US20050015091A1 - Drill head for use in placing an intervertebral disc device - Google Patents

Drill head for use in placing an intervertebral disc device Download PDF

Info

Publication number
US20050015091A1
US20050015091A1 US10/808,553 US80855304A US2005015091A1 US 20050015091 A1 US20050015091 A1 US 20050015091A1 US 80855304 A US80855304 A US 80855304A US 2005015091 A1 US2005015091 A1 US 2005015091A1
Authority
US
United States
Prior art keywords
abrading
drill head
drive
form cutter
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/808,553
Inventor
Vincent Bryan
Alex Kunzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warsaw Orthopedic Inc
Original Assignee
SDGI Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SDGI Holdings Inc filed Critical SDGI Holdings Inc
Priority to US10/808,553 priority Critical patent/US20050015091A1/en
Publication of US20050015091A1 publication Critical patent/US20050015091A1/en
Assigned to WARSAW ORTHOPEDIC, INC. reassignment WARSAW ORTHOPEDIC, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SDGI HOLDINGS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1659Surgical rasps, files, planes, or scrapers

Definitions

  • This invention relates generally to drill heads and more particularly to drill heads for use in placing an intervertebral disc device.
  • the endoprosthesis comprises a resilient body formed of a material varying in stiffness from a relatively stiff exterior portion to a relatively supple central portion.
  • a concaval-convex means at least partly surrounds that resilient body so as to retain the resilient body between adajacent vertebral bodies of a patient's spine. If medical considerations so indicate, several disc endoprosthesis can be combined with one or more endoprosthetic vertebral bodies in an entire assembly.
  • the bone of the two opposing intervertebral bodies In order to place the above endoprosthesis in a patient's spine, the bone of the two opposing intervertebral bodies must be prepared in such a manner so as to accept the concaval-convex shape of endoprosthesis.
  • currently available drill heads are not always capable of being fit into the narrow space between two opposing intervertebral bodies. Further, the narrow space between two opposing intervertebral bodies cannot always be expanded to allow admittance of currently available drill heads.
  • the instant invention overcomes the deficiencies of the prior art devices by providing a drill or milling head with a narrow profile which can fit in the space between two opposing intervertebral bodies. Moreover, the device can handle torque and power in sufficient amounts as to be capable of milling on a surface and acting in a direction angled away from the direction of device entry into the space between those intervertebral bodies.
  • the drill head of the instant invention is provided with a form cutter having a convex shape so as to prepare the bone of vertebral bodies to accept the concaval-convex shape of an endoprosthesis.
  • the cutter may have the ability to cut in the direction of tool entry into the space.
  • FIG. 1 is a side view of one embodiment of the instant invention.
  • FIG. 2 is a cross-sectional view of the embodiment of FIG. 1 .
  • FIG. 3 is a partial cross-sectional view of an alternate embodiment of the instant invention.
  • the drill head 20 generally comprises a form cutter portion 22 , drive means 24 , and attachment means 26 .
  • the form cutter profile imparts a shape to the bone of the intervertebral bodies which mates with the predetermined endoprosthesis surface shape.
  • the drill head 20 includes a form cutter 29 carried by a housing 31 having an upstanding wall 35 and a shaft support 37 for supporting the form cutter 29 .
  • the housing 31 further includes an elongated shaft portion 40 which houses the drive shaft discussed below.
  • the illustrated form cutter 29 has a convex milling surface 42 .
  • This convex surface 42 of the form cutter 29 functions to provide the bone of a vertebral body with a mating shape complementary to the concaval-convex shape of the endoprosthesis which is the subject of co-pending U.S. patent application Ser. No.
  • this tool drill or milling head can mill in a direction angled away from the direction of device entry into the space between the intervertebral bodies. That edge 44 provides the cutter 29 with the ability to cut in the direction of tool entry into the space between two opposed vertebral bodies.
  • the form cutter 29 further includes an outwardly extending edge 44 about its perimeter.
  • the undersurface 47 of the form cutter 29 may be provided with a beveled gearing surface 49 .
  • the beveled gearing surface 49 may be provided about the undersurface of the upstanding edge.
  • the form cutter 29 is provided with a shaft 51 extending perpendicularly from its undersurface.
  • the form cutter 29 is supported within the housing 31 by the cooperation between the shaft 51 and the shaft support 37 .
  • This arrangement permits the form cutter 29 to be removed from the housing 31 by separating the shaft 51 from the shaft support 37 .
  • the cutter dulls, it can be replaced with a new cutter to ensure accurate and effective performance of the drill head.
  • the maximum height of the illustrated form of the cutter portion 22 of the drill head 20 is nine millimeters.
  • Providing the bevel gearing surface 49 on the form cutter 29 allows the drill head 20 to be manufactured with such a narrow profile. This arrangement eliminates the need for a separate gear and form cutter which would likely add to the height of the drill head. Because of its profile, the drill head 20 of the present invention can fit in the narrow space between two opposing intervertebral bodies in the cervical spine of a patient.
  • the drill head 20 is provided with drive means 24 .
  • the drive means 24 comprises a drive shaft 54 operatively coupled at its distal end to the form cutter 29 and at its proximal end to a drive source 61 .
  • the distal end of the drive shaft 54 is supported by a journal 56 within the housing and is provided with a pinion gear 59 .
  • the undersurface 47 of the form cutter 29 is provided with a beveled gearing surface 49 .
  • the pinion gear 59 also rotates and cooperates with the beveled gearing surface 49 of the form cutter 29 , thereby causing the form cutter 29 to rotate about the shaft 51 .
  • the proximal end of the drive shaft 54 is operatively coupled to a suitable drive source 61 by coupling means 63 .
  • a drive source is not shown in the embodiment of FIGS. 1 and 2 , it should be understood that the drive source shown by FIG. 3 or its functional equivalent could be employed.
  • the illustrated drive source 61 comprises a suitable motor 65 having mating coupling means 69 .
  • the motor 65 imparts a driving force to the drive shaft 54 via the mating of the coupling means 63 , 69 .
  • the form cutter 29 is not necessarily oriented at a right angle with respect to the drive shaft 54 .
  • the angle between the support shaft 51 of the form cutter 29 and the drive shaft 51 approximately 96° to provide a designed orientation to the vertebral bone surface being milled.
  • the housing 31 which houses the form cutter 29 and the drive shaft 54 , is provided at its proximal end with an attachment means 71 .
  • the attachment means 71 allows the drive source to be attached to the drill head 20 of the present invention.
  • the drive source is attached to the drill head 20 via threads 73 .
  • alternate equivalent attaching means could be employed to attach the drive source to the drill head 20 .
  • the housing 31 is also provided with a ring 75 about its circumference.
  • FIG. 3 An alternate embodiment of the drive means 24 used in the drill head is shown in FIG. 3 .
  • the drill head 20 is driven by a drive belt 78 .
  • the form cutter 29 is provided with a groove 80 about its perimeter rather than being provided with a beveled gearing surface.
  • the groove 80 interacts with the drive belt 78 to provide a driving force to the form cutter 29 .
  • This alternate driving arrangement enables the drill head 20 to be manufactured with a narrow profile.
  • the drive means 24 comprises a drive belt 78 which is operatively coupled to the form cutter 29 at the distal end of the drill head 20 .
  • the belt 78 loops around the form cutter 29 within the groove 80 .
  • a drive shaft 82 is provided which is operatively coupled to a suitable drive source 61 .
  • the drive shaft 82 is provided with a pulley 85 about which the belt 78 is looped.
  • the drive shaft 82 is supported by the housing 31 with suitable means such as a bearing or bushing 87 .
  • the drive shaft 82 is provided with a coupling means 63 for coupling to a suitable drive source 61 .
  • the housing 31 is provided with a perpendicular extension 90 at the proximal end of the drill head 20 .
  • the extension 90 is provided with the attachment means 71 for attaching the drill head 20 to a suitable drive source 61 . It is within the extension 90 that the drive shaft 82 is coupled to the drive source 61 .
  • the housing extension 90 is further provided with an intermediate support member 92 for providing additional support to the drive shaft 82 .

Abstract

A drill head for preparing the bone of two opposing intervertebral bodies to accept the concaval-convex shape of an endoprosthesis includes a form cutter portion, drive means, and a housing. The form cutter having such a profile allows the drill head to fit in the narrow space between two opposing intervertebral bodies in the cervical spine of a patient.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to drill heads and more particularly to drill heads for use in placing an intervertebral disc device.
  • The herniation of a spinal disc and the often resultant symptoms of intractable pain, weakness, sensory loss, incontinence and progressive arthritis are among the most common of debilitating processes affecting mankind. If a patient's condition does not improve after conservative treatment, and if clear physical evidence of nerve root or spinal cord compression is apparent, and if correlating radiographic studies (i.e., MRI or CT imaging or myelography) confirm the condition, surgical removal of the herniated disc may be indicated. The process of discectomy—as the name implies—involves the simple removal of the disc without attempt to replace or repair the malfunctioning unit. In the United States in 1985, over 250,000 such operations were performed in the lumbar spine and in the cervical spine.
  • Statistics suggest that present surgical techniques are likely to result in short-term relief, but will not prevent the progressive deterioration of the patient's condition in the long run. Through better pre-operative procedures and diagnostic studies, long-term patient results have improved somewhat. But it has become clear that unless the removed disc is replaced or the spine is otherwise properly supported, further degeneration of the patient's condition will almost certainly occur.
  • In the mid-1950's and 60's, Cloward and Smith & Robinson popularized anterior surgical approaches to the cervical spine for the treatment of cervical degenerative disc disease and related disorders of the vertebrae, spinal cord and nerve root; these surgeries involved disc removal followed by interbody fusion with a bone graft. It was noted by Robinson (Robinson, R. A.: The Results of Anterior Interbody Fusion of the Cervical Spine, J. Bone Joint Surg., 440A: 1569-1586, 1962) that after surgical fusion, osteophyte (bone spur) reabsorption at the fused segment might take place. However, it has become increasingly apparent that unfused vertebral segments at the levels above and below the fused segment degenerate at accelerated rates as a direct result of this fusion. This has led some surgeons to perform discectomy alone, without fusion, by a posterior approach in the neck of some patients. However, as has occurred in surgeries involving the lower back where discectomy without fusion is more common as the initial treatment for disc herniation syndromes, progressive degeneration at the level of disc excision is the rule rather than the exception. Premature degenerative disc disease at the level above and below the excised disc can and does occur.
  • Spine surgery occasionally involves fusion of the spine segments. In addition to the problems created by disc herniation, traumatic, malignant, infectious and degenerative syndromes of the spine can be-treated by fusion. Other procedures can include bone grafts and heavy duty metallic rods, hooks, plates and screws being appended to the patient's anatomy; often they are rigidly and internally fixed. None provide for a patient's return-to near-normal functioning. Though these procedures may solve a short-term problem, they can cause other, longer term, problems.
  • A number of attempts have been made to solve some of the problems described above by providing a patient with spinal disc prostheses, or artificial discs of one sort or another. For example, Steffee, U.S. Pat. No. 5,031,437, describes a spinal disc prosthesis having upper and lower rigid flat plates and a flat elastomeric core sandwiched between the plates. Frey et al., U.S. Pat. Nos. 4,917,704 and 4,955,908, disclose intervertebral prostheses, but the prostheses are described as solid bodies.
  • U.S. Pat. Nos. 4,911,718 and 5,171,281 disclose resilient disc spacers, but no interconnective or containing planes or like elements are suggested, and sealing the entire unit is not taught.
  • Co-pending, related U.S. patent application Ser. No. 08/681,230 incorporated herein by reference, provides a vertebral disc endoprosthesis which addresses these shortcomings of the prior art. The endoprosthesis comprises a resilient body formed of a material varying in stiffness from a relatively stiff exterior portion to a relatively supple central portion. A concaval-convex means at least partly surrounds that resilient body so as to retain the resilient body between adajacent vertebral bodies of a patient's spine. If medical considerations so indicate, several disc endoprosthesis can be combined with one or more endoprosthetic vertebral bodies in an entire assembly.
  • In order to place the above endoprosthesis in a patient's spine, the bone of the two opposing intervertebral bodies must be prepared in such a manner so as to accept the concaval-convex shape of endoprosthesis. However, currently available drill heads are not always capable of being fit into the narrow space between two opposing intervertebral bodies. Further, the narrow space between two opposing intervertebral bodies cannot always be expanded to allow admittance of currently available drill heads.
  • Thus, it is an object of the instant invention to provide a drill head which can fit within the narrow space between two opposing intervertebral bodies.
  • It is another object of the instant invention to provide a drill head which can prepare the bone of the two opposing intervertebral bodies to accept the concaval-convex shape of an endoprosthesis.
  • These and other objects and advantages of the instant invention will be apparent from the following description and drawings.
  • SUMMARY OF THE INVENTION
  • The instant invention overcomes the deficiencies of the prior art devices by providing a drill or milling head with a narrow profile which can fit in the space between two opposing intervertebral bodies. Moreover, the device can handle torque and power in sufficient amounts as to be capable of milling on a surface and acting in a direction angled away from the direction of device entry into the space between those intervertebral bodies.
  • The drill head of the instant invention is provided with a form cutter having a convex shape so as to prepare the bone of vertebral bodies to accept the concaval-convex shape of an endoprosthesis. In addition, the cutter may have the ability to cut in the direction of tool entry into the space.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view of one embodiment of the instant invention.
  • FIG. 2 is a cross-sectional view of the embodiment of FIG. 1.
  • FIG. 3 is a partial cross-sectional view of an alternate embodiment of the instant invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While the invention will be described in connection with a preferred embodiment and procedure, it will be understood that it is not intended to limit the invention to this embodiment or procedure. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
  • One embodiment of the drill head of the present invention is depicted in FIGS. 1 and 2. The drill head 20 generally comprises a form cutter portion 22, drive means 24, and attachment means 26. In accordance with the invention, the form cutter profile imparts a shape to the bone of the intervertebral bodies which mates with the predetermined endoprosthesis surface shape.
  • As seen in FIG. 2, the drill head 20 includes a form cutter 29 carried by a housing 31 having an upstanding wall 35 and a shaft support 37 for supporting the form cutter 29. The housing 31 further includes an elongated shaft portion 40 which houses the drive shaft discussed below. To provide a drill head which can prepare the bone of the two opposing intervertebral bodies to accept the concaval-convex shape of an endoprosthesis, the illustrated form cutter 29 has a convex milling surface 42. This convex surface 42 of the form cutter 29 functions to provide the bone of a vertebral body with a mating shape complementary to the concaval-convex shape of the endoprosthesis which is the subject of co-pending U.S. patent application Ser. No. 08/681,230. As illustrated, this tool drill or milling head can mill in a direction angled away from the direction of device entry into the space between the intervertebral bodies. That edge 44 provides the cutter 29 with the ability to cut in the direction of tool entry into the space between two opposed vertebral bodies.
  • The form cutter 29 further includes an outwardly extending edge 44 about its perimeter. In addition, the undersurface 47 of the form cutter 29 may be provided with a beveled gearing surface 49. Alternately, the beveled gearing surface 49 may be provided about the undersurface of the upstanding edge.
  • The form cutter 29 is provided with a shaft 51 extending perpendicularly from its undersurface. The form cutter 29 is supported within the housing 31 by the cooperation between the shaft 51 and the shaft support 37. This arrangement permits the form cutter 29 to be removed from the housing 31 by separating the shaft 51 from the shaft support 37. Thus, when the cutter dulls, it can be replaced with a new cutter to ensure accurate and effective performance of the drill head.
  • In order to provide a drill head which can fit within the narrow space between two opposing intervertebral bodies in accordance with the invention, the maximum height of the illustrated form of the cutter portion 22 of the drill head 20 is nine millimeters. Providing the bevel gearing surface 49 on the form cutter 29 allows the drill head 20 to be manufactured with such a narrow profile. This arrangement eliminates the need for a separate gear and form cutter which would likely add to the height of the drill head. Because of its profile, the drill head 20 of the present invention can fit in the narrow space between two opposing intervertebral bodies in the cervical spine of a patient.
  • To provide a driving force to the form cutter 29, the drill head 20 is provided with drive means 24. As shown in FIG. 2, the drive means 24 comprises a drive shaft 54 operatively coupled at its distal end to the form cutter 29 and at its proximal end to a drive source 61. The distal end of the drive shaft 54 is supported by a journal 56 within the housing and is provided with a pinion gear 59. As mentioned above, the undersurface 47 of the form cutter 29 is provided with a beveled gearing surface 49. When the drive shaft 54 rotates, the pinion gear 59 also rotates and cooperates with the beveled gearing surface 49 of the form cutter 29, thereby causing the form cutter 29 to rotate about the shaft 51.
  • The proximal end of the drive shaft 54 is operatively coupled to a suitable drive source 61 by coupling means 63. Although a drive source is not shown in the embodiment of FIGS. 1 and 2, it should be understood that the drive source shown by FIG. 3 or its functional equivalent could be employed. The illustrated drive source 61 comprises a suitable motor 65 having mating coupling means 69. The motor 65 imparts a driving force to the drive shaft 54 via the mating of the coupling means 63, 69.
  • As shown in FIG. 2, the form cutter 29 is not necessarily oriented at a right angle with respect to the drive shaft 54. In the illustrated device, the angle between the support shaft 51 of the form cutter 29 and the drive shaft 51 approximately 96° to provide a designed orientation to the vertebral bone surface being milled.
  • The housing 31, which houses the form cutter 29 and the drive shaft 54, is provided at its proximal end with an attachment means 71. The attachment means 71 allows the drive source to be attached to the drill head 20 of the present invention. In the embodiment of FIG. 2, the drive source is attached to the drill head 20 via threads 73. However, alternate equivalent attaching means could be employed to attach the drive source to the drill head 20. The housing 31 is also provided with a ring 75 about its circumference.
  • An alternate embodiment of the drive means 24 used in the drill head is shown in FIG. 3. Rather than being driven by a gear and pinion mechanism, the drill head 20 is driven by a drive belt 78. To accommodate the belt driving arrangement, the form cutter 29 is provided with a groove 80 about its perimeter rather than being provided with a beveled gearing surface. The groove 80 interacts with the drive belt 78 to provide a driving force to the form cutter 29. This alternate driving arrangement enables the drill head 20 to be manufactured with a narrow profile.
  • As mentioned above, in this embodiment of the invention, the drive means 24 comprises a drive belt 78 which is operatively coupled to the form cutter 29 at the distal end of the drill head 20. The belt 78 loops around the form cutter 29 within the groove 80. At the proximal end of the drill head 20, a drive shaft 82 is provided which is operatively coupled to a suitable drive source 61. The drive shaft 82 is provided with a pulley 85 about which the belt 78 is looped. At one end, the drive shaft 82 is supported by the housing 31 with suitable means such as a bearing or bushing 87. At its opposite end, the drive shaft 82 is provided with a coupling means 63 for coupling to a suitable drive source 61. When the drive source 61 acts upon the drive shaft 82 and causes it to rotate, the pulley 85 is caused to rotate, thereby driving the belt 78 and causing the form cutter 29 to rotate.
  • To accommodate the driving means arrangement of this alternate embodiment, the housing 31 is provided with a perpendicular extension 90 at the proximal end of the drill head 20. The extension 90 is provided with the attachment means 71 for attaching the drill head 20 to a suitable drive source 61. It is within the extension 90 that the drive shaft 82 is coupled to the drive source 61. The housing extension 90 is further provided with an intermediate support member 92 for providing additional support to the drive shaft 82.

Claims (48)

1. A drill head for preparing the bone of two opposing intervertebral bodies to accept a predetermined shape of an endoprosthesis comprising: a form cutter having a profile capable of imparting a shape to the bone of intervertebral bodies which mates with the predetermined endoprosthesis surface shape; drive means for providing a driving force to the form cutter; and means for housing the form cutter and the drive means, wherein the profile of the form cutter is of a height capable of being admitted into the space between two opposing intervertebral bodies and the head can perform milling action in a direction angled away from the direction of head entry into a space between opposed bodies.
2. The drill head of claim 1 wherein the form cutter has a convex shape.
3. The drill head of claim 2 wherein the form cutter is provided with a beveled gearing surface.
4. The drill head of claim 2 wherein the form cutter is provided with a groove about its perimeter.
5. The drill head of claim 1 wherein the drive means comprises a drive shaft operatively coupling the form cutter to a drive source.
6. The drill head of claim 5 wherein a distal end of the drive shaft is provided with a pinion gear which cooperates with the form cutter to impart a rotary motion to the form cutter.
7. The drill head of claim 5 wherein a proximal end of the drive shaft is provided with a coupling means for coupling the drive shaft to the drive source.
8. The drill head of claim 1 wherein the drive means comprises a belt operatively coupling the form cutter to a drive source.
9. The drill head of claim 8 wherein the belt loops about the perimeter of the form cutter.
10. The drill head of claim 8 wherein the drive means further comprises a drive shaft operatively coupled to the belt.
11. The drill head of claim 10 wherein the drive shaft is provided with a pulley about which the belt is looped.
12. The drill head of claim 11 wherein the drive shaft is further provided with a coupling means for coupling the drive shaft to the drive source.
13. The drill head of claim 1 wherein the housing is provided with attachment means for attaching the drill head to a drive source.
14. The drill head of claim 1 wherein the maximum height of the profile of the form cutter is approximately nine millimeters.
15. The drill head of claim 1 where in the cutter is provided with a cutting edge so as to give the drill head the ability to cut in the direction of tool head entry into the space.
16. A drill head for preparing the bone of two opposing intervertebral bodies to accept the concaval-convex shape of an endoprosthesis comprising: a form cutter having a support shaft capable of imparting a concave shape to the bone of intervertebral bodies; drive means for providing a driving force to the form cutter, the drive means including a drive shaft; and means for housing the form cutter and the drive means, wherein the angle between the support shaft of the form cutter and the drive shaft is approximately 96 degree.
17. The drill head of claim 16 wherein the form cutter has a predetermined profile.
18. The drill head of claim 17 wherein the maximum height of the profile of the form cutter is approximately nine millimeters.
19. An apparatus for preparing an implantation space in the human spine to receive an insert between adjacent vertebral bodies, comprising:
a handle;
a shaft operably connected to said handle,
a drive mechanism adapted to be operably connected to a power source; and
an abrading element operably coupled to a distal end of said shaft for movement by said drive mechanism, said abrading element being moved in a direction different than which said shaft is moved, said abrading element having at least one abrading surface selected to create a predetermined surface contour of the adjacent vertebral bodies as said abrading element is moved by said drive mechanism.
20. The apparatus of claim 19, wherein said abrading surface includes teeth formed thereon to cooperatively engage said drive mechanism, said drive mechanism and said teeth being configured such that said abrading surface is rotated by said drive mechanism.
21. The apparatus of claim 19, further comprising a second abrading surface.
22. The apparatus of claim 21, wherein said abrading surfaces are rotated in opposite directions by said drive mechanism.
23. The apparatus of claim 21, wherein said abrading element has at least a top abrading surface and a bottom abrading surface.
24. The apparatus of claim 21, wherein said abrading surfaces are outwardly facing, and said abrading surfaces are inclined relative to one another.
25. The apparatus of claim 19, wherein said abrading element includes at least two abrading surfaces for simultaneously creating predetermined surface contours on the respective end plates of the adjacent vertebral bodies.
26. The apparatus of claim 19, wherein said abrading element includes a non-abrading surface formed on a side of said abrading element opposite said abrading surface, said non-abrading surface being configured to allow a surgeon to increase the pressure of said abrading surface against one of the adjacent vertebral bodies.
27. The apparatus of claim 19, wherein said abrading surfaces is convex.
28. The apparatus of claim 19, wherein said abrading element has a front surface and is tapered outwardly from said front surface toward said handle.
29. The apparatus of claim 19, wherein said abrading element includes a leading edge configured as a bone cutting surface.
30. The apparatus of claim 19, wherein said abrading surface has a width, said width being adapted to substantially match the width of the nucleus pulposus of a disc space, in which it is inserted.
31. The apparatus of claim 19, wherein said abrading surface is substantially planar.
32. The apparatus of claim 19, wherein said abrading surface is configured such that it is generally parallel to said surface contour formed in the vertebral body as said abrading element is moved by said drive mechanism.
33. The apparatus of claim 19, wherein said abrading element is detachable from said shaft.
34. The apparatus of claim 19, wherein said abrading element is fixedly connected to said shaft.
35. The apparatus of claim 19 further comprising a mechanism that couples said abrading element to said drive mechanism.
36. The apparatus of claim 19, wherein said drive mechanism is disposed at least in part in said handle.
37. The apparatus of claim 19, wherein said power source is disposed at least in part in said handle.
38. The apparatus of claim 19, wherein said abrading element is driven in a reciprocating, arcuate motion by said drive mechanism.
39. The apparatus of claim 19, wherein said abrading element includes a wheel having cutter teeth along its perimeter.
40. The apparatus of claim 19, wherein said drive mechanism is adapted to produce a rotary movement of said abrading element about an axis generally perpendicular to a longitudinal axis of said shaft and about a general plane of a vertebral end plate of at least one of the adjacent vertebral bodies.
41. The apparatus of claim 19, wherein said drive mechanism is adapted to produce one of an oscillating rotation and a vibratory motion of the abrading element.
42. The apparatus of claim 19, wherein said drive mechanism is adapted to produce an oscillating rotation of the abrading element, wherein said oscillating rotation is from 20° to 45° to either side of the longitudinal axis of said shaft.
43. The apparatus of claim 19, wherein said drive mechanism comprises a gas-driven turbine powered by a source of compressed gas.
44. The apparatus of claim 19, wherein said drive mechanism is operable to move said abrading element in at least two degrees of freedom.
45. The apparatus of claim 19, further comprising a suction mechanism for removing bits of debris created by said abrading surface of said abrading element.
46. The apparatus of claim 19, further comprising an irrigation channel configured through said shaft for delivering irrigation fluid to the surgical site.
47. The apparatus of claim 19, further comprising at least one stop member adapted to limit the depth of travel of said abrading element into the spine.
48. The apparatus of claim 19, further comprising an insert adapted to be sized and shaped to match the space formed in the spine by said abrading element.
US10/808,553 1997-10-06 2004-03-25 Drill head for use in placing an intervertebral disc device Abandoned US20050015091A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/808,553 US20050015091A1 (en) 1997-10-06 2004-03-25 Drill head for use in placing an intervertebral disc device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/944,234 US7331963B2 (en) 1997-10-06 1997-10-06 Drill head for use in placing an intervertebral disc device
US10/808,553 US20050015091A1 (en) 1997-10-06 2004-03-25 Drill head for use in placing an intervertebral disc device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/944,234 Division US7331963B2 (en) 1997-10-06 1997-10-06 Drill head for use in placing an intervertebral disc device

Publications (1)

Publication Number Publication Date
US20050015091A1 true US20050015091A1 (en) 2005-01-20

Family

ID=25481040

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/944,234 Expired - Fee Related US7331963B2 (en) 1997-10-06 1997-10-06 Drill head for use in placing an intervertebral disc device
US10/808,553 Abandoned US20050015091A1 (en) 1997-10-06 2004-03-25 Drill head for use in placing an intervertebral disc device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/944,234 Expired - Fee Related US7331963B2 (en) 1997-10-06 1997-10-06 Drill head for use in placing an intervertebral disc device

Country Status (1)

Country Link
US (2) US7331963B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070179615A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US20070179618A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US20070233130A1 (en) * 2006-03-28 2007-10-04 Loubert Suddaby Disk Preparation Tool
US20100087830A1 (en) * 2008-10-03 2010-04-08 Warsaw Orthopedic, Inc. Endplate Preparation Instruments and Methods of Use
US8465490B1 (en) * 2010-01-29 2013-06-18 Greatbatch Ltd. Disposable neucleotomy shaver
US8845638B2 (en) 2011-05-12 2014-09-30 Nlt Spine Ltd. Tissue disruption device and corresponding methods
US8900235B2 (en) 2004-08-11 2014-12-02 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363565A2 (en) 2000-08-08 2003-11-26 SDGI Holdings, Inc. Implantable joint prosthesis
US6692501B2 (en) * 2000-12-14 2004-02-17 Gary K. Michelson Spinal interspace shaper
US6562045B2 (en) * 2001-02-13 2003-05-13 Sdgi Holdings, Inc. Machining apparatus
US20050261692A1 (en) * 2004-05-21 2005-11-24 Scimed Life Systems, Inc. Articulating tissue removal probe and methods of using the same
US8343157B2 (en) 2007-05-25 2013-01-01 Howmedica Osteonics Corp. Bone-reaming system
US8470043B2 (en) * 2008-12-23 2013-06-25 Benvenue Medical, Inc. Tissue removal tools and methods of use
US9161773B2 (en) 2008-12-23 2015-10-20 Benvenue Medical, Inc. Tissue removal tools and methods of use
EP4279032A3 (en) * 2009-07-10 2024-01-17 Implantica Patent Ltd. Hip joint instrument
US9241721B2 (en) * 2009-07-10 2016-01-26 Peter Forsell Hip joint instrument and method
US10314605B2 (en) 2014-07-08 2019-06-11 Benvenue Medical, Inc. Apparatus and methods for disrupting intervertebral disc tissue
US10022243B2 (en) 2015-02-06 2018-07-17 Benvenue Medical, Inc. Graft material injector system and method
US10758286B2 (en) 2017-03-22 2020-09-01 Benvenue Medical, Inc. Minimal impact access system to disc space
US11583327B2 (en) 2018-01-29 2023-02-21 Spinal Elements, Inc. Minimally invasive interbody fusion
WO2019178575A1 (en) 2018-03-16 2019-09-19 Benvenue Medical, Inc. Articulated instrumentation and methods of using the same

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921298A (en) * 1974-03-26 1975-11-25 John B Fattaleh Dental and surgical appliance
US3937222A (en) * 1973-11-09 1976-02-10 Surgical Design Corporation Surgical instrument employing cutter means
US4197645A (en) * 1976-07-06 1980-04-15 Scheicher Hans M F Drill head and bone drill
US4662891A (en) * 1983-11-21 1987-05-05 Joint Medical Products Corporation Fixation elements for artificial joints
US4781072A (en) * 1982-09-22 1988-11-01 Institut Straumann Ag Mechanism for converting unidirectional rotative movement into alternating bidirectional rotative movement
US5041119A (en) * 1989-06-14 1991-08-20 Synthes Angular attachment for drill
US5122134A (en) * 1990-02-02 1992-06-16 Pfizer Hospital Products Group, Inc. Surgical reamer
US5312207A (en) * 1991-05-08 1994-05-17 Famag-Werkzeugfabrik Friedr. Aug. Muhylhoff Cylindrical bit
US5387215A (en) * 1992-02-12 1995-02-07 Sierra Surgical Inc. Surgical instrument for cutting hard tissue and method of use
US5423825A (en) * 1992-06-10 1995-06-13 Levine; Andrew S. Spinal fusion instruments and methods
US5527316A (en) * 1994-02-23 1996-06-18 Stone; Kevin T. Surgical reamer
US5601556A (en) * 1994-03-18 1997-02-11 Pisharodi; Madhavan Apparatus for spondylolisthesis reduction
US5628748A (en) * 1995-09-08 1997-05-13 Vicari; Frank A. Surgical instrument
US5743918A (en) * 1996-05-13 1998-04-28 Wright Medical Technology, Inc. Instrumentation for and method for implanting a spherical prosthesis
US5800551A (en) * 1997-03-10 1998-09-01 Biomet, Inc. Apparatus and method for shoulder arthroplasty
US5810827A (en) * 1994-09-02 1998-09-22 Hudson Surgical Design, Inc. Method and apparatus for bony material removal
US5853415A (en) * 1993-07-06 1998-12-29 Zimmer, Inc. Femoral milling instrumentation for use in total knee arthroplasty with optional cutting guide attachment
US5904687A (en) * 1994-10-07 1999-05-18 The Anspach Effort, Inc. Tool holdling mechanism for a motor driven surgical instrument
US6083228A (en) * 1998-06-09 2000-07-04 Michelson; Gary K. Device and method for preparing a space between adjacent vertebrae to receive an insert
US6224607B1 (en) * 1999-01-25 2001-05-01 Gary K. Michelson Instrumentation and method for creating an intervertebral space for receiving an implant
US6261295B1 (en) * 1998-05-06 2001-07-17 Cortek, Inc. Cutting jig and guide for tome apparatus for spinal implant
US20020091392A1 (en) * 1996-07-31 2002-07-11 Michelson Gary K. Milling instrumentation and method for preparing a space between adjacent vertebral bodies
US6517544B1 (en) * 1998-06-09 2003-02-11 Gary K. Michelson Device and method for preparing a space between adjacent vertebrae to receive an insert

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2025779A (en) * 1934-02-16 1935-12-31 Gustav A Roelke Dental tool
US4842578A (en) 1986-03-12 1989-06-27 Dyonics, Inc. Surgical abrading instrument
CN1128944A (en) * 1988-06-13 1996-08-14 卡林技术公司 Apparatus and method of inserting spinal implants
US5458638A (en) * 1989-07-06 1995-10-17 Spine-Tech, Inc. Non-threaded spinal implant

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937222A (en) * 1973-11-09 1976-02-10 Surgical Design Corporation Surgical instrument employing cutter means
US3921298A (en) * 1974-03-26 1975-11-25 John B Fattaleh Dental and surgical appliance
US4197645A (en) * 1976-07-06 1980-04-15 Scheicher Hans M F Drill head and bone drill
US4781072A (en) * 1982-09-22 1988-11-01 Institut Straumann Ag Mechanism for converting unidirectional rotative movement into alternating bidirectional rotative movement
US4662891A (en) * 1983-11-21 1987-05-05 Joint Medical Products Corporation Fixation elements for artificial joints
US5041119A (en) * 1989-06-14 1991-08-20 Synthes Angular attachment for drill
US5122134A (en) * 1990-02-02 1992-06-16 Pfizer Hospital Products Group, Inc. Surgical reamer
US5312207A (en) * 1991-05-08 1994-05-17 Famag-Werkzeugfabrik Friedr. Aug. Muhylhoff Cylindrical bit
US5387215A (en) * 1992-02-12 1995-02-07 Sierra Surgical Inc. Surgical instrument for cutting hard tissue and method of use
US5423825A (en) * 1992-06-10 1995-06-13 Levine; Andrew S. Spinal fusion instruments and methods
US5853415A (en) * 1993-07-06 1998-12-29 Zimmer, Inc. Femoral milling instrumentation for use in total knee arthroplasty with optional cutting guide attachment
US5527316A (en) * 1994-02-23 1996-06-18 Stone; Kevin T. Surgical reamer
US5601556A (en) * 1994-03-18 1997-02-11 Pisharodi; Madhavan Apparatus for spondylolisthesis reduction
US5810827A (en) * 1994-09-02 1998-09-22 Hudson Surgical Design, Inc. Method and apparatus for bony material removal
US5904687A (en) * 1994-10-07 1999-05-18 The Anspach Effort, Inc. Tool holdling mechanism for a motor driven surgical instrument
US5628748A (en) * 1995-09-08 1997-05-13 Vicari; Frank A. Surgical instrument
US5743918A (en) * 1996-05-13 1998-04-28 Wright Medical Technology, Inc. Instrumentation for and method for implanting a spherical prosthesis
US20020091392A1 (en) * 1996-07-31 2002-07-11 Michelson Gary K. Milling instrumentation and method for preparing a space between adjacent vertebral bodies
US6440139B2 (en) * 1996-07-31 2002-08-27 Gary K. Michelson Milling instrumentation and method for preparing a space between adjacent vertebral bodies
US5800551A (en) * 1997-03-10 1998-09-01 Biomet, Inc. Apparatus and method for shoulder arthroplasty
US6261295B1 (en) * 1998-05-06 2001-07-17 Cortek, Inc. Cutting jig and guide for tome apparatus for spinal implant
US6083228A (en) * 1998-06-09 2000-07-04 Michelson; Gary K. Device and method for preparing a space between adjacent vertebrae to receive an insert
US6517544B1 (en) * 1998-06-09 2003-02-11 Gary K. Michelson Device and method for preparing a space between adjacent vertebrae to receive an insert
US6537279B1 (en) * 1998-06-09 2003-03-25 Gary K. Michelson Device and method for preparing a space between adjacent vertebrae to receive an insert
US20030187448A1 (en) * 1998-06-09 2003-10-02 Michelson Gary K. Method for preparing a space between adjacent vertebrae to receive an insert
US6224607B1 (en) * 1999-01-25 2001-05-01 Gary K. Michelson Instrumentation and method for creating an intervertebral space for receiving an implant
US6554836B2 (en) * 1999-01-25 2003-04-29 Gary K. Michelson Spinal marker for use in spinal surgery
US6565574B2 (en) * 1999-01-25 2003-05-20 Gary K. Michelson Distractor for use in spinal surgery
US20030195517A1 (en) * 1999-01-25 2003-10-16 Michelson Gary K. Instrumentation for creating an intervertebral space for receiving an implant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8900235B2 (en) 2004-08-11 2014-12-02 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US20070179615A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US20070179618A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US20070233130A1 (en) * 2006-03-28 2007-10-04 Loubert Suddaby Disk Preparation Tool
US7914534B2 (en) * 2006-03-28 2011-03-29 Loubert Suddaby Disk preparation tool
US9364241B2 (en) 2006-03-28 2016-06-14 Loubert Suddaby Disk preparation tool with flexible cutting element
US20100087830A1 (en) * 2008-10-03 2010-04-08 Warsaw Orthopedic, Inc. Endplate Preparation Instruments and Methods of Use
US8911441B2 (en) * 2008-10-03 2014-12-16 Warsaw Orthopedic, Inc. Endplate preparation instruments and methods of use
US8465490B1 (en) * 2010-01-29 2013-06-18 Greatbatch Ltd. Disposable neucleotomy shaver
US8845638B2 (en) 2011-05-12 2014-09-30 Nlt Spine Ltd. Tissue disruption device and corresponding methods

Also Published As

Publication number Publication date
US7331963B2 (en) 2008-02-19
US20020151901A1 (en) 2002-10-17

Similar Documents

Publication Publication Date Title
US20050015091A1 (en) Drill head for use in placing an intervertebral disc device
US9364241B2 (en) Disk preparation tool with flexible cutting element
US7611514B2 (en) Spinal interspace shaper
US6966912B2 (en) Device and method for preparing a space between adjacent vertebrae to receive an insert
US6537279B1 (en) Device and method for preparing a space between adjacent vertebrae to receive an insert
US9687254B2 (en) Method and apparatus for removing material from an intervertebral disc space and preparing end plates
US20110166576A1 (en) Method and apparatus for removing material from an intervertebral disc space, such as in performing a nucleotomy
US20050273111A1 (en) Methods and apparatus for intervertebral disc removal and endplate preparation
CA2648357A1 (en) Apparatus for imparting force between bones to seat an implant

Legal Events

Date Code Title Description
AS Assignment

Owner name: WARSAW ORTHOPEDIC, INC., INDIANA

Free format text: MERGER;ASSIGNOR:SDGI HOLDINGS, INC.;REEL/FRAME:019808/0917

Effective date: 20060428

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION