US20030232513A1 - Plasma method and apparatus for processing a substrate - Google Patents

Plasma method and apparatus for processing a substrate Download PDF

Info

Publication number
US20030232513A1
US20030232513A1 US10/170,925 US17092502A US2003232513A1 US 20030232513 A1 US20030232513 A1 US 20030232513A1 US 17092502 A US17092502 A US 17092502A US 2003232513 A1 US2003232513 A1 US 2003232513A1
Authority
US
United States
Prior art keywords
plasma
chamber
coil
substrate
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/170,925
Other versions
US6660659B1 (en
Inventor
Philip Kraus
Thai Chua
John Holland
James Cruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/170,925 priority Critical patent/US6660659B1/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUA, TAI CHENG, CRUSE, JAMES P., KRAUS, PHILLIP ALAN, HOLLAND, JOHN
Priority to KR1020047018470A priority patent/KR101044366B1/en
Priority to PCT/US2003/018784 priority patent/WO2003107382A2/en
Priority to JP2004514108A priority patent/JP2005530341A/en
Priority to CNB038130793A priority patent/CN100533651C/en
Priority to US10/461,083 priority patent/US6831021B2/en
Priority to EP03737087A priority patent/EP1512165A2/en
Publication of US6660659B1 publication Critical patent/US6660659B1/en
Application granted granted Critical
Publication of US20030232513A1 publication Critical patent/US20030232513A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides

Definitions

  • This invention relates to a plasma reactor and a method of processing a substrate by creating a plasma.
  • the manufacture of integrated circuits involves the manufacture of field effect transistors in and on silicon or other semiconductor substrates.
  • the manufacture of a field effect transistor includes the formation of a gate dielectric layer.
  • the dielectric layer is typically grown by exposing silicon of the substrate to oxygen, thereby forming silicon dioxide gate dielectric layers.
  • Nitrogen is often incorporated by creating a plasma of nitrogen ions within a chamber and implanting the nitrogen ions into the gate dielectric layer.
  • the plasma is typically created utilizing a radio frequency (RF) source, with either an electrode plate (capacitative coupling) or a coil (inductive coupling).
  • RF radio frequency
  • the RF source creates an RF field within a gas in the chamber, and this coupling creates the plasma.
  • a method is provided of processing a substrate, including locating the substrate in a processing chamber, creating a nitrogen plasma in the chamber, the plasma having an ion density of at least 10 10 cm ⁇ 3 , and a potential of less than 20 V, and exposing a layer on the substrate to the plasma to incorporate nitrogen from the plasma into the layer.
  • a method of processing a substrate wherein the substrate is located in a plasma processing chamber, a nitrogen-containing gas flows into the chamber, an RF current is provided through a coil to generate an RF field in the chamber, the RF field creating a nitrogen-containing RF plasma out of the gas, the RF current being pulsed, and incorporating nitrogen ions and excited neutrals from the plasma into a gate dielectric layer formed on the substrate.
  • a plasma reactor including a chamber having an opening to transfer a substrate into an internal volume of the chamber, a substrate holder in the chamber for holding the substrate, an RF coil externally and adjacent to a wall of the chamber, and a grounded electrode plate between the wall and the RF coil.
  • FIG. 1 is a perspective view of a plasma reactor according to an embodiment of the invention.
  • FIG. 2 is a cross-sectional side view of upper components of the plasma reactor
  • FIG. 3 is a cross-sectional side view illustrating nitrogen ion incorporation into a silicon dioxide gate dielectric layer
  • FIG. 4 is a graph illustrating plasma potential as a function of pressure for various RF source powers and electrode plate configuration as measured with a Langmuir probe;
  • FIG. 5 is a graph illustrating the floating voltages as a function of pressure for the electrode plate configuration as measured with a Langmuir probe
  • FIG. 6 is a graph illustrating electron density as a function of pressure for the electrode plate configuration as measured with a Langmuir probe
  • FIG. 7 is a graph illustrating ion density as a function of pressure for the electrode plate configuration as measured with a Langmuir probe
  • FIG. 8 is a graph illustrating electron temperature as a function of pressure for the electrode plate configuration as measured with a Langmuir probe
  • FIG. 9 is a bottom view of laminate, including an electrode plate, according to an embodiment of the invention.
  • FIG. 10 is a cross-sectional side view illustrating the laminate in an installed position
  • FIG. 11 is a graph illustrating pulsing of RF power to an RF coil with a 30% duty cycle
  • FIG. 12 is a graph similar to FIG. 11 at a 50% duty cycle
  • FIG. 13 is a graph illustrating thickness change before and after nitrogen plasma treatment with pulsed RF power, and provides a measure of incorporated nitrogen;
  • FIG. 14 is a graph illustrating thickness change for different samples processed at different continuous RF power settings
  • FIG. 15 is a graph illustrating thickness change as a function of RF source peak power for two pulsing frequencies
  • FIG. 16 is a graph illustrating thickness change as a function of duty cycles for two pulsing frequencies
  • FIG. 17 is a graph illustrating optical emissions spectra for 500 W peak power at various pulsing frequencies and duty cycles.
  • FIG. 18 illustrates optical emission spectra for a 50% duty cycle at various pulsing frequencies and peak powers.
  • FIGS. 1 and 2 illustrate a plasma reactor 10 , according to an embodiment of the invention, including a chamber 12 , a substrate holder 14 , an RF coil 16 , and an electrode plate 18 .
  • the electrode plate 18 is connected through a body of the chamber 12 to ground 20 .
  • grounding the electrode plate 18 a capacitive coupling between the RF coil 16 and a plasma 22 in an internal volume 24 of the chamber 12 is eliminated.
  • the elimination of the capacitive couple reduces the potential of the plasma 22 without dramatically altering other properties of the plasma 22 , such as ion density and electron density.
  • the inductive coupling from the RF coil 16 is not eliminated, and this coupling creates and maintains the plasma 22 .
  • the plasma reactor 10 further includes a lower transfer chamber 26 and a transfer mechanism 28 .
  • the chamber 12 is positioned on top of the transfer chamber 26 .
  • An internal volume 30 of the transfer chamber 26 is placed in communication with the internal volume 24 of the chamber 12 through a circular opening 32 in a base of the chamber 12 .
  • the substrate holder 14 is secured on top of the transfer mechanism 28 , and the transfer mechanism 28 can be used to elevate or lower the substrate holder 14 .
  • the transfer mechanism 28 is operated so that the substrate holder 14 is lowered into the internal volume 30 of the transfer chamber 26 .
  • a wafer substrate, positioned on a blade attached to a robot arm, is then transferred through a slit-valve opening in a wall of the transfer chamber 26 into the internal volume 30 .
  • the transfer mechanism 28 is then operated to elevate the substrate holder 14 so that the substrate holder 14 contacts a lower surface of the wafer substrate and elevates the wafer substrate off the blade.
  • the blade is then removed from the transfer chamber 26 , whereafter the transfer mechanism 28 is again operated to elevate the substrate holder 14 into the opening 32 .
  • the wafer substrate, located on the substrate holder 14 then has an upper surface which is exposed to the internal volume 24 of the chamber 12 .
  • the chamber 12 includes primarily a conductive body 36 and a dielectric dielectric quartz upper wall 38 .
  • the conductive body 36 forms a lower portion of the chamber 12
  • the upper wall 38 forms an upper portion of the chamber 12 .
  • the conductive body 36 and the upper wall 38 jointly define the internal volume 24 .
  • gas nozzle ports 40 are formed through the conductive body 36 into the internal volume 24 .
  • the gas nozzle ports 40 are positioned at 90° intervals around the substrate holder 14 .
  • the conductive body 36 also defines a vacuum pumping channel 42 on one side thereof.
  • the gas nozzle ports 40 are connected through valves to a gas manifold, and the vacuum pumping channel 42 is connected to a pump. When the pump is operated, gases are extracted from the internal volume 24 through the vacuum pumping channel 42 to reduce a pressure within the internal volume 24 .
  • the valves can be operated to allow gases from the manifold through the valves and the gas nozzle ports 40 into the internal volume 24 .
  • the upper wall 38 has a dome shape
  • the electrode plate 18 has a dome shape that conforms to an outer surface of the upper wall 38 .
  • the electrode plate 18 is in fact located directly on the upper wall 38 .
  • the electrode plate 18 defines a circular opening 44 over a center of the upper wall 38 .
  • the upper wall 38 and the electrode plate 18 are symmetrical around a vertical axis 46 .
  • the coil 16 spirals around the vertical axis 46 and the opening 44 .
  • the coil 16 is positioned on and conforms to the dome shape of the electrode plate 18 .
  • One end of the coil 16 is connected to an RF source 50 , and an opposing end of the coil 16 is connected to ground 52 .
  • An epitaxial silicon layer 54 is formed on an upper surface of a wafer substrate before the wafer substrate is inserted into the plasma reactor 10 positioned on an upper surface of the substrate holder 14 .
  • a thin silicon dioxide layer 58 is grown on the silicon layer 54 , also before the wafer substrate is inserted into the plasma reactor 10 .
  • the silicon dioxide layer 58 is on the order of a few angstroms (e.g., 40 ⁇ ) thick, and is later used as a gate dielectric layer in a finally manufactured transistor.
  • the purpose of inserting the wafer substrate into the plasma reactor 10 is to incorporate nitrogen (N) into the silicon dioxide layer 58 for purposes of modifying or improving its dielectric properties.
  • the plasma 22 of nitrogen ions (N 2 + ) is created within the internal volume 24 .
  • the nitrogen ions have energies defined by the properties of the plasma which leads to their being incorporated into the silicon dioxide layer 58 .
  • the plasma is created by first reducing the pressure within the internal volume 24 to a predetermined level.
  • a nitrogen-containing gas is then introduced into the internal volume 24 .
  • the nitrogen-containing gas may, for example, be pure nitrogen (N 2 ), a mixture of nitrogen and helium gases (N 2 /He), a mixture of nitrogen and neon gases (N 2 /Ne), or a mixture of nitrogen and argon gases (N 2 /Ar).
  • N 2 pure nitrogen
  • N 2 /He a mixture of nitrogen and helium gases
  • N 2 /Ne mixture of nitrogen and neon gases
  • N 2 /Ar mixture of nitrogen and argon gases
  • the RF source 50 is then operated to provide RF current to the coil 16 at a frequency of 13.56 MHz.
  • the RF coil 16 generates an RF field which is spread by the electrode plate 18 across the upper wall 38 .
  • the circular opening 44 permits the RF field to enter through the upper wall 38 into the internal volume 24 .
  • the RF field then couples with the nitrogen gas in the internal volume 24 .
  • the RF field initially excites a small number of free electrons.
  • the free electrons then collide with other atoms to release more electrons from these atoms.
  • the process is continued until a steady-state condition is achieved, where the plasma 22 has a steady amount of free electrons and free ions, a steady electron temperature, and a constant voltage relative to ground.
  • a “reservoir” of ions is so created within the internal volume 24 , and the voltage potential of the plasma 22 assists in incorporating ions from this reservoir into the silicon dioxide layer 58 .
  • the potential of the substrate and the substrate holder 14 floats freely during the entire process, but there is a difference in the voltage of the plasma 22 and that of the substrate holder 14 , the difference driving the incorporation of the ions.
  • the RF coil 16 couples capacitively to the plasma 22 .
  • Such a capacitive couple between the RF coil 16 and the plasma 22 increases the voltage of the plasma 22 .
  • the capacitive coupling is substantially reduced, and the voltage of the plasma 22 is reduced.
  • the plasma potential and the electron temperature are reduced, but ion density remains relatively high.
  • plasma potential is preferably less than 10 V.
  • Electron temperatures are preferably near or less than 2 eV. Ion density is preferably at least 10 10 cm ⁇ 3 .
  • FIG. 4 illustrates experimental results utilizing no electrode plate, a regular ungrounded electrode plate, and a grounded electrode plate, respectively.
  • experimental results were obtained when applying 300 W, 500 W, and 900 W of power to the RF coil 16 . Larger blocks or triangles indicate larger power magnitudes.
  • the plasma voltage (Vp) is the smallest for a grounded electrode plate, higher for an ungrounded electrode plate, and even higher when there is no electrode plate.
  • effective RF power supplied to the RF coil 16 may be between 160 and 3000 W. Potentials below 10 V are not achievable without the grounded electrode plate.
  • the potentials do not substantially increase with an increase in power provided to the RF coil. Even very large power magnitudes above 1000 W (e.g., 1400 W), crease plasma voltages below 20 V at pressures above 5 milliTorr (mT), and plasma voltages below 10 V at pressures above 40 mT.
  • FIG. 5 illustrates the floating voltage of the plasma for the condition of FIG. 4.
  • the potential at which the wafer resides is at or near Vf.
  • the substrate voltage (Vs) is the smallest for a grounded electrode plate, higher for an ungrounded electrode plate, and even higher when there is no electrode plate.
  • FIGS. 6 and 7 illustrate electron density and ion density, respectively.
  • the electron density or the ion density
  • ion densities above 50 ⁇ 10 9 are achievable when RF power above 1000 W is provided to the RF coil.
  • FIG. 8 illustrates electron temperature. It can be seen that at lower pressures there is relatively little difference in electron temperatures when using a grounded, ungrounded, or no electrode plate. However, at higher pressures, typically above 40 mT, it can be seen that electron temperature is much higher where an ungrounded electrode plate is used, or when no electrode plate is used, than when a grounded electrode plate is used.
  • the electrode plate 18 is laminated between two dielectric sheets 60 and 62 .
  • the electrode plate 18 and the dielectric sheets 60 and 62 are formed in strips 64 that, when folded toward one another, collectively define a dome shape.
  • the dielectric sheet 60 is positioned at the top between the electrode plate 18 and the RF coil 16 .
  • the dielectric sheet 62 is located between the electrode plate 18 and the upper wall 38 . Ends of the electrode plate are not covered by the dielectric sheet 62 , to leave exposed lands 66 .
  • the exposed lands 66 contact a conductive portion of the conductive body 36 , to ground the electrode plate 18 to the conductive body 36 .
  • the lands 66 are disposed on a perimeter of the electrode plate 18 , so that the electrode plate 18 is peripherally grounded. Peripheral grounding of the electrode plate 18 ensures that the entire electrode plate 18 is as close to zero volts as possible.
  • the plasma voltage can also be reduced by pulsing the RF power provided to the RF coil 16 .
  • the electrode plate 18 was not grounded, although it should be understood that the electrode plate 18 may be grounded in addition to pulsing of the RF power provided to the RF coil 16 .
  • RF power having a frequency of 13.56 MHz and a predetermined peak power is provided to the RF coil 16 .
  • the RF power may be automatically switched on and off, i.e., “pulsed.”
  • the RF power is automatically pulsed at a frequency of 10 kHz.
  • the RF power may be pulsed at frequencies between 1 kHz and 100 kHz.
  • the composition of the nitrogen plasma is continuously varied by varying the RF current between high and low states.
  • the duty cycle i.e., the total amount of time that the RF power is on, is 30%, and in FIG. 12, the duty cycle is 50%.
  • the RF source 50 is pulsing-enabled, and both the pulsing frequency and duty cycle are manually adjustable.
  • the effective delivered power is the peak power times the duty cycle.
  • the duty cycle may be between 10% and 90%.
  • the amplitude of the RF power is continually altered between 0% and 100%, but in another example, the amplitude may, for example, be altered between 10% and 100%.
  • One way to measure incorporation of nitrogen is by measuring the thickness change (“optical delta”) before and after a nitrogen plasma treatment. A larger thickness change indicates more nitrogen incorporation. As shown in FIG. 13, the amount of incorporated nitrogen using continuous power can also be achieved using pulsed power, with the amount of incorporated nitrogen scaling approximately with the effective delivered power. The change in optical thickness is relatively insensitive to pulsing frequency.
  • FIG. 14 illustrates optical delta for samples prepared with continuous RF source power; the saturation in incorporated nitrogen with power is observed for both pulsed and continuous power.
  • FIGS. 15 and 16 show the same data as in FIG. 13, plotted against source power and duty cycle, showing the same trends as FIG. 13.
  • FIGS. 17 and 18 optical emission spectra are captured with an optical emission spectrometer. As one increases the duty cycle at fixed-peak RF power (500 W), the spectra approach the 500 W continuous power spectra (top line), as can be seen in FIG. 17. Pulsing frequency has a small effect on the observed intensity. FIG. 18 shows that the pulsed RF emission level can be restored to the continuous-power emission level (top line) by increasing peak RF power. Again, the emission is relatively insensitive to pulsing frequency.
  • FIGS. 13 to 16 indicate that on-wafer nitrogen incorporation similar to the incorporation of continuous RF power is possible with pulsed-RF plasmas.
  • FIGS. 17 and 18 indicate that plasmas of similar ion density to continuous-RF power plasmas can be achieved with pulsed-RF power.
  • These data coupled with the effect of pulsed-RF power to reduce the electron temperature and plasma potential relative to continuous power, indicate that the pulsing of RF power provides a method for incorporation of nitrogen into gate dielectric oxides at lower energy levels. While incorporating the same amount of nitrogen in the oxide, nitrogen ions in the pulsed plasmas are accelerated into the wafer less than ions in the continuous-power plasmas because of the lower plasma potentials of the pulsed plasmas. Because of this reduced acceleration, the nitrogen will not penetrate as far into the oxide and the underlying silicon.

Abstract

According to one aspect of the invention, a method is provided of processing a substrate, including locating the substrate in a processing chamber, creating a nitrogen plasma in the chamber, the plasma having an ion density of at least 1010 cm−3, and a potential of less than 20 V, and exposing a layer on the substrate to the plasma to incorporate nitrogen of the plasma into the layer.

Description

    BACKGROUND OF THE INVENTION
  • 1). Field of the Invention [0001]
  • This invention relates to a plasma reactor and a method of processing a substrate by creating a plasma. [0002]
  • 2). Discussion of Related Art [0003]
  • The manufacture of integrated circuits involves the manufacture of field effect transistors in and on silicon or other semiconductor substrates. The manufacture of a field effect transistor includes the formation of a gate dielectric layer. The dielectric layer is typically grown by exposing silicon of the substrate to oxygen, thereby forming silicon dioxide gate dielectric layers. [0004]
  • As logic devices have become smaller, it has become advantageous to include nitrogen into the silicon dioxide gate dielectric layers. Nitrogen is often incorporated by creating a plasma of nitrogen ions within a chamber and implanting the nitrogen ions into the gate dielectric layer. The plasma is typically created utilizing a radio frequency (RF) source, with either an electrode plate (capacitative coupling) or a coil (inductive coupling). The RF source creates an RF field within a gas in the chamber, and this coupling creates the plasma. [0005]
  • Independent of the type of RF source (plate or coil), there can be significant capacitative coupling from the source to the plasma, which creates a relatively large plasma potential, on the order of tens of volts. Such a large plasma potential may cause excessive bombardment of the silicon dioxide layer with nitrogen ions, which can cause damage to the silicon dioxide layer and even incorporation of nitrogen into the underlying silicon. Damage to the silicon dioxide layer or incorporation of nitrogen into the underlying silicon diminishes the advantages of nitrogen incorporation. [0006]
  • SUMMARY OF THE INVENTION
  • According to one aspect of the invention, a method is provided of processing a substrate, including locating the substrate in a processing chamber, creating a nitrogen plasma in the chamber, the plasma having an ion density of at least 10[0007] 10 cm−3, and a potential of less than 20 V, and exposing a layer on the substrate to the plasma to incorporate nitrogen from the plasma into the layer.
  • According to another aspect of the invention, a method of processing a substrate is provided, wherein the substrate is located in a plasma processing chamber, a nitrogen-containing gas flows into the chamber, an RF current is provided through a coil to generate an RF field in the chamber, the RF field creating a nitrogen-containing RF plasma out of the gas, the RF current being pulsed, and incorporating nitrogen ions and excited neutrals from the plasma into a gate dielectric layer formed on the substrate. [0008]
  • According to a further aspect of the invention, a plasma reactor is provided, including a chamber having an opening to transfer a substrate into an internal volume of the chamber, a substrate holder in the chamber for holding the substrate, an RF coil externally and adjacent to a wall of the chamber, and a grounded electrode plate between the wall and the RF coil.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is further described by way of examples with reference to the accompanying drawings, wherein: [0010]
  • FIG. 1 is a perspective view of a plasma reactor according to an embodiment of the invention; [0011]
  • FIG. 2 is a cross-sectional side view of upper components of the plasma reactor; [0012]
  • FIG. 3 is a cross-sectional side view illustrating nitrogen ion incorporation into a silicon dioxide gate dielectric layer; [0013]
  • FIG. 4 is a graph illustrating plasma potential as a function of pressure for various RF source powers and electrode plate configuration as measured with a Langmuir probe; [0014]
  • FIG. 5 is a graph illustrating the floating voltages as a function of pressure for the electrode plate configuration as measured with a Langmuir probe; [0015]
  • FIG. 6 is a graph illustrating electron density as a function of pressure for the electrode plate configuration as measured with a Langmuir probe; [0016]
  • FIG. 7 is a graph illustrating ion density as a function of pressure for the electrode plate configuration as measured with a Langmuir probe; [0017]
  • FIG. 8 is a graph illustrating electron temperature as a function of pressure for the electrode plate configuration as measured with a Langmuir probe; [0018]
  • FIG. 9 is a bottom view of laminate, including an electrode plate, according to an embodiment of the invention. [0019]
  • FIG. 10 is a cross-sectional side view illustrating the laminate in an installed position; [0020]
  • FIG. 11 is a graph illustrating pulsing of RF power to an RF coil with a 30% duty cycle; [0021]
  • FIG. 12 is a graph similar to FIG. 11 at a 50% duty cycle; [0022]
  • FIG. 13 is a graph illustrating thickness change before and after nitrogen plasma treatment with pulsed RF power, and provides a measure of incorporated nitrogen; [0023]
  • FIG. 14 is a graph illustrating thickness change for different samples processed at different continuous RF power settings; [0024]
  • FIG. 15 is a graph illustrating thickness change as a function of RF source peak power for two pulsing frequencies; [0025]
  • FIG. 16 is a graph illustrating thickness change as a function of duty cycles for two pulsing frequencies; [0026]
  • FIG. 17 is a graph illustrating optical emissions spectra for 500 W peak power at various pulsing frequencies and duty cycles; and [0027]
  • FIG. 18 illustrates optical emission spectra for a 50% duty cycle at various pulsing frequencies and peak powers.[0028]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. 1 and 2 illustrate a [0029] plasma reactor 10, according to an embodiment of the invention, including a chamber 12, a substrate holder 14, an RF coil 16, and an electrode plate 18. The electrode plate 18 is connected through a body of the chamber 12 to ground 20. By grounding the electrode plate 18, a capacitive coupling between the RF coil 16 and a plasma 22 in an internal volume 24 of the chamber 12 is eliminated. The elimination of the capacitive couple reduces the potential of the plasma 22 without dramatically altering other properties of the plasma 22, such as ion density and electron density. The inductive coupling from the RF coil 16 is not eliminated, and this coupling creates and maintains the plasma 22.
  • Referring specifically to FIG. 1, the [0030] plasma reactor 10 further includes a lower transfer chamber 26 and a transfer mechanism 28. The chamber 12 is positioned on top of the transfer chamber 26. An internal volume 30 of the transfer chamber 26 is placed in communication with the internal volume 24 of the chamber 12 through a circular opening 32 in a base of the chamber 12. The substrate holder 14 is secured on top of the transfer mechanism 28, and the transfer mechanism 28 can be used to elevate or lower the substrate holder 14.
  • In use, the [0031] transfer mechanism 28 is operated so that the substrate holder 14 is lowered into the internal volume 30 of the transfer chamber 26. A wafer substrate, positioned on a blade attached to a robot arm, is then transferred through a slit-valve opening in a wall of the transfer chamber 26 into the internal volume 30. The transfer mechanism 28 is then operated to elevate the substrate holder 14 so that the substrate holder 14 contacts a lower surface of the wafer substrate and elevates the wafer substrate off the blade. The blade is then removed from the transfer chamber 26, whereafter the transfer mechanism 28 is again operated to elevate the substrate holder 14 into the opening 32. The wafer substrate, located on the substrate holder 14, then has an upper surface which is exposed to the internal volume 24 of the chamber 12.
  • The [0032] chamber 12 includes primarily a conductive body 36 and a dielectric dielectric quartz upper wall 38. The conductive body 36 forms a lower portion of the chamber 12, and the upper wall 38 forms an upper portion of the chamber 12. The conductive body 36 and the upper wall 38 jointly define the internal volume 24.
  • Four [0033] gas nozzle ports 40 are formed through the conductive body 36 into the internal volume 24. The gas nozzle ports 40 are positioned at 90° intervals around the substrate holder 14. The conductive body 36 also defines a vacuum pumping channel 42 on one side thereof. The gas nozzle ports 40 are connected through valves to a gas manifold, and the vacuum pumping channel 42 is connected to a pump. When the pump is operated, gases are extracted from the internal volume 24 through the vacuum pumping channel 42 to reduce a pressure within the internal volume 24. The valves can be operated to allow gases from the manifold through the valves and the gas nozzle ports 40 into the internal volume 24.
  • Referring more specifically to FIG. 2, the [0034] upper wall 38 has a dome shape, and the electrode plate 18 has a dome shape that conforms to an outer surface of the upper wall 38. The electrode plate 18 is in fact located directly on the upper wall 38. The electrode plate 18 defines a circular opening 44 over a center of the upper wall 38. The upper wall 38 and the electrode plate 18 are symmetrical around a vertical axis 46.
  • The [0035] coil 16 spirals around the vertical axis 46 and the opening 44. The coil 16 is positioned on and conforms to the dome shape of the electrode plate 18. One end of the coil 16 is connected to an RF source 50, and an opposing end of the coil 16 is connected to ground 52.
  • Reference is now made to FIGS. 2 and 3 in combination. An [0036] epitaxial silicon layer 54 is formed on an upper surface of a wafer substrate before the wafer substrate is inserted into the plasma reactor 10 positioned on an upper surface of the substrate holder 14. A thin silicon dioxide layer 58 is grown on the silicon layer 54, also before the wafer substrate is inserted into the plasma reactor 10. The silicon dioxide layer 58 is on the order of a few angstroms (e.g., 40 Å) thick, and is later used as a gate dielectric layer in a finally manufactured transistor. The purpose of inserting the wafer substrate into the plasma reactor 10 is to incorporate nitrogen (N) into the silicon dioxide layer 58 for purposes of modifying or improving its dielectric properties. The plasma 22 of nitrogen ions (N2 +) is created within the internal volume 24. The nitrogen ions have energies defined by the properties of the plasma which leads to their being incorporated into the silicon dioxide layer 58.
  • The plasma is created by first reducing the pressure within the [0037] internal volume 24 to a predetermined level. A nitrogen-containing gas is then introduced into the internal volume 24. The nitrogen-containing gas may, for example, be pure nitrogen (N2), a mixture of nitrogen and helium gases (N2/He), a mixture of nitrogen and neon gases (N2/Ne), or a mixture of nitrogen and argon gases (N2/Ar). For purposes of further discussion, examples are given where the gas is pure nitrogen gas.
  • The [0038] RF source 50 is then operated to provide RF current to the coil 16 at a frequency of 13.56 MHz. The RF coil 16 generates an RF field which is spread by the electrode plate 18 across the upper wall 38. The circular opening 44 permits the RF field to enter through the upper wall 38 into the internal volume 24. The RF field then couples with the nitrogen gas in the internal volume 24. The RF field initially excites a small number of free electrons. The free electrons then collide with other atoms to release more electrons from these atoms. The process is continued until a steady-state condition is achieved, where the plasma 22 has a steady amount of free electrons and free ions, a steady electron temperature, and a constant voltage relative to ground. A “reservoir” of ions is so created within the internal volume 24, and the voltage potential of the plasma 22 assists in incorporating ions from this reservoir into the silicon dioxide layer 58. The potential of the substrate and the substrate holder 14 floats freely during the entire process, but there is a difference in the voltage of the plasma 22 and that of the substrate holder 14, the difference driving the incorporation of the ions.
  • Without grounding the [0039] electrode plate 18, the RF coil 16 couples capacitively to the plasma 22. Such a capacitive couple between the RF coil 16 and the plasma 22 increases the voltage of the plasma 22. Conversely, by grounding the electrode plate 18, the capacitive coupling is substantially reduced, and the voltage of the plasma 22 is reduced. The plasma potential and the electron temperature are reduced, but ion density remains relatively high. To prevent excessive incorporation of nitrogen through the SiO2 and into the silicon substrate, plasma potential is preferably less than 10 V. Electron temperatures are preferably near or less than 2 eV. Ion density is preferably at least 1010 cm−3.
  • FIG. 4 illustrates experimental results utilizing no electrode plate, a regular ungrounded electrode plate, and a grounded electrode plate, respectively. In each case, experimental results were obtained when applying 300 W, 500 W, and 900 W of power to the [0040] RF coil 16. Larger blocks or triangles indicate larger power magnitudes. At a given power provided to the RF coil 16, the plasma voltage (Vp) is the smallest for a grounded electrode plate, higher for an ungrounded electrode plate, and even higher when there is no electrode plate. In other examples, effective RF power supplied to the RF coil 16 may be between 160 and 3000 W. Potentials below 10 V are not achievable without the grounded electrode plate. What should also be noted is that the potentials do not substantially increase with an increase in power provided to the RF coil. Even very large power magnitudes above 1000 W (e.g., 1400 W), crease plasma voltages below 20 V at pressures above 5 milliTorr (mT), and plasma voltages below 10 V at pressures above 40 mT.
  • FIG. 5 illustrates the floating voltage of the plasma for the condition of FIG. 4. The potential at which the wafer resides is at or near Vf. Again, it can be seen that the substrate voltage (Vs) is the smallest for a grounded electrode plate, higher for an ungrounded electrode plate, and even higher when there is no electrode plate. [0041]
  • FIGS. 6 and 7 illustrate electron density and ion density, respectively. For a given magnitude of power applied to the [0042] RF coil 16, there is very little difference between the electron density (or the ion density), when using a grounded electrode plate and when using an ungrounded electrode plate. Although not slow, ion densities above 50×109 are achievable when RF power above 1000 W is provided to the RF coil.
  • FIG. 8 illustrates electron temperature. It can be seen that at lower pressures there is relatively little difference in electron temperatures when using a grounded, ungrounded, or no electrode plate. However, at higher pressures, typically above 40 mT, it can be seen that electron temperature is much higher where an ungrounded electrode plate is used, or when no electrode plate is used, than when a grounded electrode plate is used. [0043]
  • Referring to FIGS. 9 and 10, the [0044] electrode plate 18 is laminated between two dielectric sheets 60 and 62. The electrode plate 18 and the dielectric sheets 60 and 62 are formed in strips 64 that, when folded toward one another, collectively define a dome shape. The dielectric sheet 60 is positioned at the top between the electrode plate 18 and the RF coil 16. The dielectric sheet 62 is located between the electrode plate 18 and the upper wall 38. Ends of the electrode plate are not covered by the dielectric sheet 62, to leave exposed lands 66. The exposed lands 66 contact a conductive portion of the conductive body 36, to ground the electrode plate 18 to the conductive body 36. The lands 66 are disposed on a perimeter of the electrode plate 18, so that the electrode plate 18 is peripherally grounded. Peripheral grounding of the electrode plate 18 ensures that the entire electrode plate 18 is as close to zero volts as possible.
  • The plasma voltage can also be reduced by pulsing the RF power provided to the [0045] RF coil 16. In the examples that are now provided, the electrode plate 18 was not grounded, although it should be understood that the electrode plate 18 may be grounded in addition to pulsing of the RF power provided to the RF coil 16.
  • As illustrated in FIGS. 11 and 12, RF power having a frequency of 13.56 MHz and a predetermined peak power is provided to the [0046] RF coil 16. The RF power may be automatically switched on and off, i.e., “pulsed.” In the examples that are provided, the RF power is automatically pulsed at a frequency of 10 kHz. In other examples, the RF power may be pulsed at frequencies between 1 kHz and 100 kHz. The composition of the nitrogen plasma is continuously varied by varying the RF current between high and low states. In FIG. 11, the duty cycle, i.e., the total amount of time that the RF power is on, is 30%, and in FIG. 12, the duty cycle is 50%. The RF source 50 is pulsing-enabled, and both the pulsing frequency and duty cycle are manually adjustable. The effective delivered power is the peak power times the duty cycle. In other examples, the duty cycle may be between 10% and 90%. In the given example, the amplitude of the RF power is continually altered between 0% and 100%, but in another example, the amplitude may, for example, be altered between 10% and 100%.
  • One way to measure incorporation of nitrogen is by measuring the thickness change (“optical delta”) before and after a nitrogen plasma treatment. A larger thickness change indicates more nitrogen incorporation. As shown in FIG. 13, the amount of incorporated nitrogen using continuous power can also be achieved using pulsed power, with the amount of incorporated nitrogen scaling approximately with the effective delivered power. The change in optical thickness is relatively insensitive to pulsing frequency. [0047]
  • FIG. 14 illustrates optical delta for samples prepared with continuous RF source power; the saturation in incorporated nitrogen with power is observed for both pulsed and continuous power. [0048]
  • FIGS. 15 and 16 show the same data as in FIG. 13, plotted against source power and duty cycle, showing the same trends as FIG. 13. [0049]
  • In FIGS. 17 and 18, optical emission spectra are captured with an optical emission spectrometer. As one increases the duty cycle at fixed-peak RF power (500 W), the spectra approach the 500 W continuous power spectra (top line), as can be seen in FIG. 17. Pulsing frequency has a small effect on the observed intensity. FIG. 18 shows that the pulsed RF emission level can be restored to the continuous-power emission level (top line) by increasing peak RF power. Again, the emission is relatively insensitive to pulsing frequency. [0050]
  • FIGS. [0051] 13 to 16 indicate that on-wafer nitrogen incorporation similar to the incorporation of continuous RF power is possible with pulsed-RF plasmas. FIGS. 17 and 18 indicate that plasmas of similar ion density to continuous-RF power plasmas can be achieved with pulsed-RF power. These data, coupled with the effect of pulsed-RF power to reduce the electron temperature and plasma potential relative to continuous power, indicate that the pulsing of RF power provides a method for incorporation of nitrogen into gate dielectric oxides at lower energy levels. While incorporating the same amount of nitrogen in the oxide, nitrogen ions in the pulsed plasmas are accelerated into the wafer less than ions in the continuous-power plasmas because of the lower plasma potentials of the pulsed plasmas. Because of this reduced acceleration, the nitrogen will not penetrate as far into the oxide and the underlying silicon.
  • The simulation of ion implantation into silicon, specifically into Si(100), at various ion energies (10 eV to 30 eV), through a thin oxide layer shows less penetration for lower energy, as can be readily expected. Achieving nitrogen incorporation in such a low-energy fashion with the pulsed-nitrogen plasmas may provide for an improved dielectric that will lead directly to improvements in transistor performance. [0052]
  • It should be noted that although nitrogen incorporation into a thin gate silicon dioxide has been described, the described processes may have applications for nitrogen incorporation in other gate dielectric materials. [0053]
  • While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative and not restrictive of the current invention, and that this invention is not restricted to the specific constructions and arrangements shown and described since modifications may occur to those ordinarily skilled in the art. [0054]

Claims (29)

What is claimed:
1. A method of processing a substrate, comprising:
creating a nitrogen-containing plasma in the chamber, the plasma having an ion density of at least 1010 cm−3 and a plasma potential of less than 20 V; and
exposing a layer on the substrate to the plasma to incorporate nitrogen of the plasma into the layer on the substrate.
2. The method of claim 1, wherein the plasma has an electron temperature of less than 2 eV.
3. The method of claim 1, wherein the layer is silicon dioxide.
4. The method of claim 1, wherein RF current is provided to a coil located externally adjacent to a dielectric wall of the chamber, the coil creating an RF field in the chamber, the RF field creating the plasma.
5. The method of claim 4, wherein an electrode is positioned between the coil and the dielectric wall, the electrode being grounded.
6. The method of claim 5, wherein the electrode reduces the plasma potential to less than 10 V.
7. The method of claim 6, wherein the wall is dome-shaped, the coil spirals around an axis through the wall, and the electrode has an opening therein.
8. The method of claim 7, wherein the opening is within the perimeter described by the coil.
9. The method of claim 4, wherein the amplitude of the RF current is varied between high and low states.
10. The method of claim 9, wherein effective RF power applied to the coil is between 100 and 3000 W.
11. The method of claim 10, wherein a pressure in the chamber is at least 5 mT, RF power is at least 1000 W, and ion density is at least 5×1010 cm−3.
12. The method of claim 11, wherein the pressure is at least 40 mT and the plasma voltage is less than 10 V.
13. The method of claim 9, wherein the RF current is pulsed at a duty cycle of between 10 and 90%.
14. The method of claim 9, wherein the RF current is pulsed at a frequency between 1 kHz and 100 kHz.
15. A method of processing a substrate, comprising:
locating the substrate in a plasma-processing chamber;
flowing a nitrogen-containing gas into the chamber;
providing RF current to a coil to generate an RF field in the chamber, the RF field creating a nitrogen-containing RF plasma out of the gas, the amplitude of the RF current being varied between high and low states; and
incorporating nitrogen from the plasma into a layer formed on the substrate.
16. The method of claim 15, wherein the composition of the nitrogen-containing plasma is varied by pulsing of the RF current.
17. A method of processing a substrate, comprising:
locating the substrate in a plasma-processing chamber;
flowing a gas into the chamber;
providing RF current to a coil located externally adjacent to a dielectric wall of the chamber, an electrode plate being located between the coil and the dielectric wall and being at a voltage below 20 V, the RF field creating an RF plasma out of the gas; and
incorporating nitrogen ions of the plasma into a layer on the substrate.
18. The method of claim 17, wherein the electrode plate is grounded.
19. The method of claim 17, wherein the ions are nitrogen ions.
20. The method of claim 17, wherein a pressure in the chamber is at least 5 mT, RF power applied to the coil is at least 1000 W, a potential of the plasma is less than 20 V, and ion density is at least 5×1010 cm−3.
21. The method of claim 20, wherein the pressure is at least 40 mT, and the potential of the plasma is less than 10 V.
22. A plasma reactor, comprising:
a chamber, having an opening to transfer a substrate into an internal volume of the chamber;
a substrate holder in the chamber for holding the substrate;
an RF coil externally and adjacent to a nonconductive wall of the chamber; and
an electrode plate between the wall and the RF coil, the electrode plate being at a voltage below 20 V when RF current is provided to the RF coil.
23. The plasma reactor of claim 22, wherein the electrode plate is grounded.
24. The plasma reactor of claim 23, wherein the electrode plate is grounded through the chamber.
25. The plasma reactor of claim 24, wherein the wall is made of quartz.
26. The plasma reactor of claim 23, wherein the electrode plate is peripherally grounded.
27. The plasma reactor of claim 26, wherein the wall has a dome shape and the electrode plate has a dome shape positioned over the dome shape of the wall.
28. The plasma reactor of claim 27, wherein the electrode plate has a plurality of fingers, each contacting a conductive portion of the chamber.
29. A plasma reactor, comprising:
a chamber, having an opening to transfer a substrate into an internal volume of the chamber;
a substrate holder in the chamber for holding the substrate;
an RF coil externally and adjacent to a nonconductive wall of the chamber; and
an RF source connected to the RF coil, the RF source being capable of automatically varying an amplitude of RF current provided to the RF coil.
US10/170,925 2002-06-12 2002-06-12 Plasma method and apparatus for processing a substrate Expired - Lifetime US6660659B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/170,925 US6660659B1 (en) 2002-06-12 2002-06-12 Plasma method and apparatus for processing a substrate
CNB038130793A CN100533651C (en) 2002-06-12 2003-06-12 Plasma apparatus and method for processing a substrate
PCT/US2003/018784 WO2003107382A2 (en) 2002-06-12 2003-06-12 Plasma method and apparatus for processing a substrate
JP2004514108A JP2005530341A (en) 2002-06-12 2003-06-12 Plasma method and apparatus for processing a substrate
KR1020047018470A KR101044366B1 (en) 2002-06-12 2003-06-12 Plasma method and apparatus for processing a substrate
US10/461,083 US6831021B2 (en) 2002-06-12 2003-06-12 Plasma method and apparatus for processing a substrate
EP03737087A EP1512165A2 (en) 2002-06-12 2003-06-12 Plasma apparatus and method for processing a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/170,925 US6660659B1 (en) 2002-06-12 2002-06-12 Plasma method and apparatus for processing a substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/461,083 Continuation-In-Part US6831021B2 (en) 2002-06-12 2003-06-12 Plasma method and apparatus for processing a substrate

Publications (2)

Publication Number Publication Date
US6660659B1 US6660659B1 (en) 2003-12-09
US20030232513A1 true US20030232513A1 (en) 2003-12-18

Family

ID=29711042

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/170,925 Expired - Lifetime US6660659B1 (en) 2002-06-12 2002-06-12 Plasma method and apparatus for processing a substrate

Country Status (1)

Country Link
US (1) US6660659B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050202183A1 (en) * 2002-06-19 2005-09-15 Mitsubishi Heavy Industries, Ltd. Plasma processing system, plasma processing method, plasma film deposition system, and plasma film deposition method
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7972978B2 (en) 2005-08-26 2011-07-05 Applied Materials, Inc. Pretreatment processes within a batch ALD reactor
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US20140263181A1 (en) * 2013-03-15 2014-09-18 Jaeyoung Park Method and apparatus for generating highly repetitive pulsed plasmas
US9418890B2 (en) 2008-09-08 2016-08-16 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
KR20200010610A (en) * 2017-07-25 2020-01-30 어플라이드 머티어리얼스, 인코포레이티드 Improved Thin Film Encapsulation

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255936B4 (en) * 2002-11-29 2005-12-29 Advanced Micro Devices, Inc., Sunnyvale Method for producing an insulating layer and method for controlling a nitrogen concentration during the production of the insulating layer
JP4485754B2 (en) * 2003-04-08 2010-06-23 パナソニック株式会社 Manufacturing method of semiconductor device
TW200511430A (en) * 2003-05-29 2005-03-16 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
US20050241762A1 (en) * 2004-04-30 2005-11-03 Applied Materials, Inc. Alternating asymmetrical plasma generation in a process chamber
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US20060027329A1 (en) * 2004-08-09 2006-02-09 Sinha Ashok K Multi-frequency plasma enhanced process chamber having a torroidal plasma source
US7955646B2 (en) * 2004-08-09 2011-06-07 Applied Materials, Inc. Elimination of flow and pressure gradients in low utilization processes
US7678710B2 (en) 2006-03-09 2010-03-16 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7837838B2 (en) 2006-03-09 2010-11-23 Applied Materials, Inc. Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus
US7645710B2 (en) 2006-03-09 2010-01-12 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
WO2008039845A2 (en) 2006-09-26 2008-04-03 Applied Materials, Inc. Fluorine plasma treatment of high-k gate stack for defect passivation
KR100831570B1 (en) * 2006-12-27 2008-05-21 동부일렉트로닉스 주식회사 Flash memory device and method for manufacturing thereof
US7605008B2 (en) * 2007-04-02 2009-10-20 Applied Materials, Inc. Plasma ignition and complete faraday shielding of capacitive coupling for an inductively-coupled plasma
KR101257985B1 (en) * 2007-07-11 2013-04-24 도쿄엘렉트론가부시키가이샤 Plasma processing method and plasma processing apparatus
US8008166B2 (en) * 2007-07-26 2011-08-30 Applied Materials, Inc. Method and apparatus for cleaning a substrate surface
US7846793B2 (en) * 2007-10-03 2010-12-07 Applied Materials, Inc. Plasma surface treatment for SI and metal nanocrystal nucleation
US7871942B2 (en) * 2008-03-27 2011-01-18 Applied Materials, Inc. Methods for manufacturing high dielectric constant film
US10103027B2 (en) 2016-06-20 2018-10-16 Applied Materials, Inc. Hydrogenation and nitridization processes for modifying effective oxide thickness of a film
US10510545B2 (en) 2016-06-20 2019-12-17 Applied Materials, Inc. Hydrogenation and nitridization processes for modifying effective oxide thickness of a film
WO2021150625A1 (en) 2020-01-23 2021-07-29 Applied Materials, Inc. Method of cleaning a structure and method of depositiing a capping layer in a structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136654A (en) * 1996-06-07 2000-10-24 Texas Instruments Incorporated Method of forming thin silicon nitride or silicon oxynitride gate dielectrics
TW580730B (en) * 2001-03-09 2004-03-21 Macronix Int Co Ltd Method of forming a silicon oxide layer with different thickness using pulsed nitrogen plasma implantation
US6503846B1 (en) * 2001-06-20 2003-01-07 Texas Instruments Incorporated Temperature spike for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates
US6780719B2 (en) * 2001-06-20 2004-08-24 Texas Instruments Incorporated Method for annealing ultra-thin, high quality gate oxide layers using oxidizer/hydrogen mixtures
US6548366B2 (en) * 2001-06-20 2003-04-15 Texas Instruments Incorporated Method of two-step annealing of ultra-thin silicon dioxide layers for uniform nitrogen profile

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050202183A1 (en) * 2002-06-19 2005-09-15 Mitsubishi Heavy Industries, Ltd. Plasma processing system, plasma processing method, plasma film deposition system, and plasma film deposition method
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8282992B2 (en) 2004-05-12 2012-10-09 Applied Materials, Inc. Methods for atomic layer deposition of hafnium-containing high-K dielectric materials
US8343279B2 (en) 2004-05-12 2013-01-01 Applied Materials, Inc. Apparatuses for atomic layer deposition
US7972978B2 (en) 2005-08-26 2011-07-05 Applied Materials, Inc. Pretreatment processes within a batch ALD reactor
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US8043907B2 (en) 2008-03-31 2011-10-25 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US9418890B2 (en) 2008-09-08 2016-08-16 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US20140263181A1 (en) * 2013-03-15 2014-09-18 Jaeyoung Park Method and apparatus for generating highly repetitive pulsed plasmas
US11427913B2 (en) 2013-03-15 2022-08-30 Plasmanano Corporation Method and apparatus for generating highly repetitive pulsed plasmas
KR20200010610A (en) * 2017-07-25 2020-01-30 어플라이드 머티어리얼스, 인코포레이티드 Improved Thin Film Encapsulation
KR102333217B1 (en) 2017-07-25 2021-12-01 어플라이드 머티어리얼스, 인코포레이티드 Improved thin film encapsulation
KR20210147105A (en) * 2017-07-25 2021-12-06 어플라이드 머티어리얼스, 인코포레이티드 Improved thin-film encapsulation
KR102569956B1 (en) 2017-07-25 2023-08-22 어플라이드 머티어리얼스, 인코포레이티드 Improved thin-film encapsulation

Also Published As

Publication number Publication date
US6660659B1 (en) 2003-12-09

Similar Documents

Publication Publication Date Title
US6660659B1 (en) Plasma method and apparatus for processing a substrate
US6831021B2 (en) Plasma method and apparatus for processing a substrate
US5846885A (en) Plasma treatment method
KR100381117B1 (en) Plasma processing method and apparatus
KR100530246B1 (en) Self-cleaning etch process
US5897713A (en) Plasma generating apparatus
JP4657473B2 (en) Plasma processing equipment
US8419958B2 (en) Using positive DC offset of bias RF to neutralize charge build-up of etch features
JP3381916B2 (en) Low frequency induction type high frequency plasma reactor
US6875366B2 (en) Plasma processing apparatus and method with controlled biasing functions
EP0805475A2 (en) Plasma processing apparatus
KR19990072585A (en) Method for treating surface of semiconductor device and apparatus thereof
JP2008300687A (en) Plasma doping method, and device therefor
US11043391B2 (en) Etching method and etching processing apparatus
JPH09120957A (en) Plasma device and plasma treatment method
US20050126711A1 (en) Plasma processing apparatus
US20020033231A1 (en) Apparatus and method for plasma etching
KR20010041386A (en) Low pressure inductively coupled high density plasma reactor
US5998931A (en) Method and apparatus for controlling electrostatic coupling to plasmas
US20030068898A1 (en) Dry etching method for manufacturing processes of semiconductor devices
KR100305134B1 (en) Etching method
JP4577328B2 (en) Manufacturing method of semiconductor device
US6686294B2 (en) Method and apparatus for etching silicon nitride film and manufacturing method of semiconductor device
JP3563054B2 (en) Plasma processing apparatus and method
JPH1167725A (en) Plasma etching device

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRAUS, PHILLIP ALAN;CHUA, TAI CHENG;HOLLAND, JOHN;AND OTHERS;REEL/FRAME:013312/0631;SIGNING DATES FROM 20020815 TO 20020816

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12