US20030100941A1 - Ultraflexible open cell stent - Google Patents

Ultraflexible open cell stent Download PDF

Info

Publication number
US20030100941A1
US20030100941A1 US10/340,883 US34088303A US2003100941A1 US 20030100941 A1 US20030100941 A1 US 20030100941A1 US 34088303 A US34088303 A US 34088303A US 2003100941 A1 US2003100941 A1 US 2003100941A1
Authority
US
United States
Prior art keywords
stent
strut members
longitudinal
curved
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/340,883
Inventor
Robert Fischell
David Fischell
Tim Fischell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cordis Corp
Original Assignee
Fischell Robert E.
Fischell David R.
Fischell Tim A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fischell Robert E., Fischell David R., Fischell Tim A. filed Critical Fischell Robert E.
Priority to US10/340,883 priority Critical patent/US20030100941A1/en
Publication of US20030100941A1 publication Critical patent/US20030100941A1/en
Assigned to CORDIS CORPORATION reassignment CORDIS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FISCHELL, ROBERT E., FISCHELL, DAVID R., FISCHELL, TIM A.
Assigned to CORDIS CORPORATION reassignment CORDIS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FISCHELL, TIM A., FISCHELL, DAVID R., FISCHELL, ROBERT E.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91583Adjacent bands being connected to each other by a bridge, whereby at least one of its ends is connected along the length of a strut between two consecutive apices within a band

Definitions

  • This invention is in the field of stents for implantation into a vessel of a human body.
  • Stents are well known medical devices that have been used for maintaining the patency of a large variety of vessels of the human body. The most frequent use is for implantation into the coronary vasculature. Although stents have been used for this purpose for more than ten years, many stent designs still lack the required flexibility and radial rigidity to provide an optimum clinical result. Another deficiency of open cell stents is that some stent struts members can flare outward (fish scaling) as the stent is advanced through a tight curve.
  • Most current tubular stents use a multiplicity of circumferential sets of strut members connected by either straight longitudinal connecting links or undulating longitudinal connecting links.
  • the circumferential sets of strut members are typically formed from connecting diagonal and curved sections forming a closed ring that opens up as the stent expands to form the structural element in the stent that pushes against the arterial wall.
  • a single strut member is defined as adjacent connected diagonal and curved sections within one of the circumferential sets of strut members.
  • An open cell stent is defined as a stent that has circumferential sets of strut members with some curved sections (crowns) that are not connected by a longitudinal connecting link to an adjacent circumferential set of strut members.
  • a closed cell stent has every curved section of every circumferential set of strut members, except at the distal and proximal ends of the stent, attached to a longitudinal connecting link.
  • a strut member whose curved section is not attached to a longitudinal connecting link is defined as an unconnected strut member.
  • the present invention is a stent that is designed to optimize many of the operating parameters that are expected for stents in the first decade of the 21st century. Specifically, an optimum design would have the following characteristics:
  • each of the strut members whose curved sections are unconnected has a shorter longitudinal length as compared to the longitudinal length of the strut members that are connected by a longitudinal connecting link. This shorter length (optimally on the order of 0.1 mm shorter) reduces outward flaring of the unconnected strut members when the stent is advanced through highly curved vessels such as some coronary arteries. Flaring (which is sometimes called “fish-scaling”) can cause the stent to engage the vessel wall as the stent is advanced through curved arteries.
  • the longitudinal connecting links can have an undulating shape so that they can easily expand or contract in their longitudinal length when the stent is advanced through a curved vessel.
  • the extraordinary capability of this stent to bend easily is a combination of the fact that those curved sections of adjacent circumferential sets of strut members that are connected are connected with flexible longitudinal connecting links, and many (typically one-half) of the curved sections are unconnected.
  • the weakest possible connection that provides the highest degree of longitudinal flexibility is no connection at all. Therefore, the combination of no connections plus the few required connections between the circumferential sets of strut members being by means of highly flexible undulating longitudinal connecting links imparts to this stent an extraordinarily high degree of longitudinal flexibility.
  • all the strut members at each end of the stent should also have a shortened longitudinal length because the outside curved section of the end circumferential sets of strut members cannot be connected to any adjacent circumferential set of strut members.
  • end flaring of the stent as it is advanced through curved vessels can be reduced.
  • the fact that the interior curved sections of each strut member at the ends of the stent either has either no connection or a flexible, undulating longitudinal connecting link connection to an inner strut members is also desirable in preventing flaring out of the strut members at the ends of the stent. This is not the case for strut members that have a straight connection to an end circumferential strut such as shown in FIG. 5 of U.S. Pat. No. 5,759,192.
  • Good radiopacity for the stent is achieved by having a stainless steel stent that has a wall thickness that is at least 0.0045 inches. Another means would be to use a metal with a higher density such as tantalum with a thickness greater than 0.002 inches. A third means for obtaining improved radiopacity would be to sandwich a high density metal between two layers of stainless steel with each of the co-axial tubes having a wall thickness between 0.001 and 0.002 inches with the total wall thickness of the stent being at least 0.003 inches.
  • the undulating longitudinal connecting links readily extend in the longitudinal direction when the balloon is inflated. Since the circumferential sets of strut members upon deployment tend to decrease in their longitudinal length, the longitudinal lengthening of the undulating longitudinal connecting links has the effect of minimizing the foreshortening of the deployed stent.
  • an object of the present invention is to have increased longitudinal flexibility for the stent by having some curved sections of each circumferential set of strut members being unconnected to the curved sections of the adjacent circumferential set of strut members with the other curved sections being connected by highly flexible, undulating longitudinal connecting links.
  • Another object of the present invention is to prevent flaring of the unconnected strut members by having a shorter longitudinal length for the unconnected strut members.
  • Still another object of the invention is to have generally shorter longitudinal lengths for all the strut members in the circumferential sets of strut members at the stent ends to reduce the tendency for end flaring of the stent.
  • Still another object of the invention is to decrease the propensity of the stent to have end flaring by having each curved section of the end set of strut members either being unconnected to the curved section of the adjacent (interior) set of strut members or being connected by a highly flexible undulating longitudinal connecting link.
  • Still another object of the invention is to connect the flexible longitudinal connecting links to the curved section of the connected strut members at a point at or near the point where the curved section of each connected strut members is joined to the diagonal section of that connected strut member, thus further reducing the propensity for end flaring.
  • Still another object of the invention is to have flexible longitudinal connecting links that are adapted to readily increase their longitudinal length when the balloon is inflated; thus minimizing the extent of stent foreshortening upon stent deployment.
  • FIG. 1 is a layout view of the stent of the present invention in its pre-deployed state as it would be crimped onto the balloon of a balloon expandable stent delivery system.
  • FIG. 2 is a layout view of a prior art stent showing a straight longitudinal connecting link joining the inside of a curved section of a circumferential set of strut members to the outside curved section of the adjacent circumferential set of strut members.
  • FIG. 3 is a layout view of a closed cell stent having flexible longitudinal connecting links attached at the center of the outside of all the curved sections of every circumferential set of strut members.
  • FIG. 4 is a layout view of the stent of FIG. 1 shown in its deployed state.
  • FIG. 5 is a layout view of a stent of the present invention in which alternate adjacent curved sections are connected by straight longitudinal connecting links.
  • stents are in fact thin-walled, lace-like, cylindrical tubes, they are best illustrated in the form of a flat, two-dimensional layout view as shown in FIGS. 1 - 5 inclusive.
  • FIG. 1 is a flat, layout view of a cylindrical stent 10 wherein each of the stent's top ends would be joined to each of the stent's bottom ends to form the cylindrical stent 10 in its pre-deployed, lace-like, cylindrical form.
  • the pre-deployed stent 10 of the present invention is shown in FIG. 1 as having a multiplicity of interior circumferential sets of strut members 20 and two end circumferential sets of strut members 30 , each indicated within a dashed rectangle.
  • the connected curved sections 11 and 11 E and the unconnected curved sections 12 and 12 E are shown in crosshatch in FIG. 1.
  • Also shown in crosshatch in FIG. 1 is the long diagonal section 19 L, medium length diagonal section 19 M and short diagonal section 19 S.
  • Each of the interior sets of strut members 20 consists of at least one long connected strut member 24 L, at least one medium length connected strut member 24 MC, at least one medium length unconnected strut member 24 MU and at least one unconnected strut member 24 S.
  • Each of the long connected strut members 24 L consists of a long diagonal section 19 L joined along the line 22 to a connected curved section 11 .
  • Each medium strut member 24 MC or 24 MU consists of one medium diagonal section 19 M connected along a line 22 to a curved section 11 .
  • Each short unconnected strut member 24 S consists of a short diagonal section 19 S joined to an unconnected curved section 12 . As shown in FIG.
  • the longitudinal length of the long diagonal section 19 L is L1 and the longitudinal length of the short diagonal section 19 S is L2.
  • the longitudinal length L1 is longer than the longitudinal length L2, i.e., L1>L2.
  • L1 should be at least 0.1 mm longer than L2.
  • Each of the connected curved sections 11 is joined to an adjacent curved section 11 or 11 E in the adjacent set of strut members by means of a longitudinally extending, flexible longitudinal connecting link 18 that consists of a central segment 13 , a bottom curved segment 14 and a top curved segment 15 .
  • the bottom curved segment 14 is fixedly joined to a connected curved section 11 along the junction line 16 .
  • the top curved segment is joined to a connected curved section 11 along the junction line 17 .
  • the optimal placement of the junction lines 16 and 17 is at or near the connecting line 22 that joins a curved section 11 (or 11 E) to a diagonal section 19 L, 19 M or 19 E.
  • any flexible longitudinal connecting link shape that can readily lengthen or shorten in its longitudinal extent as the pre-deployed stent is advanced through a curved vessel could be used.
  • Such flexible links are, for example, described in U.S. patent application Serial No. 09/192,101.
  • the flexible link 18 could be in the form of an “N”, an inverted “N”, an “M” or a “W” or any other shape (such as a “U”) that can easily change its length in the longitudinal direction as the pre-deployed stent is advanced through or placed into a curved artery.
  • the unconnected diagonal sections 19 S and 19 M have a decreased longitudinal extent as compared to the longitudinal extent of the connected diagonal sections 19 L.
  • This design provides an open area so that the bottom curved segments 14 of the flexible longitudinal connecting links 18 do not interfere with the top curved segments 15 when the stent 10 is crimped onto a balloon of a stent delivery system.
  • a decreased profile i.e.; smaller outer diameter
  • Connected curved sections 11 do not have a tendency to flare outward when the pre-deployed stent 10 is advanced through a curved vessel because the longitudinal connecting struts 18 exert an inward radial force that tends to prevent such flaring. Therefore, one can have connected strut members 24 L that are comparatively long and still they will not flare out to engage the vessel wall when the stent 10 is advanced through a curved vessel. However, without longitudinal connecting links, an unconnected curved section (such as the unconnected curved section 12 ) will tend to flare outward as the stent 10 is advanced around a bend in a curved vessel.
  • the unconnected strut members 24 S have a short diagonal section 19 S with a reduced longitudinal length L2 as compared to the longitudinal length L1 of the diagonal section 19 L of the connected strut members 24 L.
  • the unconnected medium strut member 24 MU has a diagonal section 19 M that has a reduced length as compared to the diagonal 19 L of the long strut member 24 L.
  • a reduced length is defined herein as being at least 0.1 mm shorter than the length L1 of the long diagonal 19 L.
  • FIG. 2 illustrates a prior art stent design which is the Multi-Link RX Ultra marketed by Guidant Corporation.
  • the stent 40 has an end curved section 42 E that has an inside connection of a straight longitudinal connecting link 48 that connects to the outside of the interior connecting curved section 41 .
  • the connecting strut 48 is formed out of the wall of a straight tube, it is straight, comparatively long and it tends to remain straight as the stent 40 mounted on a balloon is advanced through a curved vessel.
  • the longitudinal connecting link 48 can actually force the end curved section 42 E to flare outward in a highly curved vessel.
  • FIG. 3 illustrates a stent design that has an “S”-shaped connecting link 58 connected at the centered, longitudinal end point 59 to an end connected curved section 51 E.
  • an “S”-shaped connecting link 58 connected at the centered, longitudinal end point 59 to an end connected curved section 51 E.
  • connection lines 16 and 17 are not at the centered, longitudinal end point of the connecting curved end section 11 E, the flexible longitudinal connecting links 18 cannot exert a substantial force onto the interior end curved sections 11 E to cause end flaring.
  • the longitudinal connecting strut 18 can only exert an insignificant torque onto the curved end sections 11 E.
  • the connecting links 18 do not cause any significant tendency to have any of the strut members of the end set of strut members 30 flare outward in curved vessels.
  • the undulating longitudinal connecting link 18 will tend to follow the curve within a curved vessel and will not have a tendency to remain straight in the longitudinal direction as is the case for the straight longitudinal connecting link 48 shown in FIG. 2.
  • the flexible longitudinal connecting link 18 has a dramatically reduced propensity to cause end flaring of the stent 10 .
  • Another factor in decreasing end flaring is that the longitudinal length L3 of the interior sets of strut members 20 is greater by at least 0.05 mm as compared to the longitudinal length L4 of the end sets of strut members 30 . Also, the attachment point for the flexible longitudinal 15 connecting links 18 along the line 16 or 17 is such that the effective longitudinal length that can cause end flaring is even less than the length L4. For a connecting link such as the connecting link 58 of FIG. 3 that is connected at the center of an end curved section, there would be an increased tendency for end flaring as compared to the design of FIG. 1.
  • FIG. 4 is a flat, layout view of the deployed stent 10 ′ showing the deployed curved sections 11 ′ and 12 ′ and the shape of the deployed flexible longitudinal connecting link 18 ′ having a deployed bottom curved segment 14 ′ and a top curved segment 15 ′. Because the longitudinal length decreases for all circumferential sets of strut members 20 or 30 when the balloon on which the stent 10 is mounted is inflated, there is a tendency for the stent 10 ′ to be foreshortened in its longitudinal length as compared to the longitudinal length of the pre-deployed stent 10 .
  • the strut members 20 and 30 are firmly crimped onto the balloon, as the balloon is inflated, they have a longitudinal retention force from friction with the balloon surface that is great enough to cause the comparatively weak longitudinal connecting links 18 ′ to lengthen in the longitudinal direction. Therefore, as the balloon is expanded, the longitudinal connecting links 18 ′ will actually be stretched in the longitudinal direction, thus increasing their longitudinal length during balloon inflation. The effect of lengthening the longitudinal extent of the longitudinal connecting links 18 ′ is to decrease the foreshortening of the deployed stent 10 ′.
  • FIG. 5 is a layout view of a stent 60 that has connected curved sections 61 and 61 E that are connected by straight connecting links 68 .
  • straight connecting links 68 any combination of straight and flexible longitudinal connecting links could be used.
  • different sets of adjacent strut members could be joined by a different number and/or different type of connecting links.
  • the number of connecting links connecting any pair of adjacent sets of strut members could be as few as one or as many as eight.
  • the design of FIG. 5 has several advantages over the design of FIG. 2 although both use straight longitudinal connecting links to connect the circumferential sets of strut members. -The stent of FIG. 5 only connects to the outsides of the curved sections 61 or 61 E. For the same width of the circumferential sets of strut members this will reduce the minimum crimpable diameter of the stent 60 as compared to the stent 40 of FIG. 2 because the straight longitudinal connecting links 48 of the stent 40 separate the curved sections of some of the strut members when the stent 40 is crimped down on a balloon.

Abstract

Disclosed is an open cell stent that has adjacent sets of circumferential struts connected by means of highly flexible, undulating, connecting struts. To decrease outward flaring of the circumferential struts when the pre-deployed stent is advanced through highly curved vessels, each unconnected strut of the sets of circumferential struts has a decreased longitudinal length as compared to the longitudinal length of the circumferential struts that are connected by the flexible connecting struts. To decrease the propensity for outward flaring of the end set of circumferential struts, the longitudinal length of the end set of circumferential struts is shorter than the longitudinal length of the interior set of circumferential struts. Also, the attachment point of the flexible connecting struts is off the center of the curved sections of the circumferential struts, thus also decreasing the tendency for outward flaring of the end set of circumferential struts.

Description

    FIELD OF USE
  • This invention is in the field of stents for implantation into a vessel of a human body. [0001]
  • BACKGROUND OF THE INVENTION
  • Stents are well known medical devices that have been used for maintaining the patency of a large variety of vessels of the human body. The most frequent use is for implantation into the coronary vasculature. Although stents have been used for this purpose for more than ten years, many stent designs still lack the required flexibility and radial rigidity to provide an optimum clinical result. Another deficiency of open cell stents is that some stent struts members can flare outward (fish scaling) as the stent is advanced through a tight curve. [0002]
  • Most current tubular stents use a multiplicity of circumferential sets of strut members connected by either straight longitudinal connecting links or undulating longitudinal connecting links. The circumferential sets of strut members are typically formed from connecting diagonal and curved sections forming a closed ring that opens up as the stent expands to form the structural element in the stent that pushes against the arterial wall. A single strut member is defined as adjacent connected diagonal and curved sections within one of the circumferential sets of strut members. [0003]
  • An open cell stent is defined as a stent that has circumferential sets of strut members with some curved sections (crowns) that are not connected by a longitudinal connecting link to an adjacent circumferential set of strut members. In comparison, a closed cell stent has every curved section of every circumferential set of strut members, except at the distal and proximal ends of the stent, attached to a longitudinal connecting link. A strut member whose curved section is not attached to a longitudinal connecting link is defined as an unconnected strut member. [0004]
  • There are several “open cell” stents that are currently being marketed for the treatment of coronary stenoses. Examples of these are the Tetra stent from Guidant Corporation and the S670 stent from Medtronics, Inc. Each of these stents has a limited number of straight longitudinal connecting links to join adjacent curved sections of adjacent circumferential sets of strut members. These straight longitudinal connecting links can cause outward flaring of the end circumferential sets of strut members as the stent is bent around a curve. The interior unconnected strut members also can flare outward when the pre-deployed stent mounted on a balloon is advanced through a curved vessel such as a coronary artery. Any flared out strut can engage the vessel wall during stent delivery in a curved vessel thereby preventing the stent from reaching the site that is to be stented. [0005]
  • SUMMARY OF THE INVENTION
  • The present invention is a stent that is designed to optimize many of the operating parameters that are expected for stents in the first decade of the 21st century. Specifically, an optimum design would have the following characteristics: [0006]
  • I. IN THE PRE-DEPLOYED STATE [0007]
  • 1. excellent flexibility [0008]
  • 2. low profile (i.e.; small outside diameter of the stent) [0009]
  • 3. good radiopacity [0010]
  • 4. smooth outer surface [0011]
  • 5. no flaring of struts when advancing through curved arteries [0012]
  • [0013] 6. a high degree of stent retention onto the delivery catheter
  • II. AFTER DEPLOYMENT [0014]
  • 1. flexible so as to conform to a curved artery [0015]
  • 2. radially rigid (i.e.; low recoil) [0016]
  • 3. good radiopacity [0017]
  • 4. good coverage of the vessel wall (i.e.; no plaque prolapse) [0018]
  • 5. side branch access without strut breakage [0019]
  • 6. minimal foreshortening compared to the length of the stent in its pre-deployed state [0020]
  • Although many desirable attributes are required of the catheter that is used to deliver the stent, the scope of the present invention is limited to the design of the stent itself. However, it should be understood that the reduced foreshortening of this stent is a result of having undulating longitudinal connecting links that easily extend in their longitudinal length when the balloon onto which the stent is crimped is inflated. [0021]
  • To accomplish the goals listed in I. and II. above, the stent would optimally have at least two open cells around the circumference of the stent. A unique feature of the present invention is that each of the strut members whose curved sections are unconnected has a shorter longitudinal length as compared to the longitudinal length of the strut members that are connected by a longitudinal connecting link. This shorter length (optimally on the order of 0.1 mm shorter) reduces outward flaring of the unconnected strut members when the stent is advanced through highly curved vessels such as some coronary arteries. Flaring (which is sometimes called “fish-scaling”) can cause the stent to engage the vessel wall as the stent is advanced through curved arteries. [0022]
  • Another novel feature of this stent is that the longitudinal connecting links can have an undulating shape so that they can easily expand or contract in their longitudinal length when the stent is advanced through a curved vessel. The extraordinary capability of this stent to bend easily is a combination of the fact that those curved sections of adjacent circumferential sets of strut members that are connected are connected with flexible longitudinal connecting links, and many (typically one-half) of the curved sections are unconnected. Of course, the weakest possible connection that provides the highest degree of longitudinal flexibility is no connection at all. Therefore, the combination of no connections plus the few required connections between the circumferential sets of strut members being by means of highly flexible undulating longitudinal connecting links imparts to this stent an extraordinarily high degree of longitudinal flexibility. [0023]
  • It should also be understood that all the strut members at each end of the stent should also have a shortened longitudinal length because the outside curved section of the end circumferential sets of strut members cannot be connected to any adjacent circumferential set of strut members. By shortening all the end strut members, end flaring of the stent as it is advanced through curved vessels can be reduced. Furthermore, the fact that the interior curved sections of each strut member at the ends of the stent either has either no connection or a flexible, undulating longitudinal connecting link connection to an inner strut members, is also desirable in preventing flaring out of the strut members at the ends of the stent. This is not the case for strut members that have a straight connection to an end circumferential strut such as shown in FIG. 5 of U.S. Pat. No. 5,759,192. [0024]
  • Good radiopacity for the stent is achieved by having a stainless steel stent that has a wall thickness that is at least 0.0045 inches. Another means would be to use a metal with a higher density such as tantalum with a thickness greater than 0.002 inches. A third means for obtaining improved radiopacity would be to sandwich a high density metal between two layers of stainless steel with each of the co-axial tubes having a wall thickness between 0.001 and 0.002 inches with the total wall thickness of the stent being at least 0.003 inches. [0025]
  • Another feature of the present invention is that the undulating longitudinal connecting links readily extend in the longitudinal direction when the balloon is inflated. Since the circumferential sets of strut members upon deployment tend to decrease in their longitudinal length, the longitudinal lengthening of the undulating longitudinal connecting links has the effect of minimizing the foreshortening of the deployed stent. [0026]
  • Thus an object of the present invention is to have increased longitudinal flexibility for the stent by having some curved sections of each circumferential set of strut members being unconnected to the curved sections of the adjacent circumferential set of strut members with the other curved sections being connected by highly flexible, undulating longitudinal connecting links. [0027]
  • Another object of the present invention is to prevent flaring of the unconnected strut members by having a shorter longitudinal length for the unconnected strut members. [0028]
  • Still another object of the invention is to have generally shorter longitudinal lengths for all the strut members in the circumferential sets of strut members at the stent ends to reduce the tendency for end flaring of the stent. [0029]
  • Still another object of the invention is to decrease the propensity of the stent to have end flaring by having each curved section of the end set of strut members either being unconnected to the curved section of the adjacent (interior) set of strut members or being connected by a highly flexible undulating longitudinal connecting link. [0030]
  • Still another object of the invention is to connect the flexible longitudinal connecting links to the curved section of the connected strut members at a point at or near the point where the curved section of each connected strut members is joined to the diagonal section of that connected strut member, thus further reducing the propensity for end flaring. [0031]
  • Still another object of the invention is to have flexible longitudinal connecting links that are adapted to readily increase their longitudinal length when the balloon is inflated; thus minimizing the extent of stent foreshortening upon stent deployment. [0032]
  • These and other objects and advantages of this invention will become obvious to a person of ordinary skill in this art upon reading the detailed description of this invention including the associated drawings as presented herein.[0033]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a layout view of the stent of the present invention in its pre-deployed state as it would be crimped onto the balloon of a balloon expandable stent delivery system. [0034]
  • FIG. 2 is a layout view of a prior art stent showing a straight longitudinal connecting link joining the inside of a curved section of a circumferential set of strut members to the outside curved section of the adjacent circumferential set of strut members. [0035]
  • FIG. 3 is a layout view of a closed cell stent having flexible longitudinal connecting links attached at the center of the outside of all the curved sections of every circumferential set of strut members. [0036]
  • FIG. 4 is a layout view of the stent of FIG. 1 shown in its deployed state. [0037]
  • FIG. 5 is a layout view of a stent of the present invention in which alternate adjacent curved sections are connected by straight longitudinal connecting links.[0038]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Although stents are in fact thin-walled, lace-like, cylindrical tubes, they are best illustrated in the form of a flat, two-dimensional layout view as shown in FIGS. [0039] 1-5 inclusive.
  • FIG. 1 is a flat, layout view of a [0040] cylindrical stent 10 wherein each of the stent's top ends would be joined to each of the stent's bottom ends to form the cylindrical stent 10 in its pre-deployed, lace-like, cylindrical form.
  • The [0041] pre-deployed stent 10 of the present invention is shown in FIG. 1 as having a multiplicity of interior circumferential sets of strut members 20 and two end circumferential sets of strut members 30, each indicated within a dashed rectangle. For the stent 10, the connected curved sections 11 and 11E and the unconnected curved sections 12 and 12E are shown in crosshatch in FIG. 1. Also shown in crosshatch in FIG. 1 is the long diagonal section 19L, medium length diagonal section 19M and short diagonal section 19S. Each of the interior sets of strut members 20 consists of at least one long connected strut member 24L, at least one medium length connected strut member 24MC, at least one medium length unconnected strut member 24MU and at least one unconnected strut member 24S. Each of the long connected strut members 24L consists of a long diagonal section 19L joined along the line 22 to a connected curved section 11. Each medium strut member 24MC or 24MU consists of one medium diagonal section 19M connected along a line 22 to a curved section 11. Each short unconnected strut member 24S consists of a short diagonal section 19S joined to an unconnected curved section 12. As shown in FIG. 1, the longitudinal length of the long diagonal section 19L is L1 and the longitudinal length of the short diagonal section 19S is L2. As clearly seen in FIG. 1, the longitudinal length L1 is longer than the longitudinal length L2, i.e., L1>L2. For an effective stent design, L1 should be at least 0.1 mm longer than L2.
  • Each of the connected [0042] curved sections 11 is joined to an adjacent curved section 11 or 11E in the adjacent set of strut members by means of a longitudinally extending, flexible longitudinal connecting link 18 that consists of a central segment 13, a bottom curved segment 14 and a top curved segment 15. The bottom curved segment 14 is fixedly joined to a connected curved section 11 along the junction line 16. The top curved segment is joined to a connected curved section 11 along the junction line 17. The optimal placement of the junction lines 16 and 17 is at or near the connecting line 22 that joins a curved section 11 (or 11E) to a diagonal section 19L, 19M or 19E. Although an “S” type flexible strut 18 is shown in FIG. 1, it should be understood that any flexible longitudinal connecting link shape that can readily lengthen or shorten in its longitudinal extent as the pre-deployed stent is advanced through a curved vessel could be used. Such flexible links are, for example, described in U.S. patent application Serial No. 09/192,101. Thus it is anticipated that the flexible link 18 could be in the form of an “N”, an inverted “N”, an “M” or a “W” or any other shape (such as a “U”) that can easily change its length in the longitudinal direction as the pre-deployed stent is advanced through or placed into a curved artery.
  • As previously stated, the unconnected [0043] diagonal sections 19S and 19M have a decreased longitudinal extent as compared to the longitudinal extent of the connected diagonal sections 19L. This design provides an open area so that the bottom curved segments 14 of the flexible longitudinal connecting links 18 do not interfere with the top curved segments 15 when the stent 10 is crimped onto a balloon of a stent delivery system. Thus a decreased profile (i.e.; smaller outer diameter) can be achieved for the pre-deployed stent 10 without causing the bottom curved segment 14 to be placed over (or beneath) the top curved segment 15.
  • Connected [0044] curved sections 11 do not have a tendency to flare outward when the pre-deployed stent 10 is advanced through a curved vessel because the longitudinal connecting struts 18 exert an inward radial force that tends to prevent such flaring. Therefore, one can have connected strut members 24L that are comparatively long and still they will not flare out to engage the vessel wall when the stent 10 is advanced through a curved vessel. However, without longitudinal connecting links, an unconnected curved section (such as the unconnected curved section 12) will tend to flare outward as the stent 10 is advanced around a bend in a curved vessel. To minimize such, tendency to flare, the unconnected strut members 24S have a short diagonal section 19S with a reduced longitudinal length L2 as compared to the longitudinal length L1 of the diagonal section 19L of the connected strut members 24L. The unconnected medium strut member 24MU has a diagonal section 19M that has a reduced length as compared to the diagonal 19L of the long strut member 24L. A reduced length is defined herein as being at least 0.1 mm shorter than the length L1 of the long diagonal 19L. By this design, the pre-deployed stent 10 will have little or no flaring or fish-scaling for all interior curved sections of the stent 10. However, there will always be some tendency to have end flaring for each of the end curved sections 12EE of the end set of strut members 30. Reduced flaring of the end curved sections 12EE is accomplished by having comparatively short diagonal sections 19E and also by the location of the attachment line 22 where the links 18 are joined to the curved sections 11E of the end set of strut members 30. The advantageous design of the stent 10 of FIG. 1 in reducing the propensity for end flaring is best explained by first referring to FIGS. 2 and 3 that illustrate prior art stent designs that tend to have a significant propensity for end flaring.
  • FIG. 2 illustrates a prior art stent design which is the Multi-Link RX Ultra marketed by Guidant Corporation. In this design, the [0045] stent 40 has an end curved section 42E that has an inside connection of a straight longitudinal connecting link 48 that connects to the outside of the interior connecting curved section 41. Because the connecting strut 48 is formed out of the wall of a straight tube, it is straight, comparatively long and it tends to remain straight as the stent 40 mounted on a balloon is advanced through a curved vessel. Thus the longitudinal connecting link 48 can actually force the end curved section 42E to flare outward in a highly curved vessel.
  • FIG. 3 illustrates a stent design that has an “S”-shaped connecting [0046] link 58 connected at the centered, longitudinal end point 59 to an end connected curved section 51E. Thus there is some tendency for the short, straight section of the link 58 where it joins the curved section 51E to cause the end struts of the stent 50 to flare outward. It should be understood however, that the design of FIG. 3 has a much decreased tendency for end flaring as compared to the design of FIG. 2.
  • Returning now to a discussion of FIG. 1, because the connection lines [0047] 16 and 17 are not at the centered, longitudinal end point of the connecting curved end section 11E, the flexible longitudinal connecting links 18 cannot exert a substantial force onto the interior end curved sections 11 E to cause end flaring. In fact, because of the shape of curved sections 14 and 15, and because of their off-center attachment to the connected curved end section 11E, the longitudinal connecting strut 18 can only exert an insignificant torque onto the curved end sections 11E. Thus, the connecting links 18 do not cause any significant tendency to have any of the strut members of the end set of strut members 30 flare outward in curved vessels. Put another way, the undulating longitudinal connecting link 18 will tend to follow the curve within a curved vessel and will not have a tendency to remain straight in the longitudinal direction as is the case for the straight longitudinal connecting link 48 shown in FIG. 2. Thus the flexible longitudinal connecting link 18 has a dramatically reduced propensity to cause end flaring of the stent 10.
  • Another factor in decreasing end flaring (as seen in FIG. 1) is that the longitudinal length L3 of the interior sets of [0048] strut members 20 is greater by at least 0.05 mm as compared to the longitudinal length L4 of the end sets of strut members 30. Also, the attachment point for the flexible longitudinal 15 connecting links 18 along the line 16 or 17 is such that the effective longitudinal length that can cause end flaring is even less than the length L4. For a connecting link such as the connecting link 58 of FIG. 3 that is connected at the center of an end curved section, there would be an increased tendency for end flaring as compared to the design of FIG. 1.
  • FIG. 4 is a flat, layout view of the deployed [0049] stent 10′ showing the deployed curved sections 11′ and 12′ and the shape of the deployed flexible longitudinal connecting link 18′ having a deployed bottom curved segment 14′ and a top curved segment 15′. Because the longitudinal length decreases for all circumferential sets of strut members 20 or 30 when the balloon on which the stent 10 is mounted is inflated, there is a tendency for the stent 10′ to be foreshortened in its longitudinal length as compared to the longitudinal length of the pre-deployed stent 10. However, because the strut members 20 and 30 are firmly crimped onto the balloon, as the balloon is inflated, they have a longitudinal retention force from friction with the balloon surface that is great enough to cause the comparatively weak longitudinal connecting links 18′ to lengthen in the longitudinal direction. Therefore, as the balloon is expanded, the longitudinal connecting links 18′ will actually be stretched in the longitudinal direction, thus increasing their longitudinal length during balloon inflation. The effect of lengthening the longitudinal extent of the longitudinal connecting links 18′ is to decrease the foreshortening of the deployed stent 10′.
  • Although the greatest longitudinal flexibility for the [0050] stent 10 is obtained by connecting some of adjacent sets of strut members with flexible longitudinal connecting links (like the link 18), it should be understood that short, straight links could be used to connect adjacent curved sections such as 12 and 12E of FIG. 1. This design concept is shown in FIG. 5 that is a layout view of a stent 60 that has connected curved sections 61 and 61E that are connected by straight connecting links 68. Of course it should be understood that any combination of straight and flexible longitudinal connecting links could be used. Furthermore, for any one stent, different sets of adjacent strut members could be joined by a different number and/or different type of connecting links. The number of connecting links connecting any pair of adjacent sets of strut members could be as few as one or as many as eight. The design of FIG. 5 has several advantages over the design of FIG. 2 although both use straight longitudinal connecting links to connect the circumferential sets of strut members. -The stent of FIG. 5 only connects to the outsides of the curved sections 61 or 61E. For the same width of the circumferential sets of strut members this will reduce the minimum crimpable diameter of the stent 60 as compared to the stent 40 of FIG. 2 because the straight longitudinal connecting links 48 of the stent 40 separate the curved sections of some of the strut members when the stent 40 is crimped down on a balloon.
  • Various other modifications, adaptations and alternative designs are of course possible in light of the teachings as presented herein. Therefore it should be understood that, while still remaining within the scope and meaning of the appended claims, this invention could be practiced in a manner other than that which is specifically described herein. [0051]

Claims (13)

What is claimed is:
1. A stent in the form of a thin-walled, lace-like, cylindrical tube with a longitudinal axis, the stent comprising:
a multiplicity of interior circumferential sets of strut members and one end circumferential set of strut members at each of the two longitudinal ends of the stent;
each interior circumferential set of strut members including at least one connected strut member consisting of a long diagonal section having a longitudinal length L1 fixedly attached along a connecting line to a connected curved section, each connected curved section being joined by means of a longitudinal connecting link to one curved section of an adjacent circumferential set of strut members;
each interior set of strut members also including at least one unconnected strut member consisting of a short diagonal section having a longitudinal length L2 fixedly joined to an unconnected curved section; and
the stent being further characterized by having the length L1 of the long diagonal section being longer than the length L2 of the short diagonal section, i.e.; L1>L2, so that the unconnected strut members have a decreased tendency for flaring outward as the stent is advanced though a curved vessel.
2. The stent of claim 1 wherein the longitudinal connecting link is straight.
3. The stent of claim 1 wherein the longitudinal connecting link is an undulating, flexible, longitudinal connecting link that is adapted to change its length in the longitudinal direction as the stent is advanced through a curved vessel.
4. The stent of claim 3 wherein the place where each flexible longitudinal connecting link is joined to the interior set of strut members is near the connecting line where a connected curved section is joined to a diagonal section.
5. The stent of claim 3 wherein the flexible connecting link is in the general form of an “S”.
6. The stent of claim 1 wherein there are at most three longitudinal connecting links that join each adjacent pair of circumferential sets of strut members.
7. The stent of claim 1 wherein there are at most five longitudinal connecting links that join each adjacent pair of. circumferential sets of strut members.
8. The stent of claim 1 wherein there are at most eight longitudinal connecting links that join each adjacent pair of circumferential sets of strut members.
9. The stent of claim 3 wherein upon deployment to its deployed state, the flexible longitudinal connecting links extend in their longitudinal length thereby reducing the foreshortening of the stent.
10. The stent of claim 1 wherein the total length L4 in the longitudinal direction of each end circumferential set of strut members is shorter than the length L3 of each interior circumferential set of strut members, thus decreasing the propensity for flaring outward of the end circumferential set of strut members when the pre-deployed stent is advanced through a curved vessel.
11. The stent of claim 1 wherein the metal from which the stent is formed is stainless steel and the wall thickness of the pre-deployed stent is greater than 0.0045 inches so as to obtain acceptable radiopacity for the stent when it is being implanted into a human subject.
12. The stent of claim 1 wherein the metal from which the stent is formed is tantalum and the wall thickness of the pre-deployed stent is greater than 0.002 inches so as to obtain acceptable radiopacity for the stent when it is being implanted into a human subject.
13. The stent of claim 1 wherein the metals from which the stent is formed is a sandwich of three coaxial tubes having stainless steel as interior and exterior tubes and a central tube formed from a high density metal, the total wall thickness of the pre-deployed stent being greater than 0.003 inches so as to obtain acceptable radiopacity for the stent when it is being implanted into a human subject.
US10/340,883 2000-06-30 2003-01-10 Ultraflexible open cell stent Abandoned US20030100941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/340,883 US20030100941A1 (en) 2000-06-30 2003-01-10 Ultraflexible open cell stent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/607,980 US6540775B1 (en) 2000-06-30 2000-06-30 Ultraflexible open cell stent
US10/340,883 US20030100941A1 (en) 2000-06-30 2003-01-10 Ultraflexible open cell stent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/607,980 Continuation US6540775B1 (en) 2000-06-30 2000-06-30 Ultraflexible open cell stent

Publications (1)

Publication Number Publication Date
US20030100941A1 true US20030100941A1 (en) 2003-05-29

Family

ID=24434518

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/607,980 Expired - Lifetime US6540775B1 (en) 2000-06-30 2000-06-30 Ultraflexible open cell stent
US09/718,558 Expired - Lifetime US6706061B1 (en) 2000-06-30 2000-11-22 Enhanced hybrid cell stent
US10/340,883 Abandoned US20030100941A1 (en) 2000-06-30 2003-01-10 Ultraflexible open cell stent
US10/771,181 Expired - Lifetime US7169174B2 (en) 2000-06-30 2004-02-03 Hybrid stent
US11/625,400 Abandoned US20070239258A1 (en) 2000-06-30 2007-01-22 Hybrid stent

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/607,980 Expired - Lifetime US6540775B1 (en) 2000-06-30 2000-06-30 Ultraflexible open cell stent
US09/718,558 Expired - Lifetime US6706061B1 (en) 2000-06-30 2000-11-22 Enhanced hybrid cell stent

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/771,181 Expired - Lifetime US7169174B2 (en) 2000-06-30 2004-02-03 Hybrid stent
US11/625,400 Abandoned US20070239258A1 (en) 2000-06-30 2007-01-22 Hybrid stent

Country Status (1)

Country Link
US (5) US6540775B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050149168A1 (en) * 2003-12-30 2005-07-07 Daniel Gregorich Stent to be deployed on a bend
US20070010869A1 (en) * 2005-07-11 2007-01-11 Nipro Corporation Flexible stent with excellent expandability and trackability
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
US10702405B2 (en) 2016-03-31 2020-07-07 Vesper Medical, Inc. Intravascular implants
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent
US11364134B2 (en) 2018-02-15 2022-06-21 Vesper Medical, Inc. Tapering stent
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent

Families Citing this family (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE166782T1 (en) * 1994-02-25 1998-06-15 Fischell Robert STENT WITH A MULTIPLE CLOSED CIRCULAR STRUCTURES
US7204848B1 (en) * 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6241762B1 (en) * 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US20040254635A1 (en) * 1998-03-30 2004-12-16 Shanley John F. Expandable medical device for delivery of beneficial agent
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US20050033399A1 (en) * 1998-12-03 2005-02-10 Jacob Richter Hybrid stent
US8382821B2 (en) * 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US20070219642A1 (en) * 1998-12-03 2007-09-20 Jacob Richter Hybrid stent having a fiber or wire backbone
US20060122691A1 (en) * 1998-12-03 2006-06-08 Jacob Richter Hybrid stent
US20060178727A1 (en) * 1998-12-03 2006-08-10 Jacob Richter Hybrid amorphous metal alloy stent
US6290673B1 (en) * 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US7621947B2 (en) * 2000-03-01 2009-11-24 Medinol, Ltd. Longitudinally flexible stent
US7828835B2 (en) * 2000-03-01 2010-11-09 Medinol Ltd. Longitudinally flexible stent
US8202312B2 (en) * 2000-03-01 2012-06-19 Medinol Ltd. Longitudinally flexible stent
US8920487B1 (en) 2000-03-01 2014-12-30 Medinol Ltd. Longitudinally flexible stent
US8496699B2 (en) * 2000-03-01 2013-07-30 Medinol Ltd. Longitudinally flexible stent
US7758627B2 (en) * 2000-03-01 2010-07-20 Medinol, Ltd. Longitudinally flexible stent
US7141062B1 (en) * 2000-03-01 2006-11-28 Medinol, Ltd. Longitudinally flexible stent
US6723119B2 (en) * 2000-03-01 2004-04-20 Medinol Ltd. Longitudinally flexible stent
EP1132060A2 (en) 2000-03-09 2001-09-12 LPL Systems Inc. Expandable stent
KR100360364B1 (en) * 2000-05-22 2002-11-13 주식회사 정성메디칼 A metal stent for installation in the coronary artery
DE10044043A1 (en) * 2000-08-30 2002-03-14 Biotronik Mess & Therapieg Repositionable stent
DE60112318D1 (en) * 2000-10-16 2005-09-01 Conor Medsystems Inc EXPANDABLE MEDICAL DEVICE FOR DELIVERING A REMEDY
US6790227B2 (en) * 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
AU784552B2 (en) * 2001-03-02 2006-05-04 Cardinal Health 529, Llc Flexible stent
CA2441061A1 (en) * 2001-03-20 2002-09-26 Gmp Cardiac Care, Inc. Rail stent
DE10118944B4 (en) * 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
US6939373B2 (en) * 2003-08-20 2005-09-06 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6629994B2 (en) * 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7520892B1 (en) * 2001-06-28 2009-04-21 Advanced Cardiovascular Systems, Inc. Low profile stent with flexible link
US7547321B2 (en) * 2001-07-26 2009-06-16 Alveolus Inc. Removable stent and method of using the same
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US6908480B2 (en) * 2001-08-29 2005-06-21 Swaminathan Jayaraman Structurally variable stents
US20060004437A1 (en) * 2001-08-29 2006-01-05 Swaminathan Jayaraman Structurally variable stents
US7351255B2 (en) * 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US7147656B2 (en) * 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
US7892273B2 (en) * 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US7137993B2 (en) * 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US20050096731A1 (en) * 2002-07-11 2005-05-05 Kareen Looi Cell seeded expandable body
MXPA05001845A (en) * 2002-08-15 2005-11-17 Gmp Cardiac Care Inc Stent-graft with rails.
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
US20040093056A1 (en) * 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
US7527644B2 (en) * 2002-11-05 2009-05-05 Alveolus Inc. Stent with geometry determinated functionality and method of making the same
US7637942B2 (en) * 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US7959671B2 (en) * 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
AU2003290881A1 (en) * 2002-11-15 2004-06-15 Gmp Cardiac Care, Inc. Rail stent
CA2512203C (en) 2002-12-02 2012-10-23 Gi Dynamics, Inc. Bariatric sleeve
US7608114B2 (en) 2002-12-02 2009-10-27 Gi Dynamics, Inc. Bariatric sleeve
US7766973B2 (en) 2005-01-19 2010-08-03 Gi Dynamics, Inc. Eversion resistant sleeves
US7695446B2 (en) * 2002-12-02 2010-04-13 Gi Dynamics, Inc. Methods of treatment using a bariatric sleeve
US20070032879A1 (en) * 2002-12-02 2007-02-08 Levine Andy H Anti-buckling sleeve
US7678068B2 (en) 2002-12-02 2010-03-16 Gi Dynamics, Inc. Atraumatic delivery devices
US7025791B2 (en) 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
JP4446090B2 (en) * 2002-12-19 2010-04-07 インヴァテック エス.アール.エル. Lumen prosthesis
US20050165469A1 (en) * 2002-12-24 2005-07-28 Michael Hogendijk Vascular prosthesis including torsional stabilizer and methods of use
US20040158314A1 (en) * 2002-12-24 2004-08-12 Novostent Corporation Ribbon-type vascular prosthesis having stress-relieving articulation and methods of use
US20050033410A1 (en) * 2002-12-24 2005-02-10 Novostent Corporation Vascular prothesis having flexible configuration
US7846198B2 (en) * 2002-12-24 2010-12-07 Novostent Corporation Vascular prosthesis and methods of use
US20070239251A1 (en) * 2002-12-31 2007-10-11 Abbott Cardiovascular Systems Inc. Flexible stent
US20040160685A1 (en) * 2003-01-27 2004-08-19 Everardo Daniel Faires Quiros Lower rear view mirror (LRVM for short)
US7637934B2 (en) * 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
JP4591348B2 (en) * 2003-04-30 2010-12-01 ニプロ株式会社 Flexible stent with excellent blood vessel followability and good expandability
US7604660B2 (en) * 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
US7131993B2 (en) * 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US9155639B2 (en) * 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US7959665B2 (en) * 2003-07-31 2011-06-14 Abbott Cardiovascular Systems Inc. Intravascular stent with inverted end rings
US7553324B2 (en) * 2003-10-14 2009-06-30 Xtent, Inc. Fixed stent delivery devices and methods
US7316711B2 (en) * 2003-10-29 2008-01-08 Medtronic Vascular, Inc. Intralumenal stent device for use in body lumens of various diameters
WO2005044361A1 (en) 2003-11-07 2005-05-19 Merlin Md Pte Ltd Implantable medical devices with enhanced visibility, mechanical properties and biocompatibility
US8057420B2 (en) 2003-12-09 2011-11-15 Gi Dynamics, Inc. Gastrointestinal implant with drawstring
EP1708655A1 (en) 2003-12-09 2006-10-11 GI Dynamics, Inc. Apparatus to be anchored within the gastrointestinal tract and anchoring method
US20060212042A1 (en) * 2005-03-17 2006-09-21 Lamport Ronald B Removal and repositioning device
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US20070156225A1 (en) * 2003-12-23 2007-07-05 Xtent, Inc. Automated control mechanisms and methods for custom length stent apparatus
US20050182474A1 (en) * 2004-02-13 2005-08-18 Medtronic Vascular, Inc. Coated stent having protruding crowns and elongated struts
US7323006B2 (en) * 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US8500751B2 (en) 2004-03-31 2013-08-06 Merlin Md Pte Ltd Medical device
US8915952B2 (en) 2004-03-31 2014-12-23 Merlin Md Pte Ltd. Method for treating aneurysms
US7578840B2 (en) * 2004-03-31 2009-08-25 Cook Incorporated Stent with reduced profile
US8715340B2 (en) * 2004-03-31 2014-05-06 Merlin Md Pte Ltd. Endovascular device with membrane
DE102004022044B4 (en) * 2004-05-03 2008-12-18 Qualimed Innovative Medizinprodukte Gmbh stent
US7763064B2 (en) * 2004-06-08 2010-07-27 Medinol, Ltd. Stent having struts with reverse direction curvature
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US20050288766A1 (en) * 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
AU2012200743B2 (en) * 2004-06-30 2013-06-13 Cardinal Health 529, Llc Stent having asymetrical members of unequal length
CA2572265C (en) * 2004-06-30 2015-10-27 Cordis Corporation Stent having asymmetrical members of unequal length
WO2006005072A2 (en) * 2004-06-30 2006-01-12 Cordis Corporation Intraluminal medical device having asymetrical members and method for optimization
WO2006016894A1 (en) 2004-07-09 2006-02-16 Gi Dynamics, Inc. Methods and devices for placing a gastrointestinal sleeve
US20060079956A1 (en) * 2004-09-15 2006-04-13 Conor Medsystems, Inc. Bifurcation stent with crushable end and method for delivery of a stent to a bifurcation
AU2005287010B2 (en) * 2004-09-17 2010-04-15 Gi Dynamics, Inc. Gastrointestinal anchor
US7887579B2 (en) * 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
EP1819300B1 (en) * 2004-10-26 2012-07-04 Cordis Corporation Stent having phased hoop sections
US7867272B2 (en) * 2004-10-26 2011-01-11 Cordis Corporation Stent having twist cancellation geometry
WO2007050070A1 (en) * 2005-10-26 2007-05-03 Cordis Corporation Stent having twist cancellation geometry
WO2006062639A2 (en) * 2004-12-08 2006-06-15 Conor Medsystems, Inc. Expandable medical device with differential hinge performance
US20070100321A1 (en) * 2004-12-22 2007-05-03 Leon Rudakov Medical device
US7771382B2 (en) * 2005-01-19 2010-08-10 Gi Dynamics, Inc. Resistive anti-obesity devices
FR2881946B1 (en) * 2005-02-17 2008-01-04 Jacques Seguin DEVICE FOR THE TREATMENT OF BODILY CONDUIT AT BIFURCATION LEVEL
ES2764992T3 (en) 2005-04-04 2020-06-05 Flexible Stenting Solutions Inc Flexible stent
US7731654B2 (en) * 2005-05-13 2010-06-08 Merit Medical Systems, Inc. Delivery device with viewing window and associated method
US7976488B2 (en) 2005-06-08 2011-07-12 Gi Dynamics, Inc. Gastrointestinal anchor compliance
US20070049801A1 (en) * 2005-08-24 2007-03-01 Lamport Ronald B Endoscope accessory
WO2007053791A1 (en) * 2005-11-07 2007-05-10 Med Institute, Inc. Stent with orientation-dependent properties
ES2375736T3 (en) * 2006-02-13 2012-03-05 Merlin Md Pte Ltd ENDOVASCULAR DEVICE WITH MEMBRANE.
US20070191926A1 (en) * 2006-02-14 2007-08-16 Advanced Cardiovascular Systems, Inc. Stent pattern for high stent retention
WO2007094740A1 (en) * 2006-02-15 2007-08-23 Merlin Md Pte Ltd Highly flexible stent
CA2646885A1 (en) 2006-03-20 2007-09-27 Xtent, Inc. Apparatus and methods for deployment of linked prosthetic segments
US20080097620A1 (en) * 2006-05-26 2008-04-24 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US20070281117A1 (en) * 2006-06-02 2007-12-06 Xtent, Inc. Use of plasma in formation of biodegradable stent coating
US8478437B2 (en) * 2006-06-16 2013-07-02 The Invention Science Fund I, Llc Methods and systems for making a blood vessel sleeve
US8095382B2 (en) * 2006-06-16 2012-01-10 The Invention Science Fund I, Llc Methods and systems for specifying a blood vessel sleeve
US8551155B2 (en) * 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Stent customization system and method
US8147537B2 (en) * 2006-06-16 2012-04-03 The Invention Science Fund I, Llc Rapid-prototyped custom-fitted blood vessel sleeve
US8163003B2 (en) 2006-06-16 2012-04-24 The Invention Science Fund I, Llc Active blood vessel sleeve methods and systems
US8550344B2 (en) * 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
US7818084B2 (en) * 2006-06-16 2010-10-19 The Invention Science Fund, I, LLC Methods and systems for making a blood vessel sleeve
US7819836B2 (en) * 2006-06-23 2010-10-26 Gi Dynamics, Inc. Resistive anti-obesity devices
US8029558B2 (en) * 2006-07-07 2011-10-04 Abbott Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
WO2008008794A2 (en) 2006-07-10 2008-01-17 Mc Neil-Ppc, Inc. Resilient device
US8613698B2 (en) 2006-07-10 2013-12-24 Mcneil-Ppc, Inc. Resilient device
US10219884B2 (en) 2006-07-10 2019-03-05 First Quality Hygienic, Inc. Resilient device
US7717892B2 (en) * 2006-07-10 2010-05-18 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US10004584B2 (en) 2006-07-10 2018-06-26 First Quality Hygienic, Inc. Resilient intravaginal device
US20080215132A1 (en) * 2006-08-28 2008-09-04 Cornova, Inc. Implantable devices having textured surfaces and methods of forming the same
US8778009B2 (en) * 2006-10-06 2014-07-15 Abbott Cardiovascular Systems Inc. Intravascular stent
FR2911063B1 (en) 2007-01-09 2009-03-20 Stentys S A S Soc Par Actions RUPTIBLE BRIDGE STRUCTURE FOR STENT, AND STENT INCLUDING SUCH BRIDGE STRUCTURES.
US20080199510A1 (en) 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8801647B2 (en) 2007-02-22 2014-08-12 Gi Dynamics, Inc. Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks
US8974514B2 (en) 2007-03-13 2015-03-10 Abbott Cardiovascular Systems Inc. Intravascular stent with integrated link and ring strut
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8211162B2 (en) 2007-05-25 2012-07-03 Boston Scientific Scimed, Inc. Connector node for durable stent
US20080319534A1 (en) * 2007-06-22 2008-12-25 Medtronic Vascular, Inc. Stent With Improved Mechanical Properties
US9144508B2 (en) 2007-07-19 2015-09-29 Back Bay Medical Inc. Radially expandable stent
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
EP3505142B1 (en) * 2007-10-19 2020-10-28 CeloNova Biosciences, Inc. Implantable and lumen-supporting stents
US8128677B2 (en) 2007-12-12 2012-03-06 Intact Vascular LLC Device and method for tacking plaque to a blood vessel wall
US10022250B2 (en) 2007-12-12 2018-07-17 Intact Vascular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US7896911B2 (en) 2007-12-12 2011-03-01 Innovasc Llc Device and method for tacking plaque to blood vessel wall
US9603730B2 (en) 2007-12-12 2017-03-28 Intact Vascular, Inc. Endoluminal device and method
US9375327B2 (en) 2007-12-12 2016-06-28 Intact Vascular, Inc. Endovascular implant
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US7972373B2 (en) 2007-12-19 2011-07-05 Advanced Technologies And Regenerative Medicine, Llc Balloon expandable bioabsorbable stent with a single stress concentration region interconnecting adjacent struts
US9101503B2 (en) * 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US9005274B2 (en) * 2008-08-04 2015-04-14 Stentys Sas Method for treating a body lumen
US8262692B2 (en) * 2008-09-05 2012-09-11 Merlin Md Pte Ltd Endovascular device
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
JP5855460B2 (en) * 2008-11-24 2016-02-09 ヴァスキュラー グラフト ソリューションズ リミテッド External stent
CN104188742B (en) * 2009-04-10 2018-01-19 泰科保健集团有限合伙公司 Implant with high antifatigue, implant induction system and application method
US20100305590A1 (en) * 2009-05-29 2010-12-02 Gi Dynamics, Inc. Transpyloric Anchoring
US8221489B2 (en) * 2009-08-20 2012-07-17 Stentys Device and method for treating a body lumen
US20110152604A1 (en) * 2009-12-23 2011-06-23 Hull Jr Raymond J Intravaginal incontinence device
JP6189214B2 (en) * 2010-09-13 2017-08-30 メリル ライフ サイエンシズ ピーブィティ.エルティディ Stent with thin strut thickness and variable strut shape
EP2658484A1 (en) 2010-12-30 2013-11-06 Boston Scientific Scimed, Inc. Multi stage opening stent designs
CN103391757B (en) * 2011-03-03 2016-01-20 波士顿科学国际有限公司 Low strain dynamic high strength support
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
US10390977B2 (en) 2011-06-03 2019-08-27 Intact Vascular, Inc. Endovascular implant
US8577693B2 (en) 2011-07-13 2013-11-05 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
AU2013212056B2 (en) * 2012-01-25 2016-07-21 Intact Vascular, Inc. Endoluminal device and method
ES2943709T3 (en) 2012-04-06 2023-06-15 Merlin Md Pte Ltd Devices to treat an aneurysm
NZ716708A (en) 2012-05-14 2016-08-26 Bard Inc C R Uniformly expandable stent
US20140114266A1 (en) * 2012-10-22 2014-04-24 Ams Research Corporation Ostomy Implant System and Method
USD723165S1 (en) 2013-03-12 2015-02-24 C. R. Bard, Inc. Stent
US9433520B2 (en) 2015-01-29 2016-09-06 Intact Vascular, Inc. Delivery device and method of delivery
US9375336B1 (en) 2015-01-29 2016-06-28 Intact Vascular, Inc. Delivery device and method of delivery
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US10940030B2 (en) 2017-03-10 2021-03-09 Serenity Medical, Inc. Method and system for delivering a self-expanding stent to the venous sinuses
US10238513B2 (en) 2017-07-19 2019-03-26 Abbott Cardiovascular Systems Inc. Intravascular stent
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
US10835398B2 (en) * 2017-11-03 2020-11-17 Covidien Lp Meshes and devices for treating vascular defects
EP3998987A4 (en) * 2019-07-16 2023-07-26 Sintra Medical Llc Stents with increased flexibility

Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US359802A (en) * 1887-03-22 Eugene o
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US4441216A (en) * 1980-11-03 1984-04-10 Shiley, Inc. Tissue heart valve and stent
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4553545A (en) * 1981-09-16 1985-11-19 Medinvent S.A. Device for application in blood vessels or other difficultly accessible locations and its use
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US4969458A (en) * 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US4990155A (en) * 1989-05-19 1991-02-05 Wilkoff Howard M Surgical stent method and apparatus
US4990131A (en) * 1987-09-01 1991-02-05 Herbert Dardik Tubular prostheses for vascular reconstructive surgery and process for preparing same
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5015253A (en) * 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
US5035706A (en) * 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5041126A (en) * 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5116365A (en) * 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
US5122154A (en) * 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US5135536A (en) * 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5163958A (en) * 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US5171262A (en) * 1989-06-15 1992-12-15 Cordis Corporation Non-woven endoprosthesis
US5176660A (en) * 1989-10-23 1993-01-05 Cordis Corporation Catheter having reinforcing strands
US5178618A (en) * 1991-01-16 1993-01-12 Brigham And Womens Hospital Method and device for recanalization of a body passageway
US5192307A (en) * 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
US5195984A (en) * 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US5217483A (en) * 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US5222971A (en) * 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
US5246445A (en) * 1990-04-19 1993-09-21 Instent Inc. Device for the treatment of constricted ducts in human bodies
US5258021A (en) * 1992-01-27 1993-11-02 Duran Carlos G Sigmoid valve annuloplasty ring
US5266073A (en) * 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US5275622A (en) * 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5282824A (en) * 1990-10-09 1994-02-01 Cook, Incorporated Percutaneous stent assembly
US5290305A (en) * 1991-10-11 1994-03-01 Kanji Inoue Appliance collapsible for insertion into human organs and capable of resilient restoration
US5292331A (en) * 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
US5304200A (en) * 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5314472A (en) * 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5334301A (en) * 1992-03-04 1994-08-02 Heraeus Elektrochemie Gmbh Electrochemical cell having inflatable seals between electrodes
US5342387A (en) * 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5354308A (en) * 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5354257A (en) * 1991-01-29 1994-10-11 Med Institute, Inc. Minimally invasive medical device for providing a radiation treatment
US5366504A (en) * 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5370683A (en) * 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
US5370691A (en) * 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
US5376612A (en) * 1989-08-10 1994-12-27 Phillips Petroleum Company Chromium catalysts and process for making chromium catalysts
US5382261A (en) * 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5387235A (en) * 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5395390A (en) * 1992-05-01 1995-03-07 The Beth Israel Hospital Association Metal wire stent
US5397355A (en) * 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5403341A (en) * 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5411549A (en) * 1993-07-13 1995-05-02 Scimed Life Systems, Inc. Selectively expandable, retractable and removable stent
US5421955A (en) * 1991-10-28 1995-06-06 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5423885A (en) * 1992-01-31 1995-06-13 Advanced Cardiovascular Systems, Inc. Stent capable of attachment within a body lumen
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5441516A (en) * 1994-03-03 1995-08-15 Scimed Lifesystems Inc. Temporary stent
US5443498A (en) * 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
US5443477A (en) * 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5443500A (en) * 1989-01-26 1995-08-22 Advanced Cardiovascular Systems, Inc. Intravascular stent
US5449372A (en) * 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5449382A (en) * 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
US5496365A (en) * 1992-07-02 1996-03-05 Sgro; Jean-Claude Autoexpandable vascular endoprosthesis
US5527354A (en) * 1991-06-28 1996-06-18 Cook Incorporated Stent formed of half-round wire
US5569295A (en) * 1993-12-28 1996-10-29 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5632763A (en) * 1995-01-19 1997-05-27 Cordis Corporation Bifurcated stent and method for implanting same
US5643312A (en) * 1994-02-25 1997-07-01 Fischell Robert Stent having a multiplicity of closed circular structures
US5653747A (en) * 1992-12-21 1997-08-05 Corvita Corporation Luminal graft endoprostheses and manufacture thereof
US5669924A (en) * 1995-10-26 1997-09-23 Shaknovich; Alexander Y-shuttle stent assembly for bifurcating vessels and method of using the same
US5697971A (en) * 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5755734A (en) * 1996-05-03 1998-05-26 Medinol Ltd. Bifurcated stent and method of making same
US5800508A (en) * 1994-02-09 1998-09-01 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5824049A (en) * 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5861027A (en) * 1996-04-10 1999-01-19 Variomed Ag Stent for the transluminal implantation in hollow organs
US5876449A (en) * 1995-04-01 1999-03-02 Variomed Ag Stent for the transluminal implantation in hollow organs
US5911754A (en) * 1998-07-24 1999-06-15 Uni-Cath Inc. Flexible stent with effective strut and connector patterns
US6190403B1 (en) * 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
US6340366B2 (en) * 1998-12-08 2002-01-22 Bandula Wijay Stent with nested or overlapping rings

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US522971A (en) * 1894-07-17 Nut-lock
DE3205942A1 (en) 1982-02-19 1983-09-08 Ljubomir Dr. Skopje Vasilev Balloon-tipped catheter with a mobile tip which permits complete voiding of the bladder
US5131908A (en) 1987-09-01 1992-07-21 Herbert Dardik Tubular prosthesis for vascular reconstructive surgery and process for preparing same
USD359802S (en) 1991-06-28 1995-06-27 Cook Incorporated Vascular stent
US5404681A (en) * 1991-08-29 1995-04-11 Jason, Inc. Internal finishing tool and method of making same
EP0616735B1 (en) * 1991-12-09 1995-11-08 Itt Industries, Inc. Shielded cable connector
FR2689388B1 (en) 1992-04-07 1999-07-16 Celsa Lg PERFECTIONALLY RESORBABLE BLOOD FILTER.
US5474563A (en) * 1993-03-25 1995-12-12 Myler; Richard Cardiovascular stent and retrieval apparatus
DE69510986T2 (en) * 1994-04-25 1999-12-02 Advanced Cardiovascular System Radiation-opaque stent markings
US7204848B1 (en) * 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6796997B1 (en) * 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
NZ331269A (en) 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
US6174329B1 (en) 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US5807404A (en) 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US5792144A (en) * 1997-03-31 1998-08-11 Cathco, Inc. Stent delivery catheter system
US5913895A (en) * 1997-06-02 1999-06-22 Isostent, Inc. Intravascular stent with enhanced rigidity strut members
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
NO311781B1 (en) 1997-11-13 2002-01-28 Medinol Ltd Metal multilayer stents
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6224626B1 (en) * 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
DE19829702C1 (en) * 1998-07-03 2000-03-16 Heraeus Gmbh W C Radially expandable support device V
US6471721B1 (en) * 1999-12-30 2002-10-29 Advanced Cardiovascular Systems, Inc. Vascular stent having increased radiopacity and method for making same

Patent Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US359802A (en) * 1887-03-22 Eugene o
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US4441216A (en) * 1980-11-03 1984-04-10 Shiley, Inc. Tissue heart valve and stent
US4553545A (en) * 1981-09-16 1985-11-19 Medinvent S.A. Device for application in blood vessels or other difficultly accessible locations and its use
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US5275622A (en) * 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4776337A (en) * 1985-11-07 1988-10-11 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4776337B1 (en) * 1985-11-07 2000-12-05 Cordis Corp Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5314444A (en) * 1987-03-13 1994-05-24 Cook Incorporated Endovascular stent and delivery system
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US5041126A (en) * 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
US4969458A (en) * 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US4990131A (en) * 1987-09-01 1991-02-05 Herbert Dardik Tubular prostheses for vascular reconstructive surgery and process for preparing same
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5266073A (en) * 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US5192307A (en) * 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
US5195984A (en) * 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US5443500A (en) * 1989-01-26 1995-08-22 Advanced Cardiovascular Systems, Inc. Intravascular stent
US5163958A (en) * 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US4990155A (en) * 1989-05-19 1991-02-05 Wilkoff Howard M Surgical stent method and apparatus
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5015253A (en) * 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
US5171262A (en) * 1989-06-15 1992-12-15 Cordis Corporation Non-woven endoprosthesis
US5376612A (en) * 1989-08-10 1994-12-27 Phillips Petroleum Company Chromium catalysts and process for making chromium catalysts
US5292331A (en) * 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5035706A (en) * 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5176660A (en) * 1989-10-23 1993-01-05 Cordis Corporation Catheter having reinforcing strands
US5246445A (en) * 1990-04-19 1993-09-21 Instent Inc. Device for the treatment of constricted ducts in human bodies
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5122154A (en) * 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5222971A (en) * 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
US5282824A (en) * 1990-10-09 1994-02-01 Cook, Incorporated Percutaneous stent assembly
US5449372A (en) * 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
US5217483A (en) * 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US5178618A (en) * 1991-01-16 1993-01-12 Brigham And Womens Hospital Method and device for recanalization of a body passageway
US5354257A (en) * 1991-01-29 1994-10-11 Med Institute, Inc. Minimally invasive medical device for providing a radiation treatment
US5135536A (en) * 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5116365A (en) * 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
US5304200A (en) * 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5527354A (en) * 1991-06-28 1996-06-18 Cook Incorporated Stent formed of half-round wire
US5314472A (en) * 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5443498A (en) * 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
US5290305A (en) * 1991-10-11 1994-03-01 Kanji Inoue Appliance collapsible for insertion into human organs and capable of resilient restoration
US5387235A (en) * 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5421955B1 (en) * 1991-10-28 1998-01-20 Advanced Cardiovascular System Expandable stents and method for making same
US5421955A (en) * 1991-10-28 1995-06-06 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5258021A (en) * 1992-01-27 1993-11-02 Duran Carlos G Sigmoid valve annuloplasty ring
US5376112A (en) * 1992-01-27 1994-12-27 Duran; Carlos G. Valveless conduit with sigmoid valve annuloplasty ring
US5423885A (en) * 1992-01-31 1995-06-13 Advanced Cardiovascular Systems, Inc. Stent capable of attachment within a body lumen
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5334301A (en) * 1992-03-04 1994-08-02 Heraeus Elektrochemie Gmbh Electrochemical cell having inflatable seals between electrodes
US5443496A (en) * 1992-03-19 1995-08-22 Medtronic, Inc. Intravascular radially expandable stent
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5370683A (en) * 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
US5395390A (en) * 1992-05-01 1995-03-07 The Beth Israel Hospital Association Metal wire stent
US5354308A (en) * 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5366504A (en) * 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5342387A (en) * 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5496365A (en) * 1992-07-02 1996-03-05 Sgro; Jean-Claude Autoexpandable vascular endoprosthesis
US5382261A (en) * 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5449382A (en) * 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
US5653747A (en) * 1992-12-21 1997-08-05 Corvita Corporation Luminal graft endoprostheses and manufacture thereof
US5370691A (en) * 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5411549A (en) * 1993-07-13 1995-05-02 Scimed Life Systems, Inc. Selectively expandable, retractable and removable stent
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5569295A (en) * 1993-12-28 1996-10-29 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5649952A (en) * 1993-12-28 1997-07-22 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5403341A (en) * 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US5800508A (en) * 1994-02-09 1998-09-01 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5443477A (en) * 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5643312A (en) * 1994-02-25 1997-07-01 Fischell Robert Stent having a multiplicity of closed circular structures
US5441516A (en) * 1994-03-03 1995-08-15 Scimed Lifesystems Inc. Temporary stent
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5397355A (en) * 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5632763A (en) * 1995-01-19 1997-05-27 Cordis Corporation Bifurcated stent and method for implanting same
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5876449A (en) * 1995-04-01 1999-03-02 Variomed Ag Stent for the transluminal implantation in hollow organs
US5824049A (en) * 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5669924A (en) * 1995-10-26 1997-09-23 Shaknovich; Alexander Y-shuttle stent assembly for bifurcating vessels and method of using the same
US5861027A (en) * 1996-04-10 1999-01-19 Variomed Ag Stent for the transluminal implantation in hollow organs
US5755734A (en) * 1996-05-03 1998-05-26 Medinol Ltd. Bifurcated stent and method of making same
US5697971A (en) * 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5911754A (en) * 1998-07-24 1999-06-15 Uni-Cath Inc. Flexible stent with effective strut and connector patterns
US6190403B1 (en) * 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
US6340366B2 (en) * 1998-12-08 2002-01-22 Bandula Wijay Stent with nested or overlapping rings

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050149168A1 (en) * 2003-12-30 2005-07-07 Daniel Gregorich Stent to be deployed on a bend
US20070010869A1 (en) * 2005-07-11 2007-01-11 Nipro Corporation Flexible stent with excellent expandability and trackability
US10758381B2 (en) 2016-03-31 2020-09-01 Vesper Medical, Inc. Intravascular implants
US11628075B2 (en) 2016-03-31 2023-04-18 Vesper Medical, Inc. Intravascular implants
US11484422B2 (en) 2016-03-31 2022-11-01 Vesper Medical, Inc. Intravascular implants
US10702405B2 (en) 2016-03-31 2020-07-07 Vesper Medical, Inc. Intravascular implants
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
US10512556B2 (en) 2017-09-08 2019-12-24 Vesper Medical, Inc. Hybrid stent
US10588764B2 (en) 2017-09-08 2020-03-17 Vesper Medical, Inc. Hybrid stent
US11376142B2 (en) 2017-09-08 2022-07-05 Vesper Medical, Inc. Hybrid stent
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent
US11364134B2 (en) 2018-02-15 2022-06-21 Vesper Medical, Inc. Tapering stent
US11344439B2 (en) 2018-03-09 2022-05-31 Vesper Medical, Inc. Implantable stent
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent

Also Published As

Publication number Publication date
US6540775B1 (en) 2003-04-01
US20070239258A1 (en) 2007-10-11
US20040204751A1 (en) 2004-10-14
US7169174B2 (en) 2007-01-30
US6706061B1 (en) 2004-03-16

Similar Documents

Publication Publication Date Title
US6540775B1 (en) Ultraflexible open cell stent
AU773171B2 (en) Stent with optimal strength and radiopacity characteristics
US8317851B2 (en) Longitudinally flexible stent
AU781346B2 (en) Longitudinally flexible stent
US6190403B1 (en) Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
US5913895A (en) Intravascular stent with enhanced rigidity strut members
US8876888B2 (en) Stent with offset cell geometry
EP0876805A2 (en) Intravascular stent and stent delivery system for ostial vessel obstructions
US7578840B2 (en) Stent with reduced profile
JP5042417B2 (en) Low profile radiopaque stent with enhanced longitudinal flexibility and radial stiffness

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORDIS CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FISCHELL, ROBERT E.;FISCHELL, DAVID R.;FISCHELL, TIM A.;REEL/FRAME:016601/0153;SIGNING DATES FROM 20050422 TO 20050504

AS Assignment

Owner name: CORDIS CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FISCHELL, ROBERT E.;FISCHELL, DAVID R.;FISCHELL, TIM A.;REEL/FRAME:017156/0750;SIGNING DATES FROM 20051022 TO 20051025

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION