US20020145652A1 - Ink jet printing method - Google Patents

Ink jet printing method Download PDF

Info

Publication number
US20020145652A1
US20020145652A1 US09/770,128 US77012801A US2002145652A1 US 20020145652 A1 US20020145652 A1 US 20020145652A1 US 77012801 A US77012801 A US 77012801A US 2002145652 A1 US2002145652 A1 US 2002145652A1
Authority
US
United States
Prior art keywords
ink jet
ink
image
water
receiving layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/770,128
Other versions
US6454404B1 (en
Inventor
Kristine Lawrence
David Teegarden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US09/770,128 priority Critical patent/US6454404B1/en
Assigned to EASTMAN KODAK COMPANY reassignment EASTMAN KODAK COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAWRENCE, KRISTINE B., TEEGARDEN, DAVID M.
Priority to DE60203205T priority patent/DE60203205T2/en
Priority to EP02075137A priority patent/EP1226967B1/en
Priority to JP2002015491A priority patent/JP2002316476A/en
Application granted granted Critical
Publication of US6454404B1 publication Critical patent/US6454404B1/en
Publication of US20020145652A1 publication Critical patent/US20020145652A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5245Macromolecular coatings characterised by the use of polymers containing cationic or anionic groups, e.g. mordants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks

Definitions

  • This invention relates to an inkjet printing process for improving the light stability and waterfastness of a printed image containing an ink jet ink containing a water-soluble anionic dye and a cationic receiver.
  • Ink jet printing is a non-impact method for producing images by the deposition of ink droplets in a pixel-by-pixel manner to an image-recording element in response to digital signals.
  • continuous ink jet a continuous stream of droplets is charged and deflected in an imagewise manner onto the surface of the image-recording element, while unimaged droplets are caught and returned to an ink sump.
  • drop-on-demand inkjet individual ink droplets are projected as needed onto the image-recording element to form the desired image.
  • Common methods of controlling the projection of ink droplets in drop-on-demand printing include piezoelectric transducers and thermal bubble formation. Ink jet printers have found broad applications across markets ranging from industrial labeling to short run printing to desktop document and pictorial imaging.
  • the inks used in the various ink jet printers can be classified as either dye-based or pigment-based.
  • a dye is a colorant which is molecularly dispersed or solvated by a carrier medium.
  • the carrier medium can be a liquid or a solid at room temperature.
  • a commonly used carrier medium is water or a mixture of water and organic co-solvents.
  • Each individual dye molecule is surrounded by molecules of the carrier medium.
  • no particles are observable under the microscope.
  • An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-forming layer.
  • the ink-receiving layer may be a polymer layer which swells to absorb the ink or a porous layer which imbibes the ink via capillary action.
  • Ink jet prints prepared by printing onto ink jet recording elements, are subject to environmental degradation. They are especially vulnerable to water smearing, dye bleeding, coalescence and light fade.
  • ink jet dyes are water-soluble, they can migrate from their location in the image layer when water comes in contact with the receiver after imaging.
  • Highly swellable hydrophilic layers can take an undesirably long time to dry, slowing printing speed, and will dissolve when left in contact with water, destroying printed images. Porous layers speed the absorption of the ink vehicle, but often suffer from insufficient gloss and severe light fade.
  • U.S. Pat. No. 5,942,335 discloses an ink jet recording sheet comprising a support carrying an ink-receiving layer comprising a hydrophilic polymer and a polyvinylpyridine.
  • an ink jet recording sheet comprising a support carrying an ink-receiving layer comprising a hydrophilic polymer and a polyvinylpyridine.
  • images formed in the image-receiving layer have poor waterfastness.
  • U.S. Pat. No. 6,045,917 relates to the use of poly(N-vinyl benzyl-N, N, N-trimethyl ammonium chloride-co-ethyleneglycol dimethacrylate) particles in an inkjet image-recording layer.
  • poly(N-vinyl benzyl-N, N, N-trimethyl ammonium chloride-co-ethyleneglycol dimethacrylate) particles inkjet image-recording layer.
  • any anionic, water-soluble dye may be used in composition employed in the method of the invention such as a dye having an anionic group, e.g., a sulfo group or a carboxylic group.
  • the anionic, water-soluble dye may be any acid dye, direct dye or reactive dye listed in the COLOR INDEX but is not limited thereto.
  • Metallized and non-metallized azo dyes may also be used as disclosed in U.S. Pat. No. 5,482,545, the disclosure of which is incorporated herein by reference.
  • Other dyes which may be used are found in EP 802246-A1 and JP 09/202043, the disclosures of which are incorporated herein by reference.
  • the anionic, water-soluble dye which may be used in the composition employed in the method of the invention is a metallized azo dye, a non-metallized azo dye, a xanthene dye, a metallophthalocyanine dye or a sulfur dye. Mixtures of these dyes may also be used.
  • An example of an anionic dye which may be used in the invention is as follows:
  • the dyes described above may be employed in any amount effective for the intended purpose. In general, good results have been obtained when the dye is present in an amount of from about 0.2 to about 5% by weight of the ink jet ink composition, preferably from about 0.3 to about 3% by weight. Dye mixtures may also be used.
  • the cationic, water-dispersible, dispersible, partially quaternized pyridine-containing polymer has the formula:
  • each A independently represents a carbonyl group or a direct link, i.e., a bond
  • each A independently represents O, NH or a direct link, i.e., a bond
  • each R 1 independently represents H or CH 3 ;
  • each R 2 independently represents an alkyl, cyclic alkyl or alkoxy group having from 1 to about 10 carbon atoms or a direct link, i.e., a bond;
  • R 3 represents a substituted or unsubstituted pyridine ring
  • R 4 represents a substituted or unsubstituted pyridinium ring
  • R 5 represents a linear, branched or cyclic alkyl, alkoxy or aryl group having from 1 to about 24 carbon atoms;
  • X represents an anion or a mixture of anions, such as halide (e.g., chloride or bromide), alkylsulfate (e.g. methylsulfate), alkylsulfonate (e.g. methylsulfonate), or arylsulfonate (e.g. benzenesulfonate or toluenesulfonate);
  • halide e.g., chloride or bromide
  • alkylsulfate e.g. methylsulfate
  • alkylsulfonate e.g. methylsulfonate
  • arylsulfonate e.g. benzenesulfonate or toluenesulfonate
  • Z represents at least one ethylenically unsaturated monomer
  • a represents a mole % of from about 0 to about 98;
  • b represents a mole % of from about 5 to about 98.
  • c represents a mole % of from about 75 to about 2.
  • each R 1 represents H
  • each A, B and R 2 represents direct links
  • R 3 is pyridine
  • R 4 is pyridinium.
  • R 5 is hydroxyethyl, a linear alkyl group having from about 12 to about 18 carbon atoms or benzyl.
  • Z in the formula represents at least one ethylenically unsaturated, nonionic monomer.
  • examples of these include a styrene or an alpha-alkylstyrene, where the alkyl group has 1 to 4 carbon atoms and the aromatic group may be substituted or part of a larger ring system.
  • Z examples include acrylate esters derived from aliphatic alcohols or phenols; methacrylate esters; acrylamides; methacrylamides; N-vinylpyrrolidone or suitably substituted vinylpyrrolidones; vinyl esters derived from straight chain and branched acids, e.g., vinyl acetate; vinyl ethers, e.g., vinyl methyl ether; vinyl nitrites; vinyl ketones; halogen-containing monomers such as vinyl chloride; and olefins, such as butadiene.
  • the ethylenically unsaturated, nonionic monomer may contain more than one polymerizable group.
  • Z represents styrene.
  • cationic, water-dispersible, partially quaternized pyridine-containing polymer useful in the invention include the following: Polymer m (mol %) n (mol %) p (mol %) P-1 45 42 13 P-2 50 44 6 P-3 50 38 12 P-4 45 50 5 P-5 45 10
  • the cationic, water-dispersible, partially quaternized pyridine-containing polymer employed in the invention may be used in an amount of from 0.2 to about 32 g/m 2 , preferably from about 0.4 to about 16 g/m 2 .
  • the polymers employed in this invention can be prepared using conventional polymerization techniques including, but not limited to bulk, solution, emulsion, or suspension polymerization. They also can be partially crosslinked.
  • a binder may also be employed in the image-receiving layer in the invention.
  • the binder is a hydrophilic polymer.
  • hydrophilic polymers useful in the invention include poly(vinyl alcohol), polyvinylpyrrolidone, poly(ethyl oxazoline), poly-N-vinylacetamide, non-deionized or deionized Type IV bone gelatin, acid processed ossein gelatin, pig skin gelatin, acetylated gelatin, phthalated gelatin, oxidized gelatin, chitosan, poly(alkylene oxide), sulfonated polyester, partially hydrolyzed poly(vinyl acetate-co-vinyl alcohol), poly(acrylic acid), poly(1-vinylpyrrolidone), poly(sodium styrene sulfonate), poly(2-acrylamido-2-methane sulfonic acid), polyacrylamide or mixtures thereof.
  • a preferred hydrophilic polymers include
  • a hydrophilic polymer is used in the image-receiving layer, it may be present in an amount of from about 0.02 to about 30 g/m 2 , preferably from about 0.04 to about 16 g/m 2 of the image-receiving layer.
  • the weight ratio of cationic, water dispersible partially quaternized pyridine-containing polymer to binder is from about 1:99 to about 8:2, preferably from about 1:9 to about 4:6.
  • Latex polymer particles and/or inorganic oxide particles may also be used as the binder in the image-receiving layer to increase the porosity of the layer and improve the dry time.
  • the latex polymer particles and/or inorganic oxide particles are cationic or neutral.
  • inorganic oxide particles include barium sulfate, calcium carbonate, clay, silica or alumina, or mixtures thereof.
  • the weight % of particulates in the image receiving layer is from about 80 to about 95%, preferably from about 85 to about 90%.
  • the pH of the aqueous ink compositions employed in the invention may be adjusted by the addition of organic or inorganic acids or bases.
  • Useful inks may have a preferred pH of from about 2 to 10, depending upon the type of dye being used.
  • Typical inorganic acids include hydrochloric, phosphoric and sulfuric acids.
  • Typical organic acids include methanesulfonic, acetic and lactic acids.
  • Typical inorganic bases include alkali metal hydroxides and carbonates.
  • Typical organic bases include ammonia, triethanolamine and tetramethylethlenediamine.
  • a humectant is employed in the inkjet composition employed in the invention to help prevent the ink from drying out or crusting in the orifices of the printhead.
  • humectants which can be used include polyhydric alcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, tetraethylene glycol, polyethylene glycol, glycerol, 2-methyl-2,4-pentanediol 1,2,6-hexanetriol and thioglycol; lower alkyl mono- or di-ethers derived from alkylene glycols, such as ethylene glycol mono-methyl or mono-ethyl ether, diethylene glycol mono-methyl or mono-ethyl ether, propylene glycol mono-methyl or mono-ethyl ether, triethylene glycol mono-methyl or mono-ethyl ether, diethylene glycol di-methyl or di-ethyl ether, and diethylene glycol monobutyl
  • Water-miscible organic solvents may also be added to the aqueous ink employed in the invention to help the ink penetrate the receiving substrate, especially when the substrate is a highly sized paper.
  • solvents include alcohols, such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, iso-butyl alcohol, furfuryl alcohol, and tetrahydrofurfuryl alcohol; ketones or ketoalcohols such as acetone, methyl ethyl ketone and diacetone alcohol; ethers, such as tetrahydrofuran and dioxane; and esters, such as, ethyl lactate, ethylene carbonate and propylene carbonate.
  • Surfactants may be added to adjust the surface tension of the ink to an appropriate level.
  • the surfactants may be anionic, cationic, amphoteric or nonionic.
  • a biocide may be added to the composition employed in the invention to suppress the growth of microorganisms such as molds, fungi, etc. in aqueous inks.
  • a preferred biocide for the ink composition employed in the present invention is Proxel® GXL (Zeneca Specialties Co.) at a final concentration of 0.0001-0.5 wt. %.
  • a typical ink composition employed in the invention may comprise, for example, the following substituents by weight: colorant (0.05-5%), water (20-95%), a humectant (5-70%), water miscible co-solvents (2-20%), surfactant (0.1-10%), biocide (0.05-5%) and pH control agents (0.1-10%).
  • Additional additives which may optionally be present in the ink jet ink composition employed in the invention include thickeners, conductivity enhancing agents, anti-kogation agents, drying agents, and defoamers.
  • the ink jet inks employed in this invention may be employed in ink jet printing wherein liquid ink drops are applied in a controlled fashion to an ink receptive layer substrate, by ejecting ink droplets from a plurality of nozzles or orifices of the print head of an ink jet printer.
  • the image-recording layer used in the process of the present invention can also contain various known additives, including matting agents such as titanium dioxide, zinc oxide, silica and polymeric beads such as crosslinked poly(methyl methacrylate) or polystyrene beads for the purposes of contributing to the non-blocking characteristics and to control the smudge resistance thereof; surfactants such as non-ionic, hydrocarbon or fluorocarbon surfactants or cationic surfactants, such as quaternary ammonium salts; fluorescent dyes; pH controllers; anti-foaming agents; lubricants; preservatives; viscosity modifiers; dye-fixing agents; waterproofing agents; dispersing agents; UV- absorbing agents; mildew-proofing agents; mordants; antistatic agents, anti-oxidants, optical brighteners, and the like.
  • a hardener may also be added to the ink-receiving layer if desired.
  • the support for the ink jet recording element used in the invention can be any of those usually used for inkjet receivers, such as paper, resin-coated paper, polyesters, or microporous materials such as polyethylene polymer-containing material sold by PPG Industries, Inc., Pittsburgh, Pa. under the trade name of Teslin ®, Tyvek ® synthetic paper (DuPont Corp.), and OPPalyte® films (Mobil Chemical Co.) and other composite films listed in U.S. Pat. No. 5,244,861.
  • Opaque supports include plain paper, coated paper, synthetic paper, photographic paper support, melt-extrusion-coated paper, and laminated paper, such as biaxally oriented support laminates.
  • Biaxally oriented support laminates are described in U.S. Pat. Nos. 5,853,965; 5,866,282; 5,874,205; 5,888,643; 5,888,681; 5,888,683; and 5,888,714, the disclosures of which are hereby incorporated by reference.
  • These biaxally oriented supports include a paper base and a biaxially oriented polyolefin sheet, typically polypropylene, laminated to one or both sides of the paper base.
  • Transparent supports include glass, cellulose derivatives, e.g., a cellulose ester, cellulose triacetate, cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate; polyesters, such as poly(ethylene terephthalate), poly(ethylene naphthalate), poly(1,4-cyclohexanedimethylene terephthalate), poly(butylene terephthalate), and copolymers thereof; polyimides; polyamides; polycarbonates; polystyrene; polyolefins, such as polyethylene or polypropylene; polysulfones; polyacrylates; polyetherimides; and mixtures thereof.
  • the papers listed above include a broad range of papers, from high end papers, such as photographic paper to low end papers, such as newsprint.
  • the support used in the invention may have a thickness of from about 50 to about 500 ⁇ m, preferably from about 75 to 300 ⁇ m.
  • Antioxidants, antistatic agents, plasticizers and other known additives may be incorporated into the support, if desired.
  • paper is employed.
  • the surface of the support may be subjected to a corona-discharge-treatment prior to applying the image-recording layer.
  • a subbing layer such as a layer formed from a halogenated phenol or a partially hydrolyzed vinyl chloride-vinyl acetate copolymer can be applied to the surface of the support to increase adhesion of the image recording layer. If a subbing layer is used, it should have a thickness (i.e., a dry coat thickness) of less than about 2 ⁇ m.
  • the image-recording layer may be present in any amount which is effective for the intended purpose. In general, good results are obtained when it is present in an amount of from about 2 to about 44 g/m 2 , preferably from about 6 to about 32 g/m 2 , which corresponds to a dry thickness of about 2 to about 40 ⁇ m, preferably about 6 to about 30 ⁇ m.
  • CP-1 poly(styrene-co-4-vinylpyridine) (about 50:50 mole %) (U.S. Pat. No. 5,942,335)
  • CP-2 poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride-co-divinylbenzene) (about 90/10 mole %) (U.S. Pat. No. 6,045,917)
  • Ink I-1 containing Dye 1 identified above was prepared by mixing the dye concentrate (3.1%) with de-ionized water containing humectants of diethylene glycol (Aldrich Chemical Co.) and glycerol (Acros Co.), each at 6%, a biocide, Proxel GXL ® biocide (Zeneca Specialties) at 0.003wt %, and a surfactant, Surfynol 465 ® (Air Products Co.) at 0.05wt. %.
  • the dye concentration was based on solution absorption spectra and chosen such that the final ink when diluted 1:1000, would yield a transmission optical density of approximately 1.0.
  • Ink receptive layers were composed of a mixture of 0.86 g/m 2 of polymer CP-1 or CP-2, 7.75 g/m 2 of pig skin gelatin and 0.09 g/m 2 of S-100 12 ⁇ m polystyrene beads (ACE Chemical Co.), and coated from distilled water on the above mentioned paper support.
  • Elements E-1 through E-5 and control elements C-1 and C-2 were printed using an Epson 200 ® printer using I-1 ink described above. After printing, all images were allowed to dry at room temperature overnight, and the densities were measured at all steps using an X-Rite 820® densitometer. The images were then subjected to a high intensity daylight fading test for 2 weeks, 50Klux, 5400° K., approximately 25% RH. The Status A blue reflection density nearest to 1.0 was compared before and after fade and a percent density retained was calculated for the yellow dye with each receiver element. The results can be found in Table 1 below.
  • Ink I-2 was prepared as described in Example 1 except Dye 2 (0.58%) was added in place of Dye 1.
  • Control recording element C-3 was prepared the same as C-2 in Example 1 except the ink receptive layer was composed of two layers.
  • the bottom layer was composed of a mixture of 37.9 g/m 2 of fumed alumina (Cabot Corp.), 4.3 g/m 2 of GH-23 ® poly(vinyl alcohol) (Nippon Gohsei); 0.9 g/m 2 of dihydroxydioxane (Clariant) hardener, and 0.04 g.m 2 of Olin 10G ® (Olin Co.) surfactant coated from distilled water.
  • Recording element E-6 of the invention was coated the same as described for control receiver element C-3, except P-2 was used in place of CP-2.

Abstract

An inkjet printing method, comprising the steps of:
A) providing an ink jet printer that is responsive to digital data signals;
B) loading the printer with ink-receptive elements comprising a support having thereon an image-receiving layer comprising a cationic, water-dispersible, partially quaternized pyridine-containing polymer;
C) loading the printer with an inkjet ink composition comprising water, a humectant, and a water soluble anionic dye; and
D) printing on said image-receiving layer using said ink jet ink in response to said digital data signals.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • Reference is made to commonly assigned, co-pending U.S. Patent Applications: [0001]
  • Serial Number______ by Bermel et al., (Docket 81820) filed of even date herewith entitled “Ink Jet Recording Element”; [0002]
  • Serial Number______ by Bermel et al., (Docket 82109) filed of even date herewith entitled “Ink Jet Recording Element”; [0003]
  • Serial Number______ by Bermel et al., (Docket 82110) filed of even date herewith entitled “Ink Jet Recording Element”; [0004]
  • Serial Number______ by Bermel et al., (Docket 82111) filed of even date herewith entitled “Ink Jet Recording Element”; [0005]
  • Serial Number______ by Bermel et al., (Docket 82133) filed of even date herewith entitled “Ink Jet Printing Method”; [0006]
  • Serial Number______ by Bermel et al., (Docket 82134) filed of even date herewith entitled “Ink Jet Printing Method”; [0007]
  • Serial Number______ by Bermel et al., (Docket 82138) filed of even date herewith entitled “Ink Jet Printing Method”; [0008]
  • Serial Number______ by Bermel et al., (Docket 82139) filed of even date herewith entitled “Ink Jet Printing Method”; [0009]
  • Serial Number______ by Lawrence et al., (Docket 81817) filed of even date herewith entitled “Ink Jet Printing Method”; [0010]
  • Serial Number______ by Lawrence et al., (Docket 81818) filed of even date herewith entitled “Ink Jet Printing Method”; [0011]
  • Serial Number______ by Lawrence et al., (Docket 81821) filed of even date herewith entitled “Ink Jet Printing Method”; [0012]
  • Serial Number______ by Lawrence et al., (Docket 81893) filed of even date herewith entitled “Ink Jet Printing Method”; [0013]
  • Serial Number______ by Lawrence et al., (Docket 81894) filed of even date herewith entitled “Ink Jet Printing Method”; and [0014]
  • Serial Number______ by Lawrence et al., (Docket 81983) filed of even date herewith entitled “Ink Jet Printing Method”.[0015]
  • FIELD OF THE INVENTION
  • This invention relates to an inkjet printing process for improving the light stability and waterfastness of a printed image containing an ink jet ink containing a water-soluble anionic dye and a cationic receiver. [0016]
  • BACKGROUND OF THE INVENTION
  • Ink jet printing is a non-impact method for producing images by the deposition of ink droplets in a pixel-by-pixel manner to an image-recording element in response to digital signals. There are various methods which may be utilized to control the deposition of ink droplets on the image-recording element to yield the desired image. In one process, known as continuous ink jet, a continuous stream of droplets is charged and deflected in an imagewise manner onto the surface of the image-recording element, while unimaged droplets are caught and returned to an ink sump. In another process, known as drop-on-demand inkjet, individual ink droplets are projected as needed onto the image-recording element to form the desired image. Common methods of controlling the projection of ink droplets in drop-on-demand printing include piezoelectric transducers and thermal bubble formation. Ink jet printers have found broad applications across markets ranging from industrial labeling to short run printing to desktop document and pictorial imaging. [0017]
  • The inks used in the various ink jet printers can be classified as either dye-based or pigment-based. A dye is a colorant which is molecularly dispersed or solvated by a carrier medium. The carrier medium can be a liquid or a solid at room temperature. A commonly used carrier medium is water or a mixture of water and organic co-solvents. Each individual dye molecule is surrounded by molecules of the carrier medium. In dye-based inks, no particles are observable under the microscope. Although there have been many recent advances in the art of dye-based inkjet inks, such inks still suffer from deficiencies such as low optical densities on plain paper and poor light-fastness. [0018]
  • When water is used as the carrier medium, such inks also generally suffer from poor water-fastness. [0019]
  • An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-forming layer. The ink-receiving layer may be a polymer layer which swells to absorb the ink or a porous layer which imbibes the ink via capillary action. [0020]
  • Ink jet prints, prepared by printing onto ink jet recording elements, are subject to environmental degradation. They are especially vulnerable to water smearing, dye bleeding, coalescence and light fade. For example, since ink jet dyes are water-soluble, they can migrate from their location in the image layer when water comes in contact with the receiver after imaging. Highly swellable hydrophilic layers can take an undesirably long time to dry, slowing printing speed, and will dissolve when left in contact with water, destroying printed images. Porous layers speed the absorption of the ink vehicle, but often suffer from insufficient gloss and severe light fade. [0021]
  • U.S. Pat. No. 5,942,335 discloses an ink jet recording sheet comprising a support carrying an ink-receiving layer comprising a hydrophilic polymer and a polyvinylpyridine. However, there is a problem with this recording sheet in that images formed in the image-receiving layer have poor waterfastness. [0022]
  • U.S. Pat. No. 6,045,917 relates to the use of poly(N-vinyl benzyl-N, N, N-trimethyl ammonium chloride-co-ethyleneglycol dimethacrylate) particles in an inkjet image-recording layer. However, there is a problem with these particles in that images formed in the image-receiving layer have poor light stability, as will be shown hereafter. [0023]
  • It is an object of this invention to provide an ink jet printing method using anionic dyes suitable for use in aqueous inks for ink jet printing that will provide images with better light stability and waterfastness using certain receiver elements. [0024]
  • SUMMARY OF THE INVENTION
  • This and other objects are achieved in accordance with this invention which relates to an inkjet printing method, comprising the steps of: [0025]
  • A) providing an ink jet printer that is responsive to digital data signals; [0026]
  • B) loading the printer with ink-receptive elements comprising a support having thereon an image-receiving layer comprising a cationic, water-dispersible, partially quaternized pyridine-containing polymer, [0027]
  • C) loading the printer with an ink jet ink composition comprising water, a humectant, and a water soluble anionic dye; and [0028]
  • D) printing on the image receiving layer using the ink jet ink in response to the digital data signals. [0029]
  • It has been found that use of the above dyes and image-receiving layer provides excellent light stability and waterfastness. [0030]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Any anionic, water-soluble dye may be used in composition employed in the method of the invention such as a dye having an anionic group, e.g., a sulfo group or a carboxylic group. The anionic, water-soluble dye may be any acid dye, direct dye or reactive dye listed in the COLOR INDEX but is not limited thereto. Metallized and non-metallized azo dyes may also be used as disclosed in U.S. Pat. No. 5,482,545, the disclosure of which is incorporated herein by reference. Other dyes which may be used are found in EP 802246-A1 and JP 09/202043, the disclosures of which are incorporated herein by reference. In a preferred embodiment, the anionic, water-soluble dye which may be used in the composition employed in the method of the invention is a metallized azo dye, a non-metallized azo dye, a xanthene dye, a metallophthalocyanine dye or a sulfur dye. Mixtures of these dyes may also be used. An example of an anionic dye which may be used in the invention is as follows: [0031]
    Figure US20020145652A1-20021010-C00001
  • The dyes described above may be employed in any amount effective for the intended purpose. In general, good results have been obtained when the dye is present in an amount of from about 0.2 to about 5% by weight of the ink jet ink composition, preferably from about 0.3 to about 3% by weight. Dye mixtures may also be used. [0032]
  • In a preferred embodiment of the invention, the cationic, water-dispersible, dispersible, partially quaternized pyridine-containing polymer has the formula: [0033]
    Figure US20020145652A1-20021010-C00002
  • wherein: [0034]
  • each A independently represents a carbonyl group or a direct link, i.e., a bond; [0035]
  • each A independently represents O, NH or a direct link, i.e., a bond; [0036]
  • each R[0037] 1 independently represents H or CH3;
  • each R[0038] 2 independently represents an alkyl, cyclic alkyl or alkoxy group having from 1 to about 10 carbon atoms or a direct link, i.e., a bond;
  • R[0039] 3 represents a substituted or unsubstituted pyridine ring;
  • R[0040] 4 represents a substituted or unsubstituted pyridinium ring;
  • R[0041] 5 represents a linear, branched or cyclic alkyl, alkoxy or aryl group having from 1 to about 24 carbon atoms;
  • X represents an anion or a mixture of anions, such as halide (e.g., chloride or bromide), alkylsulfate (e.g. methylsulfate), alkylsulfonate (e.g. methylsulfonate), or arylsulfonate (e.g. benzenesulfonate or toluenesulfonate); [0042]
  • Z represents at least one ethylenically unsaturated monomer; [0043]
  • a represents a mole % of from about 0 to about 98; [0044]
  • b represents a mole % of from about 5 to about 98; and [0045]
  • c represents a mole % of from about 75 to about 2. [0046]
  • In a preferred embodiment of the invention, each R[0047] 1 represents H, each A, B and R2 represents direct links, R3 is pyridine and R4 is pyridinium. In another preferred embodiment, R5 is hydroxyethyl, a linear alkyl group having from about 12 to about 18 carbon atoms or benzyl.
  • As noted above, Z in the formula represents at least one ethylenically unsaturated, nonionic monomer. Examples of these include a styrene or an alpha-alkylstyrene, where the alkyl group has 1 to 4 carbon atoms and the aromatic group may be substituted or part of a larger ring system. Other examples of Z include acrylate esters derived from aliphatic alcohols or phenols; methacrylate esters; acrylamides; methacrylamides; N-vinylpyrrolidone or suitably substituted vinylpyrrolidones; vinyl esters derived from straight chain and branched acids, e.g., vinyl acetate; vinyl ethers, e.g., vinyl methyl ether; vinyl nitrites; vinyl ketones; halogen-containing monomers such as vinyl chloride; and olefins, such as butadiene. The ethylenically unsaturated, nonionic monomer may contain more than one polymerizable group. In a preferred embodiment, Z represents styrene. [0048]
  • Specific examples of the cationic, water-dispersible, partially quaternized pyridine-containing polymer useful in the invention include the following: [0049]
    Figure US20020145652A1-20021010-C00003
    Polymer m (mol %) n (mol %) p (mol %)
    P-1 45 42 13
    P-2 50 44 6
    P-3 50 38 12
    P-4 45 50 5
    P-5 45 45 10
  • The cationic, water-dispersible, partially quaternized pyridine-containing polymer employed in the invention may be used in an amount of from 0.2 to about 32 g/m[0050] 2, preferably from about 0.4 to about 16 g/m2.
  • The polymers employed in this invention can be prepared using conventional polymerization techniques including, but not limited to bulk, solution, emulsion, or suspension polymerization. They also can be partially crosslinked. [0051]
  • A binder may also be employed in the image-receiving layer in the invention. In a preferred embodiment, the binder is a hydrophilic polymer. Examples of hydrophilic polymers useful in the invention include poly(vinyl alcohol), polyvinylpyrrolidone, poly(ethyl oxazoline), poly-N-vinylacetamide, non-deionized or deionized Type IV bone gelatin, acid processed ossein gelatin, pig skin gelatin, acetylated gelatin, phthalated gelatin, oxidized gelatin, chitosan, poly(alkylene oxide), sulfonated polyester, partially hydrolyzed poly(vinyl acetate-co-vinyl alcohol), poly(acrylic acid), poly(1-vinylpyrrolidone), poly(sodium styrene sulfonate), poly(2-acrylamido-2-methane sulfonic acid), polyacrylamide or mixtures thereof. In a preferred embodiment of the invention, the binder is gelatin or poly(vinyl alcohol). [0052]
  • If a hydrophilic polymer is used in the image-receiving layer, it may be present in an amount of from about 0.02 to about 30 g/m[0053] 2, preferably from about 0.04 to about 16 g/m2 of the image-receiving layer.
  • The weight ratio of cationic, water dispersible partially quaternized pyridine-containing polymer to binder is from about 1:99 to about 8:2, preferably from about 1:9 to about 4:6. [0054]
  • Latex polymer particles and/or inorganic oxide particles may also be used as the binder in the image-receiving layer to increase the porosity of the layer and improve the dry time. Preferably the latex polymer particles and/or inorganic oxide particles are cationic or neutral. Examples of inorganic oxide particles include barium sulfate, calcium carbonate, clay, silica or alumina, or mixtures thereof. In that case, the weight % of particulates in the image receiving layer is from about 80 to about 95%, preferably from about 85 to about 90%. [0055]
  • The pH of the aqueous ink compositions employed in the invention may be adjusted by the addition of organic or inorganic acids or bases. Useful inks may have a preferred pH of from about 2 to 10, depending upon the type of dye being used. Typical inorganic acids include hydrochloric, phosphoric and sulfuric acids. Typical organic acids include methanesulfonic, acetic and lactic acids. Typical inorganic bases include alkali metal hydroxides and carbonates. Typical organic bases include ammonia, triethanolamine and tetramethylethlenediamine. [0056]
  • A humectant is employed in the inkjet composition employed in the invention to help prevent the ink from drying out or crusting in the orifices of the printhead. Examples of humectants which can be used include polyhydric alcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, tetraethylene glycol, polyethylene glycol, glycerol, 2-methyl-2,4-pentanediol 1,2,6-hexanetriol and thioglycol; lower alkyl mono- or di-ethers derived from alkylene glycols, such as ethylene glycol mono-methyl or mono-ethyl ether, diethylene glycol mono-methyl or mono-ethyl ether, propylene glycol mono-methyl or mono-ethyl ether, triethylene glycol mono-methyl or mono-ethyl ether, diethylene glycol di-methyl or di-ethyl ether, and diethylene glycol monobutylether; nitrogen-containing cyclic compounds, such as pyrrolidone, N-methyl -2-pyrrolidone, and 1,3-dimethyl-2-imidazolidinone; and sulfur-containing compounds such as dimethyl sulfoxide and tetramethylene sulfone. A preferred humectant for the composition employed in the invention is diethylene glycol, glycerol, or diethylene glycol monobutylether. [0057]
  • Water-miscible organic solvents may also be added to the aqueous ink employed in the invention to help the ink penetrate the receiving substrate, especially when the substrate is a highly sized paper. Examples of such solvents include alcohols, such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, iso-butyl alcohol, furfuryl alcohol, and tetrahydrofurfuryl alcohol; ketones or ketoalcohols such as acetone, methyl ethyl ketone and diacetone alcohol; ethers, such as tetrahydrofuran and dioxane; and esters, such as, ethyl lactate, ethylene carbonate and propylene carbonate. [0058]
  • Surfactants may be added to adjust the surface tension of the ink to an appropriate level. The surfactants may be anionic, cationic, amphoteric or nonionic. [0059]
  • A biocide may be added to the composition employed in the invention to suppress the growth of microorganisms such as molds, fungi, etc. in aqueous inks. A preferred biocide for the ink composition employed in the present invention is Proxel® GXL (Zeneca Specialties Co.) at a final concentration of 0.0001-0.5 wt. %. [0060]
  • A typical ink composition employed in the invention may comprise, for example, the following substituents by weight: colorant (0.05-5%), water (20-95%), a humectant (5-70%), water miscible co-solvents (2-20%), surfactant (0.1-10%), biocide (0.05-5%) and pH control agents (0.1-10%). [0061]
  • Additional additives which may optionally be present in the ink jet ink composition employed in the invention include thickeners, conductivity enhancing agents, anti-kogation agents, drying agents, and defoamers. [0062]
  • The ink jet inks employed in this invention may be employed in ink jet printing wherein liquid ink drops are applied in a controlled fashion to an ink receptive layer substrate, by ejecting ink droplets from a plurality of nozzles or orifices of the print head of an ink jet printer. [0063]
  • The image-recording layer used in the process of the present invention can also contain various known additives, including matting agents such as titanium dioxide, zinc oxide, silica and polymeric beads such as crosslinked poly(methyl methacrylate) or polystyrene beads for the purposes of contributing to the non-blocking characteristics and to control the smudge resistance thereof; surfactants such as non-ionic, hydrocarbon or fluorocarbon surfactants or cationic surfactants, such as quaternary ammonium salts; fluorescent dyes; pH controllers; anti-foaming agents; lubricants; preservatives; viscosity modifiers; dye-fixing agents; waterproofing agents; dispersing agents; UV- absorbing agents; mildew-proofing agents; mordants; antistatic agents, anti-oxidants, optical brighteners, and the like. A hardener may also be added to the ink-receiving layer if desired. [0064]
  • The support for the ink jet recording element used in the invention can be any of those usually used for inkjet receivers, such as paper, resin-coated paper, polyesters, or microporous materials such as polyethylene polymer-containing material sold by PPG Industries, Inc., Pittsburgh, Pa. under the trade name of Teslin ®, Tyvek ® synthetic paper (DuPont Corp.), and OPPalyte® films (Mobil Chemical Co.) and other composite films listed in U.S. Pat. No. 5,244,861. Opaque supports include plain paper, coated paper, synthetic paper, photographic paper support, melt-extrusion-coated paper, and laminated paper, such as biaxally oriented support laminates. Biaxally oriented support laminates are described in U.S. Pat. Nos. 5,853,965; 5,866,282; 5,874,205; 5,888,643; 5,888,681; 5,888,683; and 5,888,714, the disclosures of which are hereby incorporated by reference. These biaxally oriented supports include a paper base and a biaxially oriented polyolefin sheet, typically polypropylene, laminated to one or both sides of the paper base. Transparent supports include glass, cellulose derivatives, e.g., a cellulose ester, cellulose triacetate, cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate; polyesters, such as poly(ethylene terephthalate), poly(ethylene naphthalate), poly(1,4-cyclohexanedimethylene terephthalate), poly(butylene terephthalate), and copolymers thereof; polyimides; polyamides; polycarbonates; polystyrene; polyolefins, such as polyethylene or polypropylene; polysulfones; polyacrylates; polyetherimides; and mixtures thereof. The papers listed above include a broad range of papers, from high end papers, such as photographic paper to low end papers, such as newsprint. [0065]
  • The support used in the invention may have a thickness of from about 50 to about 500 μm, preferably from about 75 to 300 μm. Antioxidants, antistatic agents, plasticizers and other known additives may be incorporated into the support, if desired. In a preferred embodiment, paper is employed. [0066]
  • In order to improve the adhesion of the image-recording layer to the support, the surface of the support may be subjected to a corona-discharge-treatment prior to applying the image-recording layer. [0067]
  • In addition, a subbing layer, such as a layer formed from a halogenated phenol or a partially hydrolyzed vinyl chloride-vinyl acetate copolymer can be applied to the surface of the support to increase adhesion of the image recording layer. If a subbing layer is used, it should have a thickness (i.e., a dry coat thickness) of less than about 2 μm. [0068]
  • The image-recording layer may be present in any amount which is effective for the intended purpose. In general, good results are obtained when it is present in an amount of from about 2 to about 44 g/m[0069] 2, preferably from about 6 to about 32 g/m2, which corresponds to a dry thickness of about 2 to about 40 μm, preferably about 6 to about 30 μm.
  • The following examples illustrates the utility of the present invention.[0070]
  • EXAMPLES
  • The following polymers were used as controls in the image-receiving layer: [0071]
  • CP-1: poly(styrene-co-4-vinylpyridine) (about 50:50 mole %) (U.S. Pat. No. 5,942,335) [0072]
  • CP-2: poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride-co-divinylbenzene) (about 90/10 mole %) (U.S. Pat. No. 6,045,917) [0073]
  • Synthetic Preparation [0074]
  • Preparation of poly(styrene-co-4-vinylpyridine-co-1-(2-hydroxyethyl)4-vinylpyridinium chloride) (P-1) [0075]
  • A 1-L 3-necked round-bottomed flask fitted with a mechanical stirrer, reflux condenser, and N[0076] 2 inlet was charged with 395 g of tetrahydrofuran, 74.6 g of styrene, and 74.4 g of 4-vinylpyridine. The solution was sparged with N2 for approx. 15 min, 1.53 g of 2,2′azobisisobutryonitrile was added, and the solution was stirred and sparged an additional 15 min. The reaction mixture was heated at 60° C. with stirring under a slight positive pressure of N2 for 18 hr, cooled, concentrated to approximately ½ the initial volume, and precipitated into a large excess of ether. The precipitate was dried in a vacuum oven at 35-40° C. overnight. The polymer was dissolved in methanol and reprecipitated into ether, filtered, and dried in vacuo.
  • To a 250-mL 3-necked round-bottomed flask fitted with a mechanical stirrer, reflux condenser, and N[0077] 2 inlet was added a solution of 20.0 g of the copolymer above in 80 g of dimethylformamide. After the solution had been sparged with N2 for 20 min, 3.84 g of 2-chloroethanol was added and the solution stirred and heated at 100° C. for 24 hr under a slight positive pressure of N2. The clear, brown solution was precipitated into 1500 mL of ether and the precipitate dried at 35° C. in a vacuum oven overnight. Tg 135-136° C.
  • Example 1
  • Light Stability [0078]
  • Preparation of a water soluble, anionic dye ink composition, I-1 [0079]
  • Ink I-1 containing Dye 1 identified above was prepared by mixing the dye concentrate (3.1%) with de-ionized water containing humectants of diethylene glycol (Aldrich Chemical Co.) and glycerol (Acros Co.), each at 6%, a biocide, Proxel GXL ® biocide (Zeneca Specialties) at 0.003wt %, and a surfactant, Surfynol 465 ® (Air Products Co.) at 0.05wt. %. [0080]
  • The dye concentration was based on solution absorption spectra and chosen such that the final ink when diluted 1:1000, would yield a transmission optical density of approximately 1.0. [0081]
  • Preparation of Control Ink Recording Elements C-1 and C-2 [0082]
  • The composite side of a polyethylene resin-coated photographic grade paper based support was corona discharge treated prior to coating. Ink receptive layers were composed of a mixture of 0.86 g/m[0083] 2 of polymer CP-1 or CP-2, 7.75 g/m2 of pig skin gelatin and 0.09 g/m2 of S-100 12 μm polystyrene beads (ACE Chemical Co.), and coated from distilled water on the above mentioned paper support.
  • Preparation of Invention Ink Recording Elements E-1 through E-5 [0084]
  • Recording elements E-1 through E-5 of the invention were coated the same as described above, using P-1 through P-5 instead of CP-1 or CP-2. [0085]
  • Printing [0086]
  • Elements E-1 through E-5 and control elements C-1 and C-2 were printed using an Epson 200 ® printer using I-1 ink described above. After printing, all images were allowed to dry at room temperature overnight, and the densities were measured at all steps using an X-Rite 820® densitometer. The images were then subjected to a high intensity daylight fading test for 2 weeks, 50Klux, 5400° K., approximately 25% RH. The Status A blue reflection density nearest to 1.0 was compared before and after fade and a percent density retained was calculated for the yellow dye with each receiver element. The results can be found in Table 1 below. [0087]
    TABLE 1
    Recording Blue Density Blue Density % Retained
    Element Polymer Before Fade After Fade After Fade
    E-1 P-1 1.09 0.84 77
    E-2 P-2 1.01 0.84 84
    E-3 P-3 1.02 0.73 71
    E-4 P-4 0.97 0.97 90
    E-5 P-5 0.99 0.72 73
    C-1 CP-1 1.0  0.88 88
    C-2 CP-2 1.04 0.72 69
  • The above results show that the recording elements E-1 through E-5 of the invention, as compared to the control recording elements C-2, gave higher % retained density after high intensity daylight fading. Although control receiving element C-1 gave higher % retained densities than several of the recording elements of the invention, C-1 exhibits poor dye fixation as will be shown in Example 2 below. [0088]
  • Example 2
  • Waterfastness [0089]
  • Preparation of a water soluble, anionic dye ink composition, I-2 [0090]
  • Ink I-2 was prepared as described in Example 1 except Dye 2 (0.58%) was added in place of Dye 1. [0091]
  • Printing [0092]
  • Elements E-1 and E-5 and control elements C-1 through C-2 were printed as described in Example 1 except I-2 was used instead of I-1. After printing, all images were allowed to dry at room temperature overnight. [0093]
  • The images were then subjected to a waterfastness test (WF) which involves soaking each imaged receiver in room temperature, distilled water for 5 minutes and then allowing the image to dry at room temperature overnight. The image quality of each print was then visually ranked and assigned a value between 0 and 5. The visual ranking is an indirect measure of how well the dye is fixed (dye fixation) to the receiver layer. Zero represents no image degradation (better dye fixation) and 5 represents severe image degradation (poor dye fixation) and the results are summarized in Table 2 below. [0094]
    TABLE 2
    Recording Element Polymer WF Rank
    E-1 P-1 2
    E-2 P-2 3
    E-3 P-3 2
    E-4 P-4 3
    E-5 P-5 2
    C-1 CP-1 4
    C-2 CP-2 1
  • The above results show that the recording elements E-1 through E-5 of the invention, as compared to the control recording element C-1, gave better dye fixation after the waterfastness test. Although control receiver element C-2 gave better dye fixation than the recording elements of the invention, the light stability was worse as illustrated in Example 1 above. [0095]
  • Example 3
  • Light Stability Using Particulates [0096]
  • Preparation of Control Ink Recording Element C-3 [0097]
  • Control recording element C-3 was prepared the same as C-2 in Example 1 except the ink receptive layer was composed of two layers. The bottom layer was composed of a mixture of 37.9 g/m[0098] 2 of fumed alumina (Cabot Corp.), 4.3 g/m2 of GH-23 ® poly(vinyl alcohol) (Nippon Gohsei); 0.9 g/m2 of dihydroxydioxane (Clariant) hardener, and 0.04 g.m2 of Olin 10G ® (Olin Co.) surfactant coated from distilled water.
  • On top of the above layer was then coated a mixture of 2.68 g/m[0099] 2 of fumed alumina, 0.06 g/m2 of GH-23 poly(vinyl alcohol), and 0.48 g/m2 of CP-2 coated from distilled water.
  • Preparation of Invention Ink Recording Element E-6 [0100]
  • Recording element E-6 of the invention was coated the same as described for control receiver element C-3, except P-2 was used in place of CP-2. [0101]
  • Printing [0102]
  • The recording element E-6 of the invention and control recording element C-3 were printed and evaluated as described in Example 1 above and the results are summarized in Table 3 below. [0103]
    TABLE 3
    Recording Blue Density Blue Density % Retained
    Element Polymer Before Fade After Fade After Fade
    E-6 P-2 1.08 0.57 53
    C-3 CP-2 0.98 0.31 31
  • The above results show that the recording element E-6 of the invention, as compared to the control recording element C-3, gave higher % retained density after high intensity daylight fading. [0104]
  • The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention. [0105]

Claims (15)

What is claimed is:
1. An ink jet printing method, comprising the steps of:
A) providing an ink jet printer that is responsive to digital data signals;
B) loading the printer with ink-receptive elements comprising a support having thereon an image-receiving layer comprising a cationic, water-dispersible, partially quaternized pyridine-containing polymer;
C) loading said printer with an ink jet ink composition comprising water, a humectant, and a water-soluble anionic dye; and
D) printing on said image-receiving layer using said ink jet ink in response to said digital data signals.
2. The method of claim 1 wherein said cationic, water-dispersible, partially quaternized pyridine-containing polymer has the formula:
Figure US20020145652A1-20021010-C00004
wherein:
each A independently represents a carbonyl group or a direct link;
each B independently represents O, NH or a direct link;
each R1 independently represents H or CH3;
each R2 independently represents an alkyl, cyclic alkyl or alkoxy group having from 1 to about 10 carbon atoms or a direct link;
R3 represents a substituted or unsubstituted pyridine ring;
R4 represents a substituted or unsubstituted pyridinium ring;
R5 represents a linear, branched or cyclic alkyl, alkoxy or aryl group having from 1 to about 24 carbon atoms;
X represents an anion or a mixture of anions;
Z represents at least one ethylenically unsaturated monomer;
a represents a mole % of from about 0 to about 98;
b represents a mole % of from about 5 to about 98; and
c represents a mole % of from about 75 to about 2.
3. The method of claim 2 wherein each R1 represents H, each A, B and R2 represents direct links, R3 is pyridine and R4 is pyridinium.
4. The method of claim 2 wherein Z is a styrenic monomer, an acrylate ester, a methacrylate ester, an acrylamide, a methacrylamide, a vinylpyrrolidone, a vinyl ester derived from straight chain and branched acids, a vinyl ether, a vinyl nitrile, a vinyl ketone, a halogen-containing monomer or an olefin.
5. The method of claim 2 wherein Z is styrene.
6. The method of claim 2 wherein R5 is hydroxyethyl, a linear alkyl group having from about 12 to about 18 carbon atoms or benzyl.
7. The method of claim 2 wherein X is chloride.
8. The method of claim 1 wherein said humectant is diethylene glycol, glycerol or diethylene glycol monobutylether.
9. The method of claim 1 wherein said image-receiving layer also contains a binder.
10. The method of claim 9 wherein said binder is a hydrophilic polymer.
11. The method of claim 10 wherein said hydrophilic polymer is gelatin or poly(vinyl alcohol).
12. The method of claim 1 wherein said image-receiving layer contains particulates.
13. The method of claim 12 wherein said particulates are inorganic oxides or organic latex polymers.
14. The method of claim 12 wherein said particulates are barium sulfate, calcium carbonate, clay, silica or alumina.
15. The method of claim 1 wherein said anionic dye comprises about 0.2 to about 5% by weight of said ink jet ink composition.
US09/770,128 2001-01-26 2001-01-26 Ink jet printing method Expired - Fee Related US6454404B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/770,128 US6454404B1 (en) 2001-01-26 2001-01-26 Ink jet printing method
DE60203205T DE60203205T2 (en) 2001-01-26 2002-01-14 Inkjet printing method
EP02075137A EP1226967B1 (en) 2001-01-26 2002-01-14 Ink jet printing method
JP2002015491A JP2002316476A (en) 2001-01-26 2002-01-24 Ink jet printing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/770,128 US6454404B1 (en) 2001-01-26 2001-01-26 Ink jet printing method

Publications (2)

Publication Number Publication Date
US6454404B1 US6454404B1 (en) 2002-09-24
US20020145652A1 true US20020145652A1 (en) 2002-10-10

Family

ID=25087570

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/770,128 Expired - Fee Related US6454404B1 (en) 2001-01-26 2001-01-26 Ink jet printing method

Country Status (4)

Country Link
US (1) US6454404B1 (en)
EP (1) EP1226967B1 (en)
JP (1) JP2002316476A (en)
DE (1) DE60203205T2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020146562A1 (en) * 2001-02-08 2002-10-10 Showa Denko K.K. Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
US20050042396A1 (en) * 2001-12-24 2005-02-24 Robert Jones Identification card printed with jet inks and systems and methods of making same
US7661600B2 (en) 2001-12-24 2010-02-16 L-1 Identify Solutions Laser etched security features for identification documents and methods of making same
US7694887B2 (en) 2001-12-24 2010-04-13 L-1 Secure Credentialing, Inc. Optically variable personalized indicia for identification documents
US7744002B2 (en) 2004-03-11 2010-06-29 L-1 Secure Credentialing, Inc. Tamper evident adhesive and identification document including same
US7789311B2 (en) 2003-04-16 2010-09-07 L-1 Secure Credentialing, Inc. Three dimensional data storage
US7798413B2 (en) 2001-12-24 2010-09-21 L-1 Secure Credentialing, Inc. Covert variable information on ID documents and methods of making same
US7804982B2 (en) 2002-11-26 2010-09-28 L-1 Secure Credentialing, Inc. Systems and methods for managing and detecting fraud in image databases used with identification documents
US7815124B2 (en) 2002-04-09 2010-10-19 L-1 Secure Credentialing, Inc. Image processing techniques for printing identification cards and documents
US7824029B2 (en) 2002-05-10 2010-11-02 L-1 Secure Credentialing, Inc. Identification card printer-assembler for over the counter card issuing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138631A1 (en) * 2001-08-13 2003-02-27 Basf Ag Process for the production of coated paper with high whiteness
US6946023B2 (en) * 2002-06-06 2005-09-20 Avery Dennison Corporation Smear-resistant ink compositions
US6869178B2 (en) * 2002-11-07 2005-03-22 Eastman Kodak Company Ink jet printing method
US6861114B2 (en) * 2002-11-07 2005-03-01 Eastman Kodak Company Ink jet recording element

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH457656A (en) * 1965-01-18 1968-06-15 Ciba Geigy Process for the preparation of basic dyes
JPS5736692A (en) * 1980-08-14 1982-02-27 Fuji Photo Film Co Ltd Sheet for ink jet recording
US5244861A (en) 1992-01-17 1993-09-14 Eastman Kodak Company Receiving element for use in thermal dye transfer
US5696182A (en) * 1993-03-15 1997-12-09 Canon Kabushiki Kaisha Ink, ink-jet recording process making use of the ink, and apparatus using the ink
US5482545A (en) 1993-12-28 1996-01-09 Canon Kabushiki Kaisha Ink, and ink-jet recording method and instrument using the same
WO1997016496A1 (en) 1995-11-02 1997-05-09 Seiko Epson Corporation Color ink set for ink-jet recording
JPH09202043A (en) 1996-01-29 1997-08-05 Mitsubishi Chem Corp Formation of color image
US5942335A (en) * 1997-04-21 1999-08-24 Polaroid Corporation Ink jet recording sheet
US5866282A (en) 1997-05-23 1999-02-02 Eastman Kodak Company Composite photographic material with laminated biaxially oriented polyolefin sheets
US5853965A (en) 1997-05-23 1998-12-29 Eastman Kodak Company Photographic element with bonding layer on oriented sheet
US6045917A (en) * 1998-07-10 2000-04-04 Eastman Kodak Company Ink jet recording element
EP1176030B1 (en) * 2000-07-27 2005-01-12 Eastman Kodak Company Ink jet recording element and printing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150911B2 (en) * 2001-02-08 2006-12-19 Showa Denko Kabushiki Kaisha Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
US20020146562A1 (en) * 2001-02-08 2002-10-10 Showa Denko K.K. Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
US7798413B2 (en) 2001-12-24 2010-09-21 L-1 Secure Credentialing, Inc. Covert variable information on ID documents and methods of making same
US20050042396A1 (en) * 2001-12-24 2005-02-24 Robert Jones Identification card printed with jet inks and systems and methods of making same
US7661600B2 (en) 2001-12-24 2010-02-16 L-1 Identify Solutions Laser etched security features for identification documents and methods of making same
US7694887B2 (en) 2001-12-24 2010-04-13 L-1 Secure Credentialing, Inc. Optically variable personalized indicia for identification documents
US8083152B2 (en) 2001-12-24 2011-12-27 L-1 Secure Credentialing, Inc. Laser etched security features for identification documents and methods of making same
US7815124B2 (en) 2002-04-09 2010-10-19 L-1 Secure Credentialing, Inc. Image processing techniques for printing identification cards and documents
US8833663B2 (en) 2002-04-09 2014-09-16 L-1 Secure Credentialing, Inc. Image processing techniques for printing identification cards and documents
US7824029B2 (en) 2002-05-10 2010-11-02 L-1 Secure Credentialing, Inc. Identification card printer-assembler for over the counter card issuing
US8087772B2 (en) 2002-05-10 2012-01-03 L-1 Secure Credentialing, Inc. Identification card printer-assembler for over-the-counter card issuing
US7804982B2 (en) 2002-11-26 2010-09-28 L-1 Secure Credentialing, Inc. Systems and methods for managing and detecting fraud in image databases used with identification documents
US7789311B2 (en) 2003-04-16 2010-09-07 L-1 Secure Credentialing, Inc. Three dimensional data storage
US7963449B2 (en) 2004-03-11 2011-06-21 L-1 Secure Credentialing Tamper evident adhesive and identification document including same
US7744002B2 (en) 2004-03-11 2010-06-29 L-1 Secure Credentialing, Inc. Tamper evident adhesive and identification document including same

Also Published As

Publication number Publication date
US6454404B1 (en) 2002-09-24
DE60203205D1 (en) 2005-04-21
DE60203205T2 (en) 2006-03-23
EP1226967B1 (en) 2005-03-16
EP1226967A2 (en) 2002-07-31
JP2002316476A (en) 2002-10-29
EP1226967A3 (en) 2002-10-23

Similar Documents

Publication Publication Date Title
US6454404B1 (en) Ink jet printing method
US6554418B2 (en) Ink jet printing method
US6347867B1 (en) Ink jet printing method
US6423398B1 (en) Ink jet printing method
US6503608B2 (en) Ink jet printing method
US6619797B2 (en) Ink jet printing method
US6527387B2 (en) Ink jet printing method
US6699538B2 (en) Ink jet recording element
US6364476B1 (en) Ink jet printing process
US6629759B2 (en) Ink jet printing method
US6612692B2 (en) Ink jet printing method
US6578960B1 (en) Ink jet printing method
US6645581B2 (en) Ink jet recording element
US6605325B2 (en) Ink jet recording element
US20030113515A1 (en) Ink jet recording element
EP1308308A2 (en) Ink jet recording element and printing method
EP1308311A2 (en) Ink jet recording element and printing method
EP1308310A2 (en) Ink jet recording element and printing method
US20030112309A1 (en) Ink jet printing method
EP1308309A2 (en) Ink jet recording element and printing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: EASTMAN KODAK COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAWRENCE, KRISTINE B.;TEEGARDEN, DAVID M.;REEL/FRAME:011509/0107;SIGNING DATES FROM 20010124 TO 20010125

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100924