US20030135162A1 - Delivery and retrieval manifold for a distal protection filter - Google Patents

Delivery and retrieval manifold for a distal protection filter Download PDF

Info

Publication number
US20030135162A1
US20030135162A1 US10/053,143 US5314302A US2003135162A1 US 20030135162 A1 US20030135162 A1 US 20030135162A1 US 5314302 A US5314302 A US 5314302A US 2003135162 A1 US2003135162 A1 US 2003135162A1
Authority
US
United States
Prior art keywords
accordance
distal protection
button
assembly
inner shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/053,143
Inventor
Thomas Deyette
Eric Houde
Scott Diamond
Mark Van Diver
Colin Hart
Glenn Wadleigh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Scimed Life Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scimed Life Systems Inc filed Critical Scimed Life Systems Inc
Priority to US10/053,143 priority Critical patent/US20030135162A1/en
Assigned to SCIMED LIFE SYSTEMS, INC. reassignment SCIMED LIFE SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEYETTE, THOMAS JR., DIAMOND, SCOTT A., HART, COLIN P., HOUDE, ERIC, VAN DIVER, MARK H., WADLEIGH, GLENN H.
Publication of US20030135162A1 publication Critical patent/US20030135162A1/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCIMED LIFE SYSTEMS, INC.
Priority to US11/956,977 priority patent/US7722638B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/011Instruments for their placement or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/0105Open ended, i.e. legs gathered only at one side
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/018Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0093Umbrella-shaped, e.g. mushroom-shaped

Definitions

  • the present invention relates generally to devices and methods for treating occluded or stenoic blood vessels. More particularly, the present invention relates to devices and methods for using and retrieving a distal protection device from the vasculature of a patient.
  • Atherosclerosis and other forms of vascular disease are a major health problem in the United States and the world.
  • vascular disease results in blood vessels becoming blocked or narrowed. This blockage can result in a lack of oxygen for the heart. It is critical that the heart muscle be well oxygenated so that the blood pumping action of the heart is not impaired.
  • Occluded or stenotic blood vessels may be treated with a number of medical procedures including percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), and atherectomy. These treatments are relatively non-invasive methods of treating a stenotic lesion.
  • Angioplasty techniques typically involve the use of a balloon catheter. The balloon catheter is advanced over a guidewire such that the balloon is positioned adjacent a stenotic lesion. The balloon is then inflated and the stenosis is expanded. During an atherectomy procedure, the stenotic lesion is typically mechanically cut away from the blood vessel wall.
  • stenotic debris is often separated from the stenosis and may be free to flow within the lumen of the vessel. If this debris enters the circulatory system, it could block other vascular regions including the neural vasculature or in the lungs. During angioplasty procedures, stenotic debris may also break loose due to manipulation of the blood vessel. Because of this debris, a number of devices termed distal protection devices have been developed to filter out this debris.
  • the device Before using a distal protection device, the device will need to be delivered to an area downstream of where treatment will take place. It is important that the device be delivered properly and efficiently. A need, therefore, exists for devices for delivery of distal protection devices.
  • the distal protection device After an intravascular procedure has been performed, the distal protection device will need to be removed from the vasculature. Because the distal protection devices are typical used in an expanded condition, it may be difficult to remove the device. A need, therefore exists for devices suitable for retrieval of distal protection devices.
  • a distal protection assembly may comprise an outer sheath, an inner shaft disposed within a lumen of the outer sheath, a distal protection device coupled to a distal end of the inner shaft, and a manifold coupled to the outer sheath.
  • the manifold may include an actuation assembly that, when actuated, may result in movement of the outer sheath relative to the inner shaft. This movement will shift the filter between a delivered position and a retrieved position.
  • the manifold may comprise a proximal end, a distal end, a handle region, an opening located between the proximal end and the distal end, and may include a rail.
  • An actuator assembly may be disposed at the opening.
  • the actuator assembly may comprise a button having a proximal end, a distal end, and a lumen extending therethrough.
  • the proximal end of the outer sheath is coupled to the distal end of the button.
  • the button may be longitudinally movable along the rail such that movement of the button results in a substantially similar movement of the outer sheath relative to the inner shaft.
  • the manifold may, thus, be actuated to shift the distal protection device between a delivery position and a retrieval position by longitudinal movement of the button.
  • the outer sheath may further comprise or be coupled to a proximal tubular member.
  • the proximal tubular member may further comprise teeth.
  • the actuator assembly may comprise a gear coupled to a thumbwheel, or one or more buttons. The teeth may engage the gear so that rotation of the thumbwheel, or pressing or rotating a button may result in movement of the outer sheath relative to the inner shaft.
  • FIG. 1 is plan overview of a distal protection assembly
  • FIG. 2 is an enlarged view of a distal protection device of FIG. 1 in a retrieved position
  • FIG. 3 is an enlarged view of a distal protection device of FIG. 1 in a delivered position
  • FIG. 4 is a perspective view of a manifold
  • FIG. 5 is a perspective view of the manifold of FIG. 4, wherein the actuator retention cover is removed;
  • FIG. 6 is a perspective view of an alternative embodiment of a manifold
  • FIG. 7 is a perspective of a second alternative embodiment of a manifold
  • FIG. 8 is a perspective view of the manifold shown in FIG. 7;
  • FIG. 9 is a perspective view of an alternative embodiment of the manifold shown in FIG. 7;
  • FIG. 10 is a perspective view of a second alternative embodiment of the manifold shown in FIG. 7;
  • FIG. 11 is a perspective view of a third alternative embodiment of a manifold
  • FIG. 11 is an enlarged view through section 11 A- 11 A;
  • FIG. 12 is an exploded view of the manifold of FIG. 11, wherein the actuator assembly is removed.
  • FIG. 1 is a plan overview of a distal protection assembly 10 .
  • Distal protection assembly 10 includes an outer sheath 12 having a lumen 18 , an inner shaft 20 disposed within lumen 18 , a distal protection filter 26 coupled to inner shaft 20 , and a manifold 28 coupled to a proximal end 14 of outer sheath 12 .
  • Manifold 28 may be used to actuate sheath 12 relative to shaft 20 in order to deliver or retrieve filter 26 .
  • manifold 28 is shown systematically, in the subsequently described manifold embodiments a detailed description is provided.
  • Outer sheath 12 having proximal end 14 , a distal end 16 , and lumen 18 extending therethrough may be comprised of materials including, but not limited to, metals, stainless steel, nickel alloys, nickel-titanium alloys, thermoplastics, high performance engineering resins, fluorinated ethylene propylene (FEP), polymer, polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyurethane, polytetrafluoroethylene (PTFE), polyether-ether ketone (PEEK), polyimide, polyamide, polyphenylene sulfide (PPS), polyphenylene oxide (PPO), polysufone, nylon, perfluoro(propyl vinyl ether) (PFA), polycarbonate, acrylonitrile butadiene styrene (ABS), etc.
  • FEP fluorinated ethylene propylene
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinylch
  • Inner shaft 20 may be disposed within lumen 18 .
  • Inner shaft 20 includes a proximal end 22 and a distal end 24 .
  • Inner shaft 20 may be comprised of materials similar to those listed above.
  • inner shaft 20 may comprise a stainless steel or nickel-titanium alloy guidewire.
  • Distal protection filter 26 may be disposed at distal end 24 of inner shaft 20 .
  • Filter 26 may be comprised of a polyurethane sheet and include at least one opening that may be, for example, formed by known laser techniques. The holes or openings are sized to allow blood flow therethrough but restrict flow of debris or emboli floating in the body lumen or cavity.
  • Filter 26 may be generally cone-shaped, and have a proximal and a distal end. The distal end may be a narrow, “V”-shaped end and is fixedly secured or formed to shaft 26 . The proximal end has a relatively wide opening. Alternatively, filter 26 may be cylindrical with a relatively rounded distal end.
  • Filter 26 operates between a closed collapsed profile and an open radiallyexpanded deployed profile for collecting debris in a body lumen.
  • Filter 26 may include a collapsible proximally-tapered frame having a mouth and a plurality of longitudinally-extending ribs. In an expanded profile, the mouth is opened and the ribs extend radially outwardly to support the mouth.
  • filter 26 may comprise a number of differing objects including, but not limited to, a filter, a basket, a filter basket, a sheath, a capture sheath, a capturing device, one or more struts, one or more ribs, a mesh, a net, an expandable object, a self-expanding object, and combinations thereof.
  • a number of differing configurations of filter 26 may be substituted without departing from the spirit of the invention.
  • Manifold 28 may be polymeric or, for example, be comprised of materials similar to those listed above.
  • Outer sheath 12 may be coupled to manifold 28 .
  • outer sheath 12 may be coupled to an actuation assembly of manifold 28 such that outer sheath 12 is movable relative to inner shaft 20 by actuating the actuation assembly. Examples of mechanisms for moving outer sheath 12 are described below.
  • Inner shaft 20 may also be coupled to manifold 28 .
  • inner shaft 20 may pass through an opening or lumen within manifold 28 .
  • shaft 20 may be fixed relative to manifold 28 by a collet 149 (please see FIG. 4) or other suitable structures.
  • Filter 26 may be delivered or retrieved by actuating manifold 28 to move outer sheath 12 relative to inner shaft 20 .
  • Filter 26 is understood to be retrieved when it is collapsed and wherein at least a portion thereof is contained within outer sheath 12 .
  • FIG. 2 is an enlarged view of filter 26 in a retrieved position. Retrieval results in distal protection filter 26 being in a configuration suitable for removal from the vasculature.
  • Filter 26 is understood to be delivered when it is expanded and wherein at least a portion of thereof is not contained within outer sheath 12 .
  • FIG. 3 is an enlarged view of filter 26 in a delivered position. Delivery results in filter 26 being in a configuration within the vasculature suitable for collecting intravascular debris.
  • FIG. 4 is a perspective view of manifold 128 according to an embodiment of the invention. Similar to what is disclosed above, actuation of manifold 128 may result in movement of outer sheath 12 relative to inner shaft 20 . This actuation may shift filter 26 between a delivery position and a retrieval position.
  • Manifold 128 may comprise a proximal end 130 , a distal end 132 , and a handle region 134 .
  • Handle region 134 is sized appropriately for a person's hand to hold and be able to actuate manifold 128 .
  • Manifold 128 may further comprise an opening 136 located between proximal end 130 and distal end 132 .
  • opening 136 may further comprise a rail 138 .
  • An actuator assembly 140 may be disposed at opening 136 .
  • Actuator assembly 140 may comprise a button 142 having a proximal end 144 , a distal end 146 , and a lumen 148 extending therethrough.
  • Button 142 may comprise a number of shapes including symmetric, flat, concave, etc.
  • Proximal end 14 of outer sheath 12 is coupled to distal end 146 of button 142 .
  • outer sheath 12 may be secured to actuator assembly 140 by adhesive or heat bonding techniques.
  • Proximal end 22 of inner shaft 20 may pass through lumen 148 .
  • proximal end 22 of inner shaft 20 passes through lumen 148 , through proximal end 144 of button 142 , is secured to manifold 128 proximate to proximal end 130 of manifold 128 by a collet 149 , and may extend out of proximal end 130 of manifold 128 .
  • manifold 128 may be used as a subassembly for a number of different over-the-wire catheters.
  • Button 142 may be longitudinally movable along rail 138 . Because outer sheath 12 is coupled to distal end 146 of button 142 , movement of button 142 results in a substantially similar movement of outer sheath 12 relative to inner shaft 20 . Movement of button 142 in the proximal direct may, for example, move outer sheath 12 proximally to shift filter 26 into a delivered position. Analogously, distal movement of button 142 may move outer sheath 12 distally and shift filter 26 into a retrieved position. It should be appreciated that the direction of motion required to shift the relative position of filter 26 relative to sheath 12 may be altered without departing from the scope of the invention.
  • Distal end 132 of manifold 128 may further comprise an actuator retention cover 150 .
  • Actuator retention cover 150 holds button 142 in position and may allow for only the desired motion of button 142 .
  • FIG. 5 is a perspective view of manifold 128 with actuator retention cover 150 removed.
  • outer sheath 12 may be fixed relative to manifold 128 and inner shaft 20 may be coupled to actuator assembly 140 .
  • longitudinal movement of button 142 would move inner shaft 20 relative to outer sheath 12 .
  • This embodiment may be particularly important if a specific direction of actuation (e.g., actuating button 142 proximally or distally) is preferred by a clinician.
  • FIG. 6 is a perspective view of an alternative embodiment of a manifold according to an embodiment of the invention.
  • Manifold 228 may comprise proximal end 230 , distal end 232 , and handle region 234 sized appropriately for a person's hand to hold and be able to actuate manifold 228 .
  • Outer sheath 12 may further comprise or be coupled to a proximal tubular member 252 .
  • Proximal tubular member 252 may include a proximal end 254 and a distal end 256 .
  • Proximal tubular member 252 may be slidably disposed within manifold 228 .
  • Proximal end 254 and distal end 256 of proximal tubular member 252 may prevent excessive movement (i.e., movement in excess of what is required to deliver or retrieve filter 26 ) of outer sheath 12 relative to inner shaft 20 and manifold 228 .
  • Proximal end 22 of inner shaft 20 may pass through proximal tubular member 252 and may extend through proximal end 230 of manifold 228 .
  • proximal end 22 of inner shaft 20 passes through proximal tubular member 252 and is secured to manifold 228 proximate to proximal end 230 of manifold 228 , for example by a collet.
  • Proximal tubular member 252 may further comprise teeth 258 and actuator assembly 240 may comprise a gear 260 coupled to a thumbwheel 262 .
  • Teeth 258 may engage gear 260 of actuator assembly 240 .
  • Rotation of thumbwheel 262 thus, may result in rotation of gear 260 and movement of outer sheath 12 relative to inner shaft 20 .
  • manifold 228 may be actuated to shift filter 26 between a delivery position and a retrieval position by rotation of thumbwheel 262 .
  • FIG. 7 is a perspective view of a second alternative embodiment of a manifold according to an embodiment of the invention. Similar to what is disclosed above, manifold 328 may comprise proximal end 330 , distal end 332 , handle region 334 , and actuation assembly 340 .
  • FIG. 8 is perspective view of manifold 328 .
  • outer sheath 12 may further comprise or be coupled to proximal tubular member 352 having proximal end 354 , distal end 356 , and teeth 358 .
  • Proximal end 22 of inner shaft 20 may pass through proximal tubular member 352 and be secured to manifold 328 proximate to proximal end 330 of manifold 328 .
  • Actuator assembly 340 may comprise gear 360 coupled to button 342 .
  • Teeth 358 may engage gear 360 of actuator assembly 340 .
  • Pressing button 342 may result in rotation of gear 360 that can ultimately result in movement of outer sheath 12 relative to inner shaft 20 .
  • manifold 328 may be actuated to shift filter 26 between a delivery position and a retrieval position by pressing button 342 .
  • Button 342 includes teeth 343 that engage a second gear 361 that is coupled to gear 360 . According to this embodiment, pressing button 342 results in movement of second gear 361 , which subsequently results in movement of gear 360 .
  • Including more than one gear allows a designer to alter the gear configurations in order to set the desired mechanical properties of assembly 340 . For example, increasing the diameter of gear 361 relative to gear 360 may increase the mechanical advantage of assembly 340 . Similarly, altering the gear ratios of gears 360 , 361 may also result in an increased mechanical advantage.
  • a number of different configurations of gears 360 , 361 may be used in this and other similar embodiments without departing from the spirit of the invention.
  • pressing button 342 may result in movement of outer sheath 12 in only a single direction depending on the configuration of gear 360 .
  • FIG. 8 depicts gear 360 configured such that pressing button 342 results in distal movement of outer sheath 12 so as to shift filter 26 to the retrieved position.
  • FIG. 9 depicts an alternative manifold 428 wherein pressing of button 442 results in proximal movement of outer sheath 12 so as to shift filter 26 to the delivered position.
  • manifold 428 may comprise proximal end 430 , distal end 432 , and handle region 434 .
  • Outer sheath 12 may further comprise or be coupled to proximal tubular member 452 having proximal end 454 , distal end 456 , and teeth 458 .
  • Proximal end 22 of inner shaft 20 may pass through proximal tubular member 452 and be secured to manifold 428 proximate to proximal end 430 of manifold 428 in a manner similar to those described above.
  • Actuator assembly 440 may comprise gear 460 coupled to button 442 .
  • Teeth 458 may engage gear 460 of actuator assembly 440 so that pressing button 442 may result in rotation of gear 460 that can ultimately result in movement of outer sheath 12 proximally relative to inner shaft 20 .
  • FIG. 10 is a perspective view of a third alternative embodiment of manifold 528 according to an embodiment of the invention. Similar to what is disclosed above, manifold 528 may comprise proximal end 530 , distal end 532 , and handle region 534 .
  • Outer sheath 12 may further comprise or be coupled to proximal tubular member 552 having proximal end 554 , distal end 556 , and teeth 558 .
  • Actuator assembly 540 may comprise gear 560 coupled to button 542 by a second gear 561 .
  • Teeth 558 may engage gear 560 of actuator assembly 540 so that pressing button 542 may result in rotation of gear 560 that can ultimately result in movement of outer sheath 12 relative to inner shaft 20 .
  • button 542 includes teeth 543 that engage a second gear 561 such that pressing button 542 results in movement of second gear 561 , which subsequently results in movement of gear 560 .
  • Actuator assembly 540 further comprises a second button 542 a .
  • Button 542 a includes teeth (not shown, but essentially the same as teeth 543 ) that engage second gear 561 so that pressing button 542 a results in rotation of gear 561 and gear 560 that ultimately results in movement of outer sheath 12 relative to inner shaft 20 in a direction that is opposite to pressing button 542 .
  • manifold 528 comprises the ability to shift filter 26 to either the delivery position or the retrieval position depending on whether button 542 or 542 a is pressed.
  • FIG. 11 is a perspective view of a third embodiment of a manifold according to an embodiment of the invention. Similar to what is disclosed above, manifold 628 may comprise proximal end 630 , distal end 632 , and handle region 634 .
  • Outer sheath 12 may further comprise or be coupled to proximal tubular member 652 having proximal end 654 , distal end 656 , and teeth 658 .
  • Actuator assembly 640 may comprise gear 660 coupled to button 642 that is axially rotatable. Teeth 658 may engage gear 660 of actuator assembly 640 . Axial rotation of button 642 may result in movement of outer sheath 12 relative to inner shaft 20 .
  • manifold 628 may be actuated to shift filter 26 between a delivery position and a retrieval position by rotation button 642 .
  • FIG. 11A is a cross-sectional view of manifold 628 taken through line 11 A- 11 A.
  • proximal tubular member 652 may further comprise a key 664 adapted to engage a notch 666 handle region 634 .
  • Key 664 may substantially prevent axial rotation of proximal tubular member 652 when actuator assembly 640 is rotated. Rotation of proximal tubular member 652 may interfere with the movement of outer sheath 12 relative to inner shaft 20 .
  • FIG. 12 is an exploded view of manifold 628 wherein actuator assembly 640 has been removed.
  • FIG. 12 is provided so as to more clearly illustrate the elements of manifold 628 .

Abstract

Devices and methods for delivery or retrieval of a distal protection device. A distal protection assembly may comprise an outer sheath, an inner shaft disposed within a lumen of the outer sheath, a distal protection device disposed at a distal end of the inner shaft; and a manifold coupled to a proximal end of the outer sheath that is adapted for moving the outer sheath relative to the inner shaft.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates generally to devices and methods for treating occluded or stenoic blood vessels. More particularly, the present invention relates to devices and methods for using and retrieving a distal protection device from the vasculature of a patient. [0002]
  • 2. Description of the Related Art [0003]
  • Atherosclerosis and other forms of vascular disease are a major health problem in the United States and the world. Generally, vascular disease results in blood vessels becoming blocked or narrowed. This blockage can result in a lack of oxygen for the heart. It is critical that the heart muscle be well oxygenated so that the blood pumping action of the heart is not impaired. [0004]
  • Occluded or stenotic blood vessels may be treated with a number of medical procedures including percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), and atherectomy. These treatments are relatively non-invasive methods of treating a stenotic lesion. Angioplasty techniques typically involve the use of a balloon catheter. The balloon catheter is advanced over a guidewire such that the balloon is positioned adjacent a stenotic lesion. The balloon is then inflated and the stenosis is expanded. During an atherectomy procedure, the stenotic lesion is typically mechanically cut away from the blood vessel wall. [0005]
  • During angioplasty and atherectomy procedures, stenotic debris is often separated from the stenosis and may be free to flow within the lumen of the vessel. If this debris enters the circulatory system, it could block other vascular regions including the neural vasculature or in the lungs. During angioplasty procedures, stenotic debris may also break loose due to manipulation of the blood vessel. Because of this debris, a number of devices termed distal protection devices have been developed to filter out this debris. [0006]
  • Before using a distal protection device, the device will need to be delivered to an area downstream of where treatment will take place. It is important that the device be delivered properly and efficiently. A need, therefore, exists for devices for delivery of distal protection devices. [0007]
  • After an intravascular procedure has been performed, the distal protection device will need to be removed from the vasculature. Because the distal protection devices are typical used in an expanded condition, it may be difficult to remove the device. A need, therefore exists for devices suitable for retrieval of distal protection devices. [0008]
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention pertains to a novel distal protection assembly for delivering or retrieving a distal protection filter. A distal protection assembly may comprise an outer sheath, an inner shaft disposed within a lumen of the outer sheath, a distal protection device coupled to a distal end of the inner shaft, and a manifold coupled to the outer sheath. The manifold may include an actuation assembly that, when actuated, may result in movement of the outer sheath relative to the inner shaft. This movement will shift the filter between a delivered position and a retrieved position. [0009]
  • The manifold may comprise a proximal end, a distal end, a handle region, an opening located between the proximal end and the distal end, and may include a rail. An actuator assembly may be disposed at the opening. The actuator assembly may comprise a button having a proximal end, a distal end, and a lumen extending therethrough. The proximal end of the outer sheath is coupled to the distal end of the button. The button may be longitudinally movable along the rail such that movement of the button results in a substantially similar movement of the outer sheath relative to the inner shaft. The manifold may, thus, be actuated to shift the distal protection device between a delivery position and a retrieval position by longitudinal movement of the button. [0010]
  • Alternatively, the outer sheath may further comprise or be coupled to a proximal tubular member. The proximal tubular member may further comprise teeth. The actuator assembly may comprise a gear coupled to a thumbwheel, or one or more buttons. The teeth may engage the gear so that rotation of the thumbwheel, or pressing or rotating a button may result in movement of the outer sheath relative to the inner shaft.[0011]
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 is plan overview of a distal protection assembly; [0012]
  • FIG. 2 is an enlarged view of a distal protection device of FIG. 1 in a retrieved position; [0013]
  • FIG. 3 is an enlarged view of a distal protection device of FIG. 1 in a delivered position; [0014]
  • FIG. 4 is a perspective view of a manifold; [0015]
  • FIG. 5 is a perspective view of the manifold of FIG. 4, wherein the actuator retention cover is removed; [0016]
  • FIG. 6 is a perspective view of an alternative embodiment of a manifold; [0017]
  • FIG. 7 is a perspective of a second alternative embodiment of a manifold; [0018]
  • FIG. 8 is a perspective view of the manifold shown in FIG. 7; [0019]
  • FIG. 9 is a perspective view of an alternative embodiment of the manifold shown in FIG. 7; [0020]
  • FIG. 10 is a perspective view of a second alternative embodiment of the manifold shown in FIG. 7; [0021]
  • FIG. 11 is a perspective view of a third alternative embodiment of a manifold; [0022]
  • FIG. 11 is an enlarged view through section [0023] 11A-11A; and
  • FIG. 12 is an exploded view of the manifold of FIG. 11, wherein the actuator assembly is removed.[0024]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate example embodiments of the claimed invention. [0025]
  • When delivering or retrieving a distal protection filter, it may be important to secure the position of the filter (or filter wire) relative to a delivery or retrieval sheath. This may allow a clinician to accurately deliver or retrieve the filter and minimize unwanted or unplanned movement thereof. FIG. 1 is a plan overview of a [0026] distal protection assembly 10. Distal protection assembly 10 includes an outer sheath 12 having a lumen 18, an inner shaft 20 disposed within lumen 18, a distal protection filter 26 coupled to inner shaft 20, and a manifold 28 coupled to a proximal end 14 of outer sheath 12. Manifold 28 may be used to actuate sheath 12 relative to shaft 20 in order to deliver or retrieve filter 26. In this embodiment manifold 28 is shown systematically, in the subsequently described manifold embodiments a detailed description is provided.
  • [0027] Outer sheath 12 having proximal end 14, a distal end 16, and lumen 18 extending therethrough may be comprised of materials including, but not limited to, metals, stainless steel, nickel alloys, nickel-titanium alloys, thermoplastics, high performance engineering resins, fluorinated ethylene propylene (FEP), polymer, polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyurethane, polytetrafluoroethylene (PTFE), polyether-ether ketone (PEEK), polyimide, polyamide, polyphenylene sulfide (PPS), polyphenylene oxide (PPO), polysufone, nylon, perfluoro(propyl vinyl ether) (PFA), polycarbonate, acrylonitrile butadiene styrene (ABS), etc.
  • At least a portion of [0028] inner shaft 20 may be disposed within lumen 18. Inner shaft 20 includes a proximal end 22 and a distal end 24. Inner shaft 20 may be comprised of materials similar to those listed above. For example, inner shaft 20 may comprise a stainless steel or nickel-titanium alloy guidewire.
  • [0029] Distal protection filter 26 may be disposed at distal end 24 of inner shaft 20. Filter 26 may be comprised of a polyurethane sheet and include at least one opening that may be, for example, formed by known laser techniques. The holes or openings are sized to allow blood flow therethrough but restrict flow of debris or emboli floating in the body lumen or cavity. Filter 26 may be generally cone-shaped, and have a proximal and a distal end. The distal end may be a narrow, “V”-shaped end and is fixedly secured or formed to shaft 26. The proximal end has a relatively wide opening. Alternatively, filter 26 may be cylindrical with a relatively rounded distal end.
  • [0030] Filter 26 operates between a closed collapsed profile and an open radiallyexpanded deployed profile for collecting debris in a body lumen. Filter 26 may include a collapsible proximally-tapered frame having a mouth and a plurality of longitudinally-extending ribs. In an expanded profile, the mouth is opened and the ribs extend radially outwardly to support the mouth. In an alternate embodiment, filter 26 may comprise a number of differing objects including, but not limited to, a filter, a basket, a filter basket, a sheath, a capture sheath, a capturing device, one or more struts, one or more ribs, a mesh, a net, an expandable object, a self-expanding object, and combinations thereof. A number of differing configurations of filter 26 may be substituted without departing from the spirit of the invention.
  • [0031] Manifold 28 may be polymeric or, for example, be comprised of materials similar to those listed above. Outer sheath 12 may be coupled to manifold 28. For example, outer sheath 12 may be coupled to an actuation assembly of manifold 28 such that outer sheath 12 is movable relative to inner shaft 20 by actuating the actuation assembly. Examples of mechanisms for moving outer sheath 12 are described below. Inner shaft 20 may also be coupled to manifold 28. For example, inner shaft 20 may pass through an opening or lumen within manifold 28. In addition, shaft 20 may be fixed relative to manifold 28 by a collet 149 (please see FIG. 4) or other suitable structures.
  • [0032] Filter 26 may be delivered or retrieved by actuating manifold 28 to move outer sheath 12 relative to inner shaft 20. Filter 26 is understood to be retrieved when it is collapsed and wherein at least a portion thereof is contained within outer sheath 12. FIG. 2 is an enlarged view of filter 26 in a retrieved position. Retrieval results in distal protection filter 26 being in a configuration suitable for removal from the vasculature.
  • [0033] Filter 26 is understood to be delivered when it is expanded and wherein at least a portion of thereof is not contained within outer sheath 12. FIG. 3 is an enlarged view of filter 26 in a delivered position. Delivery results in filter 26 being in a configuration within the vasculature suitable for collecting intravascular debris.
  • FIG. 4 is a perspective view of [0034] manifold 128 according to an embodiment of the invention. Similar to what is disclosed above, actuation of manifold 128 may result in movement of outer sheath 12 relative to inner shaft 20. This actuation may shift filter 26 between a delivery position and a retrieval position.
  • [0035] Manifold 128 may comprise a proximal end 130, a distal end 132, and a handle region 134. Handle region 134 is sized appropriately for a person's hand to hold and be able to actuate manifold 128. Manifold 128 may further comprise an opening 136 located between proximal end 130 and distal end 132. In an exemplary embodiment, opening 136 may further comprise a rail 138.
  • An [0036] actuator assembly 140 may be disposed at opening 136. Actuator assembly 140 may comprise a button 142 having a proximal end 144, a distal end 146, and a lumen 148 extending therethrough. Button 142 may comprise a number of shapes including symmetric, flat, concave, etc. Proximal end 14 of outer sheath 12 is coupled to distal end 146 of button 142. For example, outer sheath 12 may be secured to actuator assembly 140 by adhesive or heat bonding techniques.
  • [0037] Proximal end 22 of inner shaft 20 may pass through lumen 148. In an exemplary embodiment, proximal end 22 of inner shaft 20 passes through lumen 148, through proximal end 144 of button 142, is secured to manifold 128 proximate to proximal end 130 of manifold 128 by a collet 149, and may extend out of proximal end 130 of manifold 128. According to this embodiment, manifold 128 may be used as a subassembly for a number of different over-the-wire catheters.
  • [0038] Button 142 may be longitudinally movable along rail 138. Because outer sheath 12 is coupled to distal end 146 of button 142, movement of button 142 results in a substantially similar movement of outer sheath 12 relative to inner shaft 20. Movement of button 142 in the proximal direct may, for example, move outer sheath 12 proximally to shift filter 26 into a delivered position. Analogously, distal movement of button 142 may move outer sheath 12 distally and shift filter 26 into a retrieved position. It should be appreciated that the direction of motion required to shift the relative position of filter 26 relative to sheath 12 may be altered without departing from the scope of the invention.
  • [0039] Distal end 132 of manifold 128 may further comprise an actuator retention cover 150. Actuator retention cover 150 holds button 142 in position and may allow for only the desired motion of button 142. FIG. 5 is a perspective view of manifold 128 with actuator retention cover 150 removed.
  • In an alternate embodiment, [0040] outer sheath 12 may be fixed relative to manifold 128 and inner shaft 20 may be coupled to actuator assembly 140. According to this embodiment, longitudinal movement of button 142 would move inner shaft 20 relative to outer sheath 12. This embodiment may be particularly important if a specific direction of actuation (e.g., actuating button 142 proximally or distally) is preferred by a clinician.
  • FIG. 6 is a perspective view of an alternative embodiment of a manifold according to an embodiment of the invention. [0041] Manifold 228 may comprise proximal end 230, distal end 232, and handle region 234 sized appropriately for a person's hand to hold and be able to actuate manifold 228.
  • [0042] Outer sheath 12 may further comprise or be coupled to a proximal tubular member 252. Proximal tubular member 252 may include a proximal end 254 and a distal end 256. Proximal tubular member 252 may be slidably disposed within manifold 228. Proximal end 254 and distal end 256 of proximal tubular member 252 may prevent excessive movement (i.e., movement in excess of what is required to deliver or retrieve filter 26) of outer sheath 12 relative to inner shaft 20 and manifold 228.
  • [0043] Proximal end 22 of inner shaft 20 may pass through proximal tubular member 252 and may extend through proximal end 230 of manifold 228. In an exemplary embodiment, proximal end 22 of inner shaft 20 passes through proximal tubular member 252 and is secured to manifold 228 proximate to proximal end 230 of manifold 228, for example by a collet.
  • [0044] Proximal tubular member 252 may further comprise teeth 258 and actuator assembly 240 may comprise a gear 260 coupled to a thumbwheel 262. Teeth 258 may engage gear 260 of actuator assembly 240. Rotation of thumbwheel 262, thus, may result in rotation of gear 260 and movement of outer sheath 12 relative to inner shaft 20. According to this embodiment, manifold 228 may be actuated to shift filter 26 between a delivery position and a retrieval position by rotation of thumbwheel 262.
  • FIG. 7 is a perspective view of a second alternative embodiment of a manifold according to an embodiment of the invention. Similar to what is disclosed above, manifold [0045] 328 may comprise proximal end 330, distal end 332, handle region 334, and actuation assembly 340.
  • FIG. 8 is perspective view of [0046] manifold 328. Similar to what is disclosed above, outer sheath 12 may further comprise or be coupled to proximal tubular member 352 having proximal end 354, distal end 356, and teeth 358. Proximal end 22 of inner shaft 20 may pass through proximal tubular member 352 and be secured to manifold 328 proximate to proximal end 330 of manifold 328.
  • [0047] Actuator assembly 340 may comprise gear 360 coupled to button 342. Teeth 358 may engage gear 360 of actuator assembly 340. Pressing button 342 may result in rotation of gear 360 that can ultimately result in movement of outer sheath 12 relative to inner shaft 20. According to this embodiment, manifold 328 may be actuated to shift filter 26 between a delivery position and a retrieval position by pressing button 342.
  • [0048] Button 342 includes teeth 343 that engage a second gear 361 that is coupled to gear 360. According to this embodiment, pressing button 342 results in movement of second gear 361, which subsequently results in movement of gear 360. Including more than one gear allows a designer to alter the gear configurations in order to set the desired mechanical properties of assembly 340. For example, increasing the diameter of gear 361 relative to gear 360 may increase the mechanical advantage of assembly 340. Similarly, altering the gear ratios of gears 360,361 may also result in an increased mechanical advantage. A number of different configurations of gears 360,361 may be used in this and other similar embodiments without departing from the spirit of the invention.
  • In use, it may be understood that [0049] pressing button 342 may result in movement of outer sheath 12 in only a single direction depending on the configuration of gear 360. For example, FIG. 8 depicts gear 360 configured such that pressing button 342 results in distal movement of outer sheath 12 so as to shift filter 26 to the retrieved position. Alternatively, FIG. 9 depicts an alternative manifold 428 wherein pressing of button 442 results in proximal movement of outer sheath 12 so as to shift filter 26 to the delivered position.
  • According to the embodiment shown in FIG. 9, [0050] manifold 428 may comprise proximal end 430, distal end 432, and handle region 434. Outer sheath 12 may further comprise or be coupled to proximal tubular member 452 having proximal end 454, distal end 456, and teeth 458. Proximal end 22 of inner shaft 20 may pass through proximal tubular member 452 and be secured to manifold 428 proximate to proximal end 430 of manifold 428 in a manner similar to those described above.
  • [0051] Actuator assembly 440 may comprise gear 460 coupled to button 442. Teeth 458 may engage gear 460 of actuator assembly 440 so that pressing button 442 may result in rotation of gear 460 that can ultimately result in movement of outer sheath 12 proximally relative to inner shaft 20.
  • FIG. 10 is a perspective view of a third alternative embodiment of [0052] manifold 528 according to an embodiment of the invention. Similar to what is disclosed above, manifold 528 may comprise proximal end 530, distal end 532, and handle region 534.
  • [0053] Outer sheath 12 may further comprise or be coupled to proximal tubular member 552 having proximal end 554, distal end 556, and teeth 558. Actuator assembly 540 may comprise gear 560 coupled to button 542 by a second gear 561. Teeth 558 may engage gear 560 of actuator assembly 540 so that pressing button 542 may result in rotation of gear 560 that can ultimately result in movement of outer sheath 12 relative to inner shaft 20. Similar to what is described above, button 542 includes teeth 543 that engage a second gear 561 such that pressing button 542 results in movement of second gear 561, which subsequently results in movement of gear 560.
  • [0054] Actuator assembly 540 further comprises a second button 542 a. Button 542a includes teeth (not shown, but essentially the same as teeth 543) that engage second gear 561 so that pressing button 542 a results in rotation of gear 561 and gear 560 that ultimately results in movement of outer sheath 12 relative to inner shaft 20 in a direction that is opposite to pressing button 542. According to this embodiment, manifold 528 comprises the ability to shift filter 26 to either the delivery position or the retrieval position depending on whether button 542 or 542 a is pressed.
  • FIG. 11 is a perspective view of a third embodiment of a manifold according to an embodiment of the invention. Similar to what is disclosed above, manifold [0055] 628 may comprise proximal end 630, distal end 632, and handle region 634.
  • [0056] Outer sheath 12 may further comprise or be coupled to proximal tubular member 652 having proximal end 654, distal end 656, and teeth 658. Actuator assembly 640 may comprise gear 660 coupled to button 642 that is axially rotatable. Teeth 658 may engage gear 660 of actuator assembly 640. Axial rotation of button 642 may result in movement of outer sheath 12 relative to inner shaft 20. According to this embodiment, manifold 628 may be actuated to shift filter 26 between a delivery position and a retrieval position by rotation button 642.
  • FIG. 11A is a cross-sectional view of [0057] manifold 628 taken through line 11A-11A. According to this embodiment, proximal tubular member 652 may further comprise a key 664 adapted to engage a notch 666 handle region 634. Key 664 may substantially prevent axial rotation of proximal tubular member 652 when actuator assembly 640 is rotated. Rotation of proximal tubular member 652 may interfere with the movement of outer sheath 12 relative to inner shaft 20.
  • FIG. 12 is an exploded view of [0058] manifold 628 wherein actuator assembly 640 has been removed. FIG. 12 is provided so as to more clearly illustrate the elements of manifold 628.
  • Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed. [0059]

Claims (45)

What is claimed is:
1. A distal protection assembly, comprising:
an outer sheath having a proximal end, a distal end, and a lumen extending therethrough;
an inner shaft disposed within the lumen, the inner shaft having a proximal end and a distal end;
a distal protection device disposed at the distal end of the inner shaft;
a manifold coupled to the proximal end of the inner shaft, the manifold including an actuator assembly; and
the actuator assembly coupled to the proximal end of the outer sheath and capable of moving the outer sheath relative to the inner shaft.
2. The distal protection assembly in accordance with claim 1, wherein the distal protection device comprises a filter.
3. The distal protection assembly in accordance with claim 1, wherein the distal protection device comprises a mesh.
4. The distal protection assembly in accordance with claim 1, wherein the distal protection device comprises a strut.
5. The distal protection assembly in accordance with claim 1, wherein the distal protection device comprises a rib.
6. The distal protection assembly in accordance with claim 1, wherein the actuator assembly includes a button.
7. The distal protection assembly in accordance with claim 6, wherein the button is longitudinally movable.
8. The distal protection assembly in accordance with claim 6, further comprising an actuator retention cover.
9. The distal protection assembly in accordance with claim 1, wherein the actuation assembly includes a gear.
10. The distal protection assembly in accordance with claim 9, further comprising a proximal tubular member coupled to the outer sheath.
11. The distal protection assembly in accordance with claim 10, wherein the proximal tubular member further comprises teeth.
12. The distal protection assembly in accordance with claim 11, wherein the gear is engagable with the teeth.
13. The distal protection assembly in accordance with claim 12, wherein the actuator assembly further comprises a thumbwheel coupled to the gear.
14. The distal protection assembly in accordance with claim 12, wherein the actuator assembly further comprises a button coupled to the gear.
15. The distal protection assembly in accordance with claim 14, wherein pressing the button moves the outer sheath distally relative to the inner shaft.
16. The distal protection assembly in accordance with claim 14, wherein pressing the button moves the outer sheath proximally relative to the inner shaft.
17. The distal protection assembly in accordance with claim 14, wherein the button is axially rotatable.
18. The distal protection assembly in accordance with claim 17, wherein axial rotation of the button results in movement of the outer sheath relative to the inner shaft.
19. The distal protection assembly in accordance with claim 12, wherein the actuation assembly further comprises a second gear and a second button.
20. The distal protection assembly in accordance with claim 19, wherein pressing the second button moves the outer tube in a direction that is opposite to pressing the first button.
21. A distal protection assembly, comprising:
an outer sheath having a proximal end, a distal end, a lumen extending therethrough, and a proximal tubular member tube coupled to the proximal end;
the proximal tubular member including teeth;
an inner shaft disposed within the lumen, the inner shaft having a proximal end and a distal end;
a distal protection device disposed at the distal end of the inner shaft;
a manifold coupled to the proximal end of the inner shaft, the manifold including an actuator assembly;
the actuator assembly having a gear that is engagable with the teeth; and
wherein the actuator assembly is coupled to the proximal tubular member and capable of moving the outer sheath relative to the inner shaft.
22. The distal protection assembly in accordance with claim 21, wherein the distal protection device comprises a filter.
23. The distal protection assembly in accordance with claim 21, wherein the distal protection device comprises a mesh.
24. The distal protection assembly in accordance with claim 21, wherein the distal protection device comprises a strut.
25. The distal protection assembly in accordance with claim 21, wherein the distal protection device comprises a rib.
26. The distal protection assembly in accordance with claim 21, wherein the actuation assembly includes a thumbwheel coupled to the gear.
27. The distal protection assembly in accordance with claim 21, wherein the actuator assembly further comprises a button coupled to the gear.
28. The distal protection assembly in accordance with claim 27, wherein pressing the button moves the outer sheath distally relative to the inner shaft.
29. The distal protection assembly in accordance with claim 27, wherein pressing the button moves the outer sheath proximally relative to the inner shaft.
30. The distal protection assembly in accordance with claim 27, wherein the button is axially rotatable.
31. The distal protection assembly in accordance with claim 30, wherein axial rotation of the button results in movement of the outer sheath relative to the inner shaft.
32. The distal protection assembly in accordance with claim 21, wherein the actuation assembly further comprises a second gear and a second button.
33. The distal protection assembly in accordance with claim 32, wherein pressing the second button moves the outer tube in a direction that is opposite to pressing the button.
34. A method of actuating a distal protection assembly, comprising the steps of:
providing a distal protection assembly including an outer sheath having a proximal end, a distal end, and a lumen extending therethrough; an inner shaft disposed within the lumen, the inner shaft having a proximal end and a distal end; a distal protection device disposed at the distal end of the inner shaft; a manifold coupled to the proximal end of the inner shaft, the manifold including an actuator assembly; and the actuator assembly coupled to the proximal end of the outer sheath and capable of moving the outer sheath relative to the inner shaft;
actuating the actuator assembly; and
wherein actuating the actuator assembly shifts the distal protection device between a delivery position and a retrieval position.
35. The method in accordance with claim 34, wherein the step of actuating the actuator assembly further comprises collapsing the distal protection device.
36. The method in accordance with claim 34, wherein the step of actuating the actuator assembly further comprises expanding the distal protection device.
37. The method in accordance with claim 34, wherein the actuator assembly includes a gear.
38. The method in accordance with claim 37, wherein the gear is engageable with a proximal tubular member disposed at the distal end of the outer sheath.
39. The method in accordance with claim 38, wherein the step of actuating the actuator assembly further comprises rotating a thumbwheel coupled to the gear.
40. The method in accordance with claim 38, wherein the actuator assembly further comprises a button coupled to the gear and wherein the step of actuating the actuator assembly includes pressing the button.
41. The method in accordance with claim 40, wherein the step of pressing the button results in the outer sheath moving distally relative to the inner shaft.
42. The method in accordance with claim 40, wherein the step of pressing the button results in the outer sheath moving proximally relative to the inner shaft.
43. The method in accordance with claim 40, wherein the actuator assembly further comprises a second gear and a second button coupled to the proximal tubular member and wherein the step of actuating the actuator further comprises pressing the second button.
44. The method in accordance with claim 43, wherein pressing the second button moves the outer tube in a direction that is opposite to pressing the button.
45. The method in accordance with claim 38, wherein the step of actuating the actuator assembly includes axially rotating a button and wherein rotating the button results in movement of the outer sheath relative to the inner shaft.
US10/053,143 2002-01-17 2002-01-17 Delivery and retrieval manifold for a distal protection filter Abandoned US20030135162A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/053,143 US20030135162A1 (en) 2002-01-17 2002-01-17 Delivery and retrieval manifold for a distal protection filter
US11/956,977 US7722638B2 (en) 2002-01-17 2007-12-14 Delivery and retrieval manifold for a distal protection filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/053,143 US20030135162A1 (en) 2002-01-17 2002-01-17 Delivery and retrieval manifold for a distal protection filter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/956,977 Continuation US7722638B2 (en) 2002-01-17 2007-12-14 Delivery and retrieval manifold for a distal protection filter

Publications (1)

Publication Number Publication Date
US20030135162A1 true US20030135162A1 (en) 2003-07-17

Family

ID=21982208

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/053,143 Abandoned US20030135162A1 (en) 2002-01-17 2002-01-17 Delivery and retrieval manifold for a distal protection filter
US11/956,977 Expired - Fee Related US7722638B2 (en) 2002-01-17 2007-12-14 Delivery and retrieval manifold for a distal protection filter

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/956,977 Expired - Fee Related US7722638B2 (en) 2002-01-17 2007-12-14 Delivery and retrieval manifold for a distal protection filter

Country Status (1)

Country Link
US (2) US20030135162A1 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040093063A1 (en) * 2002-06-07 2004-05-13 Wright Michael T. Controlled deployment delivery system
US20050182475A1 (en) * 2003-09-02 2005-08-18 Jimmy Jen Delivery system for a medical device
WO2007005799A1 (en) * 2005-06-30 2007-01-11 Abbott Laboratories Delivery system for a medical device
US20070100422A1 (en) * 2003-09-02 2007-05-03 Shumer Daniel H Delivery system for a medical device
US20070118201A1 (en) * 2003-09-02 2007-05-24 Pappas Jeffrey M Delivery system for a medical device
US20070162070A1 (en) * 1997-11-07 2007-07-12 Salviac Limited Embolic protection device
US20070219579A1 (en) * 2006-03-20 2007-09-20 Cook Incorporated Distal protection device
US20080114442A1 (en) * 2006-11-14 2008-05-15 Medtronic Vascular, Inc. Delivery System for Stent-Graft With Anchoring Pins
US20080262590A1 (en) * 2007-04-19 2008-10-23 Medtronic Vascular, Inc. Delivery System for Stent-Graft
US7662166B2 (en) 2000-12-19 2010-02-16 Advanced Cardiocascular Systems, Inc. Sheathless embolic protection system
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US7678131B2 (en) 2002-10-31 2010-03-16 Advanced Cardiovascular Systems, Inc. Single-wire expandable cages for embolic filtering devices
US20100168834A1 (en) * 2008-12-30 2010-07-01 Wilson-Cook Medical Inc. Delivery Device
US7780694B2 (en) 1999-12-23 2010-08-24 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US7780697B2 (en) 1997-11-07 2010-08-24 Salviac Limited Embolic protection system
US7799051B2 (en) 1999-05-07 2010-09-21 Salviac Limited Support frame for an embolic protection device
US7815660B2 (en) 2002-09-30 2010-10-19 Advanced Cardivascular Systems, Inc. Guide wire with embolic filtering attachment
US7842064B2 (en) 2001-08-31 2010-11-30 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
US7867273B2 (en) 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
US7892251B1 (en) 2003-11-12 2011-02-22 Advanced Cardiovascular Systems, Inc. Component for delivering and locking a medical device to a guide wire
US7901427B2 (en) 1997-11-07 2011-03-08 Salviac Limited Filter element with retractable guidewire tip
US7918820B2 (en) 1999-12-30 2011-04-05 Advanced Cardiovascular Systems, Inc. Device for, and method of, blocking emboli in vessels such as blood arteries
US7927349B2 (en) 2001-12-21 2011-04-19 Salviac Limited Support frame for an embolic protection device
US7959646B2 (en) 2001-06-29 2011-06-14 Abbott Cardiovascular Systems Inc. Filter device for embolic protection systems
US7959647B2 (en) 2001-08-30 2011-06-14 Abbott Cardiovascular Systems Inc. Self furling umbrella frame for carotid filter
US7972356B2 (en) 2001-12-21 2011-07-05 Abbott Cardiovascular Systems, Inc. Flexible and conformable embolic filtering devices
US7976560B2 (en) 2002-09-30 2011-07-12 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US8002790B2 (en) 1999-05-07 2011-08-23 Salviac Limited Support frame for an embolic protection device
US8016854B2 (en) 2001-06-29 2011-09-13 Abbott Cardiovascular Systems Inc. Variable thickness embolic filtering devices and methods of manufacturing the same
US8137377B2 (en) 1999-12-23 2012-03-20 Abbott Laboratories Embolic basket
US8142442B2 (en) 1999-12-23 2012-03-27 Abbott Laboratories Snare
US8177791B2 (en) 2000-07-13 2012-05-15 Abbott Cardiovascular Systems Inc. Embolic protection guide wire
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US8262689B2 (en) 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
US8454682B2 (en) 2010-04-13 2013-06-04 Medtronic Vascular, Inc. Anchor pin stent-graft delivery system
US8500789B2 (en) 2007-07-11 2013-08-06 C. R. Bard, Inc. Device for catheter sheath retraction
US8591540B2 (en) 2003-02-27 2013-11-26 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US8808346B2 (en) 2006-01-13 2014-08-19 C. R. Bard, Inc. Stent delivery system
US8845583B2 (en) 1999-12-30 2014-09-30 Abbott Cardiovascular Systems Inc. Embolic protection devices
US9259305B2 (en) 2005-03-31 2016-02-16 Abbott Cardiovascular Systems Inc. Guide wire locking mechanism for rapid exchange and other catheter systems
US9801745B2 (en) 2010-10-21 2017-10-31 C.R. Bard, Inc. System to deliver a bodily implant
US10993822B2 (en) 2006-08-07 2021-05-04 C. R. Bard, Inc. Hand-held actuator device
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314477B1 (en) 1998-09-25 2008-01-01 C.R. Bard Inc. Removable embolus blood clot filter and filter delivery unit
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US9204956B2 (en) 2002-02-20 2015-12-08 C. R. Bard, Inc. IVC filter with translating hooks
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7704267B2 (en) 2004-08-04 2010-04-27 C. R. Bard, Inc. Non-entangling vena cava filter
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
WO2006124405A2 (en) 2005-05-12 2006-11-23 C.R. Bard Inc. Removable embolus blood clot filter
CA2616818C (en) 2005-08-09 2014-08-05 C.R. Bard, Inc. Embolus blood clot filter and delivery system
CA2940038C (en) 2005-11-18 2018-08-28 C.R. Bard, Inc. Vena cava filter with filament
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
WO2007097983A2 (en) 2006-02-14 2007-08-30 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US10188496B2 (en) 2006-05-02 2019-01-29 C. R. Bard, Inc. Vena cava filter formed from a sheet
WO2007143602A2 (en) 2006-06-05 2007-12-13 C.R. Bard Inc. Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
CN102245256B (en) 2008-10-10 2014-07-23 萨德拉医学公司 Medical devices and delivery systems for delivering medical devices
CA2769208C (en) 2009-07-29 2017-10-31 C.R. Bard, Inc. Tubular filter
BR112012029896A2 (en) 2010-05-25 2017-06-20 Jenavalve Tech Inc prosthetic heart valve for stent graft and stent graft
EP4119107A3 (en) 2010-09-10 2023-02-15 Boston Scientific Limited Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
EP2731550B1 (en) 2011-07-12 2016-02-24 Boston Scientific Scimed, Inc. Coupling system for a replacement valve
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
JPWO2013125332A1 (en) * 2012-02-23 2015-07-30 テルモ株式会社 Stent delivery system
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9144493B2 (en) * 2012-11-14 2015-09-29 Medtronic Vascular Galway Limited Valve prosthesis deployment assembly and method
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
EP3288495B1 (en) 2015-05-01 2019-09-25 JenaValve Technology, Inc. Device with reduced pacemaker rate in heart valve replacement
WO2017004377A1 (en) 2015-07-02 2017-01-05 Boston Scientific Scimed, Inc. Adjustable nosecone
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
WO2017195125A1 (en) 2016-05-13 2017-11-16 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
WO2018226915A1 (en) 2017-06-08 2018-12-13 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
WO2019035966A1 (en) 2017-08-16 2019-02-21 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11246625B2 (en) 2018-01-19 2022-02-15 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
US11191641B2 (en) 2018-01-19 2021-12-07 Boston Scientific Scimed, Inc. Inductance mode deployment sensors for transcatheter valve system
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
EP3793478A1 (en) 2018-05-15 2021-03-24 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
WO2019241477A1 (en) 2018-06-13 2019-12-19 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
CN109998733A (en) * 2019-04-19 2019-07-12 肖亮 A kind of straight barrel type Metal Cutting sheath
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading

Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952747A (en) * 1974-03-28 1976-04-27 Kimmell Jr Garman O Filter and filter insertion instrument
US4046150A (en) * 1975-07-17 1977-09-06 American Hospital Supply Corporation Medical instrument for locating and removing occlusive objects
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4590938A (en) * 1984-05-04 1986-05-27 Segura Joseph W Medical retriever device
US4650466A (en) * 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4794928A (en) * 1987-06-10 1989-01-03 Kletschka Harold D Angioplasty device and method of using the same
US4807626A (en) * 1985-02-14 1989-02-28 Mcgirr Douglas B Stone extractor and method
US4842579A (en) * 1984-05-14 1989-06-27 Surgical Systems & Instruments, Inc. Atherectomy device
US4921484A (en) * 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US4921478A (en) * 1988-02-23 1990-05-01 C. R. Bard, Inc. Cerebral balloon angioplasty system
US4926858A (en) * 1984-05-30 1990-05-22 Devices For Vascular Intervention, Inc. Atherectomy device for severe occlusions
US4998539A (en) * 1987-12-18 1991-03-12 Delsanti Gerard L Method of using removable endo-arterial devices to repair detachments in the arterial walls
US5002560A (en) * 1989-09-08 1991-03-26 Advanced Cardiovascular Systems, Inc. Expandable cage catheter with a rotatable guide
US5011488A (en) * 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
US5100423A (en) * 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5102415A (en) * 1989-09-06 1992-04-07 Guenther Rolf W Apparatus for removing blood clots from arteries and veins
US5133733A (en) * 1989-11-28 1992-07-28 William Cook Europe A/S Collapsible filter for introduction in a blood vessel of a patient
US5224953A (en) * 1992-05-01 1993-07-06 The Beth Israel Hospital Association Method for treatment of obstructive portions of urinary passageways
US5290310A (en) * 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5330484A (en) * 1990-08-16 1994-07-19 William Cook Europe A/S Device for fragmentation of thrombi
US5329942A (en) * 1990-08-14 1994-07-19 Cook, Incorporated Method for filtering blood in a blood vessel of a patient
US5421832A (en) * 1989-12-13 1995-06-06 Lefebvre; Jean-Marie Filter-catheter and method of manufacturing same
US5423742A (en) * 1989-09-12 1995-06-13 Schneider Europe Method for the widening of strictures in vessels carrying body fluid
US5433723A (en) * 1991-10-11 1995-07-18 Angiomed Ag Apparatus for widening a stenosis
US5449372A (en) * 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
US5536242A (en) * 1994-07-01 1996-07-16 Scimed Life Systems, Inc. Intravascular device utilizing fluid to extract occlusive material
US5549626A (en) * 1994-12-23 1996-08-27 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Vena caval filter
US5658296A (en) * 1994-11-21 1997-08-19 Boston Scientific Corporation Method for making surgical retrieval baskets
US5662671A (en) * 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5720764A (en) * 1994-06-11 1998-02-24 Naderlinger; Eduard Vena cava thrombus filter
US5728066A (en) * 1995-12-13 1998-03-17 Daneshvar; Yousef Injection systems and methods
US5749848A (en) * 1995-11-13 1998-05-12 Cardiovascular Imaging Systems, Inc. Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment
US5769816A (en) * 1995-11-07 1998-06-23 Embol-X, Inc. Cannula with associated filter
US5779716A (en) * 1995-10-06 1998-07-14 Metamorphic Surgical Devices, Inc. Device for removing solid objects from body canals, cavities and organs
US5792157A (en) * 1992-11-13 1998-08-11 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5795322A (en) * 1995-04-10 1998-08-18 Cordis Corporation Catheter with filter and thrombus-discharge device
US5800525A (en) * 1997-06-04 1998-09-01 Vascular Science, Inc. Blood filter
US5800457A (en) * 1997-03-05 1998-09-01 Gelbfish; Gary A. Intravascular filter and associated methodology
US5810874A (en) * 1996-02-22 1998-09-22 Cordis Corporation Temporary filter catheter
US5814064A (en) * 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US5876367A (en) * 1996-12-05 1999-03-02 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5906619A (en) * 1997-07-24 1999-05-25 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US5910154A (en) * 1997-05-08 1999-06-08 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment
US5925060A (en) * 1998-03-13 1999-07-20 B. Braun Celsa Covered self-expanding vascular occlusion device
US5925053A (en) * 1997-09-02 1999-07-20 Children's Medical Center Corporation Multi-lumen polymeric guidance channel, method for promoting nerve regeneration, and method of manufacturing a multi-lumen nerve guidance channel
US5925016A (en) * 1995-09-27 1999-07-20 Xrt Corp. Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure
US5928264A (en) * 1995-11-08 1999-07-27 Sugar Surgical Technologies, Inc. Tissue grasping device
US5935139A (en) * 1996-05-03 1999-08-10 Boston Scientific Corporation System for immobilizing or manipulating an object in a tract
US5941869A (en) * 1997-02-12 1999-08-24 Prolifix Medical, Inc. Apparatus and method for controlled removal of stenotic material from stents
US5941896A (en) * 1997-09-08 1999-08-24 Montefiore Hospital And Medical Center Filter and method for trapping emboli during endovascular procedures
US5947995A (en) * 1997-06-06 1999-09-07 Samuels; Shaun Lawrence Wilkie Method and apparatus for removing blood clots and other objects
US5954745A (en) * 1997-05-16 1999-09-21 Gertler; Jonathan Catheter-filter set having a compliant seal
US6013085A (en) * 1997-11-07 2000-01-11 Howard; John Method for treating stenosis of the carotid artery
US6051014A (en) * 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6051015A (en) * 1997-05-08 2000-04-18 Embol-X, Inc. Modular filter with delivery system
US6059814A (en) * 1997-06-02 2000-05-09 Medtronic Ave., Inc. Filter for filtering fluid in a bodily passageway
US6066149A (en) * 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US6066158A (en) * 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
US6068645A (en) * 1999-06-07 2000-05-30 Tu; Hosheng Filter system and methods for removing blood clots and biological material
US6086605A (en) * 1997-04-16 2000-07-11 Embol-X, Inc. Cannula with associated filter and methods of use during cardiac surgery
US6168579B1 (en) * 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
US6171328B1 (en) * 1999-11-09 2001-01-09 Embol-X, Inc. Intravascular catheter filter with interlocking petal design and methods of use
US6171327B1 (en) * 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6179861B1 (en) * 1999-07-30 2001-01-30 Incept Llc Vascular device having one or more articulation regions and methods of use
US6179859B1 (en) * 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US6203561B1 (en) * 1999-07-30 2001-03-20 Incept Llc Integrated vascular device having thrombectomy element and vascular filter and methods of use
US6203550B1 (en) * 1998-09-30 2001-03-20 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US6206868B1 (en) * 1998-03-13 2001-03-27 Arteria Medical Science, Inc. Protective device and method against embolization during treatment of carotid artery disease
US6214026B1 (en) * 1999-07-30 2001-04-10 Incept Llc Delivery system for a vascular device with articulation region
US6221006B1 (en) * 1998-02-10 2001-04-24 Artemis Medical Inc. Entrapping apparatus and method for use
US6231544B1 (en) * 1996-05-14 2001-05-15 Embol-X, Inc. Cardioplegia balloon cannula
US6235044B1 (en) * 1999-08-04 2001-05-22 Scimed Life Systems, Inc. Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue
US6238412B1 (en) * 1997-11-12 2001-05-29 William Dubrul Biological passageway occlusion removal
US6245087B1 (en) * 1999-08-03 2001-06-12 Embol-X, Inc. Variable expansion frame system for deploying medical devices and methods of use
US6245088B1 (en) * 1997-07-07 2001-06-12 Samuel R. Lowery Retrievable umbrella sieve and method of use
US6258115B1 (en) * 1997-04-23 2001-07-10 Artemis Medical, Inc. Bifurcated stent and distal protection system
US6264663B1 (en) * 1995-10-06 2001-07-24 Metamorphic Surgical Devices, Llc Device for removing solid objects from body canals, cavities and organs including an invertable basket
US6264672B1 (en) * 1999-10-25 2001-07-24 Biopsy Sciences, Llc Emboli capturing device
US6277138B1 (en) * 1999-08-17 2001-08-21 Scion Cardio-Vascular, Inc. Filter for embolic material mounted on expandable frame
US6277139B1 (en) * 1999-04-01 2001-08-21 Scion Cardio-Vascular, Inc. Vascular protection and embolic material retriever
US6280413B1 (en) * 1995-06-07 2001-08-28 Medtronic Ave, Inc. Thrombolytic filtration and drug delivery catheter with a self-expanding portion
US6355051B1 (en) * 1999-03-04 2002-03-12 Bioguide Consulting, Inc. Guidewire filter device
US6533772B1 (en) * 2000-04-07 2003-03-18 Innex Corporation Guide wire torque device
US6685722B1 (en) * 1998-05-01 2004-02-03 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US6755854B2 (en) * 2001-07-31 2004-06-29 Advanced Cardiovascular Systems, Inc. Control device and mechanism for deploying a self-expanding medical device

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472230A (en) 1966-12-19 1969-10-14 Fogarty T J Umbrella catheter
US3996938A (en) 1975-07-10 1976-12-14 Clark Iii William T Expanding mesh catheter
US4643184A (en) 1982-09-29 1987-02-17 Mobin Uddin Kazi Embolus trap
US4790813A (en) 1984-12-17 1988-12-13 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4706671A (en) 1985-05-02 1987-11-17 Weinrib Harry P Catheter with coiled tip
US4662885A (en) 1985-09-03 1987-05-05 Becton, Dickinson And Company Percutaneously deliverable intravascular filter prosthesis
US4790812A (en) 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
US4857045A (en) 1987-04-30 1989-08-15 Schneider (Usa) Inc., A Pfizer Company Atherectomy catheter
US4873978A (en) 1987-12-04 1989-10-17 Robert Ginsburg Device and method for emboli retrieval
US4886061A (en) 1988-02-09 1989-12-12 Medinnovations, Inc. Expandable pullback atherectomy catheter system
US4969891A (en) 1989-03-06 1990-11-13 Gewertz Bruce L Removable vascular filter
US5071407A (en) 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5160342A (en) 1990-08-16 1992-11-03 Evi Corp. Endovascular filter and method for use thereof
US5415630A (en) 1991-07-17 1995-05-16 Gory; Pierre Method for removably implanting a blood filter in a vein of the human body
US5192286A (en) 1991-07-26 1993-03-09 Regents Of The University Of California Method and device for retrieving materials from body lumens
US5626605A (en) 1991-12-30 1997-05-06 Scimed Life Systems, Inc. Thrombosis filter
US5324304A (en) 1992-06-18 1994-06-28 William Cook Europe A/S Introduction catheter set for a collapsible self-expandable implant
US5419774A (en) 1993-07-13 1995-05-30 Scimed Life Systems, Inc. Thrombus extraction device
US5462529A (en) 1993-09-29 1995-10-31 Technology Development Center Adjustable treatment chamber catheter
JPH10504738A (en) 1994-07-08 1998-05-12 マイクロベナ コーポレイション Medical device forming method and vascular embolization device
US5807398A (en) 1995-04-28 1998-09-15 Shaknovich; Alexander Shuttle stent delivery catheter
US5681347A (en) * 1995-05-23 1997-10-28 Boston Scientific Corporation Vena cava filter delivery system
US5833650A (en) 1995-06-05 1998-11-10 Percusurge, Inc. Catheter apparatus and method for treating occluded vessels
US5669933A (en) 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US6152946A (en) 1998-03-05 2000-11-28 Scimed Life Systems, Inc. Distal protection device and method
US5848964A (en) 1997-06-06 1998-12-15 Samuels; Shaun Lawrence Wilkie Temporary inflatable filter device and method of use
EP1067882A1 (en) * 1998-03-31 2001-01-17 Salviac Limited A delivery catheter
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US20020128679A1 (en) * 2001-03-08 2002-09-12 Embol-X, Inc. Cerebral protection during carotid endarterectomy and methods of use

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952747A (en) * 1974-03-28 1976-04-27 Kimmell Jr Garman O Filter and filter insertion instrument
US4046150A (en) * 1975-07-17 1977-09-06 American Hospital Supply Corporation Medical instrument for locating and removing occlusive objects
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4590938A (en) * 1984-05-04 1986-05-27 Segura Joseph W Medical retriever device
US4842579B1 (en) * 1984-05-14 1995-10-31 Surgical Systems & Instr Inc Atherectomy device
US4842579A (en) * 1984-05-14 1989-06-27 Surgical Systems & Instruments, Inc. Atherectomy device
US4926858A (en) * 1984-05-30 1990-05-22 Devices For Vascular Intervention, Inc. Atherectomy device for severe occlusions
US4807626A (en) * 1985-02-14 1989-02-28 Mcgirr Douglas B Stone extractor and method
US4650466A (en) * 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4794928A (en) * 1987-06-10 1989-01-03 Kletschka Harold D Angioplasty device and method of using the same
US4998539A (en) * 1987-12-18 1991-03-12 Delsanti Gerard L Method of using removable endo-arterial devices to repair detachments in the arterial walls
US4921478A (en) * 1988-02-23 1990-05-01 C. R. Bard, Inc. Cerebral balloon angioplasty system
US4921484A (en) * 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US5011488A (en) * 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
US5102415A (en) * 1989-09-06 1992-04-07 Guenther Rolf W Apparatus for removing blood clots from arteries and veins
US5002560A (en) * 1989-09-08 1991-03-26 Advanced Cardiovascular Systems, Inc. Expandable cage catheter with a rotatable guide
US5423742A (en) * 1989-09-12 1995-06-13 Schneider Europe Method for the widening of strictures in vessels carrying body fluid
US5133733A (en) * 1989-11-28 1992-07-28 William Cook Europe A/S Collapsible filter for introduction in a blood vessel of a patient
US5421832A (en) * 1989-12-13 1995-06-06 Lefebvre; Jean-Marie Filter-catheter and method of manufacturing same
US5329942A (en) * 1990-08-14 1994-07-19 Cook, Incorporated Method for filtering blood in a blood vessel of a patient
US5330484A (en) * 1990-08-16 1994-07-19 William Cook Europe A/S Device for fragmentation of thrombi
US5100423A (en) * 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5449372A (en) * 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
US5433723A (en) * 1991-10-11 1995-07-18 Angiomed Ag Apparatus for widening a stenosis
US5324306A (en) * 1991-10-30 1994-06-28 Howmedica, Inc. Hemostatic implant introducer
US5290310A (en) * 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5224953A (en) * 1992-05-01 1993-07-06 The Beth Israel Hospital Association Method for treatment of obstructive portions of urinary passageways
US5792157A (en) * 1992-11-13 1998-08-11 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5720764A (en) * 1994-06-11 1998-02-24 Naderlinger; Eduard Vena cava thrombus filter
US5536242A (en) * 1994-07-01 1996-07-16 Scimed Life Systems, Inc. Intravascular device utilizing fluid to extract occlusive material
US5658296A (en) * 1994-11-21 1997-08-19 Boston Scientific Corporation Method for making surgical retrieval baskets
US5549626A (en) * 1994-12-23 1996-08-27 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Vena caval filter
US5795322A (en) * 1995-04-10 1998-08-18 Cordis Corporation Catheter with filter and thrombus-discharge device
US6280413B1 (en) * 1995-06-07 2001-08-28 Medtronic Ave, Inc. Thrombolytic filtration and drug delivery catheter with a self-expanding portion
US5925016A (en) * 1995-09-27 1999-07-20 Xrt Corp. Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure
US6264663B1 (en) * 1995-10-06 2001-07-24 Metamorphic Surgical Devices, Llc Device for removing solid objects from body canals, cavities and organs including an invertable basket
US5779716A (en) * 1995-10-06 1998-07-14 Metamorphic Surgical Devices, Inc. Device for removing solid objects from body canals, cavities and organs
US6235045B1 (en) * 1995-11-07 2001-05-22 Embol-X, Inc. Cannula with associated filter and methods of use
US5769816A (en) * 1995-11-07 1998-06-23 Embol-X, Inc. Cannula with associated filter
US5928264A (en) * 1995-11-08 1999-07-27 Sugar Surgical Technologies, Inc. Tissue grasping device
US5749848A (en) * 1995-11-13 1998-05-12 Cardiovascular Imaging Systems, Inc. Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment
US5728066A (en) * 1995-12-13 1998-03-17 Daneshvar; Yousef Injection systems and methods
US5810874A (en) * 1996-02-22 1998-09-22 Cordis Corporation Temporary filter catheter
US5935139A (en) * 1996-05-03 1999-08-10 Boston Scientific Corporation System for immobilizing or manipulating an object in a tract
US6231544B1 (en) * 1996-05-14 2001-05-15 Embol-X, Inc. Cardioplegia balloon cannula
US5895399A (en) * 1996-07-17 1999-04-20 Embol-X Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US6010522A (en) * 1996-07-17 2000-01-04 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US6179851B1 (en) * 1996-07-17 2001-01-30 Scimed Life Systems, Inc. Guiding catheter for positioning a medical device within an artery
US5662671A (en) * 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US6066158A (en) * 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
US5876367A (en) * 1996-12-05 1999-03-02 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5941869A (en) * 1997-02-12 1999-08-24 Prolifix Medical, Inc. Apparatus and method for controlled removal of stenotic material from stents
US5800457A (en) * 1997-03-05 1998-09-01 Gelbfish; Gary A. Intravascular filter and associated methodology
US6053932A (en) * 1997-03-06 2000-04-25 Scimed Life Systems, Inc. Distal protection device
US6245089B1 (en) * 1997-03-06 2001-06-12 Scimed Life Systems, Inc. Distal protection device and method
US5814064A (en) * 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US6086605A (en) * 1997-04-16 2000-07-11 Embol-X, Inc. Cannula with associated filter and methods of use during cardiac surgery
US6258115B1 (en) * 1997-04-23 2001-07-10 Artemis Medical, Inc. Bifurcated stent and distal protection system
US6051015A (en) * 1997-05-08 2000-04-18 Embol-X, Inc. Modular filter with delivery system
US6042598A (en) * 1997-05-08 2000-03-28 Embol-X Inc. Method of protecting a patient from embolization during cardiac surgery
US6270513B1 (en) * 1997-05-08 2001-08-07 Embol-X, Inc. Methods of protecting a patient from embolization during surgery
US6027520A (en) * 1997-05-08 2000-02-22 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6224620B1 (en) * 1997-05-08 2001-05-01 Embol-X, Inc. Devices and methods for protecting a patient from embolic material during surgery
US5911734A (en) * 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US5910154A (en) * 1997-05-08 1999-06-08 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment
US5954745A (en) * 1997-05-16 1999-09-21 Gertler; Jonathan Catheter-filter set having a compliant seal
US6059814A (en) * 1997-06-02 2000-05-09 Medtronic Ave., Inc. Filter for filtering fluid in a bodily passageway
US5800525A (en) * 1997-06-04 1998-09-01 Vascular Science, Inc. Blood filter
US5947995A (en) * 1997-06-06 1999-09-07 Samuels; Shaun Lawrence Wilkie Method and apparatus for removing blood clots and other objects
US6245088B1 (en) * 1997-07-07 2001-06-12 Samuel R. Lowery Retrievable umbrella sieve and method of use
US5906619A (en) * 1997-07-24 1999-05-25 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US5925053A (en) * 1997-09-02 1999-07-20 Children's Medical Center Corporation Multi-lumen polymeric guidance channel, method for promoting nerve regeneration, and method of manufacturing a multi-lumen nerve guidance channel
US5941896A (en) * 1997-09-08 1999-08-24 Montefiore Hospital And Medical Center Filter and method for trapping emboli during endovascular procedures
US6066149A (en) * 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US6013085A (en) * 1997-11-07 2000-01-11 Howard; John Method for treating stenosis of the carotid artery
US6238412B1 (en) * 1997-11-12 2001-05-29 William Dubrul Biological passageway occlusion removal
US6221006B1 (en) * 1998-02-10 2001-04-24 Artemis Medical Inc. Entrapping apparatus and method for use
US5925060A (en) * 1998-03-13 1999-07-20 B. Braun Celsa Covered self-expanding vascular occlusion device
US6206868B1 (en) * 1998-03-13 2001-03-27 Arteria Medical Science, Inc. Protective device and method against embolization during treatment of carotid artery disease
US6685722B1 (en) * 1998-05-01 2004-02-03 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US6203550B1 (en) * 1998-09-30 2001-03-20 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US6051014A (en) * 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6171327B1 (en) * 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6355051B1 (en) * 1999-03-04 2002-03-12 Bioguide Consulting, Inc. Guidewire filter device
US6277139B1 (en) * 1999-04-01 2001-08-21 Scion Cardio-Vascular, Inc. Vascular protection and embolic material retriever
US6068645A (en) * 1999-06-07 2000-05-30 Tu; Hosheng Filter system and methods for removing blood clots and biological material
US6179859B1 (en) * 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US6203561B1 (en) * 1999-07-30 2001-03-20 Incept Llc Integrated vascular device having thrombectomy element and vascular filter and methods of use
US6179861B1 (en) * 1999-07-30 2001-01-30 Incept Llc Vascular device having one or more articulation regions and methods of use
US6214026B1 (en) * 1999-07-30 2001-04-10 Incept Llc Delivery system for a vascular device with articulation region
US6245087B1 (en) * 1999-08-03 2001-06-12 Embol-X, Inc. Variable expansion frame system for deploying medical devices and methods of use
US6168579B1 (en) * 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
US6235044B1 (en) * 1999-08-04 2001-05-22 Scimed Life Systems, Inc. Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue
US6277138B1 (en) * 1999-08-17 2001-08-21 Scion Cardio-Vascular, Inc. Filter for embolic material mounted on expandable frame
US6344049B1 (en) * 1999-08-17 2002-02-05 Scion Cardio-Vascular, Inc. Filter for embolic material mounted on expandable frame and associated deployment system
US6264672B1 (en) * 1999-10-25 2001-07-24 Biopsy Sciences, Llc Emboli capturing device
US6171328B1 (en) * 1999-11-09 2001-01-09 Embol-X, Inc. Intravascular catheter filter with interlocking petal design and methods of use
US6533772B1 (en) * 2000-04-07 2003-03-18 Innex Corporation Guide wire torque device
US6755854B2 (en) * 2001-07-31 2004-06-29 Advanced Cardiovascular Systems, Inc. Control device and mechanism for deploying a self-expanding medical device

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123776B2 (en) 1997-11-07 2012-02-28 Salviac Limited Embolic protection system
US8241319B2 (en) 1997-11-07 2012-08-14 Salviac Limited Embolic protection system
US7901426B2 (en) 1997-11-07 2011-03-08 Salviac Limited Embolic protection device
US7846176B2 (en) 1997-11-07 2010-12-07 Salviac Limited Embolic protection system
US8430901B2 (en) 1997-11-07 2013-04-30 Salviac Limited Embolic protection device
US20070162070A1 (en) * 1997-11-07 2007-07-12 Salviac Limited Embolic protection device
US8328842B2 (en) 1997-11-07 2012-12-11 Salviac Limited Filter element with retractable guidewire tip
US8057504B2 (en) 1997-11-07 2011-11-15 Salviac Limited Embolic protection device
US8226678B2 (en) 1997-11-07 2012-07-24 Salviac Limited Embolic protection device
US8221448B2 (en) 1997-11-07 2012-07-17 Salviac Limited Embolic protection device
US8216270B2 (en) 1997-11-07 2012-07-10 Salviac Limited Embolic protection device
US7842066B2 (en) 1997-11-07 2010-11-30 Salviac Limited Embolic protection system
US7842063B2 (en) 1997-11-07 2010-11-30 Salviac Limited Embolic protection device
US8052716B2 (en) 1997-11-07 2011-11-08 Salviac Limited Embolic protection system
US7662165B2 (en) 1997-11-07 2010-02-16 Salviac Limited Embolic protection device
US7837701B2 (en) 1997-11-07 2010-11-23 Salviac Limited Embolic protection device
US8603131B2 (en) 1997-11-07 2013-12-10 Salviac Limited Embolic protection device
US8852226B2 (en) 1997-11-07 2014-10-07 Salviac Limited Vascular device for use during an interventional procedure
US7833242B2 (en) 1997-11-07 2010-11-16 Salviac Limited Embolic protection device
US7901427B2 (en) 1997-11-07 2011-03-08 Salviac Limited Filter element with retractable guidewire tip
US7972352B2 (en) 1997-11-07 2011-07-05 Salviac Limited Embolic protection system
US7780697B2 (en) 1997-11-07 2010-08-24 Salviac Limited Embolic protection system
US7785342B2 (en) 1997-11-07 2010-08-31 Salviac Limited Embolic protection device
US8002790B2 (en) 1999-05-07 2011-08-23 Salviac Limited Support frame for an embolic protection device
US7799051B2 (en) 1999-05-07 2010-09-21 Salviac Limited Support frame for an embolic protection device
US7780694B2 (en) 1999-12-23 2010-08-24 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US8137377B2 (en) 1999-12-23 2012-03-20 Abbott Laboratories Embolic basket
US8142442B2 (en) 1999-12-23 2012-03-27 Abbott Laboratories Snare
US7918820B2 (en) 1999-12-30 2011-04-05 Advanced Cardiovascular Systems, Inc. Device for, and method of, blocking emboli in vessels such as blood arteries
US8845583B2 (en) 1999-12-30 2014-09-30 Abbott Cardiovascular Systems Inc. Embolic protection devices
US8177791B2 (en) 2000-07-13 2012-05-15 Abbott Cardiovascular Systems Inc. Embolic protection guide wire
US7931666B2 (en) 2000-12-19 2011-04-26 Advanced Cardiovascular Systems, Inc. Sheathless embolic protection system
US7662166B2 (en) 2000-12-19 2010-02-16 Advanced Cardiocascular Systems, Inc. Sheathless embolic protection system
US7959646B2 (en) 2001-06-29 2011-06-14 Abbott Cardiovascular Systems Inc. Filter device for embolic protection systems
US8016854B2 (en) 2001-06-29 2011-09-13 Abbott Cardiovascular Systems Inc. Variable thickness embolic filtering devices and methods of manufacturing the same
US7959647B2 (en) 2001-08-30 2011-06-14 Abbott Cardiovascular Systems Inc. Self furling umbrella frame for carotid filter
US7842064B2 (en) 2001-08-31 2010-11-30 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
US8262689B2 (en) 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
US7927349B2 (en) 2001-12-21 2011-04-19 Salviac Limited Support frame for an embolic protection device
US7972356B2 (en) 2001-12-21 2011-07-05 Abbott Cardiovascular Systems, Inc. Flexible and conformable embolic filtering devices
US8114115B2 (en) 2001-12-21 2012-02-14 Salviac Limited Support frame for an embolic protection device
US7815671B2 (en) 2002-06-07 2010-10-19 Medtronic Vascular, Inc. Controlled deployment delivery system
US7264632B2 (en) * 2002-06-07 2007-09-04 Medtronic Vascular, Inc. Controlled deployment delivery system
US20040093063A1 (en) * 2002-06-07 2004-05-13 Wright Michael T. Controlled deployment delivery system
US8029530B2 (en) 2002-09-30 2011-10-04 Abbott Cardiovascular Systems Inc. Guide wire with embolic filtering attachment
US7815660B2 (en) 2002-09-30 2010-10-19 Advanced Cardivascular Systems, Inc. Guide wire with embolic filtering attachment
US7976560B2 (en) 2002-09-30 2011-07-12 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US7678131B2 (en) 2002-10-31 2010-03-16 Advanced Cardiovascular Systems, Inc. Single-wire expandable cages for embolic filtering devices
US8591540B2 (en) 2003-02-27 2013-11-26 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US20070100422A1 (en) * 2003-09-02 2007-05-03 Shumer Daniel H Delivery system for a medical device
US20070118201A1 (en) * 2003-09-02 2007-05-24 Pappas Jeffrey M Delivery system for a medical device
US20070191865A1 (en) * 2003-09-02 2007-08-16 Pappas Jeffrey M Delivery System For A Medical Device
US7780716B2 (en) 2003-09-02 2010-08-24 Abbott Laboratories Delivery system for a medical device
US7794489B2 (en) 2003-09-02 2010-09-14 Abbott Laboratories Delivery system for a medical device
US7799065B2 (en) 2003-09-02 2010-09-21 Abbott Laboratories Delivery system for a medical device
US8486128B2 (en) 2003-09-02 2013-07-16 Abbott Laboratories Delivery system for a medical device
US8382813B2 (en) 2003-09-02 2013-02-26 Abbott Laboratories Delivery system for a medical device
US20070191864A1 (en) * 2003-09-02 2007-08-16 Shumer Daniel H Delivery System For A Medical Device
US20050182475A1 (en) * 2003-09-02 2005-08-18 Jimmy Jen Delivery system for a medical device
US7892251B1 (en) 2003-11-12 2011-02-22 Advanced Cardiovascular Systems, Inc. Component for delivering and locking a medical device to a guide wire
US7879065B2 (en) 2004-03-19 2011-02-01 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US8308753B2 (en) 2004-03-19 2012-11-13 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US9259305B2 (en) 2005-03-31 2016-02-16 Abbott Cardiovascular Systems Inc. Guide wire locking mechanism for rapid exchange and other catheter systems
WO2007005799A1 (en) * 2005-06-30 2007-01-11 Abbott Laboratories Delivery system for a medical device
US8808346B2 (en) 2006-01-13 2014-08-19 C. R. Bard, Inc. Stent delivery system
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
US9675486B2 (en) 2006-01-13 2017-06-13 C.R. Bard, Inc. Stent delivery system
US20070219579A1 (en) * 2006-03-20 2007-09-20 Cook Incorporated Distal protection device
US8500772B2 (en) 2006-03-20 2013-08-06 Cook Medical Technologies Llc Distal protection device
US10993822B2 (en) 2006-08-07 2021-05-04 C. R. Bard, Inc. Hand-held actuator device
US20080114442A1 (en) * 2006-11-14 2008-05-15 Medtronic Vascular, Inc. Delivery System for Stent-Graft With Anchoring Pins
US20080114443A1 (en) * 2006-11-14 2008-05-15 Medtronic Vascular, Inc. Stent-Graft With Anchoring Pins
US7655034B2 (en) 2006-11-14 2010-02-02 Medtronic Vascular, Inc. Stent-graft with anchoring pins
US8052732B2 (en) 2006-11-14 2011-11-08 Medtronic Vascular, Inc. Delivery system for stent-graft with anchoring pins
US20080262590A1 (en) * 2007-04-19 2008-10-23 Medtronic Vascular, Inc. Delivery System for Stent-Graft
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US7867273B2 (en) 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
US9421115B2 (en) 2007-07-11 2016-08-23 C. R. Bard, Inc. Device for catheter sheath retraction
US8500789B2 (en) 2007-07-11 2013-08-06 C. R. Bard, Inc. Device for catheter sheath retraction
US10206800B2 (en) 2007-07-11 2019-02-19 C.R. Bard, Inc. Device for catheter sheath retraction
US11026821B2 (en) 2007-07-11 2021-06-08 C. R. Bard, Inc. Device for catheter sheath retraction
US9615949B2 (en) * 2008-12-30 2017-04-11 Cook Medical Technologies Llc Delivery device
US20100168834A1 (en) * 2008-12-30 2010-07-01 Wilson-Cook Medical Inc. Delivery Device
US8454682B2 (en) 2010-04-13 2013-06-04 Medtronic Vascular, Inc. Anchor pin stent-graft delivery system
US9801745B2 (en) 2010-10-21 2017-10-31 C.R. Bard, Inc. System to deliver a bodily implant
US10952879B2 (en) 2010-10-21 2021-03-23 C. R. Bard, Inc. System to deliver a bodily implant

Also Published As

Publication number Publication date
US7722638B2 (en) 2010-05-25
US20080091229A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
US7722638B2 (en) Delivery and retrieval manifold for a distal protection filter
EP1474072B1 (en) Embolic protection device
US7153320B2 (en) Hydraulic controlled retractable tip filter retrieval catheter
US7115138B2 (en) Sheath tip
US7762403B2 (en) Flexible tube for cartridge filter
EP1819296B1 (en) Improved sheath for use with an embolic protection filter
US20040167564A1 (en) Multi-wire embolic protection filtering device
US20030069597A1 (en) Loading tool
EP1727492A1 (en) Expandable intravascular retrieval device with dilator tip
US20070185525A1 (en) Floating on the wire filter wire
US8409238B2 (en) Mini cams on support loop for vessel stabilization
US20070219577A1 (en) Sprayed in delivery sheath tubes

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEYETTE, THOMAS JR.;HOUDE, ERIC;DIAMOND, SCOTT A.;AND OTHERS;REEL/FRAME:012909/0375

Effective date: 20020108

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION