US20030078608A1 - Surgical instrument - Google Patents

Surgical instrument Download PDF

Info

Publication number
US20030078608A1
US20030078608A1 US10/176,102 US17610202A US2003078608A1 US 20030078608 A1 US20030078608 A1 US 20030078608A1 US 17610202 A US17610202 A US 17610202A US 2003078608 A1 US2003078608 A1 US 2003078608A1
Authority
US
United States
Prior art keywords
screw
housing
tip
cutter member
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/176,102
Inventor
Man Shiu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endicor Medical Inc
Original Assignee
Endicor Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endicor Medical Inc filed Critical Endicor Medical Inc
Priority to US10/176,102 priority Critical patent/US20030078608A1/en
Assigned to ENDICOR MEDICAL INCORPORATED reassignment ENDICOR MEDICAL INCORPORATED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INTRAVASCULAR MEDICAL, INC.
Publication of US20030078608A1 publication Critical patent/US20030078608A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00685Archimedes screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire

Definitions

  • This invention relates to a surgical instrument for clearing obstructions in ducts, particularly but not exclusively arteries.
  • a number of techniques for clearing obstructions in coronary arteries include by-pass surgery, the use of a “balloon” to expand the arterial wall in the region of the obstruction, the use of a cutter passed along the artery to remove the obstruction and the use of a drill which is also passed along the artery to pulverize the obstruction.
  • By-pass surgery is a major operation and is expensive.
  • the use of surgical instruments in the above-described alternate methods involves the risk that the instrument which is passed along the artery will puncture the arterial wall during use or during passage along the artery to the location at which the obstruction is to be cleared.
  • the use of a drill which pulverizes the obstruction involves the risk of the pulverized material lodging in another part of the body and causing damage there.
  • a surgical instrument for clearing obstructions in ducts comprising a body having a forward end defined by a sleeve, a cutter member mounted in the sleeve for rotation relative thereto, and elongate flexible drive means connected to the cutter member and extending rearwardly of the body to enable rotation of the cutter member, wherein the cutter member includes an outer cutting edge cooperating with the sleeve to produce a circular cut upon rotation of the cutter member in use.
  • the sleeve assists in preventing accidental penetration of the wall of the duct by the cutter member during use or when being manoeuvered into position for use.
  • the instrument can be used percutaneously as a non-operative device.
  • the cutter member prefferably includes a blade having a helical outer cutting edge, and particularly preferred for the cutter member to take the form of a screw whose outer surface cooperates with the sleeve to produce the circular cut.
  • Such screw also serves, upon rotation, to transport material from the obstruction into the body of the instrument.
  • a chamber is provided in the body to receive such material which can then be completely removed from the duct upon removal of the body of the instrument therefrom. Thus, the material which has been cleared away is completely removed from the duct.
  • the forward end of the cutter member protrudes through the forward open end of the body.
  • the forward end of the cutter member it is convenient for the forward end of the cutter member to be relatively blunt.
  • the cutter member takes the form of the screw, it is preferred for it to have a tapered forward end protruding from the forward end of the sleeve.
  • Such tapered forward end can than serve to penetrate the obstruction and draw the body along the duct upon rotation of the screw. This is considered to be a particularly effective way of advancing the body along the duct since it does not require the body of the instrument to be pushed along the duct.
  • the elongate flexible drive means preferably takes the form of a cable or the like mounted for rotary movement within a relatively fixed, flexible sleeve.
  • the flexible sleeve preferably takes the form of a hollow helical spring which is preferably provided with a continuous cover of sheath to provide a smooth external surface for ease of passage along the duct to be cleared.
  • the body and the cutter member may be provided with a passage extending axially therethrough so that the body and cutter can be mounted on an elongate guide wire or the like.
  • guide wire can be passed along the duct relatively easily because of its small diameter, and then the body can be passed along the duct whilst being guided by the wire so as to facilitate safe passage along the duct to the site of the obstruction.
  • the surgical instrument will normally be used whilst the patient is conscious, and its progress along the duct can be monitored by x-ray inspection.
  • the external diameter of the body will be in the region of 2 to 4 mm.
  • the instrument can be used for bioducts generally.
  • FIG. 1 is an axial section through a first example of surgical instrument according to the present invention
  • FIGS. 2 and 3 are schematic axial sections through parts of second and third examples of surgical instruments according to the present invention.
  • FIG. 4 is a schematic view illustrating a detail of the instrument of FIG. 3.
  • FIG. 5 is an axial section through part of a fourth example of surgical instrument according to the present invention.
  • the surgical instrument illustrated therein is for clearing obstructions in coronary arteries.
  • the instrument comprises a body 10 formed in two parts consisting of a hollow bushing 12 and sleeve 14 extending forwardly of the bushing 12 .
  • the sleeve 14 has an open forward end 16 and a rear end which has been inwardly deformed so as to define a stop 18 .
  • the stop 18 abuts against a step 20 provided on the external surface of the bushing 12 between a larger diameter forward end portion 22 and a smaller diameter rear end portion 24 thereof.
  • the sleeve 14 is slidable rearwardly (i.e.
  • the surgical instrument further includes a cutter member 30 which is mounted in the body 10 via a stepped root portion 32 .
  • the root portion 32 engages in a stepped bore of the bushing 12 and is retained therein by an inwardly upset annular lip 34 .
  • the root portion 32 is rotable relative to the bushing 12 which acts as a bearing therefor.
  • the root portion 32 carries a tapered shaft 36 which projects forwardly and axially of the sleeve 14 so as to pass through the open end 16 of the sleeve 14 .
  • the shaft 36 provided with integral screw threading 38 thereon.
  • the screw threading 38 starts within the sleeve 14 and extends forwardly to the tip of the shaft 36 , the screw threading tapering inwardly over a region thereof which is disposed externally of the sleeve 14 .
  • the forward end of the screw threading 38 and the forward end of the shaft 36 are relatively blunt and have no sharp edges whereby to minimize risk of inadvertent penetration of the arterial wall during use.
  • the portion of the screw threading 38 which is disposed within the sleeve 14 has a peripheral surface which is relatively sharp and which is in close sliding contact with the internal wall surface of the sleeve 14 .
  • the root portion 32 has a blind axial bore 40 therein in which one end of a flexible drive cable 42 is firmly secured.
  • the drive cable 42 extends through a flexible outer sleeve or sheath 44 and is rotatable relative thereto.
  • a short length of the cable 42 and sheath 44 are illustrated. In practice, these latter two parts will extend for a considerable distance rearwardly of the body 10 , with the cable 42 terminating externally of the sheath 44 in a formation which facilitates manual rotation of the cable 42 at a remote location.
  • the body 10 including the cutter member 30 is passed along an artery of a conscious patient until it meets the obstruction to be cleared. This is effected by appropriately manoeuvering the body 10 using the sheath 44 with the aid of an x-ray camera.
  • the cable 42 is rotated relative to the sheath 44 so as to cause the cutter member 30 to rotate in a direction in which it causes the forward end of the screw threading 38 to dig into the material of the obstruction and thereby draw itself and the body 10 along the artery and further into the obstruction.
  • a circular cutting action is provided by mutual cooperation of (a) the outer cutting edge of that portion of the screw threading 36 which is disposed within the sleeve 14 and (b) the inner peripheral wall of the sleeve 14 .
  • the cut material is carried between the flights of the screw threading 38 within the sleeve 14 to be discharged into collection chamber 46 disposed within the sleeve 14 and between the screw threading 38 and the bushing 12 .
  • cutter member 130 is rounded at its forward end to minimize risk of arterial wall penetration in use.
  • Sleeve 114 of body 110 is flexible, but is fitted with a metal ring 150 to define open forward end 116 .
  • the rotary cutting action takes place between cutter member 130 and metal ring 150 .
  • the body is internally screw-threaded at its rearward end to engage with external screw-threading on the forward end of sheath 144 .
  • the screw-threading is directed so that the screw-threaded joint between the body 110 and the sheath 144 tends to be tightened during forward rotation of the cutter member 130 in use.
  • the sheath 144 may have a smaller diameter than the body 110 . At its rear end, the sheath 144 is provided with a formation 152 to facilitate gripping of the instrument during use. Cable 142 passes out of the rear end of the sheath 144 and is connected to a hand wheel 154 (only schematically shown). The cable 142 is connected to shaft 136 by connecter 156 which also acts as a bearing.
  • FIGS. 3 and 4 the surgical instrument illustrated therein is similar to that of FIG. 2 and similar parts are accorded the same reference numerals but in the 200 series.
  • cutter member 230 and shaft 236 have aligned axial passages therethrough, and the cable 142 is replaced by a flexible tube 242 which is joined to the shaft 236 at connector 256 which is hollow.
  • These axial passages typically have a diameter of about 0.4-0.46 mm
  • a guide wire 258 typically having a diameter of about 0.36 mm is passed into and along the artery to a position beyond the location at which the obstruction exists.
  • the body 210 can then be passed along the artery to the location of the obstruction whilst being continually guided by the wire 258 so as to minimize the risk of penetration of or damage to the wall of the artery.
  • sheath 344 has a diameter which is substantially less than that of body 310 except for an enlarged forward end portion 360 by which it is screw-engaged with body 310 .
  • a bushing 356 around cable 342 assists in correctly locating the latter within the portion 360 .
  • a washer 362 in the body 310 and lodged between the portion 360 and an internal rib 364 serves to limit passage of debris into the sheath 344 from chamber 346 and can be readily removed upon detachment of the body 310 from the portion 360 to facilitate removal of debris from the chamber 346 after use.

Abstract

A medical device is provided for removing material from a body vessel comprising a tube, a drive shaft extending through the tube, a cutter member rotatable around its access having a tip and relatively sharp cutting edges extending outwardly from the access, and a housing enclosing the cutting edges of the cutter member so that the tip of the cutter member extends outside the housing to cut material in cooperation with the housing.

Description

    FIELD OF THE INVENTION
  • This invention relates to a surgical instrument for clearing obstructions in ducts, particularly but not exclusively arteries. [0001]
  • BACKGROUND OF THE INVENTION
  • A number of techniques are known for clearing obstructions in coronary arteries. These include by-pass surgery, the use of a “balloon” to expand the arterial wall in the region of the obstruction, the use of a cutter passed along the artery to remove the obstruction and the use of a drill which is also passed along the artery to pulverize the obstruction. By-pass surgery is a major operation and is expensive. The use of surgical instruments in the above-described alternate methods involves the risk that the instrument which is passed along the artery will puncture the arterial wall during use or during passage along the artery to the location at which the obstruction is to be cleared. Additionally, the use of a drill which pulverizes the obstruction involves the risk of the pulverized material lodging in another part of the body and causing damage there. [0002]
  • It is an object of the present invention to provide a surgical instrument for clearing obstructions in ducts in which the above described problems can be obviated or mitigated. [0003]
  • SUMMARY OF THE INVENTION
  • According to the present invention, there is provided a surgical instrument for clearing obstructions in ducts, comprising a body having a forward end defined by a sleeve, a cutter member mounted in the sleeve for rotation relative thereto, and elongate flexible drive means connected to the cutter member and extending rearwardly of the body to enable rotation of the cutter member, wherein the cutter member includes an outer cutting edge cooperating with the sleeve to produce a circular cut upon rotation of the cutter member in use. [0004]
  • With the above-described surgical instrument, the sleeve assists in preventing accidental penetration of the wall of the duct by the cutter member during use or when being manoeuvered into position for use. The instrument can be used percutaneously as a non-operative device. [0005]
  • It is preferred for the cutter member to include a blade having a helical outer cutting edge, and particularly preferred for the cutter member to take the form of a screw whose outer surface cooperates with the sleeve to produce the circular cut. Such screw also serves, upon rotation, to transport material from the obstruction into the body of the instrument. Conveniently, a chamber is provided in the body to receive such material which can then be completely removed from the duct upon removal of the body of the instrument therefrom. Thus, the material which has been cleared away is completely removed from the duct. [0006]
  • In a particularly preferred embodiment, the forward end of the cutter member protrudes through the forward open end of the body. To reduce the risk of such cutter member accidentally penetrating the wall of the duct in use or whilst it is being manoeuvred into position along a duct, it is convenient for the forward end of the cutter member to be relatively blunt. However, in the case where the cutter member takes the form of the screw, it is preferred for it to have a tapered forward end protruding from the forward end of the sleeve. Such tapered forward end can than serve to penetrate the obstruction and draw the body along the duct upon rotation of the screw. This is considered to be a particularly effective way of advancing the body along the duct since it does not require the body of the instrument to be pushed along the duct. [0007]
  • The elongate flexible drive means preferably takes the form of a cable or the like mounted for rotary movement within a relatively fixed, flexible sleeve. The flexible sleeve preferably takes the form of a hollow helical spring which is preferably provided with a continuous cover of sheath to provide a smooth external surface for ease of passage along the duct to be cleared. [0008]
  • The body and the cutter member may be provided with a passage extending axially therethrough so that the body and cutter can be mounted on an elongate guide wire or the like. In use, it will be appreciated that such guide wire can be passed along the duct relatively easily because of its small diameter, and then the body can be passed along the duct whilst being guided by the wire so as to facilitate safe passage along the duct to the site of the obstruction. The surgical instrument will normally be used whilst the patient is conscious, and its progress along the duct can be monitored by x-ray inspection. [0009]
  • In the case of surgical instruments according to the present invention designed for clearing arterial obstructions, the external diameter of the body will be in the region of 2 to 4 mm. The instrument can be used for bioducts generally. [0010]
  • Embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:—[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an axial section through a first example of surgical instrument according to the present invention; [0012]
  • FIGS. 2 and 3 are schematic axial sections through parts of second and third examples of surgical instruments according to the present invention; [0013]
  • FIG. 4 is a schematic view illustrating a detail of the instrument of FIG. 3; and [0014]
  • FIG. 5 is an axial section through part of a fourth example of surgical instrument according to the present invention.[0015]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to FIG. 1, the surgical instrument illustrated therein is for clearing obstructions in coronary arteries. The instrument comprises a [0016] body 10 formed in two parts consisting of a hollow bushing 12 and sleeve 14 extending forwardly of the bushing 12. The sleeve 14 has an open forward end 16 and a rear end which has been inwardly deformed so as to define a stop 18. The stop 18 abuts against a step 20 provided on the external surface of the bushing 12 between a larger diameter forward end portion 22 and a smaller diameter rear end portion 24 thereof. The sleeve 14 is slidable rearwardly (i.e. to the left as viewed in the drawing) relative to the bushing 12 from an extended position in which (a) the stop 18 abuts against step 20 and (b) a pip 26 formed by localized inward deformation of the sleeve 14 engages in an annular groove 28 formed in the surface of the larger diameter forward end portion 22 of the bushing 12. The engagement of the pip 26 in the groove 28 serves as a releasable detect mechanism for retaining the sleeve 14 in its extended condition as illustrated in the drawing.
  • The surgical instrument further includes a [0017] cutter member 30 which is mounted in the body 10 via a stepped root portion 32. The root portion 32 engages in a stepped bore of the bushing 12 and is retained therein by an inwardly upset annular lip 34. The root portion 32 is rotable relative to the bushing 12 which acts as a bearing therefor. The root portion 32 carries a tapered shaft 36 which projects forwardly and axially of the sleeve 14 so as to pass through the open end 16 of the sleeve 14. At a position which is spaced forwardly of the bushing 12, the shaft 36 provided with integral screw threading 38 thereon. The screw threading 38 starts within the sleeve 14 and extends forwardly to the tip of the shaft 36, the screw threading tapering inwardly over a region thereof which is disposed externally of the sleeve 14. The forward end of the screw threading 38 and the forward end of the shaft 36 are relatively blunt and have no sharp edges whereby to minimize risk of inadvertent penetration of the arterial wall during use. The portion of the screw threading 38 which is disposed within the sleeve 14 has a peripheral surface which is relatively sharp and which is in close sliding contact with the internal wall surface of the sleeve 14.
  • The [0018] root portion 32 has a blind axial bore 40 therein in which one end of a flexible drive cable 42 is firmly secured. The drive cable 42 extends through a flexible outer sleeve or sheath 44 and is rotatable relative thereto. In the drawing, only a short length of the cable 42 and sheath 44 are illustrated. In practice, these latter two parts will extend for a considerable distance rearwardly of the body 10, with the cable 42 terminating externally of the sheath 44 in a formation which facilitates manual rotation of the cable 42 at a remote location.
  • In use, the [0019] body 10 including the cutter member 30 is passed along an artery of a conscious patient until it meets the obstruction to be cleared. This is effected by appropriately manoeuvering the body 10 using the sheath 44 with the aid of an x-ray camera. When the body 10 has been manoeuvred into the correct position along the artery, the cable 42 is rotated relative to the sheath 44 so as to cause the cutter member 30 to rotate in a direction in which it causes the forward end of the screw threading 38 to dig into the material of the obstruction and thereby draw itself and the body 10 along the artery and further into the obstruction. A circular cutting action is provided by mutual cooperation of (a) the outer cutting edge of that portion of the screw threading 36 which is disposed within the sleeve 14 and (b) the inner peripheral wall of the sleeve 14. The cut material is carried between the flights of the screw threading 38 within the sleeve 14 to be discharged into collection chamber 46 disposed within the sleeve 14 and between the screw threading 38 and the bushing 12. When it is seen on the x-ray camera that the obstruction has been cleared, rotation of the cable 42 is stopped and the body 10 is withdrawn by employing a pulling action on the sheath 44. Once the body 10 has been removed from the artery 10, material which has been collected in the chamber 46 can be easily removed upon retraction of the sleeve 14 relative to the bushing 12.
  • It will be appreciated that, because the cutting action takes place by cooperation of the screw threading [0020] 38 with the internal wall of the sleeve 14, there is a minimum of risk that the wall of the artery will be inadvertently penetrated. In order to assist insertion of the body 10 and to minimize risk of damage to the artery wall, the leading edge of the sleeve 14 around the open end 16 is conveniently radiussed. In order to facilitate withdrawal of the body 10 along the artery, the rear end of the smaller diameter portion 24 of the bushing 12 and the rear edge of the sleeve 14 adjacent the stop 18 are both appropriately tapered.
  • Referring now to FIG. 2, the surgical instrument illustrated therein is similar to that of FIG. 1 and similar parts are accorded the same reference numerals but in the [0021] 100 series. In this example, cutter member 130 is rounded at its forward end to minimize risk of arterial wall penetration in use. Sleeve 114 of body 110 is flexible, but is fitted with a metal ring 150 to define open forward end 116. The rotary cutting action takes place between cutter member 130 and metal ring 150. The body is internally screw-threaded at its rearward end to engage with external screw-threading on the forward end of sheath 144. The screw-threading is directed so that the screw-threaded joint between the body 110 and the sheath 144 tends to be tightened during forward rotation of the cutter member 130 in use. The sheath 144 may have a smaller diameter than the body 110. At its rear end, the sheath 144 is provided with a formation 152 to facilitate gripping of the instrument during use. Cable 142 passes out of the rear end of the sheath 144 and is connected to a hand wheel 154 (only schematically shown). The cable 142 is connected to shaft 136 by connecter 156 which also acts as a bearing.
  • Referring now to FIGS. 3 and 4, the surgical instrument illustrated therein is similar to that of FIG. 2 and similar parts are accorded the same reference numerals but in the [0022] 200 series. In this example, cutter member 230 and shaft 236 have aligned axial passages therethrough, and the cable 142 is replaced by a flexible tube 242 which is joined to the shaft 236 at connector 256 which is hollow. These axial passages typically have a diameter of about 0.4-0.46 mm In use, a guide wire 258 typically having a diameter of about 0.36 mm is passed into and along the artery to a position beyond the location at which the obstruction exists. The body 210 can then be passed along the artery to the location of the obstruction whilst being continually guided by the wire 258 so as to minimize the risk of penetration of or damage to the wall of the artery.
  • Referring now to FIG. 5 of the drawings, the surgical instrument illustrated therein is similar to the preceding examples and similar parts are accorded the same reference numerals but in the [0023] 300 series. In this example, sheath 344 has a diameter which is substantially less than that of body 310 except for an enlarged forward end portion 360 by which it is screw-engaged with body 310. A bushing 356 around cable 342 assists in correctly locating the latter within the portion 360. A washer 362 in the body 310 and lodged between the portion 360 and an internal rib 364 serves to limit passage of debris into the sheath 344 from chamber 346 and can be readily removed upon detachment of the body 310 from the portion 360 to facilitate removal of debris from the chamber 346 after use.

Claims (3)

1. A medical device for removing material from a body vessel comprising:
a tube;
a drive shaft;
a cutter member rotatable around its axis having a tip and relatively sharp cutting edges extending outwardly from the axis; and
a housing enclosing the cutting edges of the cutter member so that the tip of the cutter member extends outside the housing to cut material in cooperation with the housing.
2. A medical device for removing material from a body vessel comprising:
a tube;
a drive shaft extending through the tube;
a rotatable screw attached to the drive shaft and having a tip and sharp edges;
a generally cylindrical housing enclosing the sharp edge of the screw so that the tip of the screw extends outside the housing and enters the tissue and the sharp edge in cooperation with the housing cuts the tissue; and
wherein the tip of the screw is blunt to minimize the trauma.
3. A medical device for cutting tissue from a body vessel comprising:
a tube;
a drive shaft extending through the tube;
a rotatable screw attached to the drive shaft and having a sharp edge; and
a housing for the screw extending around a portion of the screw, the housing having a leading inner edge so that the sharp edges and the leading inner edge cooperate to cut the tissue and wherein the tip of the screw extends beyond the leading inner edge and wherein the tip of the screw is blunt to minimize trauma.
US10/176,102 1988-12-14 2002-06-18 Surgical instrument Abandoned US20030078608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/176,102 US20030078608A1 (en) 1988-12-14 2002-06-18 Surgical instrument

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
GB888829182A GB8829182D0 (en) 1988-12-14 1988-12-14 Surgical instrument
GBS.N.8829182.8 1988-12-14
US45013089A 1989-12-13 1989-12-13
US78977991A 1991-11-08 1991-11-08
US90055592A 1992-06-18 1992-06-18
US08/010,505 US5423799A (en) 1988-12-14 1993-01-28 Surgical instrument
US40153795A 1995-03-10 1995-03-10
US79986497A 1997-02-14 1997-02-14
US08/951,288 US6443966B1 (en) 1988-12-14 1997-10-16 Surgical instrument
GB887291/82 1998-12-14
US10/176,102 US20030078608A1 (en) 1988-12-14 2002-06-18 Surgical instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/951,288 Continuation US6443966B1 (en) 1988-12-14 1997-10-16 Surgical instrument

Publications (1)

Publication Number Publication Date
US20030078608A1 true US20030078608A1 (en) 2003-04-24

Family

ID=10648482

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/010,505 Expired - Lifetime US5423799A (en) 1988-12-14 1993-01-28 Surgical instrument
US08/951,288 Expired - Lifetime US6443966B1 (en) 1988-12-14 1997-10-16 Surgical instrument
US10/176,102 Abandoned US20030078608A1 (en) 1988-12-14 2002-06-18 Surgical instrument

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/010,505 Expired - Lifetime US5423799A (en) 1988-12-14 1993-01-28 Surgical instrument
US08/951,288 Expired - Lifetime US6443966B1 (en) 1988-12-14 1997-10-16 Surgical instrument

Country Status (4)

Country Link
US (3) US5423799A (en)
EP (1) EP0373927A3 (en)
JP (1) JP3052145B2 (en)
GB (1) GB8829182D0 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140277039A1 (en) * 2013-03-15 2014-09-18 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US20170304072A1 (en) * 2014-09-24 2017-10-26 Fitzbionics Limited A Prosthetic Intervertebral Disc Joint Assembly
EP3384859A1 (en) * 2017-04-04 2018-10-10 Covidien LP Thrombectomy catheter device

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440148B1 (en) * 1984-05-14 2002-08-27 Samuel Shiber Stent unclogging system with stepped spiral
US20030216761A1 (en) * 1990-03-27 2003-11-20 Samuel Shiber Guidewire system
IT1240639B (en) * 1990-05-04 1993-12-17 Francesco Pianetti TREQUARTI NEEDLE FOR THREADED-CONICAL POINTED LAPAROSCOPY
US5242460A (en) * 1990-10-25 1993-09-07 Devices For Vascular Intervention, Inc. Atherectomy catheter having axially-disposed cutting edge
US5284486A (en) * 1991-06-11 1994-02-08 Microvena Corporation Self-centering mechanical medical device
US5135483A (en) * 1991-07-22 1992-08-04 Dow Corning Wright Corporation Atherectomy device with a removable drive system
US5263959A (en) * 1991-10-21 1993-11-23 Cathco, Inc. Dottering auger catheter system and method
US5423846A (en) * 1991-10-21 1995-06-13 Cathco, Inc. Dottering auger catheter system
DE69208637T2 (en) * 1992-01-13 1996-09-05 Interventional Technologies Atherectomy cutter with positive angle of attack
US5643297A (en) 1992-11-09 1997-07-01 Endovascular Instruments, Inc. Intra-artery obstruction clearing apparatus and methods
US5676545A (en) * 1994-08-15 1997-10-14 Jones; Shedrick D. Method and apparatus for implantation
EP0814711A4 (en) * 1995-03-22 1999-03-17 Evi Corp Intra-artery obstruction clearing apparatus and methods
US5702412A (en) * 1995-10-03 1997-12-30 Cedars-Sinai Medical Center Method and devices for performing vascular anastomosis
US6068637A (en) * 1995-10-03 2000-05-30 Cedar Sinai Medical Center Method and devices for performing vascular anastomosis
US5851208A (en) * 1996-10-15 1998-12-22 Linvatec Corporation Rotatable surgical burr
US5882329A (en) * 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
US6090118A (en) 1998-07-23 2000-07-18 Mcguckin, Jr.; James F. Rotational thrombectomy apparatus and method with standing wave
US7923216B2 (en) * 1997-08-14 2011-04-12 Institut Pasteur In vivo modulation of neuronal transport
US9498604B2 (en) 1997-11-12 2016-11-22 Genesis Technologies Llc Medical device and method
US6666874B2 (en) 1998-04-10 2003-12-23 Endicor Medical, Inc. Rotational atherectomy system with serrated cutting tip
US6001112A (en) 1998-04-10 1999-12-14 Endicor Medical, Inc. Rotational atherectomy device
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
CA2256130A1 (en) * 1998-12-16 2000-06-16 Scott L. Pool Rotatable dynamic seal and guide for a medical obstruction treatment device sub-assembly attached to a drive motor unit
CA2256132A1 (en) * 1998-12-16 2000-06-16 Brian M. Strauss Rotatable attachment mechanism for attaching a medical obstruction treatment device sub-assembly to a drive motor unit
US6767353B1 (en) 2002-03-01 2004-07-27 Samuel Shiber Thrombectomy catheter
US6758851B2 (en) 1999-02-02 2004-07-06 Samuel Shiber Vessel cleaner
US7316697B2 (en) * 1999-02-02 2008-01-08 Samuel Shiber Vessel cleaning system with asymmetrical auto retracting agitator
US6818002B2 (en) * 1999-02-02 2004-11-16 Samuel Shiber Vessel cleaner and barrier
AU1343400A (en) * 1999-03-01 2000-09-21 Endicor Medical, Inc. Rotational atherectomy system with side balloon
EP1870044B1 (en) * 1999-03-01 2009-07-29 ev3 Endovascular, Inc. Rotational atherectomy system with serrated cutting tip
US6790215B2 (en) 1999-04-30 2004-09-14 Edwards Lifesciences Corporation Method of use for percutaneous material removal device and tip
US6238405B1 (en) 1999-04-30 2001-05-29 Edwards Lifesciences Corp. Percutaneous material removal device and method
US7708749B2 (en) 2000-12-20 2010-05-04 Fox Hollow Technologies, Inc. Debulking catheters and methods
US6638233B2 (en) * 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
US7887556B2 (en) * 2000-12-20 2011-02-15 Fox Hollow Technologies, Inc. Debulking catheters and methods
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
US7713279B2 (en) 2000-12-20 2010-05-11 Fox Hollow Technologies, Inc. Method and devices for cutting tissue
US6299622B1 (en) 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US6454775B1 (en) 1999-12-06 2002-09-24 Bacchus Vascular Inc. Systems and methods for clot disruption and retrieval
US6702830B1 (en) 1999-09-17 2004-03-09 Bacchus Vascular, Inc. Mechanical pump for removal of fragmented matter and methods of manufacture and use
US7655016B2 (en) 1999-09-17 2010-02-02 Covidien Mechanical pump for removal of fragmented matter and methods of manufacture and use
AU2614901A (en) 1999-10-22 2001-04-30 Boston Scientific Corporation Double balloon thrombectomy catheter
US8414543B2 (en) 1999-10-22 2013-04-09 Rex Medical, L.P. Rotational thrombectomy wire with blocking device
US6699214B2 (en) * 2000-01-19 2004-03-02 Scimed Life Systems, Inc. Shear-sensitive injectable delivery system
US7517352B2 (en) 2000-04-07 2009-04-14 Bacchus Vascular, Inc. Devices for percutaneous remote endarterectomy
US6408649B1 (en) * 2000-04-28 2002-06-25 Gyrotron Technology, Inc. Method for the rapid thermal treatment of glass and glass-like materials using microwave radiation
DE10049815B4 (en) * 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Device for local ablation of an aortic valve on the human or animal heart
US7699790B2 (en) 2000-12-20 2010-04-20 Ev3, Inc. Debulking catheters and methods
ES2436668T3 (en) * 2000-12-20 2014-01-03 Covidien Lp Catheter to remove atheromatous or thrombotic occlusive material
US7927784B2 (en) 2000-12-20 2011-04-19 Ev3 Vascular lumen debulking catheters and methods
ATE337766T1 (en) * 2001-02-23 2006-09-15 Refocus Ocular Inc CUTTING DEVICE FOR SCLEROTIC IMPLANTS
US6673023B2 (en) 2001-03-23 2004-01-06 Stryker Puerto Rico Limited Micro-invasive breast biopsy device
US9186177B2 (en) * 2001-03-14 2015-11-17 Covidien Lp Trocar device
US7905897B2 (en) * 2001-03-14 2011-03-15 Tyco Healthcare Group Lp Trocar device
US20020138021A1 (en) * 2001-03-23 2002-09-26 Devonrex, Inc. Micro-invasive tissue removal device
US20020138091A1 (en) * 2001-03-23 2002-09-26 Devonrex, Inc. Micro-invasive nucleotomy device and method
US7485125B2 (en) * 2001-12-17 2009-02-03 Smith & Nephew, Inc. Cutting instrument
DE10162933B4 (en) * 2001-12-20 2008-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for tissue extraction
US6814743B2 (en) 2001-12-26 2004-11-09 Origin Medsystems, Inc. Temporary seal and method for facilitating anastomosis
US8518036B2 (en) 2002-03-05 2013-08-27 Kimberly-Clark Inc. Electrosurgical tissue treatment method
US8043287B2 (en) * 2002-03-05 2011-10-25 Kimberly-Clark Inc. Method of treating biological tissue
US6896675B2 (en) 2002-03-05 2005-05-24 Baylis Medical Company Inc. Intradiscal lesioning device
US8882755B2 (en) * 2002-03-05 2014-11-11 Kimberly-Clark Inc. Electrosurgical device for treatment of tissue
US6926725B2 (en) * 2002-04-04 2005-08-09 Rex Medical, L.P. Thrombectomy device with multi-layered rotational wire
US7241257B1 (en) * 2002-06-28 2007-07-10 Abbott Cardiovascular Systems, Inc. Devices and methods to perform minimally invasive surgeries
DE20210394U1 (en) 2002-07-04 2002-09-12 Braun Melsungen Ag catheter introducer
US8377035B2 (en) 2003-01-17 2013-02-19 Boston Scientific Scimed, Inc. Unbalanced reinforcement members for medical device
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
WO2004100772A2 (en) * 2003-05-12 2004-11-25 University Of Florida Devices and methods for disruption and removal of luninal occlusions
US20050027309A1 (en) * 2003-06-17 2005-02-03 Samuel Shiber Guidewire system
US20050143768A1 (en) * 2003-06-17 2005-06-30 Samuel Shiber Sleeved guidewire system method of use
US20050177073A1 (en) * 2003-06-17 2005-08-11 Samuel Shiber Guidewire system with a deflectable distal tip
US7104966B2 (en) * 2003-07-16 2006-09-12 Samuel Shiber Guidewire system with exposed midsection
US9655633B2 (en) 2004-09-10 2017-05-23 Penumbra, Inc. System and method for treating ischemic stroke
US7931659B2 (en) * 2004-09-10 2011-04-26 Penumbra, Inc. System and method for treating ischemic stroke
US8475487B2 (en) * 2005-04-07 2013-07-02 Medrad, Inc. Cross stream thrombectomy catheter with flexible and expandable cage
US7794413B2 (en) 2005-04-19 2010-09-14 Ev3, Inc. Libraries and data structures of materials removed by debulking catheters
US20060241586A1 (en) * 2005-04-22 2006-10-26 Wilk Patent, Llc Intra-abdominal medical device and associated method
US7806871B2 (en) * 2005-05-09 2010-10-05 Boston Scientific Scimed, Inc. Method and device for tissue removal and for delivery of a therapeutic agent or bulking agent
US20160001064A1 (en) 2005-07-22 2016-01-07 The Spectranetics Corporation Endocardial lead cutting apparatus
US8097012B2 (en) * 2005-07-27 2012-01-17 The Spectranetics Corporation Endocardial lead removing apparatus
US20070032808A1 (en) * 2005-08-03 2007-02-08 Azam Anwar System and method for addressing total occlusion in a vascular environment
US20070138915A1 (en) * 2005-12-16 2007-06-21 Maureen Mulvihill Piezoelectric micro-device for blockage removal
US7989207B2 (en) * 2006-02-17 2011-08-02 Tyco Healthcare Group Lp Testing lumenectomy samples for markers of non-vascular diseases
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
US20140249554A1 (en) * 2006-06-30 2014-09-04 Atheromed, Inc. Atherectomy devices and methods
US20080004645A1 (en) * 2006-06-30 2008-01-03 Atheromed, Inc. Atherectomy devices and methods
US8361094B2 (en) 2006-06-30 2013-01-29 Atheromed, Inc. Atherectomy devices and methods
US8628549B2 (en) * 2006-06-30 2014-01-14 Atheromed, Inc. Atherectomy devices, systems, and methods
US20080045986A1 (en) * 2006-06-30 2008-02-21 Atheromed, Inc. Atherectomy devices and methods
US20090018566A1 (en) * 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US20110112563A1 (en) * 2006-06-30 2011-05-12 Atheromed, Inc. Atherectomy devices and methods
US9492192B2 (en) * 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
US8007506B2 (en) * 2006-06-30 2011-08-30 Atheromed, Inc. Atherectomy devices and methods
KR20090049051A (en) * 2006-06-30 2009-05-15 아테로메드, 아이엔씨. Atherectomy devices and methods
US9314263B2 (en) 2006-06-30 2016-04-19 Atheromed, Inc. Atherectomy devices, systems, and methods
US8308691B2 (en) 2006-11-03 2012-11-13 B. Braun Melsungen Ag Catheter assembly and components thereof
US8419658B2 (en) * 2006-09-06 2013-04-16 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
EP2094339A4 (en) * 2006-12-01 2012-10-17 Univ Leland Stanford Junior Devices and methods for accessing the epidural space
US8556914B2 (en) 2006-12-15 2013-10-15 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
US8070762B2 (en) 2007-10-22 2011-12-06 Atheromed Inc. Atherectomy devices and methods
US8236016B2 (en) 2007-10-22 2012-08-07 Atheromed, Inc. Atherectomy devices and methods
US7841994B2 (en) 2007-11-02 2010-11-30 Boston Scientific Scimed, Inc. Medical device for crossing an occlusion in a vessel
US11589880B2 (en) 2007-12-20 2023-02-28 Angiodynamics, Inc. System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure
US10517617B2 (en) 2007-12-20 2019-12-31 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
KR101645754B1 (en) 2008-10-13 2016-08-04 코비디엔 엘피 Devices and methods for manipulating a catheter shaft
US20100204672A1 (en) * 2009-02-12 2010-08-12 Penumra, Inc. System and method for treating ischemic stroke
US20100256483A1 (en) * 2009-04-03 2010-10-07 Insite Medical Technologies, Inc. Devices and methods for tissue navigation
WO2010126882A1 (en) 2009-04-29 2010-11-04 Fox Hollow Technologies, Inc. Methods and devices for cutting and abrading tissue
RU2509538C2 (en) 2009-05-14 2014-03-20 ТАЙКО ХЕЛСКЕА ГРУП эЛПи Cleanable atherectomy catheters and methods for using them
WO2011068932A1 (en) 2009-12-02 2011-06-09 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
JP5511107B2 (en) 2009-12-11 2014-06-04 コヴィディエン リミテッド パートナーシップ Substance removal device and method with improved substance capture efficiency
KR101493138B1 (en) 2010-06-14 2015-02-12 코비디엔 엘피 Material removal device
US9204891B2 (en) 2010-07-07 2015-12-08 Carevature Medical Ltd. Flexible surgical device for tissue removal
US9561094B2 (en) 2010-07-23 2017-02-07 Nfinium Vascular Technologies, Llc Devices and methods for treating venous diseases
US10039900B2 (en) 2010-09-07 2018-08-07 Angiodynamics, Inc. Fluid delivery and treatment device and method of use
EP2632352B1 (en) 2010-10-28 2017-04-12 Covidien LP Material removal device
CA2817213C (en) 2010-11-11 2016-06-14 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US9585667B2 (en) * 2010-11-15 2017-03-07 Vascular Insights Llc Sclerotherapy catheter with lumen having wire rotated by motor and simultaneous withdrawal from vein
US8961519B2 (en) * 2010-11-19 2015-02-24 Zimmer, Inc. Surgical rotary cutting tool and tool guard assembly
US9055964B2 (en) 2011-03-15 2015-06-16 Angio Dynamics, Inc. Device and method for removing material from a hollow anatomical structure
US8597318B2 (en) 2011-08-08 2013-12-03 Refocus Group, Inc. Apparatus and method for forming incisions in ocular tissue
WO2013033426A2 (en) 2011-09-01 2013-03-07 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US9554822B2 (en) * 2011-09-02 2017-01-31 Abbott Cardiovascular Systems Inc. Thrombectomy catheter with aspiration and guidewire lumens defining an asymmetrical taper and cutting edge with offset tip
CN103957825B (en) 2011-10-13 2018-12-07 阿瑟罗迈德公司 Atherectomy device, system and method
US20130110090A1 (en) 2011-10-31 2013-05-02 Boston Scientific Scimed, Inc. Rotatable medical device
US9107693B2 (en) 2012-04-16 2015-08-18 Pacesetter, Inc. Apparatus and method for pericardial access
US9381062B2 (en) 2012-05-31 2016-07-05 Covidien Lp Electro-mechanical intravascular device
US10806435B2 (en) 2012-08-03 2020-10-20 Bibbinstruments Ab Endoscopic biopsy instrument and method for taking a biopsy sample with helical cutting edge provided at the tip of a guidewire
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
KR101717387B1 (en) 2012-11-08 2017-03-16 코비디엔 엘피 Tissue-removing catheter including operational control mechanism
US9456843B2 (en) 2014-02-03 2016-10-04 Covidien Lp Tissue-removing catheter including angular displacement sensor
US9526519B2 (en) 2014-02-03 2016-12-27 Covidien Lp Tissue-removing catheter with improved angular tissue-removing positioning within body lumen
WO2015187196A1 (en) 2014-06-04 2015-12-10 Nfinium Vascular Technologies, Llc Low radial force vascular device and method of occlusion
WO2015200702A1 (en) 2014-06-27 2015-12-30 Covidien Lp Cleaning device for catheter and catheter including the same
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US10517632B2 (en) * 2015-06-25 2019-12-31 Covidien Lp Tissue-removing catheter with reciprocating tissue-removing head
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop
US10653431B2 (en) 2016-06-14 2020-05-19 Medos International Sarl Drill assemblies and methods for drilling into bone
US10493579B2 (en) * 2016-08-03 2019-12-03 Robert Bosch Tool Corporation Dust collection system for a rotary power tool
US11224458B2 (en) 2017-04-10 2022-01-18 The Regents Of The University Of Michigan Hydrodynamic vortex aspiration catheter
JP7332165B2 (en) 2017-04-10 2023-08-23 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン hydrodynamic vortex suction catheter
US10806631B2 (en) 2017-08-23 2020-10-20 Refocus Group, Inc. Surgical tool for forming incisions in ocular tissue with tip providing visibility and related apparatus and method
US10780541B2 (en) * 2017-09-08 2020-09-22 G.A.W. Inc. Vacuum dust extraction apparatus for a percussive air tool
EP3815622A1 (en) * 2019-10-29 2021-05-05 Stichting Katholieke Universiteit Flexible endoscopic tissue biopsy device
US11648020B2 (en) 2020-02-07 2023-05-16 Angiodynamics, Inc. Device and method for manual aspiration and removal of an undesirable material
CN116710009A (en) * 2020-10-30 2023-09-05 波士顿科学国际有限公司 Atherectomy system
US11304723B1 (en) 2020-12-17 2022-04-19 Avantec Vascular Corporation Atherectomy devices that are self-driving with controlled deflection
US11793542B2 (en) * 2021-09-01 2023-10-24 Penumbra, Inc. Helical separator and methods of operating the same

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2701559A (en) * 1951-08-02 1955-02-08 William A Cooper Apparatus for exfoliating and collecting diagnostic material from inner walls of hollow viscera
US2850007A (en) * 1956-05-31 1958-09-02 American Cyanamid Co Biopsy device
US3064651A (en) * 1959-05-26 1962-11-20 Henderson Edward Hypodermic needle
US3082805A (en) * 1960-12-21 1963-03-26 John H Royce Tissue macerator
GB1235321A (en) * 1968-01-30 1971-06-09 Nat Res Dev Improvements in or relating to drills for clearing obstructions
US3732858A (en) * 1968-09-16 1973-05-15 Surgical Design Corp Apparatus for removing blood clots, cataracts and other objects from the eye
US3749085A (en) * 1970-06-26 1973-07-31 J Willson Vascular tissue removing device
US3683891A (en) * 1970-06-26 1972-08-15 Marshall Eskridge Tissue auger
US3945375A (en) * 1972-04-04 1976-03-23 Surgical Design Corporation Rotatable surgical instrument
SU442795A1 (en) * 1972-04-27 1974-09-15 Л.С. Юхин Intravascular Surgery Device
US3800783A (en) * 1972-06-22 1974-04-02 K Jamshidi Muscle biopsy device
US3937222A (en) * 1973-11-09 1976-02-10 Surgical Design Corporation Surgical instrument employing cutter means
JPS544450B2 (en) 1974-04-23 1979-03-07
US3976077A (en) * 1975-02-03 1976-08-24 Kerfoot Jr Franklin W Eye surgery device
US4007732A (en) * 1975-09-02 1977-02-15 Robert Carl Kvavle Method for location and removal of soft tissue in human biopsy operations
US4030503A (en) * 1975-11-05 1977-06-21 Clark Iii William T Embolectomy catheter
US4177797A (en) * 1977-03-04 1979-12-11 Shelby M. Baylis Rotary biopsy device and method of using same
SU665908A1 (en) * 1977-11-09 1979-06-05 Silin Semen A Device for intravascular surgery
US4273128A (en) * 1980-01-14 1981-06-16 Lary Banning G Coronary cutting and dilating instrument
EP0051318B2 (en) * 1980-11-04 1990-03-21 Teijin Petrochemical Industries Ltd. A catalyst composition containing as catalytically active components alumina and a cristalline aluminosilicate zeolite, a process for isomerizing xylenes and ethylbenzene, and use of this catalyst composition
US4368730A (en) * 1981-02-12 1983-01-18 Nigel Sharrock Intravenous catheter
GB2093353B (en) * 1981-02-25 1984-09-19 Dyonics Inc A surgical instrument for arthroscopic arthroplasty
US4436091A (en) 1981-03-20 1984-03-13 Surgical Design Corporation Surgical cutting instrument with release mechanism
US4445509A (en) 1982-02-04 1984-05-01 Auth David C Method and apparatus for removal of enclosed abnormal deposits
US4512344A (en) * 1982-05-12 1985-04-23 Barber Forest C Arthroscopic surgery dissecting apparatus
US4490139A (en) * 1983-01-28 1984-12-25 Eli Lilly And Company Implant needle and method
US4603694A (en) * 1983-03-08 1986-08-05 Richards Medical Company Arthroscopic shaver
US4631052A (en) 1984-01-03 1986-12-23 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4589412A (en) 1984-01-03 1986-05-20 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4886490A (en) * 1984-05-14 1989-12-12 Surgical Systems & Instruments, Inc. Atherectomy catheter system and method of using the same
US4883458A (en) * 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US4819634A (en) * 1984-05-14 1989-04-11 Surgical Systems & Instruments Rotary-catheter for atherectomy system
US4979939A (en) * 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
US4842579B1 (en) * 1984-05-14 1995-10-31 Surgical Systems & Instr Inc Atherectomy device
US4732154A (en) * 1984-05-14 1988-03-22 Surgical Systems & Instruments, Inc. Rotary catheter system
US4754755A (en) * 1984-05-14 1988-07-05 Husted Royce Hill Catheter with a rotary blade
US5002553A (en) * 1984-05-14 1991-03-26 Surgical Systems & Instruments, Inc. Atherectomy system with a clutch
US5007896A (en) * 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US4894051A (en) * 1984-05-14 1990-01-16 Surgical Systems & Instruments, Inc. Atherectomy system with a biasing sleeve and method of using the same
US4957482A (en) * 1988-12-19 1990-09-18 Surgical Systems & Instruments, Inc. Atherectomy device with a positive pump means
US4926858A (en) * 1984-05-30 1990-05-22 Devices For Vascular Intervention, Inc. Atherectomy device for severe occlusions
US4979951A (en) 1984-05-30 1990-12-25 Simpson John B Atherectomy device and method
US4781186A (en) * 1984-05-30 1988-11-01 Devices For Vascular Intervention, Inc. Atherectomy device having a flexible housing
US4646719A (en) * 1984-06-11 1987-03-03 Aries Medical Incorporated Intra-aortic balloon catheter having flexible torque transmitting tube
US4646736A (en) * 1984-09-10 1987-03-03 E. R. Squibb & Sons, Inc. Transluminal thrombectomy apparatus
US4653496A (en) * 1985-02-01 1987-03-31 Bundy Mark A Transluminal lysing system
US4745919A (en) * 1985-02-01 1988-05-24 Bundy Mark A Transluminal lysing system
US4747406A (en) 1985-02-13 1988-05-31 Intravascular Surgical Instruments, Inc. Shaft driven, flexible intravascular recanalization catheter
US4686982A (en) * 1985-06-19 1987-08-18 John Nash Spiral wire bearing for rotating wire drive catheter
US4706671A (en) * 1985-05-02 1987-11-17 Weinrib Harry P Catheter with coiled tip
US4664112A (en) 1985-08-12 1987-05-12 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4679558A (en) * 1985-08-12 1987-07-14 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4790812A (en) 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
US4646738A (en) * 1985-12-05 1987-03-03 Concept, Inc. Rotary surgical tool
CA1293663C (en) 1986-01-06 1991-12-31 David Christopher Auth Transluminal microdissection device
US4794931A (en) * 1986-02-28 1989-01-03 Cardiovascular Imaging Systems, Inc. Catheter apparatus, system and method for intravascular two-dimensional ultrasonography
US4771774A (en) * 1986-02-28 1988-09-20 Devices For Vascular Intervention, Inc. Motor drive unit
US4669469A (en) * 1986-02-28 1987-06-02 Devices For Vascular Intervention Single lumen atherectomy catheter device
US4696667A (en) 1986-03-20 1987-09-29 Helmut Masch Intravascular catheter and method
US4728319A (en) 1986-03-20 1988-03-01 Helmut Masch Intravascular catheter
US4729763A (en) 1986-06-06 1988-03-08 Henrie Rodney A Catheter for removing occlusive material
US4765332A (en) * 1986-07-14 1988-08-23 Medinnovations, Inc. Pullback atherectomy catheter system
US4923462A (en) 1987-03-17 1990-05-08 Cordis Corporation Catheter system having a small diameter rotatable drive member
US4846192A (en) * 1987-04-17 1989-07-11 Eastman Kodak Company Rearwardly acting surgical catheter
US4784636A (en) * 1987-04-30 1988-11-15 Schneider-Shiley (U.S.A.) Inc. Balloon atheroectomy catheter
US4867157A (en) 1987-08-13 1989-09-19 Baxter Travenol Laboratories, Inc. Surgical cutting instrument
US4844064A (en) * 1987-09-30 1989-07-04 Baxter Travenol Laboratories, Inc. Surgical cutting instrument with end and side openings
US4857046A (en) * 1987-10-21 1989-08-15 Cordis Corporation Drive catheter having helical pump drive shaft
US5047040A (en) * 1987-11-05 1991-09-10 Devices For Vascular Intervention, Inc. Atherectomy device and method
US4870953A (en) 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
US4887613A (en) 1987-11-23 1989-12-19 Interventional Technologies Inc. Cutter for atherectomy device
US4850957A (en) * 1988-01-11 1989-07-25 American Biomed, Inc. Atherectomy catheter
DE3801318A1 (en) 1988-01-19 1989-07-27 Stocksmeier Uwe MEDICAL CATHETER WITH CUTTER
DE58906466D1 (en) 1988-03-04 1994-02-03 Angiomed Ag Method and device for removing deposits in vessels and organs of living beings.
US4950238A (en) 1988-07-07 1990-08-21 Clarence E. Sikes Hydro-rotary vascular catheter
US4919133A (en) 1988-08-18 1990-04-24 Chiang Tien Hon Catheter apparatus employing shape memory alloy structures
US5071425A (en) 1988-09-12 1991-12-10 Devices For Vascular Intervention, Inc. Atherectomy catheter and method of forming the same
DE8813144U1 (en) 1988-10-19 1988-12-15 Guenther, Rolf W., Prof. Dr., 5100 Aachen, De
AU4945490A (en) 1989-01-06 1990-08-01 Angioplasty Systems Inc. Electrosurgical catheter for resolving atherosclerotic plaque
US4986807A (en) 1989-01-23 1991-01-22 Interventional Technologies, Inc. Atherectomy cutter with radially projecting blade
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US4994067A (en) 1989-02-17 1991-02-19 American Biomed, Inc. Distal atherectomy catheter
US5087265A (en) 1989-02-17 1992-02-11 American Biomed, Inc. Distal atherectomy catheter
US5078723A (en) 1989-05-08 1992-01-07 Medtronic, Inc. Atherectomy device
US5269793A (en) 1989-07-20 1993-12-14 Devices For Vascular Intervention, Inc. Guide wire systems for intravascular catheters
US5226909A (en) 1989-09-12 1993-07-13 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US5092839A (en) 1989-09-29 1992-03-03 Kipperman Robert M Coronary thrombectomy
US5116352A (en) 1989-10-06 1992-05-26 Angiomed Ag Apparatus for removing deposits from vessels
US5009659A (en) 1989-10-30 1991-04-23 Schneider (Usa) Inc. Fiber tip atherectomy catheter
US5026384A (en) 1989-11-07 1991-06-25 Interventional Technologies, Inc. Atherectomy systems and methods
US5019088A (en) 1989-11-07 1991-05-28 Interventional Technologies Inc. Ovoid atherectomy cutter
US5030201A (en) 1989-11-24 1991-07-09 Aubrey Palestrant Expandable atherectomy catheter device
US5178625A (en) 1989-12-07 1993-01-12 Evi Corporation Catheter atherotome

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140277039A1 (en) * 2013-03-15 2014-09-18 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US10524869B2 (en) 2013-03-15 2020-01-07 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US20170304072A1 (en) * 2014-09-24 2017-10-26 Fitzbionics Limited A Prosthetic Intervertebral Disc Joint Assembly
EP3384859A1 (en) * 2017-04-04 2018-10-10 Covidien LP Thrombectomy catheter device

Also Published As

Publication number Publication date
JP3052145B2 (en) 2000-06-12
EP0373927A3 (en) 1991-04-24
JPH02271847A (en) 1990-11-06
US6443966B1 (en) 2002-09-03
GB8829182D0 (en) 1989-01-25
EP0373927A2 (en) 1990-06-20
US5423799A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
US5423799A (en) Surgical instrument
US4846192A (en) Rearwardly acting surgical catheter
EP0431743B1 (en) Endoluminal tissue excision catheter
US4732154A (en) Rotary catheter system
US5041082A (en) Mechanical atherectomy system and method
US4649919A (en) Surgical instrument
US4030503A (en) Embolectomy catheter
US5078723A (en) Atherectomy device
US4691705A (en) Calculus crushing apparatus
CA2213522C (en) Catheter for detaching abnormal deposits in human blood vessels
US4038985A (en) Device for repairing arteries
US20090138031A1 (en) Thrombectomy catheter with a helical cutter
US4754755A (en) Catheter with a rotary blade
US5366463A (en) Atherectomy catheter for the removal of atherosclerosis from within blood vessels
US6572563B2 (en) Endoscopic tissue collecting instrument
US5242460A (en) Atherectomy catheter having axially-disposed cutting edge
US4702260A (en) Flexible bronchoscopic needle assembly
US4842579A (en) Atherectomy device
DE10009512A1 (en) Atherectomy unit comprises a rotatable cutting tool which is connected to the drive shaft at the distal end of a flexible tubular body of the unit, and is provided with at least a partially discontinuous cutting thread
AU3016595A (en) Safety trocar
AU5266393A (en) Improved safety trocar
EP1870044B1 (en) Rotational atherectomy system with serrated cutting tip
AU2587592A (en) Lateral biopsy device
US20050267502A1 (en) Disposable safety cutting tool
CA2009684A1 (en) Telescopic control unit for an atherectomy device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENDICOR MEDICAL INCORPORATED, MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:INTRAVASCULAR MEDICAL, INC.;REEL/FRAME:013835/0262

Effective date: 19971218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION