US20050267524A1 - Split ends closure device - Google Patents

Split ends closure device Download PDF

Info

Publication number
US20050267524A1
US20050267524A1 US11/102,884 US10288405A US2005267524A1 US 20050267524 A1 US20050267524 A1 US 20050267524A1 US 10288405 A US10288405 A US 10288405A US 2005267524 A1 US2005267524 A1 US 2005267524A1
Authority
US
United States
Prior art keywords
struts
slits
pfo
tubular structure
proximal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/102,884
Inventor
Andrzej Chanduszko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NMT Medical Inc
Original Assignee
NMT Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NMT Medical Inc filed Critical NMT Medical Inc
Priority to US11/102,884 priority Critical patent/US20050267524A1/en
Assigned to NMT MEDICAL, INC. reassignment NMT MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANDUSZKO, ANDRZEJ J.
Publication of US20050267524A1 publication Critical patent/US20050267524A1/en
Priority to US12/691,648 priority patent/US8828049B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00606Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect

Definitions

  • the invention relates to devices and methods for closing defects such as a patent foramen ovale (PFO).
  • PFO patent foramen ovale
  • a PFO is a persistent, one-way, usually flap-like opening in the wall between the right atrium and left atrium of the heart. Since left atrial (LA) pressure is normally higher than right atrial (RA) pressure, the flap typically stays closed. Under certain conditions, however, RA pressure can exceed LA pressure, creating the possibility for right to left shunting that can allow blood clots to enter the systemic circulation.
  • LA left atrial
  • RA right atrial
  • the foramen ovale serves as a physiologic conduit for right-to-left shunting.
  • the increased left atrial blood flow and pressure results in functional closure of the foramen ovale.
  • This closure is typically followed by anatomical closure of the two over-lapping layers of tissue, septum primum and septum secundum.
  • a PFO has been shown to persist in a significant minority of adults.
  • a PFO has no therapeutic consequence in otherwise healthy adults, however, patients suffering a stroke or TIA in the presence of a PFO and without another cause of ischemic stroke are considered for prophylactic medical therapy to reduce the risk of a recurrent embolic event.
  • These patients can be treated with oral anticoagulants, but such drugs have the potential for adverse side effects such as hemorrhaging, hematoma, and interactions with other drugs.
  • surgery may be used to suture a PFO closed. Suturing a PFO requires attachment of septum secundum to septum primum with a stitch (continuous or interrupted), which is the common way a surgeon shuts the PFO under direct visualization.
  • Non-surgical closure of PFOs has become possible with umbrella devices and a variety of other similar mechanical closure designs developed initially for percutaneous closure of atrial septal defects (ASD). These devices allow patients to avoid the potential side effects often associated with anticoagulation therapies.
  • ASD atrial septal defects
  • Embodiments of the invention include devices and methods for closing a septal defect, including a PFO.
  • the device includes a tubular structure having dimensions suitable for insertion into a catheter, and slits extending from one or both ends that define struts that can pivot away from the rest of the tube to provide desirable anchoring of the device within a septal defect.
  • the slits can be spaced at regular or irregular intervals along the tube circumference, and can have different lengths.
  • a slit extending from one end of the tube can be aligned or offset with respect to a corresponding slit extending from the other end.
  • the configuration of slits can be designed to optimize the distribution of clamping forces provided by the struts defined by the slits.
  • struts defined by slits from one end can overlap or touch corresponding struts defined by slits from the other end.
  • the device can further include a recovery wire attached to one or more struts, such that tension applied to the recovery wire can enable the device to be retracted into the catheter.
  • the device is preferably made from a polymer with shape memory properties, and can also include a means for causing the struts to extend radially when released from the catheter into the body.
  • the means can include a tissue scaffold attached to at least one of the struts, and/or a tensioner, such as an elastic band or string.
  • the tissue scaffold can be made of a bioresorbable material, a flexible biocompatible material capable of promoting tissue growth, a polyester fabric, a Teflon-based material, a polyurethane, a metallic mesh, polyvinyl alcohol, an extracellular matrix, a synthetic bioabsorbable polymeric scaffold, collagen, and combinations thereof.
  • the device can further include whiskers to provoke an inflammatory response, a collar including a sponge-like material, a drug coating, or an anticoagulant.
  • Benefits of certain embodiments can include atraumatic shape, good conformity to the anatomy (especially when used for a PFO), small diameter delivery sheath, no permanent foreign material, ease of manufacturing, cost effectiveness, and overall simplicity. Other features and advantages will become apparent from the following detailed description and drawings.
  • FIG. 1 is a perspective view of a tube with slits used to form a closure device.
  • FIG. 2 is a perspective view of the tube of FIG. 1 with the ends shown split extending outwardly.
  • FIGS. 3 and 4 are a perspective view and front elevational view, respectively, of an embodiment with three struts and whiskers and/or sponge material.
  • FIGS. 5 and 6 are side and front (through line 6 - 6 of FIG. 5 ) views of the device of FIGS. 3 and 4 , shown positioned in the PFO.
  • FIG. 7 is a perspective view of an alternative embodiment to FIG. 3 with a tissue scaffold.
  • FIGS. 8 and 9 are further embodiments of a closure device
  • FIGS. 10 and 11 are perspective views of the device of FIG. 8 with the addition of a connector and shown in vivo.
  • FIGS. 12-16 are views of another embodiment of the present invention.
  • FIGS. 17-23 are views of another embodiment shown with and without a tissue scaffold.
  • the present invention includes embodiments of a closure device for a PFO, atrial septal defect (ASD), or other suitable defect, preferably formed from a single tube with cuts made to produce the final device shape.
  • the device can have struts that extend radially outwardly from a central portion, or loops that extend from the central portion and back to the central portion, preferably in a plane that is parallel to the defect (such as the PFO tunnel).
  • a closure device is made from a single polymer tube 10 by providing slits 12 , 14 at both ends and setting a desired shape, such as by thermo-mechanical treatment, to produce a design as shown in FIG. 2 .
  • This treatment can include heating or other thermal steps, and mechanical steps, such as folding back the struts.
  • This device has a first set of struts 16 a , 16 b and a second set of struts 18 a , 18 b at the opposite end.
  • a center portion 20 is between the ends and typically has no cuts.
  • a recovery wire 22 and lug 24 can optionally be provided at a proximal end (right atrium in case of use for a PFO) and coupled to struts 16 a , 16 b.
  • the device can be collapsed and loaded into a delivery sheath by grabbing the lug and bringing the split ends on a proximal side back together.
  • the device is formed back into a tube for deployment via a catheter.
  • the occluder reverts to its designed shape due to elastic recovery of the polymer, shape memory recovery, or/and the use of strings, springs, or elastic sheet (tensile elements).
  • tensile elements may be thinner than the frame, they can produce much higher forces than the frame itself, thus assisting the frame in its recovery. This is possible because the primary mode of deformation is in tension, while the frame deformation mode is in bending and torsion. Tensile elements also provide a way for centering so the occluder can be positioned properly in a wide defect.
  • the struts would fold over the outside of the central portion, thereby increasing the cross-sectional profile. This may be acceptable, but a smaller profile would be obtained by pulling the ends of the struts back into the tubular shape.
  • struts 18 a , 18 b are (the left atrial end in case of use in a PFO)
  • a pulling action of the device back into a catheter would naturally urge the struts back into the tubular configuration.
  • the number of radially extending parts (struts) formed from each end of a tube could be greater than two, such as any number from 3 to 10. Using many more struts, such as more than 10, may be possible but could be impractical because there could be a considerable decrease in their stiffness due to the decrease in thickness. More struts at each end may be possible with appropriate materials.
  • FIGS. 3 and 4 show a closure device 30 with 3 slits made at each end of a tube to form three struts 32 a - 32 c , 34 a - 34 c at each end of the tube.
  • Small strips referred to here as whiskers 36 , made of the same material as the tube or some other materials can be attached to the central portion 38 , or material can be partially shaved from the center region 38 of the tube.
  • whiskers can produce an inflammatory response and speed up the healing process.
  • the whiskers can have a drug coating, such as with an anti-coagulant, or can be made of a drug that is slowly dissolved.
  • a collar with a foam or sponge-like material such as polyvinyl alcohol, can be used, and can include an anti-coagulant.
  • FIGS. 5 and 6 show the embodiment of FIGS. 3 and 4 as deployed in a PFO tunnel.
  • struts 32 a and 34 a have ends that contact septum primum 50
  • struts 32 b and 34 b have ends that contact septum secundum 52 .
  • Struts 32 c and 34 c are not shown in FIG. 5 , but as indicated in FIG. 6 , they could be positioned against septum primum or septum secundum. These struts cooperate to provide a compressive clamping force to the PFO.
  • Center portion 38 can extend through the PFO tunnel and can be at an acute angle A relative to a downward vertical direction. This is an example of how the configuration can conform well to the anatomy.
  • the struts can be formed so that they are evenly distributed circumferentially.
  • the struts can be equally spaced by 360°/n in the circumferential direction, where n is the number of struts; for 3 struts, each strut is at 120° relative to adjacent struts.
  • the struts at one end can be offset by (360°/n)/2 from the struts at the other end.
  • the slits at each end of the tube can be formed in one of a number of different ways, and can produce struts that have different widths.
  • the slits may be rather narrow as shown, such that the sum of the widths of the struts is just a little less than the circumference of the tube, the slits can be made wider so that the struts are narrower, although it is generally preferable to have wider struts to provide good support.
  • FIG. 7 is a perspective view of a device similar to that of FIGS. 3 and 4 , but with the addition of a tissue scaffold.
  • the tissue scaffold may be formed of any flexible, biocompatible material capable of promoting tissue growth, including but not limited to polyester fabrics, Teflon-based materials such as ePTFE, polyurethanes, metallic meshes, polyvinyl alcohol (PVA), extracellular matrix (ECM), or other bioengineered material, synthetic bioabsorbable polymeric scaffolds, other natural materials (e.g. collagen), or combinations of the foregoing materials.
  • a tissue scaffold may be formed of a thin metallic film or foil. The scaffold may be attached to one or both sides of the device.
  • the tissue scaffold or the frame can have drugs or biological agents to accelerate the defect healing process and/or decrease thrombosis.
  • the tube has four slits at each end to produce four struts at each end of the tube.
  • whiskers and/or sponge material and tissue scaffolds could be added, as could a recovery wire and lug.
  • FIG. 9 an embodiment similar to that of FIG. 8 is shown with the addition of elastic bands or strings 90 , 92 extending from ends of struts at one end to ends of struts at another end.
  • These bands can be provided for some or all of the opposing struts.
  • the struts can be located at the same circumferential position at each end (and not offset, unlike in FIG. 4 ).
  • the strings help to bend back the struts, and can also help to orient and center the device as shown below.
  • device 100 has four struts at each end. From each of two of the struts, an elastic band 102 , 104 extends from one strut to a corresponding strut at the opposite end of the device.
  • the bands can provide centering and/or be inflammatory.
  • FIGS. 12-15 show another embodiment.
  • the tube has several different slits, including two longer slits, 180° apart, at each end to form bases 120 and 122 for struts, and two shorter slits are made, offset by 90° from the longer slits, to form struts 124 , 126 , 128 , and 130 at one end.
  • struts 124 - 130 can be formed at one end to be offset at a circumferential angle of 90° with respect to struts at the other end, identified here as struts 132 , 134 , 136 , and 138 .
  • the struts can be formed during manufacture such that the ends of the struts at opposite ends overlap when treated and before deployment.
  • a distal end strut 126 and a proximal end strut 136 cross such that the end of strut 126 is closer to the proximal end than the end of proximal strut 136 .
  • This configuration may be more suitable for a polymer embodiment or for another type of material that may not have full recovery force.
  • Nitinol for example, has rather high recovery force and is better able to reassume its original shape after being folded into a catheter and then deployed.
  • a polymer may not have quite as much recovery force, and therefore it can be useful to compensate partially for this by allowing struts at one end to cross the struts at the other end in the manufactured configuration. The struts will be contacting tissue that separates them, and therefore in the deployed position, the struts will be spaced part and not overlap.
  • the tube in this case is shown with slits that are somewhat similar to that in FIG. 12 , except that rather than the long slits being offset as in FIG. 12 , the long slits in FIG. 16 at opposite ends are circumferentially aligned.
  • struts 162 , 164 , 166 and 168 are produced at one end, with similar struts at the other end.
  • struts 162 and 166 are curved to come together at an end 170 .
  • Other struts are matched up pairwise in a similar manner, forming in effect four loops.
  • Each of these loops is preferably parallel to the defect. This allows most of the loop to be in contact with the tissue, such as one of the septa in the case of a PFO.
  • the loop can be perpendicular to the defect, which is more like a strut that doubles back to the central portion. This configuration is possible but less desirable.
  • the ends 170 , 172 of these loops can be formed to be very close together or even touch when manufactured. As described above, a material with a recovery that does not fully come back into place may be compensated by bringing the ends together or overlapping as described above.
  • FIG. 20 shows still another embodiment. As shown here, shorter and longer axial slits are not that much different, thereby producing larger loops when ends of the struts are brought together as shown in FIGS. 21 and 22 to create loops in a manner similar to that shown in FIG. 17 .
  • a tissue scaffold can also be provided in advance and during manufacture to the loops to result in the scaffold on the device as shown in FIGS. 21 and 22 .
  • the slits can have different widths, different numbers, and different slits can be formed with different lengths.
  • the ends of the struts contact the tissue, while in the case of the loops, as shown in FIGS. 17 and 21 , for example, the loop may contact the tissue over a larger area, thereby producing less trauma to the patient.
  • ends of the struts can be modified, such as rounded to reduce trauma that may be provided to septum primum and septum secundum when implanted.
  • proximal and distal end loops in FIG. 17 are aligned, but they could be rotationally offset, preferably by 90 degrees so the ends are perpendicular to each other. This can be accomplished by changing the pattern of slits in a tube.
  • the device can be deployed through a catheter using generally conventionally known processes.
  • This description relates to the use for a PFO, where the proximal side is the right atrium and the distal side is the left atrium, but the process could be used for other types of defects or treatments.
  • the occluder in its manufactured form is essentially folded back into the tubular form and inserted into a catheter.
  • the distal end of the catheter is inserted into the left atrium where the catheter and the occluder are moved relative to each other so that the struts, loops, or other radial pieces can fan out to contact septum primum and septum secundum.
  • This movement can be accomplished by pushing the occluder out of the catheter or retracting the catheter so that the occluder is not constrained and can fan out.
  • the catheter When positioning at the distal end is satisfactory, the catheter is retracted through the PFO tunnel between septum primum and septum secundum to expose the central portion, and is then moved further in the proximal direction to the device so that the catheter ceases to constrain the radial pieces from fanning out in the right atrium.
  • a recovery lug can be provided so that if the device is positioned and it is desirable to retrieve it, hooks or arms can be used to grab the lug to pull the proximal end in the right atrium back into a tubular configuration. Further distal direction movement of the catheter relative to the device will cause the distal (left atrium) end to be drawn back into the catheter.
  • the device can be made of nitinol or some other metal with good recovery or shape memory properties, or it can be made of a polymer.
  • the polymer is preferably treated to make it make it radiopaque so that it can be seen on x-ray or other imaging equipment.
  • the shape and construction of such devices can have some advantages over other PFO closure devices. It has atraumatic shape, good embolization resistance in some embodiments, and the ability to conform to the anatomy, especially in a defect tunnel due to the angled joint between the proximal and distal side.
  • the device can be repositioned or/and removed during delivery. It has a small profile after deployment. It can be made of bioresorbable components. Certain embodiments can be used to close symmetric defects (e.g., atrial septal defects) or asymmetric defects (e.g., PFO) using two versions of the device, i.e., one with a straight center tube and one with an angled center tube.
  • Occluders as described herein can be used with anti-thrombogenic compounds, including but not limited to heparin and peptides, to reduce thrombogenicity of the occluder and/or to enhance the healing response of the septal tissue following deployment of the occluder in vivo.
  • the occluders described herein may be used to deliver other drugs or pharmaceutical agents (e.g., growth factors, peptides, or cells).
  • the anti-thrombogenic compounds, drugs, and/or pharmaceutical agents may be included in the occluders of the present invention in several ways, including by incorporation into the tissue scaffold, as previously described, or as a coating, e.g.
  • the occluders described herein may include cells that have been seeded within the tissue scaffold or coated upon the tube(s) forming the distal side and proximal side of the occluder.
  • the occluder can be unitary or even monolithic (except for coatings or other surface treatments).
  • the device can be made from an extruded tube, pieces of polymer or other material can also be used to make the device by applying different joining methods such as welding, gluing, etc.
  • the strands may have circular or polygonal cross-sections.
  • the device can also be molded.
  • the tube cross-section may be circular or polygonal (including square and rectangular). While in most cases, each end has the same number of slits or loops, either aligned or offset, each end can be formed differently; e.g., one end could have a different number or configuration of struts.

Abstract

A device closes a patent foramen ovale (PFO), thus reducing or eliminating blood flow through the defect. The device is formed from a tubular structure having split ends, such that, after insertion, struts defined by the split ends pivot in a radial direction away from the tube, thereby securing the device within the septal defect.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application 60/561,544, filed Apr. 9, 2004, the entire contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • The invention relates to devices and methods for closing defects such as a patent foramen ovale (PFO).
  • A PFO is a persistent, one-way, usually flap-like opening in the wall between the right atrium and left atrium of the heart. Since left atrial (LA) pressure is normally higher than right atrial (RA) pressure, the flap typically stays closed. Under certain conditions, however, RA pressure can exceed LA pressure, creating the possibility for right to left shunting that can allow blood clots to enter the systemic circulation.
  • In utero, the foramen ovale serves as a physiologic conduit for right-to-left shunting. After birth, with the establishment of pulmonary circulation, the increased left atrial blood flow and pressure results in functional closure of the foramen ovale. This closure is typically followed by anatomical closure of the two over-lapping layers of tissue, septum primum and septum secundum. However, a PFO has been shown to persist in a significant minority of adults.
  • The presence of a PFO has no therapeutic consequence in otherwise healthy adults, however, patients suffering a stroke or TIA in the presence of a PFO and without another cause of ischemic stroke are considered for prophylactic medical therapy to reduce the risk of a recurrent embolic event. These patients can be treated with oral anticoagulants, but such drugs have the potential for adverse side effects such as hemorrhaging, hematoma, and interactions with other drugs. In certain cases, such as when the use of anticoagulation drugs is contraindicated, surgery may be used to suture a PFO closed. Suturing a PFO requires attachment of septum secundum to septum primum with a stitch (continuous or interrupted), which is the common way a surgeon shuts the PFO under direct visualization.
  • Non-surgical closure of PFOs has become possible with umbrella devices and a variety of other similar mechanical closure designs developed initially for percutaneous closure of atrial septal defects (ASD). These devices allow patients to avoid the potential side effects often associated with anticoagulation therapies.
  • SUMMARY OF THE INVENTION
  • Embodiments of the invention include devices and methods for closing a septal defect, including a PFO. In one embodiment, the device includes a tubular structure having dimensions suitable for insertion into a catheter, and slits extending from one or both ends that define struts that can pivot away from the rest of the tube to provide desirable anchoring of the device within a septal defect. The slits can be spaced at regular or irregular intervals along the tube circumference, and can have different lengths. A slit extending from one end of the tube can be aligned or offset with respect to a corresponding slit extending from the other end. The configuration of slits can be designed to optimize the distribution of clamping forces provided by the struts defined by the slits. In some embodiments, prior to insertion into the body, struts defined by slits from one end can overlap or touch corresponding struts defined by slits from the other end. The device can further include a recovery wire attached to one or more struts, such that tension applied to the recovery wire can enable the device to be retracted into the catheter.
  • The device is preferably made from a polymer with shape memory properties, and can also include a means for causing the struts to extend radially when released from the catheter into the body. The means can include a tissue scaffold attached to at least one of the struts, and/or a tensioner, such as an elastic band or string. The tissue scaffold can be made of a bioresorbable material, a flexible biocompatible material capable of promoting tissue growth, a polyester fabric, a Teflon-based material, a polyurethane, a metallic mesh, polyvinyl alcohol, an extracellular matrix, a synthetic bioabsorbable polymeric scaffold, collagen, and combinations thereof. At an axially central portion, the device can further include whiskers to provoke an inflammatory response, a collar including a sponge-like material, a drug coating, or an anticoagulant.
  • Benefits of certain embodiments can include atraumatic shape, good conformity to the anatomy (especially when used for a PFO), small diameter delivery sheath, no permanent foreign material, ease of manufacturing, cost effectiveness, and overall simplicity. Other features and advantages will become apparent from the following detailed description and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a tube with slits used to form a closure device.
  • FIG. 2 is a perspective view of the tube of FIG. 1 with the ends shown split extending outwardly.
  • FIGS. 3 and 4 are a perspective view and front elevational view, respectively, of an embodiment with three struts and whiskers and/or sponge material.
  • FIGS. 5 and 6 are side and front (through line 6-6 of FIG. 5) views of the device of FIGS. 3 and 4, shown positioned in the PFO.
  • FIG. 7 is a perspective view of an alternative embodiment to FIG. 3 with a tissue scaffold.
  • FIGS. 8 and 9 are further embodiments of a closure device, and
  • FIGS. 10 and 11 are perspective views of the device of FIG. 8 with the addition of a connector and shown in vivo.
  • FIGS. 12-16 are views of another embodiment of the present invention.
  • FIGS. 17-23 are views of another embodiment shown with and without a tissue scaffold.
  • DETAILED DESCRIPTION
  • The present invention includes embodiments of a closure device for a PFO, atrial septal defect (ASD), or other suitable defect, preferably formed from a single tube with cuts made to produce the final device shape. The device can have struts that extend radially outwardly from a central portion, or loops that extend from the central portion and back to the central portion, preferably in a plane that is parallel to the defect (such as the PFO tunnel).
  • Referring to FIG. 1, in one embodiment a closure device is made from a single polymer tube 10 by providing slits 12, 14 at both ends and setting a desired shape, such as by thermo-mechanical treatment, to produce a design as shown in FIG. 2. This treatment can include heating or other thermal steps, and mechanical steps, such as folding back the struts.
  • This device has a first set of struts 16 a, 16 b and a second set of struts 18 a, 18 b at the opposite end. A center portion 20 is between the ends and typically has no cuts. As shown in FIG. 2, a recovery wire 22 and lug 24 can optionally be provided at a proximal end (right atrium in case of use for a PFO) and coupled to struts 16 a, 16 b. The device can be collapsed and loaded into a delivery sheath by grabbing the lug and bringing the split ends on a proximal side back together.
  • The device is formed back into a tube for deployment via a catheter. Upon deployment, the occluder reverts to its designed shape due to elastic recovery of the polymer, shape memory recovery, or/and the use of strings, springs, or elastic sheet (tensile elements). Even though tensile elements may be thinner than the frame, they can produce much higher forces than the frame itself, thus assisting the frame in its recovery. This is possible because the primary mode of deformation is in tension, while the frame deformation mode is in bending and torsion. Tensile elements also provide a way for centering so the occluder can be positioned properly in a wide defect.
  • Without a wire and a lug or other method to grab the struts at the proximal end, if the proximal end needed to be withdrawn back into a catheter, the struts would fold over the outside of the central portion, thereby increasing the cross-sectional profile. This may be acceptable, but a smaller profile would be obtained by pulling the ends of the struts back into the tubular shape. At the distal end where struts 18 a, 18 b are (the left atrial end in case of use in a PFO), a pulling action of the device back into a catheter would naturally urge the struts back into the tubular configuration.
  • The number of radially extending parts (struts) formed from each end of a tube could be greater than two, such as any number from 3 to 10. Using many more struts, such as more than 10, may be possible but could be impractical because there could be a considerable decrease in their stiffness due to the decrease in thickness. More struts at each end may be possible with appropriate materials.
  • FIGS. 3 and 4 show a closure device 30 with 3 slits made at each end of a tube to form three struts 32 a-32 c, 34 a-34 c at each end of the tube. Small strips, referred to here as whiskers 36, made of the same material as the tube or some other materials can be attached to the central portion 38, or material can be partially shaved from the center region 38 of the tube. These whiskers can produce an inflammatory response and speed up the healing process. The whiskers can have a drug coating, such as with an anti-coagulant, or can be made of a drug that is slowly dissolved. Rather than the whiskers as shown, a collar with a foam or sponge-like material, such as polyvinyl alcohol, can be used, and can include an anti-coagulant.
  • FIGS. 5 and 6 show the embodiment of FIGS. 3 and 4 as deployed in a PFO tunnel. As indicated here, struts 32 a and 34 a have ends that contact septum primum 50, and struts 32 b and 34 b have ends that contact septum secundum 52. Struts 32 c and 34 c are not shown in FIG. 5, but as indicated in FIG. 6, they could be positioned against septum primum or septum secundum. These struts cooperate to provide a compressive clamping force to the PFO.
  • Center portion 38 can extend through the PFO tunnel and can be at an acute angle A relative to a downward vertical direction. This is an example of how the configuration can conform well to the anatomy.
  • As shown in top view FIG. 4, the struts can be formed so that they are evenly distributed circumferentially. Generally, the struts can be equally spaced by 360°/n in the circumferential direction, where n is the number of struts; for 3 struts, each strut is at 120° relative to adjacent struts. The struts at one end can be offset by (360°/n)/2 from the struts at the other end.
  • Such an even distribution at each end and equal offset of the two ends relative to each other can be used, but such relationships are not required. The slits at each end of the tube can be formed in one of a number of different ways, and can produce struts that have different widths. In addition, while the slits may be rather narrow as shown, such that the sum of the widths of the struts is just a little less than the circumference of the tube, the slits can be made wider so that the struts are narrower, although it is generally preferable to have wider struts to provide good support.
  • FIG. 7 is a perspective view of a device similar to that of FIGS. 3 and 4, but with the addition of a tissue scaffold. While preferably bioresorbable, the tissue scaffold may be formed of any flexible, biocompatible material capable of promoting tissue growth, including but not limited to polyester fabrics, Teflon-based materials such as ePTFE, polyurethanes, metallic meshes, polyvinyl alcohol (PVA), extracellular matrix (ECM), or other bioengineered material, synthetic bioabsorbable polymeric scaffolds, other natural materials (e.g. collagen), or combinations of the foregoing materials. Also, a tissue scaffold may be formed of a thin metallic film or foil. The scaffold may be attached to one or both sides of the device. The tissue scaffold or the frame can have drugs or biological agents to accelerate the defect healing process and/or decrease thrombosis.
  • Referring to FIG. 8, in another embodiment, the tube has four slits at each end to produce four struts at each end of the tube. As indicated above, whiskers and/or sponge material and tissue scaffolds could be added, as could a recovery wire and lug.
  • Referring to FIG. 9, an embodiment similar to that of FIG. 8 is shown with the addition of elastic bands or strings 90, 92 extending from ends of struts at one end to ends of struts at another end. These bands can be provided for some or all of the opposing struts. As shown here, the struts can be located at the same circumferential position at each end (and not offset, unlike in FIG. 4). The strings help to bend back the struts, and can also help to orient and center the device as shown below.
  • In the embodiments of FIGS. 10 and 11, device 100 has four struts at each end. From each of two of the struts, an elastic band 102, 104 extends from one strut to a corresponding strut at the opposite end of the device. The bands can provide centering and/or be inflammatory.
  • FIGS. 12-15 show another embodiment. Referring specifically to FIG. 12, the tube has several different slits, including two longer slits, 180° apart, at each end to form bases 120 and 122 for struts, and two shorter slits are made, offset by 90° from the longer slits, to form struts 124, 126, 128, and 130 at one end. As also shown in FIGS. 13 and 14, struts 124-130 can be formed at one end to be offset at a circumferential angle of 90° with respect to struts at the other end, identified here as struts 132, 134, 136, and 138.
  • Referring to FIG. 15, in this side view, it is shown that the struts can be formed during manufacture such that the ends of the struts at opposite ends overlap when treated and before deployment. In other words, a distal end strut 126 and a proximal end strut 136 cross such that the end of strut 126 is closer to the proximal end than the end of proximal strut 136.
  • This configuration may be more suitable for a polymer embodiment or for another type of material that may not have full recovery force. Nitinol, for example, has rather high recovery force and is better able to reassume its original shape after being folded into a catheter and then deployed. A polymer may not have quite as much recovery force, and therefore it can be useful to compensate partially for this by allowing struts at one end to cross the struts at the other end in the manufactured configuration. The struts will be contacting tissue that separates them, and therefore in the deployed position, the struts will be spaced part and not overlap.
  • Referring to FIG. 16, the tube in this case is shown with slits that are somewhat similar to that in FIG. 12, except that rather than the long slits being offset as in FIG. 12, the long slits in FIG. 16 at opposite ends are circumferentially aligned. In this embodiment, struts 162, 164, 166 and 168 are produced at one end, with similar struts at the other end. Unlike the embodiment as shown in FIG. 13, in which struts 124 and 128 extend substantially parallel, struts 162 and 166 are curved to come together at an end 170. Other struts are matched up pairwise in a similar manner, forming in effect four loops.
  • Each of these loops is preferably parallel to the defect. This allows most of the loop to be in contact with the tissue, such as one of the septa in the case of a PFO. The loop can be perpendicular to the defect, which is more like a strut that doubles back to the central portion. This configuration is possible but less desirable.
  • As shown in FIG. 19, the ends 170, 172 of these loops can be formed to be very close together or even touch when manufactured. As described above, a material with a recovery that does not fully come back into place may be compensated by bringing the ends together or overlapping as described above.
  • FIG. 20 shows still another embodiment. As shown here, shorter and longer axial slits are not that much different, thereby producing larger loops when ends of the struts are brought together as shown in FIGS. 21 and 22 to create loops in a manner similar to that shown in FIG. 17. In this case, a tissue scaffold can also be provided in advance and during manufacture to the loops to result in the scaffold on the device as shown in FIGS. 21 and 22.
  • As indicated, the slits can have different widths, different numbers, and different slits can be formed with different lengths. In the case of struts, the ends of the struts contact the tissue, while in the case of the loops, as shown in FIGS. 17 and 21, for example, the loop may contact the tissue over a larger area, thereby producing less trauma to the patient. To reduce trauma with struts, ends of the struts can be modified, such as rounded to reduce trauma that may be provided to septum primum and septum secundum when implanted.
  • The proximal and distal end loops in FIG. 17 are aligned, but they could be rotationally offset, preferably by 90 degrees so the ends are perpendicular to each other. This can be accomplished by changing the pattern of slits in a tube.
  • As indicated before, the device can be deployed through a catheter using generally conventionally known processes. This description relates to the use for a PFO, where the proximal side is the right atrium and the distal side is the left atrium, but the process could be used for other types of defects or treatments.
  • The occluder in its manufactured form is essentially folded back into the tubular form and inserted into a catheter. The distal end of the catheter is inserted into the left atrium where the catheter and the occluder are moved relative to each other so that the struts, loops, or other radial pieces can fan out to contact septum primum and septum secundum. This movement can be accomplished by pushing the occluder out of the catheter or retracting the catheter so that the occluder is not constrained and can fan out. At this stage, it should not be difficult to pull the device back into the catheter if necessary to remove or reposition, as the radial pieces will tend to go back into the catheter.
  • When positioning at the distal end is satisfactory, the catheter is retracted through the PFO tunnel between septum primum and septum secundum to expose the central portion, and is then moved further in the proximal direction to the device so that the catheter ceases to constrain the radial pieces from fanning out in the right atrium. As indicated above in FIG. 2, a recovery lug can be provided so that if the device is positioned and it is desirable to retrieve it, hooks or arms can be used to grab the lug to pull the proximal end in the right atrium back into a tubular configuration. Further distal direction movement of the catheter relative to the device will cause the distal (left atrium) end to be drawn back into the catheter.
  • As indicated before, the device can be made of nitinol or some other metal with good recovery or shape memory properties, or it can be made of a polymer. In the case of a polymer, the polymer is preferably treated to make it make it radiopaque so that it can be seen on x-ray or other imaging equipment.
  • The shape and construction of such devices can have some advantages over other PFO closure devices. It has atraumatic shape, good embolization resistance in some embodiments, and the ability to conform to the anatomy, especially in a defect tunnel due to the angled joint between the proximal and distal side. The device can be repositioned or/and removed during delivery. It has a small profile after deployment. It can be made of bioresorbable components. Certain embodiments can be used to close symmetric defects (e.g., atrial septal defects) or asymmetric defects (e.g., PFO) using two versions of the device, i.e., one with a straight center tube and one with an angled center tube.
  • Occluders as described herein can be used with anti-thrombogenic compounds, including but not limited to heparin and peptides, to reduce thrombogenicity of the occluder and/or to enhance the healing response of the septal tissue following deployment of the occluder in vivo. Similarly, the occluders described herein may be used to deliver other drugs or pharmaceutical agents (e.g., growth factors, peptides, or cells). The anti-thrombogenic compounds, drugs, and/or pharmaceutical agents may be included in the occluders of the present invention in several ways, including by incorporation into the tissue scaffold, as previously described, or as a coating, e.g. a polymeric coating, on the tube(s) forming the distal side and proximal side of the occluder. Furthermore, the occluders described herein may include cells that have been seeded within the tissue scaffold or coated upon the tube(s) forming the distal side and proximal side of the occluder.
  • In some of the embodiments, such as that of FIG. 1, the occluder can be unitary or even monolithic (except for coatings or other surface treatments).
  • Having described preferred embodiments of the invention, it should be apparent that various modifications may be made without departing from the spirit and scope of the invention. While the device can be made from an extruded tube, pieces of polymer or other material can also be used to make the device by applying different joining methods such as welding, gluing, etc. The strands may have circular or polygonal cross-sections. The device can also be molded. The tube cross-section may be circular or polygonal (including square and rectangular). While in most cases, each end has the same number of slits or loops, either aligned or offset, each end can be formed differently; e.g., one end could have a different number or configuration of struts.

Claims (29)

1. A device for use with a septal defect comprising a first configuration having dimensions suitable for insertion into a catheter, the device in the first configuration including a tubular structure with a central axis, a proximal end, and a distal end, wherein at least one of the ends has a plurality of slits extending in an axial direction away from the end, the slits defining struts that are pivotable away from the rest of the tubular structure.
2. The device of claim 1, wherein the plurality of slits is selected from the group consisting of 2, 3, 4, 5, 6, 7, 8, 9, and 10 slits.
3. The device of claim 1, wherein the plurality of slits have different lengths.
4. The device of claim 1, wherein the slits are distributed evenly around the circumference.
5. The device of claim 1, wherein the slits are distributed unevenly around the circumference.
6. The device of claim 1, wherein the proximal and distal ends each have slits, wherein each slit extending from the proximal end is aligned with a corresponding slit extending from the distal end.
7. The device of claim 1, wherein the proximal and distal ends each have slits, wherein each slit extending from the proximal end is offset at a circumferential angle of less than 180 degrees with respect to a corresponding slit from the distal end.
8. The device of claim 1, wherein an axially central portion of the structure has whiskers that provoke an inflammatory response.
9. The device of claim 1, further comprising a collar including a sponge-like material at an axially central portion of the structure.
10. The device of claim 1, further comprising a drug coating at an axially central portion of the structure.
11. The device of claim 1, further comprising an anticoagulant at an axially central portion of the structure.
12. The device of claim 1 further comprising means for causing the struts to extend radially away from the central axis of the tubular structure in a second configuration when released from a catheter and into the body.
13. The device of claim 12, wherein the means includes a tissue scaffold attached to at least one of the struts.
14. The device of claim 13, wherein the tissue scaffold includes at least one of a bioresorbable material, a flexible biocompatible material capable of promoting tissue growth, a polyester fabric, a Teflon-based material, a polyurethane, a metallic mesh, polyvinyl alcohol, an extracellular matrix, a synthetic bioabsorbable polymeric scaffold, and collagen.
15. The device of claim 12, wherein the means includes a tensioner comprising at least one of an elastic band and a string, the tensioner attached at one end to a strut extending from the distal end of the tubular structure and at the other end to an opposing strut extending from the proximal end of the tubular structure.
16. The device of claim 12, wherein the structure comprises a polymer with shape memory properties.
17. The device of claim 12, wherein the second configuration is suitable for blocking part or all of a patent foramen ovale (PFO) and the struts secure the device within the PFO.
18. The device of claim 12, wherein prior to insertion into the body, the second configuration comprises distal end struts having ends that are closer to the proximal end of the structure than the ends of the proximal end struts.
19. The device of claim 12, wherein the second configuration comprises at least one pair of distal end struts that are curved so as to touch in a region near the end of each member of the pair, and at least one pair of proximal end struts that are curved so as to touch in a region near the end of each member of the pair.
20. The device of claim 12, further comprising a recovery wire attached to a plurality of struts, such that a tension applied to the recovery wire causes the second configuration to deform in a manner that permits the device to be retracted into the catheter.
21. A PFO closure device comprising a tubular structure having a central axis, a proximal end, and a distal end, wherein at least one of the ends has a plurality of slits extending in an axial direction from the end, the slits defining struts that extend radially away from the central axis of the tubular structure, the struts securing the device within a tunnel of the PFO.
22. The device of claim 21, wherein each proximal end strut is circumferentially aligned with a corresponding distal end strut.
23. The device of claim 21, wherein at least one proximal end strut is circumferentially offset with respect to a corresponding distal end strut.
24. The device of claim 21 further comprising a tissue scaffold attached to at least one of the struts.
25. A method for closing a PFO, the method comprising:
inserting a tubular structure into the PFO via a catheter, the tubular device having a central axis, a proximal end, and a distal end, wherein at least one of the ends has a plurality of slits extending in an axial direction from the end, the slits defining struts;
causing the struts to extend radially away from the central axis such that the struts secure a central portion of the tubular structure within a tunnel of the PFO; and
closing the PFO.
26. The method of claim 25, wherein the tubular structure comprises a material selected from the group consisting of a polymer, a metal with shape memory properties, and a metal with elastic recovery properties, such that the radial extension of the struts is caused by at least one of a temperature change associated with insertion into the PFO and elastic recovery upon removal of the device from the catheter.
27. The method of claim 25, wherein the radial extension of the struts is assisted by at least one tensioner comprising at least one of an elastic band and a string, the tensioner attached at one end to a strut extending from the distal end of the tubular structure and at the other end to an opposing strut extending from the proximal end of the tubular structure.
28. The method of claim 25, wherein a tissue scaffold is attached to at least one of the struts.
29. The method of claim 25, wherein the tubular device includes a central structure that assists a healing of a tissue adjacent to the PFO following insertion of the device, the central structure comprising at least one of whiskers attached to the exterior of the tubular structure and a collar including a drug-dispensing sponge-like material.
US11/102,884 2004-04-09 2005-04-08 Split ends closure device Abandoned US20050267524A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/102,884 US20050267524A1 (en) 2004-04-09 2005-04-08 Split ends closure device
US12/691,648 US8828049B2 (en) 2004-04-09 2010-01-21 Split ends closure device and methods of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56154404P 2004-04-09 2004-04-09
US11/102,884 US20050267524A1 (en) 2004-04-09 2005-04-08 Split ends closure device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/691,648 Division US8828049B2 (en) 2004-04-09 2010-01-21 Split ends closure device and methods of use

Publications (1)

Publication Number Publication Date
US20050267524A1 true US20050267524A1 (en) 2005-12-01

Family

ID=35426405

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/102,884 Abandoned US20050267524A1 (en) 2004-04-09 2005-04-08 Split ends closure device
US12/691,648 Active 2025-11-03 US8828049B2 (en) 2004-04-09 2010-01-21 Split ends closure device and methods of use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/691,648 Active 2025-11-03 US8828049B2 (en) 2004-04-09 2010-01-21 Split ends closure device and methods of use

Country Status (1)

Country Link
US (2) US20050267524A1 (en)

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050049681A1 (en) * 2003-05-19 2005-03-03 Secant Medical, Llc Tissue distention device and related methods for therapeutic intervention
US20070100324A1 (en) * 2005-10-17 2007-05-03 Coaptus Medical Corporation Systems and methods for applying vacuum to a patient, including via a disposable liquid collection unit
US20070185529A1 (en) * 2006-02-03 2007-08-09 James Coleman Wound closure devices and methods
US20070293808A1 (en) * 2006-04-27 2007-12-20 Williams Michael S Renal blood flow augmentation for congestive heart failure treatment
US20080039743A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Methods for determining characteristics of an internal tissue opening
US20080051829A1 (en) * 2006-08-24 2008-02-28 Boston Scientific Scimed, Inc. Closure device, system, and method
US20080077180A1 (en) * 2006-09-26 2008-03-27 Nmt Medical, Inc. Scaffold for tubular septal occluder device and techniques for attachment
US20080188892A1 (en) * 2007-02-01 2008-08-07 Cook Incorporated Vascular occlusion device
EP1986570A2 (en) * 2006-02-07 2008-11-05 Organogenesis, Inc. Bioengineered tissue constructs and cardiac uses thereof
US20090105733A1 (en) * 2007-10-22 2009-04-23 Coleman James E Anastomosis devices and methods
US20090112249A1 (en) * 2007-10-19 2009-04-30 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
WO2009143291A1 (en) * 2008-05-20 2009-11-26 Ovalis, Inc. Wire-like and other devices for treating septal defects and systems and methods for delivering the same
US20100030246A1 (en) * 2007-02-01 2010-02-04 Dusan Pavcnik Closure Device and Method For Occluding a Bodily Passageway
US7662161B2 (en) 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
US7678132B2 (en) 2001-09-06 2010-03-16 Ovalis, Inc. Systems and methods for treating septal defects
US20100114128A1 (en) * 2008-11-06 2010-05-06 Coleman James E Gastric bypass devices and procedures
US7740640B2 (en) 2001-09-06 2010-06-22 Ovalis, Inc. Clip apparatus for closing septal defects and methods of use
US20100163054A1 (en) * 2007-03-19 2010-07-01 Michael Breznel Methods And Apparatus For Occlusion Of Body Lumens
US20100228279A1 (en) * 2009-01-08 2010-09-09 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
WO2010135462A1 (en) * 2009-05-19 2010-11-25 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
CH701269A1 (en) * 2009-06-10 2010-12-15 Carag Ag Occluder.
US20100324588A1 (en) * 2009-06-17 2010-12-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100324595A1 (en) * 2006-08-09 2010-12-23 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US7942888B2 (en) 1999-09-13 2011-05-17 Rex Medical, L.P. Vascular hole closure device
US20110190811A1 (en) * 2009-11-09 2011-08-04 Entourage Medical Llc System and method for providing access and closure to tissue
WO2011096896A1 (en) * 2010-02-05 2011-08-11 Nanyang Technological University Occlusion device for closing anatomical defects
US8021359B2 (en) 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
US8025495B2 (en) 2007-08-27 2011-09-27 Cook Medical Technologies Llc Apparatus and method for making a spider occlusion device
US8070826B2 (en) 2001-09-07 2011-12-06 Ovalis, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US8070772B2 (en) 2008-02-15 2011-12-06 Rex Medical, L.P. Vascular hole closure device
US8083766B2 (en) 1999-09-13 2011-12-27 Rex Medical, Lp Septal defect closure device
US8128653B2 (en) 1999-09-13 2012-03-06 Rex Medical, L.P. Vascular hole closure device
US8192461B2 (en) * 2008-09-11 2012-06-05 Cook Medical Technologies Llc Methods for facilitating closure of a bodily opening using one or more tacking devices
US8308752B2 (en) 2007-08-27 2012-11-13 Cook Medical Technologies Llc Barrel occlusion device
EP2572644A1 (en) * 2011-09-22 2013-03-27 Occlutech Holding AG Medical implantable occlusion device
US20130110159A1 (en) * 2010-06-11 2013-05-02 Entourage Medical Technologies, Inc. System and method for transapical access and closure
US20130138144A1 (en) * 2011-11-30 2013-05-30 Abbott Cardiovascular Systems, Inc. Tissue closure device
US8491629B2 (en) 2008-02-15 2013-07-23 Rex Medical Vascular hole closure delivery device
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
WO2013179277A1 (en) * 2012-05-30 2013-12-05 Newvert Ltd. Spinal disc annulus closure device
US20130338778A1 (en) * 2011-03-09 2013-12-19 Newvert Ltd. Spinal disc annulus closure device
US8617205B2 (en) 2007-02-01 2013-12-31 Cook Medical Technologies Llc Closure device
US8734483B2 (en) 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US8740934B2 (en) 2005-04-22 2014-06-03 Rex Medical, L.P. Closure device for left atrial appendage
US8906059B2 (en) 2007-07-13 2014-12-09 Rex Medical, L.P. Vascular hole closure device
US20140364872A1 (en) * 2013-06-05 2014-12-11 Lc Therapeutics, Inc. Tissue anchor and deployment device for same
US8920462B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US8920463B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US8979941B2 (en) 2006-08-09 2015-03-17 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US9023074B2 (en) 2010-10-15 2015-05-05 Cook Medical Technologies Llc Multi-stage occlusion devices
CN104720854A (en) * 2015-02-25 2015-06-24 上海形状记忆合金材料有限公司 Sectioned degradable plugging device
US20150238194A1 (en) * 2014-02-24 2015-08-27 Boston Scientific Scimed, Inc. Hemostasis devices and methods utilizing mechanical methods
US9161778B2 (en) 2010-06-11 2015-10-20 Entourage Medical Technologies, Inc. System and method for transapical access and closure
US9173644B2 (en) 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US9205236B2 (en) 2011-12-22 2015-12-08 Corvia Medical, Inc. Methods, systems, and devices for resizable intra-atrial shunts
US9226738B2 (en) 2008-02-15 2016-01-05 Rex Medical, L.P. Vascular hole closure delivery device
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US9241696B2 (en) 2008-10-30 2016-01-26 Abbott Vascular Inc. Closure device
US9247930B2 (en) 2011-12-21 2016-02-02 James E. Coleman Devices and methods for occluding or promoting fluid flow
US9271707B2 (en) 2003-01-30 2016-03-01 Integrated Vascular Systems, Inc. Clip applier and methods of use
US9277995B2 (en) 2010-01-29 2016-03-08 Corvia Medical, Inc. Devices and methods for reducing venous pressure
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US9295469B2 (en) 2002-06-04 2016-03-29 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US9314230B2 (en) 2009-01-09 2016-04-19 Abbott Vascular Inc. Closure device with rapidly eroding anchor
US9320522B2 (en) 2000-12-07 2016-04-26 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9351716B2 (en) 2009-06-17 2016-05-31 Coherex Medical, Inc. Medical device and delivery system for modification of left atrial appendage and methods thereof
US9358371B2 (en) 2006-11-07 2016-06-07 Corvia Medical, Inc. Intra-atrial implants made of non-braided material
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9398910B2 (en) 2010-09-20 2016-07-26 Entourage Medical Technologies, Inc. Method for providing surgical access
US9398914B2 (en) 2003-01-30 2016-07-26 Integrated Vascular Systems, Inc. Methods of use of a clip applier
US9402625B2 (en) 2000-09-08 2016-08-02 Abbott Vascular Inc. Surgical stapler
US9414824B2 (en) 2009-01-16 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US9456812B2 (en) 2006-11-07 2016-10-04 Corvia Medical, Inc. Devices for retrieving a prosthesis
US9463005B2 (en) 2008-02-15 2016-10-11 Rex Medical, L.P. Vascular hole closure device
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
US9498196B2 (en) 2002-02-21 2016-11-22 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US20170000637A1 (en) * 2007-07-18 2017-01-05 Boston Scientific Scimed, Inc. Endoscopic implant system and method
US9554786B2 (en) 2000-12-07 2017-01-31 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9554783B2 (en) 2007-02-01 2017-01-31 Cook Medical Technologies Llc Closure device and method of closing a bodily opening
US9585647B2 (en) 2009-08-26 2017-03-07 Abbott Laboratories Medical device for repairing a fistula
US9649115B2 (en) 2009-06-17 2017-05-16 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9693781B2 (en) 2009-06-17 2017-07-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9730687B2 (en) 2013-10-29 2017-08-15 Entourage Medical Technologies, Inc. System for providing surgical access
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
CN107397561A (en) * 2017-07-20 2017-11-28 上海心玮医疗科技有限公司 A kind of oval hole plugging device
US9962144B2 (en) 2006-06-28 2018-05-08 Abbott Laboratories Vessel closure device
US10064628B2 (en) 2009-06-17 2018-09-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10085753B2 (en) 2005-07-01 2018-10-02 Abbott Laboratories Clip applier and methods of use
US10111664B2 (en) 2000-01-05 2018-10-30 Integrated Vascular Systems, Inc. Closure system and methods of use
EP3398534A4 (en) * 2015-12-28 2019-08-07 Lifetech Scientific (Shenzhen) Co., Ltd. Occuluder
US10398445B2 (en) 2011-01-11 2019-09-03 Amsel Medical Corporation Method and apparatus for clamping tissue layers and occluding tubular body structures
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US10463397B2 (en) * 2014-07-28 2019-11-05 Hairstetics, Ltd. Systems, devices, and methods for hair implantation
US10568751B2 (en) 2006-11-07 2020-02-25 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US10632292B2 (en) 2014-07-23 2020-04-28 Corvia Medical, Inc. Devices and methods for treating heart failure
US10631969B2 (en) 2009-06-17 2020-04-28 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
US10820895B2 (en) 2011-01-11 2020-11-03 Amsel Medical Corporation Methods and apparatus for fastening and clamping tissue
US10918391B2 (en) 2011-01-11 2021-02-16 Amsel Medical Corporation Method and apparatus for clamping tissue and occluding tubular body lumens
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US10993807B2 (en) 2017-11-16 2021-05-04 Medtronic Vascular, Inc. Systems and methods for percutaneously supporting and manipulating a septal wall
CN113180737A (en) * 2021-05-06 2021-07-30 中国人民解放军总医院 Artificial intelligence-based oval hole closure detection method, system, equipment and medium
US11369355B2 (en) 2019-06-17 2022-06-28 Coherex Medical, Inc. Medical device and system for occluding a tissue opening and method thereof
US11382747B2 (en) 2004-02-03 2022-07-12 V-Wave, Ltd. Device and method for controlling in-vivo pressure
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11478351B2 (en) * 2018-01-22 2022-10-25 Edwards Lifesciences Corporation Heart shape preserving anchor
US11497631B2 (en) 2016-05-31 2022-11-15 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US11504105B2 (en) 2019-01-25 2022-11-22 Rex Medical L.P. Vascular hole closure device
US11589854B2 (en) 2011-02-10 2023-02-28 Corvia Medical, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US11607327B2 (en) 2016-05-31 2023-03-21 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
US11690976B2 (en) 2013-05-21 2023-07-04 V-Wave Ltd. Apparatus and methods for delivering devices for reducing left atrial pressure
US11744589B2 (en) * 2018-01-20 2023-09-05 V-Wave Ltd. Devices and methods for providing passage between heart chambers
US11813386B2 (en) * 2022-04-14 2023-11-14 V-Wave Ltd. Interatrial shunt with expanded neck region
US11812969B2 (en) 2020-12-03 2023-11-14 Coherex Medical, Inc. Medical device and system for occluding a tissue opening and method thereof
US11850138B2 (en) 2009-05-04 2023-12-26 V-Wave Ltd. Shunt for redistributing atrial blood volume
US11865282B2 (en) 2019-05-20 2024-01-09 V-Wave Ltd. Systems and methods for creating an interatrial shunt

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617206B2 (en) * 2009-10-08 2013-12-31 Covidien Lp Wound closure device
US9670308B2 (en) * 2012-05-24 2017-06-06 Lawrence Livermore National Security, Llc Device and method for treatment of openings in vascular and septal walls

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3875648A (en) * 1973-04-04 1975-04-08 Dennison Mfg Co Fastener attachment apparatus and method
US4006747A (en) * 1975-04-23 1977-02-08 Ethicon, Inc. Surgical method
US4149327A (en) * 1976-07-21 1979-04-17 Jura Elektroapparate-Fabriken L. Henzirohs A.G. Steam iron
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4902508A (en) * 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition
US4915107A (en) * 1988-03-09 1990-04-10 Harley International Medical Ltd. Automatic instrument for purse-string sutures for surgical use
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5106913A (en) * 1986-07-16 1992-04-21 Sumitomo Chemical Company, Limited Rubber composition
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5275826A (en) * 1992-11-13 1994-01-04 Purdue Research Foundation Fluidized intestinal submucosa and its use as an injectable tissue graft
US5282827A (en) * 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5304184A (en) * 1992-10-19 1994-04-19 Indiana University Foundation Apparatus and method for positive closure of an internal tissue membrane opening
US5480353A (en) * 1995-02-02 1996-01-02 Garza, Jr.; Ponciano Shaker crank for a harvester
US5480424A (en) * 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5486193A (en) * 1992-01-22 1996-01-23 C. R. Bard, Inc. System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5507811A (en) * 1993-11-26 1996-04-16 Nissho Corporation Prosthetic device for atrial septal defect repair
US5601571A (en) * 1994-05-17 1997-02-11 Moss; Gerald Surgical fastener implantation device
US5618311A (en) * 1994-09-28 1997-04-08 Gryskiewicz; Joseph M. Surgical subcuticular fastener system
US5620461A (en) * 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5717259A (en) * 1996-01-11 1998-02-10 Schexnayder; J. Rodney Electromagnetic machine
US5720754A (en) * 1989-08-16 1998-02-24 Medtronic, Inc. Device or apparatus for manipulating matter
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5733294A (en) * 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
US5733337A (en) * 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5855614A (en) * 1993-02-22 1999-01-05 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
US5861003A (en) * 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
US5865791A (en) * 1995-06-07 1999-02-02 E.P. Technologies Inc. Atrial appendage stasis reduction procedure and devices
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US5893856A (en) * 1996-06-12 1999-04-13 Mitek Surgical Products, Inc. Apparatus and method for binding a first layer of material to a second layer of material
US6010517A (en) * 1996-04-10 2000-01-04 Baccaro; Jorge Alberto Device for occluding abnormal vessel communications
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US6030007A (en) * 1997-07-07 2000-02-29 Hughes Electronics Corporation Continually adjustable nonreturn knot
US6171329B1 (en) * 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US6174322B1 (en) * 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US6174330B1 (en) * 1997-08-01 2001-01-16 Schneider (Usa) Inc Bioabsorbable marker having radiopaque constituents
US6187039B1 (en) * 1996-12-10 2001-02-13 Purdue Research Foundation Tubular submucosal graft constructs
US6190353B1 (en) * 1995-10-13 2001-02-20 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US6206895B1 (en) * 1999-07-13 2001-03-27 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6206907B1 (en) * 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US6214029B1 (en) * 2000-04-26 2001-04-10 Microvena Corporation Septal defect occluder
US6217590B1 (en) * 1999-01-22 2001-04-17 Scion International, Inc. Surgical instrument for applying multiple staples and cutting blood vessels and organic structures and method therefor
US6221092B1 (en) * 1998-03-30 2001-04-24 Nissho Corporation Closure device for transcatheter operations and catheter assembly therefor
US6334872B1 (en) * 1994-02-18 2002-01-01 Organogenesis Inc. Method for treating diseased or damaged organs
US20020010481A1 (en) * 1999-12-23 2002-01-24 Swaminathan Jayaraman Occlusive coil manufacture and delivery
US6342064B1 (en) * 1998-12-22 2002-01-29 Nipro Corporation Closure device for transcatheter operation and catheter assembly therefor
US6344049B1 (en) * 1999-08-17 2002-02-05 Scion Cardio-Vascular, Inc. Filter for embolic material mounted on expandable frame and associated deployment system
US6344048B1 (en) * 1997-07-10 2002-02-05 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US20020019648A1 (en) * 2000-04-19 2002-02-14 Dan Akerfeldt Intra-arterial occluder
US6348041B1 (en) * 1999-03-29 2002-02-19 Cook Incorporated Guidewire
US20020022860A1 (en) * 2000-08-18 2002-02-21 Borillo Thomas E. Expandable implant devices for filtering blood flow from atrial appendages
US20020026208A1 (en) * 2000-01-05 2002-02-28 Medical Technology Group, Inc. Apparatus and methods for delivering a closure device
US6352552B1 (en) * 2000-05-02 2002-03-05 Scion Cardio-Vascular, Inc. Stent
US20020029048A1 (en) * 2000-09-01 2002-03-07 Arnold Miller Endovascular fastener and grafting apparatus and method
US6355052B1 (en) * 1996-02-09 2002-03-12 Pfm Produkte Fur Die Medizin Aktiengesellschaft Device for closure of body defect openings
US6356782B1 (en) * 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US20020032462A1 (en) * 1998-06-10 2002-03-14 Russell A. Houser Thermal securing anastomosis systems
US20020032459A1 (en) * 1990-06-20 2002-03-14 Danforth Biomedical, Inc. Radially-expandable tubular elements for use in the construction of medical devices
US20020035374A1 (en) * 2000-09-21 2002-03-21 Borillo Thomas E. Apparatus for implanting devices in atrial appendages
US6364853B1 (en) * 2000-09-11 2002-04-02 Scion International, Inc. Irrigation and suction valve and method therefor
US6371904B1 (en) * 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US20020043307A1 (en) * 1998-06-26 2002-04-18 Kiyoshito Ishida Core wire for a guide wire comprising a functionally graded alloy
US6375625B1 (en) * 2000-10-18 2002-04-23 Scion Valley, Inc. In-line specimen trap and method therefor
US6375671B1 (en) * 1999-04-19 2002-04-23 Nipro Corporation Closure device for transcatheter operations
US20020049457A1 (en) * 1999-05-20 2002-04-25 Kaplan Aaron V. Methods and apparatus for transpericardial left atrial appendage closure
US6379342B1 (en) * 1999-04-02 2002-04-30 Scion International, Inc. Ampoule for dispensing medication and method of use
US6379368B1 (en) * 1999-05-13 2002-04-30 Cardia, Inc. Occlusion device with non-thrombogenic properties
US20030004533A1 (en) * 2001-05-04 2003-01-02 Concentric Medical Bioactive polymer vaso-occlusive device
US6508828B1 (en) * 2000-11-03 2003-01-21 Radi Medical Systems Ab Sealing device and wound closure device
US20030023266A1 (en) * 2001-07-19 2003-01-30 Borillo Thomas E. Individually customized atrial appendage implant device
US6514515B1 (en) * 1999-03-04 2003-02-04 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
US20030028213A1 (en) * 2001-08-01 2003-02-06 Microvena Corporation Tissue opening occluder
US20030045893A1 (en) * 2001-09-06 2003-03-06 Integrated Vascular Systems, Inc. Clip apparatus for closing septal defects and methods of use
US20030050665A1 (en) * 2001-09-07 2003-03-13 Integrated Vascular Systems, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20030055455A1 (en) * 2001-09-20 2003-03-20 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
US20030057156A1 (en) * 2001-03-08 2003-03-27 Dean Peterson Atrial filter implants
US20030059640A1 (en) * 1999-11-19 2003-03-27 Denes Marton High strength vacuum deposited nitinol alloy films and method of making same
US20030065379A1 (en) * 1994-04-29 2003-04-03 Babbs Charles F. Reduction of stent thrombogenicity
US6548569B1 (en) * 1999-03-25 2003-04-15 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
US6551303B1 (en) * 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US6551344B2 (en) * 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
US6689589B2 (en) * 1997-09-19 2004-02-10 Metabolix, Inc. Biological systems for manufacture of polyhydroxyalkanoate polymers containing 4-hydroxyacids
US20040044364A1 (en) * 2002-08-29 2004-03-04 Devries Robert Tissue fasteners and related deployment systems and methods
US20040044361A1 (en) * 1998-11-06 2004-03-04 Frazier Andrew G.C. Detachable atrial appendage occlusion balloon
US6712804B2 (en) * 1999-09-20 2004-03-30 Ev3 Sunnyvale, Inc. Method of closing an opening in a wall of the heart
US6712836B1 (en) * 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
US20050025809A1 (en) * 2003-07-08 2005-02-03 Tepha, Inc. Poly-4-hydroxybutyrate matrices for sustained drug delivery
US20050043759A1 (en) * 2003-07-14 2005-02-24 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US6867249B2 (en) * 2000-08-18 2005-03-15 Kin Man Amazon Lee Lightweight and porous construction materials containing rubber
US6867248B1 (en) * 1997-05-12 2005-03-15 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US20070010851A1 (en) * 2003-07-14 2007-01-11 Chanduszko Andrzej J Tubular patent foramen ovale (PFO) closure device with catch system

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824631A (en) 1973-05-11 1974-07-23 Sampson Corp Bone joint fusion prosthesis
US3924631A (en) 1973-12-06 1975-12-09 Altair Inc Magnetic clamp
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US5124109A (en) 1984-07-18 1992-06-23 Contech Construction Products Inc. Method for producing a double wall pipe
JPS6171065A (en) 1984-09-13 1986-04-11 テルモ株式会社 Catheter introducer
US4696300A (en) 1985-04-11 1987-09-29 Dennison Manufacturing Company Fastener for joining materials
US4626245A (en) 1985-08-30 1986-12-02 Cordis Corporation Hemostatis valve comprising an elastomeric partition having opposed intersecting slits
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
US5478353A (en) 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
US5250430A (en) 1987-06-29 1993-10-05 Massachusetts Institute Of Technology Polyhydroxyalkanoate polymerase
US5245023A (en) 1987-06-29 1993-09-14 Massachusetts Institute Of Technology Method for producing novel polyester biopolymers
US4836204A (en) 1987-07-06 1989-06-06 Landymore Roderick W Method for effecting closure of a perforation in the septum of the heart
US4840623A (en) 1988-02-01 1989-06-20 Fbk International Corporation Medical catheter with splined internal wall
US4956178A (en) 1988-07-11 1990-09-11 Purdue Research Foundation Tissue graft composition
US5245080A (en) 1989-02-20 1993-09-14 Jouveinal Sa (+)-1-[(3,4,5-trimethoxy)-benzyloxymethyl]-1-phenyl-N,N-dimethyl-N-propylamine, process for preparing it and its therapeutical use
US5149327A (en) 1989-09-05 1992-09-22 Terumo Kabushiki Kaisha Medical valve, catheter with valve, and catheter assembly
US5226879A (en) 1990-03-01 1993-07-13 William D. Ensminger Implantable access device
US5171259A (en) 1990-04-02 1992-12-15 Kanji Inoue Device for nonoperatively occluding a defect
US5021059A (en) 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
US5037433A (en) 1990-05-17 1991-08-06 Wilk Peter J Endoscopic suturing device and related method and suture
US5041129A (en) 1990-07-02 1991-08-20 Acufex Microsurgical, Inc. Slotted suture anchor and method of anchoring a suture
JPH04170966A (en) 1990-11-01 1992-06-18 Nippon Sherwood Kk Valvular body for catheter introducer blood stop valve
US5257637A (en) 1991-03-22 1993-11-02 El Gazayerli Mohamed M Method for suture knot placement and tying
DE69226841T2 (en) * 1991-11-05 1999-05-20 Childrens Medical Center Occlusion device for repairing heart and vascular defects
EP0545091B1 (en) 1991-11-05 1999-07-07 The Children's Medical Center Corporation Occluder for repair of cardiac and vascular defects
US5222974A (en) 1991-11-08 1993-06-29 Kensey Nash Corporation Hemostatic puncture closure system and method of use
JP3393383B2 (en) 1992-01-21 2003-04-07 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Septal defect closure device
US5316262A (en) * 1992-01-31 1994-05-31 Suprex Corporation Fluid restrictor apparatus and method for making the same
US5167363A (en) 1992-02-10 1992-12-01 Adkinson Steven S Collapsible storage pen
US5411481A (en) * 1992-04-08 1995-05-02 American Cyanamid Co. Surgical purse string suturing instrument and method
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
US5354308A (en) 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
DE4215449C1 (en) * 1992-05-11 1993-09-02 Ethicon Gmbh & Co Kg, 2000 Norderstedt, De
US5312341A (en) * 1992-08-14 1994-05-17 Wayne State University Retaining apparatus and procedure for transseptal catheterization
US5417699A (en) * 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5312435A (en) * 1993-05-17 1994-05-17 Kensey Nash Corporation Fail predictable, reinforced anchor for hemostatic puncture closure
US5350363A (en) 1993-06-14 1994-09-27 Cordis Corporation Enhanced sheath valve
US5683411A (en) 1994-04-06 1997-11-04 William Cook Europe A/S Medical article for implantation into the vascular system of a patient
US5853420A (en) 1994-04-21 1998-12-29 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and device for implanting it, corresponding filter and method of implanting such a filter
US5693085A (en) 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5453095A (en) 1994-06-07 1995-09-26 Cordis Corporation One piece self-aligning, self-lubricating catheter valve
US5433727A (en) 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5577299A (en) 1994-08-26 1996-11-26 Thompson; Carl W. Quick-release mechanical knot apparatus
US5702421A (en) 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US5634936A (en) 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5649959A (en) 1995-02-10 1997-07-22 Sherwood Medical Company Assembly for sealing a puncture in a vessel
US5711969A (en) 1995-04-07 1998-01-27 Purdue Research Foundation Large area submucosal tissue graft constructs
US6322548B1 (en) 1995-05-10 2001-11-27 Eclipse Surgical Technologies Delivery catheter system for heart chamber
CA2197614C (en) 1996-02-20 2002-07-02 Charles S. Taylor Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US5755791A (en) 1996-04-05 1998-05-26 Purdue Research Foundation Perforated submucosal tissue graft constructs
US6488706B1 (en) 1996-05-08 2002-12-03 Carag Ag Device for plugging an opening such as in a wall of a hollow or tubular organ
EP0900051A1 (en) * 1996-05-08 1999-03-10 Salviac Limited An occluder device
US6143037A (en) 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US5690674A (en) 1996-07-02 1997-11-25 Cordis Corporation Wound closure with plug
US5800516A (en) 1996-08-08 1998-09-01 Cordis Corporation Deployable and retrievable shape memory stent/tube and method
WO1998007375A1 (en) 1996-08-22 1998-02-26 The Trustees Of Columbia University Endovascular flexible stapling device
US5776183A (en) 1996-08-23 1998-07-07 Kanesaka; Nozomu Expandable stent
US5810884A (en) 1996-09-09 1998-09-22 Beth Israel Deaconess Medical Center Apparatus and method for closing a vascular perforation after percutaneous puncture of a blood vessel in a living subject
US6345041B1 (en) 1996-10-24 2002-02-05 Hewlett-Packard Company Method and apparatus for automatic load-balancing on multisegment devices
US5944691A (en) 1996-11-04 1999-08-31 Cordis Corporation Catheter having an expandable shaft
EP0936930B1 (en) 1996-11-05 2004-07-28 Purdue Research Foundation Myocardial graft constructs
US6315791B1 (en) 1996-12-03 2001-11-13 Atrium Medical Corporation Self-expanding prothesis
WO1998025549A1 (en) 1996-12-10 1998-06-18 Purdue Research Foundation Artificial vascular valves
JP3134288B2 (en) 1997-01-30 2001-02-13 株式会社ニッショー Endocardial suture surgery tool
JP3134287B2 (en) 1997-01-30 2001-02-13 株式会社ニッショー Catheter assembly for endocardial suture surgery
US5993844A (en) 1997-05-08 1999-11-30 Organogenesis, Inc. Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix
US6245537B1 (en) 1997-05-12 2001-06-12 Metabolix, Inc. Removing endotoxin with an oxdizing agent from polyhydroxyalkanoates produced by fermentation
US6610764B1 (en) 1997-05-12 2003-08-26 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6071292A (en) 1997-06-28 2000-06-06 Transvascular, Inc. Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
WO1999005209A1 (en) 1997-07-22 1999-02-04 Metabolix, Inc. Polyhydroxyalkanoate molding compositions
US6828357B1 (en) 1997-07-31 2004-12-07 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6077880A (en) 1997-08-08 2000-06-20 Cordis Corporation Highly radiopaque polyolefins and method for making the same
US5902319A (en) * 1997-09-25 1999-05-11 Daley; Robert J. Bioabsorbable staples
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US6106913A (en) 1997-10-10 2000-08-22 Quantum Group, Inc Fibrous structures containing nanofibrils and other textile fibers
US5989268A (en) 1997-10-28 1999-11-23 Boston Scientific Corporation Endoscopic hemostatic clipping device
US5976174A (en) 1997-12-15 1999-11-02 Ruiz; Carlos E. Medical hole closure device and methods of use
ATE320229T1 (en) * 1998-01-30 2006-04-15 St Jude Medical Atg Inc MEDICAL TRANSPLANT CONNECTOR OR PLUG AND METHOD FOR PRODUCING THE SAME
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
US5993475A (en) 1998-04-22 1999-11-30 Bristol-Myers Squibb Co. Tissue repair device
US6171296B1 (en) * 1998-04-28 2001-01-09 Microtherapeutics, Inc. Flow directed catheter
US6113609A (en) 1998-05-26 2000-09-05 Scimed Life Systems, Inc. Implantable tissue fastener and system for treating gastroesophageal reflux disease
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
US6265333B1 (en) 1998-06-02 2001-07-24 Board Of Regents, University Of Nebraska-Lincoln Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces
US6165183A (en) 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US5919200A (en) 1998-10-09 1999-07-06 Hearten Medical, Inc. Balloon catheter for abrading a patent foramen ovale and method of using the balloon catheter
US6183496B1 (en) 1998-11-02 2001-02-06 Datascope Investment Corp. Collapsible hemostatic plug
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6228097B1 (en) 1999-01-22 2001-05-08 Scion International, Inc. Surgical instrument for clipping and cutting blood vessels and organic structures
US6368338B1 (en) * 1999-03-05 2002-04-09 Board Of Regents, The University Of Texas Occlusion method and apparatus
US6277139B1 (en) 1999-04-01 2001-08-21 Scion Cardio-Vascular, Inc. Vascular protection and embolic material retriever
US6426145B1 (en) 1999-05-20 2002-07-30 Scimed Life Systems, Inc. Radiopaque compositions for visualization of medical devices
US6165204A (en) 1999-06-11 2000-12-26 Scion International, Inc. Shaped suture clip, appliance and method therefor
US6494888B1 (en) 1999-06-22 2002-12-17 Ndo Surgical, Inc. Tissue reconfiguration
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6398796B2 (en) 1999-07-13 2002-06-04 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6245080B1 (en) 1999-07-13 2001-06-12 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6328689B1 (en) 2000-03-23 2001-12-11 Spiration, Inc., Lung constriction apparatus and method
US6387104B1 (en) 1999-11-12 2002-05-14 Scimed Life Systems, Inc. Method and apparatus for endoscopic repair of the lower esophageal sphincter
US6371971B1 (en) 1999-11-15 2002-04-16 Scimed Life Systems, Inc. Guidewire filter and methods of use
US20010041914A1 (en) 1999-11-22 2001-11-15 Frazier Andrew G.C. Tissue patch deployment catheter
DE10000137A1 (en) 2000-01-04 2001-07-12 Pfm Prod Fuer Die Med Ag Implantate for closing defect apertures in human or animal bodies, bearing structure of which can be reversed from secondary to primary form by elastic force
US20010034567A1 (en) 2000-01-20 2001-10-25 Allen Marc L. Remote management of retail petroleum equipment
FR2804567B1 (en) 2000-01-31 2002-04-12 St Microelectronics Sa VIDEO PREAMPLIFIER
US7056294B2 (en) 2000-04-13 2006-06-06 Ev3 Sunnyvale, Inc Method and apparatus for accessing the left atrial appendage
US6599448B1 (en) 2000-05-10 2003-07-29 Hydromer, Inc. Radio-opaque polymeric compositions
US6334864B1 (en) 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
DE60120415T2 (en) 2000-07-21 2007-01-04 Metabolix, Inc., Cambridge PREPARATION OF POLYHYDROXYALKANOATES FROM POLYOLES
US6440152B1 (en) 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
US6699278B2 (en) 2000-09-22 2004-03-02 Cordis Corporation Stent with optimal strength and radiopacity characteristics
WO2002024114A2 (en) 2000-09-25 2002-03-28 Cohesion Technologies, Inc. Resorbable anastomosis stents and plugs
US6666861B1 (en) 2000-10-05 2003-12-23 James R. Grabek Atrial appendage remodeling device and method
US6629901B2 (en) 2000-11-09 2003-10-07 Ben Huang Composite grip for golf clubs
US6746404B2 (en) 2000-12-18 2004-06-08 Biosense, Inc. Method for anchoring a medical device between tissue
US20020128680A1 (en) 2001-01-25 2002-09-12 Pavlovic Jennifer L. Distal protection device with electrospun polymer fiber matrix
US6550480B2 (en) 2001-01-31 2003-04-22 Numed/Tech Llc Lumen occluders made from thermodynamic materials
US20020107531A1 (en) 2001-02-06 2002-08-08 Schreck Stefan G. Method and system for tissue repair using dual catheters
US6623518B2 (en) 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
US6726696B1 (en) * 2001-04-24 2004-04-27 Advanced Catheter Engineering, Inc. Patches and collars for medical applications and methods of use
US6921410B2 (en) 2001-05-29 2005-07-26 Scimed Life Systems, Inc. Injection molded vaso-occlusive elements
US6537300B2 (en) 2001-05-30 2003-03-25 Scimed Life Systems, Inc. Implantable obstruction device for septal defects
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
EP1392394A4 (en) 2001-06-04 2005-05-18 Albert Einstein Healthcare Network Cardiac stimulating apparatus having a blood clot filter and atrial pacer
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
US7318833B2 (en) 2001-12-19 2008-01-15 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
EP1467661A4 (en) 2001-12-19 2008-11-05 Nmt Medical Inc Septal occluder and associated methods
US20030139819A1 (en) 2002-01-18 2003-07-24 Beer Nicholas De Method and apparatus for closing septal defects
WO2003103476A2 (en) * 2002-06-05 2003-12-18 Nmt Medical, Inc. Patent foramen ovale (pfo) closure device with radial and circumferential support
CA2503349A1 (en) 2002-11-06 2004-05-27 Nmt Medical, Inc. Medical devices utilizing modified shape memory alloy
EP1572003B1 (en) 2002-12-09 2017-03-08 W.L. Gore & Associates, Inc. Septal closure devices
US7780700B2 (en) * 2003-02-04 2010-08-24 ev3 Endovascular, Inc Patent foramen ovale closure system
US20040234567A1 (en) 2003-05-22 2004-11-25 Dawson Richard A. Collapsible shield for smoking animal lure
US20050113868A1 (en) 2003-11-20 2005-05-26 Devellian Carol A. Device, with electrospun fabric, for a percutaneous transluminal procedure, and methods thereof
ATE366547T1 (en) 2004-02-04 2007-08-15 Carag Ag IMPLANT FOR OCCLUSION OF A BODY CANAL
JP2007526087A (en) 2004-03-03 2007-09-13 エヌエムティー メディカル, インコーポレイティッド Delivery / recovery system for septal occluder
US8361110B2 (en) 2004-04-26 2013-01-29 W.L. Gore & Associates, Inc. Heart-shaped PFO closure device
WO2005110240A1 (en) 2004-05-07 2005-11-24 Nmt Medical, Inc. Catching mechanisms for tubular septal occluder
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
CA2581677C (en) 2004-09-24 2014-07-29 Nmt Medical, Inc. Occluder device double securement system for delivery/recovery of such occluder device
WO2006102213A1 (en) 2005-03-18 2006-09-28 Nmt Medical, Inc. Catch member for pfo occluder
US20070167981A1 (en) 2005-12-22 2007-07-19 Nmt Medical, Inc. Catch members for occluder devices

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3875648A (en) * 1973-04-04 1975-04-08 Dennison Mfg Co Fastener attachment apparatus and method
US4006747A (en) * 1975-04-23 1977-02-08 Ethicon, Inc. Surgical method
US4149327A (en) * 1976-07-21 1979-04-17 Jura Elektroapparate-Fabriken L. Henzirohs A.G. Steam iron
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US5106913A (en) * 1986-07-16 1992-04-21 Sumitomo Chemical Company, Limited Rubber composition
US4915107A (en) * 1988-03-09 1990-04-10 Harley International Medical Ltd. Automatic instrument for purse-string sutures for surgical use
US4902508A (en) * 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5620461A (en) * 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
US5720754A (en) * 1989-08-16 1998-02-24 Medtronic, Inc. Device or apparatus for manipulating matter
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US20020032459A1 (en) * 1990-06-20 2002-03-14 Danforth Biomedical, Inc. Radially-expandable tubular elements for use in the construction of medical devices
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5282827A (en) * 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5486193A (en) * 1992-01-22 1996-01-23 C. R. Bard, Inc. System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5304184A (en) * 1992-10-19 1994-04-19 Indiana University Foundation Apparatus and method for positive closure of an internal tissue membrane opening
US5275826A (en) * 1992-11-13 1994-01-04 Purdue Research Foundation Fluidized intestinal submucosa and its use as an injectable tissue graft
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5855614A (en) * 1993-02-22 1999-01-05 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US5480424A (en) * 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5507811A (en) * 1993-11-26 1996-04-16 Nissho Corporation Prosthetic device for atrial septal defect repair
US6334872B1 (en) * 1994-02-18 2002-01-01 Organogenesis Inc. Method for treating diseased or damaged organs
US20030065379A1 (en) * 1994-04-29 2003-04-03 Babbs Charles F. Reduction of stent thrombogenicity
US5601571A (en) * 1994-05-17 1997-02-11 Moss; Gerald Surgical fastener implantation device
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5618311A (en) * 1994-09-28 1997-04-08 Gryskiewicz; Joseph M. Surgical subcuticular fastener system
US6171329B1 (en) * 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5480353A (en) * 1995-02-02 1996-01-02 Garza, Jr.; Ponciano Shaker crank for a harvester
US5733337A (en) * 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5865791A (en) * 1995-06-07 1999-02-02 E.P. Technologies Inc. Atrial appendage stasis reduction procedure and devices
US6190353B1 (en) * 1995-10-13 2001-02-20 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5717259A (en) * 1996-01-11 1998-02-10 Schexnayder; J. Rodney Electromagnetic machine
US6355052B1 (en) * 1996-02-09 2002-03-12 Pfm Produkte Fur Die Medizin Aktiengesellschaft Device for closure of body defect openings
US5733294A (en) * 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US6010517A (en) * 1996-04-10 2000-01-04 Baccaro; Jorge Alberto Device for occluding abnormal vessel communications
US5893856A (en) * 1996-06-12 1999-04-13 Mitek Surgical Products, Inc. Apparatus and method for binding a first layer of material to a second layer of material
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5861003A (en) * 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
US6187039B1 (en) * 1996-12-10 2001-02-13 Purdue Research Foundation Tubular submucosal graft constructs
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US6867248B1 (en) * 1997-05-12 2005-03-15 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6030007A (en) * 1997-07-07 2000-02-29 Hughes Electronics Corporation Continually adjustable nonreturn knot
US6344048B1 (en) * 1997-07-10 2002-02-05 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US6174330B1 (en) * 1997-08-01 2001-01-16 Schneider (Usa) Inc Bioabsorbable marker having radiopaque constituents
US6174322B1 (en) * 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US6689589B2 (en) * 1997-09-19 2004-02-10 Metabolix, Inc. Biological systems for manufacture of polyhydroxyalkanoate polymers containing 4-hydroxyacids
US6221092B1 (en) * 1998-03-30 2001-04-24 Nissho Corporation Closure device for transcatheter operations and catheter assembly therefor
US20020032462A1 (en) * 1998-06-10 2002-03-14 Russell A. Houser Thermal securing anastomosis systems
US20020043307A1 (en) * 1998-06-26 2002-04-18 Kiyoshito Ishida Core wire for a guide wire comprising a functionally graded alloy
US20040044361A1 (en) * 1998-11-06 2004-03-04 Frazier Andrew G.C. Detachable atrial appendage occlusion balloon
US6342064B1 (en) * 1998-12-22 2002-01-29 Nipro Corporation Closure device for transcatheter operation and catheter assembly therefor
US6356782B1 (en) * 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6371904B1 (en) * 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6217590B1 (en) * 1999-01-22 2001-04-17 Scion International, Inc. Surgical instrument for applying multiple staples and cutting blood vessels and organic structures and method therefor
US6514515B1 (en) * 1999-03-04 2003-02-04 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
US6838493B2 (en) * 1999-03-25 2005-01-04 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
US6867247B2 (en) * 1999-03-25 2005-03-15 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
US6548569B1 (en) * 1999-03-25 2003-04-15 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
US6348041B1 (en) * 1999-03-29 2002-02-19 Cook Incorporated Guidewire
US6379342B1 (en) * 1999-04-02 2002-04-30 Scion International, Inc. Ampoule for dispensing medication and method of use
US6375671B1 (en) * 1999-04-19 2002-04-23 Nipro Corporation Closure device for transcatheter operations
US6206907B1 (en) * 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US6712836B1 (en) * 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
US6379368B1 (en) * 1999-05-13 2002-04-30 Cardia, Inc. Occlusion device with non-thrombogenic properties
US20020049457A1 (en) * 1999-05-20 2002-04-25 Kaplan Aaron V. Methods and apparatus for transpericardial left atrial appendage closure
US6206895B1 (en) * 1999-07-13 2001-03-27 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6344049B1 (en) * 1999-08-17 2002-02-05 Scion Cardio-Vascular, Inc. Filter for embolic material mounted on expandable frame and associated deployment system
US6712804B2 (en) * 1999-09-20 2004-03-30 Ev3 Sunnyvale, Inc. Method of closing an opening in a wall of the heart
US6551303B1 (en) * 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US20030059640A1 (en) * 1999-11-19 2003-03-27 Denes Marton High strength vacuum deposited nitinol alloy films and method of making same
US20020010481A1 (en) * 1999-12-23 2002-01-24 Swaminathan Jayaraman Occlusive coil manufacture and delivery
US20020026208A1 (en) * 2000-01-05 2002-02-28 Medical Technology Group, Inc. Apparatus and methods for delivering a closure device
US20020019648A1 (en) * 2000-04-19 2002-02-14 Dan Akerfeldt Intra-arterial occluder
US6551344B2 (en) * 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
US6214029B1 (en) * 2000-04-26 2001-04-10 Microvena Corporation Septal defect occluder
US6352552B1 (en) * 2000-05-02 2002-03-05 Scion Cardio-Vascular, Inc. Stent
US6867249B2 (en) * 2000-08-18 2005-03-15 Kin Man Amazon Lee Lightweight and porous construction materials containing rubber
US20020022860A1 (en) * 2000-08-18 2002-02-21 Borillo Thomas E. Expandable implant devices for filtering blood flow from atrial appendages
US20020029048A1 (en) * 2000-09-01 2002-03-07 Arnold Miller Endovascular fastener and grafting apparatus and method
US6364853B1 (en) * 2000-09-11 2002-04-02 Scion International, Inc. Irrigation and suction valve and method therefor
US20020035374A1 (en) * 2000-09-21 2002-03-21 Borillo Thomas E. Apparatus for implanting devices in atrial appendages
US6375625B1 (en) * 2000-10-18 2002-04-23 Scion Valley, Inc. In-line specimen trap and method therefor
US6508828B1 (en) * 2000-11-03 2003-01-21 Radi Medical Systems Ab Sealing device and wound closure device
US20030057156A1 (en) * 2001-03-08 2003-03-27 Dean Peterson Atrial filter implants
US20030004533A1 (en) * 2001-05-04 2003-01-02 Concentric Medical Bioactive polymer vaso-occlusive device
US20030023266A1 (en) * 2001-07-19 2003-01-30 Borillo Thomas E. Individually customized atrial appendage implant device
US20030028213A1 (en) * 2001-08-01 2003-02-06 Microvena Corporation Tissue opening occluder
US20030045893A1 (en) * 2001-09-06 2003-03-06 Integrated Vascular Systems, Inc. Clip apparatus for closing septal defects and methods of use
US20030050665A1 (en) * 2001-09-07 2003-03-13 Integrated Vascular Systems, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20030055455A1 (en) * 2001-09-20 2003-03-20 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
US20040044364A1 (en) * 2002-08-29 2004-03-04 Devries Robert Tissue fasteners and related deployment systems and methods
US20050025809A1 (en) * 2003-07-08 2005-02-03 Tepha, Inc. Poly-4-hydroxybutyrate matrices for sustained drug delivery
US20050043759A1 (en) * 2003-07-14 2005-02-24 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US20070010851A1 (en) * 2003-07-14 2007-01-11 Chanduszko Andrzej J Tubular patent foramen ovale (PFO) closure device with catch system

Cited By (255)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9795387B2 (en) 1997-05-19 2017-10-24 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US7662161B2 (en) 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
US8128653B2 (en) 1999-09-13 2012-03-06 Rex Medical, L.P. Vascular hole closure device
US8083766B2 (en) 1999-09-13 2011-12-27 Rex Medical, Lp Septal defect closure device
US8597324B2 (en) 1999-09-13 2013-12-03 Rex Medical L.P. Vascular hole closure device
US9968345B2 (en) 1999-09-13 2018-05-15 Rex Medical, L.P. Vascular hole closure device
US7942888B2 (en) 1999-09-13 2011-05-17 Rex Medical, L.P. Vascular hole closure device
US10111664B2 (en) 2000-01-05 2018-10-30 Integrated Vascular Systems, Inc. Closure system and methods of use
US9402625B2 (en) 2000-09-08 2016-08-02 Abbott Vascular Inc. Surgical stapler
US10245013B2 (en) 2000-12-07 2019-04-02 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9554786B2 (en) 2000-12-07 2017-01-31 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9320522B2 (en) 2000-12-07 2016-04-26 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9585646B2 (en) 2000-12-07 2017-03-07 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US7678132B2 (en) 2001-09-06 2010-03-16 Ovalis, Inc. Systems and methods for treating septal defects
US7740640B2 (en) 2001-09-06 2010-06-22 Ovalis, Inc. Clip apparatus for closing septal defects and methods of use
US7686828B2 (en) 2001-09-06 2010-03-30 Ovalis, Inc. Systems and methods for treating septal defects
US8758401B2 (en) 2001-09-06 2014-06-24 ProMed, Inc. Systems and methods for treating septal defects
US8070826B2 (en) 2001-09-07 2011-12-06 Ovalis, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US8747483B2 (en) 2001-09-07 2014-06-10 ProMed, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US9498196B2 (en) 2002-02-21 2016-11-22 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US10201340B2 (en) 2002-02-21 2019-02-12 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US9295469B2 (en) 2002-06-04 2016-03-29 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US9980728B2 (en) 2002-06-04 2018-05-29 Abbott Vascular Inc Blood vessel closure clip and delivery device
US9271707B2 (en) 2003-01-30 2016-03-01 Integrated Vascular Systems, Inc. Clip applier and methods of use
US10398418B2 (en) 2003-01-30 2019-09-03 Integrated Vascular Systems, Inc. Clip applier and methods of use
US11589856B2 (en) 2003-01-30 2023-02-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US9398914B2 (en) 2003-01-30 2016-07-26 Integrated Vascular Systems, Inc. Methods of use of a clip applier
US8021359B2 (en) 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
US8052677B2 (en) 2003-02-13 2011-11-08 Coaptus Medical Corporation Transseptal left atrial access and septal closure
US8758395B2 (en) 2003-05-19 2014-06-24 Septrx, Inc. Embolic filtering method and apparatus
US7648532B2 (en) 2003-05-19 2010-01-19 Septrx, Inc. Tissue distention device and related methods for therapeutic intervention
US20050049681A1 (en) * 2003-05-19 2005-03-03 Secant Medical, Llc Tissue distention device and related methods for therapeutic intervention
US11382747B2 (en) 2004-02-03 2022-07-12 V-Wave, Ltd. Device and method for controlling in-vivo pressure
US9901350B2 (en) 2005-04-22 2018-02-27 Rex Medical, L.P. Closure device for left atrial appendage
US8740934B2 (en) 2005-04-22 2014-06-03 Rex Medical, L.P. Closure device for left atrial appendage
US10085753B2 (en) 2005-07-01 2018-10-02 Abbott Laboratories Clip applier and methods of use
US11344304B2 (en) 2005-07-01 2022-05-31 Abbott Laboratories Clip applier and methods of use
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US20070100324A1 (en) * 2005-10-17 2007-05-03 Coaptus Medical Corporation Systems and methods for applying vacuum to a patient, including via a disposable liquid collection unit
US8936608B2 (en) 2006-02-03 2015-01-20 James E. Coleman Wound closure devices and systems
US20100256673A1 (en) * 2006-02-03 2010-10-07 James Coleman Wound Closure Devices and System
US7625392B2 (en) 2006-02-03 2009-12-01 James Coleman Wound closure devices and methods
US20100004681A1 (en) * 2006-02-03 2010-01-07 Coleman James E Wound closure methods
US8366742B2 (en) 2006-02-03 2013-02-05 Coleman James E Wound closure devices and system
US20070185529A1 (en) * 2006-02-03 2007-08-09 James Coleman Wound closure devices and methods
US8192457B2 (en) 2006-02-03 2012-06-05 Coleman James E Wound closure methods
US9498217B2 (en) 2006-02-03 2016-11-22 James E. Coleman Wound closure devices and methods
EP1986570A2 (en) * 2006-02-07 2008-11-05 Organogenesis, Inc. Bioengineered tissue constructs and cardiac uses thereof
EP1986570A4 (en) * 2006-02-07 2015-03-18 Organogenesis Inc Bioengineered tissue constructs and cardiac uses thereof
US20070293808A1 (en) * 2006-04-27 2007-12-20 Williams Michael S Renal blood flow augmentation for congestive heart failure treatment
US9962144B2 (en) 2006-06-28 2018-05-08 Abbott Laboratories Vessel closure device
US8529597B2 (en) * 2006-08-09 2013-09-10 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US9585644B2 (en) 2006-08-09 2017-03-07 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US8167894B2 (en) 2006-08-09 2012-05-01 Coherex Medical, Inc. Methods, systems and devices for reducing the size of an internal tissue opening
US20080039743A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Methods for determining characteristics of an internal tissue opening
US9220487B2 (en) 2006-08-09 2015-12-29 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US20080039804A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Systems and devices for reducing the size of an internal tissue opening
US20080039922A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Systems and devices for reducing the size of an internal tissue opening
US8864809B2 (en) 2006-08-09 2014-10-21 Coherex Medical, Inc. Systems and devices for reducing the size of an internal tissue opening
US20080119891A1 (en) * 2006-08-09 2008-05-22 Coherex Medical, Inc. Methods, systems and devices for reducing the size of an internal tissue opening
US8979941B2 (en) 2006-08-09 2015-03-17 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US20100324595A1 (en) * 2006-08-09 2010-12-23 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US8840655B2 (en) 2006-08-09 2014-09-23 Coherex Medical, Inc. Systems and devices for reducing the size of an internal tissue opening
US9138208B2 (en) 2006-08-09 2015-09-22 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US8075576B2 (en) * 2006-08-24 2011-12-13 Boston Scientific Scimed, Inc. Closure device, system, and method
US20080051829A1 (en) * 2006-08-24 2008-02-28 Boston Scientific Scimed, Inc. Closure device, system, and method
US20080077180A1 (en) * 2006-09-26 2008-03-27 Nmt Medical, Inc. Scaffold for tubular septal occluder device and techniques for attachment
US11690609B2 (en) 2006-11-07 2023-07-04 Corvia Medical, Inc. Devices and methods for the treatment of heart failure
US10610210B2 (en) 2006-11-07 2020-04-07 Corvia Medical, Inc. Methods for deploying a prosthesis
US10188375B2 (en) 2006-11-07 2019-01-29 Corvia Medical, Inc. Devices, systems, and methods to treat heart failure having an improved flow-control mechanism
US10045766B2 (en) 2006-11-07 2018-08-14 Corvia Medical, Inc. Intra-atrial implants to directionally shunt blood
US9937036B2 (en) 2006-11-07 2018-04-10 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US10568751B2 (en) 2006-11-07 2020-02-25 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US10413286B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Intra-atrial implants having variable thicknesses to accommodate variable thickness in septum
US9358371B2 (en) 2006-11-07 2016-06-07 Corvia Medical, Inc. Intra-atrial implants made of non-braided material
US10292690B2 (en) 2006-11-07 2019-05-21 Corvia Medical, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US9456812B2 (en) 2006-11-07 2016-10-04 Corvia Medical, Inc. Devices for retrieving a prosthesis
US10398421B2 (en) 2006-11-07 2019-09-03 DC Devices Pty. Ltd. Devices and methods for the treatment of heart failure
US10624621B2 (en) 2006-11-07 2020-04-21 Corvia Medical, Inc. Devices and methods for the treatment of heart failure
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US11166705B2 (en) 2006-11-07 2021-11-09 Corvia Medical, Inc. Intra-atrial implants made of non-braided material
US8617205B2 (en) 2007-02-01 2013-12-31 Cook Medical Technologies Llc Closure device
US9332977B2 (en) 2007-02-01 2016-05-10 Cook Medical Technologies Llc Closure device
US9554783B2 (en) 2007-02-01 2017-01-31 Cook Medical Technologies Llc Closure device and method of closing a bodily opening
US8480707B2 (en) 2007-02-01 2013-07-09 Cook Medical Technologies Llc Closure device and method for occluding a bodily passageway
US20100030246A1 (en) * 2007-02-01 2010-02-04 Dusan Pavcnik Closure Device and Method For Occluding a Bodily Passageway
US20080188892A1 (en) * 2007-02-01 2008-08-07 Cook Incorporated Vascular occlusion device
US20100163054A1 (en) * 2007-03-19 2010-07-01 Michael Breznel Methods And Apparatus For Occlusion Of Body Lumens
US9707124B2 (en) 2007-03-19 2017-07-18 Hologic, Inc. Methods and apparatus for occlusion of body lumens
US8851077B2 (en) 2007-03-19 2014-10-07 Hologic, Inc. Methods and apparatus for occlusion of body lumens
US8443808B2 (en) 2007-03-19 2013-05-21 Hologic, Inc. Methods and apparatus for occlusion of body lumens
US8906059B2 (en) 2007-07-13 2014-12-09 Rex Medical, L.P. Vascular hole closure device
US20170000637A1 (en) * 2007-07-18 2017-01-05 Boston Scientific Scimed, Inc. Endoscopic implant system and method
US10537456B2 (en) * 2007-07-18 2020-01-21 Boston Scientific Scimed, Inc. Endoscopic implant system and method
US8308752B2 (en) 2007-08-27 2012-11-13 Cook Medical Technologies Llc Barrel occlusion device
US8025495B2 (en) 2007-08-27 2011-09-27 Cook Medical Technologies Llc Apparatus and method for making a spider occlusion device
US8734483B2 (en) 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US8845711B2 (en) 2007-10-19 2014-09-30 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US11154303B2 (en) 2007-10-19 2021-10-26 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20090112249A1 (en) * 2007-10-19 2009-04-30 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20090105733A1 (en) * 2007-10-22 2009-04-23 Coleman James E Anastomosis devices and methods
US9301761B2 (en) 2007-10-22 2016-04-05 James E. Coleman Anastomosis devices and methods
US10034669B2 (en) 2007-10-22 2018-07-31 James E. Coleman Anastomosis devices and methods
US10098621B2 (en) 2008-02-15 2018-10-16 Rex Medical, Lp. Vascular hole closure delivery device
US9295458B2 (en) 2008-02-15 2016-03-29 Rex Medical, L.P. Vascular hole closure delivery device
US10390807B2 (en) 2008-02-15 2019-08-27 Rex Medical, L.P. Vascular hole closure device
US10390808B2 (en) 2008-02-15 2019-08-27 Rex Medical, L.P Vascular hole closure device
US10342524B2 (en) 2008-02-15 2019-07-09 Rex Medical, L.P. Vascular hole closure device
US8491629B2 (en) 2008-02-15 2013-07-23 Rex Medical Vascular hole closure delivery device
US9943300B2 (en) 2008-02-15 2018-04-17 Rex Medical, L.P. Vascular hole closure device
US11123059B2 (en) 2008-02-15 2021-09-21 Rex Medical, L.P. Vascular hole closure delivery device
US10004486B2 (en) 2008-02-15 2018-06-26 Rex Medical, L.P. Vascular hole closure delivery device
US9782155B2 (en) 2008-02-15 2017-10-10 Rex Medical, L.P. Vascular hole closure device
US8070772B2 (en) 2008-02-15 2011-12-06 Rex Medical, L.P. Vascular hole closure device
US9226738B2 (en) 2008-02-15 2016-01-05 Rex Medical, L.P. Vascular hole closure delivery device
US10108646B2 (en) 2008-02-15 2018-10-23 Rex Medical, L.P. Vascular hole closure delivery device
US11369354B2 (en) 2008-02-15 2022-06-28 Rex Medical L.P. Vascular hole closure delivery device
US9924930B2 (en) 2008-02-15 2018-03-27 Rex Medical, L.P. Vascular hole closure device
US8968361B2 (en) 2008-02-15 2015-03-03 Rex Medical, L.P. Vascular hole closure device
US11064986B2 (en) 2008-02-15 2021-07-20 Rex Medical, L.P. Vascular hole closure device
US8920463B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US9339261B2 (en) 2008-02-15 2016-05-17 Rex Medical, L.P. Vascular hole closure delivery device
US8920462B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US9463005B2 (en) 2008-02-15 2016-10-11 Rex Medical, L.P. Vascular hole closure device
US11020104B2 (en) 2008-02-15 2021-06-01 Rex Medical L.P. Vascular hole closure delivery device
US10413295B2 (en) 2008-05-16 2019-09-17 Abbott Laboratories Engaging element for engaging tissue
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US20120123468A1 (en) * 2008-05-20 2012-05-17 Belef W Martin Wire-Like and Other Devices for Treating Septal Defects and Systems and Methods for Delivering the Same
WO2009143291A1 (en) * 2008-05-20 2009-11-26 Ovalis, Inc. Wire-like and other devices for treating septal defects and systems and methods for delivering the same
US8192461B2 (en) * 2008-09-11 2012-06-05 Cook Medical Technologies Llc Methods for facilitating closure of a bodily opening using one or more tacking devices
US9241696B2 (en) 2008-10-30 2016-01-26 Abbott Vascular Inc. Closure device
US9289580B2 (en) 2008-11-06 2016-03-22 James E. Coleman Gastric bypass devices and procedures
US8672958B2 (en) 2008-11-06 2014-03-18 James E. Coleman Gastric bypass devices and procedures
US8197498B2 (en) 2008-11-06 2012-06-12 Trinitas Ventures Ltd. Gastric bypass devices and procedures
US20100114128A1 (en) * 2008-11-06 2010-05-06 Coleman James E Gastric bypass devices and procedures
US10420564B2 (en) 2009-01-08 2019-09-24 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20110022079A1 (en) * 2009-01-08 2011-01-27 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100228279A1 (en) * 2009-01-08 2010-09-09 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10695070B2 (en) 2009-01-08 2020-06-30 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9750505B2 (en) 2009-01-08 2017-09-05 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9572584B2 (en) 2009-01-08 2017-02-21 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100228285A1 (en) * 2009-01-08 2010-09-09 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US8690911B2 (en) 2009-01-08 2014-04-08 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US8795328B2 (en) 2009-01-08 2014-08-05 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US8840641B2 (en) 2009-01-08 2014-09-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US11439378B2 (en) 2009-01-09 2022-09-13 Abbott Cardiovascular Systems, Inc. Closure devices and methods
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
US10537313B2 (en) 2009-01-09 2020-01-21 Abbott Vascular, Inc. Closure devices and methods
US9173644B2 (en) 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US9314230B2 (en) 2009-01-09 2016-04-19 Abbott Vascular Inc. Closure device with rapidly eroding anchor
US9414824B2 (en) 2009-01-16 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US11850138B2 (en) 2009-05-04 2023-12-26 V-Wave Ltd. Shunt for redistributing atrial blood volume
WO2010135462A1 (en) * 2009-05-19 2010-11-25 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
JP2012529310A (en) * 2009-06-10 2012-11-22 カラク アーゲー Occluder
US9017377B2 (en) 2009-06-10 2015-04-28 Carag Ag Occluder
CN102458263A (en) * 2009-06-10 2012-05-16 卡拉格股份公司 Occluder
WO2010142051A1 (en) * 2009-06-10 2010-12-16 Carag Ag Occluder
CH701269A1 (en) * 2009-06-10 2010-12-15 Carag Ag Occluder.
US10076337B2 (en) 2009-06-17 2018-09-18 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100324585A1 (en) * 2009-06-17 2010-12-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US11253262B2 (en) 2009-06-17 2022-02-22 Coherex Medical, Inc. Delivery device, system, and method thereof
US9883864B2 (en) 2009-06-17 2018-02-06 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US11000289B2 (en) 2009-06-17 2021-05-11 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9649115B2 (en) 2009-06-17 2017-05-16 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9351716B2 (en) 2009-06-17 2016-05-31 Coherex Medical, Inc. Medical device and delivery system for modification of left atrial appendage and methods thereof
US10582929B2 (en) 2009-06-17 2020-03-10 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10772637B2 (en) 2009-06-17 2020-09-15 Coherex Medical, Inc. Medical device and delivery system for modification of left atrial appendage and methods thereof
US11918227B2 (en) 2009-06-17 2024-03-05 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10582930B2 (en) 2009-06-17 2020-03-10 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100324587A1 (en) * 2009-06-17 2010-12-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100324586A1 (en) * 2009-06-17 2010-12-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US11540837B2 (en) 2009-06-17 2023-01-03 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9693781B2 (en) 2009-06-17 2017-07-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10631969B2 (en) 2009-06-17 2020-04-28 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10064628B2 (en) 2009-06-17 2018-09-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10537332B2 (en) 2009-06-17 2020-01-21 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100324588A1 (en) * 2009-06-17 2010-12-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10758240B2 (en) 2009-06-17 2020-09-01 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US8715318B2 (en) 2009-06-17 2014-05-06 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US8636764B2 (en) 2009-06-17 2014-01-28 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9693780B2 (en) * 2009-06-17 2017-07-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9585647B2 (en) 2009-08-26 2017-03-07 Abbott Laboratories Medical device for repairing a fistula
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US9724079B2 (en) 2009-11-09 2017-08-08 Entourage Medical Technologies, Inc. System and method for providing access and closure to tissue
US20110190811A1 (en) * 2009-11-09 2011-08-04 Entourage Medical Llc System and method for providing access and closure to tissue
US9277995B2 (en) 2010-01-29 2016-03-08 Corvia Medical, Inc. Devices and methods for reducing venous pressure
US9295456B2 (en) * 2010-02-05 2016-03-29 Nanyang Technological University Occlusion device for closing anatomical defects
US20130030455A1 (en) * 2010-02-05 2013-01-31 Nanyang Technological University Occlusion device for closing anatomical defects
WO2011096896A1 (en) * 2010-02-05 2011-08-11 Nanyang Technological University Occlusion device for closing anatomical defects
US9161778B2 (en) 2010-06-11 2015-10-20 Entourage Medical Technologies, Inc. System and method for transapical access and closure
US9622774B2 (en) 2010-06-11 2017-04-18 Entourage Medical Technologies, Inc. System and method for transapical access and closure
US9186176B2 (en) 2010-06-11 2015-11-17 Entourage Medical Technologies, Inc. System and method for transapical access and closure
US9044267B2 (en) * 2010-06-11 2015-06-02 Entourage Medical Technologies, Inc. System and method for transapical access and closure
US20130110159A1 (en) * 2010-06-11 2013-05-02 Entourage Medical Technologies, Inc. System and method for transapical access and closure
US9675338B2 (en) 2010-09-20 2017-06-13 Entourage Medical Technologies, Inc. System for providing surgical access
US9730690B2 (en) 2010-09-20 2017-08-15 Entourage Medical Technologies, Inc. Method for providing surgical access
US9398910B2 (en) 2010-09-20 2016-07-26 Entourage Medical Technologies, Inc. Method for providing surgical access
US9579097B2 (en) 2010-09-20 2017-02-28 Entourage Medical Technologies, Inc. Method for tensioning a surgical closure
US9782168B2 (en) 2010-09-20 2017-10-10 Entourage Medical Technologies, Inc. System for providing surgical access
US9023074B2 (en) 2010-10-15 2015-05-05 Cook Medical Technologies Llc Multi-stage occlusion devices
US10820895B2 (en) 2011-01-11 2020-11-03 Amsel Medical Corporation Methods and apparatus for fastening and clamping tissue
US10398445B2 (en) 2011-01-11 2019-09-03 Amsel Medical Corporation Method and apparatus for clamping tissue layers and occluding tubular body structures
US10918391B2 (en) 2011-01-11 2021-02-16 Amsel Medical Corporation Method and apparatus for clamping tissue and occluding tubular body lumens
US11589854B2 (en) 2011-02-10 2023-02-28 Corvia Medical, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US11759339B2 (en) 2011-03-04 2023-09-19 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US20130338778A1 (en) * 2011-03-09 2013-12-19 Newvert Ltd. Spinal disc annulus closure device
US9375209B2 (en) 2011-09-22 2016-06-28 Occlutech Holding Ag Medical implantable occlusion device, and method for implantation thereof
US9901330B2 (en) 2011-09-22 2018-02-27 Occlutech Holding Ag Medical implantable occlusion device, and method for implantation thereof
EP2572644A1 (en) * 2011-09-22 2013-03-27 Occlutech Holding AG Medical implantable occlusion device
WO2013041721A1 (en) * 2011-09-22 2013-03-28 Occlutech Holding Ag Medical implantable occlusion device, and method for implantation thereof
US10905406B2 (en) 2011-09-22 2021-02-02 Occlutech Holding Ag Medical implantable occlusion device, and method for implantation thereof
US20130138144A1 (en) * 2011-11-30 2013-05-30 Abbott Cardiovascular Systems, Inc. Tissue closure device
US9332976B2 (en) * 2011-11-30 2016-05-10 Abbott Cardiovascular Systems, Inc. Tissue closure device
US10426448B2 (en) 2011-12-21 2019-10-01 James E. Coleman Devices and methods for occluding or promoting fluid flow
US11672517B2 (en) 2011-12-21 2023-06-13 James E. Coleman Methods for occluding or promoting fluid flow
US9247930B2 (en) 2011-12-21 2016-02-02 James E. Coleman Devices and methods for occluding or promoting fluid flow
US10376680B2 (en) 2011-12-22 2019-08-13 Corvia Medical, Inc. Methods, systems, and devices for resizable intra-atrial shunts
US9205236B2 (en) 2011-12-22 2015-12-08 Corvia Medical, Inc. Methods, systems, and devices for resizable intra-atrial shunts
US9642993B2 (en) 2011-12-22 2017-05-09 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having selectable flow rates
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
WO2013179277A1 (en) * 2012-05-30 2013-12-05 Newvert Ltd. Spinal disc annulus closure device
US9526623B2 (en) 2012-05-30 2016-12-27 Newvert Ltd. Spinal disc annulus closure device
US10537312B2 (en) 2012-12-21 2020-01-21 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US11672518B2 (en) 2012-12-21 2023-06-13 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
US11690976B2 (en) 2013-05-21 2023-07-04 V-Wave Ltd. Apparatus and methods for delivering devices for reducing left atrial pressure
CN105491962A (en) * 2013-06-05 2016-04-13 Lc疗法有限公司 Tissue anchor and deployment device for same
EP3003166A4 (en) * 2013-06-05 2017-06-14 LC Therapeutics, Inc. Tissue anchor and deployment device for same
US20140364872A1 (en) * 2013-06-05 2014-12-11 Lc Therapeutics, Inc. Tissue anchor and deployment device for same
US9883857B2 (en) 2013-10-29 2018-02-06 Entourage Medical Technologies, Inc. System for providing surgical access
US9730687B2 (en) 2013-10-29 2017-08-15 Entourage Medical Technologies, Inc. System for providing surgical access
US20150238194A1 (en) * 2014-02-24 2015-08-27 Boston Scientific Scimed, Inc. Hemostasis devices and methods utilizing mechanical methods
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
US10632292B2 (en) 2014-07-23 2020-04-28 Corvia Medical, Inc. Devices and methods for treating heart failure
US10463397B2 (en) * 2014-07-28 2019-11-05 Hairstetics, Ltd. Systems, devices, and methods for hair implantation
CN104720854A (en) * 2015-02-25 2015-06-24 上海形状记忆合金材料有限公司 Sectioned degradable plugging device
EP3398534A4 (en) * 2015-12-28 2019-08-07 Lifetech Scientific (Shenzhen) Co., Ltd. Occuluder
US11497631B2 (en) 2016-05-31 2022-11-15 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US11607327B2 (en) 2016-05-31 2023-03-21 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
CN107397561A (en) * 2017-07-20 2017-11-28 上海心玮医疗科技有限公司 A kind of oval hole plugging device
US10993807B2 (en) 2017-11-16 2021-05-04 Medtronic Vascular, Inc. Systems and methods for percutaneously supporting and manipulating a septal wall
US11744589B2 (en) * 2018-01-20 2023-09-05 V-Wave Ltd. Devices and methods for providing passage between heart chambers
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11478351B2 (en) * 2018-01-22 2022-10-25 Edwards Lifesciences Corporation Heart shape preserving anchor
US11504105B2 (en) 2019-01-25 2022-11-22 Rex Medical L.P. Vascular hole closure device
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
US11865282B2 (en) 2019-05-20 2024-01-09 V-Wave Ltd. Systems and methods for creating an interatrial shunt
US11369355B2 (en) 2019-06-17 2022-06-28 Coherex Medical, Inc. Medical device and system for occluding a tissue opening and method thereof
US11812969B2 (en) 2020-12-03 2023-11-14 Coherex Medical, Inc. Medical device and system for occluding a tissue opening and method thereof
CN113180737A (en) * 2021-05-06 2021-07-30 中国人民解放军总医院 Artificial intelligence-based oval hole closure detection method, system, equipment and medium
US11813386B2 (en) * 2022-04-14 2023-11-14 V-Wave Ltd. Interatrial shunt with expanded neck region

Also Published As

Publication number Publication date
US8828049B2 (en) 2014-09-09
US20100131006A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
US8828049B2 (en) Split ends closure device and methods of use
US11375988B2 (en) Patent foramen ovale (PFO) closure device with linearly elongating petals
US7867250B2 (en) Septal occluder and associated methods
EP2399526B1 (en) Septal closure devices
JP5486561B2 (en) Septal defect occluder
EP2004067B1 (en) Patent foramen ovale (pfo) closure device with linearly elongating petals
US7967840B2 (en) PFO closure device with flexible thrombogenic joint and improved dislodgement resistance

Legal Events

Date Code Title Description
AS Assignment

Owner name: NMT MEDICAL, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHANDUSZKO, ANDRZEJ J.;REEL/FRAME:016640/0694

Effective date: 20050623

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION