-28 2004-05-18 Glaukos Corporation Surgical handpiece
US20050209672A1 (en) 2004-03-02 2005-09-22 Cardiomind, Inc. Sliding restraint stent delivery systems
US20040193095A1 (en) 2003-03-29 2004-09-30 Shadduck John H. Implants for treating ocular hypertension, methods of use and methods of fabrication
US20040193262A1 (en) 2003-03-29 2004-09-30 Shadduck John H. Implants for treating ocular hypertension, methods of use and methods of fabrication
US20070073275A1 (en) 2003-04-16 2007-03-29 Conston Stanley R Ophthalmic microsurgical instruments
US20050038498A1 (en) 2003-04-17 2005-02-17 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7025740B2 (en) 2003-04-22 2006-04-11 Ahmed A Mateen Device for treating glaucoma & method of manufacture
US20040225250A1 (en) 2003-05-05 2004-11-11 Michael Yablonski Internal shunt and method for treating glaucoma
US20040236343A1 (en) 2003-05-23 2004-11-25 Taylor Jon B. Insertion tool for ocular implant and method for using same
CA2528060C (en) 2003-06-10 2012-12-11 Neomedix Corporation Device and methods useable for treatment of glaucoma and other surgical procedures
ES2386994T3 (en) 2003-06-10 2012-09-10 Neomedix Corporation Tubular cutting device
US7670362B2 (en) 2003-06-13 2010-03-02 Tyco Healthcare Group Lp Multiple member interconnect for surgical instrument and absorbable screw fastener
US20060069340A1 (en) 2003-06-16 2006-03-30 Solx, Inc. Shunt for the treatment of glaucoma
CA2529495C (en) 2003-06-16 2013-02-05 Solx, Inc. Shunt for the treatment of glaucoma
US7083802B2 (en) 2003-07-31 2006-08-01 Advanced Ocular Systems Limited Treatment of ocular disease
US20050055075A1 (en) 2003-09-08 2005-03-10 Leonard Pinchuk Methods for the manufacture of porous prostheses
US7291125B2 (en) 2003-11-14 2007-11-06 Transcend Medical, Inc. Ocular pressure regulation
AU2004296205B2 (en) 2003-12-05 2009-11-12 Innfocus, Llc Glaucoma implant device
US20070149927A1 (en) 2003-12-15 2007-06-28 Terumo Kabushiki Kaisha Catheter assembly
CA2552966C (en) 2004-01-12 2012-10-30 Iscience Surgical Corporation Injector for viscous materials
WO2005072294A2 (en) 2004-01-22 2005-08-11 Solx, Inc. Glaucoma treatment method
EP1715827B1 (en) 2004-01-23 2010-12-29 iScience Interventional Corporation Composite ophthalmic microcannula
US20050250788A1 (en) 2004-01-30 2005-11-10 Hosheng Tu Aqueous outflow enhancement with vasodilated aqueous cavity
US7364564B2 (en) 2004-03-02 2008-04-29 Becton, Dickinson And Company Implant having MEMS flow module with movable, flow-controlling baffle
US7384550B2 (en) 2004-02-24 2008-06-10 Becton, Dickinson And Company Glaucoma implant having MEMS filter module
US7544176B2 (en) 2005-06-21 2009-06-09 Becton, Dickinson And Company Glaucoma implant having MEMS flow module with flexing diaphragm for pressure regulation
US20060036207A1 (en) 2004-02-24 2006-02-16 Koonmen James P System and method for treating glaucoma
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US7156821B2 (en) 2004-04-23 2007-01-02 Massachusetts Eye & Ear Infirmary Shunt with enclosed pressure-relief valve
US8114099B2 (en) 2004-04-27 2012-02-14 Tyco Healthcare Group Lp Absorbable anchor for hernia mesh fixation
US20080058704A1 (en) 2004-04-29 2008-03-06 Michael Hee Apparatus and Method for Ocular Treatment
US20100173866A1 (en) 2004-04-29 2010-07-08 Iscience Interventional Corporation Apparatus and method for ocular treatment
KR20070036044A (en) 2004-04-29 2007-04-02 아이싸이언스 인터벤셔날 코포레이션 Apparatus and method for ocular treatment
US20090043321A1 (en) 2004-04-29 2009-02-12 Iscience Interventional Corporation Apparatus And Method For Surgical Enhancement Of Aqueous Humor Drainage
AU2005253930B2 (en) 2004-05-11 2011-04-28 Oregon Health And Science University Interfacial stent and method of maintaining patency of surgical fenestrations
US7357778B2 (en) 2004-05-20 2008-04-15 Ajay Bhalla Aqueous drainage and flow regulating implant
EP1786489A2 (en) 2004-05-27 2007-05-23 Clarity Corporation Glaucoma shunt
US20060293612A1 (en) 2004-06-24 2006-12-28 Boston Scientific Scimed, Inc. Apparatus and method for treating occluded vasculature
US7862531B2 (en) 2004-06-25 2011-01-04 Optonol Ltd. Flow regulating implants
US20060032507A1 (en) * 2004-08-11 2006-02-16 Hosheng Tu Contrast-enhanced ocular imaging
US8246569B1 (en) 2004-08-17 2012-08-21 California Institute Of Technology Implantable intraocular pressure drain
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US20060173397A1 (en) 2004-11-23 2006-08-03 Hosheng Tu Ophthalmology implants and methods of manufacture
US7594899B2 (en) 2004-12-03 2009-09-29 Innfocus, Llc Glaucoma implant device
US7837644B2 (en) 2004-12-03 2010-11-23 Innfocus, Llc Glaucoma implant device
US20070118065A1 (en) 2004-12-03 2007-05-24 Leonard Pinchuk Glaucoma Implant Device
US20060129129A1 (en) 2004-12-10 2006-06-15 Cloud Farm Associates, L.P. Eye implant devices and method and device for implanting such devices for treatment of glaucoma
CA2592459C (en) 2004-12-16 2017-08-22 Iscience Interventional Corporation Ophthalmic implant for treatment of glaucoma
US20120010702A1 (en) 2004-12-16 2012-01-12 Iscience Interventional Corporation Ophthalmic implant for treatment of glaucoma
AR054647A1 (en) 2005-02-21 2007-07-11 Maldonado Bas Arturo DEVICE FOR WATER HUMOR DRAINAGE IN GLAUCOMA CASES
US7641627B2 (en) 2005-02-23 2010-01-05 Camras Carl B Method and apparatus for reducing intraocular pressure
US9186274B2 (en) 2005-02-23 2015-11-17 Camras Vision Inc. Method and apparatus for reducing intraocular pressure
CA2598696A1 (en) 2005-02-23 2006-08-31 Surmodics, Inc. Implantable medical articles having laminin coatings and methods of use
US20060217741A1 (en) 2005-03-28 2006-09-28 Ghannoum Ziad R Irrigation tip
US20130079759A1 (en) 2005-04-14 2013-03-28 Robert S. Dotson Ophthalmic Phototherapy Device and Associated Treatment Method
US20080269730A1 (en) 2005-04-14 2008-10-30 Dotson Robert S Ophthalmic Phototherapy Device and Associated Treatment Method
WO2006121066A1 (en) 2005-05-10 2006-11-16 Takuya Kataoka Ophthalmologic laser treatment instrument
JP2008539965A (en) 2005-05-10 2008-11-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Self-cleaning catheter for clinical transplantation
US20070021653A1 (en) 2005-06-27 2007-01-25 Lars-Olof Hattenbach Device for the injection of drugs into microvessels
US20090043365A1 (en) 2005-07-18 2009-02-12 Kolis Scientific, Inc. Methods, apparatuses, and systems for reducing intraocular pressure as a means of preventing or treating open-angle glaucoma
US20080108932A1 (en) 2005-08-24 2008-05-08 Rodgers M Steven MEMS filter module with multi-level filter traps
JP2009508584A (en) 2005-09-16 2009-03-05 ビージー インプラント インコーポレイテッド Glaucoma treatment apparatus and method
US20070073390A1 (en) 2005-09-23 2007-03-29 Medlogics Device Corporation Methods and devices for enhanced adhesion between metallic substrates and bioactive material-containing coatings
EP1940316B1 (en) 2005-09-26 2015-10-21 AttenueX Technologies, Inc. Pressure attenuation device
US7717872B2 (en) 2005-09-28 2010-05-18 Rajesh Kumar Shetty Fluid shunting apparatus and methods
US7771388B2 (en) 2005-10-12 2010-08-10 Daniel Olsen Steerable catheter system
US7655831B2 (en) 2005-10-19 2010-02-02 Prywes Arnold S Method for fluid control in medical applications
US7959632B2 (en) 2005-10-20 2011-06-14 Fugo Richard J Plasma incising device including disposable incising tips for performing surgical procedures
TW200733993A (en) 2005-11-03 2007-09-16 Reseal Internat Ltd Partnership Continuously sealing one way valve assembly and fluid delivery system and formulations for use therein
US20070106200A1 (en) 2005-11-08 2007-05-10 Brian Levy Intraocular shunt device and method
WO2007062306A2 (en) 2005-11-18 2007-05-31 The Board Of Regents Of The University Of Texas System Methods for coating surfaces with antimicrobial agents
US20070161981A1 (en) 2006-01-06 2007-07-12 Arthrocare Corporation Electrosurgical method and systems for treating glaucoma
ES2762239T3 (en) 2006-01-17 2020-05-22 Alcon Inc Glaucoma treatment device
US9084662B2 (en) 2006-01-17 2015-07-21 Transcend Medical, Inc. Drug delivery treatment device
US20070202186A1 (en) 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
EP1832301A3 (en) 2006-03-08 2007-12-05 Sahajanand Medical Technologies PVT. ltd Coatings for implantable medical devices
WO2007121485A2 (en) 2006-04-18 2007-10-25 Cascade Ophthalmics Intraocular pressure attenuation device
US7520876B2 (en) 2006-04-21 2009-04-21 Entellus Medical, Inc. Device and method for treatment of sinusitis
US20080039931A1 (en) 2006-04-25 2008-02-14 Surmodics, Inc. Hydrophilic shape memory insertable medical articles
US9381301B2 (en) 2006-04-26 2016-07-05 Eastern Virginia Medical School Systems and methods for monitoring and controlling internal pressure of an eye or body part
US20070293807A1 (en) 2006-05-01 2007-12-20 Lynch Mary G Dual drainage pathway shunt device and method for treating glaucoma
US7918814B2 (en) 2006-05-02 2011-04-05 Georgia Tech Research Corporation Method for drug delivery to ocular tissue using microneedle
US20070292470A1 (en) 2006-06-15 2007-12-20 Medtronic Vascular, Inc. Implantable Medical Devices and Methods for Making the Same
US20070293873A1 (en) 2006-06-19 2007-12-20 Allergan, Inc. Apparatus and methods for implanting particulate ocular implants
US8668676B2 (en) 2006-06-19 2014-03-11 Allergan, Inc. Apparatus and methods for implanting particulate ocular implants
US7458953B2 (en) 2006-06-20 2008-12-02 Gholam A. Peyman Ocular drainage device
US7909789B2 (en) 2006-06-26 2011-03-22 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US8721702B2 (en) 2010-11-15 2014-05-13 Aquesys, Inc. Intraocular shunt deployment devices
US20120197175A1 (en) 2006-06-30 2012-08-02 Aquesys, Inc. Methods, systems and apparatus for relieving pressure in an organ
US20080108933A1 (en) 2006-06-30 2008-05-08 Dao-Yi Yu Methods, Systems and Apparatus for Relieving Pressure in an Organ
US8852137B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for implanting a soft gel shunt in the suprachoroidal space
US8758290B2 (en) 2010-11-15 2014-06-24 Aquesys, Inc. Devices and methods for implanting a shunt in the suprachoroidal space
AU2007273119A1 (en) 2006-07-07 2008-01-17 Surmodics, Inc. Implantable medical articles having pro-healing coatings
EP2526909B1 (en) 2006-07-11 2020-06-24 Refocus Group, Inc. Apparatus for securing ocular tissue
US9039761B2 (en) 2006-08-04 2015-05-26 Allergan, Inc. Ocular implant delivery assemblies with distal caps
WO2008022048A2 (en) 2006-08-10 2008-02-21 California Institute Of Technology Microfluidic valve having free-floating member and method of fabrication
US20100262174A1 (en) 2006-08-11 2010-10-14 The Regents Of The University Of California Microsurgery for Treatment of Glaucoma
US7909781B2 (en) 2006-08-22 2011-03-22 Schwartz Donald N Ultrasonic treatment of glaucoma
US8043235B2 (en) 2006-08-22 2011-10-25 Schwartz Donald N Ultrasonic treatment of glaucoma
US20080097214A1 (en) 2006-09-05 2008-04-24 Capistrano Labs, Inc. Ophthalmic ultrasound probe assembly
EP2059282A4 (en) 2006-09-06 2014-04-09 Innfocus Inc Apparatus, methods and devices for treatment of ocular disorders
US20080109037A1 (en) 2006-11-03 2008-05-08 Musculoskeletal Transplant Foundation Press fit suture anchor and inserter assembly
US20080147083A1 (en) 2006-11-09 2008-06-19 Vold Steven D Method and device for fixation of ophthalmic tissue
JP5748407B2 (en) 2006-11-10 2015-07-15 グローコス コーポレーション Uveal sclera shunt
US20080114440A1 (en) 2006-11-13 2008-05-15 Sage Medical Technologies, Inc Methods and devices for deploying an implant in curved anatomy
FR2909883B1 (en) 2006-12-18 2012-11-30 Commissariat Energie Atomique MULTI-ARM SENSOR AND SYSTEM FOR DEEP ELECTRICAL NEUROSTIMULATION COMPRISING SUCH A PROBE
AR058947A1 (en) 2007-01-08 2008-03-05 Consejo Nac Invest Cient Tec IMPLANTABLE MICROAPARATE IN THE EYE TO RELIEF GLAUCOMA OR CAUSING DISEASE OF EYE OVERPRESSION
US20080200923A1 (en) 2007-01-09 2008-08-21 Richard Beckman Insertion tool for ocular implant and method for using same
EP2124857B1 (en) 2007-01-09 2017-03-29 Fovea Pharmaceuticals Apparatus for intra-ocular injection
DE102007004906A1 (en) 2007-01-25 2008-07-31 Universität Rostock eye implant
US8066768B2 (en) 2007-01-29 2011-11-29 Werblin Research & Development Corp. Intraocular lens system
US20080188860A1 (en) 2007-02-07 2008-08-07 Vold Steven D Ophthalmic surgical apparatus
WO2008096821A1 (en) 2007-02-08 2008-08-14 Kaneka Corporation Injector for eye
US20080208176A1 (en) 2007-02-27 2008-08-28 Ih-Houng Loh Instrument for injecting an ophthalmic device into an eye
WO2008112935A1 (en) 2007-03-13 2008-09-18 University Of Rochester Intraocular pressure regulating device
US20080243247A1 (en) 2007-03-26 2008-10-02 Poley Brooks J Method and apparatus for prevention and treatment of adult glaucoma
US20080243156A1 (en) 2007-03-30 2008-10-02 Thomas John Ophthalmic surgical instrument & surgical methods
US20080255545A1 (en) 2007-04-10 2008-10-16 Mansfield John M Apparatus and method for treating the inside of an eye
US7931660B2 (en) 2007-05-10 2011-04-26 Tyco Healthcare Group Lp Powered tacker instrument
WO2008154502A1 (en) 2007-06-07 2008-12-18 Yale University Uveoscleral drainage device
WO2008151328A2 (en) 2007-06-08 2008-12-11 Cornell University Microprobes
EP2173289A4 (en) 2007-07-17 2010-11-24 Transcend Medical Inc Ocular implant with hydrogel expansion capabilities
US20090043242A1 (en) 2007-08-07 2009-02-12 Becton, Dickinson And Company Instruments and methods for implanting corneal implant via extra-and intra-cameral routes
US7740604B2 (en) 2007-09-24 2010-06-22 Ivantis, Inc. Ocular implants for placement in schlemm's canal
US8734377B2 (en) 2007-09-24 2014-05-27 Ivantis, Inc. Ocular implants with asymmetric flexibility
US20090082862A1 (en) 2007-09-24 2009-03-26 Schieber Andrew T Ocular Implant Architectures
US8945103B2 (en) 2007-10-30 2015-02-03 Iridex Corporation Contact probe for the delivery of laser energy
US8083759B2 (en) 2007-11-02 2011-12-27 Refocus Ocular, Inc. Apparatuses and methods for forming incisions in ocular tissue
US20090177138A1 (en) 2007-11-07 2009-07-09 Brown Reay H Shunt Device for Glaucoma Treatment
US20090124973A1 (en) 2007-11-09 2009-05-14 D Agostino Eduardo Insertion mechanism for use with a syringe
US8512404B2 (en) 2007-11-20 2013-08-20 Ivantis, Inc. Ocular implant delivery system and method
US9375347B2 (en) 2007-11-23 2016-06-28 Ecole Polytechnique Federale De Lausanne (Epfl) Non-invasively adjustable drainage device
US20090137992A1 (en) 2007-11-27 2009-05-28 Ravi Nallakrishnan Apparatus and Method for Treating Glaucoma
US8583242B2 (en) 2008-01-04 2013-11-12 Doheny Eye Institute Subchoroidal retinal prosthesis
EP3108933B1 (en) 2008-01-07 2019-09-18 Salutaris Medical Devices, Inc. Devices for minimally-invasive extraocular delivery of radiation to the posterior portion of the eye
US9539138B2 (en) 2008-01-30 2017-01-10 Takaya TANAKA Method of ophthalmic surgery and kit therefor
US8109896B2 (en) 2008-02-11 2012-02-07 Optonol Ltd. Devices and methods for opening fluid passageways
JP2011513002A (en) 2008-03-05 2011-04-28 イバンティス インコーポレイテッド Method and apparatus for treating glaucoma
US20110082385A1 (en) 2008-04-17 2011-04-07 Yale University Method for implanting intraocular pressure sensor
EP2291155B1 (en) 2008-05-15 2013-08-28 Mynosys Cellular Devices, Inc. Ophthalmic surgical device for capsulotomy
US20090287233A1 (en) 2008-05-15 2009-11-19 Huculak John C Small Gauge Mechanical Tissue Cutter/Aspirator Probe For Glaucoma Surgery
US8157759B2 (en) 2008-05-16 2012-04-17 Ocumatrix, Inc. Method and apparatus for fluid drainage of the eye
ES2640867T3 (en) 2008-06-25 2017-11-07 Novartis Ag Eye implant with ability to change shape
US8628492B2 (en) 2008-07-01 2014-01-14 California Institute Of Technology Implantable glaucoma drainage device
US20100056977A1 (en) 2008-08-26 2010-03-04 Thaddeus Wandel Trans-corneal shunt and method
US8353856B2 (en) 2008-11-05 2013-01-15 Abbott Medical Optics Inc. Glaucoma drainage shunts and methods of use
US7695135B1 (en) 2008-11-11 2010-04-13 Boston Foundation For Sight Scleral lens with scalloped channels or circumferential fenestrated channels
US8079972B2 (en) 2008-11-20 2011-12-20 Schocket Stanley S Implant for use in surgery for glaucoma and a method
CN102238926B (en) 2008-12-05 2015-09-16 伊万提斯公司 For ocular implants being transported to the method and apparatus in eyes
CH700161A2 (en) 2008-12-22 2010-06-30 Grieshaber Ophthalmic Res Foun IMPLANT FOR INTRODUCING into Schlemm's canal AN EYE.
US8545554B2 (en) 2009-01-16 2013-10-01 Allergan, Inc. Intraocular injector
EP2548538B1 (en) 2009-01-28 2020-04-01 Alcon Inc. Implantation systems for ocular implants with stiffness qualities
AU2010229789B2 (en) 2009-03-26 2014-11-13 Johnson & Johnson Surgical Vision, Inc. Glaucoma shunts with flow management and improved surgical performance
WO2010115101A1 (en) 2009-04-03 2010-10-07 Transcend Medical, Inc. Ocular implant delivery systems and methods
US8764696B2 (en) 2009-06-16 2014-07-01 Mobius Therapeutics, Inc. Medical drainage devices with carbon-based structures for inhibiting growth of fibroblasts
AU2010271218B2 (en) 2009-07-09 2017-02-02 Alcon Inc. Ocular implants and methods for delivering ocular implants into the eye
AU2010271274B2 (en) 2009-07-09 2015-05-21 Alcon Inc. Single operator device for delivering an ocular implant
US20120130467A1 (en) 2009-07-24 2012-05-24 Selden Nathan R Interfacial stent and method of maintaining patency of surgical fenestrations
US8535333B2 (en) 2009-07-29 2013-09-17 Transcend Medical, Inc. Ocular implant applier and methods of use
US20110118835A1 (en) 2009-08-13 2011-05-19 Matthew Silvestrini Branched ocular implant
US8951221B2 (en) 2009-08-20 2015-02-10 Grieshaber Ophthalmic Research Foundation Method and device for the treatment of glaucoma
US8419673B2 (en) 2009-09-21 2013-04-16 Alcon Research, Ltd. Glaucoma drainage device with pump
US8545431B2 (en) 2009-09-21 2013-10-01 Alcon Research, Ltd. Lumen clearing valve for glaucoma drainage device
US20110071454A1 (en) 2009-09-21 2011-03-24 Alcon Research, Ltd. Power Generator For Glaucoma Drainage Device
US8721580B2 (en) 2009-09-21 2014-05-13 Alcon Research, Ltd. Power saving glaucoma drainage device
US8257295B2 (en) 2009-09-21 2012-09-04 Alcon Research, Ltd. Intraocular pressure sensor with external pressure compensation
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
WO2011046949A2 (en) 2009-10-12 2011-04-21 The Regents Of The University Of Colorado, A Body Corporate Implants for reducing intraocular pressure
EP2490621A4 (en) 2009-10-23 2013-04-03 Ivantis Inc Ocular implant system and method
US8771216B2 (en) 2009-11-06 2014-07-08 University Hospitals Of Cleveland Fluid communication device and method of use thereof
US8845572B2 (en) 2009-11-13 2014-09-30 Grieshaber Ophthalmic Research Foundation Method and device for the treatment of glaucoma
US8372423B2 (en) 2009-11-25 2013-02-12 Healionics Corporation Implantable medical devices having microporous surface layers and method for reducing foreign body response to the same
US20110144641A1 (en) 2009-12-15 2011-06-16 Alcon Research, Ltd. High-Intensity Pulsed Electric Field Vitrectomy Apparatus
US8529492B2 (en) 2009-12-23 2013-09-10 Trascend Medical, Inc. Drug delivery devices and methods
US8529622B2 (en) 2010-02-05 2013-09-10 Sight Sciences, Inc. Intraocular implants and related kits and methods
US20110202049A1 (en) 2010-02-18 2011-08-18 Alcon Research, Ltd. Small Gauge Ablation Probe For Glaucoma Surgery
CA2791278C (en) 2010-02-25 2015-11-24 The Johns Hopkins University Sustained delivery of therapeutic agents to an eye compartment
US20110230877A1 (en) 2010-03-16 2011-09-22 Alcon Research, Ltd. Pulsed Electric Field Probe for Glaucoma Surgery
US20110245753A1 (en) 2010-04-05 2011-10-06 Sunalp Murad A Apparatus and method for lowering intraocular pressure in an eye
US20110248671A1 (en) 2010-04-08 2011-10-13 Alcon Research, Ltd. Power System Implantable in Eye
PT2575715E (en) 2010-05-27 2014-12-22 Ellex Iscience Inc Device for placing circumferential implant in schlemm's canal
US8545430B2 (en) 2010-06-09 2013-10-01 Transcend Medical, Inc. Expandable ocular devices
US8444589B2 (en) 2010-06-09 2013-05-21 Transcend Medical, Inc. Ocular implant with fluid outflow pathways having microporous membranes
WO2011163505A1 (en) 2010-06-23 2011-12-29 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
WO2012006053A1 (en) 2010-06-29 2012-01-12 Kullervo Henrik Hynynen Thermal therapy apparatus and method using focused ultrasonic sound fields
US8449490B2 (en) 2010-09-11 2013-05-28 Aleeva Medical Inc. Disc shunt delivery with stepped needle
US9370444B2 (en) 2010-10-12 2016-06-21 Emmett T. Cunningham, JR. Subconjunctival conformer device and uses thereof
US8915877B2 (en) 2010-10-12 2014-12-23 Emmett T. Cunningham, JR. Glaucoma drainage device and uses thereof
EP2627292B1 (en) 2010-10-15 2018-10-10 Clearside Biomedical, Inc. Device for ocular access
US8585629B2 (en) 2010-11-15 2013-11-19 Aquesys, Inc. Systems for deploying intraocular shunts
US9668915B2 (en) 2010-11-24 2017-06-06 Dose Medical Corporation Drug eluting ocular implant
JP2014507978A (en) 2011-01-14 2014-04-03 エコール ポリテクニーク フェデラル ドゥ ローザンヌ ウペエフエル−テーテーオー Apparatus and method for treating excess intraocular fluid
WO2012099873A1 (en) 2011-01-18 2012-07-26 Minipums, Llc Surgical implantation instrument
EP2517619B1 (en) 2011-04-27 2013-05-22 Istar Medical Improvements in or relating to glaucoma management and treatment
US20120283557A1 (en) 2011-05-05 2012-11-08 Berlin Michael S Methods and Apparatuses for the Treatment of Glaucoma using visible and infrared ultrashort laser pulses
US20120310137A1 (en) 2011-06-02 2012-12-06 Silvestrini Thomas A Eye shunt with porous structure
US8747299B2 (en) 2011-06-02 2014-06-10 Grieshaber Ophtalmic Research Foundation Method and device for the pathology analysis of the Schlemm's canal
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
EP4193907A1 (en) 2011-09-13 2023-06-14 Glaukos Corporation Intraocular physiological sensor
US9072588B2 (en) 2011-10-03 2015-07-07 Alcon Research, Ltd. Selectable varied control valve systems for IOP control systems
US8585631B2 (en) 2011-10-18 2013-11-19 Alcon Research, Ltd. Active bimodal valve system for real-time IOP control
US8753305B2 (en) 2011-12-06 2014-06-17 Alcon Research, Ltd. Bubble-driven IOP control system
US8771220B2 (en) 2011-12-07 2014-07-08 Alcon Research, Ltd. Glaucoma active pressure regulation shunt
US8852136B2 (en) 2011-12-08 2014-10-07 Aquesys, Inc. Methods for placing a shunt into the intra-scleral space
US8579848B2 (en) 2011-12-09 2013-11-12 Alcon Research, Ltd. Active drainage systems with pressure-driven valves and electronically-driven pump
US8840578B2 (en) 2011-12-09 2014-09-23 Alcon Research, Ltd. Multilayer membrane actuators
US8585664B2 (en) 2011-12-12 2013-11-19 Alcon Research, Ltd System and method for powering ocular implants
US20130150777A1 (en) 2011-12-12 2013-06-13 Sebastian Böhm Glaucoma Drainage Devices Including Vario-Stable Valves and Associated Systems and Methods
US8603024B2 (en) 2011-12-12 2013-12-10 Alcon Research, Ltd. Glaucoma drainage devices including vario-stable valves and associated systems and methods
WO2013090231A1 (en) 2011-12-13 2013-06-20 Alcon Research, Ltd. Active drainage systems with dual-input pressure-driven valves
US9339187B2 (en) 2011-12-15 2016-05-17 Alcon Research, Ltd. External pressure measurement system and method for an intraocular implant
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US9101444B2 (en) 2012-01-12 2015-08-11 Innfocus, Inc. Method, surgical kit and device for treating glaucoma
EP2814555B1 (en) 2012-02-13 2017-09-27 Iridex Corporation Reduction of intraocular pressure in the eye using a tubular clip
US8986240B2 (en) 2012-02-14 2015-03-24 Alcon Research, Ltd. Corrugated membrane actuators
US9155653B2 (en) 2012-02-14 2015-10-13 Alcon Research, Ltd. Pressure-driven membrane valve for pressure control system
CA2868341C (en) 2012-03-26 2021-01-12 Glaukos Corporation System and method for delivering multiple ocular implants
US8998838B2 (en) 2012-03-29 2015-04-07 Alcon Research, Ltd. Adjustable valve for IOP control with reed valve
US9308082B2 (en) 2012-08-07 2016-04-12 RegenEye, L.L.C. Ocular collar stent for treating narrowing of the irideocorneal angle
US8864701B2 (en) 2012-08-13 2014-10-21 Alcon Research, Ltd. Implantable MEMS device and method
US8956320B2 (en) 2012-08-28 2015-02-17 Alcon Research, Ltd. Capillary valve
US9132034B2 (en) 2012-10-01 2015-09-15 Alcon Research, Ltd. Valve position sensor
WO2014078288A1 (en) 2012-11-14 2014-05-22 Transcend Medical, Inc. Flow promoting ocular implant
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
WO2014145021A1 (en) 2013-03-15 2014-09-18 Orange County Glaucoma, Pc Enhancement of aqueous flow
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US20150253308A1 (en) 2013-05-03 2015-09-10 Orasis Compositions and methods of treating glaucoma
US9226851B2 (en) 2013-08-24 2016-01-05 Novartis Ag MEMS check valve chip and methods
US9289324B2 (en) 2013-08-26 2016-03-22 Novartis Ag Externally adjustable passive drainage device
US9283115B2 (en) 2013-08-26 2016-03-15 Novartis Ag Passive to active staged drainage device
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533768B1 (en) * 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof

Cited By (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10390993B1 (en) 2000-05-19 2019-08-27 Ivantis, Inc. Delivery system and method of use for the eye
US10687978B2 (en) 2000-05-19 2020-06-23 Ivantis, Inc. Delivery system and method of use for the eye
US10159601B2 (en) 2000-05-19 2018-12-25 Ivantis, Inc. Delivery system and method of use for the eye
US10335314B2 (en) 2000-05-19 2019-07-02 Ivantis, Inc. Delivery system and method of use for the eye
US8444588B2 (en) 2003-05-05 2013-05-21 Transcend Medical, Inc. Internal shunt and method for treating glaucoma
US8945038B2 (en) 2003-05-05 2015-02-03 Transcend Medical, Inc. Internal shunt and method for treating glaucoma
US20070149915A1 (en) * 2003-05-05 2007-06-28 Judith Yablonski Internal shunt and method for treating glaucoma
US9844462B2 (en) 2003-05-05 2017-12-19 Novartis Ag Internal shunt and method for treating glaucoma
US9351873B2 (en) 2003-11-14 2016-05-31 Transcend Medical, Inc. Ocular pressure regulation
US7850638B2 (en) 2003-11-14 2010-12-14 Transcend Medical, Inc. Ocular pressure regulation
US20070088242A1 (en) * 2003-11-14 2007-04-19 Coroneo Minas T Ocular pressure regulation
US20080195027A1 (en) * 2003-11-14 2008-08-14 Minas Theodore Coroneo Ocular pressure regulation
US8771218B2 (en) 2003-11-14 2014-07-08 Transcend Medical, Inc. Ocular pressure regulation
US7815592B2 (en) 2003-11-14 2010-10-19 Transcend Medical, Inc. Ocular pressure regulation
US8486000B2 (en) 2003-11-14 2013-07-16 Transcend Medical, Inc. Ocular pressure regulation
US8728021B2 (en) 2003-11-14 2014-05-20 Transcend Medical, Inc. Ocular pressure regulation
US10226380B2 (en) 2003-11-14 2019-03-12 Novartis Ag Ocular pressure regulation
US20070106235A1 (en) * 2003-11-14 2007-05-10 Coroneo Minas T Ocular Pressure Regulation
US8808220B2 (en) 2003-11-14 2014-08-19 Transcend Medical, Inc. Ocular pressure regulation
US20070106236A1 (en) * 2003-11-14 2007-05-10 Coroneo Minas T Ocular Pressure Regulation
US20110087151A1 (en) * 2003-11-14 2011-04-14 Minas Theodore Coroneo Ocular pressure regulation
US8758289B2 (en) 2003-11-14 2014-06-24 Transcend Medical, Inc. Ocular pressure regulation
US20110087149A1 (en) * 2003-11-14 2011-04-14 Minas Theodore Coroneo Ocular pressure regulation
US8128588B2 (en) 2003-11-14 2012-03-06 Transcend Medical, Inc. Ocular pressure regulation
US20070233037A1 (en) * 2006-01-17 2007-10-04 Gifford Hanson S Iii Drug Delivery Treatment Device
US9421130B2 (en) 2006-01-17 2016-08-23 Novartis Ag. Glaucoma treatment device
US9398977B2 (en) 2006-01-17 2016-07-26 Transcend Medical, Inc. Glaucoma treatment device
US9668917B2 (en) 2006-01-17 2017-06-06 Novartis Ag Drug delivery treatment device
US11786402B2 (en) 2006-01-17 2023-10-17 Alcon Inc. Glaucoma treatment device
US9084662B2 (en) 2006-01-17 2015-07-21 Transcend Medical, Inc. Drug delivery treatment device
US8734378B2 (en) 2006-01-17 2014-05-27 Transcend Medical, Inc. Glaucoma treatment device
US20070191863A1 (en) * 2006-01-17 2007-08-16 De Juan Eugene Jr Glaucoma Treatment Device
US20110028883A1 (en) * 2006-01-17 2011-02-03 Juan Jr Eugene De Glaucoma treatment device
US8814819B2 (en) 2006-01-17 2014-08-26 Transcend Medical, Inc. Glaucoma treatment device
US8801649B2 (en) 2006-01-17 2014-08-12 Transcend Medical, Inc. Glaucoma treatment device
US10905590B2 (en) 2006-01-17 2021-02-02 Alcon Inc. Glaucoma treatment device
US9789000B2 (en) 2006-01-17 2017-10-17 Novartis Ag Glaucoma treatment device
US8721656B2 (en) 2006-01-17 2014-05-13 Transcend Medical, Inc. Glaucoma treatment device
US10398597B2 (en) 2006-06-26 2019-09-03 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US11865041B2 (en) 2006-06-26 2024-01-09 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US10314742B2 (en) 2006-06-26 2019-06-11 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US11389328B2 (en) 2006-06-26 2022-07-19 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US9585789B2 (en) 2007-07-17 2017-03-07 Novartis Ag Ocular implant with hydrogel expansion capabilities
US8672870B2 (en) 2007-07-17 2014-03-18 Transcend Medical, Inc. Ocular implant with hydrogel expansion capabilities
US11744734B2 (en) 2007-09-24 2023-09-05 Alcon Inc. Method of implanting an ocular implant
US8372026B2 (en) 2007-09-24 2013-02-12 Ivantis, Inc. Ocular implant architectures
US8282592B2 (en) 2007-09-24 2012-10-09 Ivantis, Inc. Glaucoma treatment method
US9402767B2 (en) 2007-09-24 2016-08-02 Ivantis, Inc. Ocular implant architectures
US20100222733A1 (en) * 2007-09-24 2010-09-02 Schieber Andrew T Glaucoma Treatment Method
US20090082860A1 (en) * 2007-09-24 2009-03-26 Schieber Andrew T Ocular Implants with Asymmetric Flexibility
US9610196B2 (en) 2007-09-24 2017-04-04 Ivantis, Inc. Ocular implants with asymmetric flexibility
US8734377B2 (en) 2007-09-24 2014-05-27 Ivantis, Inc. Ocular implants with asymmetric flexibility
US9039650B2 (en) 2007-09-24 2015-05-26 Ivantis, Inc. Ocular implants with asymmetric flexibility
US8961447B2 (en) 2007-09-24 2015-02-24 Ivantis, Inc. Glaucoma treatment method
US8414518B2 (en) 2007-09-24 2013-04-09 Ivantis, Inc. Glaucoma treatment method
US7740604B2 (en) 2007-09-24 2010-06-22 Ivantis, Inc. Ocular implants for placement in schlemm's canal
US8808222B2 (en) 2007-11-20 2014-08-19 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US20090132040A1 (en) * 2007-11-20 2009-05-21 Ivantis, Inc. Ocular Implant Delivery System and Method
US9050169B2 (en) 2007-11-20 2015-06-09 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US9226852B2 (en) 2007-11-20 2016-01-05 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8512404B2 (en) 2007-11-20 2013-08-20 Ivantis, Inc. Ocular implant delivery system and method
US8337509B2 (en) 2007-11-20 2012-12-25 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US20100121342A1 (en) * 2007-11-20 2010-05-13 Schieber Andrew T Methods and Apparatus for Delivering Ocular Implants Into the Eye
US9351874B2 (en) 2007-11-20 2016-05-31 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8551166B2 (en) 2007-11-20 2013-10-08 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US9066783B2 (en) 2008-03-05 2015-06-30 Ivantis, Inc. Methods and apparatus for treating glaucoma
US8267882B2 (en) 2008-03-05 2012-09-18 Ivantis, Inc. Methods and apparatus for treating glaucoma
US8529494B2 (en) 2008-03-05 2013-09-10 Ivantis, Inc. Methods and apparatus for treating glaucoma
US11504275B2 (en) 2008-03-05 2022-11-22 Alcon Inc. Methods and apparatus for treating glaucoma
US10537474B2 (en) 2008-03-05 2020-01-21 Ivantis, Inc. Methods and apparatus for treating glaucoma
US9693902B2 (en) 2008-03-05 2017-07-04 Ivantis, Inc. Methods and apparatus for treating glaucoma
US10016301B2 (en) 2008-06-25 2018-07-10 Novartis Ag Ocular implant with shape change capabilities
US20100137981A1 (en) * 2008-06-25 2010-06-03 Silvestrini Thomas A Ocular implant with shape change capabilities
US8617139B2 (en) 2008-06-25 2013-12-31 Transcend Medical, Inc. Ocular implant with shape change capabilities
US8377122B2 (en) 2009-01-28 2013-02-19 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US10531983B2 (en) 2009-01-28 2020-01-14 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US8172899B2 (en) 2009-01-28 2012-05-08 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US8262726B2 (en) 2009-01-28 2012-09-11 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US9763828B2 (en) 2009-01-28 2017-09-19 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US8167939B2 (en) 2009-01-28 2012-05-01 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US11839571B2 (en) 2009-01-28 2023-12-12 Alcon Inc. Ocular implant with stiffness qualities, methods of implantation and system
US20110087148A1 (en) * 2009-01-28 2011-04-14 Silvestrini Thomas A Ocular implant with stiffness qualities, methods of implantation and system
US11344448B2 (en) 2009-01-28 2022-05-31 Alcon Inc. Ocular implant with stiffness qualities, methods of implantation and system
US20100274258A1 (en) * 2009-01-28 2010-10-28 Silvestrini Thomas A Ocular implant with stiffness qualities, methods of implantation and system
US8574294B2 (en) 2009-01-28 2013-11-05 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US20110028983A1 (en) * 2009-01-28 2011-02-03 Silvestrini Thomas A Ocular implant with stiffness qualities, methods of implantation and system
US11426306B2 (en) 2009-05-18 2022-08-30 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US11464675B2 (en) 2009-07-09 2022-10-11 Alcon Inc. Single operator device for delivering an ocular implant
US9211213B2 (en) 2009-07-09 2015-12-15 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
US20110009958A1 (en) * 2009-07-09 2011-01-13 John Wardle Ocular Implants and Methods for Delivering Ocular Implants Into the Eye
US8425449B2 (en) 2009-07-09 2013-04-23 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
US9693899B2 (en) 2009-07-09 2017-07-04 Ivantis, Inc. Single operator device for delivering an ocular implant
US20110009874A1 (en) * 2009-07-09 2011-01-13 John Wardle Single Operator Device for Delivering an Ocular Implant
US10406025B2 (en) 2009-07-09 2019-09-10 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
US11596546B2 (en) 2009-07-09 2023-03-07 Alcon Inc. Ocular implants and methods for delivering ocular implants into the eye
US10492949B2 (en) 2009-07-09 2019-12-03 Ivantis, Inc. Single operator device for delivering an ocular implant
US11918514B2 (en) 2009-07-09 2024-03-05 Alcon Inc. Single operator device for delivering an ocular implant
US9579234B2 (en) 2009-10-23 2017-02-28 Ivantis, Inc. Ocular implant system and method
US9549846B2 (en) 2009-12-23 2017-01-24 Novartis Ag Drug delivery devices and methods
US9089392B2 (en) 2009-12-23 2015-07-28 Transcend Medical, Inc. Drug delivery devices and methods
US8529492B2 (en) 2009-12-23 2013-09-10 Trascend Medical, Inc. Drug delivery devices and methods
US10406030B2 (en) 2010-02-05 2019-09-10 Sight Sciences, Inc. Intraocular implants and related kits and methods
US11166847B2 (en) 2010-02-05 2021-11-09 Sight Sciences, Inc. Intraocular implants and related kits and methods
US9510973B2 (en) 2010-06-23 2016-12-06 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
US10004638B2 (en) 2010-11-15 2018-06-26 Aquesys, Inc. Intraocular shunt delivery
US9980854B2 (en) 2010-11-15 2018-05-29 Aquesys, Inc. Shunt placement through the sclera
US10842671B2 (en) 2010-11-15 2020-11-24 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US10307293B2 (en) 2010-11-15 2019-06-04 Aquesys, Inc. Methods for intraocular shunt placement
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
US10363168B2 (en) 2011-06-14 2019-07-30 Ivantis, Inc. Ocular implants for delivery into the eye
US9155655B2 (en) 2011-06-14 2015-10-13 Ivantis, Inc. Ocular implants for delivery into the eye
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
US9883969B2 (en) 2011-12-08 2018-02-06 Aquesys, Inc. Intrascleral shunt placement
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US11135088B2 (en) 2011-12-19 2021-10-05 Ivantis Inc. Delivering ocular implants into the eye
US9931243B2 (en) 2011-12-19 2018-04-03 Ivantis, Inc. Delivering ocular implants into the eye
US9066750B2 (en) 2011-12-19 2015-06-30 Ivantis, Inc. Delivering ocular implants into the eye
US10888453B2 (en) 2012-03-20 2021-01-12 Sight Sciences, Inc. Ocular delivery systems and methods
US9895258B2 (en) 2012-03-20 2018-02-20 Sight Sciences, Inc. Ocular delivery systems and methods
US11344447B2 (en) 2012-03-20 2022-05-31 Sight Sciences, Inc. Ocular delivery systems and methods
US11471324B2 (en) 2012-03-20 2022-10-18 Sight Sciences, Inc. Ocular delivery systems and methods
US10179066B2 (en) 2012-03-20 2019-01-15 Sight Sciences, Inc. Ocular delivery systems and methods
US11116660B2 (en) 2012-03-20 2021-09-14 Sight Sciences, Inc. Ocular delivery systems and methods
US11389327B2 (en) 2012-03-20 2022-07-19 Sight Sciences, Inc. Ocular delivery systems and methods
US11617679B2 (en) 2012-03-20 2023-04-04 Sight Sciences, Inc. Ocular delivery systems and methods
US9855167B2 (en) 2012-03-20 2018-01-02 Sight Sciences, Inc. Ocular delivery systems and methods
US10857027B2 (en) 2012-03-20 2020-12-08 Sight Sciences, Inc. Ocular delivery systems and methods
US11197780B2 (en) 2012-03-26 2021-12-14 Glaukos Corporation System and method for delivering multiple ocular implants
US10271989B2 (en) 2012-03-26 2019-04-30 Glaukos Corporation System and method for delivering multiple ocular implants
US9554940B2 (en) 2012-03-26 2017-01-31 Glaukos Corporation System and method for delivering multiple ocular implants
US9173775B2 (en) 2012-03-26 2015-11-03 Glaukos Corporation System for delivering multiple ocular implants
US9358156B2 (en) 2012-04-18 2016-06-07 Invantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US11026836B2 (en) 2012-04-18 2021-06-08 Ivantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US9241832B2 (en) 2012-04-24 2016-01-26 Transcend Medical, Inc. Delivery system for ocular implant
US9907697B2 (en) 2012-04-24 2018-03-06 Novartis Ag Delivery system for ocular implant
US10912676B2 (en) 2012-04-24 2021-02-09 Alcon Inc. Delivery system for ocular implant
US9155656B2 (en) 2012-04-24 2015-10-13 Transcend Medical, Inc. Delivery system for ocular implant
US9480598B2 (en) 2012-09-17 2016-11-01 Novartis Ag Expanding ocular implant devices and methods
US9763829B2 (en) 2012-11-14 2017-09-19 Novartis Ag Flow promoting ocular implant
US11712369B2 (en) 2012-11-28 2023-08-01 Alcon Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US10617558B2 (en) 2012-11-28 2020-04-14 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US10195078B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular flow regulation
US10195079B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular implant
US10524959B2 (en) 2013-02-27 2020-01-07 Aquesys, Inc. Intraocular shunt implantation methods and devices
US11523938B2 (en) 2013-03-15 2022-12-13 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US11559430B2 (en) 2013-03-15 2023-01-24 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US11253394B2 (en) 2013-03-15 2022-02-22 Dose Medical Corporation Controlled drug delivery ocular implants and methods of using same
US9987163B2 (en) 2013-04-16 2018-06-05 Novartis Ag Device for dispensing intraocular substances
US10369048B2 (en) 2013-06-28 2019-08-06 Aquesys, Inc. Intraocular shunt implantation
US10709547B2 (en) 2014-07-14 2020-07-14 Ivantis, Inc. Ocular implant delivery system and method
US11826104B2 (en) 2015-03-20 2023-11-28 Glaukos Corporation Gonioscopic devices
US11019997B2 (en) 2015-03-20 2021-06-01 Glaukos Corporation Gonioscopic devices
US11019996B2 (en) 2015-03-20 2021-06-01 Glaukos Corporation Gonioscopic devices
US11090188B2 (en) 2015-03-31 2021-08-17 Sight Sciences, Inc. Ocular delivery systems and methods
US10299958B2 (en) 2015-03-31 2019-05-28 Sight Sciences, Inc. Ocular delivery systems and methods
US11872158B2 (en) 2015-03-31 2024-01-16 Sight Sciences, Inc. Ocular delivery systems and methods
US10470927B2 (en) 2015-06-03 2019-11-12 Aquesys, Inc. AB externo intraocular shunt placement
US10463537B2 (en) 2015-06-03 2019-11-05 Aquesys Inc. Ab externo intraocular shunt placement
US11612517B2 (en) 2015-06-03 2023-03-28 Aquesys, Inc. Ab externo intraocular shunt placement
US11197779B2 (en) 2015-08-14 2021-12-14 Ivantis, Inc. Ocular implant with pressure sensor and delivery system
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
US11318043B2 (en) 2016-04-20 2022-05-03 Dose Medical Corporation Bioresorbable ocular drug delivery device
US11744458B2 (en) 2017-02-24 2023-09-05 Glaukos Corporation Gonioscopes
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
US11376040B2 (en) 2017-10-06 2022-07-05 Glaukos Corporation Systems and methods for delivering multiple ocular implants
USD938585S1 (en) 2017-10-27 2021-12-14 Glaukos Corporation Implant delivery apparatus
US11246753B2 (en) 2017-11-08 2022-02-15 Aquesys, Inc. Manually adjustable intraocular flow regulation
US11504270B1 (en) 2019-09-27 2022-11-22 Sight Sciences, Inc. Ocular delivery systems and methods
US11857460B2 (en) 2019-09-27 2024-01-02 Sight Sciences, Inc. Ocular delivery systems and methods
US11540940B2 (en) 2021-01-11 2023-01-03 Alcon Inc. Systems and methods for viscoelastic delivery

Also Published As

Publication number Publication date
US20060195055A1 (en) 2006-08-31
ES2324700T3 (en) 2009-08-13
US6736791B1 (en) 2004-05-18
US20190046355A1 (en) 2019-02-14
US7867205B2 (en) 2011-01-11
AU2001245522C1 (en) 2009-07-16
AU2009202842B2 (en) 2012-01-12
JP2011092765A (en) 2011-05-12
EP2078516A3 (en) 2009-11-04
US8808219B2 (en) 2014-08-19
WO2001078631A2 (en) 2001-10-25
US20050209550A1 (en) 2005-09-22
US20030187384A1 (en) 2003-10-02
JP2013208434A (en) 2013-10-10
JP3985019B2 (en) 2007-10-03
US8801648B2 (en) 2014-08-12
US20060084907A1 (en) 2006-04-20
CA2404037C (en) 2014-10-14
AU2001245522B2 (en) 2005-10-27
US20030181848A1 (en) 2003-09-25
US20050209549A1 (en) 2005-09-22
AU2006200392B8 (en) 2009-12-03
US20040249333A1 (en) 2004-12-09
US20110105987A1 (en) 2011-05-05
CA2404037A1 (en) 2001-10-25
US20030191428A1 (en) 2003-10-09
US20030120200A1 (en) 2003-06-26
US6780164B2 (en) 2004-08-24
ES2402013T3 (en) 2013-04-26
JP2007181714A (en) 2007-07-19
EP2078516B1 (en) 2013-01-02
EP2260803A2 (en) 2010-12-15
EP2260803A3 (en) 2011-03-16
US8273050B2 (en) 2012-09-25
EP2260803B1 (en) 2015-07-22
US20090137983A1 (en) 2009-05-28
ATE429882T1 (en) 2009-05-15
AU2006200392B2 (en) 2009-04-23
US20060195056A1 (en) 2006-08-31
US20080045878A1 (en) 2008-02-21
JP5255214B2 (en) 2013-08-07
DE60138540D1 (en) 2009-06-10
CA2791154C (en) 2017-01-31
US7297130B2 (en) 2007-11-20
US8814820B2 (en) 2014-08-26
CA2951478A1 (en) 2001-10-25
AU4552201A (en) 2001-10-30
EP1278492B1 (en) 2009-04-29
US9993368B2 (en) 2018-06-12
EP1278492A2 (en) 2003-01-29
US20100010414A1 (en) 2010-01-14
US20070282244A1 (en) 2007-12-06
US20080234624A2 (en) 2008-09-25
AU2009202842A1 (en) 2009-08-06
WO2001078631A3 (en) 2002-04-18
JP2004500220A (en) 2004-01-08
US20030187385A1 (en) 2003-10-02
US6955656B2 (en) 2005-10-18
US20040210185A1 (en) 2004-10-21
US20130018296A1 (en) 2013-01-17
US10485702B2 (en) 2019-11-26
AU2006200392A1 (en) 2006-02-16
EP2078516A2 (en) 2009-07-15
CA2791154A1 (en) 2001-10-25
US20070282245A1 (en) 2007-12-06
US8333742B2 (en) 2012-12-18
EP2985012A1 (en) 2016-02-17
US6638239B1 (en) 2003-10-28
US20090138081A1 (en) 2009-05-28
US20040254519A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US10485702B2 (en) System and method for treating an ocular disorder
AU2012201744B2 (en) Apparatus and method for treating ocular disorders

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION