US20040086642A1 - Method and apparatus for feeding gas phase reactant into a reaction chamber - Google Patents

Method and apparatus for feeding gas phase reactant into a reaction chamber Download PDF

Info

Publication number
US20040086642A1
US20040086642A1 US10/695,269 US69526903A US2004086642A1 US 20040086642 A1 US20040086642 A1 US 20040086642A1 US 69526903 A US69526903 A US 69526903A US 2004086642 A1 US2004086642 A1 US 2004086642A1
Authority
US
United States
Prior art keywords
reactant
gas
container
conduit
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/695,269
Inventor
Janne Kesala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/695,269 priority Critical patent/US20040086642A1/en
Publication of US20040086642A1 publication Critical patent/US20040086642A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to the use of liquids and in particular solid substances as precursors of gas phase processing of, e.g., thin films.
  • the invention concerns a method and an apparatus in which liquid or solid matter is vaporised in a reactant source and the vaporised reactant is fed into the reaction chamber of a gas phase process for example for growing a in film on the substrate of a semiconductor device.
  • gases are fed into the reaction chamber.
  • gases employed are present in gaseous form in the reactant source. They are also often gaseous at ambient (i.e. normal) pressure and temperature. Examples include nitrogen, oxygen, hydrogen, and ammonia
  • gases of source chemicals which are liquid or solid at ambient pressure and temperature are used. These substances may have to be heated to produce sufficient amounts of gases for the reaction.
  • the vapour pressure at room temperature is so low that they have to be heated even up to several hundred degrees centigrade.
  • the solid precursor is present in the form of a powder possibly may abundantly fines, which make the solid matter into a dusting powder.
  • the dust can easily be conducted along with the reactant and the small particles and fines can be conveyed by diffusion. If the particles end up on the substrate they may cause small pin point sized holes and deformations in the thin film which can affect the operation of the film.
  • the solid precursor material has been placed in open containers which communicate with the reaction chamber. No means for separating dust from vaporised reactant gases has been provided.
  • the containers are usually fitted inside the same pressure shell as the reaction chamber. As a result, the size of the pressure shell or vacuum vessel has to be increased.
  • the chemical is contacted with air during loading and maintenance operations which may lead to contamination of the precursor material.
  • the vacuum of the reactor chamber is broken.
  • the reactant source is located inside the reactor, there will also be constant evaporation of the chemical and at least some of the vaporised precursor will be drained via an outlet channel and some material will be deposited on the channel walls.
  • the present invention is based on the idea separating the production of reactant gas from the use of the gas in a gas phase process. Basically this concept is implemented by providing two separate units, viz. a reactant source and a reaction chamber which are located in separate vessels each inside a pressure shell of its own. Thereby the units can be separately and individually evacuated to allow for independent operation and maintenance of both
  • the reactant source with a gas inlet for feeding gas into the reactant source and a gas outlet for withdrawal of gaseous reactant.
  • carrier gas can be fed into the reactant source and the necessary flow of gas from the reactant source to the reactor can be achieved by means of the carrier gas which contains evaporated reactant.
  • the reactant source comprises a first container having an opening and which is placed within a pressure shell and heated to the vaporising temperature by using heating means fitted within the pressure shell.
  • the vaporised reactant is conducted from the container through a first purifier to remove impurities contained in the vaporised reactant; the vaporised reactant is collected in a gas space: and the gas phase reactant is fed from the gas space into the gas phase reaction chamber via a first conduit interconnecting the reactant source and the reactor.
  • the invention provides a novel reactant source assembly for generating a gas phase reactant flow. It comprises a first container having an opening and containing liquid or solid reactant matter; a second container having a gas tight container wall enclosing the first container and defining a gas space around the first container; at least one first gas nozzle fitted in the container wall of the second container for feeding gas into the gas space; and at least one second gas nozzle fitted in the container wall of the second container for withdrawing reactant vaporized from first container and collected in the gas space.
  • the method according to the invention is mainly characterized by what is stated in the characterizing part of claim 1 .
  • the reactant source assembly is characterized by what is stated in the characterizing part of claim 37 .
  • the invention makes it possible to change and load new reactant chemical without breaking the vacuum of the reaction chamber. Contact between the reactant chemical and air can be prevented. No separate heating of the conduit interlinking the reactant source and the reaction chamber is needed. A constant flow of reactant gas can be ensured. Dust can efficiently be removed from the reactant gas.
  • the modular concept of the invention can be broadened so as to allow for a plurality of reactant sources connected to the same reactor.
  • the invention can be applied to a large number of solid precursors, such as metal compounds, such as metal halides, organometal compounds comprising metal-to-carbon bonds, metalorganic compounds, which do not comprise a metal-to-carbon bond but which contain carbon (e.g. thd compounds), and elemental metals.
  • metal compounds such as metal halides, organometal compounds comprising metal-to-carbon bonds, metalorganic compounds, which do not comprise a metal-to-carbon bond but which contain carbon (e.g. thd compounds), and elemental metals.
  • FIG. 1 shows in a perspective view a reactant source assembly combined with a reactor chamber.
  • FIG. 2 shows in a sectional side view the principal construction of a reactant source according to the invention.
  • FIG. 3 shows in a perspective view the construction of the reactant source.
  • FIG. 4 shows in a sectional side view the construction of a solid source assembly.
  • FIGS. 5 a to 5 c show various embodiments of the reactant container.
  • the invention concerns a method and an apparatus for feeding a gas phase reactant from a reactant source into a gas phase reaction chamber.
  • a reactant which is a liquid or solid at ambient temperature is vaporised from the reactant source at a vaporising temperature; and the vaporised reactant is fed into the reaction chamber.
  • the reactant source and the reaction chamber are located in separate vessels which can be individually evacuated.
  • the reactant source and the reaction chamber are thermally isolated from each other. This can be achieved by providing them with active thermal isolation comprising separate cooling and heating means which keep the outer surfaces of the vessels at ambient temperature and achieves the necessary heating inside the vessel.
  • the heating means can comprise tubular resistive heater elements.
  • the gas spaces of the reactant source and the reaction chamber are adapted to be communicating in order to allow for feed of gas phase reactant from the reactant source to the reaction chamber.
  • the interconnecting first conduit preferably comprises also at least one valve which is used for separating the gas spaces of the reactant source and the reaction chamber during evacuation and/or maintenance of either or both of the vessels. It is also possible to arrange for inert gas valving in the conduit to prevent flow of reactant from the reactant source to the reaction chamber by forming a gas phase barrier of a gas flowing in the opposite direction to the reactant flow in the conduit.
  • the reactant source can be operated at a pressure in excess of the pressure of the reaction chamber.
  • the reactant source comprises at least one inlet for feeding gas into the reactant source and at least one outlet for with-drawing gas from the reactant source.
  • the outlet of the reactant source preferably communicates with the reaction chamber.
  • the vaporised reactant is conducted to a purifier.
  • the purifier can comprise a semipermeable membrane or similar filter capable of essentially completely removing fines having a size of less than 0.01 ⁇ l, preferably less than 0.005 ⁇ m.
  • the method of the invention comprises the following step:
  • vaporising the reactant from liquid or solid reactant matter maintained in a reactant source comprising a first container having an opening, said first container being placed within a pressure shell and being heated to the vaporising temperature by using heating means fitted within the pressure shell;
  • the evaporated reactant in order to free the vaporised reactant from liquid or solid impurities, can be purified in a first purifier and then collected in the gas space mentioned.
  • the first purifier comprises, e.g. a filter (of any of the kind disclosed in connection with the second filter below) covering the opening of the container.
  • the present method can be employed in any gas phase process including chemical vapour deposition, CVD.
  • CVD chemical vapour deposition
  • ALD Atomic Layer Deposition
  • ALE Atomic Layer Epitaxy
  • Commercially available technology is supplied by ASM Microchemistry Oy, Espoo, Finland, under the trade mark ALCVD.
  • reactants are fed in the form of gas phase pulses alternately and separately into the reaction chamber.
  • the present method can be modified by collecting the vaporised reactant in a gas space having a gas volume significantly greater than the volume of the gas phase pulse; and feeding one gas phase pulse at a time from the gas space into the gas phase reaction chamber via the first conduit.
  • the gas space in which the vaporised reactant is collected can be formed around the reactant container, e.g. by the space between the container and a second container surrounding it.
  • the gas space is maintained at a temperature equal to or higher than the vaporising temperature to avoid condensation of the reactant.
  • the gas volume of the gas space is preferably at least 5 times greater than the gas volume of one gas phase pulse.
  • the container wall of the second container is made of a metal selected from the group of stainless steel, titanium and aluminium, whereas the first container, in the following also called “ampoule”, is made from glass.
  • the first container can also be made of a material which has an additional non-reacetive surface coating to prevent corrosion of the material.
  • a substantial length of the first conduit interconnecting the reactant source with the reaction chamber is contained within the pressure shell.
  • a second purifier can be placed in the first conduit.
  • the second purifier comprises a purifying means selected from the group of mechanical filters, ceramic molecular sieves and electrostatic filters capable of separating dispersed liquid or solid droplets or particles or molecules of a minimum molecular size from the reactant gas flow.
  • the gas barrier can be formed by feeding inactive gas into said first conduit via a second conduit, connected to the first conduit at a connection point, during the time interval between the feed of vapour-phase pulses from the gas space.
  • the inactive gas is withdrawn from said first conduit via a third conduit connected to the first conduit, said third conduit being maintained at a temperature equal to or higher than the condensation temperature of the vapour-phase reactant and being connected to the first conduit at a point upstream of the second conduit.
  • a substantial length of the second conduit is preferably placed within the pressure shell to avoid the need for external heating.
  • the third conduit is maintained at a temperature equal to or lower than the reaction temperature.
  • the third conduit comprises an open gas flow channel placed within the pressure shell.
  • inactive gas such as nitrogen or argon
  • a carrier gas for the vaporised solid or liquid reactant is used as a carrier gas for the vaporised solid or liquid reactant.
  • the inactive gas is fed into the gas space via a fourth conduit
  • the reactant source assembly can be formed into a separate modular unit which can be replaced by a similar unit when a new loading of the reactant chemical is needed
  • the above mentioned second container is preferably detachably connected to the first and the fourth conduits.
  • the novel apparatus for feeding a gas phase reactant from a reactant source into a gas phase reaction chamber comprises a reactant source which can be maintained at a vaporising temperature for vaporising a liquid or solid reactant; and a reaction chamber, the reactant source and the reaction chamber comprising separate vessels which can be individually evacuated.
  • the reactant source and the reaction chamber are preferably thermally isolated from each other and interconnected with a first conduit comprising at least one valve.
  • the flow of reactant from the reactant source to the reaction chamber can be prevented by forming a gas phase barrier of a gas flowing in the opposite direction to the reactant flow in the conduit and the valve can be used for separating the gas spaces of the reactant source and the reaction chamber during evacuation of either or both of the vessels.
  • the reactant source comprises at least one inlet for feeding gas into the reactant source and at least one outlet for withdrawing gas from the reactant source. The outlet of the reactant source communicates with the reaction chamber.
  • the reactant source assembly according to the invention comprises
  • a first container having an opening and containing liquid or solid reactant matter
  • a second container having a gas tight container wall enclosing the first container and defining a gas space around the first container.
  • At least one first gas nozzle fitted in the container wall of the second container for feeding gas into the gas space; at least one second gas nozzle fitted in the container wall of the second container for withdrawing reactant vaporized from first container and collected in the gas space.
  • At least one valve is connected to the first gas nozzle for controlling gas flow through the first gas nozzle into the gas space and at least one valve is fitted to the second gas nozzle for controlling gas flow through the second gas nozzle from the gas space.
  • Vacuum vessel 1′ Valve 2. Heating elements 2′. Heat reflector box 3. Heat reflector sheet 3′. Heat reflector door 4. Solid source 4′. Water cooling 5. Inert gas valving 6. Filter 7. Gas space 8. Closing valves 9. Actuator 9′. Line pipe 10. Lead-in 11. Ampoule 12. Lid 13. Sinter 14. Lead-in 15. Pressure relief valve 16. Closing valve 17. Closing valve 30. Space for liquid or solid source chemical 31. Sinter 40. Space for liquid or solid source chemical 41. Sinter 50. Space for liquid or solid source chemical 51. Sinter 60. Reaction chamber
  • the reactant source is fitted into a vacuum vessel I the inner parts of which are heated by using radiation heaters 2 and a beat reflector sheet 3 .
  • the pressure shell of the vessel is equipped with water cooling 4 , 4 ′ for cooling the surface of the vessel to ambient temperature.
  • the vacuum vessel is provided with a reactant source container which is capable of containing a sufficient amount of chemical for allowing for operation during an extended period of time, e.g. three months
  • the operational temperature of the reactant source module is 20 to 400 DC.
  • the reactant container comprises a glass ampoule 11 which prevents direct contact between the chemical contained therein and the steel container surrounding the ampoule.
  • the ampoule comprises a casing and a cover (a lid 12 ) which are joined together by conical joint having polished surfaces.
  • the lid exhibits a ceramic sinter whose main task is to prevent carrier gas flow fed into the vessel from hitting the powdery reactant.
  • a gas space 7 which has an essentially larger volume than one individual gas phase pulse.
  • the gas space will be capable of diluting the concentration of the reactant pulse and to maintain a constant concentration of the gas phase pulse.
  • the pulsing of the vaporised reactant from the source is implemented using a nitrogen gas barrier 5 .
  • a nitrogen gas barrier 5 In this case there is only one pulsating valve and it has been fitted outside the vacuum vessel.
  • a commercial filtration unit 6 which has an inner portion comprising a membrane made of ceramics, steel or inert metal.
  • the filter can be cleansed during operation by heating it to a temperature in excess of the use temperature and by pumping away the vaporised substance.
  • the filter removes 99.9999999% of particles larger than 0.003 ⁇ m.
  • the reactant source ampoule can be exchanged during operation without contacting the chemical with air at any stage. This is carried out with the aid of full-metallic closing valves 8 and nitrogen pressure in the piping.
  • the reactant source can be changed without breaking of the vacuum in the reactor. This can be effected by closing the gas conduits communicating with the reactor with closing valves and by forming an inert gas valving against the flow of reactant gas from the source towards the reactor. No air is admitted into the reaction chamber.
  • the closing valves are used for closing the reactant source and for closing the gas conduit interconnecting the reactant source and the reaction chamber after each processing.
  • the valves can also be used during heating and cooling of the reactant source.
  • the highest operational temperature of the housing of the valve is, e.g. close to 500° C.
  • the valve assembly is constructed in such a way that the pneumatic actuator 9 is placed outside the vacuum vessel.
  • the closing movement required by the valve can be achieved via a linear lead-in 10 . Since the valve is made throughout of metal it is not entirely leak-tight. For this reason there is arranged on the opposite side of the valve a nitrogen pressure, which hinders leaking, e.g. into the piping.
  • the piping of the assembly and the reactant source vessel are placed within the pressure shell of the vacuum vessel.
  • FIGS. 5 a - 5 c show three embodiments of the reactant container.
  • the container 30 has a central axis and an annular cross-section perpendicular to the central axis.
  • the opening 31 is formed at least on the inner surface of the container.
  • the opening is covered with a membrane, preferably a semipermeable membrane (including a ceramic membrane of the sinter-type) providing for dust removal.
  • a membrane preferably a semipermeable membrane (including a ceramic membrane of the sinter-type) providing for dust removal.
  • the container 40 is cylindrical and it has ah opening 41 at the top end. This embodiment was also discussed above in connection with the working embodiment.
  • the container 50 is cylindrical and it has an opening 51 on the side walls, i.e. the side walls are made of a porous material, preferably a ceramic sinter to provide for filtering operation.

Abstract

The present invention concerns a method and an apparatus for feeding a gas phase reactant from a reactant source into a gas phase reaction chamber. In the method a reactant which is a liquid or solid at ambient temperature is vaporised from the reactant source at a vaporising temperature; and the vaporised reactant is fed into the reaction chamber. According to the invention the reactant source and the reaction chamber are located in separate vessels which can be individually evacuated. By means of the invention it becomes possible to change and load new reactant chemical without breaking the vacuum of the reaction chamber.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to the use of liquids and in particular solid substances as precursors of gas phase processing of, e.g., thin films. Particularly, the invention concerns a method and an apparatus in which liquid or solid matter is vaporised in a reactant source and the vaporised reactant is fed into the reaction chamber of a gas phase process for example for growing a in film on the substrate of a semiconductor device. [0002]
  • 2. Description of Related Art [0003]
  • During processing of semiconductor wafers various gases are fed into the reaction chamber. Typically the gases employed are present in gaseous form in the reactant source. They are also often gaseous at ambient (i.e. normal) pressure and temperature. Examples include nitrogen, oxygen, hydrogen, and ammonia In some cases, gases of source chemicals which are liquid or solid at ambient pressure and temperature are used. These substances may have to be heated to produce sufficient amounts of gases for the reaction. For some solid substances, the vapour pressure at room temperature is so low that they have to be heated even up to several hundred degrees centigrade. [0004]
  • Generally the solid precursor is present in the form of a powder possibly may abundantly fines, which make the solid matter into a dusting powder. The dust can easily be conducted along with the reactant and the small particles and fines can be conveyed by diffusion. If the particles end up on the substrate they may cause small pin point sized holes and deformations in the thin film which can affect the operation of the film. [0005]
  • Conventionally, the solid precursor material has been placed in open containers which communicate with the reaction chamber. No means for separating dust from vaporised reactant gases has been provided. The containers are usually fitted inside the same pressure shell as the reaction chamber. As a result, the size of the pressure shell or vacuum vessel has to be increased. Further, the chemical is contacted with air during loading and maintenance operations which may lead to contamination of the precursor material. During loading of the chemical, the vacuum of the reactor chamber is broken. When the reactant source is located inside the reactor, there will also be constant evaporation of the chemical and at least some of the vaporised precursor will be drained via an outlet channel and some material will be deposited on the channel walls. [0006]
  • SUMMARY OF THE INVENTION
  • It is an aim of the present invention to eliminate the drawbacks of prior solutions and to provide an entirely novel method and apparatus for feeding gas phase pulses from liquid or, in particular, solid sources into a gas phase reactor. [0007]
  • It is a further aim of the invention to provide a novel reactant source assembly for generating a gas phase reactant flow. [0008]
  • These and other objects, together with the advantages thereof over known processes and apparatuses which shall become apparent from the following specification, are accomplished by the invention as hereinafter described and claimed. [0009]
  • The present invention is based on the idea separating the production of reactant gas from the use of the gas in a gas phase process. Basically this concept is implemented by providing two separate units, viz. a reactant source and a reaction chamber which are located in separate vessels each inside a pressure shell of its own. Thereby the units can be separately and individually evacuated to allow for independent operation and maintenance of both [0010]
  • It is preferred to provide the reactant source with a gas inlet for feeding gas into the reactant source and a gas outlet for withdrawal of gaseous reactant. Thereby, carrier gas can be fed into the reactant source and the necessary flow of gas from the reactant source to the reactor can be achieved by means of the carrier gas which contains evaporated reactant. [0011]
  • According to a particularly preferred embodiment, the reactant source comprises a first container having an opening and which is placed within a pressure shell and heated to the vaporising temperature by using heating means fitted within the pressure shell. The vaporised reactant is conducted from the container through a first purifier to remove impurities contained in the vaporised reactant; the vaporised reactant is collected in a gas space: and the gas phase reactant is fed from the gas space into the gas phase reaction chamber via a first conduit interconnecting the reactant source and the reactor. [0012]
  • Based on the above, the invention provides a novel reactant source assembly for generating a gas phase reactant flow. It comprises a first container having an opening and containing liquid or solid reactant matter; a second container having a gas tight container wall enclosing the first container and defining a gas space around the first container; at least one first gas nozzle fitted in the container wall of the second container for feeding gas into the gas space; and at least one second gas nozzle fitted in the container wall of the second container for withdrawing reactant vaporized from first container and collected in the gas space. [0013]
  • More specifically, the method according to the invention is mainly characterized by what is stated in the characterizing part of [0014] claim 1.
  • The reactant source assembly is characterized by what is stated in the characterizing part of claim [0015] 37.
  • Considerable advantages are obtained by the present invention. The invention makes it possible to change and load new reactant chemical without breaking the vacuum of the reaction chamber. Contact between the reactant chemical and air can be prevented. No separate heating of the conduit interlinking the reactant source and the reaction chamber is needed. A constant flow of reactant gas can be ensured. Dust can efficiently be removed from the reactant gas. The modular concept of the invention can be broadened so as to allow for a plurality of reactant sources connected to the same reactor. [0016]
  • The invention can be applied to a large number of solid precursors, such as metal compounds, such as metal halides, organometal compounds comprising metal-to-carbon bonds, metalorganic compounds, which do not comprise a metal-to-carbon bond but which contain carbon (e.g. thd compounds), and elemental metals. [0017]
  • Next the invention will be examined more closely with the aid of a detailed description and with reference to a working embodiment.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows in a perspective view a reactant source assembly combined with a reactor chamber. [0019]
  • FIG. 2 shows in a sectional side view the principal construction of a reactant source according to the invention. [0020]
  • FIG. 3 shows in a perspective view the construction of the reactant source. [0021]
  • FIG. 4 shows in a sectional side view the construction of a solid source assembly. [0022]
  • FIGS. 5[0023] a to 5 c show various embodiments of the reactant container.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As discussed above, the invention concerns a method and an apparatus for feeding a gas phase reactant from a reactant source into a gas phase reaction chamber. In the method a reactant which is a liquid or solid at ambient temperature is vaporised from the reactant source at a vaporising temperature; and the vaporised reactant is fed into the reaction chamber. According to the invention, the reactant source and the reaction chamber are located in separate vessels which can be individually evacuated. Preferably the reactant source and the reaction chamber are thermally isolated from each other. This can be achieved by providing them with active thermal isolation comprising separate cooling and heating means which keep the outer surfaces of the vessels at ambient temperature and achieves the necessary heating inside the vessel. [0024]
  • The heating means can comprise tubular resistive heater elements. [0025]
  • The gas spaces of the reactant source and the reaction chamber are adapted to be communicating in order to allow for feed of gas phase reactant from the reactant source to the reaction chamber. However, the interconnecting first conduit preferably comprises also at least one valve which is used for separating the gas spaces of the reactant source and the reaction chamber during evacuation and/or maintenance of either or both of the vessels. It is also possible to arrange for inert gas valving in the conduit to prevent flow of reactant from the reactant source to the reaction chamber by forming a gas phase barrier of a gas flowing in the opposite direction to the reactant flow in the conduit. [0026]
  • Because inactive, preferably inert gas, is fed into the reactant source, the reactant source can be operated at a pressure in excess of the pressure of the reaction chamber. For that purpose, the reactant source comprises at least one inlet for feeding gas into the reactant source and at least one outlet for with-drawing gas from the reactant source. The outlet of the reactant source preferably communicates with the reaction chamber. [0027]
  • In order to remove any dispersed liquid droplets or solid particles, the vaporised reactant is conducted to a purifier. The purifier can comprise a semipermeable membrane or similar filter capable of essentially completely removing fines having a size of less than 0.01 μl, preferably less than 0.005 μm. [0028]
  • As discussed in more detail in connection with the attached drawings, according to a preferred embodiment, the method of the invention comprises the following step: [0029]
  • vaporising the reactant from liquid or solid reactant matter maintained in a reactant source comprising a first container having an opening, said first container being placed within a pressure shell and being heated to the vaporising temperature by using heating means fitted within the pressure shell; [0030]
  • conducting the vaporised reactant from the container through a first purifier to remove impurities contained in the vaporised reactant; [0031]
  • collecting the vaporised reactant in a gas space: and [0032]
  • feeding gas phase reactant from the gas space into the gas phase reaction chamber via the first conduit. [0033]
  • In this embodiment, in order to free the vaporised reactant from liquid or solid impurities, the evaporated reactant can be purified in a first purifier and then collected in the gas space mentioned. The first purifier comprises, e.g. a filter (of any of the kind disclosed in connection with the second filter below) covering the opening of the container. [0034]
  • The present method can be employed in any gas phase process including chemical vapour deposition, CVD. In particular it is suited to use in Atomic Layer Deposition, ALD, (formerly known as Atomic Layer Epitaxy, abbreviated ALE). Commercially available technology is supplied by ASM Microchemistry Oy, Espoo, Finland, under the trade mark ALCVD. In the ALD technology, reactants are fed in the form of gas phase pulses alternately and separately into the reaction chamber. For the ALD embodiment, the present method can be modified by collecting the vaporised reactant in a gas space having a gas volume significantly greater than the volume of the gas phase pulse; and feeding one gas phase pulse at a time from the gas space into the gas phase reaction chamber via the first conduit. [0035]
  • The gas space in which the vaporised reactant is collected can be formed around the reactant container, e.g. by the space between the container and a second container surrounding it. [0036]
  • The gas space is maintained at a temperature equal to or higher than the vaporising temperature to avoid condensation of the reactant. The gas volume of the gas space is preferably at least 5 times greater than the gas volume of one gas phase pulse. [0037]
  • The container wall of the second container is made of a metal selected from the group of stainless steel, titanium and aluminium, whereas the first container, in the following also called “ampoule”, is made from glass. [0038]
  • The first container can also be made of a material which has an additional non-reacetive surface coating to prevent corrosion of the material. [0039]
  • A substantial length of the first conduit interconnecting the reactant source with the reaction chamber is contained within the pressure shell. Thus, the need for providing heating means around the conduit to prevent condensation of reactant vapours is reduced or eliminated. [0040]
  • A second purifier can be placed in the first conduit. The second purifier comprises a purifying means selected from the group of mechanical filters, ceramic molecular sieves and electrostatic filters capable of separating dispersed liquid or solid droplets or particles or molecules of a minimum molecular size from the reactant gas flow. [0041]
  • In order to prevent gas flow from the reactant source between the pulses, it is possible to form an inactive gas barrier, as mentioned above. In practice, the gas barrier can be formed by feeding inactive gas into said first conduit via a second conduit, connected to the first conduit at a connection point, during the time interval between the feed of vapour-phase pulses from the gas space. The inactive gas is withdrawn from said first conduit via a third conduit connected to the first conduit, said third conduit being maintained at a temperature equal to or higher than the condensation temperature of the vapour-phase reactant and being connected to the first conduit at a point upstream of the second conduit. Thereby, an inactive gas flow of opposite direction to the reactant gas flow is achieved. [0042]
  • A substantial length of the second conduit is preferably placed within the pressure shell to avoid the need for external heating. [0043]
  • The third conduit is maintained at a temperature equal to or lower than the reaction temperature. The third conduit comprises an open gas flow channel placed within the pressure shell. [0044]
  • In all of the above embodiments inactive gas, such as nitrogen or argon, is used as a carrier gas for the vaporised solid or liquid reactant. The inactive gas is fed into the gas space via a fourth conduit [0045]
  • It is particularly preferred to control the flow of vaporised reagent and optionally inactive gas through the first conduit by valves whose regulating means are placed on the outside of the pressure shell. [0046]
  • In practice the reactant source assembly can be formed into a separate modular unit which can be replaced by a similar unit when a new loading of the reactant chemical is needed For this purpose the above mentioned second container is preferably detachably connected to the first and the fourth conduits. [0047]
  • Thus, in summary, the novel apparatus for feeding a gas phase reactant from a reactant source into a gas phase reaction chamber comprises a reactant source which can be maintained at a vaporising temperature for vaporising a liquid or solid reactant; and a reaction chamber, the reactant source and the reaction chamber comprising separate vessels which can be individually evacuated. The reactant source and the reaction chamber are preferably thermally isolated from each other and interconnected with a first conduit comprising at least one valve. In the first conduit the flow of reactant from the reactant source to the reaction chamber can be prevented by forming a gas phase barrier of a gas flowing in the opposite direction to the reactant flow in the conduit and the valve can be used for separating the gas spaces of the reactant source and the reaction chamber during evacuation of either or both of the vessels. The reactant source comprises at least one inlet for feeding gas into the reactant source and at least one outlet for withdrawing gas from the reactant source. The outlet of the reactant source communicates with the reaction chamber. [0048]
  • Based on the above, the reactant source assembly according to the invention comprises [0049]
  • a first container having an opening and containing liquid or solid reactant matter and [0050]
  • a second container having a gas tight container wall enclosing the first container and defining a gas space around the first container. [0051]
  • There is at least one first gas nozzle fitted in the container wall of the second container for feeding gas into the gas space; at least one second gas nozzle fitted in the container wall of the second container for withdrawing reactant vaporized from first container and collected in the gas space. At least one valve is connected to the first gas nozzle for controlling gas flow through the first gas nozzle into the gas space and at least one valve is fitted to the second gas nozzle for controlling gas flow through the second gas nozzle from the gas space. [0052]
  • Turning now to the embodiment shown in the attached drawings, it can be noted that the following reference numerals are used: [0053]
     1. Vacuum vessel
     1′. Valve
     2. Heating elements
     2′. Heat reflector box
     3. Heat reflector sheet
     3′. Heat reflector door
     4. Solid source
     4′. Water cooling
     5. Inert gas valving
     6. Filter
     7. Gas space
     8. Closing valves
     9. Actuator
     9′. Line pipe
    10. Lead-in
    11. Ampoule
    12. Lid
    13. Sinter
    14. Lead-in
    15. Pressure relief valve
    16. Closing valve
    17. Closing valve
    30. Space for liquid or solid source chemical
    31. Sinter
    40. Space for liquid or solid source chemical
    41. Sinter
    50. Space for liquid or solid source chemical
    51. Sinter
    60. Reaction chamber
  • The reactant source is fitted into a vacuum vessel I the inner parts of which are heated by using [0054] radiation heaters 2 and a beat reflector sheet 3. The pressure shell of the vessel is equipped with water cooling 4, 4′ for cooling the surface of the vessel to ambient temperature. The vacuum vessel is provided with a reactant source container which is capable of containing a sufficient amount of chemical for allowing for operation during an extended period of time, e.g. three months The operational temperature of the reactant source module is 20 to 400 DC.
  • The reactant container comprises a glass ampoule [0055] 11 which prevents direct contact between the chemical contained therein and the steel container surrounding the ampoule. The ampoule comprises a casing and a cover (a lid 12) which are joined together by conical joint having polished surfaces. The lid exhibits a ceramic sinter whose main task is to prevent carrier gas flow fed into the vessel from hitting the powdery reactant. Between the reactant source container and the glass ampoule there is formed a gas space 7 which has an essentially larger volume than one individual gas phase pulse. Thus, the gas space will be capable of diluting the concentration of the reactant pulse and to maintain a constant concentration of the gas phase pulse.
  • The pulsing of the vaporised reactant from the source is implemented using a nitrogen gas barrier [0056] 5. In this case there is only one pulsating valve and it has been fitted outside the vacuum vessel.
  • It is possible to attach several solid source assemblies to the reactor pressure shell, which makes it possible to operate at different temperatures. [0057]
  • Inside the vacuum vessel there is a [0058] commercial filtration unit 6 which has an inner portion comprising a membrane made of ceramics, steel or inert metal. The filter can be cleansed during operation by heating it to a temperature in excess of the use temperature and by pumping away the vaporised substance. The filter removes 99.9999999% of particles larger than 0.003 μm.
  • The reactant source ampoule can be exchanged during operation without contacting the chemical with air at any stage. This is carried out with the aid of full-metallic closing valves [0059] 8 and nitrogen pressure in the piping. The reactant source can be changed without breaking of the vacuum in the reactor. This can be effected by closing the gas conduits communicating with the reactor with closing valves and by forming an inert gas valving against the flow of reactant gas from the source towards the reactor. No air is admitted into the reaction chamber.
  • The closing valves are used for closing the reactant source and for closing the gas conduit interconnecting the reactant source and the reaction chamber after each processing. The valves can also be used during heating and cooling of the reactant source. The highest operational temperature of the housing of the valve is, e.g. close to 500° C. The valve assembly is constructed in such a way that the pneumatic actuator [0060] 9 is placed outside the vacuum vessel. The closing movement required by the valve can be achieved via a linear lead-in 10. Since the valve is made throughout of metal it is not entirely leak-tight. For this reason there is arranged on the opposite side of the valve a nitrogen pressure, which hinders leaking, e.g. into the piping.
  • In the embodiment disclosed in the drawings, the piping of the assembly and the reactant source vessel are placed within the pressure shell of the vacuum vessel. Preferably, there is a constant flow of nitrogen in the piping and/or constant control of the pressure. The construction hinders health hazards caused by any leaks and processing problems caused by air leaking into the equipment. [0061]
  • FIGS. 5[0062] a-5 c show three embodiments of the reactant container. In the first embodiment the container 30 has a central axis and an annular cross-section perpendicular to the central axis. The opening 31 is formed at least on the inner surface of the container. The opening is covered with a membrane, preferably a semipermeable membrane (including a ceramic membrane of the sinter-type) providing for dust removal. There are inlet and outlet nozzles of the carrier gas flow and the carrier gas+reactant gas flow.
  • In the second embodiment, the [0063] container 40 is cylindrical and it has ah opening 41 at the top end. This embodiment was also discussed above in connection with the working embodiment. In the third embodiment, the container 50 is cylindrical and it has an opening 51 on the side walls, i.e. the side walls are made of a porous material, preferably a ceramic sinter to provide for filtering operation.

Claims (42)

1. A method of feeding a gas phase reactant from a reactant source into a gas phase reaction chamber, wherein
a reactant which is a liquid or solid at ambient temperature is vaporised from the reactant source at a vaporising temperature;
the vaporised reactant is fed into the reaction chamber; and
the reactant source and the reaction chamber are located in separate vessels which can be individually evacuated,
characterized in that
vaporising the reactant from liquid or solid reactant matter maintained in a reactant source comprising a first container having an opening, said first container being placed within a pressure shell and being heated to the vaporising temperature by using heating means fitted within the pressure shell;
conducting the vaporised reactant from the container through a first purifier to remove impurities contained in the vaporised reactant;
collecting the vaporised reactant in a gas space; and
feeding gas phase reactant from the gas space into the gas phase reaction chamber via the first conduit.
2. The method according to claim 1, wherein the reactant source and the reaction chamber are thermally isolated from each other.
3. The method according to claim 1, wherein the reactant source and the reaction chamber are interconnected with a first conduit comprising at least one valve.
4. The method according to claim 3, wherein the valve is used for separating the gas spaces of the reactant source and the reaction chamber during evacuation of either or both of the vessels.
5. The method according to any of claims 1, wherein the reactant source and the reaction chamber are interconnected with a first conduit in which the flow of reactant from the reactant source to the reaction chamber is prevented by forming a gas phase barrier of a gas flowing in the opposite direction to the reactant flow in the conduit.
6. The method according to any of claim 1, wherein the reactant source is operated at a pressure in excess of the pressure of the reaction chamber.
7. The method according to any of claim 1, wherein the reactant source comprises at least one inlet for feeding gas into the reactant source and at least one outlet for withdrawing gas from the reactant source.
8. The method according to claim 7, wherein the outlet of the reactant source communicates with the reaction chamber.
9. The method according to claim 1, wherein the vaporised reactant is conducted to a purifier for removing any dispersed liquid droplets or solid particles contained therein.
10. The method according to claim 9, wherein the purifier comprises a semipermeable membrane or similar filter capable of essentially completely removing fines having a size of less than 0.01 μm, preferably less than 0.005 μm.
11. The method according to claim 1, wherein the reactant is fed into the reaction chamber in the form of gas phases pulses, comprising collecting the vaporised reactant in a gas space having a gas volume significantly greater than the volume of the gas phase pulse; and feeding one gas phase pulse at a time from the gas space into the gas phase reaction chamber via a first conduit.
12. The method according to claim 1, wherein the container is provided with active thermal insulation.
13. The method according to claim 1, wherein the vaporised reactant is purified in the first purifier and then collected in the gas space.
14. The method according to claim 1, wherein the first purifier comprises a mechanical filter covering the opening of the container.
15. The method according to claim 1, wherein the container has a central axis and an annular cross-section perpendicular to the central axis, the opening being formed at least on the inner surface of the container.
16. The method according to claim 1, wherein the container has a central axis and a circular cross-section perpendicular to the central axis, the opening being formed on the top surface of the container.
17. The method according to claim 1, wherein the container has a central axis and a circular cross-section perpendicular to the central axis, the opening being formed on the side walls of the container.
18. The method according to claim 1, wherein the vaporised reactant is collected in a gas space surrounding the container.
19. The method according to claim 18, wherein the gas space is formed in the interspace between the first container and a second container surrounding the first container.
20. The method according to claim 1, wherein the gas space is maintained at a temperature equal to or higher than the vaporising temperature.
21. The method according to claim 1, wherein the gas volume of the gas space is at least 5 times greater than the gas volume of one gas phase pulse.
22. The method according to claim 1, wherein a substantial length of the first conduit is contained within the pressure shell.
23. The method according to claim 1, wherein a second purifier is placed in the first conduit.
24. The method according to claim 23, wherein the second purifier comprises a purifying means selected from the group of mechanical filters, ceramic molecular sieves and electrostatic filters capable of separating dispersed liquid or solid droplets or particles or molecules of a minimum molecular size from the reactant gas flow.
25. The method according to any of claims 1, wherein
inactive gas is fed into said first conduit via a second conduit, connected to the first conduit at a connection point, during the time interval between the feed of vapour-phase pulses from the gas space so as to form a gas phase barrier against the flow of vaporised reactants from the reactant source via the first conduit into the reaction chamber; and
the inactive gas is withdrawn from said first conduit via a third conduit connected to the first conduit, said third conduit being maintained at a temperature equal to or higher than the condensation of the vapour-phase reactant and being connected to the first conduit at a point upstream of the second conduit.
26. The method according to claim 25, wherein a substantial length of the second conduit is placed within the pressure shell.
27. The method according to claim 25, wherein, at least for some length of the first conduit the inactive gas fed via the second conduit is conducted in opposite direction to the reactant flow.
28. The method according to claim 25, wherein the third conduit is maintained at a temperature equal to or lower than the reaction temperature.
29. The method according to claim 25, wherein the third conduit comprises an open gas flow channel placed within the pressure shell.
30. The method according to claim 25, wherein the inactive gas is fed into the first conduit at a point downstream of the point at which the second conduit is connected to the first conduit to provide a flow of inactive gas which is directed in the opposite direction to the reactant flow in the first conduit.
31. The method according to any of claims 1, wherein inactive gas is used as a carrier gas for the vaporised solid or liquid reactant.
32. The method according to claim 31, wherein the inactive gas is fed into the gas space via a fourth conduit.
33. The method according to any of claims 1, wherein the flow of vaporised reagent and optionally inactive gas through the first conduit is controlled by valves whose regulating means are placed on the outside of the pressure shell.
34. The method according to claim 19, wherein the second container is detachably connected to the first and the fourth conduits.
35. The method according to claim 1, wherein the heating means comprise tubular resistive heater elements.
36. The method according to any of claims 1, wherein the heating means are fitted close to the pressure shell.
37. Reactant source assembly for generating a gas phase reactant flow, comprising:
a first container having an opening and containing liquid or solid reactant matter;
a second container having a gas tight container wall enclosing the first container and defining a gas space around the first container;
at least one first gas nozzle fitted in the container wall of the second container for feeding gas into the gas space; and
at least one second gas nozzle fitted in the container wall of the second container for withdrawing reactant vaporized from first container and collected in the gas space.
38. The reactant source assembly according to claim 37, comprising further at least one valve for controlling gas flow through the first gas nozzle into the gas space and at least one valve for controlling gas flow through the second gas nozzle from the gas space.
39. The assembly according to claim 37, wherein the container wall of the second container is made of a metal selected from the group of stainless steel, titanium and aluminum.
40. The assembly according to claims 37, wherein the first container is made from glass.
41. The assembly according to claim 37, wherein the first container is made from metal, graphite or ceramic materials, said container having a non-reactive surface layer.
42. The assembly according to claim 37, wherein the opening of the first container is covered with a mechanical filter to remove impurities from gas vaporised from the liquid or solid matter contained therein.
US10/695,269 2000-05-15 2003-10-28 Method and apparatus for feeding gas phase reactant into a reaction chamber Abandoned US20040086642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/695,269 US20040086642A1 (en) 2000-05-15 2003-10-28 Method and apparatus for feeding gas phase reactant into a reaction chamber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FI20001166 2000-05-15
FI20001166A FI118805B (en) 2000-05-15 2000-05-15 A method and configuration for introducing a gas phase reactant into a reaction chamber
US09/854,706 US6699524B2 (en) 2000-05-15 2001-05-14 Method and apparatus for feeding gas phase reactant into a reaction chamber
US10/695,269 US20040086642A1 (en) 2000-05-15 2003-10-28 Method and apparatus for feeding gas phase reactant into a reaction chamber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/854,706 Continuation US6699524B2 (en) 2000-05-15 2001-05-14 Method and apparatus for feeding gas phase reactant into a reaction chamber

Publications (1)

Publication Number Publication Date
US20040086642A1 true US20040086642A1 (en) 2004-05-06

Family

ID=8558400

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/854,706 Expired - Lifetime US6699524B2 (en) 2000-05-15 2001-05-14 Method and apparatus for feeding gas phase reactant into a reaction chamber
US10/695,269 Abandoned US20040086642A1 (en) 2000-05-15 2003-10-28 Method and apparatus for feeding gas phase reactant into a reaction chamber

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/854,706 Expired - Lifetime US6699524B2 (en) 2000-05-15 2001-05-14 Method and apparatus for feeding gas phase reactant into a reaction chamber

Country Status (4)

Country Link
US (2) US6699524B2 (en)
JP (1) JP5241982B2 (en)
FI (1) FI118805B (en)
TW (1) TW524875B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060068098A1 (en) * 2004-09-27 2006-03-30 Tokyo Electron Limited Deposition of ruthenium metal layers in a thermal chemical vapor deposition process
US20060133955A1 (en) * 2004-12-17 2006-06-22 Peters David W Apparatus and method for delivering vapor phase reagent to a deposition chamber
US20060191636A1 (en) * 2005-01-25 2006-08-31 Hae-Moon Choi Valve assembly, semiconductor device manufacturing apparatus comprising the same, and method of cleaning a trap of a semiconductor device manufactuing apparatus
US20060219177A1 (en) * 2005-03-31 2006-10-05 Tokyo Electron Limited Method and system for depositing material on a substrate using a solid precursor
US20060222769A1 (en) * 2005-03-31 2006-10-05 Tokyo Electron Limited Method for saturating a carrier gas with precursor vapor
US20080182023A1 (en) * 2007-01-29 2008-07-31 Spohn Ronald F Diptube apparatus and delivery method
US20090078203A1 (en) * 2006-04-28 2009-03-26 Beneq Oy Hot source
US20090084315A1 (en) * 2007-10-02 2009-04-02 Msp Corporation Method and apparatus for particle filtration and enhancing tool performance in film deposition
US20090214778A1 (en) * 2008-02-22 2009-08-27 Demetrius Sarigiannis Multiple ampoule delivery systems
US20110114665A1 (en) * 2009-11-16 2011-05-19 Fei Company Gas delivery for beam processing systems
US20120079984A1 (en) * 2003-08-29 2012-04-05 Asm America, Inc. Gas mixer and manifold assembly for ald reactor

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
TW539822B (en) * 2001-07-03 2003-07-01 Asm Inc Source chemical container assembly
US20030198754A1 (en) * 2001-07-16 2003-10-23 Ming Xi Aluminum oxide chamber and process
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
US20090004850A1 (en) 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US7085616B2 (en) 2001-07-27 2006-08-01 Applied Materials, Inc. Atomic layer deposition apparatus
US6718126B2 (en) 2001-09-14 2004-04-06 Applied Materials, Inc. Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition
US6916398B2 (en) 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US6773507B2 (en) 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
AU2003238853A1 (en) 2002-01-25 2003-09-02 Applied Materials, Inc. Apparatus for cyclical deposition of thin films
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
US6866746B2 (en) * 2002-01-26 2005-03-15 Applied Materials, Inc. Clamshell and small volume chamber with fixed substrate support
US6998014B2 (en) 2002-01-26 2006-02-14 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US6972267B2 (en) 2002-03-04 2005-12-06 Applied Materials, Inc. Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor
US7601225B2 (en) 2002-06-17 2009-10-13 Asm International N.V. System for controlling the sublimation of reactants
US6955211B2 (en) 2002-07-17 2005-10-18 Applied Materials, Inc. Method and apparatus for gas temperature control in a semiconductor processing system
US7186385B2 (en) * 2002-07-17 2007-03-06 Applied Materials, Inc. Apparatus for providing gas to a processing chamber
US7066194B2 (en) 2002-07-19 2006-06-27 Applied Materials, Inc. Valve design and configuration for fast delivery system
US6772072B2 (en) 2002-07-22 2004-08-03 Applied Materials, Inc. Method and apparatus for monitoring solid precursor delivery
US6936086B2 (en) * 2002-09-11 2005-08-30 Planar Systems, Inc. High conductivity particle filter
US6821563B2 (en) * 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition
US20040069227A1 (en) 2002-10-09 2004-04-15 Applied Materials, Inc. Processing chamber configured for uniform gas flow
US6905737B2 (en) 2002-10-11 2005-06-14 Applied Materials, Inc. Method of delivering activated species for rapid cyclical deposition
EP1420080A3 (en) * 2002-11-14 2005-11-09 Applied Materials, Inc. Apparatus and method for hybrid chemical deposition processes
US6868859B2 (en) * 2003-01-29 2005-03-22 Applied Materials, Inc. Rotary gas valve for pulsing a gas
US6994319B2 (en) * 2003-01-29 2006-02-07 Applied Materials, Inc. Membrane gas valve for pulsing a gas
US7198820B2 (en) * 2003-02-06 2007-04-03 Planar Systems, Inc. Deposition of carbon- and transition metal-containing thin films
US20040177813A1 (en) 2003-03-12 2004-09-16 Applied Materials, Inc. Substrate support lift mechanism
US7342984B1 (en) 2003-04-03 2008-03-11 Zilog, Inc. Counting clock cycles over the duration of a first character and using a remainder value to determine when to sample a bit of a second character
US20050000428A1 (en) * 2003-05-16 2005-01-06 Shero Eric J. Method and apparatus for vaporizing and delivering reactant
US20050056216A1 (en) * 2003-09-15 2005-03-17 Intel Corporation Precursor delivery system
US20050067103A1 (en) 2003-09-26 2005-03-31 Applied Materials, Inc. Interferometer endpoint monitoring device
US7156380B2 (en) * 2003-09-29 2007-01-02 Asm International, N.V. Safe liquid source containers
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US20060019029A1 (en) * 2004-07-20 2006-01-26 Hamer Kevin T Atomic layer deposition methods and apparatus
WO2006099619A2 (en) 2005-03-17 2006-09-21 Noah Precision, Llc Temperature control unit for bubblers
US7402534B2 (en) 2005-08-26 2008-07-22 Applied Materials, Inc. Pretreatment processes within a batch ALD reactor
US7464917B2 (en) 2005-10-07 2008-12-16 Appiled Materials, Inc. Ampoule splash guard apparatus
US7850779B2 (en) 2005-11-04 2010-12-14 Applied Materisals, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
US8268078B2 (en) * 2006-03-16 2012-09-18 Tokyo Electron Limited Method and apparatus for reducing particle contamination in a deposition system
US8951478B2 (en) * 2006-03-30 2015-02-10 Applied Materials, Inc. Ampoule with a thermally conductive coating
US7562672B2 (en) * 2006-03-30 2009-07-21 Applied Materials, Inc. Chemical delivery apparatus for CVD or ALD
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7601648B2 (en) 2006-07-31 2009-10-13 Applied Materials, Inc. Method for fabricating an integrated gate dielectric layer for field effect transistors
US8092695B2 (en) 2006-10-30 2012-01-10 Applied Materials, Inc. Endpoint detection for photomask etching
US7775508B2 (en) 2006-10-31 2010-08-17 Applied Materials, Inc. Ampoule for liquid draw and vapor draw with a continuous level sensor
US7833353B2 (en) * 2007-01-24 2010-11-16 Asm Japan K.K. Liquid material vaporization apparatus for semiconductor processing apparatus
US20080206987A1 (en) 2007-01-29 2008-08-28 Gelatos Avgerinos V Process for tungsten nitride deposition by a temperature controlled lid assembly
US8343583B2 (en) 2008-07-10 2013-01-01 Asm International N.V. Method for vaporizing non-gaseous precursor in a fluidized bed
US8146896B2 (en) 2008-10-31 2012-04-03 Applied Materials, Inc. Chemical precursor ampoule for vapor deposition processes
US8012876B2 (en) 2008-12-02 2011-09-06 Asm International N.V. Delivery of vapor precursor from solid source
US8151814B2 (en) * 2009-01-13 2012-04-10 Asm Japan K.K. Method for controlling flow and concentration of liquid precursor
US9117773B2 (en) * 2009-08-26 2015-08-25 Asm America, Inc. High concentration water pulses for atomic layer deposition
TWI506391B (en) * 2010-04-15 2015-11-01 Novellus Systems Inc Gas and liquid injection system
US8778204B2 (en) 2010-10-29 2014-07-15 Applied Materials, Inc. Methods for reducing photoresist interference when monitoring a target layer in a plasma process
US8524322B2 (en) 2010-12-28 2013-09-03 Asm International N.V. Combination CVD/ALD method and source
US9790594B2 (en) 2010-12-28 2017-10-17 Asm Ip Holding B.V. Combination CVD/ALD method, source and pulse profile modification
US8961804B2 (en) 2011-10-25 2015-02-24 Applied Materials, Inc. Etch rate detection for photomask etching
US8808559B2 (en) 2011-11-22 2014-08-19 Applied Materials, Inc. Etch rate detection for reflective multi-material layers etching
US8900469B2 (en) 2011-12-19 2014-12-02 Applied Materials, Inc. Etch rate detection for anti-reflective coating layer and absorber layer etching
JP5824372B2 (en) * 2012-01-25 2015-11-25 東京エレクトロン株式会社 Processing apparatus and process status confirmation method
US8921207B2 (en) 2012-09-24 2014-12-30 Asm Ip Holding B.V., Inc. Tin precursors for vapor deposition and deposition processes
US9805939B2 (en) 2012-10-12 2017-10-31 Applied Materials, Inc. Dual endpoint detection for advanced phase shift and binary photomasks
US8778574B2 (en) 2012-11-30 2014-07-15 Applied Materials, Inc. Method for etching EUV material layers utilized to form a photomask
US9957612B2 (en) * 2014-01-17 2018-05-01 Ceres Technologies, Inc. Delivery device, methods of manufacture thereof and articles comprising the same
EP3162914A1 (en) * 2015-11-02 2017-05-03 IMEC vzw Apparatus and method for delivering a gaseous precursor to a reaction chamber
US10927459B2 (en) 2017-10-16 2021-02-23 Asm Ip Holding B.V. Systems and methods for atomic layer deposition
JP6425850B1 (en) * 2017-11-22 2018-11-21 日本エア・リキード株式会社 Solid material container and solid material product in which solid material container is filled with solid material

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378476A (en) * 1943-02-11 1945-06-19 American Optical Corp Coating apparatus
US3801294A (en) * 1971-12-15 1974-04-02 Corning Glass Works Method of producing glass
US4058430A (en) * 1974-11-29 1977-11-15 Tuomo Suntola Method for producing compound thin films
US4167915A (en) * 1977-03-09 1979-09-18 Atomel Corporation High-pressure, high-temperature gaseous chemical apparatus
US4389973A (en) * 1980-03-18 1983-06-28 Oy Lohja Ab Apparatus for performing growth of compound thin films
US5803976A (en) * 1993-11-09 1998-09-08 Imperial Chemical Industries Plc Vacuum web coating
US5855680A (en) * 1994-11-28 1999-01-05 Neste Oy Apparatus for growing thin films
US6107634A (en) * 1998-04-30 2000-08-22 Eaton Corporation Decaborane vaporizer
US6149975A (en) * 1998-03-30 2000-11-21 Dowa Mining Co., Ltd. Potassium-containing thin film and process for producing the same
US6202591B1 (en) * 1998-11-12 2001-03-20 Flex Products, Inc. Linear aperture deposition apparatus and coating process
US6444038B1 (en) * 1999-12-27 2002-09-03 Morton International, Inc. Dual fritted bubbler
US20030026601A1 (en) * 2001-07-31 2003-02-06 The Arizona Board Of Regents On Behalf Of The University Of Arizona Vapor deposition and in-situ purification of organic molecules
US6830626B1 (en) * 1999-10-22 2004-12-14 Kurt J. Lesker Company Method and apparatus for coating a substrate in a vacuum
US20050072357A1 (en) * 2002-07-30 2005-04-07 Shero Eric J. Sublimation bed employing carrier gas guidance structures

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569207B1 (en) * 1984-08-14 1986-11-14 Mellet Robert PROCESS AND DEVICE FOR OBTAINING A GAS STREAM CONTAINING A VAPOR COMPOUND, IN PARTICULAR USABLE FOR INTRODUCING THIS COMPOUND INTO AN EPITAXY REACTOR
JPH0726364Y2 (en) * 1989-06-23 1995-06-14 日本酸素株式会社 Solid material feeder for vapor phase growth equipment
EP1079001B1 (en) * 1999-08-20 2005-06-15 Morton International, Inc. Dual fritted bubbler
KR20010047128A (en) 1999-11-18 2001-06-15 이경수 Method of vaporizing a liquid source and apparatus used therefor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378476A (en) * 1943-02-11 1945-06-19 American Optical Corp Coating apparatus
US3801294A (en) * 1971-12-15 1974-04-02 Corning Glass Works Method of producing glass
US4058430A (en) * 1974-11-29 1977-11-15 Tuomo Suntola Method for producing compound thin films
US4167915A (en) * 1977-03-09 1979-09-18 Atomel Corporation High-pressure, high-temperature gaseous chemical apparatus
US4389973A (en) * 1980-03-18 1983-06-28 Oy Lohja Ab Apparatus for performing growth of compound thin films
US5803976A (en) * 1993-11-09 1998-09-08 Imperial Chemical Industries Plc Vacuum web coating
US5855680A (en) * 1994-11-28 1999-01-05 Neste Oy Apparatus for growing thin films
US6149975A (en) * 1998-03-30 2000-11-21 Dowa Mining Co., Ltd. Potassium-containing thin film and process for producing the same
US6107634A (en) * 1998-04-30 2000-08-22 Eaton Corporation Decaborane vaporizer
US6202591B1 (en) * 1998-11-12 2001-03-20 Flex Products, Inc. Linear aperture deposition apparatus and coating process
US6830626B1 (en) * 1999-10-22 2004-12-14 Kurt J. Lesker Company Method and apparatus for coating a substrate in a vacuum
US6444038B1 (en) * 1999-12-27 2002-09-03 Morton International, Inc. Dual fritted bubbler
US20030026601A1 (en) * 2001-07-31 2003-02-06 The Arizona Board Of Regents On Behalf Of The University Of Arizona Vapor deposition and in-situ purification of organic molecules
US20050072357A1 (en) * 2002-07-30 2005-04-07 Shero Eric J. Sublimation bed employing carrier gas guidance structures

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784563B2 (en) * 2003-08-29 2014-07-22 Asm America, Inc. Gas mixer and manifold assembly for ALD reactor
US20120079984A1 (en) * 2003-08-29 2012-04-05 Asm America, Inc. Gas mixer and manifold assembly for ald reactor
US20060068098A1 (en) * 2004-09-27 2006-03-30 Tokyo Electron Limited Deposition of ruthenium metal layers in a thermal chemical vapor deposition process
US20060133955A1 (en) * 2004-12-17 2006-06-22 Peters David W Apparatus and method for delivering vapor phase reagent to a deposition chamber
US20060191636A1 (en) * 2005-01-25 2006-08-31 Hae-Moon Choi Valve assembly, semiconductor device manufacturing apparatus comprising the same, and method of cleaning a trap of a semiconductor device manufactuing apparatus
US20060219177A1 (en) * 2005-03-31 2006-10-05 Tokyo Electron Limited Method and system for depositing material on a substrate using a solid precursor
US20060222769A1 (en) * 2005-03-31 2006-10-05 Tokyo Electron Limited Method for saturating a carrier gas with precursor vapor
US7132128B2 (en) * 2005-03-31 2006-11-07 Tokyo Electron Limited Method and system for depositing material on a substrate using a solid precursor
US20070113789A1 (en) * 2005-03-31 2007-05-24 Tokyo Electron Limited Method and system for depositing material on a substrate using a solid precursor
US7566477B2 (en) * 2005-03-31 2009-07-28 Tokyo Electron Limited Method for saturating a carrier gas with precursor vapor
US20090078203A1 (en) * 2006-04-28 2009-03-26 Beneq Oy Hot source
US20080179767A1 (en) * 2007-01-29 2008-07-31 Spohn Ronald F Apparatus and method for delivering vapor phase reagent to a deposition chamber
US8518482B2 (en) 2007-01-29 2013-08-27 Praxair Technology, Inc. Bubbler apparatus and method for delivering vapor phase reagent to a deposition chamber
US20080182425A1 (en) * 2007-01-29 2008-07-31 Spohn Ronald F Bubbler apparatus and method for delivering vapor phase reagent to a deposition chamber
US20080182023A1 (en) * 2007-01-29 2008-07-31 Spohn Ronald F Diptube apparatus and delivery method
US20080182010A1 (en) * 2007-01-29 2008-07-31 Spohn Ronald F Bubbler apparatus and delivery method
US8524321B2 (en) 2007-01-29 2013-09-03 Praxair Technology, Inc. Reagent dispensing apparatus and delivery method
US8518484B2 (en) 2007-01-29 2013-08-27 Praxair Technology, Inc. Bubbler apparatus and delivery method
US8518483B2 (en) 2007-01-29 2013-08-27 Praxair Technology, Inc. Diptube apparatus and method for delivering vapor phase reagent to a deposition chamber
US20080213476A1 (en) * 2007-01-29 2008-09-04 Spohn Ronald F Reagent dispensing apparatus and delivery method
US8512635B2 (en) 2007-01-29 2013-08-20 Praxair Technology, Inc. Apparatus and method for delivering vapor phase reagent to a deposition chamber
US7959994B2 (en) 2007-01-29 2011-06-14 Praxair Technology, Inc. Diptube apparatus and delivery method
US20110210142A1 (en) * 2007-01-29 2011-09-01 Spohn Ronald F Diptube apparatus and delivery method
US8114479B2 (en) 2007-01-29 2012-02-14 Praxair Technology, Inc. Diptube apparatus and delivery method
US20080178809A1 (en) * 2007-01-29 2008-07-31 Spohn Ronald F Diptube apparatus and method for delivering vapor phase reagent to a deposition chamber
US8297223B2 (en) * 2007-10-02 2012-10-30 Msp Corporation Method and apparatus for particle filtration and enhancing tool performance in film deposition
US20090084315A1 (en) * 2007-10-02 2009-04-02 Msp Corporation Method and apparatus for particle filtration and enhancing tool performance in film deposition
US20090214777A1 (en) * 2008-02-22 2009-08-27 Demetrius Sarigiannis Multiple ampoule delivery systems
US20090214779A1 (en) * 2008-02-22 2009-08-27 Demetrius Sarigiannis Multiple ampoule delivery systems
US20090211525A1 (en) * 2008-02-22 2009-08-27 Demetrius Sarigiannis Multiple ampoule delivery systems
US20090214778A1 (en) * 2008-02-22 2009-08-27 Demetrius Sarigiannis Multiple ampoule delivery systems
US20110114665A1 (en) * 2009-11-16 2011-05-19 Fei Company Gas delivery for beam processing systems
US9150961B2 (en) 2009-11-16 2015-10-06 Fei Company Gas delivery for beam processing systems

Also Published As

Publication number Publication date
US20010042523A1 (en) 2001-11-22
US6699524B2 (en) 2004-03-02
FI118805B (en) 2008-03-31
JP2001323374A (en) 2001-11-22
FI20001166A (en) 2001-11-16
JP5241982B2 (en) 2013-07-17
TW524875B (en) 2003-03-21

Similar Documents

Publication Publication Date Title
US6699524B2 (en) Method and apparatus for feeding gas phase reactant into a reaction chamber
US20050000428A1 (en) Method and apparatus for vaporizing and delivering reactant
KR101247824B1 (en) Method and apparatus to help promote contact of gas with vaporized material
US9593416B2 (en) Precursor delivery system
US8986456B2 (en) Precursor delivery system
US8444120B2 (en) Method and apparatus to help promote contact of gas with vaporized material
FI118342B (en) Apparatus for making thin films
EP3081668B1 (en) Vessel and method for delivery of precursor materials
US9109287B2 (en) Solid source container with inlet plenum
US20070054049A1 (en) Method of growing a thin film onto a substrate
EP2108616B1 (en) Delivery method for a reagent using a reagent dispensing apparatus
US6045617A (en) Method for CVD surface coating and CVD reactor system
US20220243328A1 (en) Precursor source arrangement and atomic layer deposition apparatus
JPS62116768A (en) Treatment device
JPH03274274A (en) Growth system for oxide film

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION