US20050242387A1 - Flash memory device having a graded composition, high dielectric constant gate insulator - Google Patents

Flash memory device having a graded composition, high dielectric constant gate insulator Download PDF

Info

Publication number
US20050242387A1
US20050242387A1 US10/835,221 US83522104A US2005242387A1 US 20050242387 A1 US20050242387 A1 US 20050242387A1 US 83522104 A US83522104 A US 83522104A US 2005242387 A1 US2005242387 A1 US 2005242387A1
Authority
US
United States
Prior art keywords
substrate
gate
insulator
source
gate insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/835,221
Inventor
Leonard Forbes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US10/835,221 priority Critical patent/US20050242387A1/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FORBES, LEONARD
Priority to US11/213,104 priority patent/US7198999B2/en
Publication of US20050242387A1 publication Critical patent/US20050242387A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7885Hot carrier injection from the channel

Definitions

  • the present invention relates generally to memory devices and in particular the present invention relates to flash memory devices with graded composition gate insulators.
  • RAM random-access memory
  • ROM read only memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • flash memory flash memory
  • Flash memory devices have developed into a popular source of non-volatile memory for a wide range of electronic applications. Flash memory devices typically use a one-transistor memory cell that allows for high memory densities, high reliability, and low power consumption. Common uses for flash memory include personal computers, personal digital assistants (PDAs), digital cameras, and cellular telephones. Program code and system data such as a basic input/output system (BIOS) are typically stored in flash memory devices for use in personal computer systems.
  • BIOS basic input/output system
  • Flash memory cells are typically comprised of field effect transistors (FET) with floating gates.
  • FET field effect transistors
  • the gates are referred to as floating since they are electrically isolated from other conductive areas of the transistor by layers of oxide insulation.
  • the floating gate can be programmed or erased by Fowler-Nordheim tunneling in which electrons tunnel through a barrier in the presence of a high electric field in the oxide.
  • the present invention encompasses a flash memory transistor comprising a substrate with a plurality of source/drain regions.
  • the source/drain regions have a different conductivity than the remainder of the substrate.
  • a graded composition, high dielectric constant gate insulator is formed on top of the substrate.
  • the gate insulator is formed substantially between the plurality of source/drain regions over a channel region between the source/drain regions.
  • the gate insulator has a dielectric constant that is greater than 3.9.
  • the gate insulator is comprised of more of a high-k material closer to the substrate.
  • the gate insulator is comprised of more of a high-k material closer to a floating gate that is formed on top of the gate insulator.
  • An oxide insulator is formed on top of the floating gate.
  • a control gate is formed on top of the oxide insulator.
  • FIG. 1 shows a typical prior art electron energy diagram for a flash memory cell.
  • FIG. 2 shows a cross-sectional view of one embodiment of a flash memory cell transistor of the present invention having a graded composition, high dielectric constant gate insulator.
  • FIG. 3 shows one embodiment of an electron energy band diagram in accordance with the graded composition, high dielectric constant gate insulator transistor structure of FIG. 2 .
  • FIG. 4 shows another embodiment of an electron energy band diagram in accordance with the graded composition, high dielectric constant gate insulator transistor structure of FIG. 2 .
  • FIG. 5 shows a block diagram of an electronic system of the present invention.
  • FIG. 2 illustrates a cross-sectional view of one embodiment of a flash memory cell transistor of the present invention.
  • the transistor has a graded composition, high dielectric constant (i.e., high-k) gate dielectric.
  • the transistor is comprised of two source/drain regions 201 and 202 in a silicon substrate 211 .
  • the direction of operation of the transistor determines which region 201 or 202 functions as a source and which functions as a drain.
  • a channel region 203 exists between the source/drain regions 201 and 202 .
  • the source/drain regions 201 and 202 are n+ doped regions in a p+ type substrate 211 .
  • An alternate embodiment may use p+ doped source/drain regions in an n+ type substrate.
  • the present invention is not limited to any one conductivity type for the source/drain regions or the substrate.
  • a high-permittivity (high-k), graded composition tunnel gate dielectric 206 is formed on top of the substrate 211 substantially between the source/drain regions 201 and 202 and over the channel region 203 .
  • a polysilicon floating gate layer 208 is formed on top of the tunnel gate dielectric layer 206 .
  • An interpoly oxide insulator layer 210 is formed on top of the floating gate 208 .
  • a polysilicon control gate 212 is formed on top of the oxide insulator 210 .
  • a high dielectric constant is considered to be a dielectric constant that is greater than that of SiO 2 .
  • a wide variety of different high dielectric constant insulators can be realized using atomic layer deposition (ALD) or evaporation techniques. These dielectric materials and their characteristics are summarized in the following table: Dielectric Band Gap Delta E c (eV) Material Constant (k) E c (eV) to Si SiO 2 3.9 8.9 3.2 Si 3 N 4 7 5.1 2 Al 2 O 3 9 8.7 2.8 Y 2 O 3 15 5.6 2.3 La 2 O 3 30 4.3 2.3 Ta 2 O 5 26 4.5 1-1.5 TiO 2 80 3.5 1.2 HfO 2 25 5.7 1.5 ZrO 2 25 7.8 1.4
  • the high-k dielectric materials of the present invention can be used as graded composition in either the tunnel gate dielectric 206 or the interpoly oxide insulator layer 210 .
  • the barriers and/or tunnel barriers can either be reduced between the silicon and the gate dielectric or between the floating gate and the gate insulating dielectric. This is illustrated in FIGS. 3 and 4 as discussed subsequently.
  • the composition of the film can be changed by varying the ratio of the metals in the film as described subsequently.
  • FIG. 3 illustrates that if the composition is closer to La 2 O 3 near the substrate, the electron barrier for hot electron injection will only be 2.3 eV.
  • the tunnel barrier from the floating gate can be kept higher (i.e., approximately 2.8 eV) by making the insulator composition close to Al 2 O 3 at the floating gate.
  • FIG. 4 illustrates that if the composition is closer to Al 2 O 3 near the substrate, the electron barrier for hot electron injection will be 2.8 eV.
  • the tunnel barrier from the floating gate can be kept lower (i.e., approximately 2.3 eV) by making the insulator composition close to La 2 O 3 at the floating gate.
  • Other realizations of graded composition, high-k dielectric gate insulators are also discussed subsequently.
  • One embodiment of the graded composition, high-k dielectric gate insulator of the present invention is comprised of a lanthanum aluminate (LaAlO 3 ) film. These films may be deposited on silicon substrates by evaporating single-crystal pellets in a vacuum using an electron-beam gun. In another embodiment, the films can sue a dry pellet of Al 2 O 3 and La 2 O 3 using two electron guns with two rate monitors that are set to control the composition. The composition of the film can be shifted toward Al 2 O 3 or La 2 O 3 side by depending upon the choice of electron affinity. After deposition, the wafer can be annealed ex situ in an electric furnace at 700° C. for ten minutes in N 2 ambience or 800-900° C. in RTA for ten to fifteen seconds in an N 2 ambience. Alternate embodiments may use other deposition and/or annealing methods.
  • LaAlO 3 lanthanum aluminate
  • the graded composition, high-k dielectric gate insulator of the present invention is comprised of Hf or Zr films. These films can be deposited by simple thermal evaporation that, in one embodiment, uses twin electron-beam evaporation with ultra-high purity Hf and Zr metal slugs (e.g., 99.9999%) at a low substrate temperature (e.g., 150°-200°C.). The second step is oxidation to form the desired HfO 2 or ZrO 2 .
  • very thin films of TiO 2 can be fabricated with electron-gun evaporation from a high purity TiO 2 slug (e.g., 99.9999%) in a vacuum evaporator in the presence of anion beam.
  • an electron gun is centrally located toward the bottom of the chamber.
  • a heat reflector and a heater surround the substrate holder.
  • Under the substrate holder is an ozonizer ring with many small holes directed to the wafer for uniform distribution of ozone that is needed to compensate for the loss of oxygen in the evaporated TiO 2 film.
  • An ion gun with a fairly large diameter (3-4 in. in diameter) is located above the electron gun and argon gas is used to generate Ar ions to bombard the substrate surface uniformly during the film deposition to compact the growing TiO 2 film.
  • a thin Zr film is deposited by simple thermal evaporation. In one embodiment, this is accomplished by electron beam evaporation using an ultra-high purity Zr metal slug (e.g., 99.9999%) at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma and ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained. The second step is the oxidation to form the desired ZrO 2 .
  • the above-described evaporation techniques avoid the damage to the silicon surface by Ar ion bombardment, such as that encountered during Hf or Zr metal deposition using dc sputtering. Since there is no plasma and ion bombardment of the substrate (as in the case of sputtering), the original atomically smooth surface of the silicon substrate is maintained.
  • Y 2 O 3 and Gd 2 O 3 films for use as graded composition, high-k dielectric gate insulators may be accomplished with a two step process.
  • an electron gun provides evaporation of high purity (e.g., 99.9999%) Y or Gd metal followed by low-temperature oxidation technology by microwave excitation in a Kr/O 2 mixed high-density plasma at 400° C.
  • the method of the present invention avoids damage to the silicon surface by Ar ion bombardment such as that encountered during Y or Gd metal deposition sputtering.
  • a thin film of Y or Gd is deposited by thermal evaporation.
  • an electron-beam evaporation technique is used with an ultra-high purity Y or Gd metal slug at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma or ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained.
  • the second step is the oxidation to form the desired Y 2 O 3 or Gd 2 O 3 .
  • the use of the gate insulators described above allows for two different barriers.
  • the lower height of the tunneling barriers with high-k dielectric gate insulators can provide larger tunneling currents out of the floating gate with smaller control gate voltages.
  • the lower barrier between the silicon substrate makes the write operation easier and write currents by channel hot electron injection larger at lower voltages. Both tunneling currents and hot electron injection currents are exponential functions of the barrier heights and electric fields.
  • FIG. 5 illustrates a functional block diagram of a memory device 500 that can incorporate the flash memory cells of the present invention.
  • the memory device 500 is coupled to a processor 510 .
  • the processor 510 may be a microprocessor or some other type of controlling circuitry.
  • the memory device 500 and the processor 510 form part of an electronic system 520 .
  • the memory device 500 has been simplified to focus on features of the memory that are helpful in understanding the present invention.
  • the memory device includes an array of flash memory cells 530 .
  • the memory array 530 is arranged in banks of rows and columns.
  • the control gates of each row of memory cells is coupled with a wordline while the drain and source connections of the memory cells are coupled to bitlines.
  • bitlines As is well known in the art, the connection of the cells to the bitlines depends on whether the array is a NAND architecture or a NOR architecture.
  • An address buffer circuit 540 is provided to latch address signals provided on address input connections A 0 -Ax 542 . Address signals are received and decoded by a row decoder 544 and a column decoder 546 to access the memory array 530 . It will be appreciated by those skilled in the art, with the benefit of the present description, that the number of address input connections depends on the density and architecture of the memory array 530 . That is, the number of addresses increases with both increased memory cell counts and increased bank and block counts.
  • the memory device 500 reads data in the memory array 530 by sensing voltage or current changes in the memory array columns using sense/buffer circuitry 550 .
  • the sense/buffer circuitry in one embodiment, is coupled to read and latch a row of data from the memory array 530 .
  • Data input and output buffer circuitry 560 is included for bi-directional data communication over a plurality of data connections 562 with the controller 510 ).
  • Write circuitry 555 is provided to write data to the memory array.
  • Control circuitry 570 decodes signals provided on control connections 572 from the processor 510 . These signals are used to control the operations on the memory array 530 , including data read, data write, and erase operations.
  • the control circuitry 570 may be a state machine, a sequencer, or some other type of controller.
  • the flash memory device illustrated in FIG. 5 has been simplified to facilitate a basic understanding of the features of the memory. A more detailed understanding of internal circuitry and functions of flash memories are known to those skilled in the art.
  • the flash memory transistors of the present invention with graded composition, high-k gate dielectrics reduce the electron barrier between the substrate and gate insulator and the tunnel barrier between the polysilicon floating gate and gate insulator. This is accomplished by using a graded composition, high-k dielectric gate insulator instead of the prior art's silicon dioxide.
  • the higher dielectric constant gate insulators of the present invention also allow for better scaling of flash memory devices to smaller dimensions.
  • the effective gate length of high-k gate tunneling dielectric flash memory transistors can be scaled below 50 nm.
  • High-k gate dielectrics reduce or eliminate drain turn-on problems, short-channel effects and punchthrough in flash memory transistors.
  • Smaller write and erase voltages provide another advantage in that the thickness of the SiO 2 layer between the control gate and the floating gate can be reduced.
  • the flash memory cells of the present invention may be NAND-type cells, NOR-type cells, or any other type of flash memory array architecture.

Abstract

A graded composition, high dielectric constant gate insulator is deposited between a substrate and floating gate in a flash memory cell transistor. If the composition of the gate insulator is closer to the high-k material near the substrate, the electron barrier for hot electron injection will be lower. If the gate insulator is closer to the high-k material near the floating gate, the tunnel barrier can be lower at the floating gate.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates generally to memory devices and in particular the present invention relates to flash memory devices with graded composition gate insulators.
  • BACKGROUND OF THE INVENTION
  • Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic devices. There are many different types of memory including random-access memory (RAM), read only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), and flash memory.
  • Flash memory devices have developed into a popular source of non-volatile memory for a wide range of electronic applications. Flash memory devices typically use a one-transistor memory cell that allows for high memory densities, high reliability, and low power consumption. Common uses for flash memory include personal computers, personal digital assistants (PDAs), digital cameras, and cellular telephones. Program code and system data such as a basic input/output system (BIOS) are typically stored in flash memory devices for use in personal computer systems.
  • Flash memory cells are typically comprised of field effect transistors (FET) with floating gates. The gates are referred to as floating since they are electrically isolated from other conductive areas of the transistor by layers of oxide insulation. The floating gate can be programmed or erased by Fowler-Nordheim tunneling in which electrons tunnel through a barrier in the presence of a high electric field in the oxide.
  • One drawback with floating gate FETs is the large amount of time needed to store a charge on the floating gate during a write operation and the large amount of time necessary to remove the charge during an erase operation. One reason for the inordinate time requirements is the relatively large tunneling barrier between the silicon substrate and the silicon dioxide insulator. Additionally, the high electric field required to cause electron injection in order to tunnel through the barrier typically contributes to reliability problems and premature gate insulator breakdowns.
  • Silicon dioxide (SiO2) is an insulator with a relative dielectric constant of 3.9, an energy gap of approximately Eg=9 eV, and electron affinity of χ=0.9 eV. By comparison, the energy gap and electron affinity for the semiconductor silicon are Eg=1.1 eV and χ=4.1 eV, respectively. In a conventional flash memory cell, electrons stored on the polysilicon floating gate see a large tunneling barrier of about 3.2 eV. FIG. 1 illustrates the typical prior art large barrier, Φ=3.2 eV, for tunneling erase in flash memory devices. The large tunneling barrier Φ=3.2 eV is the difference between the electron affinities of silicon (i.e., χ=4.1 eV) and SiO2 (i.e., χ=0.9 eV). This is a relatively large barrier that requires a high applied electric field.
  • There is a resulting need in the art for an improved gate insulator that provides a low tunneling barrier in order to decrease the time required for programming and erase operations in a flash memory cell.
  • SUMMARY
  • The above-mentioned problems with gate insulators in flash memory cells and other problems are addressed by the present invention and will be understood by reading and studying the following specification.
  • The present invention encompasses a flash memory transistor comprising a substrate with a plurality of source/drain regions. The source/drain regions have a different conductivity than the remainder of the substrate.
  • A graded composition, high dielectric constant gate insulator is formed on top of the substrate. The gate insulator is formed substantially between the plurality of source/drain regions over a channel region between the source/drain regions. The gate insulator has a dielectric constant that is greater than 3.9. In one embodiment, the gate insulator is comprised of more of a high-k material closer to the substrate. In another embodiment, the gate insulator is comprised of more of a high-k material closer to a floating gate that is formed on top of the gate insulator.
  • An oxide insulator is formed on top of the floating gate. A control gate is formed on top of the oxide insulator.
  • Further embodiments of the invention include methods and apparatus of varying scope.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a typical prior art electron energy diagram for a flash memory cell.
  • FIG. 2 shows a cross-sectional view of one embodiment of a flash memory cell transistor of the present invention having a graded composition, high dielectric constant gate insulator.
  • FIG. 3 shows one embodiment of an electron energy band diagram in accordance with the graded composition, high dielectric constant gate insulator transistor structure of FIG. 2.
  • FIG. 4 shows another embodiment of an electron energy band diagram in accordance with the graded composition, high dielectric constant gate insulator transistor structure of FIG. 2.
  • FIG. 5 shows a block diagram of an electronic system of the present invention.
  • DETAILED DESCRIPTION
  • In the following detailed description of the invention, reference is made to the accompanying drawings that form a part hereof and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims and equivalents thereof.
  • FIG. 2 illustrates a cross-sectional view of one embodiment of a flash memory cell transistor of the present invention. The transistor has a graded composition, high dielectric constant (i.e., high-k) gate dielectric. The transistor is comprised of two source/ drain regions 201 and 202 in a silicon substrate 211. The direction of operation of the transistor determines which region 201 or 202 functions as a source and which functions as a drain. A channel region 203 exists between the source/ drain regions 201 and 202.
  • In one embodiment, the source/ drain regions 201 and 202 are n+ doped regions in a p+ type substrate 211. An alternate embodiment may use p+ doped source/drain regions in an n+ type substrate. The present invention is not limited to any one conductivity type for the source/drain regions or the substrate.
  • A high-permittivity (high-k), graded composition tunnel gate dielectric 206 is formed on top of the substrate 211 substantially between the source/ drain regions 201 and 202 and over the channel region 203. A polysilicon floating gate layer 208 is formed on top of the tunnel gate dielectric layer 206. An interpoly oxide insulator layer 210 is formed on top of the floating gate 208. A polysilicon control gate 212 is formed on top of the oxide insulator 210.
  • In one embodiment, a high dielectric constant is considered to be a dielectric constant that is greater than that of SiO2. A wide variety of different high dielectric constant insulators can be realized using atomic layer deposition (ALD) or evaporation techniques. These dielectric materials and their characteristics are summarized in the following table:
    Dielectric Band Gap Delta Ec (eV)
    Material Constant (k) Ec (eV) to Si
    SiO2 3.9 8.9 3.2
    Si3N4 7 5.1 2
    Al2O3 9 8.7 2.8
    Y2O3 15 5.6 2.3
    La2O3 30 4.3 2.3
    Ta2O5 26 4.5 1-1.5
    TiO2 80 3.5 1.2
    HfO2 25 5.7 1.5
    ZrO2 25 7.8 1.4
  • Alternate embodiments use other dielectrics than those listed above that have other dielectric constants. The characteristics of these materials are well known to those skilled in the art and are not discussed further.
  • The high-k dielectric materials of the present invention can be used as graded composition in either the tunnel gate dielectric 206 or the interpoly oxide insulator layer 210. By varying the composition ratios of these high-k dielectrics, the barriers and/or tunnel barriers can either be reduced between the silicon and the gate dielectric or between the floating gate and the gate insulating dielectric. This is illustrated in FIGS. 3 and 4 as discussed subsequently.
  • The composition of the film can be changed by varying the ratio of the metals in the film as described subsequently. FIG. 3 illustrates that if the composition is closer to La2O3 near the substrate, the electron barrier for hot electron injection will only be 2.3 eV. The tunnel barrier from the floating gate can be kept higher (i.e., approximately 2.8 eV) by making the insulator composition close to Al2O3 at the floating gate.
  • FIG. 4 illustrates that if the composition is closer to Al2O3 near the substrate, the electron barrier for hot electron injection will be 2.8 eV. The tunnel barrier from the floating gate can be kept lower (i.e., approximately 2.3 eV) by making the insulator composition close to La2O3 at the floating gate. Other realizations of graded composition, high-k dielectric gate insulators are also discussed subsequently.
  • One embodiment of the graded composition, high-k dielectric gate insulator of the present invention is comprised of a lanthanum aluminate (LaAlO3) film. These films may be deposited on silicon substrates by evaporating single-crystal pellets in a vacuum using an electron-beam gun. In another embodiment, the films can sue a dry pellet of Al2O3 and La2O3 using two electron guns with two rate monitors that are set to control the composition. The composition of the film can be shifted toward Al2O3 or La2O3 side by depending upon the choice of electron affinity. After deposition, the wafer can be annealed ex situ in an electric furnace at 700° C. for ten minutes in N2 ambience or 800-900° C. in RTA for ten to fifteen seconds in an N2 ambience. Alternate embodiments may use other deposition and/or annealing methods.
  • In another embodiment, the graded composition, high-k dielectric gate insulator of the present invention is comprised of Hf or Zr films. These films can be deposited by simple thermal evaporation that, in one embodiment, uses twin electron-beam evaporation with ultra-high purity Hf and Zr metal slugs (e.g., 99.9999%) at a low substrate temperature (e.g., 150°-200°C.). The second step is oxidation to form the desired HfO2 or ZrO2.
  • In yet another embodiment, very thin films of TiO2 can be fabricated with electron-gun evaporation from a high purity TiO2 slug (e.g., 99.9999%) in a vacuum evaporator in the presence of anion beam. In this embodiment, an electron gun is centrally located toward the bottom of the chamber. A heat reflector and a heater surround the substrate holder. Under the substrate holder is an ozonizer ring with many small holes directed to the wafer for uniform distribution of ozone that is needed to compensate for the loss of oxygen in the evaporated TiO2 film. An ion gun with a fairly large diameter (3-4 in. in diameter) is located above the electron gun and argon gas is used to generate Ar ions to bombard the substrate surface uniformly during the film deposition to compact the growing TiO2 film.
  • In still another embodiment, a thin Zr film is deposited by simple thermal evaporation. In one embodiment, this is accomplished by electron beam evaporation using an ultra-high purity Zr metal slug (e.g., 99.9999%) at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma and ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained. The second step is the oxidation to form the desired ZrO2.
  • The above-described evaporation techniques avoid the damage to the silicon surface by Ar ion bombardment, such as that encountered during Hf or Zr metal deposition using dc sputtering. Since there is no plasma and ion bombardment of the substrate (as in the case of sputtering), the original atomically smooth surface of the silicon substrate is maintained.
  • The fabrication of Y2O3 and Gd2O3 films for use as graded composition, high-k dielectric gate insulators may be accomplished with a two step process. In one embodiment, an electron gun provides evaporation of high purity (e.g., 99.9999%) Y or Gd metal followed by low-temperature oxidation technology by microwave excitation in a Kr/O2 mixed high-density plasma at 400° C. The method of the present invention avoids damage to the silicon surface by Ar ion bombardment such as that encountered during Y or Gd metal deposition sputtering.
  • A thin film of Y or Gd is deposited by thermal evaporation. In one embodiment, an electron-beam evaporation technique is used with an ultra-high purity Y or Gd metal slug at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma or ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained. The second step is the oxidation to form the desired Y2O3 or Gd2O3.
  • The use of the gate insulators described above allows for two different barriers. The lower height of the tunneling barriers with high-k dielectric gate insulators can provide larger tunneling currents out of the floating gate with smaller control gate voltages. The lower barrier between the silicon substrate makes the write operation easier and write currents by channel hot electron injection larger at lower voltages. Both tunneling currents and hot electron injection currents are exponential functions of the barrier heights and electric fields.
  • FIG. 5 illustrates a functional block diagram of a memory device 500 that can incorporate the flash memory cells of the present invention. The memory device 500 is coupled to a processor 510. The processor 510 may be a microprocessor or some other type of controlling circuitry. The memory device 500 and the processor 510 form part of an electronic system 520. The memory device 500 has been simplified to focus on features of the memory that are helpful in understanding the present invention.
  • The memory device includes an array of flash memory cells 530. The memory array 530 is arranged in banks of rows and columns. The control gates of each row of memory cells is coupled with a wordline while the drain and source connections of the memory cells are coupled to bitlines. As is well known in the art, the connection of the cells to the bitlines depends on whether the array is a NAND architecture or a NOR architecture.
  • An address buffer circuit 540 is provided to latch address signals provided on address input connections A0-Ax 542. Address signals are received and decoded by a row decoder 544 and a column decoder 546 to access the memory array 530. It will be appreciated by those skilled in the art, with the benefit of the present description, that the number of address input connections depends on the density and architecture of the memory array 530. That is, the number of addresses increases with both increased memory cell counts and increased bank and block counts.
  • The memory device 500 reads data in the memory array 530 by sensing voltage or current changes in the memory array columns using sense/buffer circuitry 550. The sense/buffer circuitry, in one embodiment, is coupled to read and latch a row of data from the memory array 530. Data input and output buffer circuitry 560 is included for bi-directional data communication over a plurality of data connections 562 with the controller 510). Write circuitry 555 is provided to write data to the memory array.
  • Control circuitry 570 decodes signals provided on control connections 572 from the processor 510. These signals are used to control the operations on the memory array 530, including data read, data write, and erase operations. The control circuitry 570 may be a state machine, a sequencer, or some other type of controller.
  • The flash memory device illustrated in FIG. 5 has been simplified to facilitate a basic understanding of the features of the memory. A more detailed understanding of internal circuitry and functions of flash memories are known to those skilled in the art.
  • CONCLUSION
  • In summary, the flash memory transistors of the present invention with graded composition, high-k gate dielectrics reduce the electron barrier between the substrate and gate insulator and the tunnel barrier between the polysilicon floating gate and gate insulator. This is accomplished by using a graded composition, high-k dielectric gate insulator instead of the prior art's silicon dioxide.
  • The higher dielectric constant gate insulators of the present invention also allow for better scaling of flash memory devices to smaller dimensions. The effective gate length of high-k gate tunneling dielectric flash memory transistors can be scaled below 50 nm. High-k gate dielectrics reduce or eliminate drain turn-on problems, short-channel effects and punchthrough in flash memory transistors. Smaller write and erase voltages provide another advantage in that the thickness of the SiO2 layer between the control gate and the floating gate can be reduced.
  • The flash memory cells of the present invention may be NAND-type cells, NOR-type cells, or any other type of flash memory array architecture.
  • Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. Many adaptations of the invention will be apparent to those of ordinary skill in the art. Accordingly, this application is intended to cover any adaptations or variations of the invention. It is manifestly intended that this invention be limited only by the following claims and equivalents thereof.

Claims (31)

1. A flash memory transistor comprising:
a substrate having a plurality of source/drain regions, the source/drain regions having a different conductivity than the remainder of the substrate;
a graded composition, high dielectric constant gate insulator formed on top of the substrate and substantially between the plurality of source/drain regions, the gate insulator having a dielectric constant that is greater than 3.9;
a floating gate formed on top of the gate insulator;
an oxide insulator formed on top of the floating gate; and
a control gate formed on top of the oxide insulator.
2. The transistor of claim 1 wherein the gate insulator is formed by an evaporation technique.
3. The transistor of claim 1 wherein the gate insulator is formed by an atomic layer deposition technique.
4. The transistor of claim 1 wherein the graded composition of the gate insulator layer is a film of one of Si3N4, Al2O3, Y2O3, La2O3, Ta2O5, TiO2, HfO2, ZrO2, Gd2O3, LaxAl2-xO3, or LaAlO.
5. The transistor of claim 1 wherein the gate insulator composition adjacent to the substrate is closer to one of Si3N4, Al2O3, Y2O3, La2O3, Ta2O5, TiO2, HfO2, ZrO2, Gd2O3, LaxAl2-xO3, or LaAlO than the film composition adjacent to the floating gate.
6. The transistor of claim 1 wherein the gate insulator composition adjacent to the floating gate is closer to one of Si3N4, Al2O3, Y2O3, La2O3, Ta2O5, TiO2, HfO2, ZrO2, Gd2O3, LaxAl2-xO3, or LaAlO than the film composition adjacent to the substrate.
7. The transistor of claim 1 wherein the source/drain regions are n+ conductivity and the substrate is p+ conductivity.
8. The transistor of claim 1 wherein the floating gate and control gate are comprised of a polysilicon material.
9. The transistor of claim 1 wherein a direction of operation of the transistor determines which source/drain region is a source and which is a drain.
10. The transistor of claim 1 wherein the gate insulator is fabricated using electron-gun evaporation.
11. The transistor of claim 1 wherein the gate insulator is fabricated using thermal evaporation.
12. A flash memory transistor comprising:
a substrate having a plurality of source/drain regions, the source/drain regions having a different conductivity than the remainder of the substrate, a channel region formed between each pair of source/drain regions;
a graded composition, high dielectric constant gate insulator formed on top of the substrate and substantially adjacent to the channel region, the gate insulator having a dielectric constant that is greater than 3.9 and an electron barrier between the substrate and the gate insulator is in a range of 1.0-2.8 eV;
a floating gate formed on top of the gate insulator;
an oxide insulator formed on top of the floating gate; and
a control gate formed on top of the oxide insulator.
13. The transistor of claim 12 wherein the source/drain regions are p+ conductivity and the substrate is n+ conductivity.
14. A flash memory transistor comprising:
a substrate having a plurality of source/drain regions, the source/drain regions having a different conductivity than the remainder of the substrate, a channel region formed between each pair of source/drain regions;
a graded composition, high dielectric constant gate insulator formed on top of the substrate and substantially adjacent to the channel region, the gate insulator having a dielectric constant that is greater than 3.9;
a floating gate formed on top of the gate insulator;
an oxide insulator formed on top of the floating gate; and
a control gate formed on top of the oxide insulator wherein there is an electron barrier between the gate insulator and the floating gate in a range of 1.0-2.8 eV.
15. A method for fabricating a flash memory cell transistor, the method comprising: creating a plurality of source/drain regions by doping portions of a substrate;
depositing a graded composition, high-k gate insulator on the substrate by an evaporation technique substantially between the plurality of source/drain regions, the gate insulator having a dielectric constant that is greater than 3.9;
depositing a floating gate on the gate insulator;
depositing an oxide insulator material on the floating gate; and
forming a control gate on the oxide insulator material.
16. The method of claim 15 wherein the evaporation technique comprises evaporation from a high purity TiO2 slug in a vacuum evaporator with an ion beam.
17. The method of claim 15 wherein a portion of the gate insulator adjacent the substrate comprises more of the high-k dielectric material than remaining portions of the gate insulator.
18. The method of claim 15 wherein a portion of the gate insulator adjacent the floating gate comprises more of the high-k dielectric material than remaining portions of the gate insulator.
19. The method of claim 15 wherein the evaporation technique comprises electron-beam evaporation from a high purity Hf metal slug with a substrate temperature less than 200° C. and subsequent oxidizing.
20. The method of claim 15 wherein the evaporation technique on the high-k dielectric material is performed by electron-beam evaporation.
21. The method of claim 15 wherein the evaporation technique comprises depositing a Zr film on the substrate by thermal evaporation and subsequently oxidizing the Zr film.
22. The method of claim 15 wherein the evaporation technique comprises depositing one of a Y or a Gd film on the substrate by thermal evaporation and subsequently oxidizing the film.
23. The method of claim 22 wherein the depositing one of the Y or the Gd film comprises electron-beam evaporation of a high purity Y or Gd metal slug at a substrate temperature less than 200° C.
24. The method of claim 15 wherein the evaporation technique comprises depositing a LaAlO3 film on the substrate and subsequently annealing.
25. The method of claim 24 wherein depositing the LaAlO3 film comprises evaporation of Al2O3 and La2O3 using an electron gun for each material and the annealing is performed at 700° C. in an N2 ambience.
26. The method of claim 24 wherein the annealing is performed at 800-900° C. in RTA for a time in a range of 10-15 seconds in an N2 ambience.
27. A flash memory transistor comprising:
a substrate having a plurality of source/drain regions, the source/drain regions having a different conductivity than the remainder of the substrate;
depositing a graded composition, high-k gate insulator on the substrate by an atomic layer deposition (ALD) technique used on a high-k material, the gate insulator deposited substantially between the plurality of source/drain regions and having a dielectric constant that is greater than 3.9;
a floating gate layer formed on top of the gate insulator;
an oxide insulator formed on top of the floating gate layer; and
a control gate formed on top of the oxide insulator.
28. The transistor of claim 27 wherein the high-k material is comprised of one of AlOx, LaAlO3, Zr—Ti—O films, or HfO2/Hf.
29. An electronic system comprising:
a processor that generates control signals; and
a memory array coupled to the processor, the array comprising a plurality of flash memory cells, each flash memory cell comprising:
creating a plurality of source/drain regions by doping portions of a substrate;
depositing a graded composition, high-k gate insulator on the substrate by an evaporation technique substantially between the plurality of source/drain regions, the gate insulator having a dielectric constant that is greater than 3.9;
depositing a floating gate on the gate insulator;
depositing an oxide insulator material on the floating gate; and
forming a control gate on the oxide insulator material.
30. The method of claim 29 wherein the plurality of source/drain regions are created with an n+ conductivity in a p+ substrate.
31. An electronic system comprising:
a processor that generates control signals; and
a memory array coupled to the processor, the array comprising a plurality of flash memory cells, each flash memory cell comprising:
a substrate having a plurality of source/drain regions, the source/drain regions having a different conductivity than the remainder of the substrate;
depositing a graded composition, high-k gate insulator on the substrate by an atomic layer deposition (ALD) technique used on a high-k material, the gate insulator deposited substantially between the plurality of source/drain regions and having a dielectric constant that is greater than 3.9;
a floating gate layer formed on top of the gate insulator;
an oxide insulator formed on top of the floating gate layer; and
a control gate formed on top of the oxide insulator.
US10/835,221 2004-04-29 2004-04-29 Flash memory device having a graded composition, high dielectric constant gate insulator Abandoned US20050242387A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/835,221 US20050242387A1 (en) 2004-04-29 2004-04-29 Flash memory device having a graded composition, high dielectric constant gate insulator
US11/213,104 US7198999B2 (en) 2004-04-29 2005-08-26 Flash memory device having a graded composition, high dielectric constant gate insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/835,221 US20050242387A1 (en) 2004-04-29 2004-04-29 Flash memory device having a graded composition, high dielectric constant gate insulator

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/213,104 Division US7198999B2 (en) 2004-04-29 2005-08-26 Flash memory device having a graded composition, high dielectric constant gate insulator
US11/213,104 Continuation US7198999B2 (en) 2004-04-29 2005-08-26 Flash memory device having a graded composition, high dielectric constant gate insulator

Publications (1)

Publication Number Publication Date
US20050242387A1 true US20050242387A1 (en) 2005-11-03

Family

ID=35186196

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/835,221 Abandoned US20050242387A1 (en) 2004-04-29 2004-04-29 Flash memory device having a graded composition, high dielectric constant gate insulator
US11/213,104 Active 2024-05-15 US7198999B2 (en) 2004-04-29 2005-08-26 Flash memory device having a graded composition, high dielectric constant gate insulator

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/213,104 Active 2024-05-15 US7198999B2 (en) 2004-04-29 2005-08-26 Flash memory device having a graded composition, high dielectric constant gate insulator

Country Status (1)

Country Link
US (2) US20050242387A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259467A1 (en) * 2004-05-18 2005-11-24 Micron Technology, Inc. Split gate flash memory cell with ballistic injection
US20050277237A1 (en) * 2004-06-14 2005-12-15 Mei-Yun Wang Structure from which an integrated circuit may be fabricated and a method of making same
US20080121979A1 (en) * 2006-11-27 2008-05-29 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing the same
US20080315288A1 (en) * 2007-06-22 2008-12-25 Shoko Kikuchi Memory cell of nonvolatile semiconductor memory
US20090057751A1 (en) * 2007-08-28 2009-03-05 Ariyoshi Keiko Nonvolatile semiconductor memory device
US20090107586A1 (en) * 2007-10-31 2009-04-30 Kabushiki Kaisha Toshiba Method for manufacturing a lanthanum oxide compound
CN111627990A (en) * 2020-05-07 2020-09-04 中国人民解放军国防科技大学 Method for preparing top gate type field effect transistor by utilizing thermal evaporation aluminum seed layer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372098B2 (en) * 2005-06-16 2008-05-13 Micron Technology, Inc. Low power flash memory devices
KR101177277B1 (en) * 2006-12-29 2012-08-24 삼성전자주식회사 Non-volatile memory device using metal-insulator transition material
US20090140318A1 (en) * 2007-12-03 2009-06-04 Zhong Dong Nonvolatile memories with higher conduction-band edge adjacent to charge-trapping dielectric
CN100576455C (en) * 2007-12-05 2009-12-30 中国科学院微电子研究所 The method of the high-dielectric-coefficient grid medium of preparation embedded silicon nanocrystalline
US20130277765A1 (en) 2012-04-23 2013-10-24 Globalfoundries Inc. Semiconductor device including graded gate stack, related method and design structure

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101249A (en) * 1979-08-31 1992-03-31 Fujitsu Limited Nonvolatile semiconductor memory device
US5619051A (en) * 1994-06-27 1997-04-08 Nec Corporation Semiconductor nonvolatile memory cell
US5801401A (en) * 1997-01-29 1998-09-01 Micron Technology, Inc. Flash memory with microcrystalline silicon carbide film floating gate
US5852306A (en) * 1997-01-29 1998-12-22 Micron Technology, Inc. Flash memory with nanocrystalline silicon film floating gate
US5891798A (en) * 1996-12-20 1999-04-06 Intel Corporation Method for forming a High dielectric constant insulator in the fabrication of an integrated circuit
US5981350A (en) * 1998-05-29 1999-11-09 Micron Technology, Inc. Method for forming high capacitance memory cells
US6025627A (en) * 1998-05-29 2000-02-15 Micron Technology, Inc. Alternate method and structure for improved floating gate tunneling devices
US6031263A (en) * 1997-07-29 2000-02-29 Micron Technology, Inc. DEAPROM and transistor with gallium nitride or gallium aluminum nitride gate
US6271094B1 (en) * 2000-02-14 2001-08-07 International Business Machines Corporation Method of making MOSFET with high dielectric constant gate insulator and minimum overlap capacitance
US6291866B1 (en) * 1997-07-24 2001-09-18 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US6495890B1 (en) * 1999-09-29 2002-12-17 Kabushiki Kaisha Toshiba Field-effect transistor with multidielectric constant gate insulation layer
US6531354B2 (en) * 2000-01-19 2003-03-11 North Carolina State University Lanthanum oxide-based gate dielectrics for integrated circuit field effect transistors
US20030048666A1 (en) * 2001-08-30 2003-03-13 Micron Technology, Inc. Graded composition metal oxide tunnel barrier interpoly insulators
US6559051B1 (en) * 2000-10-05 2003-05-06 Advanced Micro Devices, Inc. Electroless deposition of dielectric precursor materials for use in in-laid gate MOS transistors
US6586349B1 (en) * 2002-02-21 2003-07-01 Advanced Micro Devices, Inc. Integrated process for fabrication of graded composite dielectric material layers for semiconductor devices
US6586797B2 (en) * 2001-08-30 2003-07-01 Micron Technology, Inc. Graded composition gate insulators to reduce tunneling barriers in flash memory devices
US20030157764A1 (en) * 2002-02-20 2003-08-21 Micron Technology, Inc. Evaporated LaA1O3 films for gate dielectrics
US6617639B1 (en) * 2002-06-21 2003-09-09 Advanced Micro Devices, Inc. Use of high-K dielectric material for ONO and tunnel oxide to improve floating gate flash memory coupling
US20030207032A1 (en) * 2002-05-02 2003-11-06 Micron Technology, Inc. Methods, systems, and apparatus for atomic-layer deposition of aluminum oxides in integrated circuits
US20030207540A1 (en) * 2002-05-02 2003-11-06 Micron Technology, Inc. Atomic layer-deposited laaio3 films for gate dielectrics
US6717226B2 (en) * 2002-03-15 2004-04-06 Motorola, Inc. Transistor with layered high-K gate dielectric and method therefor
US6731531B1 (en) * 1997-07-29 2004-05-04 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6753224B1 (en) * 2002-12-19 2004-06-22 Taiwan Semiconductor Manufacturing Company Layer of high-k inter-poly dielectric
US6762068B1 (en) * 1997-07-29 2004-07-13 Micron Technology, Inc. Transistor with variable electron affinity gate and methods of fabrication and use
US20050138262A1 (en) * 2003-12-18 2005-06-23 Micron Technology, Inc. Flash memory having a high-permittivity tunnel dielectric
US6911707B2 (en) * 1998-12-09 2005-06-28 Advanced Micro Devices, Inc. Ultrathin high-K gate dielectric with favorable interface properties for improved semiconductor device performance
US20050173755A1 (en) * 2004-02-10 2005-08-11 Micron Technology, Inc. NROM flash memory with a high-permittivity gate dielectric
US20050199944A1 (en) * 2004-03-11 2005-09-15 Tung-Sheng Chen [non-volatile memory cell]
US20050212119A1 (en) * 2001-10-02 2005-09-29 Shero Eric J Incorporation of nitrogen into high k dielectric film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217601A (en) * 1979-02-15 1980-08-12 International Business Machines Corporation Non-volatile memory devices fabricated from graded or stepped energy band gap insulator MIM or MIS structure
US4253106A (en) * 1979-10-19 1981-02-24 Rca Corporation Gate injected floating gate memory device
KR100618815B1 (en) * 2003-11-12 2006-08-31 삼성전자주식회사 Semiconductor device having different gate dielectric layers and method for manufacturing the same

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101249A (en) * 1979-08-31 1992-03-31 Fujitsu Limited Nonvolatile semiconductor memory device
US5619051A (en) * 1994-06-27 1997-04-08 Nec Corporation Semiconductor nonvolatile memory cell
US5891798A (en) * 1996-12-20 1999-04-06 Intel Corporation Method for forming a High dielectric constant insulator in the fabrication of an integrated circuit
US6306742B1 (en) * 1996-12-20 2001-10-23 Intel Corporation Method for forming a high dielectric constant insulator in the fabrication of an integrated circuit
US5801401A (en) * 1997-01-29 1998-09-01 Micron Technology, Inc. Flash memory with microcrystalline silicon carbide film floating gate
US5852306A (en) * 1997-01-29 1998-12-22 Micron Technology, Inc. Flash memory with nanocrystalline silicon film floating gate
US6291866B1 (en) * 1997-07-24 2001-09-18 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US6031263A (en) * 1997-07-29 2000-02-29 Micron Technology, Inc. DEAPROM and transistor with gallium nitride or gallium aluminum nitride gate
US6762068B1 (en) * 1997-07-29 2004-07-13 Micron Technology, Inc. Transistor with variable electron affinity gate and methods of fabrication and use
US6731531B1 (en) * 1997-07-29 2004-05-04 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6025627A (en) * 1998-05-29 2000-02-15 Micron Technology, Inc. Alternate method and structure for improved floating gate tunneling devices
US5981350A (en) * 1998-05-29 1999-11-09 Micron Technology, Inc. Method for forming high capacitance memory cells
US6911707B2 (en) * 1998-12-09 2005-06-28 Advanced Micro Devices, Inc. Ultrathin high-K gate dielectric with favorable interface properties for improved semiconductor device performance
US6495890B1 (en) * 1999-09-29 2002-12-17 Kabushiki Kaisha Toshiba Field-effect transistor with multidielectric constant gate insulation layer
US6531354B2 (en) * 2000-01-19 2003-03-11 North Carolina State University Lanthanum oxide-based gate dielectrics for integrated circuit field effect transistors
US6271094B1 (en) * 2000-02-14 2001-08-07 International Business Machines Corporation Method of making MOSFET with high dielectric constant gate insulator and minimum overlap capacitance
US6559051B1 (en) * 2000-10-05 2003-05-06 Advanced Micro Devices, Inc. Electroless deposition of dielectric precursor materials for use in in-laid gate MOS transistors
US20030048666A1 (en) * 2001-08-30 2003-03-13 Micron Technology, Inc. Graded composition metal oxide tunnel barrier interpoly insulators
US6586797B2 (en) * 2001-08-30 2003-07-01 Micron Technology, Inc. Graded composition gate insulators to reduce tunneling barriers in flash memory devices
US20050212119A1 (en) * 2001-10-02 2005-09-29 Shero Eric J Incorporation of nitrogen into high k dielectric film
US20030157764A1 (en) * 2002-02-20 2003-08-21 Micron Technology, Inc. Evaporated LaA1O3 films for gate dielectrics
US6586349B1 (en) * 2002-02-21 2003-07-01 Advanced Micro Devices, Inc. Integrated process for fabrication of graded composite dielectric material layers for semiconductor devices
US6717226B2 (en) * 2002-03-15 2004-04-06 Motorola, Inc. Transistor with layered high-K gate dielectric and method therefor
US20030207540A1 (en) * 2002-05-02 2003-11-06 Micron Technology, Inc. Atomic layer-deposited laaio3 films for gate dielectrics
US20030207032A1 (en) * 2002-05-02 2003-11-06 Micron Technology, Inc. Methods, systems, and apparatus for atomic-layer deposition of aluminum oxides in integrated circuits
US6617639B1 (en) * 2002-06-21 2003-09-09 Advanced Micro Devices, Inc. Use of high-K dielectric material for ONO and tunnel oxide to improve floating gate flash memory coupling
US6753224B1 (en) * 2002-12-19 2004-06-22 Taiwan Semiconductor Manufacturing Company Layer of high-k inter-poly dielectric
US20050138262A1 (en) * 2003-12-18 2005-06-23 Micron Technology, Inc. Flash memory having a high-permittivity tunnel dielectric
US20050173755A1 (en) * 2004-02-10 2005-08-11 Micron Technology, Inc. NROM flash memory with a high-permittivity gate dielectric
US20050199944A1 (en) * 2004-03-11 2005-09-15 Tung-Sheng Chen [non-volatile memory cell]

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697328B2 (en) 2004-05-18 2010-04-13 Micron Technology, Inc. Split gate flash memory cell with ballistic injection
US20060244038A1 (en) * 2004-05-18 2006-11-02 Micron Technology, Inc. Split gate flash memory cell with ballistic injection
US20080296652A1 (en) * 2004-05-18 2008-12-04 Leonard Forbes Split gate flash memory cell with ballistic injection
US7477542B2 (en) 2004-05-18 2009-01-13 Micron Technology, Inc. Split gate flash memory cell with ballistic injection
US20050259467A1 (en) * 2004-05-18 2005-11-24 Micron Technology, Inc. Split gate flash memory cell with ballistic injection
US20050277237A1 (en) * 2004-06-14 2005-12-15 Mei-Yun Wang Structure from which an integrated circuit may be fabricated and a method of making same
US20080121979A1 (en) * 2006-11-27 2008-05-29 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing the same
US7902588B2 (en) * 2006-11-27 2011-03-08 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing the same
US7842996B2 (en) * 2007-06-22 2010-11-30 Kabushiki Kaisha Toshiba Memory cell of nonvolatile semiconductor memory
US20080315288A1 (en) * 2007-06-22 2008-12-25 Shoko Kikuchi Memory cell of nonvolatile semiconductor memory
US20090057751A1 (en) * 2007-08-28 2009-03-05 Ariyoshi Keiko Nonvolatile semiconductor memory device
US7804128B2 (en) * 2007-08-28 2010-09-28 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US20090107586A1 (en) * 2007-10-31 2009-04-30 Kabushiki Kaisha Toshiba Method for manufacturing a lanthanum oxide compound
US7736446B2 (en) * 2007-10-31 2010-06-15 Kabushiki Kaisha Toshiba Method for manufacturing a lanthanum oxide compound
CN111627990A (en) * 2020-05-07 2020-09-04 中国人民解放军国防科技大学 Method for preparing top gate type field effect transistor by utilizing thermal evaporation aluminum seed layer

Also Published As

Publication number Publication date
US7198999B2 (en) 2007-04-03
US20050282327A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US7198999B2 (en) Flash memory device having a graded composition, high dielectric constant gate insulator
US7528037B2 (en) Flash memory having a high-permittivity tunnel dielectric
US7479428B2 (en) NROM flash memory with a high-permittivity gate dielectric
US7190020B2 (en) Non-planar flash memory having shielding between floating gates
US7427536B2 (en) High density stepped, non-planar nitride read only memory
US7672171B2 (en) Non-planar flash memory array with shielded floating gates on silicon mesas
US8017988B2 (en) High density stepped, non-planar flash memory
US8258518B2 (en) Flash memory device having a graded composition, high dielectric constant gate insulator
US7265414B2 (en) NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORBES, LEONARD;REEL/FRAME:015289/0225

Effective date: 20040114

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION