US20040199193A1 - Vibrating knife and excision apparatus - Google Patents

Vibrating knife and excision apparatus Download PDF

Info

Publication number
US20040199193A1
US20040199193A1 US10/810,827 US81082704A US2004199193A1 US 20040199193 A1 US20040199193 A1 US 20040199193A1 US 81082704 A US81082704 A US 81082704A US 2004199193 A1 US2004199193 A1 US 2004199193A1
Authority
US
United States
Prior art keywords
excision
knife
target
traveling direction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/810,827
Inventor
Tadashi Hayashi
Yasushi Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Assigned to CANON KABUSHIKI KAISHA reassignment CANON KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAYASHI, TADASHI, MIURA, YASUSHI
Publication of US20040199193A1 publication Critical patent/US20040199193A1/en
Priority to US12/491,348 priority Critical patent/US20090259245A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320082Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue

Definitions

  • the present invention relates to a vibrating knife and excision apparatus and, more particularly, to a vibrating knife, a biomedical ultrasonic knife, and an excision apparatus which cut off minute tissue, cells, and the like from a biomaterial which is used for biotechnology, medical tests, and the like.
  • an ultrasonic knife having an arrangement like that shown in FIG. 8 is known (see Japanese Patent Laid-Open No. 64-70036).
  • a displacement enlarging horn 101 is attached to the leading end of bolted Langevin transducer 100 .
  • the Langevin transducer 100 generates longitudinal vibrations. The vibrations are transmitted to the leading end to perform excision.
  • the vibration amplitude of the transducer 100 is magnified about 300 times at the leading end. This makes it possible to cut tissue without attaching any sharp blade.
  • the excision direction tends to be unstable because of the use of simple longitudinal vibrations. This tendency is conspicuous with respect to biomaterials, in particular, because they are soft, having no rigidity unlike a general excision target material such as a metal.
  • part of tissue adheres and sticks to the knife surface after excision. Because of these two reasons, it is difficult to cut a target region with a sharp cut surface. Furthermore, a tissue portion adhering to the knife may become a source of contamination.
  • the apparatus has larger scale and higher cost than a contact type ultrasonic knife.
  • setting and usage are difficult, and hence sophisticated knowledge and skill are required.
  • this method is a method of burning out a target region by converting optical energy into thermal energy, when such energy is applied to a material that tends to denature like proteins, the properties of the material change. This makes it impossible to perform an accurate test after the preparation of a sample.
  • a vibrating knife such as a biomedical ultrasonic knife includes an excision member which is brought into contact with a target including living body tissue like cells and vibrated in a direction at an angle (typically, a right angle direction) to the traveling direction in excision so as to excise the target, and the surface of a portion of the excision member which is located on the forward side in the traveling direction in excision becomes one of a hydrophobic surface and a hydrophilic surface, while the surface of a portion of the excision member which is located on the backward side in the traveling direction in excision becomes the other of the hydrophobic surface and the hydrophilic surface.
  • a knife having such an arrangement is generally vibrated by ultrasonic waves.
  • the knife can be vibrated in a vibration mode other than ultrasonic vibration in a strict sense, which is by way of exmple, vibration near ultrasonic vibration.
  • An excision target is typically living body tissue which exhibits hydrophobicity, and the knife is used with its hydrophobic surface serving as a leading end face. If an excision target is hydrophilic, the knife is used with its hydrophilic surface serving as a leading end face.
  • the portion used for excision need not be very sharp. For example, it suffices if this portion has a streamline shape.
  • the overall sectional shape may be determined in consideration of, for example, whether or not the two end portions are to be used for excision, whether or not the shape is well balanced in terms of desired vibration, whether the knife can be easily manufactured, whether the shape has enough strength, and whether the knife can be easily handled.
  • the knife according to each embodiment of the present invention can therefore excise an excision target by using a surface having the same property as that of the target as a leading end face and using the trailing end face as a surface having a property different from that of the target depending on whether the target is hydrophobic or hydrophilic.
  • This makes it possible to make the excision target adhere well to the surface of the leading end portion of the knife, thus reducing the instability of the excision direction.
  • this can make the target after excision separate well from the knife to prevent the target from adhering to the knife again. Therefore, a sharp cut surface can be easily obtained, and there is little possibility of contamination.
  • the hydrophobic surface and hydrophilic surface can be formed by making a hydrophobic film and hydrophilic film adhere to the main body of the excision portion (see FIG. 1).
  • a vibrating knife such as a biomedical ultrasonic knife includes an excision member which is brought into contact with a target and vibrated in a direction at an angle to the traveling direction in excision so as to excise the target, a material whose property changes to hydrophilicity or hydrophobicity depending on the temperature (e.g., a temperature-responsive polymer) is provided on the surface of the excision member, and a temperature control unit such as a heater element is provided near the surface of a portion of the excision member which is located on the forward side in the traveling direction in excision or the surface of a portion of the excision member which is located on the backward side in the traveling direction in excision.
  • the function of the knife according to the second aspect is basically the same as that of the knife according to the first aspect.
  • a vibrating knife such as a biomedical ultrasonic knife includes an excision member which is brought into contact with a target and vibrated in a direction at an angle to the traveling direction in excision so as to excise the target, a material whose property changes to hydrophilicity or hydrophobicity depending on the temperature is provided on the surface of the excision member.
  • the function of the knife according to the third aspect is basically the same as that of the knife according to the first aspect.
  • the excision member can be formed such that the vibration amplitude on the surface of a portion located on the forward side in the traveling direction in excision becomes relatively large, and the surface exhibits hydrophobicity (see FIG. 6).
  • each excision member can be formed in the shape of a horn or the like which generates necessary enlarged vibrations (see FIGS. 6 and 7).
  • each knife can be formed as a biomedical ultrasonic knife having a hydrophobic surface located on the forward side in the traveling direction in excision, and a hydrophilic surface located on the backward side in the traveling direction in excision.
  • a vibrating excision apparatus including the vibrating knife described above, a knife driving portion (e.g., Langevin transducer including a piezoelectric element) which vibrates the vibrating knife by generating vibrations, and a driving control portion which controls the knife driving portion and vibration of the knife.
  • This excision apparatus can be directly operated by an operator, and may be mounted on a manipulating apparatus such as a manipulator or robot hand which manipulates a knife apparatus.
  • the excision member can be formed in the shape of a horn which generates necessary enlarged vibrations.
  • a vibration enlarging member which is connected to the excision member and generates necessary enlarged vibrations may be provided.
  • the knife driving portion and driving control portion can be formed to generate elliptic vibration whose ellipsoid coincides with the traveling direction in excision at the leading end of the excision member (see FIG. 7).
  • FIG. 1 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the first embodiment of the present invention
  • FIG. 2 is a sectional view showing how living body tissue is incised by using an ultrasonic knife
  • FIG. 3 is a schematic view showing a cell and adhesive proteins on the surface of the cell
  • FIG. 4 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the second embodiment of the present invention
  • FIG. 5 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the third embodiment of the present invention.
  • FIG. 6 is a front view showing a form of an ultrasonic knife according to the third embodiment of the present invention.
  • FIG. 7 is a view showing the arrangement of the fourth embodiment of the present invention and the vibration mode of the leading end of a knife.
  • FIG. 8 is a view showing an ultrasonic excision apparatus.
  • FIG. 1 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the first embodiment of the present invention.
  • reference numeral 2 denotes a cell; and 3 and 4 , portions of a single-piece knife 1 which have different properties.
  • the knife 1 incises living body tissue in the direction indicated by the arrow. In this incision, the knife 1 tears off the living body tissue upon being provided with ultrasonic vibrations in a direction perpendicular to the drawing surface.
  • the surface of one portion 3 of the knife 1 whose main body is made of glass or the like is covered with a hydrophobic coating, whereas the surface of the other portion 4 is covered with a hydrophilic coating.
  • the surface of a cell 9 is covered with adhesive proteins 10 , and exhibits hydrophobicity.
  • the hydrophobic coating portion 3 almost the half portion of the knife 1 which is located on the forward side in the traveling direction in incision is the hydrophobic coating portion 3 , and hence the cells 2 adhere well to the knife 1 . This reduces the instability of the traveling direction of the knife 1 in incision due to the flexibility of living body tissue. More specifically, as shown in FIG. 1, the cells 2 stick to the hydrophobic coating portion 3 .
  • the hydrophilic coating portion 4 is almost the half portion of the knife 1 which is located on the backward side in the traveling direction of the knife 1 in incision.
  • FIG. 2 shows an incision in living body tissue with a general ultrasonic knife 7 (FIG. 2 shows the same sectional shape as that of the knife 1 in FIG. 1 for the sake of comparison).
  • the entire surface of the knife 7 is made of a material exhibiting hydrophobicity. Since the surface of the ultrasonic knife 7 is hydrophobic, cells 5 near the forward side in the traveling direction in incision adhere well to the knife 7 . This reduces the instability of the traveling direction. However, cells 6 and adhesive proteins 10 temporarily separate from the knife 7 and then adhere to the surface of knife (this behavior will be referred to as “re-adhesion” hereinafter) which is located on the backward side in the traveling direction in incision.
  • the first embodiment can simultaneously obtain the two effects, that is, ensuring good affinity between living body tissue and the knife on the forward side (leading end) in the traveling direction in incision and making them adhere well to each other, and making the living body tissue and the knife separate well from each other on the backward side (trailing end) in the traveling direction in incision and preventing re-adhesion.
  • Coating methods to be used include, for example, a dipping method, spray coating method, screen printing method, and vacuum deposition method.
  • the surface of a knife must be selectively coated, and hence a promising method is the method of making a coating agent containing a binder adhere to the surface of a knife by electrical charging and then fixing the agent by heating, as in electrophotography.
  • a coating agent can be dissolved in a liquid medium or can be solated, selective coating can be easily done by an ink-jet method.
  • a coating material may be formed on the surface of a knife by deposition or the like, a mask member is then formed on the resultant arrangement, and the mask material is exposed and selectively etched to form a pattern.
  • Another method is the method of forming coatings on the hydrophilic side and hydrophobic side of a knife in advance by an inexpensive method such as coating or dipping and joining the coating with an adhesive or the like.
  • FIG. 4 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the second embodiment.
  • reference numerals 11 and 12 denote cells; 13 , a heater which extends by a proper length in a direction perpendicular to the drawing surface and is provided on the tip portion of a knife 14 ; and 15 , a coating film made of a temperature-responsive polymer such as polyisopropylacrylamide.
  • the properties of polyisopropylacrylamide change at a critical temperature of about 32° C. More specifically, this polymer exhibits hydrophobicity at the critical temperature or higher, and hydrophilicity at a temperature lower than the critical temperature.
  • a heat insulating member may be attached between the heater 13 and the rear portion of the knife 14 in the traveling direction in incision so as to prevent the heat of the heater 13 from being transmitted to the rear portion of the knife 14 in the traveling direction in incision.
  • a coating film having a critical temperature higher than the storage temperature for an incision target and lower than the temperature at which the incision target deteriorates is formed on the surface of the knife 14 , and temperature control on the heater 13 is performed by a combination of, for example, a temperature sensor placed near the heater 13 and a temperature controller which supplies power to the heater 13 in accordance with the temperature detected by the temperature sensor, the temperature of the coating film on the tip of the knife 14 can be controlled to be higher than the critical temperature to change the nature of the coating film on the tip of the knife from hydrophilicity to hydrophobicity.
  • the heater 13 can be made into a self temperature control type heater 13 by using, for example, a method of generating heat by energizing a resistive element such as a heat sensitive resistive element whose resistance increases with an increase in temperature or generating heat by supplying a high-frequency magnetic field excited by a high-frequency current to a magnetic member having a proper Curie point.
  • a method using a printing technique and a lithography method are available.
  • a resistor pattern is directly printed on the knife to form a heater.
  • This method includes an ink-jet method and the like.
  • a resistive film is formed, and a heater pattern is formed by a removing process.
  • a coating method the same method as that in the first embodiment can be used. In this case, since it suffices if the surface of a knife is uniformly coated, this method can be executed by a relatively inexpensive method such as dipping or coating by a coater.
  • FIG. 5 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the third embodiment.
  • reference numerals 16 and 17 denote cells; 18 , a knife; and 19 , a coating film made of a temperature-responsive polymer such as polyisopropylacrylamide.
  • the graph on the lower portion of FIG. 5 represents the magnitude of the vibration amplitude in a direction perpendicular to the drawing surface at each position on the surface of the knife which corresponds to the upper portion of FIG. 5.
  • Incising is performed in the following manner.
  • the maximum vibration amplitude appears at the leading end portion of the knife 18 in the traveling direction in incision, and a small vibration amplitude appears at the trailing end portion of the knife 18 in the traveling direction in incision.
  • longitudinal vibrations are produced in the knife 18 .
  • the temperature of the leading end portion of the knife 18 in the traveling direction in incision is raised by friction with living body tissue to exceed the above critical temperature, and hence the surface of the knife 18 becomes hydrophobic. This makes the cells 16 adhere well to the knife.
  • the temperature of the trailing end portion of the knife 18 in the traveling direction in incision does not rise much (or at all) because of a small vibration amplitude.
  • the trailing end portion therefore keeps hydrophilic, and hence the cells 17 and adhesive proteins separate well from the knife, thus preventing re-adhesion.
  • Practical methods include, for example, a method of reducing the rigidity of the leading end portion of a knife as compared with the trailing end portion by forming notches 25 or cavities in the portion (leading end portion) which comes into contact with an incision target (living body tissue), thereby increasing the vibration amplitude of the leading end portion of the knife 18 , as shown in FIG. 6.
  • FIG. 6 shows the arrangement of the knife 18 , in which the knife is tapered in the longitudinal direction to enlarge vibrations from the vibration member 26 on the side in contact with the living body tissue.
  • the first and second embodiments can also employ such a form. In this form, an excision portion used for an incision by being brought into contact with living body tissue overlaps a vibration enlarging portion which enlarges vibrations from a vibration member to produce necessary vibrations in the excision portion.
  • FIG. 7 is a view showing the operation of an ultrasonic knife (excision apparatus) according to the fourth embodiment.
  • reference numerals 20 and 21 denote portions of a single-piece ultrasonic knife body which have different properties.
  • the portion 20 is covered with a hydrophobic coating.
  • the portion 21 is covered with a hydrophilic coating.
  • Reference numeral 22 denotes a driving device including a vibration member such as a piezoelectric element for vibrating/driving a knife 24 which is attached thereto; and 23 , a driving control circuit which controls the vibrations of the vibration member and knife.
  • the driving control circuit 23 generates elliptic vibrations in the leading end of the knife 24 as indicated by the ellipse with the arrows in FIG. 7.
  • the driving control circuit 23 performs control to make the traveling direction (the direction indicated by the solid arrow in FIG. 7) of the knife 24 coincide with the ellipsoid of this elliptic vibration.
  • the following effects can be obtained.
  • the sliding distance of the contact portion of the knife 24 which comes into contact with an excision target such as living body tissue increases, the instability of the excision direction is further reduced.
  • dregs in an incision can be easily discharged.
  • the main body of the knife 24 has the same arrangement as that in the first embodiment, the same effects as described above can be obtained with the same arrangement as that in the second or third embodiment.
  • a temperature controller (or heater power supply circuit) 27 is provided in the control circuit 23 to control the temperature of the heater (or supply power to the heater).
  • the piezoelectric element which generates elliptic motion includes a longitudinal vibration member which vibrates in a direction vertical to the excision direction of the knife and a bending vibration member which generates bending motion parallel to the traveling direction.
  • the arrangement of the vibration members and the shape of the knife are designed to make the resonance frequencies, that is, driving frequencies, of these vibration modes become almost equal to each other.
  • the respective vibration members are located at antinodes of the respective vibration modes. For this reason, the excision direction almost coincides with the ellipsoid of elliptic vibration at the driving frequency. Note that vibrations can be more efficiently transmitted to the excision surface of the leading end of a knife by forming the knife into the shape of a horn such as an exponential horn which amplifies the amplitude of elliptic vibration.
  • an ultrasonic knife which makes minute incision in living body tissue or the like, a vibrating knife such as an excision apparatus, and an excision apparatus have the following effects.
  • An excision target adheres well to the incision leading end (tip) of the knife to reduce instability of the excision direction.
  • the target after excision (incision) separates well from the knife, and hence the possibility of re-adhesion of cells and the like to the knife is low. This makes it possible to obtain a sharp cut surface, and there is little possibility of contamination.

Abstract

Demands have arisen for a vibrating knife such as a biometrical ultrasonic knife which can easily obtain sharp cut surfaces with little possibility of contamination and the like. In order to meet the demands, the excision portion of a vibrating knife such as a biometrical ultrasonic knife which is brought into contact with an excision target such as living body tissue and vibrated in a direction at an angle to the traveling direction in excision so as to excise the target is coated such that the surface of the portion located on the forward side in the traveling direction in excision becomes hydrophobic, and the surface of the portion located on the backward side in the traveling direction in excision becomes hydrophilic.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a vibrating knife and excision apparatus and, more particularly, to a vibrating knife, a biomedical ultrasonic knife, and an excision apparatus which cut off minute tissue, cells, and the like from a biomaterial which is used for biotechnology, medical tests, and the like. [0001]
  • BACKGROUND OF THE INVENTION
  • As a biomedical excision apparatus designed for active control, an ultrasonic knife having an arrangement like that shown in FIG. 8 is known (see Japanese Patent Laid-Open No. 64-70036). In this arrangement, a [0002] displacement enlarging horn 101 is attached to the leading end of bolted Langevin transducer 100. The Langevin transducer 100 generates longitudinal vibrations. The vibrations are transmitted to the leading end to perform excision. According to this arrangement, the vibration amplitude of the transducer 100 is magnified about 300 times at the leading end. This makes it possible to cut tissue without attaching any sharp blade.
  • As an apparatus having another arrangement, a cutting apparatus designed to burn out tissue by focusing a laser beam or microwaves onto a region to be cut has been proposed. According to this arrangement, since noncontact cutting can be done, there is little possibility of contamination due to contact. [0003]
  • In the above biometrical ultrasonic knife of the contact type, however, the excision direction tends to be unstable because of the use of simple longitudinal vibrations. This tendency is conspicuous with respect to biomaterials, in particular, because they are soft, having no rigidity unlike a general excision target material such as a metal. In addition, owing to the contact type, part of tissue adheres and sticks to the knife surface after excision. Because of these two reasons, it is difficult to cut a target region with a sharp cut surface. Furthermore, a tissue portion adhering to the knife may become a source of contamination. [0004]
  • According to the above method using laser beams or microwaves, the apparatus has larger scale and higher cost than a contact type ultrasonic knife. In addition, setting and usage are difficult, and hence sophisticated knowledge and skill are required. Furthermore, since this method is a method of burning out a target region by converting optical energy into thermal energy, when such energy is applied to a material that tends to denature like proteins, the properties of the material change. This makes it impossible to perform an accurate test after the preparation of a sample. [0005]
  • Demands have therefore arisen for a vibrating knife such as a biometrical ultrasonic knife which can easily obtain sharp cut surfaces with little possibility of contamination or the like, and an excision apparatus using such a knife. [0006]
  • SUMMARY OF THE INVENTION
  • According to the first aspect of the present invention, a vibrating knife such as a biomedical ultrasonic knife includes an excision member which is brought into contact with a target including living body tissue like cells and vibrated in a direction at an angle (typically, a right angle direction) to the traveling direction in excision so as to excise the target, and the surface of a portion of the excision member which is located on the forward side in the traveling direction in excision becomes one of a hydrophobic surface and a hydrophilic surface, while the surface of a portion of the excision member which is located on the backward side in the traveling direction in excision becomes the other of the hydrophobic surface and the hydrophilic surface. [0007]
  • A knife having such an arrangement is generally vibrated by ultrasonic waves. However, as long as an excision function is fulfilled, the knife can be vibrated in a vibration mode other than ultrasonic vibration in a strict sense, which is by way of exmple, vibration near ultrasonic vibration. An excision target is typically living body tissue which exhibits hydrophobicity, and the knife is used with its hydrophobic surface serving as a leading end face. If an excision target is hydrophilic, the knife is used with its hydrophilic surface serving as a leading end face. Consider the sectional shape of the knife. When excision is to be performed by vibrations such as ultrasonic waves, the portion used for excision need not be very sharp. For example, it suffices if this portion has a streamline shape. The overall sectional shape may be determined in consideration of, for example, whether or not the two end portions are to be used for excision, whether or not the shape is well balanced in terms of desired vibration, whether the knife can be easily manufactured, whether the shape has enough strength, and whether the knife can be easily handled. [0008]
  • The knife according to each embodiment of the present invention can therefore excise an excision target by using a surface having the same property as that of the target as a leading end face and using the trailing end face as a surface having a property different from that of the target depending on whether the target is hydrophobic or hydrophilic. This makes it possible to make the excision target adhere well to the surface of the leading end portion of the knife, thus reducing the instability of the excision direction. In addition, this can make the target after excision separate well from the knife to prevent the target from adhering to the knife again. Therefore, a sharp cut surface can be easily obtained, and there is little possibility of contamination. The hydrophobic surface and hydrophilic surface can be formed by making a hydrophobic film and hydrophilic film adhere to the main body of the excision portion (see FIG. 1). [0009]
  • According to the second aspect of the present invention, a vibrating knife such as a biomedical ultrasonic knife includes an excision member which is brought into contact with a target and vibrated in a direction at an angle to the traveling direction in excision so as to excise the target, a material whose property changes to hydrophilicity or hydrophobicity depending on the temperature (e.g., a temperature-responsive polymer) is provided on the surface of the excision member, and a temperature control unit such as a heater element is provided near the surface of a portion of the excision member which is located on the forward side in the traveling direction in excision or the surface of a portion of the excision member which is located on the backward side in the traveling direction in excision. The function of the knife according to the second aspect is basically the same as that of the knife according to the first aspect. [0010]
  • According to the third aspect of the present invention, a vibrating knife such as a biomedical ultrasonic knife includes an excision member which is brought into contact with a target and vibrated in a direction at an angle to the traveling direction in excision so as to excise the target, a material whose property changes to hydrophilicity or hydrophobicity depending on the temperature is provided on the surface of the excision member. The function of the knife according to the third aspect is basically the same as that of the knife according to the first aspect. In this case, the excision member can be formed such that the vibration amplitude on the surface of a portion located on the forward side in the traveling direction in excision becomes relatively large, and the surface exhibits hydrophobicity (see FIG. 6). [0011]
  • In the knives according to the first to third aspects, each excision member can be formed in the shape of a horn or the like which generates necessary enlarged vibrations (see FIGS. 6 and 7). In addition, as in the embodiments to be described later, each knife can be formed as a biomedical ultrasonic knife having a hydrophobic surface located on the forward side in the traveling direction in excision, and a hydrophilic surface located on the backward side in the traveling direction in excision. [0012]
  • According to the fourth aspect of the present invention, there is disclosed a vibrating excision apparatus including the vibrating knife described above, a knife driving portion (e.g., Langevin transducer including a piezoelectric element) which vibrates the vibrating knife by generating vibrations, and a driving control portion which controls the knife driving portion and vibration of the knife. This excision apparatus can be directly operated by an operator, and may be mounted on a manipulating apparatus such as a manipulator or robot hand which manipulates a knife apparatus. [0013]
  • The excision member can be formed in the shape of a horn which generates necessary enlarged vibrations. However, a vibration enlarging member which is connected to the excision member and generates necessary enlarged vibrations may be provided. Furthermore, the knife driving portion and driving control portion can be formed to generate elliptic vibration whose ellipsoid coincides with the traveling direction in excision at the leading end of the excision member (see FIG. 7). [0014]
  • Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof.[0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the first embodiment of the present invention; [0016]
  • FIG. 2 is a sectional view showing how living body tissue is incised by using an ultrasonic knife; [0017]
  • FIG. 3 is a schematic view showing a cell and adhesive proteins on the surface of the cell; [0018]
  • FIG. 4 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the second embodiment of the present invention; [0019]
  • FIG. 5 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the third embodiment of the present invention; [0020]
  • FIG. 6 is a front view showing a form of an ultrasonic knife according to the third embodiment of the present invention; [0021]
  • FIG. 7 is a view showing the arrangement of the fourth embodiment of the present invention and the vibration mode of the leading end of a knife; and [0022]
  • FIG. 8 is a view showing an ultrasonic excision apparatus.[0023]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The embodiments of the present invention will be described in detail below with reference to the accompanying drawings. [0024]
  • First Embodiment [0025]
  • FIG. 1 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the first embodiment of the present invention. Referring to FIG. 1, [0026] reference numeral 2 denotes a cell; and 3 and 4, portions of a single-piece knife 1 which have different properties. The knife 1 incises living body tissue in the direction indicated by the arrow. In this incision, the knife 1 tears off the living body tissue upon being provided with ultrasonic vibrations in a direction perpendicular to the drawing surface. The surface of one portion 3 of the knife 1 whose main body is made of glass or the like is covered with a hydrophobic coating, whereas the surface of the other portion 4 is covered with a hydrophilic coating.
  • As shown in FIG. 3, in general, the surface of a [0027] cell 9 is covered with adhesive proteins 10, and exhibits hydrophobicity. In the first embodiment, almost the half portion of the knife 1 which is located on the forward side in the traveling direction in incision is the hydrophobic coating portion 3, and hence the cells 2 adhere well to the knife 1. This reduces the instability of the traveling direction of the knife 1 in incision due to the flexibility of living body tissue. More specifically, as shown in FIG. 1, the cells 2 stick to the hydrophobic coating portion 3. In contrast, almost the half portion of the knife 1 which is located on the backward side in the traveling direction of the knife 1 in incision is the hydrophilic coating portion 4. This prevents the cells 2 and like from re-adhering to the knife 1 due to the adhesive proteins 10. In addition, since living body tissue repels the hydrophilic coating portion 4 of the knife 1, the cells 2 of the incised living body tissue separate well from the knife 1.
  • In contrast, FIG. 2 shows an incision in living body tissue with a general ultrasonic knife [0028] 7 (FIG. 2 shows the same sectional shape as that of the knife 1 in FIG. 1 for the sake of comparison). In this case, the entire surface of the knife 7 is made of a material exhibiting hydrophobicity. Since the surface of the ultrasonic knife 7 is hydrophobic, cells 5 near the forward side in the traveling direction in incision adhere well to the knife 7. This reduces the instability of the traveling direction. However, cells 6 and adhesive proteins 10 temporarily separate from the knife 7 and then adhere to the surface of knife (this behavior will be referred to as “re-adhesion” hereinafter) which is located on the backward side in the traveling direction in incision. These accretions may become contamination and invalidate test materials as well as degrading the incision efficiency. In addition, since cells and the like do not separate well from the knife, living body tissue cannot be incised sharply with the knife, resulting in delaying the operation. In contrast to this, if the surface of the knife 7 is hydrophilic, there is no affinity between the forward side (leading end) of the knife in the traveling direction in incision and living body tissue. Since, in addition, the living body tissue is soft, the traveling direction in incision becomes unstable. This makes it impossible to sharply incise the tissue.
  • As described above, the first embodiment can simultaneously obtain the two effects, that is, ensuring good affinity between living body tissue and the knife on the forward side (leading end) in the traveling direction in incision and making them adhere well to each other, and making the living body tissue and the knife separate well from each other on the backward side (trailing end) in the traveling direction in incision and preventing re-adhesion. [0029]
  • Coating methods to be used include, for example, a dipping method, spray coating method, screen printing method, and vacuum deposition method. In this embodiment, the surface of a knife must be selectively coated, and hence a promising method is the method of making a coating agent containing a binder adhere to the surface of a knife by electrical charging and then fixing the agent by heating, as in electrophotography. Alternatively, if a coating agent can be dissolved in a liquid medium or can be solated, selective coating can be easily done by an ink-jet method. In addition, as in a semiconductor lithography process, a coating material may be formed on the surface of a knife by deposition or the like, a mask member is then formed on the resultant arrangement, and the mask material is exposed and selectively etched to form a pattern. [0030]
  • Another method is the method of forming coatings on the hydrophilic side and hydrophobic side of a knife in advance by an inexpensive method such as coating or dipping and joining the coating with an adhesive or the like. [0031]
  • Second Embodiment [0032]
  • FIG. 4 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the second embodiment. Referring to FIG. 4, [0033] reference numerals 11 and 12 denote cells; 13, a heater which extends by a proper length in a direction perpendicular to the drawing surface and is provided on the tip portion of a knife 14; and 15, a coating film made of a temperature-responsive polymer such as polyisopropylacrylamide. The properties of polyisopropylacrylamide change at a critical temperature of about 32° C. More specifically, this polymer exhibits hydrophobicity at the critical temperature or higher, and hydrophilicity at a temperature lower than the critical temperature.
  • Incising with the [0034] knife 14 having the above arrangement according to the second embodiment will be described. Living body tissue is generally stored at a low temperature (the critical temperature or lower) to prevent decomposition. In this case, an apparatus used for an incision is also kept at a low temperature, and the knife 14 is kept at the temperature as well. When an incision is to be performed, the heater 13 is energized to control the temperature of the contact surface (tip) between living body tissue and the knife 14 to the critical temperature or higher. At this time, since the temperature at which a test target such as a protein deteriorates is higher than the critical temperature of polyisopropylacrylamide by 20° C. or more, no problem arises if the temperature of the contact surface is held within 20° C. from the critical temperature. With this control, since the contact surface between the knife 14 and the living body tissue as an incision target exhibits hydrophobicity, the cells 11 near the forward side of the knife 14 in the traveling direction in incision adhere well to the knife 14. In addition, since the temperature around the knife 14 is kept low, if temperature control is performed to make the temperature of the rear portion of the knife 14 in the traveling direction in incision have a temperature equal to or lower than the critical temperature, the cells 12 and adhesive proteins separate well from the knife. This can also prevent re-adhesion. In order to enhance this effect, a heat insulating member may be attached between the heater 13 and the rear portion of the knife 14 in the traveling direction in incision so as to prevent the heat of the heater 13 from being transmitted to the rear portion of the knife 14 in the traveling direction in incision.
  • If, therefore, a coating film having a critical temperature higher than the storage temperature for an incision target and lower than the temperature at which the incision target deteriorates is formed on the surface of the [0035] knife 14, and temperature control on the heater 13 is performed by a combination of, for example, a temperature sensor placed near the heater 13 and a temperature controller which supplies power to the heater 13 in accordance with the temperature detected by the temperature sensor, the temperature of the coating film on the tip of the knife 14 can be controlled to be higher than the critical temperature to change the nature of the coating film on the tip of the knife from hydrophilicity to hydrophobicity. The heater 13 can be made into a self temperature control type heater 13 by using, for example, a method of generating heat by energizing a resistive element such as a heat sensitive resistive element whose resistance increases with an increase in temperature or generating heat by supplying a high-frequency magnetic field excited by a high-frequency current to a magnetic member having a proper Curie point.
  • As methods of mounting a heater on a knife, a method using a printing technique and a lithography method are available. In the printing method, a resistor pattern is directly printed on the knife to form a heater. This method includes an ink-jet method and the like. In the lithography method, a resistive film is formed, and a heater pattern is formed by a removing process. [0036]
  • As a coating method, the same method as that in the first embodiment can be used. In this case, since it suffices if the surface of a knife is uniformly coated, this method can be executed by a relatively inexpensive method such as dipping or coating by a coater. [0037]
  • Third Embodiment [0038]
  • FIG. 5 is a sectional view showing how living body tissue is incised by using an ultrasonic knife according to the third embodiment. Referring to FIG. 5, [0039] reference numerals 16 and 17 denote cells; 18, a knife; and 19, a coating film made of a temperature-responsive polymer such as polyisopropylacrylamide. The graph on the lower portion of FIG. 5 represents the magnitude of the vibration amplitude in a direction perpendicular to the drawing surface at each position on the surface of the knife which corresponds to the upper portion of FIG. 5.
  • Incising is performed in the following manner. The maximum vibration amplitude appears at the leading end portion of the [0040] knife 18 in the traveling direction in incision, and a small vibration amplitude appears at the trailing end portion of the knife 18 in the traveling direction in incision. In this manner, longitudinal vibrations are produced in the knife 18. As a result, the temperature of the leading end portion of the knife 18 in the traveling direction in incision is raised by friction with living body tissue to exceed the above critical temperature, and hence the surface of the knife 18 becomes hydrophobic. This makes the cells 16 adhere well to the knife. On the other hand, the temperature of the trailing end portion of the knife 18 in the traveling direction in incision does not rise much (or at all) because of a small vibration amplitude. The trailing end portion therefore keeps hydrophilic, and hence the cells 17 and adhesive proteins separate well from the knife, thus preventing re-adhesion.
  • Practical methods include, for example, a method of reducing the rigidity of the leading end portion of a knife as compared with the trailing end portion by forming [0041] notches 25 or cavities in the portion (leading end portion) which comes into contact with an incision target (living body tissue), thereby increasing the vibration amplitude of the leading end portion of the knife 18, as shown in FIG. 6. FIG. 6 shows the arrangement of the knife 18, in which the knife is tapered in the longitudinal direction to enlarge vibrations from the vibration member 26 on the side in contact with the living body tissue. The first and second embodiments can also employ such a form. In this form, an excision portion used for an incision by being brought into contact with living body tissue overlaps a vibration enlarging portion which enlarges vibrations from a vibration member to produce necessary vibrations in the excision portion.
  • That is, as in the second embodiment, if a coating film having a critical temperature higher than the storage temperature for an excision target and lower than the temperature at which the excision target deteriorates is formed on the surface of the [0042] knife 18, and the vibration amplitude of the tip of the knife 14 is increased to generate frictional heat to make the temperature of the coating film reach a temperature higher than the critical temperature.
  • Fourth Embodiment [0043]
  • FIG. 7 is a view showing the operation of an ultrasonic knife (excision apparatus) according to the fourth embodiment. Referring to FIG. 7, [0044] reference numerals 20 and 21 denote portions of a single-piece ultrasonic knife body which have different properties. The portion 20 is covered with a hydrophobic coating. The portion 21 is covered with a hydrophilic coating. Reference numeral 22 denotes a driving device including a vibration member such as a piezoelectric element for vibrating/driving a knife 24 which is attached thereto; and 23, a driving control circuit which controls the vibrations of the vibration member and knife. The driving control circuit 23 generates elliptic vibrations in the leading end of the knife 24 as indicated by the ellipse with the arrows in FIG. 7. The driving control circuit 23 performs control to make the traveling direction (the direction indicated by the solid arrow in FIG. 7) of the knife 24 coincide with the ellipsoid of this elliptic vibration. With this control, in addition to the effect obtained by the above surface coating on the knife 24, the following effects can be obtained. As the sliding distance of the contact portion of the knife 24 which comes into contact with an excision target such as living body tissue increases, the instability of the excision direction is further reduced. In addition, dregs in an incision can be easily discharged.
  • Although the main body of the [0045] knife 24 has the same arrangement as that in the first embodiment, the same effects as described above can be obtained with the same arrangement as that in the second or third embodiment. In addition, if the knife according to the second embodiment is used as the knife 24, a temperature controller (or heater power supply circuit) 27 is provided in the control circuit 23 to control the temperature of the heater (or supply power to the heater).
  • The piezoelectric element which generates elliptic motion includes a longitudinal vibration member which vibrates in a direction vertical to the excision direction of the knife and a bending vibration member which generates bending motion parallel to the traveling direction. The arrangement of the vibration members and the shape of the knife are designed to make the resonance frequencies, that is, driving frequencies, of these vibration modes become almost equal to each other. The respective vibration members are located at antinodes of the respective vibration modes. For this reason, the excision direction almost coincides with the ellipsoid of elliptic vibration at the driving frequency. Note that vibrations can be more efficiently transmitted to the excision surface of the leading end of a knife by forming the knife into the shape of a horn such as an exponential horn which amplifies the amplitude of elliptic vibration. [0046]
  • As described above, according to the first to fourth embodiments, an ultrasonic knife which makes minute incision in living body tissue or the like, a vibrating knife such as an excision apparatus, and an excision apparatus have the following effects. An excision target adheres well to the incision leading end (tip) of the knife to reduce instability of the excision direction. In addition, the target after excision (incision) separates well from the knife, and hence the possibility of re-adhesion of cells and the like to the knife is low. This makes it possible to obtain a sharp cut surface, and there is little possibility of contamination. [0047]
  • As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims. [0048]

Claims (15)

What is claimed is:
1. A vibrating knife comprising an excision portion which is brought into contact with a target and vibrated in a direction at an angle to a traveling direction in excision so as to excise the target, wherein a surface of said excision portion which is located on a forward side in the traveling direction in excision is hydrophobic, and a surface of said excision portion which is located on a backward side in the traveling direction in excision is hydrophilic.
2. The knife according to claim 1, wherein the hydrophobic surface and the hydrophilic surface are respectively coated with a hydrophobic film and a hydrophilic film.
3. A vibrating knife comprising:
an excision portion which is brought into contact with a target and vibrated in a direction at an angle to a traveling direction in excision so as to excise the target;
a coating which is formed on a surface of said excision portion and changes in property to hydrophobicity or hydrophilicity depending on a temperature; and
a heater which is provided on a portion of said excision portion which is located on a forward side in the traveling direction in excision, and supplies heat to said coating.
4. The knife according to claim 3, wherein said heater comprises a self temperature control type heater.
5. The knife according to claim 3, wherein said coating exhibits the change in property at a temperature higher than a storage temperature for the target and lower than a temperature at which the target deteriorates.
6. A vibrating knife comprising:
an excision portion which is brought into contact with a target and vibrated in a direction at an angle to a traveling direction in excision so as to excise the target;
a coating which is formed on a surface of said excision portion and changes in property to hydrophilicity or hydrophobicity depending on a temperature; and
a vibration enlarging portion which is provided on a portion of said excision portion which is located on a forward side in the traveling direction in excision to enlarge the vibration.
7. The knife according to claim 6, wherein a vibration amplitude of the portion of said excision portion which is located on the forward side in the traveling direction in excision is enlarged by said vibration enlarging portion.
8. The knife according to claim 6, wherein said coating exhibits the change in property at a temperature higher than a storage temperature for the target and lower than a temperature at which the target deteriorates.
9. An excision apparatus comprising:
a vibrating knife defined in claim 1;
a knife driving portion which vibrates said vibrating knife; and
a driving control portion which controls said knife driving portion to control a vibration mode of said vibrating knife.
10. The apparatus according to claim 9, wherein said driving control portion controls the vibration mode of said vibrating knife to generate elliptic vibration whose ellipsoid coincides with the traveling direction in excision of said vibrating knife.
11. An excision apparatus comprising:
a vibrating knife defined in claim 1;
a knife driving portion which vibrates said vibrating knife; and
a temperature control portion which controls generation of heat by said heater of said vibrating knife.
12. An excision apparatus comprising:
a vibrating knife defined in claim 6; and
a knife driving portion which vibrates said vibrating knife.
13. A method of manufacturing a vibrating knife, comprising the steps of:
forming an excision portion which is brought into contact with a target and vibrated in a direction at an angle to a traveling direction in excision so as to excise the target;
forming a hydrophobic film on a surface of a portion of the excision portion which is located on a forward side in the traveling direction in excision; and
forming a hydrophilic film on a surface of a portion of the excision portion which is located on a backward side in the traveling direction in excision.
14. A method of manufacturing a vibrating knife, comprising the steps of:
forming an excision portion which is brought into contact with a target and vibrated in a direction at an angle to a traveling direction in excision so as to excise the target;
forming, on a surface of the excision portion, a film whose property changes to hydrophobicity or hydrophilicity depending on temperature; and
mounting, on a portion of the excision portion which is located on a forward side in the traveling direction in excision, a heater which supplies heat to the film.
15. A method of manufacturing a vibrating knife, comprising the steps of:
forming an excision portion which is brought into contact with a target and vibrated in a direction at an angle to a traveling direction in excision so as to excise the target;
forming, on a surface of the excision portion, a film whose property changes to hydrophilicity or hydrophobicity depending on temperature; and
forming, on a portion of the excision portion which is located on a forward side in the traveling direction in excision, a vibration enlarging portion which enlarges the vibration.
US10/810,827 2003-04-07 2004-03-29 Vibrating knife and excision apparatus Abandoned US20040199193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/491,348 US20090259245A1 (en) 2003-04-07 2009-06-25 Vibrating knife and excision apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-103496 2003-04-07
JP2003103496A JP3840194B2 (en) 2003-04-07 2003-04-07 Vibrating knife

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/491,348 Division US20090259245A1 (en) 2003-04-07 2009-06-25 Vibrating knife and excision apparatus

Publications (1)

Publication Number Publication Date
US20040199193A1 true US20040199193A1 (en) 2004-10-07

Family

ID=33095329

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/810,827 Abandoned US20040199193A1 (en) 2003-04-07 2004-03-29 Vibrating knife and excision apparatus
US12/491,348 Abandoned US20090259245A1 (en) 2003-04-07 2009-06-25 Vibrating knife and excision apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/491,348 Abandoned US20090259245A1 (en) 2003-04-07 2009-06-25 Vibrating knife and excision apparatus

Country Status (2)

Country Link
US (2) US20040199193A1 (en)
JP (1) JP3840194B2 (en)

Cited By (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090128063A1 (en) * 2007-11-15 2009-05-21 Seiko Epson Corporation Method for driving vibration cutter
US20090254100A1 (en) * 2008-04-04 2009-10-08 Tyco Healthcare Group Lp Ultrasonic needle driver
US20100015682A1 (en) * 2008-07-16 2010-01-21 Olympus Corporation Ultrasonic dissection device and ultrasonic dissection method
USD618797S1 (en) 2007-10-05 2010-06-29 Ethicon Endo-Surgery, Inc. Handle assembly for surgical instrument
US7901423B2 (en) 2007-11-30 2011-03-08 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
USD661803S1 (en) 2007-10-05 2012-06-12 Ethicon Endo-Surgery, Inc. User interface for a surgical instrument
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8236019B2 (en) 2007-03-22 2012-08-07 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
US8257377B2 (en) 2007-07-27 2012-09-04 Ethicon Endo-Surgery, Inc. Multiple end effectors ultrasonic surgical instruments
US8319400B2 (en) 2009-06-24 2012-11-27 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8323302B2 (en) 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8348967B2 (en) 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8382782B2 (en) 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8419759B2 (en) 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
USD687549S1 (en) 2011-10-24 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8546996B2 (en) 2008-08-06 2013-10-01 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
USD691265S1 (en) 2011-08-23 2013-10-08 Covidien Ag Control assembly for portable surgical device
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8652155B2 (en) 2007-07-27 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8882791B2 (en) * 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8888809B2 (en) 2010-10-01 2014-11-18 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8905935B2 (en) 2012-06-06 2014-12-09 Olympus Medical Systems Corp. Ultrasonic surgical apparatus
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9918775B2 (en) 2011-04-12 2018-03-20 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10751109B2 (en) 2014-12-22 2020-08-25 Ethicon Llc High power battery powered RF amplifier topology
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10779876B2 (en) 2011-10-24 2020-09-22 Ethicon Llc Battery powered surgical instrument
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2020-05-29 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785193B2 (en) 2006-09-14 2014-07-22 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Dissection tool and methods of use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317401A (en) * 1979-07-11 1982-03-02 Disharoon Dale R Method and apparatus for microtomy
US5167725A (en) * 1990-08-01 1992-12-01 Ultracision, Inc. Titanium alloy blade coupler coated with nickel-chrome for ultrasonic scalpel
US5505693A (en) * 1994-12-30 1996-04-09 Mackool; Richard J. Method and apparatus for reducing friction and heat generation by an ultrasonic device during surgery
US20030109865A1 (en) * 2001-12-12 2003-06-12 Megadyne Medical Products, Inc. Utilization of a multi-character material in a surface coating of an electrosurgical instrument

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592612B1 (en) * 2000-05-04 2003-07-15 Cardeon Corporation Method and apparatus for providing heat exchange within a catheter body
WO2002053193A2 (en) * 2001-01-02 2002-07-11 The Charles Stark Draper Laboratory, Inc. Tissue engineering of three-dimensional vascularized using microfabricated polymer assembly technology
US20030073987A1 (en) * 2001-10-16 2003-04-17 Olympus Optical Co., Ltd. Treating apparatus and treating device for treating living-body tissue
EP1321104A1 (en) * 2001-12-06 2003-06-25 GFD-Gesellschaft für Diamantprodukte MBH Ablation tool and process for cutting, fragmenting and/or removing material
US6875220B2 (en) * 2002-12-30 2005-04-05 Cybersonics, Inc. Dual probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317401A (en) * 1979-07-11 1982-03-02 Disharoon Dale R Method and apparatus for microtomy
US5167725A (en) * 1990-08-01 1992-12-01 Ultracision, Inc. Titanium alloy blade coupler coated with nickel-chrome for ultrasonic scalpel
US5505693A (en) * 1994-12-30 1996-04-09 Mackool; Richard J. Method and apparatus for reducing friction and heat generation by an ultrasonic device during surgery
US20030109865A1 (en) * 2001-12-12 2003-06-12 Megadyne Medical Products, Inc. Utilization of a multi-character material in a surface coating of an electrosurgical instrument

Cited By (339)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US11730507B2 (en) 2004-02-27 2023-08-22 Cilag Gmbh International Ultrasonic surgical shears and method for sealing a blood vessel using same
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US11006971B2 (en) 2004-10-08 2021-05-18 Ethicon Llc Actuation mechanism for use with an ultrasonic surgical instrument
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US9050124B2 (en) 2007-03-22 2015-06-09 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US9987033B2 (en) 2007-03-22 2018-06-05 Ethicon Llc Ultrasonic surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US8236019B2 (en) 2007-03-22 2012-08-07 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US8900259B2 (en) 2007-03-22 2014-12-02 Ethicon Endo-Surgery, Inc. Surgical instruments
US8348967B2 (en) 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US20150066067A1 (en) * 2007-07-27 2015-03-05 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8257377B2 (en) 2007-07-27 2012-09-04 Ethicon Endo-Surgery, Inc. Multiple end effectors ultrasonic surgical instruments
US9707004B2 (en) 2007-07-27 2017-07-18 Ethicon Llc Surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US9642644B2 (en) 2007-07-27 2017-05-09 Ethicon Endo-Surgery, Llc Surgical instruments
US9636135B2 (en) * 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US8882791B2 (en) * 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US10398466B2 (en) 2007-07-27 2019-09-03 Ethicon Llc Ultrasonic end effectors with increased active length
US9913656B2 (en) 2007-07-27 2018-03-13 Ethicon Llc Ultrasonic surgical instruments
US8652155B2 (en) 2007-07-27 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instruments
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US11607268B2 (en) 2007-07-27 2023-03-21 Cilag Gmbh International Surgical instruments
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US10426507B2 (en) 2007-07-31 2019-10-01 Ethicon Llc Ultrasonic surgical instruments
US9439669B2 (en) 2007-07-31 2016-09-13 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US10420579B2 (en) 2007-07-31 2019-09-24 Ethicon Llc Surgical instruments
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
US8709031B2 (en) 2007-07-31 2014-04-29 Ethicon Endo-Surgery, Inc. Methods for driving an ultrasonic surgical instrument with modulator
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
USD618797S1 (en) 2007-10-05 2010-06-29 Ethicon Endo-Surgery, Inc. Handle assembly for surgical instrument
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
USD661803S1 (en) 2007-10-05 2012-06-12 Ethicon Endo-Surgery, Inc. User interface for a surgical instrument
USD661802S1 (en) 2007-10-05 2012-06-12 Ethicon Endo-Surgery, Inc. User interface for a surgical instrument
US9848902B2 (en) 2007-10-05 2017-12-26 Ethicon Llc Ergonomic surgical instruments
US9486236B2 (en) 2007-10-05 2016-11-08 Ethicon Endo-Surgery, Llc Ergonomic surgical instruments
USD631965S1 (en) 2007-10-05 2011-02-01 Ethicon Endo-Surgery, Inc. Handle assembly for surgical instrument
USD661801S1 (en) 2007-10-05 2012-06-12 Ethicon Endo-Surgery, Inc. User interface for a surgical instrument
USD661804S1 (en) 2007-10-05 2012-06-12 Ethicon Endo-Surgery, Inc. User interface for a surgical instrument
US20090128063A1 (en) * 2007-11-15 2009-05-21 Seiko Epson Corporation Method for driving vibration cutter
US10433866B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US8591536B2 (en) 2007-11-30 2013-11-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US10463887B2 (en) 2007-11-30 2019-11-05 Ethicon Llc Ultrasonic surgical blades
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US10433865B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US8182502B2 (en) 2007-11-30 2012-05-22 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
US11439426B2 (en) 2007-11-30 2022-09-13 Cilag Gmbh International Ultrasonic surgical blades
US9339289B2 (en) 2007-11-30 2016-05-17 Ehticon Endo-Surgery, LLC Ultrasonic surgical instrument blades
US10888347B2 (en) 2007-11-30 2021-01-12 Ethicon Llc Ultrasonic surgical blades
US8372102B2 (en) 2007-11-30 2013-02-12 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
US7901423B2 (en) 2007-11-30 2011-03-08 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
US10441308B2 (en) 2007-11-30 2019-10-15 Ethicon Llc Ultrasonic surgical instrument blades
US10265094B2 (en) 2007-11-30 2019-04-23 Ethicon Llc Ultrasonic surgical blades
US10245065B2 (en) 2007-11-30 2019-04-02 Ethicon Llc Ultrasonic surgical blades
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US11690643B2 (en) 2007-11-30 2023-07-04 Cilag Gmbh International Ultrasonic surgical blades
US10045794B2 (en) 2007-11-30 2018-08-14 Ethicon Llc Ultrasonic surgical blades
US11266433B2 (en) 2007-11-30 2022-03-08 Cilag Gmbh International Ultrasonic surgical instrument blades
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US11253288B2 (en) 2007-11-30 2022-02-22 Cilag Gmbh International Ultrasonic surgical instrument blades
US11766276B2 (en) 2007-11-30 2023-09-26 Cilag Gmbh International Ultrasonic surgical blades
US8226665B2 (en) 2008-04-04 2012-07-24 Tyco Healthcare Group Lp Ultrasonic needle driver
US20090254100A1 (en) * 2008-04-04 2009-10-08 Tyco Healthcare Group Lp Ultrasonic needle driver
US20100015682A1 (en) * 2008-07-16 2010-01-21 Olympus Corporation Ultrasonic dissection device and ultrasonic dissection method
US8749116B2 (en) 2008-08-06 2014-06-10 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8704425B2 (en) 2008-08-06 2014-04-22 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9795808B2 (en) 2008-08-06 2017-10-24 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US9072539B2 (en) 2008-08-06 2015-07-07 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8253303B2 (en) 2008-08-06 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8546996B2 (en) 2008-08-06 2013-10-01 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8779648B2 (en) 2008-08-06 2014-07-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US10022568B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US10022567B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US10335614B2 (en) 2008-08-06 2019-07-02 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US11890491B2 (en) 2008-08-06 2024-02-06 Cilag Gmbh International Devices and techniques for cutting and coagulating tissue
US10709906B2 (en) 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8319400B2 (en) 2009-06-24 2012-11-27 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8334635B2 (en) 2009-06-24 2012-12-18 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments
US8344596B2 (en) 2009-06-24 2013-01-01 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments
US8754570B2 (en) 2009-06-24 2014-06-17 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments comprising transducer arrangements
US9498245B2 (en) 2009-06-24 2016-11-22 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US8650728B2 (en) 2009-06-24 2014-02-18 Ethicon Endo-Surgery, Inc. Method of assembling a transducer for a surgical instrument
US8546999B2 (en) 2009-06-24 2013-10-01 Ethicon Endo-Surgery, Inc. Housing arrangements for ultrasonic surgical instruments
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US8773001B2 (en) 2009-07-15 2014-07-08 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US9039695B2 (en) 2009-10-09 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8956349B2 (en) 2009-10-09 2015-02-17 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8986302B2 (en) 2009-10-09 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10265117B2 (en) 2009-10-09 2019-04-23 Ethicon Llc Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
US9060776B2 (en) 2009-10-09 2015-06-23 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10263171B2 (en) 2009-10-09 2019-04-16 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9060775B2 (en) 2009-10-09 2015-06-23 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8323302B2 (en) 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US11382642B2 (en) 2010-02-11 2022-07-12 Cilag Gmbh International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US10117667B2 (en) 2010-02-11 2018-11-06 Ethicon Llc Control systems for ultrasonically powered surgical instruments
US8419759B2 (en) 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US9962182B2 (en) 2010-02-11 2018-05-08 Ethicon Llc Ultrasonic surgical instruments with moving cutting implement
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US9848901B2 (en) 2010-02-11 2017-12-26 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US10299810B2 (en) 2010-02-11 2019-05-28 Ethicon Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US8382782B2 (en) 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US9107689B2 (en) 2010-02-11 2015-08-18 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US11090103B2 (en) 2010-05-21 2021-08-17 Cilag Gmbh International Medical device
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US9707030B2 (en) 2010-10-01 2017-07-18 Ethicon Endo-Surgery, Llc Surgical instrument with jaw member
US8888809B2 (en) 2010-10-01 2014-11-18 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US9918775B2 (en) 2011-04-12 2018-03-20 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
USD700967S1 (en) 2011-08-23 2014-03-11 Covidien Ag Handle for portable surgical device
USD700966S1 (en) 2011-08-23 2014-03-11 Covidien Ag Portable surgical device
USD700699S1 (en) 2011-08-23 2014-03-04 Covidien Ag Handle for portable surgical device
USD691265S1 (en) 2011-08-23 2013-10-08 Covidien Ag Control assembly for portable surgical device
US10779876B2 (en) 2011-10-24 2020-09-22 Ethicon Llc Battery powered surgical instrument
USD687549S1 (en) 2011-10-24 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9925003B2 (en) 2012-02-10 2018-03-27 Ethicon Endo-Surgery, Llc Robotically controlled surgical instrument
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US9700343B2 (en) 2012-04-09 2017-07-11 Ethicon Endo-Surgery, Llc Devices and techniques for cutting and coagulating tissue
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US11419626B2 (en) 2012-04-09 2022-08-23 Cilag Gmbh International Switch arrangements for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US8905935B2 (en) 2012-06-06 2014-12-09 Olympus Medical Systems Corp. Ultrasonic surgical apparatus
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US10335182B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Surgical instruments with articulating shafts
US10335183B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Feedback devices for surgical control systems
US10524872B2 (en) 2012-06-29 2020-01-07 Ethicon Llc Closed feedback control for electrosurgical device
US10398497B2 (en) 2012-06-29 2019-09-03 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US9737326B2 (en) 2012-06-29 2017-08-22 Ethicon Endo-Surgery, Llc Haptic feedback devices for surgical robot
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US10543008B2 (en) 2012-06-29 2020-01-28 Ethicon Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US10966747B2 (en) 2012-06-29 2021-04-06 Ethicon Llc Haptic feedback devices for surgical robot
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9713507B2 (en) 2012-06-29 2017-07-25 Ethicon Endo-Surgery, Llc Closed feedback control for electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US11602371B2 (en) 2012-06-29 2023-03-14 Cilag Gmbh International Ultrasonic surgical instruments with control mechanisms
US11096752B2 (en) 2012-06-29 2021-08-24 Cilag Gmbh International Closed feedback control for electrosurgical device
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US11426191B2 (en) 2012-06-29 2022-08-30 Cilag Gmbh International Ultrasonic surgical instruments with distally positioned jaw assemblies
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US9795405B2 (en) 2012-10-22 2017-10-24 Ethicon Llc Surgical instrument
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9743947B2 (en) 2013-03-15 2017-08-29 Ethicon Endo-Surgery, Llc End effector with a clamp arm assembly and blade
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10932847B2 (en) 2014-03-18 2021-03-02 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US11413060B2 (en) 2014-07-31 2022-08-16 Cilag Gmbh International Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10751109B2 (en) 2014-12-22 2020-08-25 Ethicon Llc High power battery powered RF amplifier topology
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11903634B2 (en) 2015-06-30 2024-02-20 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US10624691B2 (en) 2015-09-30 2020-04-21 Ethicon Llc Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10610286B2 (en) 2015-09-30 2020-04-07 Ethicon Llc Techniques for circuit topologies for combined generator
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US11058448B2 (en) 2016-01-15 2021-07-13 Cilag Gmbh International Modular battery powered handheld surgical instrument with multistage generator circuits
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US11134978B2 (en) 2016-01-15 2021-10-05 Cilag Gmbh International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US10299821B2 (en) 2016-01-15 2019-05-28 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limit profile
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US11202670B2 (en) 2016-02-22 2021-12-21 Cilag Gmbh International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US11864820B2 (en) 2016-05-03 2024-01-09 Cilag Gmbh International Medical device with a bilateral jaw configuration for nerve stimulation
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US11883055B2 (en) 2016-07-12 2024-01-30 Cilag Gmbh International Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US11344362B2 (en) 2016-08-05 2022-05-31 Cilag Gmbh International Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US11925378B2 (en) 2016-08-25 2024-03-12 Cilag Gmbh International Ultrasonic transducer for surgical instrument
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US11839422B2 (en) 2016-09-23 2023-12-12 Cilag Gmbh International Electrosurgical instrument with fluid diverter
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2020-05-29 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias

Also Published As

Publication number Publication date
JP2004305441A (en) 2004-11-04
US20090259245A1 (en) 2009-10-15
JP3840194B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US20040199193A1 (en) Vibrating knife and excision apparatus
CN106028979B (en) Clamp arm features for ultrasonic surgical instruments
US20180310953A1 (en) Shielding features for ultrasonic blade of a surgical instrument
JP6543927B2 (en) Droplet forming device
JP4025055B2 (en) Immobilization device
CN110662496A (en) Combination ultrasonic and electrosurgical instrument with ultrasonic waveguide with distal overmold member
US8062494B2 (en) Micro-machining dust removing device, micro-machining apparatus, and micro-machining dust removing method
TW200540100A (en) Features in substrates and methods of forming
CN109069178B (en) Ultrasonic cleaning of surgical instruments
US20220053628A1 (en) Plasma irradiation apparatus and distal device
JP2000081443A5 (en)
EP3478191B1 (en) Ultrasonic surgical instrument with clamp arm deflection feature
JP4660772B2 (en) Specimen motion control apparatus, specimen motion parameter acquisition method, and specimen motion control method
JP2006239842A (en) Adjusting method of resonance frequency of actuator and actuator
JP3833146B2 (en) Thin plate fatigue testing apparatus and method
JP2005348122A (en) Ultrasonic transducer and method for manufacturing ultrasonic transducer
JPH09251979A (en) Minute working device
US20200368943A1 (en) Method of manufacturing ultrasound probe, method of manufacturing an ultrasound treatment tool, and ultrasound treatment tool
JP2002067162A (en) Bonding head, and bonding device equipped with the same
JPS6376786A (en) Laser beam machining device
JP6582063B2 (en) Treatment tool
WO2022049644A1 (en) Treatment tool and treatment system
JPH11178834A (en) Ultrasonic knife and ultrasonic knife device
JP6571373B2 (en) Cell membrane peeling apparatus, peeling method, and observation method
JP6844659B2 (en) Droplet forming device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CANON KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAYASHI, TADASHI;MIURA, YASUSHI;REEL/FRAME:015159/0639

Effective date: 20040324

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION